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We study the problem of a partisan gerrymanderer who assigns voters to
equipopulous districts to maximize his party’s expected seat share. The designer
faces both aggregate, district-level uncertainty (how many votes his party will
receive) and idiosyncratic, voter-level uncertainty (which voters will vote for his
party). Segregate-pair districting, where weaker districts contain one type of voter,
while stronger districts contain two, is optimal for the gerrymanderer. The opti-
mal form of segregate-pair districting depends on the designer’s popularity and the
relative amounts of aggregate and idiosyncratic uncertainty. When idiosyncratic
uncertainty dominates, a designer with majority support pairs all voters, while a
designer with minority support segregates opposing voters and pairs more favor-
able voters; these plans resemble uniform districting and “packing-and-cracking,”
respectively. When aggregate uncertainty dominates, the designer segregates mod-
erate voters and pairs extreme voters; this “matching slices” plan has received
some attention in the literature. Estimating the model using precinct-level re-
turns from recent US House elections shows that, in practice, idiosyncratic un-
certainty dominates. We discuss implications for redistricting reform, political po-
larization, and detecting gerrymandering. Methodologically, we exploit a formal
connection between gerrymandering—partitioning voters into districts—and infor-
mation design—partitioning states of the world into signals.
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1. INTRODUCTION

Legislative district boundaries are drawn by political partisans under many electoral
systems (Bickerstaff, 2020). In the United States, the significance of partisan district-
ing has grown with the rise of computer-assisted districting (Newkirk, 2017), together
with intense partisan efforts to gain and exploit control of the districting process. These
trends culminated in “The Great Gerrymander of 2012” (McGhee, 2020), where the Re-
publican party’s Redistricting Majority Project (REDMAP), having previously targeted
state-level elections that would give Republicans control of redistricting, aggressively
redistricted several states, including Michigan, Ohio, Pennsylvania, and Wisconsin. The
resulting districting plans are widely viewed as contributing to the outcome of the 2012
general election, where Republican congressional candidates won a 33-seat majority in
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the House of Representatives with 49.4% of the two-party vote (McGann, Smith, Lat-
ner, and Keena, 2016). In light of these developments—along with the Supreme Court
ruling in Rucho v. Common Cause (2019) that partisan gerrymanders are not judi-
ciable in federal court and the continued prominence of gerrymandering in the 2020
US redistricting cycle (Rakich and Mejia, 2022)—partisan gerrymandering is likely to
remain an important feature of American politics for some time.

This paper studies the problem of a partisan gerrymanderer (the “designer”) who
assigns voters to a large number of equipopulous districts so as to maximize his party’s
expected seat share.1 This problem approximates the one facing many partisan gerry-
manderers in the United States, where the constraint that districts must be equipopu-
lous is strictly enforced.2 In practice, gerrymanderers also face additional constraints,
such as the federal requirements that districts are contiguous and do not discriminate
on the basis of race, and various state-level restrictions such as “compactness” require-
ments, requirements to respect political sub-divisions such as county lines, requirements
to represent racial or ethnic groups or other communities of interest, and so on. While
these complex constraints can be important, we believe that often they are not as
binding as they might seem, and also that they are more productively considered on a
case-by-case basis rather than as part of a general theoretical analysis.3 We therefore
follow much of the literature (discussed below) in focusing on the simpler problem with
only the equipopulation constraint.

When the designer has perfect information, the solution to this problem is well-
known. If the designer’s party is supported by a minority of voters of size m< 1/2, he
“packs” 1− 2m opposing voters in districts where he receives zero votes and “cracks”
the remaining 2m voters in districts which he wins with 50% of the vote. If the designer
has majority support, he can win all districts by making them identical. Thus, under
perfect information, pack-and-crack is optimal for a designer with minority support,
while uniform districting is optimal for a designer with majority support. We instead
consider the more general and realistic case where the designer must allocate a variety
of types of voters (or, more realistically, groups of voters such as census blocks or
precincts) under uncertainty. The goal of this paper is to characterize optimal partisan
gerrymandering in this setting and to draw implications for broader legal and political
economy issues surrounding gerrymandering.

In outline, our model and results are as follows. We assume that the designer faces
both aggregate, district-level uncertainty (how many votes his party will receive) and
idiosyncratic, voter-level uncertainty (which voters will vote for his party). Aggregate
uncertainty is parameterized by a one-dimensional aggregate shock, while voters are
parameterized by a one-dimensional type that determines a voter’s probability of voting
for the designer’s party for each value of the aggregate shock. We assume that the

1We hasten to add that studying this problem does not endorse gerrymandering, any more than
studying monopolistic behavior endorses monopoly.

2In Karcher v. Daggett (1983), the Supreme Court rejected a districting plan in New Jersey with
less than a 1% deviation from population equality, finding that “there are no de minimus population
variations, which could practically be avoided, but which nonetheless meet the standard of Article I,
Section 2 [of the U.S. Constitution] without justification.”

3An exception is the requirement to respect county lines, which we address in Section 6.2. See Friedman
and Holden (2008) for discussion of the other constraints. For example, contiguity is not as severe a
constraint as it might seem, because contiguous districts can have highly irregular shapes. The title of
this paper, typeset in Gerry font (https://www.uglygerry.com/), contains many examples of irregularly
shaped districts.

https://www.uglygerry.com/
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distributions of the aggregate and idiosyncratic shocks are symmetric and unimodal
with log-concave densities drawn from the same location-scale family. This assumption
lets us cleanly compare the “amounts” of aggregate and idiosyncratic uncertainty.

Our first result is that optimal districting takes a segregate-pair form. Under
segregate-pair districting, the designer creates weaker districts that contain a single
voter type (which are analogous to the packed districts under pack-and-crack) and
stronger districts that contain two voter types (which are analogous to the cracked dis-
tricts under pack-and-crack). The class of segregate-pair plans admits a tight character-
ization but is rich enough to cover a variety of districting plans, including refinements of
all of the main plans proposed in the prior literature. The optimality of segregate-pair
districting is thus a key organizing result.

We then turn to our main substantive results, which characterize optimal districting
as a function of the designer’s popularity and the relative amounts of idiosyncratic
and aggregate uncertainty. First, we show that if the designer has strong support from
all voter types, then a negative assortative districting (NAD) plan is optimal, where
extreme left and right-wing voters are paired together. Conversely, if the designer has
weak support from all voter types and idiosyncratic uncertainty is larger than aggre-
gate uncertainty, then a segregation plan is optimal, where each district contains only
a single voter type. Second, if aggregate uncetainty is very small, optimal districting
for a designer with majority support approximates NAD, while optimal districting for
a designer with minority support approximates a segregate-opponents-and-pair (SOP)
plan, where unfavorable voters are segregated and more favorable voters are paired in
a negatively assortative manner. The former result is analogous to the optimality of
uniform districting for a designer with majority support without uncertainty, because
NAD plans are versions of uniform districting that pair voter types rather than pooling
all types together; similarly, the latter result is analogous to the optimality of pack-
and-crack districting for a designer with minority support without uncertainty, because
SOP plans are versions of pack-and-crack districting that segregate unfavorable voters
and pair more favorable voter types rather than pooling them. Indeed, while exactly
optimal districting with small aggregate uncertainty approximates NAD or SOP, much
simpler uniform districting or pack-and-crack plans are approximately optimal (for the
cases of majority and minority designer support, respectively). Third, if idiosyncratic
uncertainty is very small, optimal districting approximates NAD with a 50-50 voter
type split in each district.4 Fourth, in the intermediate region where both the de-
signer’s support among voters and the ratio of aggregate and idiosyncratic uncertainty
are balanced, mixed plans can be optimal (as well as a segregate-moderates-and-pair
plan, where moderate voters are segregated and extreme left and right-wing voters are
paired), and we can numerically trace out the boundaries of the parameter regions
where each type of plan is optimal.

As we discuss in Section 6, the form of optimal partisan districting has significant
implications for several political and legal issues, including redistricting reform, intra-
and inter-district political polarization, and measuring gerrymandering. Since our re-
sults show that the ratio of idiosyncratic and aggregate uncertainty is a key determi-
nant of the form of optimal districting, it is therefore important to understand whether
idiosyncratic or aggregate uncertainty is larger in practice. We answer this question us-
ing precinct-level returns from the 2016, 2018, and 2020 US House elections. The data
clearly show that idiosyncratic uncertainty is much larger than aggregate uncertainty.

4This result refines the main result of Friedman and Holden (2008).
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Intuitively, this finding results from the simple observation that, in practice, most
precinct vote splits are much closer to 50-50 (the vote split under high idiosyncratic
uncertainty) than 100-0 or 0-100 (the vote splits under high aggregate uncertainty).5
Therefore, for the realistic parameter range, exactly optimal districting approximates
NAD (for a designer with majority voter support) or SOP (for a designer with mi-
nority support), while uniform districting or pack-and-crack is approximately optimal.
This finding can help explain why actual gerrymandering usually resembles uniform
districting or pack-and-crack.

Methodologically, we establish a formal connection between gerrymandering—
partitioning voters into districts—and information design—partitioning states of the
world into signals. The partisan gerrymandering problem we study is mathematically
equivalent to a non-linear Bayesian persuasion problem with a one-dimensional state,
a one-dimensional action for the receiver, and state-independent sender preferences.
Our results are novel in the context of this persuasion problem, so this paper directly
contributes to information design as well as gerrymandering. More importantly, we
establish a strong connection between these topics.6

Related Literature. The closest prior papers on optimal partisan gerrymandering are
Owen and Grofman (1988), Friedman and Holden (2008), and Gul and Pesendorfer
(2010). Owen and Grofman’s model is equivalent to the special case of our model with
two voter types. Gul and Pesendorfer study competition between two designers who
each control districting in some area and aim to win a majority of seats.7 A simplified
version of their model with a single designer is equivalent to the special case of our
model with uniform idiosyncratic shocks. Friedman and Holden consider a model sim-
ilar to ours (although with finitely many districts, rather than a continuum as in our
model and Gul and Pesendorfer), but their main results concern the case where idiosyn-
cratic uncertainty is much smaller than aggregate uncertainty. In contrast, we do not
restrict the relative amounts of aggregate and idiosyncratic uncertainty, and we show
empirically that the practically relevant case is the one where idiosyncratic uncertainty
dominates (i.e., the opposite of the case emphasized by Friedman and Holden).

The broader literature on gerrymandering and redistricting addresses a wide range of
issues, including geographic constraints on gerrymandering (Sherstyuk, 1998, Shotts,
2001, Puppe and Tasnádi, 2009), gerrymandering with heterogeneous voter turnout
(Bouton, Genicot, Castanheira, and Stashko, 2024, Gomberg, Pancs, and Sharma,
2024), socially optimal districting (Gilligan and Matsusaka, 2006, Coate and Knight,
2007, Bracco, 2013), measuring district compactness (Chambers and Miller, 2010, Fryer
and Holden, 2011, Ely, 2022), the interaction of redistricting and policy choices (Shotts,
2002, Besley and Preston, 2007, Groll and O’Halloran, 2024), measuring gerrymander-
ing (King and Browning, 1987, McGhee, 2014, Stephanopoulos and McGhee, 2015,
Deford, Duchin, and Solomon, 2021, Gomberg, Pancs, and Sharma, 2023), and assess-
ing the consequences of redistricting (among many: Gelman and King, 1994b, McCarty,

5This observation also implies that simpler models with only two types of voters or precincts (e.g.,
Owen and Grofman 1988) cannot closely approximate the problem facing actual gerrymanderers, who
must assign many different types of precincts.

6Contemporaneous papers by Lagarde and Tomala (2021) and Gomberg, Pancs, and Sharma (2023)
also emphasize connections between gerrymandering and information design, albeit in less general models:
Lagarde and Tomala assume two voter types, while Gomberg, Pancs, and Sharma assume no aggregate
uncertainty. The closest paper in the persuasion literature is our companion paper, Kolotilin, Corrao,
and Wolitzky (2024), which we discuss later on. In turn, Kolotilin, Corrao, and Wolitzky was greatly
influenced by Friedman and Holden (2008).

7Friedman and Holden (2020) study designer competition in the model of their 2008 paper.
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Poole, and Rosenthal, 2009, Hayes and McKee, 2009, Jeong and Shenoy, 2024, Sabet
and Yuchtman, 2024). As the partisan gerrymandering problem interacts with many of
these issues, our analysis may facilitate future research in these areas.

Outline. The paper is organized as follows: Section 2 presents the model. Section 3
establishes general properties of optimal districting plans that hold regardless of the
designer’s popularity or the amount of aggregate and idiosyncratic uncertainty. Sec-
tion 4 contains our main theoretical and numerical results, which characterize optimal
districting as a function of these parameters. Section 5 contains our empirical results,
which estimate which parameters are the practically relevant ones. Section 6 discusses
policy implications. Section 7 concludes. All proofs are deferred to the appendix.

2. MODEL

We consider a standard electoral model with one-dimensional voter types (parame-
terizing voter partisanship) and one-dimensional aggregate uncertainty in each district-
level race (parameterizing the vote share for the designer’s party).

Voters and Vote Shares. There is a continuum of voters. A voter votes for the de-
signer’s party (for short, “votes for the designer”) iff s≥ r+ t, where

• s ∈ [s, s], with s < s, is the voter’s type, which is observed by the designer and is
the object of districting. The population distribution of s is denoted by F .

• r ∈R is the aggregate shock in the voter’s district, which realizes after districting.
The distribution of r in each district is denoted by G.8

• t ∈ R is an idiosyncratic, voter-specific “taste shock,” which also realizes after
districting. The distribution of t is denoted by Q.

Thus, the share of type-s voters who vote for the designer in a district where the
aggregate shock takes value r equals Q(s− r).

Note that the designer faces two kinds of uncertainty at the time of districting: ag-
gregate, district-level uncertainty, r, and idiosyncratic, voter-level uncertainty, t. Many
of our results turn on a comparison of the “amount” of each kind of uncertainty. To
facilitate this comparison, we assume that G and Q have the same shape, in that there
exists η > 0 such that G(r) =Q(ηr).9 We also define γ = η2/(1+η2) ∈ (0,1), so the ratio
of the variances of r and t is (1− γ)/γ. The parameter γ thus captures the share of id-
iosyncratic uncertainty. We say that aggregate uncertainty is larger than idiosyncratic
uncertainty if γ < 0.5, while idiosyncratic uncertainty is larger if γ > 0.5.

The model is now fully parameterized by the distributions F and Q and the parameter
γ ∈ (0,1). We assume that F and Q admit strictly positive densities f and q that are
three-times differentiable. We also assume that q is symmetric about 0 and strictly
log-concave: d2 ln (q(t)) /dt2 < 0 for all t. This implies that Q is strictly convex below 0
and strictly concave above 0, with Q(0) = 1/2.

Log-concavity of q is a key assumption. This standard property is satisfied by many
distributions (Bagnoli and Bergstrom, 2005) and is similar to Friedman and Holden’s
(2008) “Informative Signal Property” assumption. Substantively, it captures the real-

8The correlation among district-level aggregate shocks is irrelevant for our analysis. However, we do
estimate it empirically.

9Mathematically, this says that G and Q lie in the same location-scale family. An earlier version of this
paper, Kolotilin and Wolitzky (2020), contains additional results where G and Q have different shapes.
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istic feature that moderate voters are more sensitive to the aggregate shock than more
extreme voters.10

Districting Plans. The designer assigns voters to a continuum of equipopulous dis-
tricts based on their types s, and thus determines the distribution P of s in each
district.11 A district is characterized by the distribution P of voter types s it contains.
Thus, a districting plan—which specifies the measure of districts with each voter type
distribution P—is a distribution H over distributions P of s, such that the population
distribution of s is given by F : that is, H ∈∆∆[s, s] and

∫
P (s)dH(P ) = F (s) for all

s.12 For example, under uniform districting, where all districts are the same, H assigns
probability 1 to P = F . In the opposite extreme case of segregation, where each district
consists entirely of one type of voter, every distribution P in the support of H takes
the form P = δs for some s ∈ [s, s], where δs denotes the degenerate distribution on
voter type s. Finally, the best-known districting plan is pack-and-crack, where there is
a cutoff voter type s∗ ∈ (s, s) such that supp(H) = {P,P ′} and P and P ′ are the lower
and upper truncations of F at s∗.

We say that a districting plan is pure if (almost) each voter type s is assigned to
only one kind of district (so there is a unique P ∈ supp(H) such that s ∈ supp(P )) and
mixed otherwise. Since the distribution of voter types F is continuous, it is natural to
expect pure districting to be optimal, but we will see that this is not always the case.

Designer’s Problem. The designer wins a district iff he receives a majority of the dis-
trict vote. Thus, the designer wins a district with voter type distribution P (henceforth,
“district P ”) iff the district’s aggregate shock r satisfies

∫
Q(s− r)dP (s)≥ 1/2. Since

Q(s− r) is decreasing in r and Q(0) = 1/2, the designer wins district P iff

r ≤ r∗(P ) :=

{
r̃ :

∫
Q(s− r̃)dP (s) =Q(0)

}
.

Note that the threshold shock r∗(P ) to win a segregated district P = δs is simply
s, while in general r∗(P ) lies somewhere in the convex hull of supp(P ). We say that
a district P is weaker than another district P ′ if r∗(P )< r∗(P ′). Since the aggregate
shock has the same distribution in all districts, the designer wins weaker districts with
lower probability.

We assume that the designer maximizes his party’s expected seat share.13 Thus,
the designer’s problem is to maximize

∫
G(r∗(P ))dH(P ) over H ∈ ∆∆[s, s] subject

to
∫
PdH(P ) = F . This problem is similar to that of Friedman and Holden (2008),

which in turn nests Owen and Grofman (1988) and a single-designer version of Gul and

10As Rakich and Silver (2018) put it in describing the “elasticity scores” in FiveThirtyEight.com’s
forecasting model, “Voters at the extreme end of the spectrum—those who have close to a 0 percent or
a 100 percent chance of voting for one of the parties—don’t swing as much as those in the middle.”

11We follow Gul and Pesendorfer (2010) in assuming a continuum of districts. Since districting plans
in the US are drawn at the state level, this implicitly assumes that each state contains a large number
of districts. Of course, this is a better approximation for state legislative districts and for congressional
districts in large states than it is for congressional districts in small states. Introducing integer constraints
on the number of districts, while interesting and realistic, would complicate the analysis and obscure our
insights.

12Throughout, for any compact metric space X , ∆X denotes the set of probability measures on X ,
endowed with the weak* topology. For any µ ∈∆X , its support supp(µ) is the smallest compact set of
measure one.

13See Section 7 and Kolotilin and Wolitzky (2020) for discussion of more general designer objectives.
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Pesendorfer (2010).14 It is also equivalent to a Bayesian persuasion problem where the
designer splits a prior distribution F into posterior distributions P and obtains utility
G(r∗(P )) from inducing P .15

3. OPTIMAL PARTISAN GERRYMANDERING: GENERAL PROPERTIES

We first establish two general properties of optimal districting plans that hold regard-
less of the designer’s popularity or the amount of aggregate and idiosyncratic uncer-
tainty. The first of these, single-dippedness, is the key property identified by Friedman
and Holden (2008)—we just re-establish their result in our continuum-district model.
The second property, segregate-pairedness, is novel.

3.1. Single-Dippedness
We first show that optimal districting plans are strictly single-dipped, in that more

extreme voters are assigned to stronger districts: formally, any district P ∈ supp(H)
containing any two voter types s < s′′ is stronger than any district P ′ ∈ supp(H) con-
taining any intervening voter type s′ ∈ (s, s′′), in that r∗(P ) > r∗(P ′).16 Note that if
districting is strictly single-dipped then each district contains at most two distinct voter
types. Thus, any district P in the support of a strictly single-dipped districting plan
H is either segregated (if | supp(P )| = 1) or paired (if | supp(P )| = 2). For example,
segregation is strictly single-dipped, but uniform districting and pack-and-crack are
not.

Lemma 1: Any optimal districting plan is strictly single-dipped.

Lemma 1 recapitulates Lemma 1 of Friedman and Holden (2008) in our continuum-
district model.17 To see the intuition, suppose a districting plan creates two districts,
1 and 2, with the same threshold aggregate shock r∗, but where District 1 contains
moderate voters and District 2 contains a mix of left-wing and right-wing extremists.
Since q is log-concave, the vote share is more sensitive to the aggregate shock in District
1 than in District 2, which implies that a marginal voter is more likely to be pivotal in
District 2 than in District 1. The designer can then profitably exploit this asymmetry
by re-assigning some unfavorable voters to District 1 and re-assigning some favorable
voters to District 2, thus weakening the moderate District 1 and strengthening the
extreme District 2. Breaking all ties in favor of extreme disticts in this manner leads to
strictly single-dipped districting.

14Friedman and Holden assume a finite number of districts rather than a continuum and do not assume
that G and Q have the same shape. Owen and Grofman assume binary voter types. Gul and Pesendorfer
consider a majoritarian objective with both state-level and district-level aggregate shocks; however, after
conditioning on the pivotal value of the state-level shock, their problem reduces to maximizing expected
seat share with only district-level shocks.

15Specifically, the designer’s problem lies in the translation-invariant subcase of the state-independent
sender case of the persuasion problem studied in Kolotilin, Corrao, and Wolitzky (2024), which specializes
the general Bayesian persuasion problem of Kamenica and Gentzkow (2011) by assuming that the state
and the receiver’s action are one-dimensional, the receiver’s utility is supermodular and concave in her
action, and the sender’s utility is independent of the state and increasing in the receiver’s action. In the
gerrymandering context, the designer’s preferences are state-independent because he only cares about
how many districts he wins and not directly about the districts’ composition.

16We say that a district P “contains” a voter type s if s ∈ supp(P ).
17Kolotilin, Corrao, and Wolitzky (2024) give sufficient conditions for single-dippedness in a more

general model that allows state-dependent designer preferences.
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3.2. Segregate-Pairedness
A strictly single-dipped districting plan can contain a mix of segregated and paired

districts of varying strengths. If such a plan H has the further property that every
segregated district is weaker than every paired district (i.e., there do not exist P,P ′ ∈
supp(H) such that | supp(P )|= 1, | supp(P ′)|= 2, and r∗(P )> r∗(P ′)), we say that H
is segregate-pair.

A segregate-pair plan H can be described in a simple way. There is a bifurcation point
rb ∈ (s, s] that divides the segregated and paired districts, so that r∗(P ) ≤ rb for all
segregated districts P ∈ supp(H), and r∗(P )> rb for all paired districts P ∈ supp(H).
The assignment of voters to paired districts is then described by a decreasing function s1
and an increasing function s2, where the two types in a paired district P are s1(r

∗(P ))
and s2(r

∗(P ))> s1(r
∗(P )). Stronger paired districts thus contain more extreme voters,

as single-dippedness requires.18

Despite this tight characterization, a range of interesting districting plans are
segregate-pair, including the following:
Segregation, where all voters are segregated: P = δr∗(P ) for all P ∈ supp(H), or equiv-

alently rb = s.
Segregate-Moderates-and-Pair (SMP), where moderate voters are segregated and ex-

treme voters are paired in a negatively assortative manner: H is pure, rb ∈ (s, s), and
there exists ŝ ∈ (s, rb) such that a district P ∈ supp(H) is segregated iff r∗(P ) ∈ [ŝ, rb].

Segregate-Opponents-and-Pair (SOP), where unfavorable voters are segregated and
more favorable voters are paired in a negatively assortative manner: H is pure,
rb ∈ (s, s), and there exists ŝ ∈ (s, rb) such that a district P ∈ supp(H) is segregated
iff r∗(P ) ∈ [s, ŝ].

Negative Assortative Districting (NAD), where all voters are paired in a negatively
assortative manner: rb = infP∈supp(H) r

∗(P ).
These four plans feature prominently in our results (as illustrated in Figures 1–3) and

warrant some discussion. First, segregation and NAD are the extreme segregate-pair
plans where all voter types are segregated and where only a single type is segregated.
There is a unique segregatation plan, but there is a continuum of NAD plans, depending
on the weights on the different voter types in each paired district. (Similarly, there is
also a continuum of SMP and SOP plans.) NAD plans can be viewed as “strictly single-
dipped versions” of uniform districting: starting from uniform districting and splitting
the pool of voters into pairs in a strictly single-dipped manner yields NAD.

Similarly, SOP plans are strictly single-dipped version of Gul and Pesendorfer’s (2010)
“p-segregation” plan, where unfavorable voters are segregated and more favorable voters
are pooled: starting from p-segregation and splitting the pool into pairs yields SOP. SOP
can also be obtained from pack-and-crack districting by first splitting the weak districts
into segregated ones (yielding p-segregation) and then splitting the strong districts into
pairs.

Finally, SMP is the same as Friedman and Holden’s (2008) “matching slices” plan,
with the difference that Friedman and Holden assume a finite number of districts and
do not mention the possibility of segregating a non-trivial interval of moderate voter
types.

18Lemma 5 in Appendix A formalizes the description of a segregate-pair plan by a bifurcation point
rb and functions s1 and s2. In particular, we define the bifurcation point as the infimum of r∗(P ) over
all paired districts P ∈ supp(H).
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An instructive example of a plan that can be strictly single-dipped but not segregate-
pair is “Segregate-Supporters-and-Pair,” where favorable voters are segregated and less
favorable voters are paired. This plan can be obtained from pack-and-crack by splitting
weak districts into pairs and splitting strong districts into segregated ones.

Our first main result is that segregate-pair districting is optimal if idiosyncratic un-
certainty is larger than aggregate uncertainty.

Theorem 1: If idiosyncratic uncertainty is larger than aggregate uncertainty, there
is a unique optimal districting plan, which is segregate-pair.

Numerically, segregate-pair districting is also optimal when idiosyncratic uncertainty
is smaller than aggregate uncertainty, but we were not able to prove this.19 However,
Theorem 1 covers the empirically relevant case, as we will estimate that γ is much
greater than 0.5.

The intuition for Theorem 1 is as follows. First, log-concavity of g implies that G, the
distribution of the aggregate shock, is first convex and then concave. Second, convexity
of G favors segregation (as splitting a district with threshold aggregate shock r∗ into
districts with threshold shocks r∗ − ε and r∗ + ε increases expected seat share when
G is convex and Q is linear), while concavity of G favors pairing. Thus, when G is
first convex and then concave, weak districts should be segregated and strong districts
should be paired. This is precisely segregate-pair.20

Theorem 1 is a fundamental result: it is optimal to make paired districts stronger than
segregated ones. However, while segregate-pair plans admit a tight characterization, we
have seen that a wide variety of plans are segregate-pair. The next section characterizes
optimal plans as a function of F , Q, and γ.

As an aside, we note that Theorem 1 also contributes to the Bayesian persuasion
literature. An important disclosure policy that frequently arises in this literature is
upper censorship, where states below a cutoff are disclosed and states above the cutoff
are pooled. Upper censorship is often optimal in “linear” persuasion problems, where
a posterior can be summarized by its mean (Kolotilin, 2018, Kolotilin, Mylovanov, and
Zapechelnyuk, 2022). However, in non-linear persuasion problems, a version of strict
single-dippedness often holds, so disclosure polices that pool more than two states (like
upper censorship) cannot be optimal (Kolotilin, Corrao, and Wolitzky, 2024). This
raises the question of when a strictly single-dipped version of upper censorship—such
as a segregate-pair policy—is optimal. Theorem 1 is the first result in the literature to
give sufficient conditions for such policies to be optimal.

4. OPTIMAL PARTISAN GERRYMANDERING IN DIFFERENT PARAMETER REGIMES

We now present our results on optimal districting as a function of the designer’s pop-
ularity and the ratio of idiosyncratic and aggregate uncertainty. First, NAD is optimal
if the designer has strong support from all voter types, and segregation is optimal if the
designer has weak support from all voter types and idiosyncratic uncertainty is larger

19See Figures 1–3, where all optimal plans are segregate-pair. In these figures, G and Q are normal.
Using Lemma 6 in Appendix A, we have checked numerically that segregate-pair is also optimal when G
and Q are logistic. The normal and logistic families are the only standard location-scale families we are
aware of with symmetric and strictly log-concave densities on R.

20A complication is that log-concavity of q always favors pairing. In Section 4.1, we explain how γ > 0.5
ensures that the log-concavity of g “dominates” that of q.
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than aggregate uncertainty (Theorem 2). Second, optimal plans approximate NAD or
SOP with equally strong paired districts if aggregate uncertainty is small (Theorem 3).
Since we will estimate that aggregate uncertainty is small empirically, Theorem 3 is
our most practically relevant result. However, while exactly optimal plans approximate
NAD or SOP, uniform districting or pack-and-crack districting are also approximately
optimal. Third, optimal plans approximate NAD with a 50-50 voter type split in each
district if idiosyncratic uncertainty is small (Theorem 4). Fourth, in the intermediate
region where both the designer’s support among voters and the ratio of idiosyncratic
and aggregate uncertainty are balanced, mixed versions of SOP and SMP can be opti-
mal, and we can numerically trace out the boundaries of the parameter regions where
each type of plan emerges (Theorem 5 and the subsequent numerical results). Overall,
we give a fairly complete picture of how optimal districting varies with the designer’s
support and the ratio of idiosyncratic and aggregate uncertainty, which we illustrate in
Figure 3 at the end of this section.

4.1. Optimal Districting with Imbalanced Voter Support

We first investigate optimal districting when voter support is highly imbalanced be-
tween the parties. This case is relatively simple and is not too unrealistic: we will
estimate that in around half of US states, voter support is sufficiently imbalanced that
NAD (an optimal plan in the high imbalanced case) is optimal for our estimated pa-
rameters.21

We say that the designer has uniformly strong support if s≥ 0. This means that, when
the aggregate shock takes its modal value of 0, all voter types vote for the designer with
probability at least 50%. Thus, a designer with uniformly strong support can only lose
a district when the aggregate shock lands in the right (unfavorable) tail. Conversely,
the designer has uniformly weak support if s ≤ 0, so he can only win a district when
the aggregate shock lands in the left tail. Finally, the designer has balanced support if
r∗(F ) = 0, so the overall vote is 50-50 when the aggregate shock takes its modal value.

Theorem 2: The following hold:
1. If the designer has uniformly strong support, there is a unique optimal districting

plan, which is NAD.
2. If the designer has uniformly weak support and idiosyncratic uncertainty is larger

than aggregate uncertainty, there is a unique optimal districting plan, which is
segregation.

3. If the designer has balanced support, NAD and segregation are both suboptimal.

Since NAD plans are strictly single-dipped versions of uniform districting, the opti-
mality of NAD in case 1 is akin to the optimality of uniform districting for a designer
with majority support in the absence of aggregate uncertainty. To see why NAD is
optimal, recall that any strictly single-dipped plan that never segregates two distinct
voter types is NAD. So, since s ≥ 0, it suffices to show that it is sub-optimal for the
designer to segregate any two voter types s < s′ that lie in a region where G is concave.
To see this, suppose the designer pools a few type-s voters in with the type-s′ voters.

21However, the estimated parameters are not extreme enough to satisfy the conditions in Theorem 2,
which are sufficient but not necessary for NAD to be optimal.
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The marginal effect of this change on the designer’s expected seat share among type-s
voters is

G(s′)−G(s),

which is the increased probability of winning a type-s voter’s district when she moves
from the weak district δs to the strong district δs′ . On the other hand, the marginal
effect of this change on the designer’s expected seat share among type-s′ voters is

Q(s− s′)−Q(0)

q(0)
g(s′).

This follows because the first term is the marginal effect on the threshold shock to
win the strong district, where this comes from using the implicit function theorem to
calculate dr/dρ at ρ = 0 from the equation ρQ(s− r) + (1− ρ)Q(s′ − r) = Q(0), and
the second term is the density of the aggregate shock at r∗(δs′) = s′. Finally, the sum
of the two effects is positive, because

G(s′)−G(s)

g(s′)
> s′ − s >

Q(0)−Q(s− s′)

q(0)
,

where the first inequality is by strict concavity of G on [s, s′], and the second inequality
is by strict convexity of Q on [s− s′,0].

The intuition for why segregation is optimal in case 2 is that, for any two voter types
s and s′ that lie in a region where G is “sufficiently convex” relative to Q, we have

G(s′)−G(s)

g(s′)
<

Q(0)−Q(s− s′)

q(0)
,

which by a similar logic as above implies that it is optimal for the designer to separate
any two voter types rather than pooling them. Note that it is not enough for G to be
just slightly convex, because now (in contrast to case 1) the convexity of G and the
convexity of Q compete in comparing the two effects above: intuitively, log-concavity
of Q favors pooling, because a few unfavorable voters are unlikely to be pivotal and
thus can be safely added to a stronger district. The proof of Theorem 2 shows that the
convexity of G “wins” if γ ≥ 0.5. Intuitively, when γ ≥ 0.5, G is more convex than Q,
which suffices for the above inequality.

In case 3, neither NAD nor segregation are optimal, so the optimal plan creates a mix
of segregated and paired districts.22 The intuition is that the designer prefers pooling
any two positive voter types, so segregation is suboptimal; but at the same time, for
any strictly single-dipped NAD plan, there exist nearby voter types that are paired in
a district P with r∗(P )< 0, and the designer is better-off segregating these types.

We remark that the logic of Theorem 1 is a more intricate variant of Theorem 2’s.
Note that a strictly single-dipped plan is not segregate-pair iff there exist s < r < s′ ≤ s′′

such that voter types s < s′ are paired in a district P with r∗(P ) = r ∈ (s, s′) and voter
type s′′ is segregated. Suppose toward a contradiction that such a plan is optimal. As
in case 2 of Theorem 2, if idiosyncratic uncertainty is larger than aggregate uncertainty

22Proposition 1 of Friedman and Holden (2008) shows that SMP (“matching slices”) is optimal when
idiosyncratic uncertainty is sufficiently small, but their discussion focuses on NAD. In contrast, Propo-
sition 2 shows that NAD is never optimal with symmetric parties and a continuum of districts.
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then pooling type-s voters in district P is worse than segregating them if r ≤ 0 (the
range where G is convex), so we must have r > 0. But then, it can be shown that the
planner would be better-off removing a few type-s voters from district P and pooling
them in with the type-s′′ voters, by a similar argument as in Theorem 2.

To turn the above arguments into rigorous proofs of Theorems 1 and 2, we rely
on duality and complementary slackness theorems developed in Kolotilin, Corrao, and
Wolitzky (2024), which we restate as Lemma 2 in Appendix A. The key implication of
Lemma 2 is that there is a well-defined Lagrange multiplier λ(r∗(P )) on the constraint∫
Q(s− r∗(P ))dP (s) =Q(0), which is given by the formula

λ(r∗(P )) =
g(r∗(P ))∫

q(s− r∗(P ))dP (s)

for all districts P in the support of an optimal plan H, and that the designer only
assigns type-s voters to districts P that maximize

G(r∗(P )) + λ(r∗(P ))(Q(s− r∗(P ))−Q(0)).

Intuitively, λ(r∗(P )) is the designer’s value of an extra vote in district P , which
equals the product of the designer’s marginal utility of increasing r∗(P ) (which
equals g(r∗(P ))) and the derivative of r∗(P ) with respect to ε in the equation∫
Q(s − r∗(P ))dP (s) = Q(0) − ε (which equals 1/

∫
q(s − r∗(P ))dP (s) by the implicit

function theorem). The designer’s “total value” of assigning a type-s voter to dis-
trict P then equals the sum of G(r∗(P )) (the probability of winning district P ) and
λ(r∗(P ))(Q(s − r∗(P )) − Q(0)) (the product of the designer’s value of an extra vote
in district P and the number of net votes provided by a type-s voter at the pivotal
aggregate shock r∗(P )). The proofs of Theorems 1 and 2 combine Lemma 2 and the
above arguments.

4.2. Optimal Districting with Small Aggregate or Idiosyncratic Uncertainty
We now consider optimal districting when either aggregate or idiosyncratic uncer-

tainty is small. We will see that the small aggregate uncertainty case is the empirically
relevant one. We include the small idiosyncratic uncertainty case for completeness and
also to show how the main result of Friedman and Holden (2008) fits in our framework.23

Aggregate uncertainty is small when F and Q are fixed and γ → 1, so the aggregate
shock r is close to 0 with high probability. When aggregate uncertainty is small and
r∗(F ) > 0 (so the designer has majority support at the modal aggregate shock), the
designer’s expected seat share is close to 1 under uniform districting. But since uniform
districting is not strictly single-dipped, it cannot be exactly optimal for any γ < 1, by
Lemma 1. Instead, we show that optimal districting approximates NAD with equally
strong paired districts. Intuitively, when aggregate uncertainty is small and r∗(F )> 0,
optimal districting starts from uniform districting and then splits pooled districts into
equally strong paired districts in a negatively assortative manner.

When aggregate uncertainty is small and r∗(F )< 0, the designer’s optimal expected
seat share is approximately 1−F (s∗(0)), where, for any r ∈ (r∗(F ), s), s∗(r) is defined

23The results in this subsection, Theorems 3 and 4, do not require the assumption that G and Q lie
in the same location-scale family, although this assumption facilitates the exposition.
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so that the designer’s vote share among voter types s ≥ s∗(r) at aggregate shock r
is 50%.24 This expected seat share can be approximated by a pack-and-crack plan
where, for a small ε > 0, voter types s < s∗(ε) are assigned to identical weak districts
that the designer loses with high probability, and voter types s≥ s∗(ε) are assigned to
identical strong districts that the designer wins with a vote share close to 50% with high
probability.25 However, since pack-and-crack districting is not strictly single-dipped, it
cannot be exactly optimal. Instead, we show that optimal districting approximates SOP
with equally strong paired districts. Intuitively, when aggregate uncertainty is small and
r∗(F ) < 0, optimal districting starts from pack-and-crack and then splits the packed
districts into segregated districts and splits the cracked districts into equally strong
paired districts in a negatively assortative manner.

To state our result, let H∗ be the unique districting plan that segregates types
below s∗(0) (if s∗(0) > s, which holds when r∗(F ) < 0) and pairs types above
s∗(0) in equally strong districts in a negatively assortative manner. Formally, letting
r∗+(F ) = max{0, r∗(F )}, H∗ is the unique plan H such that, for any P ∈ supp(H),
either (a) supp(P ) = {s(P )} such that s(P ) ∈ [s, s∗(0)] ∪ {r∗+(F )}, or (b) supp(P ) =
{s1(P ), s2(P )} such that r∗(P ) = r∗+(F ), s∗(0)≤ s1(P )< r∗+(F )< s2(P )≤ s, and∫

[s∗(0),s1(P )]∪[s2(P ),s]

(Q(s− r∗+(F ))−Q(0))dF (s) = 0.

Theorem 3: As aggregate uncertainty vanishes (γ → 1 with F and Q fixed), the
optimal expected seat share converges to 1− F (s∗(0)), and the optimal districting plan
converges to H∗.26 Thus, when aggregate uncertainty is small, optimal districting ap-
proximates NAD with equally strong paired districts if r∗(F )≥ 0 and approximates SOP
with equally strong paired districts if r∗(F )< 0.

The intuition for why paired districts are approximately equally strong is that, when
aggregate uncertainty is small, it is approximately optimal for the designer to assign
voters among the paired districts so as to make the weakest of these districts as strong
as possible. Mathematically, this follows from log-concavity. This simple and intuitive
property is the basis for the gerrymandering test we propose in Section 6.4.

To appreciate how optimal districting with small aggregate uncertainty differs from
uniform districting (when r∗(F )≥ 0) or p-segregation (when r∗(F )< 0), consider the
difference between pooling an interval of voter types and splitting the pool into equally
strong paired districts in a negatively assortative manner. This splitting does not affect
the designer’s expected seat share. Indeed, it does not affect the joint distribution
over voter types s and threshold shocks r∗(P ) in districts to which they are assigned,
because if P = αP ′ + (1− α)P ′′ and r∗(P ′) = r∗(P ′′), then r∗(P ) = r∗(P ′) = r∗(P ′′).
Thus, in terms of outcomes (joint distributions of s and r∗(P )), NAD with equally
strong paired districts is equivalent to uniform districting, and SOP with equally strong
paired districts is equivalent to p-segregation. However, viewed as districting plans
(distributions of P ), NAD with equally strong paired districts is quite different from
uniform districting, and SOP with equally strong paired districts is quite different

24Formally, we define s∗(r) as the smallest s̃ ∈ [s, s] such that
∫ s

s̃
(Q(s− r)−Q(0))dF (s)≥ 0. Note

that s∗(r) = s if r ≤ r∗(F ), s∗(r) = s if r ≥ s, and s∗(r) ∈ (s, s) if r ∈ (r∗(F ), s).
25This is shown formally in Lemma 11 in the appendix.
26The latter convergence is in the weak* topology.
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from p-segregation. Thus, Theorem 3 implies that optimal districting plans with small
aggregate uncertainty are quite different from uniform districting and p-segregation;
but also that, at the same time, these differences are not very consequential for the
joint distribution of s and r∗(P ) or the designer’s expected seat share.

We now turn to the case where idiosyncratic uncertainty is small. Here, F and G
are fixed and γ → 0, so each idiosyncratic shock t is close to 0 with high probability.
In this case, whether the designer wins a district P at aggregate shock r is essentially
determined by the median voter type sP in district P : with a unique median sP , the
designer loses districts where sP < r − ε and wins districts where sP > r + ε. There-
fore, any optimal districting plan must approximate the highest feasible distribution
of district median voters, which is attained by pairing each voter type s above the
population median sm = F−1(1/2) with below-median types, with 50% weight on the
above-median type. Under such a plan with an extra ε weight on the above-median type
in each district, the designer’s expected seat share is approximately 2

∫ s

sm
G(r)dF (r).

Moreover, for such a plan to be strictly single-dipped, all voter types must be paired
in a negatively assortative manner. The resulting districting plan approximates NAD
with a 50-50 voter type split in each district.

Let H∗∗ be NAD with a 50-50 split in each district. Formally, H∗∗ is the unique plan
H such that, for any P ∈ supp(H), we have either (a) supp(P ) = {sm}, or (b) supp(P ) =
{s1(P ), s2(P )} such that s≤ s1(P )< sm < s2(P )≤ s, and F (s1(P )) = 1− F (s2(P )).

Theorem 4: As idiosyncratic uncertainty vanishes (γ → 0 with F and G fixed), the
optimal expected seat share converges to 2

∫ s

sm
G(r)dF (r), and the optimal districting

plan converges to H∗∗. Thus, when idiosyncratic uncertainty is small, optimal districting
approximates NAD with a 50-50 voter type split in each district.

Theorem 4 is similar to Friedman and Holden’s (2008) main result. With finitely many
districts, Friedman and Holden show that, when idiosyncratic uncertainty is sufficiently
small, optimal districting is a discrete version of SMP.27 Theorem 4 adds that, in the
limit, only one district is segregated, and the voter type split in all other districts is
50-50.

Comparing Theorems 3 and 4, we see that varying the ratio of aggregate and id-
iosyncratic uncertainty leads to completely different districting plans. When aggregate
uncertainty is small, pack-and-crack is approximately optimal, and the exactly optimal
plan is close to NAD or SOP with equally strong paired districts. When idiosyncratic
uncertainty is small, pack-and-crack is far from optimal, and the optimal plan is close
to NAD with a 50-50 voter type split in each district. In particular, while a NAD plan
can arise in either case, the plans are extremely different: NAD with equally strong
paired districts is outcome-equivalent to uniform districting, while NAD with a 50-50
split (or, away from the limit, a 50− ε-50 + ε split in favor of the higher type) in each
district is very different from uniform districting with small idiosyncratic uncertainty,
as r∗(P ) is much higher in 50− ε-50 + ε districts with more extreme voter types. (For
example, compare Figures 2(d) and 2(f).) The critical role of the ratio of aggregate and
idiosyncratic uncertainty motivates estimating this parameter in Section 5.

The distinction between optimal districting under small aggregate uncertainty and
small idiosyncratic uncertainty relates to results in the probabilistic voting literature.
When aggregate uncertainty is very small, the probability that the designer wins a

27Friedman and Holden’s proof relies on perturbation arguments, while our proofs use duality.
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district is approximately determined by the mean voter type in the district, as in prob-
abilistic voting models with partisan taste shocks (e.g., Hinich 1977, Lindbeck and
Weibull 1993). Optimizing the distribution of district means against a unimodal ag-
gregate shock then requires segregating opposing voters and pooling more favorable
voters, as in p-segregation or SOP or NAD with equally strong paired districts. In
contrast, when aggregate uncertainty is very small, the probability that the designer
wins a district is approximately determined by the median voter type in the district,
as in probabilistic voting models with an uncertain median bliss point (e.g., Wittman
1983, Calvert 1985). The distribution of district medians is then optimized by pairing
above-population-median and below-population-median voter types, as in NAD with a
50-50 voter type split in each district.28

4.3. The Balanced Case and Regime Transitions
Finally, we analyze optimal districting in the intermediate case where neither the

parties’ supporters nor the amounts of aggregate and idiosyncratic uncertainty are
highly imbalanced. Here, optimal districting will take the form of either SOP, SMP, or
a mixed versions of these districting plans that we call “Y-districting.” We say that a
segregate-pair plan H is Y-districting if there exists a positive number ε > 0 such that

1. For all r ∈ [rb − ε, rb + ε] (where rb is the bifurcation point), there exists P ∈
supp(H) such that r∗(P ) = r.

2. The functions s1 and s2 describing the voter types in paired districts are twice
differentiable and satisfy limr↓rb s1(r) = limr↓rb s2(r).29

Note that Y-districting encompasses a mixed version of SOP, where there exists ŝ ∈
(s, rb) such that voter types in [s, ŝ) are always segregated and types in (ŝ, rb) are
sometimes segregated and sometimes paired, as well as a mixed version of SMP, where
there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are always paired and types in (ŝ, rb)
are sometimes segregated and sometimes paired.30 We will show that, with balanced
voter support, SOP is optimal when idiosyncratic uncertainty is “substantially” larger
than aggregate uncertainty, SMP is optimal when aggregate uncertainty is larger than
idiosyncratic uncertainty, and Y-districting (and, in particular, mixed SOP or mixed
SMP) is optimal in the intermediate range.

To analyze these cases, we let J be the distribution with variance 1 satisfying Q(t) =
J(t/

√
γ) and G(r) = J(r/

√
1− γ), so that the variances of t and r are γ and 1− γ. For

example, if Q and G are normal then J is the standard normal distribution. By varying
γ while fixing J , we can simultaneously approximate the low-aggregate uncertainty
and low-idiosyncratic uncertainty limits analyzed in Theorems 3 and 4, as Q is almost
constant as γ → 1 and G is almost constant as γ → 0.

28The distinction between mean and median-dependence applies to several related strands of the
literature. In gerrymandering, Owen and Grofman (1988) and Gul and Pesendorfer (2010) study the
mean-dependent case, while Friedman and Holden (2008) study an approximately median-depedent case.
In persuasion, Gentzkow and Kamenica (2016), Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017),
Kolotilin (2018), Dworczak and Martini (2019), and Kleiner, Moldovanu, and Strack (2021) study the
mean-depedent case, while Kolotilin, Corrao, and Wolitzky (2024) study a general case nesting both
the mean and quantile (e.g., median)-dependent case, and Yang and Zentefis (2024) and Kolotilin and
Wolitzky (2024) study the quantile-dependent case.

29Differentiability is used in the proof of Theorem 5. It may be possible to drop it.
30In contrast, under SOP there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are always segregated and

types in (ŝ, rb) are always paired, while under SMP there exists ŝ ∈ (s, rb) such that types in [s, ŝ) are
always paired and types in (ŝ, rb) are always segregated.
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Our analytic result in this section is modest: if Y-districting is optimal, then the ratio
of idiosyncratic and aggregate uncertainty must fall in an intermediate range. However,
numerically it appears that this result actually fully characterizes optimal districting
when voter support is balanced: at least when J is normal and F is uniform, our
necessary conditions for optimality of Y-districting are also approximately sufficient,
and when the ratio of idiosyncratic uncertainty to aggregate uncertainty is below (resp.,
above) the range where Y-districting is optimal, then SMP (resp., SOP) is optimal.

Theorem 5: If Y-districting is optimal, then rb = 0 and γ ∈ (0.5,
√
3− 1≈ 0.732].

The proof of Theorem 5 proceeds by deriving three necessary conditions for optimal
Y-districting to involve a bifurcation point at r and showing that these conditions
imply that r must equal 0 and γ must lie in an intermediate range. The first condition
(equation (15) in Appendix A) says that it is optimal to pair voter types just below and
just above r. The second condition (equation (16)) says that it is optimal to segregate
types just below r. The third condition (equation (17)) says that the proportions of
favorable and unfavorable voters in each district P with r∗(P ) = r′ just above r actually
induce the desired cutoff r′. Intuitively, for it to be optimal to pair nearby voter types
around r, G must be weakly concave at r; and for it to be optimal to segregate voter
types just below r, G must be weakly convex at r. Hence, bifurcation can occur only
at 0, the inflection point of G. Moreover, if we take parameters where Y-districting is
optimal and increase aggregate uncertainty, it eventually becomes optimal to always
segregate voter types just below 0 rather than pairing them with higher voter types,
at which point optimal districting becomes SMP (with a bifurcation point below 0).
On the other hand, if we take parameters where Y-districting is optimal and decrease
aggregate uncertainty, it eventually becomes optimal to always pair voter types just
below 0 with higher voter types rather than segregating them, at which point optimal
districting becomes SOP (with a bifurcation point above 0).

Supposing that the condition γ ∈ (0.5,0.732) is sufficient as well as necessary for
Y-districting to be optimal, this intuition suggests that, with balanced voter support,
SMP is optimal when γ ≤ 0.5, Y-districting is optimal when γ ∈ (0.5,0.732), and SOP is
optimal when γ ≥ 0.732. Figure 1 presents numerical solutions that verify this heuristic.
In the figure, J is standard normal and F is uniform on [−1,1].31 Voter types are on the
x-axis, and the threshold shocks to win the districts to which each voter type is assigned
are on the y-axis. (Thus, segregated districts lie on the 45◦ line, while paired districts
straddle the 45◦ line.) For mixed districting plans (i.e., Y-districting, the middle row of
the figure), the shading intensity indicates the probability that a voter type is assigned
to each district. We see that optimal districting takes the conjectured form: SMP is
optimal for γ ∈ {0.1,0.3,0.5}, Y-districting is optimal for γ ∈ {0.6,0.65,0.7}, and SOP
is optimal for γ ∈ {0.8,0.9,0.95}. The highest value of γ in the figure, γ = 0.95, is the
value closest to our empirical estimates. When γ = 0.95, SOP remains optimal but now
closely resembles p-segregation. Thus, for what we will see is the empirically relevant
parameter range, p-segregation is approximately optimal.

We now explain how optimal districting transitions from SMP to SOP as γ increases.
First, consider the extreme cases where γ ≈ 0 (small idiosyncratic uncertainty) and

31To create the figure, we approximated the designer’s problem by a finite-dimensional linear program
and solved it using Gurobi Optimizer. Our approximation specifies that s is uniformly distributed on
{−1,−0.99, . . . ,0.99,1} and that the designer is constrained to create districts P satisfying r∗(P ) ∈
{−1,−0.99, . . . ,0.99,1}.
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(a) γ = 0.1 (b) γ = 0.3 (c) γ = 0.5

(d) γ = 0.6 (e) γ = 0.65 (f) γ = 0.7

(g) γ = 0.8 (h) γ = 0.9 (i) γ = 0.95

Figure 1.—Optimal Districting with Balanced Support as Share of Idiosyncratic Uncertainty Varies
Notes: The optimal districting plan is SMP for γ ∈ {0.1,0.3,0.5}, Y-districting for γ ∈ {0.6,0.65,0.7}
(and, specifically, mixed SMP for γ ∈ {0.6,0.65} and mixed SOP for γ = 0.7), and SOP for
γ ∈ {0.8,0.9,0.95}. Our empirical estimates of γ in Section 5 are above 0.96 for all US states.

γ ≈ 1 (small aggregate uncertainty). When γ ≈ 0, SMP is optimal; moreover, optimal
districting approximates NAD with a 50-50 split in each district, which implies that
the bifurcation point is below 0 and the range of values of r∗(P ) across paired districts
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P is large.32 When γ ≈ 1, SOP is optimal; moreover, paired districts are almost equally
strong (the range of r∗(P ) across paired districts P is small), which implies that the
bifurcation point is above 0.33 Now, as γ increases from 0 toward 0.5, the range of
r∗(P ) across paired districts decreases (since the range of probable aggregate shocks
decreases), and the proportion of segregated districts increases. When γ reaches 0.5, it
becomes optimal to segregate voters with s= 0. Since it cannot be optimal to segregate
voters with s > 0, once γ crosses 0.5 it becomes optimal to pair voters with s just above
0 with a few slightly less favorable voters. At this point, districting takes the form of
mixed SMP. As γ increases farther above 0.5, the range of r∗(P ) across paired districts
continues to decrease, and the left arm of the “Y” gets steeper as the right arm gets
flatter.34 At some point, the right arm of the Y becomes flatter than the left arm, so that
the most extreme left-wing voters have no right-wing voters to match with, at which
point these voters are segregated: this point marks the transition from mixed SMP to
mixed SOP, which occurs at γ = 2/3.35 The γ = 0.65 and γ = 0.7 panels in Figure 1
illustrate points just before and just after this transition. As γ increases further, more
and more mixed unfavorable voters are assigned to paired districts, until all such voters
are assigned to paired districts, at which point optimal districting becomes SOP and the
bifurcation point becomes positive. This occurs when γ ≈ 0.732. Finally, as γ increases
beyond 0.732, the range of r∗(P ) across paired districts continues to decrease, and the
optimal SOP plan eventually approximates p-segregation.

Figure 2 illustrates optimal districting for the same parameters as Figure 1, except
that now voter types are uniform on [x− 1, x+1] where x is scaled to give an expected
vote share of 40% (top panels) or 60% (bottom panels). The figure shows that a less
popular designer segregates more unfavorable voters, while a more popular designer
pools more voters. The last panel shows that NAD (approximating uniform districting)
is optimal for a designer with a 60% expected vote share and γ = 0.9.

Figure 3 illustrates the form of optimal districting as a function of the designer’s
expected vote share and γ. The figure continues to assume that J is standard normal
and F is uniform on [x− 1, x+ 1], where x is scaled so that the designer’s expect vote
share ranges from 0 to 1. The figure shows that segregation is optimal for an unpopular
designer (unless aggregate uncertainty dominates), NAD is optimal for a popular one,
and optimal districting ranges from SMP to Y-districting to SOP as γ ranges from 0
to 1 with balanced voter support. These results match Theorems 2–5.36

Figure 3 also plots our point estimates of a Republican designer’s expected vote share
and γ for every US state. (The data and estimation procedure is described in the next
section.) The most important observation is that γ is close to 1 in every state: the
mean estimate of γ is 0.986, and the lowest estimate (for North Carolina) is 0.962.
These estimates are all far above the cutoff of 0.732 above which SOP is optimal with

32Another property of optimal SMP plans is that the left arm of the “Y” is infinitely steep at the
bifurcation point: limr↓rb s′1(r) = 0.

33Another property of optimal SOP plans is that pairing at the bifurcation point is smooth:
limr↓rb s′1(r) =−∞ and limr↓rb s′2(r) =∞.

34The proof of Theorem 5 shows that, for all sufficiently small positive r, |s′1(r)| is decreasing in γ
(i.e., the left arm gets steeper) and s′2(r) is increasing in γ (i.e., the right arm gets flatter).

35The transition point is the unique value of γ at which limr↓0 |s′1(r)|= limr↓0 s′2(r).
36Due to numerical error, it is difficult to confidently classify optimal plans within one or two grid

points of the boundaries between the regions where different plans are optimal in Figure 3. (By continuity,
plans of different forms are both approximately optimal near the boundary.) The boundaries should thus
be viewed as approximations.
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(a) γ = 0.1 (b) γ = 0.6 (c) γ = 0.9

(d) γ = 0.1 (e) γ = 0.6 (f) γ = 0.9

Figure 2.—Optimal Districting with Imbalanced Support as Share of Idiosyncratic Uncertainty Varies
Notes: In the top and bottom panels, the designer’s expected vote share is 40% and 60%, respectively.

balanced voter support. Thus, NAD (approximating uniform districting) is optimal
for a Republican designer in Republican states like Oklahoma and Louisiana, while
SOP (approximating pack-and-crack) is optimal for a Republican designer in swing
states like Michigan and North Carolina, as well as in Democratic states like New York
and Maryland (in the fanciful event that the Republicans found themselves controlling
districting in such states).37

Remark 1—Approximate Optimality of Pack-and-Crack: Lemma 11 in the ap-
pendix shows that uniform districting (for a designer with majority support) or pack-
and-crack districting (for a designer with minority support) is approximately optimal
with small aggregate uncertainty. The intuition is simple: with small aggregate uncer-
tainty, a designer with minority support can obtain an expected seat share of approxi-
mately 1−F (s∗(0)) by creating slightly fewer than 1−F (s∗(0)) identical districts each
with an expected vote share slightly greater than 1/2, and 1−F (s∗(0)) is the optimal
expected seat share in the limit. Indeed, pack-and-crack districting is approximately

37A caveat is that Figure 3 is a 2-dimensional plot and thus neglects heterogeneity in the variance of s
across states, which we also estimate. It turns out that assuming that the variance of s is 1/

√
3≈ 0.577 in

all states—which is implicitly what Figure 3 does—yields the correct classification of optimal districting
for every state except Hawaii, where Republican-optimal districting is actually segregation (see Table I
in Section 5).
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Figure 3.—Optimal Districting as Designer’s Popularity and Share of Idiosyncratic Uncertainty Vary
Notes: Each US state is located at its point estimate in Table I in Section 5.

optimal for realistic parameters. For the same parameters as in Figure 1, Figure 4 plots
the expected seat share under the optimal pack-and-crack plan and under the uncon-
strained optimal plan. The figure shows that the unconstrained expected seat share
never exceeds the pack-and-crack expected seat share by more than 0.1% for any value
of γ above 0.95. (Recall that our lowest estimate of γ for any US state is 0.962.) We also
estimate that the maximum loss from pack-and-crack relative to optimal districting in
any US state (accounting for unbalanced voter support) is 0.56% (see Table I in Section
5).38

5. ESTIMATION

We have seen that the form of optimal districting depends on the designer’s expected
vote share and the parameter γ (the share of idiosyncratic uncertainty). We now esti-
mate these parameters using precinct-level returns from recent US House elections.

38The maximum loss is attained by Rhode Island, a Democratic state where Republicans are very
unlikely to ever control districting. If we exclude the Democratic states of Rhode Island, Massachusetts,
and Maine, the maximum estimated loss from pack-and-crack relative to optimal districting in any US
state is 0.09%.
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Figure 4.—Expected Seat Share under Optimal Districting and Optimal Pack-and-Crack Districting

5.1. Data and Empirical Model
Our data are the precinct-level returns from the US House elections in 2016, 2018, and

2020, which were recently standardized by Baltz et al. (2022). For each precinct n and
election year y ∈ {2016,2018,2020}, we observe the total two-party vote kny and the
share of the two-party vote for the Republican candidate vny.39 The data are a repeated
cross-section rather than a panel, because there is no general way to match precincts
across elections (Baltz et al. 2022, p. 6). We drop all districts with an uncontested
House race in any of 2016, 2018, or 2020 (which drops 25% of all districts).40 This
results in dropping South Dakota and Vermont, as in these states the single at-large
district was uncontested in 2020 and 2016, respectively; we also drop Pennsylvania, as
it was redistricted between 2016 and 2018. For each election, we also drop precincts
with fewer than 50 total votes (which drops 0.14% of all votes) or where the Republican
vote share is 0 or 1 (which drops an additional 0.015% of votes).

To take the model to these data, we assume that s indexes precincts, so that Q(s− r)
is the designer’s vote share in a type-s precinct at aggregate shock r. Formally, this

39A “precinct” is the smallest election-reporting unit in a state, which typically corresponds to a
geographic area where all voters vote at the same polling place. Maine and New Jersey report election
returns only at the township level, so for these states n indexes townships rather than precincts. For some
elections where a nominally third-party candidate runs in place of an official Democratic or Republican
candidate, we manually re-label this candidate as a Democrat or Republican. For example, in New
York, we re-assign Working Families Party candidates as Democrats and re-assign Conservative Party
candidates as Republicans. Throughout, we focus on the two-party vote kny and the Republican share
of the two-party vote vny , ignoring third parties.

40Keeping these districts would bias our estimate of γ, because the relevant vote shares are for contested
elections, and if these districts were contested their vote shares would be different from 0 or 1. Keeping
a district with one or two uncontested elections only for the elections where it is contested would also
bias our estimate of γ, by distorting the estimated swing across elections. Dropping uncontested districts
does likely bias our estimate of the voter type distribution F , as uncontested districts are presumably
more extreme; however, this bias is irrelevant for our main goal of estimating γ.



22

is equivalent to assuming that all voters in a precinct have the same type. (As we
clarify below, this does not mean that all voters in a precinct vote the same way.) We
also assume that precincts are relatively large (in the data, the mean precinct vote
count is 794 with standard deviation 1,434, after dropping precincts with fewer than
50 total votes or a 0 or 1 vote share), and idiosyncratic voter taste shocks are normally
distributed.41 By the law of large numbers, this implies that the designer’s vote share
in a precinct n with type sn in district d and election y is given by

Q(sn − rdy) = Φ
(

sn−rdy√
γ

)
, (1)

where Φ is the standard normal distribution. To see this, recall that each voter i in
precinct n votes for the designer’s party iff sn ≥ rdy + tiy, where tiy is the voter’s
normally distributed idiosyncratic taste shock, and hence votes for the designer’s party
with probability Φ((sn− rdy)/

√
γ).42 Applying the law of large numbers at the precinct

level gives (1).
We emphasize that this empirical model does not allow precinct-level aggregate

shocks: the vote share Q(sn − rdy) in precinct n in district d and election y is given
by (1), which is a deterministic function of the persistent precinct type sn and the
district-level aggregate shock in election y, rdy.

To interpret the assumption that all voters in a precinct have the same type, note that
a voter’s type and taste shock enter only through their difference sn− tiy. If we call this
difference the voter’s “preference,” our assumption is that voter preferences in precinct
sn are normally distributed with mean sn and variance γ. Also, while voter preferences
must be independent across voters in each district to justify (1), the correlation of each
voter’s preference across elections is arbitrary. Thus, voters in a precinct can differ in
their persistent tastes for the parties as well as in their election-specific tastes.

Remark 2—What if Precincts Can be Split?: Our estimation assumes that the
smallest “districtable unit” is a precinct, which is the smallest election-reporting unit
in a state. In practice, the smallest district able unit is usually not a precinct but a
census block, which is the smallest geographic unit for which the US Census tabulates
complete data. Census blocks are usually much smaller than precincts. However, Bou-
ton, Genicot, Castanheira, and Stashko (2024) report that only 2% of precincts are
split across proposed congressional districts in their sample. In addition, in Section 6.2
we redo our estimation under the assumption that designers can only assign counties
rather than precincts and find that that this increases our estimate of γ by only about
0.001. The difference in size between a county and precinct is roughly similar to that
between a precinct and a census block: there are around 50 times as many precincts
as counties in the US, and around 50 times as many census blocks as precincts. This
suggests that our estimates are reasonably robust to letting designers split precincts.

However, precincts (and even census blocks) sometimes are split, and some designers
strive to split them as finely as possible. For example, in Dickson v. Rucho (2014),

41Our estimates are not sensitive to assuming normality: because we will find that γ is very large, the
taste shock distribution is approximately uniform over the relevant range, so specifying any smooth taste
shock distribution leaves our estimates almost unchanged. For example, our point estimate of γ for the
US as a whole is 0.986 with normal taste shocks, 0.987 with logistic taste shocks, 0.989 with Laplace
taste shocks, and 0.981 with uniform taste shocks.

42In this section, as in Section 4.3, we assume that Q(t) = Φ(t/
√
γ) and G(r) = Φ(r/

√
1− γ).
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plaintiffs alleged that a Republican-drawn map in North Carolina “divides 563 of the
state’s 2,692 precincts into more than 1,400 sections,” (Newkirk, 2017). If designers can
split precincts extremely finely, so as to isolate individual voters or very small groups of
voters, this could substantially affect our estimate of γ and our conclusions about the
form of gerrymandering. We are not aware of evidence that fine precinct-splitting or
census block-splitting is widespread, but we acknowledge that, to the extent that this
is the case or may become so in the future, our analysis would have to be redone at
the level of the smallest districtable unit (subject to data limitations, as our estimation
already uses the finest currently available data).

5.2. Descriptive Figures and Summary Statistics
We first present a histogram (Figure 5(a)) showing the number of voters in the

United States who live in a precinct with Republican vote share v, with bin breaks
{0,0.05, . . . ,0.95,1}, averaging over elections y ∈ {2016,2018,2020}. The histogram
shows that the distribution of vny is unimodal, with a large majority (74%) of the
mass on v ∈ [0.25,0.75]. This pattern has two simple, but important, implications for
our model. First, the distribution of voter/precinct types is far from bimodal: there is a
continuum of types, with most mass “toward the middle.” A designer choosing how to
assign precincts to districts thus faces a continuum of types, as in our model. Second,
idiosyncratic uncertainty appears large relative to aggregate uncertainty. To see this,
note that as if idiosyncratic uncertainty dominates (γ → 1), Figure 5(a) would show a
unimodal density with mode around v = 1/2 (as the distribution of the precinct vote
share v is F (Q−1(v))), while if aggregate uncertainty dominates (γ → 0), it would show
a bimodal distribution with all mass at 0 and 1. The former case is a much better
approximation, as the distribution in Figure 5(a) is unimodal, with 74% of the mass
on v ∈ [0.25,0.75]. While we quantitatively estimate γ in the next subsection, this ob-
servation already suggests what we will find, which is that γ is much greater than
0.5.

Next we present another histogram (Figure 5(b)), which shows the number
of (district, election) pairs where the district-wide Republican vote share devi-
ated from its mean over the three elections we consider by x, with bin breaks
{−0.25,−0.225, . . . ,0.225,0.25}.43 This histogram gives another way of showing that
aggregate shocks are small: the distribution is centrally unimodal, and most of the
mass (59%) is on x ∈ [−0.025,0.025]. In contrast, if aggregate shocks were very large,
we would again have a bimodal distribution with all mass far from 0.

5.3. Estimates
We now estimate the key parameter γ, as well as the other parameters. Since dis-

tricting plans in the US are drawn at the state level, we estimate parameters separately
for each US state.44 We assume that aggregate shocks are jointly normally distributed
across districts and independent across elections, so that the variance of rdy is 1−γ; the
correlation between rdy and rd′y is ρ for each d ̸= d′ and y; and the correlation between
rdy and rd′y′ is 0 for each d, d′, and y ̸= y′. Recall that the results in Section 4.3 show

43This histogram is compiled at the district level because precincts are not matched across elections.
44While our model assumes a large number of districts, we estimate parameters for all states (including

ones with only one congressional district) to give as complete parameter estimates as possible.
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(a) Precinct Vote Shares (b) District Vote Swings

Figure 5.—Distributions of Precinct Vote Shares and District Vote Swings

that, with balanced voter support, SMP is optimal if γ ≤ 0.5, Y-districting is optimal
if γ ∈ (0.5,0.732), and SOP is optimal if γ ≥ 0.732. Thus, a key question of interest is
which of these three regions contains our estimate of γ.

We estimate γ for each state by method of moments. Recall that vny is the Republican
share of the two-party vote in precinct n and election y. Let wny = Φ−1(vny), the
corresponding standard normal quantile. Let T = 3 denote the number of elections,
D the number of districts in the state, and Ndy the set of precincts in district d and
election y. Next, define

wdy =
∑

n∈Ndy

knywny

/ ∑
n∈Ndy

kny and wd• =
1

T

∑
y

wdy.

That is, wdy is the average value of wny over precincts in district d, weighted by the
number of votes in each precinct; and wd• is the average value of wdy over elections y.
It can then be shown that a consistent estimator of γ is given by

γ̂ = 1

/(
1 + 1

D(T−1)

∑
d,y

(wdy −wd•)
2

)
.

In the Online Appendix, we also construct a confidence interval for γ, as well as a
point estimator of the correlation among the district-level aggregate shocks, and point
estimators of the mean and standard deviation of the distribution of precinct types.

Table I displays the resulting estimates for each US state, as well as for the state
average weighted by the number of districts included in the analysis (row WS) and the
US as a whole (row US). The states are ordered by column v, the designers expected
vote share in the districts included in the estimation. Columns DT and DA are the
total number of districts and the number of districts included in the analysis.

Columns γ and γ are our point estimate and the lower bound of a 95% one-sided
confidence interval for γ. The confidence interval is wide because we only have data
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from three elections: T = 3. However, it is clear that γ is far above the critical value
of 0.732. The lowest point estimate for γ for any state is 0.962 in North Carolina, and
the weighted mean estimate for γ and the estimate for γ for the US as a whole are
both 0.986. Moreover, even with T = 3, the lower bound of a 95% one-sided confidence
interval is above 0.732 for all available states except North Dakota, where the lower
endpoint is 0.619. If we expand our dataset to include the returns from the 2012 and
2014 elections (thus covering all five congressional elections held under the 2010 dis-
tricting plans), the lower endpoints of the 95% confidence interval exceeds 0.732 for all
states, including North Dakota.45 Together with the results in Section 4.3 (including
Figure 3, which accounts for imbalances in voter support), this provides strong evidence
that optimal gerrymandering is given by SOP (for a designer with minority support) or
NAD (for a designer with majority support) for realistic parameters. Moreover, our esti-
mates for γ are high enough that the optimal SOP plan approximates p-segregation and
the optimal NAD plan approximates uniform districting (recall Figures 1–4), and that
pack-and-crack (with minority support) or uniform districting (with majority support)
is approximately optimal.

Columns v and σs are the designer’s expected vote share and the standard deviation
of s. The latter estimates are similar to those in Figure 1. However, our estimates of
v and σs may be biased by dropping uncontested elections (unlike our estimates of γ,
which remain unbiased after dropping any set of districts).46 Column σc

s is the standard
deviation of s across counties rather than precincts. We discuss county-level estimates
in Section 6.2.

Columns V and V are the designer’s expected seat share under optimal unconstrained
districting and optimal pack-and-crack districting, respectively. As illustrated in Figure
4, the shares are very similar. Column V c is the expected seat share under optimal
districting where the designer assigns counties rather than precincts: see Section 6.2.

Finally, Column H is the form of the optimal districting plan at the estimated parame-
ters. We estimate that if Republicans somehow found themselves in charge of districting
Hawaii, they would segregate the state. Otherwise, SOP is optimal (and pack-and-crack
is approximately optimal) in states where the expected Republican vote share is less
than 55%, and NAD is optimal (and uniform districting is approximately optimal) in
states where the expected Republican vote share is greater than 55%. This reflects the
fact that, for our estimated value of γ, the optimal pack-and-crack plan creates cracked
districts where the designer’s expected seat share is around 55%.

6. DISCUSSION: WHY DOES THE FORM OF GERRYMANDERING MATTER?

We briefly discuss potential political and legal implications of our results. We consider
three areas: implications for how regulations and restrictions on districting affect par-
tisan representation; implications for how gerrymandering affects political competition
and polarization; and implications for detecting and measuring gerrymandering.

45Precinct-level returns for 2012 and 2014 have been compiled by Ansolabehere, Palmer, and Lee
(2014) but are less complete and less standardized than the Baltz et al. (2022) data we use, which only
cover 2016, 2018, and 2020. We have checked that all of our empirical results are robust to including the
2012 and 2014 data.

46We also estimate the correlation ρ among the district-level aggregate shocks to be 0.317 (at the
country level). Since this estimate is not close to either 0 or 1, estimating a simpler empirical model
where district-level shocks are either uncorrelated or perfectly correlated would yield biased estimates of
γ.
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US DT DA γ γ v σs σc
s V V V c H

HI 2 2 0.972 0.839 0.250 0.181 0.076 0.001 0.001 0.000 Seg
NY 27 19 0.966 0.937 0.342 0.826 0.659 0.416 0.415 0.356 SOP
MD 8 8 0.990 0.978 0.346 0.728 0.624 0.456 0.456 0.410 SOP
RI 2 1 0.990 0.833 0.375 0.302 0.259 0.199 0.194 0.145 SOP
CT 5 5 0.995 0.987 0.379 0.377 0.327 0.328 0.328 0.263 SOP
ME 2 1 0.992 0.866 0.385 0.311 0.304 0.246 0.244 0.236 SOP
MA 9 1 0.998 0.956 0.385 0.233 0.211 0.142 0.139 0.098 SOP
DE 1 1 0.990 0.836 0.397 0.488 0.268 0.456 0.456 0.228 SOP
IL 18 13 0.984 0.962 0.399 0.737 0.545 0.560 0.560 0.463 SOP
NJ 12 12 0.981 0.962 0.402 0.590 0.445 0.492 0.492 0.411 SOP
CA 53 35 0.992 0.987 0.412 0.483 0.337 0.508 0.508 0.382 SOP
NM 3 3 0.979 0.925 0.436 0.543 0.412 0.548 0.548 0.476 SOP
NH 2 2 0.997 0.960 0.463 0.263 0.256 0.575 0.575 0.568 SOP
NV 4 4 0.998 0.992 0.467 0.449 0.310 0.741 0.741 0.662 SOP
MN 8 8 0.987 0.973 0.470 0.436 0.342 0.626 0.626 0.569 SOP
CO 7 7 0.989 0.953 0.470 0.527 0.429 0.691 0.691 0.649 SOP
OR 5 4 0.987 0.961 0.471 0.498 0.377 0.662 0.662 0.603 SOP
VA 11 8 0.985 0.934 0.491 0.548 0.428 0.726 0.726 0.684 SOP
WA 10 5 0.987 0.960 0.496 0.375 0.264 0.689 0.689 0.624 SOP
MI 14 13 0.990 0.980 0.501 0.596 0.503 0.803 0.802 0.772 SOP
GA 14 7 0.985 0.959 0.509 0.718 0.525 0.821 0.820 0.781 SOP
TX 36 23 0.989 0.978 0.514 0.645 0.472 0.841 0.841 0.811 SOP
IA 4 4 0.986 0.949 0.519 0.372 0.270 0.763 0.763 0.726 SOP
NC 13 11 0.962 0.933 0.526 0.560 0.373 0.740 0.739 0.699 SOP
AZ 9 6 0.990 0.974 0.537 0.402 0.286 0.868 0.868 0.852 SOP
FL 27 20 0.994 0.987 0.545 0.444 0.291 0.949 0.948 0.948 SOP
OH 16 16 0.984 0.967 0.552 0.635 0.469 0.908 0.908 0.896 NAD
AK 1 1 0.996 0.922 0.554 0.396 0.298 0.987 0.987 0.983 NAD
MT 1 1 0.993 0.884 0.556 0.490 0.325 0.973 0.973 0.973 NAD
SC 7 7 0.994 0.988 0.559 0.622 0.402 0.990 0.990 0.988 NAD
AR 4 1 0.985 0.773 0.566 0.629 0.391 0.950 0.949 0.945 NAD
NE 3 2 0.990 0.945 0.575 0.446 0.297 0.981 0.981 0.979 NAD
KY 6 4 0.991 0.968 0.584 0.548 0.408 0.994 0.994 0.992 NAD
MO 8 8 0.995 0.981 0.584 0.702 0.579 1.000 1.000 1.000 NAD
KS 4 4 0.978 0.905 0.598 0.463 0.355 0.968 0.968 0.971 NAD
IN 9 8 0.983 0.963 0.608 0.524 0.351 0.991 0.991 0.990 NAD
WI 8 5 0.989 0.970 0.617 0.301 0.228 0.998 0.998 0.999 NAD
AL 7 2 0.971 0.846 0.624 0.674 0.409 0.988 0.988 0.992 NAD
WV 3 3 0.971 0.883 0.646 0.340 0.252 0.989 0.989 0.989 NAD
UT 4 4 0.989 0.947 0.647 0.585 0.472 1.000 1.000 1.000 NAD
TN 9 8 0.991 0.976 0.650 0.691 0.526 1.000 1.000 1.000 NAD
MS 4 2 0.993 0.934 0.672 0.671 0.340 1.000 1.000 1.000 NAD
ID 2 2 0.987 0.930 0.673 0.462 0.365 1.000 1.000 1.000 NAD
OK 5 4 0.983 0.922 0.685 0.454 0.318 1.000 1.000 1.000 NAD
ND 1 1 0.969 0.619 0.696 0.426 0.335 0.999 0.999 0.999 NAD
WY 1 1 0.990 0.835 0.701 0.478 0.375 1.000 1.000 1.000 NAD
LA 6 4 0.974 0.898 0.725 0.595 0.288 1.000 1.000 1.000 NAD
WS 18 13 0.986 0.959 0.497 0.561 0.415 0.755 0.754 0.709 SOP
US 417 311 0.986 0.979 0.497 0.643 0.508 0.777 0.776 0.745 SOP

TABLE I: Estimates
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6.1. Effects of Districting Reforms on Seat Shares I: Majority-Minority Districts
The key US federal laws regulating gerrymandering are the Equal Protection Clause

of the Fourteenth Amendment and the Voting Rights Act of 1965. These laws have
been interpreted as not only prohibitting adverse racial gerrymandering, but also as
affirmatively requiring states to create electoral districts where racial or ethnic minority
voters form either a majority (a so-called “majority-minority district”) or a large enough
minority so as to have a strong opportunity to elect their candidate of choice (often
called a “minority opportunity district”; e.g., Canon 2022). The creation of such districts
played a significant role in increasing Black representation in state legislatures and the
US Congress from the 1970’s onward, especially in the South (Grofman and Handley
1991, Cox and Holden 2011). However, the overall partisan impact of majority-minority
and minority opportunity districts has long been contested, with some observers arguing
that these districts effectively pack strong Democratic supporters and thus resemble a
component of a Republican-optimal districting plan. This issue came to a head following
the 1994 Republican takeover of the US House, which many journalists and political
scientists blamed in part on the creation of majority-minority districts in the 1990
redistricting cycle (but see Cox and Holden 2011, Washington 2012).

Previous studies have observed that the impact of a requirement to create majority-
minority or minority opportunity districts on overall partisan representation hinges on
the form of optimal gerrymandering. The convential view in the 1990’s (what Cox and
Holden 2011 call the “pack-and-crack consensus”) was that optimal gerrymandering
packs opponents, and hence that a requirement to create majority-minority districts
that pack strong Democratic supporters is likely to increase overall Republican rep-
resentation.47 Shotts (2001) adds an important caveat by noting that, since uniform
districting is optimal for a designer with majority support (without aggregate uncer-
tainty), majority-minority mandates hurt Republican designers in strongly Republican
states. More dramatically, building on the results of Friedman and Holden (2008), Cox
and Holden (2011) challenge the pack-and-crack consensus by arguing that optimal dis-
tricting is given by NAD, and thus packs moderates rather than opponents. Since NAD
does not create districts packed with strong Democratic supporters, Cox and Holden
argue that a requirement to create such districts precludes NAD and is therefore likely
to reduce overall Republican representation.

Our results contribute to this debate as follows. Cox and Holden’s argument that
NAD is optimal in practice rests on an implicit assumption that the low-idiosyncratic-
uncertainty case studied by Friedman and Holden (2008) is representative. For exam-
ple, Cox and Holden write, “In a world with diverse voter types, however, there is no
plausible distribution of African American voters that would make it optimal for Re-
publican redistricting authorities to create districts in which African Americans make
up a supermajority of voters. Within the model, packing one’s opponents is never the
optimal strategy,” (p. 574). We instead show that, empirically, idiosyncratic uncer-
tainty is much larger than aggregate uncertainty, and that this implies that packing
opponents is optimal for a designer with minority voter support, while NAD is optimal
for a designer with majority support. Thus, majority-minority mandates can increase
Republican representation in closely divided states where SOP is optimal and pack-
and-crack is approximately optimal (as in the pack-and-crack consensus), but are likely

47Minority opportunity districts may or may not raise similar issues, depending on the share of strong
Democratic supporters in these districts (Lublin, Handley, Brunell, and Grofman, 2020).
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to decrease Republican representation in strongly Republican states where NAD is op-
timal and uniform districting is approximately optimal (as argued by Shotts (2001) in
a model without aggregate uncertainty). Overall, by analyzing a general model that
does not restrict the relative amounts of idiosyncratic and aggregate uncertainty, we
reach a conclusion similar to that of Shotts (2001) and quite different from that of Cox
and Holden (2011).

6.2. Effects of Districting Reforms on Seat Shares II: Respecting Political Subdivisions
Among the practical restrictions on districting beyond equipopulation, one that is

amendable to our analysis is a requirement not to split counties or other political
subdivisions. Preserving counties or other subdivisions is one of the six traditional
redistricting criteria according to the National Conference of State Legislators and
is currently required in 29 of the 50 US states.48 From the perspective of partisan
gerrymandering, a requirement to preserve counties constrains the designer to choose
among a coarser set of districting plans, where counties rather than census blocks or
precincts become the object of districting.

We can assess the impact of a requirement to preserve counties by re-running our
estimation of γ and F , taking the unit of districting as counties rather than precincts.
Our estimates of γ are similar in both cases but are slightly higher with counties,
because precinct vote shares swing slightly more from election to election than county
vote shares: our mean precinct-based estimate of γ is 0.986, while our mean county-
based estimate is 0.987. More importantly, our estimate of the standard deviation of F is
considerably smaller with counties: the mean precinct-based estimate is 0.561, while the
mean county-based estimate is 0.415. This gap is the key consequence of constraining
the designer to assigning coarser units. Finally, this constraint significantly affects the
designer’s optimal expected seat share in closely divided states where SOP is optimal,
as now fewer highly unfavorable units can be packed; however, it has only a small effect
on the optimal seat share in states where the designer has strong support and NAD
is optimal, as uniform districting (which is unaffected by a requirement to preserve
counties) is approximately optimal in these states. In particular, our estimate of the
reduction in a Republican designer’s seat share from requiring him to preserve counties
ranges from essentially 0 in strongly Republican states to 23% in Delaware, with a
weighted average across states of 4.5%.49

6.3. Effects of Gerrymandering on Political Competition and Polarization
An important debate concerns the impact of gerrymandering on the intensity of

electoral competition (e.g., the fraction of “competitive” districts or the extent of in-
cumbency advantage) and political polarization. Popular discourse often blames gerry-
mandering for reducing competition and increasing polarization (but see Gelman and

48The other criteria are compactness, contiguity, preservation of communities of interest, preservation
of the “cores” of previous districts, and avoiding incumbent pairing (https://www.ncsl.org/elections-and-
campaigns/2020-redistricting-criteria).

49Our weighted mean estimate of a Republican designer’s optimal seat share is 70.9% under county-
based districting and 75.4% under precinct-based districting. A limitation of this comparison is that our
assumption that the designer assigns a continuum of units is more accurate when units are precincts rather
than counties. The omitted integer constraint would bind more harshly for county-based districting, which
biases our estimates of the designer’s loss from being restricted to assigning counties downward.
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King 1994a, Abramowitz, Alexander, and Gunning 2006, McCarty, Poole, and Rosen-
thal 2009, Friedman and Holden 2009). Regardless of the size of the overall effects of
gerrymandering on competition and polarization, the nature of these effects depends
on the form of gerrymandering. In particular, under SOP, intra-district polarization is
relatively low while inter-district polarization is relatively high; while under NAD or
SMP, intra-district polarization is high and inter-district polarization is low. To see this,
note that, with a right-wing designer, SOP or pack-and-crack creates a few strongly
left-leaning districts and many slightly right-leaning districts, with a gap between the
left-leaning and right-leaning districts: formally, there is a gap between the highest
value of r∗(P ) among segregated districts and the lowest value of r∗(P ) among paired
districts (see the last three panels in Figure 1). SOP also involves relatively low intra-
district polarization within each district, since the lowest voter types in paired districts
are “moderates” rather than extreme left-wingers. In contrast, NAD or SMP creates
a continuum of districts ranging from left-leaning to right-leaning—formally, the set
{r : r = r∗(P ) for some P ∈ supp(H)} is an interval (see the first three panels in Figure
1)—with less extreme left-leaning districts than under SOP. NAD or SMP also involves
greater intra-district polarization than SOP, in that the maximum range of voter types
that are pooled together under SMP is greater than under SOP.

Our model does not encompass endogenous political responses to districting, such as
effects of districting on which politicians run for office and on what platforms. With
this caveat, we can draw some tentative implications of the above features of optimal
districting for political competition and polarization. First, since the distribution of
threshold shocks r∗(P ) has a gap under SOP or pack-and-crack but not under NAD
or SMP, SOP or pack-and-crack may lead to more polarized legislatures, where the
packed districts elect left-wing representatives and the cracked districts elect right-
leaning ones. Indeed, the possibility that packing opponents can increase polarization
in this manner is a long-standing concern (e.g., Cox and Holden 2011, p. 595). In
contrast, NAD or SMP may lead to less polarized legislatures. Second, SOP or pack-
and-crack may produce more “uncompetitive,” far-left districts. Creating uncompetitive
districts is usually viewed as a socially undesirable feature of a districting plan, but
see Buchler (2005) and Brunell (2008) for opposing views. Finally, lower intra-district
polarization under SOP or pack-and-crack may be socially desirable if voters benefit
from being ideologically close to their representative, as in Besley and Preston (2007)
and Gomberg, Pancs, and Sharma (2023). These and other implications of optimal
districting for political processes and outcomes can be studied more fully in models
that endogenize additional aspects of political competition.

6.4. Detecting and Measuring Gerrymandering
A large literature proposes metrics that attempt to detect and measure gerryman-

dering. Most metrics compare a party’s seat share and its vote share, with a high seat
share viewed as indicative of gerrymandering.50 However, a limitation of this approach
is that one can debate what range of seat shares is “reasonable” for a given vote share.
Indeed, the Supreme Court has objected that this class of metrics encodes a form of

50Such measures include the partisan bias (King and Browning, 1987), efficiency gap (Stephanopoulos
and McGhee, 2015), mean-median gap (Wang, 2016), and declination (Warrington, 2018). An alternative
approach relies on statistical analysis of an ensemble of simulated maps (Deford, Duchin, and Solomon,
2021).
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proportionality between seat and vote shares: as Justice Roberts wrote in Rucho v.
Common Cause, “Partisan gerrymandering claims rest on an instinct that groups with
a certain level of political support should enjoy a commensurate level of political power
and influence. Such claims invariably sound in a desire for proportional representation,
but the Constitution does not require proportional representation.”

Our results suggest an alternative test for gerrymandering that compares vote shares
across districts, rather than comparing seat and vote shares. A novel and robust predic-
tion of our analysis is that, in the realistic case of small aggregate uncertainty, optimal
plans make favorable districts equally strong: a designer with majority support creates
equally strong districts under NAD or uniform districting, while a designer with mi-
nority support creates some packed districts that are lost with high probability and
creates equally strong districts that are won with high probability under SOP or pack-
and-crack. In contrast, there is no reason to expect favorable districts to be equally
strong under non-gerrymandered districting. Thus, a proposed test for gerrymandering
is whether a districting plan displays an unusually low variance in vote shares among
districts won by the designer’s party. This test can be operationalized in future work.

7. CONCLUSION

This paper has developed a simple and general model of optimal partisan gerryman-
dering. Our main message has four parts. First, optimal districting is “segregate-pair”:
weak districts are segregated; strong districts are paired. Second, the optimal form of
segregate-pair depends on the gerrymandering party’s popularity and—more subtly—
on the relative amounts of aggregate and idiosyncratic uncertainty facing the gerryman-
derer. Packing opposing voters is optimal when idiosyncratic uncertainty dominates,
while packing moderate voters is optimal when aggregate uncertainty dominates. Third,
empirically, idiosyncratic uncertainty dominates, implying that segregate-opponents-
and-pair (SOP) districting is optimal for a designer with minority support, while neg-
ative assortative districting (NAD) is optimal for a designer with majority support.
This finding also establishes that the relevant parameter range for future research on
gerrymandering (and electoral competition more generally) is that where aggregate un-
certainty is much smaller than idiosyncratic uncertainty. Fourth, estimated aggregate
uncertainty is so small that a simple pack-and-crack plan is approximately optimal for a
deisgner with minority support, while uniform districting is approximately optimal for
a designer with majority support. This last observation helps rationalize the observed
use of simple districting plans.

Methodologically, we develop and exploit a tight connection between gerrymandering
and information design. We show that a general model of partisan gerrymandering is
equivalent to a general Bayesian persuasion problem where the state of the world and
the receiver’s action are both one-dimensional and the sender’s preferences are state-
independent. This common framework nests the important prior contributions of Owen
and Grofman (1988), Friedman and Holden (2008), and Gul and Pesendorfer (2010),
and facilitates a more general and realistic analysis that allows diverse voter types
and non-linear vote swings without restricting the relative amounts of aggregate and
idiosyncratic uncertainty.

We hope our model can inform future research on various aspects of redistricting.
We mention a few directions for future research.

First, we have assumed that the designer maximizes his party’s expected seat share.
It may be more realistic to assume that the designer’s utility is non-linear in seat shares,



THE ECONOMICS OF PARTISAN GERRYMANDERING 31

for example because of a premium on winning a majority of seats. We examined this
case in an earlier version of this paper (Kolotilin and Wolitzky, 2020). While non-linear
designer utility introduces new complications, the extreme case where the designer
simply maximizes the probability of winning a majority is straightforward: here, optimal
districting maximizes seats conditional on the threshold aggregate shock at which the
designer is barely able to attain a majority, and hence reduces to optimal districting
without aggregate uncertainty.

Second, we have assumed that all voters always vote, or at least always vote at
the same rate (as is equivalent). It would be interesting to incorporate heterogeneous
turnout in the analysis. Recently, Bouton, Genicot, Castanheira, and Stashko (2024)
consider voters with a binary partisan type (as in Owen and Grofman 1988), uni-
form aggregate shocks, and a continuous “turnout type,” which captures fixed turnout
heterogeneity across voters. It is promising to explore mutual generalizations of our
models that allow more general forms of aggregate uncertainty as well as heteroge-
neous turnout. An alternative model, which captures variable turnout heterogeneity,
would retain one-dimensional voter types but assume that voters abstain when they
are close to indifferent between the parties. It is interesting to compare these models,
as in practice turnout heterogeneity has both exogenous sources (e.g., education, race)
and endogenous ones (e.g., almost-indifferent voters turn out less).

Finally, further questions include: What does the model imply for political competi-
tion and policy choices? What are the model’s comparative statics—for example, what
factors determine the proportion of packed and cracked districts?51 And, what does the
model imply about how gerrymandering should be measured and regulated? Under-
standing the form of optimal partisan gerrymandering can contribute to the study of
these questions and related ones.
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ONLINE APPENDIX

APPENDIX A: Proofs

A.1. Duality Lemma

We start with a duality result restating Theorem 1 in Kolotilin, Corrao, and Wolitzky
(2024).

Lemma 2: There exists a bounded, measurable function λ : [s, s]→ R such that, for
any optimal districting plan H, the following hold:

1. For all P ∈ supp(H), all s ∈ supp(P ), and all r ∈ [s, s], we have

G(r∗(P )) + λ(r∗(P )) (Q(s− r∗(P ))−Q(0))≥G(r) + λ(r) (Q(s− r)−Q(0)) .

2. For all P ∈ supp(H), we have

λ(r∗(P )) =
g(r∗(P ))∫

q(s− r∗(P ))dP (s)

.

3. For all non-degenerate P ∈ supp(H), λ has derivative λ′(r∗(P )) at r∗(P ) satisfy-
ing, for all s ∈ supp(P ),

g(r∗(P ))− λ(r∗(P ))q(s− r∗(P )) + λ′(r∗(P )) (Q(s− r∗(P ))−Q(0)) = 0.

As explained in the text, λ(r∗(P )) is the multiplier on the constraint
∫
Q(s −

r∗(P ))dP (s) = Q(0). Part 2 of the lemma gives the formula for λ(r∗(P )) from the
implicit function theorem. Part 1 says that the designer assigns a type-s voter to a
district P to maximize G(r∗(P )) + λ(r∗(P )) (Q(s− r∗(P ))−Q(0)). Part 3 says that
the first-order condition of this maximization problem with respect to r holds for all
non-degenerate P ∈ supp(H) and all s ∈ supp(P ).

A.2. Proof of Lemma 1

Lemma 1 follows from Theorem 4 in Kolotilin, Corrao, and Wolitzky (2024) for the
translation-invariant subcase of the state-independent sender case. For completeness,
we prove Lemmas 3 and 4, which immediately yield Lemma 1.

Lemma 3: For any optimal H and any P,P ′ ∈ supp(H) such that P contains types
s < s′′ and P ′ contains a type s′ ∈ (s, s′′), we have r∗(P )≥ r∗(P ′).

Proof of Lemma 3: Suppose by contradiction that there exist districts P and P ′

such that P contains s < s′′, P ′ contains s′ ∈ (s, s′′), and r = r∗(P )< r∗(P ′) = r′. Then,
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by part 1 of Lemma 2, we have

G(r) + λ(r)(Q(s− r)−Q(0))≥G(r′) + λ(r′)(Q(s− r′)−Q(0)), (2)

G(r′) + λ(r′)(Q(s′ − r′)−Q(0))≥G(r) + λ(r)(Q(s′ − r)−Q(0)), and (3)

G(r) + λ(r)(Q(s′′ − r)−Q(0))≥G(r′) + λ(r′)(Q(s′′ − r′)−Q(0)). (4)

This yields a contradiction because

0≥ (Q(s′′ − r′)−Q(s′ − r′))(Q(s′ − r)−Q(s− r))

−(Q(s′′ − r)−Q(s′ − r))(Q(s′ − r′)−Q(s− r′))

=

∫ s′′

s′

∫ s′

s

q(s̃′ − r′)q(s̃− r)ds̃ds̃′ −
∫ s′′

s′

∫ s′

s

q(s̃′ − r)q(s̃− r′)ds̃ds̃′

=

∫ s′′

s′

∫ s′

s

(q(s̃′ − r′)q(s̃− r)− q(s̃′ − r)q(s̃− r′))ds̃ds̃′ > 0,

where the first inequality holds by summing (2) multiplied by Q(s′′ − r)−Q(s′ − r),
(3) multiplied by Q(s′′ − r)−Q(s− r), and (4) multiplied by Q(s′ − r)−Q(s− r), and
then dividing by λ(r′), which is strictly positive by part 2 of Lemma 2; and the second
inequality holds because the integrand is strictly positive for r < r′ and s̃ < s̃′ by strict
log-concavity of q. Q.E.D.

Lemma 4: For any optimal H and any P ∈ supp(H), we have | supp(P )| ≤ 2.

Proof of Lemma 4: Suppose by contradiction that some district P ∈ supp(H) con-
tains three types s < s′ < s′′ and r∗(P ) = r. Then, by part 3 of Lemma 2, we have

g(r)− λ(r)q(s− r) + λ′(r) (Q(s− r)−Q(0)) = 0, (5)

g(r)− λ(r)q(s′ − r) + λ′(r) (Q(s′ − r)−Q(0)) = 0, and (6)

g(r)− λ(r)q(s′′ − r) + λ′(r) (Q(s′′ − r)−Q(0)) = 0. (7)

This yields a contradiction because

0 = det

g(r) q(s− r) Q(s− r)−Q(0)

g(r) q(s′ − r) Q(s′ − r)−Q(0)

g(r) q(s′′ − r)Q(s′′ − r)−Q(0)


= g(r)(q(s′ − r)− q(s− r))(Q(s′′ − r)−Q(s′ − r))

−g(r)(q(s′′ − r)− q(s′ − r))(Q(s′ − r)−Q(s− r))
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= g(r)

[∫ s′

s

q′(s̃− r)ds̃

∫ s′′

s′
q(s̃′ − r)ds̃′ −

∫ s′′

s′
q′(s̃′ − r)ds̃′

∫ s′

s

q(s̃− r)ds̃

]

>
g(r)q′(s′ − r)

q(s′ − r)

[∫ s′

s

q(s̃− r)ds̃

∫ s′′

s′
q(s̃′ − r)ds̃′ −

∫ s′′

s′
q(s̃′ − r)ds̃′

∫ s′

s

q(s̃− r)ds̃

]
= 0,

where the first equality is by (5)–(7), and the inequality is by strict log-concavity of q,
which implies that the derivative of ln q is strictly decreasing, yielding

q′(s̃− r)

q(s̃− r)
>

q′(s′ − r)

q(s′ − r)
>

q′(s̃′ − r)

q(s̃′ − r)
, for s̃ < s′ < s̃′. Q.E.D.

A.3. Characterization of Segregate-Pair Districting

Lemma 5: For any segregate-pair districting plan H, there exists a bifurcation point
rb ∈ (s, s], a decreasing function s1 : (r

b, s) → [s, rb), and an increasing function s2 :

(rb, s)→ (rb, s] satisfying s1(r) < r < s2(r), such that for each P ∈ supp(H), we have
P = δr∗(P ) if r∗(P )≤ rb and supp(P ) = {s1(r∗(P )), s2(r

∗(P ))} if r∗(P )> rb.

Proof of Lemma 5: Let H be a segregate-pair districting plan. Since H is strictly
single-dipped, the support of each P ∈ supp(H) has at most two elements and thus can
be represented as {s1(r∗(P )), s2(r

∗(P ))} with s1(r
∗(P )) ≤ r∗(P ) ≤ s2(r

∗(P )). More-
over, for each P,P ′ ∈ supp(H) with r∗(P )< r∗(P ′), we have s2(r

∗(P ))≤ s2(r
∗(P ′)), as

otherwise we would have s2(r
∗(P ′)) ∈ (s1(r

∗(P )), s2(r
∗(P ))), contradicting strict single-

dippedness of H.

Assume that there exists P ∈ supp(H) such that s1(r
∗(P ))< s2(r

∗(P )), as otherwise
the lemma obviously holds with rb = s. Define rb = inf{r∗(P̃ ) : P̃ ∈ supp(H), s1(r

∗(P̃ ))<

s2(r
∗(P̃ ))}, so that, for each P ∈ supp(H) with r∗(P )< rb, we have supp(P ) = {r∗(P )}.

Since supp(H) is compact, there exists P b ∈ supp(H) with r∗(P b) = rb. It follows
that supp(P b) = {rb}, as otherwise (i.e., if s1(r

∗(P b)) < rb < s2(r
∗(P b)) voter types

in (rb, s2(r
∗(P b)) (which have strictly positive mass since f is strictly positive on

[s, s]) cannot be segregated, as this would contradict strict single-dippedness of H, and
also cannot be paired with other types, as this would contradict either strict single-
dippedness of H or the definition of rb.

Next, we show that, for each P,P ′ ∈ supp(H) with rb < r∗(P ) < r∗(P ′), we have
s1(r

∗(P )) ≥ s1(r
∗(P ′)). Suppose by contradiction that s1(r

∗(P )) < s1(r
∗(P ′)). Since

H is a strictly single-dipped segregate-pair districting plan, by the definition of
rb, we have s1(r

∗(P )) < r∗(P ) < s2(r
∗(P )) ≤ s1(r

∗(P ′)) < r∗(P ′) < s2(r
∗(P ′)). De-

fine r† = inf{r∗(P̃ ) : P̃ ∈ supp(H), s1(r
∗(P ′))≤ s1(r

∗(P̃ ))< s2(r
∗(P̃ ))≤ s2(r

∗(P ′))} ≥
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s1(r
∗(P ′)). By the same argument as in the previous paragraph, we have δr† ∈ supp(H),

contradicting that H is segregate-pair.
Finally, we have (i) rb > s, as otherwise all voter types above s are paired with s,

contradicting that F has no atom at s, and (ii) sup{r∗(P̃ ) : P̃ ∈ supp(H), s1(r
∗(P̃ ))<

s2(r
∗(P̃ ))}< s when rb < s, as otherwise δs ∈ supp(H) by the same argument as in the

second paragraph, contradicting that H is segregate-pair. Then we can extend functions
s1 and s2 from the set R̃ = {r∗(P̃ ) : P̃ ∈ supp(H), s1(r

∗(P̃ )) < s2(r
∗(P̃ ))} ⊂ (rb, s) to

the interval (rb, s) by setting s1(r) = inf{s1(r̃) : r̃ ∈ R̃, r̃ < r} and s2(r) = sup{s2(r̃) :
r̃ ∈ R̃, r̃ < r} for all r ∈ (rb, s) \ R̃. By construction, extended functions s1 and s2 are
as required. Q.E.D.

A.4. Auxiliary Lemmas
Lemmas 6–9 are used to prove Theorems 1 and 2.

Lemma 6: If for all s < r < s′ such that

G(r) + λ(r) (Q(s− r)−Q(0))≥G(s), (8)

where

λ(r) =
g(r)(Q(s′ − r))−Q(s− r))

(Q(s′ − r)−Q(0))q(s− r)− (Q(s− r)−Q(0))q(s′ − r)
, (9)

we have, for all s′′ ≥ s′,

G(r) + λ(r)(Q(s− r)−Q(0))<G(s′′) +
g(s′′)

q(0)
(Q(s− s′′)−Q(0)), (10)

then there is a unique optimal districting plan, which is segregate-pair.

Proof of Lemma 6: Suppose by contradiction that there exists an optimal non-
segregate-pair plan H. By Lemma 1, H is strictly single-dipped. Consequently, since H is
not segregate-pair, there exist s < r < s′ ≤ s′′ and P,P ′ ∈ supp(H) such that r∗(P ) = r,

supp(P ) = {s, s′}, and supp(P ′) = {s′′}. By Lemma 2, condition (8) holds and condition
(10) fails, yielding a contradiction.52 Finally, for uniqueness, by Theorem 7 in Kolotilin,
Corrao, and Wolitzky (2024), it suffices to show that H is regular, in that for each
P ∈ supp(H), there exists ε > 0 such that either (i) | supp(P̃ )|= 1 for all P̃ ∈ supp(H)

satisfying r∗(P̃ ) ∈ (r∗(P )−ε, r∗(P )), or (ii) | supp(P̃ )|= 2 for all P̃ ∈ supp(H) satisfying

52Intuitively, (8) says that the designer prefers not to move a few type-s voters from district P to
district δs, and (10) says that the designer strictly prefers to move a few type-s voters from district P
to district δs′′ .
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r∗(P̃ ) ∈ (r∗(P )− ε, r∗(P )). But each segregate-pair plan H is clearly regular, with any
ε > 0 for r∗(P )≤ rb and with any ε ∈ (0, r∗(P )− rb) for r∗(P )> rb. Q.E.D.

Lemma 7: If s < r < s′, then λ(r) given by (9) satisfies λ(r)> g(r)/q(0).

Proof of Lemma 7: It follows from (9) and q being uniquely maximized at
0. Q.E.D.

Lemma 8: If η ≥ 1 and s < r < s′ satisfy (8), with λ(r) given by (9), then r > 0.

Proof of Lemma 8: If r ≤ 0, then (8) fails, because

G(r)−G(s) =

∫ r

s

g(x)dx≤ g(r)

g(0)

∫ r

s

g(x− r)dx=
g(r)

g(0)
(G(0)−G(s− r))

=
g(r)

ηq(0)
(Q(η0)−Q(η(s− r))≤ g(r)

q(0)
(Q(0)−Q(s− r))< λ(r) (Q(0)−Q(s− r)) ,

where the first inequality is by strict log-concavity of g on [s,0], the second inequality
is by η ≥ 1 and strict convexity of Q on [s− r,0], and the last inequality is by Lemma
7. Q.E.D.

Lemma 9: If H is optimal and δs, δs′ ∈ supp(H) with s < s′, then s < 0.

Proof of Lemma 9: Suppose by contradiction that s ≥ 0. By Lemma 2, for each
r ∈ (s, s′) there exists λ(r) such that

G(s)≥G(r) + λ(r)(Q(s− r)−Q(0)) and (11)

G(s′)≥G(r) + λ(r)(Q(s′ − r)−Q(0)). (12)

Summing (11) multiplied by Q(s′ − r)−Q(0) and (12) multiplied by Q(0)−Q(s− r)

yields

(G(s′)−G(r)) (Q(0)−Q(s− r))≥ (G(r)−G(s)) (Q(s′ − r)−Q(0)) .

But this inequality cannot hold for r sufficiently close to s′, because

g(s′) (Q(0)−Q(s− s′))< (G(s′)−G(s))q(0),

since G is strictly concave on [s, s′] and Q is strictly convex on [s− s′,0]. Q.E.D.
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A.5. Proof of Theorem 1
If s < r < s′ satisfy (8), with λ(r) given by (9), then r > 0, by Lemma 8. Theorem 1

then follows from Lemma 6, as (10) holds for all s′′ ≥ s′, because

G(s′′) +
g(s′′)

q(0)
(Q(s− s′′)−Q(0))−G(r)− λ(r) (Q(s− r)−Q(0))

>
g(r)

q(0)
(Q(0)−Q(s− r)) +G(s′′)−G(r)− g(s′′)

q(0)
(Q(0)−Q(s− s′′))

>
g(s′′)

q(0)
[Q(0)−Q(s− r) + q(0)(s′′ − r)− (Q(0)−Q(s− s′′))]> 0,

where the first inequality is by Lemma 7, the second inequality is by strict concavity
of G on [r, s′′], and the third inequality is by strict convexity of Q on [s− s′′,0].

A.6. Proof of Theorem 2
Part 1. Let H be an optimal strictly single-dipped plan. By Lemma 9, there do

not exist s < s′ in [s, s] such that δs, δs′ ∈ supp(H). Then, by Theorem 6 in Kolotilin,
Corrao, and Wolitzky (2024), H is NAD.

Part 2. Suppose by contradiction that there exist an optimal strictly single-dipped
plan H and P ∈ supp(H) such that r∗(P ) = r and supp(P ) = {s, s′} with s < r < s′. By
Lemma 2, (8) holds with λ(r) given by (9). So, by Lemma 8, r∗(P )> 0, contradicting
that r < s′ ≤ s≤ 0.

Part 3. Since f is strictly positive on [s, s] and s < s, we have s < r∗(F ) = 0< s, so
segregation is suboptimal by Lemma 9.

Suppose by contradiction that there exists an optimal NAD plan H. By Lemma 5,
for each P ∈ supp(H) except for δrb , we have s1(r

∗(P ))< r∗(P )< s2(r
∗(P )), where s1

is decreasing and s2 is increasing. Note that rb < r∗(F ) = 0, because∫
Q(s− r∗(F ))dF (s) =Q(0) =

∫∫
Q(s− r∗(P ))dP (s)dH(P )

<

∫∫
Q(s− rb)dP (s)dH(P ) =

∫
Q(s− rb)dF (s),

where the first two equalities hold by the definition of r∗(F ) and r∗(P ), the inequal-
ity holds by r∗(P ) > rb for all P ∈ supp(H) except for P = δrb , and the last equality
holds by

∫
PdH(P ) = F . Since f is strictly positive on [s, s], we get limr↓rb s1(r) =

limr↓rb s2(r) = rb, as otherwise voter types in (limr↓rb s1(r), limr↓rb s2(r)) are not as-
signed to any district. Thus, for any ε > 0, there exists P ∈ supp(H) such that, for
r = r∗(P ), s= s1(r), and s′ = s2(r), we have rb − ε≤ s1(r)< r < s2(r)≤ rb + ε, and

G(r) +
g(r)

q(0)
(Q(s− r)−Q(0))>G(r) + λ(r)(Q(s− r)−Q(0))≥G(s),

where the first inequality is by Lemma 7, and the second inequality is by Lemma 2.
But this yields a contradiction because there exists a small enough ε ∈ (0,−rb) such
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that, for all s < r in [rb − ε, rb + ε], we have

G(r)−G(s)

g(r)
<

Q(0)−Q(s− r)

q(0)
,

because g′(r)> 0 = q′(0), and g and q are strictly positive and three-times differentiable.

A.7. Proof of Theorem 3
Theorem 3 follows from Lemmas 10–14.
For each r, let R(r) be the set of all plans H that maximize the designer’s seat

share when the aggregate shock is r. Lemma 10 characterizes R(r). If r∗(F )≥ r, then
H ∈R(r) assigns all voters to districts that the designer wins. If r∗(F )< r, then H ∈
R(r) assigns all voter types above s∗(r) to cracked districts that the designer wins with
exactly 50% of the vote and packs the remaining voters arbitrarily.

Lemma 10: The following hold.
1. Let r∗(F )≥ r. Then H∈R(r) iff, for each P ∈ supp(H), we have r∗(P )≥ r.
2. Let r∗(F )< r. Then H∈R(r) iff, for each P ∈ supp(H), we have either supp(P )⊂

[s, s∗(r)] or supp(P )⊂ [s∗(r), s] and r∗(P ) = r.

Proof of Lemma 10: Part 1. Since r∗(F )≥ r, s∗(r) = s and δF ∈R(r) is optimal.
Hence, H∈R(r) iff

∫
1{r ≤ r∗(P )}dH(P ) = 1, which is equivalent to r∗(P )≥ r for all

P ∈ supp(H), because the set {P ∈∆[s, s] : r∗(P )≥ r} is closed by the continuity of r∗,
which follows from the continuity and strict monotonicity of Q.

Part 2. Assume that r∗(F )< r < s, as if r ≥ s then s∗(r) = s, so part 2 holds trivially.
For each plan H, we have∫

1{r ≤ r∗(P )}dH(P ) =

∫
1{EP [Q(s− r)−Q(0)]≥ 0}dH(P )

≤
∫

max
{
0,

EP [Q(s− r)]−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)

}
dH(P )

≤
∫∫

max
{
0,

Q(s− r)−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)

}
dP (s)dH(P )

=

∫
max

{
0,

Q(s− r)−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)

}
dF (s)

=

∫ s

s∗(r)

Q(s− r)−Q(s∗(r)− r)

Q(0)−Q(s∗(r)− r)
dF (s) = 1− F (s∗(r)),

(13)

where the first equality is by the definition of r∗(P ), the first inequality is by pointwise
dominace of the integrands, the second inequality is by Jensen’s inequality, the second
equality is by

∫
PdH(P ) = F , the third equality is by strict monotonicity of Q, and
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the last equality is by the definition of s∗(r). Hence, H ∈R(r) iff, for a measure-1 set
of districts P under H, we have (a) EP [Q(s − r)] ≤ Q(s∗(r) − r) or EP [Q(s − r)] =

Q(0) (as otherwise the first inequality in (13) is strict) and (b) supp(P )⊂ [s, s∗(r)] or
supp(P )⊂ [s∗(r), s] (as otherwise the second inequality in (13) is strict), or equivalently,
either (i) supp(P )⊂ [s, s∗(r)] (which implies that EP [Q(s− r)]≤Q(s∗(r)− r)) or (ii)
supp(P )⊂ [s, s∗(r)] and r∗(P ) = r (which is equivalent to EP [Q(s−r)] =Q(0)). Finally,
as in the proof of part 1, continuity implies that properties (i) or (ii) hold for all
P ∈ supp(H), rather than just for a measure-1 set. Q.E.D.

Lemma 11 shows that pack-and-crack districting is approximately optimal. An upper
bound on the designer’s optimal expected seat share Vη can be obtained by allowing
the designer to choose Hr ∈R(r) after observing each realization r,

V η =

∫
(1− F (s∗(r)))dGη(r).

A lower bound on Vη can be obtained by restricting attention to Hr̃ ∈R(r̃) for some r̃,

V η(r̃) =

∫
(1− F (s∗(r̃)))1{r ≤ r̃}dGη(r).

Lemma 11: For all η and all r̃, we have V η(r̃)≤ Vη ≤ V η. Moreover, if η→∞, then
V η → 1− F (s∗(0)), V η(r̃)→ 1− F (s∗(r̃)) for all r̃ > 0, and Vη → 1− F (s∗(0)).

Proof of Lemma 11: Let Hη be the optimal plan and let Hr be any districting
plan in R(r). On the one hand, we have

Vη =

∫∫
1{r ≤ r∗(P )}dHη(P )dGη(r)

<

∫∫
1{r ≤ r∗(P )}dHr(P )dGη(r) =

∫
(1− F (s∗(r)))dGη(r) = V η,

where the inequality holds because
∫

1{r ≤ r∗(P )}dHη(P )≤
∫

1{r ≤ r∗(P )}dHr(P ) for
all r by the definition of Hr.

On the other hand, for any r̃, we have

Vη =

∫∫
1{r ≤ r∗(P )}dHη(P )dGη(r)

≥
∫∫

1{r ≤ r∗(P )}dHr̃(P )dGη(r)≥
∫
(1− F (s∗(r̃)))1{r ≤ r̃}dGη(r) = V η(r̃),

where the first inequality holds because Hη is optimal and Hr̃ is feasible, and the second
inequality holds by Lemma 10.
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Suppose now that η → ∞, which implies that Gη → δ0. By the implicit function
theorem, F (s∗(r)) is continuous in r, so V η → 1 − F (s∗(0)). For r̃ > 0, V η(r̃) → 1 −
F (s∗(r̃)), which converges to 1− F (s∗(0)) as r̃ ↓ 0, implying that Vη → 1− F (s∗(0)).

Q.E.D.

Lemma 12 shows that limit points of optimal plans Hn =Hηn , for ηn →∞, belong
to P(0).

Lemma 12: Let Hn →H as ηn →∞. Then H∈R(0).

Proof of Lemma 12: Suppose by contradiction that there exists a sequence ηn →
∞ such that an optimal plan Hn converges weakly to H /∈R(0). Then we have

1− F (s∗(0)) = lim
n→∞

∫
Q(ηnr

∗(P ))dHn(P )≤
∫

1{r∗(P )≥ 0}dH(P )< 1− F (s∗(0)),

where the equality is by Lemma 11, the first inequality is by the Portmanteau theorem,
and the second inequality is by H /∈R(0) and Lemma 10. Q.E.D.

Lemma 13 shows that, in the limit, all districts are equally strong when r∗(F )≥ 0.

Lemma 13: Let r∗(F )≥ 0 and Hn →H as ηn →∞. Then, for each P ∈ supp(H), we
have r∗(P ) = r∗(F ).

Proof of Lemma 13: If r∗(F ) = 0, then, for each P ∈ supp(H), we have r∗(P )≥ 0

by Lemma 10, so r∗(P ) = 0 by
∫
PdH(P ) = F . So suppose that r∗(F )> 0. Moreover,

suppose by contradiction that there exists ε ∈ (0, r∗(F )), δ ∈ (0,1), and a sequence ηn →
∞ such that

∫
1{r∗(P ) ≤ r∗(F )− ε}dHn(P ) ≥ δ for all n. We obtain a contradiction

for sufficiently large n, because∫
Q(ηnr

∗(P ))dHn(P )≤ δQ(ηn(r
∗(F )− ε)) + (1− δ)<Q(ηnr

∗(F )),

where the first inequality is by the supposition and the second inequality is by

1−Q(ηr∗(F ))

1−Q(η(r∗(F )− ε))
→ 0, as η→∞,

which we prove below. Denote c= q′(r∗(F )− ε)/q(r∗(F )− ε). Since q′(0) = 0 and q is
strictly log-concave, for all η > 1, we have

0 =
q′(0)

q(0)
> c=

q′(r∗(F )− ε)

q(r∗(F )− ε)
>

q′(η(r∗(F )− ε))

q(η(r∗(F )− ε))
>

q′(x)

q(x)
, for all x > η(r∗(F )− ε).
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Hence Gronwall’s inequality gives limη→∞ q(ηr∗(F ))/q(η(r∗(F )− ε)) ≤ limη→∞ ecεη =

0, so, by L’Hopital’s rule, we have

lim
η→∞

1−Q(ηr∗(F ))

1−Q(η(r∗(F )− ε))
= lim

η→∞

q(ηr∗(F ))r∗(F )

q(η(r∗(F )− ε))(r∗(F )− ε)
= 0. Q.E.D.

Lemma 14 shows that, in the limit, types below s∗(0) are segregated and types above
s∗(0) are paired in a negatively assortative manner.

Lemma 14: Let Hn →H as ηn →∞.
1. For any P ∈ supp(H) with r∗(P )≤ s∗(0), we have | supp(P )|= 1.
2. For any P,P ′ ∈ supp(H) with r∗(P ) = r∗(P ′)≥ 0, we have supp(P ) = {s1(P ), s2(P )}

and supp(P ′) = {s1(P ′), s2(P
′)} with s1(P ) ≤ s2(P ), s1(P

′) ≤ s2(P
′), and

(s2(P
′)− s2(P ))(s1(P )− s1(P

′))≥ 0.

Proof of Lemma 14: Denote Λn = supp(Hn). Since the set of compact subsets of
a compact set is compact (in the Hausdorff topology), taking a subsequence if necessary,
Λn converges to some compact set Λ. By Box 1.13 in Santambrogio (2015), we have
supp(H)⊂ Λ. Since Hn is strictly single-dipped by Lemma 1, we have | supp(Pn)| ≤ 2

for all Pn ∈ Λn, and thus | supp(P )| ≤ 2 for all P ∈ Λ.
Suppose part 2 fails. Then, by Lemmas 10, 12, and 13, there exist P,P ′ ∈ supp(H)

such that s1(P ′)< s1(P )< r∗+(F )< s2(P
′)< s2(P ). But then since Λn → Λ, there exist

n and Pn, P
′
n ∈ Λn such that supp(Pn) = {s1(Pn), s2(Pn)}, supp(P ′

n) = {s1(P ′
n), s2(P

′
n)},

and s1(P
′
n) < s1(Pn) < r∗+(F ) < s2(P

′
n) < s2(Pn), contradicting that Hn is strictly

single-dipped.
Suppose part 1 fails. Then, by Lemmas 10 and 12, there exists P ∈ supp(H) such that

supp(P ) = {s, s′} with s≤ s < s′ ≤ s∗(0). Moreover, by Lemmas 10 and 12 and part 2,
there exists P ′ ∈ supp(H) such that supp(P ′) = {s∗(0), s}. But then since Λn → Λ, there
exist n and Pn, P

′
n ∈ Λn with (s1(Pn), s2(Pn), s1(P

′
n), s2(P

′
n)) close to (s, s′, s∗(0), s).

Then, by Lemma 5, Hn cannot be segregate-pair, contradicting Theorem 1. Q.E.D.

To complete the proof of Theorem 3, note that Lemmas 10 (for r = 0), 12, 13, and
14 show that if a sequence of optimal plans Hη converges to H, then H must segregate
types below s∗(0) and pair types above s∗(0) in a negatively assortative manner in
equally strong districts. The unique such plan is H=H∗. Finally, since every convergent
sequence Hn converges to H∗, compactness of ∆∆[s, s] implies that Hη also converges
to H∗.

A.8. Proof of Theorem 4
Theorem 4 follows from Lemmas 15–18.
Let T be the set of all plans H that maximize the designer’s seat share when each

voter’s idiosyncratic shock is 0. Lemma 15 shows that H ∈ T iff each district P ∈
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supp(H) contains 50% voters with some type sP ≥ sm and 50% voters with types
s≤ sm (so the designer wins district P iff r ≤ sP ).

For P ∈ ∆[s, s], define P (r) =
∫

1{s ≥ r}dP (s) = 1 − P (r−) for all r. The designer
wins district P iff the aggregate shock r satisfies r ≤ r∗0(P ) = {max r̃ : P (r̃)≥ 1/2}. For
H∈∆∆[s, s], define H(r) =

∫
1{r∗0(P )≥ r}dH(P ) for all r.

Lemma 15: H∈ T iff, for each P ∈ supp(H), there exists sP ≥ sm such that P (s) = 1

for all s≥ sP , P (s) = 1/2 for all s ∈ [sm, sP ), and P (s)≤ 1/2 for all s < sm.

Proof of Lemma 15: For each r ≥ sm, we have

F (r) =

∫
P (r)dH(P ) =

∫
1{P (r)≥ 1

2
}P (r)dH(P ) +

∫
1{P (r)< 1

2
}P (r)dH(P )

≥
∫

1{P (r)≥ 1
2
} 1
2
dH(P ) =

∫
1{r∗0(P )≥ r} 1

2
dH(P ) = 1

2
H(r).

(14)

So, any feasible H satisfies H(r)≤H
∗
(r) for all r, where

H
∗
(r) =

1, if r ≤ sm,

2F (r), if r > sm.

Thus, the designer’s expected seat share for any feasible plan is
∫
H(r)dG(r) ≤∫

H
∗
(r)dG(r), with strict inequality if H(r) < H

∗
(r) for some r (and thus on some

interval (r′, r) with r′ < r, by continuity of H
∗ and monotonicity and left-continuity

of H), because G(r) is strictly increasing in r. Hence, a districting plan H is optimal
iff it induces H = H

∗. In turn, H = H
∗ iff, for each r ≥ sm, the inequality in (14)

holds with equality, or equivalently,
∫

1{P (r) = 1/2}dH(P ) = 2F (r) and
∫

1{P (r) =

0}dH(P ) = 1− 2F (r). Finally, this holds for all r ≥ sm iff, for each P ∈ supp(H), there
exists sP ≥ sm such that P (s) = 0 for all s > sP , P (s) = 1/2 for all s ∈ (sm, sP ], and
P (s)≥ 1/2 for all s≤ sm. Q.E.D.

Lemma 16: If η→ 0, then Vη → 2
∫ s

sm
G(r)dF (r).

Proof of Lemma 16: Let Hη be the optimal plan and let Hr be any districting
plan in Rη(r). We have

Vη =

∫∫
1{r ≤ r∗η(P )}dHη(P )dG(r)

≤
∫∫

1{r ≤ r∗η(P )}dHr(P )dG(r) =

∫
(1− F (s∗η(r)))dG(r) = V η,
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where the inequality holds because
∫

1{r ≤ r∗η(P )}dHη(P )≤
∫

1{r ≤ r∗η(P )}dHr(P ) for
all r by the definition of Hr.

Let H∗
q , with q ∈ (0,1/2), be NAD with a q-1− q split in each district. Formally, H∗

q

is the unique plan H such that, for any P ∈ supp(H), we have either (a) supp(P ) = {sq}
with sq = F−1(q) or (b) supp(P ) = {s1(P ), s2(P )} such that s≤ s1(P )< sq < s2(P )≤ s,
and (1− q)F (s1(P )) = q(1− F (s2(P ))). We have

Vη =

∫
G(r∗η(P ))dHη(P )≥

∫
G(r∗η(P ))dH∗

q(P ) = V η(q),

where the inequality holds because Hη is optimal and H∗
q is feasible.

Suppose now that η → 0, which implies that Qη → δ0. For each r, 1− F (s∗η(r))→
H

∗
(r), so, by the dominated convergence theorem and integration by parts, V η →∫

H
∗
(r)dG(r) = 2

∫ s

sm
G(r)dF (r). For q < 1/2 and s < s′, r∗η(qδs+(1−q)δs′)→ s′, so, by

the dominated convergence theorem, V η(q)→
∫ s

sq
G(r)dF (r)/(1− q), which converges

to 2
∫ s

sm
G(r)dF (r) as q ↑ 1/2. Q.E.D.

Lemma 17 shows that limit points of optimal plans Hn =Hηn , for ηn → 0, belong to
T .

Lemma 17: Let Hn →H as ηn →∞. Then H∈ T .

Proof of Lemma 17: Suppose by contradiction that there exists a sequence ηn → 0

such that Hn converges weakly to H /∈ T . Then we have

2

∫ s

sm
G(r)dF (r) = lim

n→∞

∫
G(r∗ηn(P ))dHn(P )≤

∫
H(r)dG(r)< 2

∫ s

sm
G(r)dF (r),

where the equality is by Lemma 16, the first inequality is by the Portmanteau theorem
and integration by parts, and the second inequality is by H /∈ T and Lemma 15. Q.E.D.

Lemma 18 shows that, in the limit, all types are paired in a negatively assortative
manner.

Lemma 18: Let Hn →H as ηn → 0. For any P,P ′ ∈ supp(H), we have supp(P ) =

{s1(P ), s2(P )} and supp(P ′) = {s1(P ′), s2(P
′)} with s1(P ) ≤ s2(P ), s1(P

′) ≤ s2(P
′),

and (s2(P
′)− s2(P ))(s1(P )− s1(P

′))≥ 0.

Proof of Lemma 18: Denoting Λn = supp(Hn), the same argument as in the proof
of Lemma 14 implies that there exists Λ such that, up to a subsequence, Λn → Λ,
supp(H)⊂ Λ, and | supp(P )| ≤ 2 for all P ∈ Λ.

By Lemmas 15 and 17, if the conclusion of the lemma fails, there must exist
P,P ′ ∈ supp(H) such that supp(P ) = {s1(P ), s2(P )} and supp(P ′) = {s1(P ′), s2(P

′)}
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with s1(P
′) < s1(P ) < sm < s2(P

′) < s2(P ). Then, since Λn → Λ, there exist n and
Pn, P

′
n ∈ Λn such that supp(Pn) = {s1(Pn), s2(Pn)}, supp(P ′

n) = {s1(P ′
n), s2(P

′
n)}, and

s1(P
′
n) < s1(Pn) < sm < s2(P

′
n) < s2(Pn), contradicting that Hn is strictly single-

dipped. Q.E.D.

To complete the proof of Theorem 4, note that Lemmas 15, 17, and 18 show that if a
sequence of optimal plans Hη converges to H, then H must pair all types in a negatively
assortative manner, with 50% mass on the higher type. Clearly, the unique such plan
is H = H∗∗. Since every convergent sequence Hn converges to H∗∗, compactness of
∆∆[s, s] implies that Hη also converges to H∗∗.

A.9. Proof of Theorem 5

By Lemma 2, λ(r) has a derivative λ′(r) at each r ∈ (rb, rb + ε] satisfying

g(r)− λ(r)q(s2(r)− r) + λ′(r) (Q(s2(r)− r)−Q(0)) = 0,

g(r)− λ(r)q(s1(r)− r) + λ′(r) (Q(s1(r)− r)−Q(0)) = 0.

Solving for λ(r) and λ′(r) yields, for all r ∈ (rb, rb + ε],

λ(r) =
g(r)[Q(s2(r)− r)−Q(s1(r)− r)]

(Q(s2(r)− r)−Q(0)) q(s1(r)− r)− (Q(s1(r)− r)−Q(0)) q(s2(r)− r)
,

λ′(r) =
g(r)[q(s2(r)− r)− q(s1(r)− r)]

(Q(s2(r)− r)−Q(0)) q(s1(r)− r)− (Q(s1(r)− r)−Q(0)) q(s2(r)− r)
.

Since λ′ is the derivative of λ, we have dλ(r)/dr = λ′(r) for all r ∈ (rb, rb + ε]. Since
s1 and s2 are twice differentiable and satisfy limr↓rb s1(r) = limr↓rb s2(r) = rb, we can
apply L’Hopital’s rule to evaluate dλ(r)/dr = λ′(r) in the limit r ↓ rb to obtain

g′(rb)q(0)

(q(0))2
=

g(rb)q′(0)

(q(0))2
,

which implies that rb = 0, because G(r) =Q(ηr) for all r and q′(r) = 0 iff r = 0. Denote
limr↓rb s

′
1(r) = 1−β1 and limr↓rb s

′
2(r) = 1+β2, where β1 ≥ 1 (because s1 is decreasing)

and β2 ≥ 0 (because s2(r)> r). Differentiating dλ(r)/dr = λ′(r) with respect to r and
taking the limit r ↓ 0, we get

ηq′′(0)(η2 − β2β1)

q(0)
=

ηq′′(0)(β2 − β1)

2q(0)
,

and hence

2η2 = 2β2β1 + β2 − β1. (15)
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Since, for small enough r > 0, type s1(r) is assigned to both district δs1(r) and district
P with r∗(P ) = r and supp(P ) = {s1(r), s2(r)}, we must have, by Lemma 2,

Q(ηs1(r)) =Q(ηr) + λ(r) (Q(s1(r)− r)−Q(0)) .

In the limit r ↓ 0, the values and the derivatives up to order 2 of both sides always
coincide, while the third derivatives coincide iff

q′′(0)η3(−β1 + 1)3 = q′′(0)η3 − 3q′′(0)η3β1 + 3q′′(0)ηβ2β
2
1 − q′′(0)ηβ3

1 ,

which simplifies to

−η2β1 + 3η2 = 3β2 − β1. (16)

Since, for small enough r > 0, type s1(r) is assigned to both district δs1(r) and district
P with r∗(P ) = r, while type s2(r) is assigned only to district P , we have

f(s1(r))s
′
1(r) (Q(s1(r)− r)−Q(0))≥ f(s2(r))s

′
2(r) (Q(s2(r)− r)−Q(0)) .

In the limit r ↓ 0, both sides are equal, and hence their derivatives must satisfy

−f(0)q(0)β1(1− β1)≥ f(0)q(0)β2(β2 + 1),

which, given that β1 + β2 > 0, simplifies to

β1 ≥ β2 + 1. (17)

Recalling that γ = η2/(1 + η2), equations (15) and (16) have two solutions

(β1, β2) =
(

3η2

(2(η2−1))
, η2

2

)
=
(

3γ

2(2γ−1)
, γ

2(1−γ)

)
and (β′

1, β
′
2) =

(
1, (2η2+1)

3

)
=
(
1, γ+1

3(1−γ)

)
,

unless γ = 1/2, in which case (15) and (16) have only one solution (β1, β2) = (1,1). The
solution (β′

1, β
′
2) never satisfies (17) and thus is discarded. Moreover, for the solution

(β1, β2), condition β1 ≥ 1 yields γ > 1/2, and condition (17) yields γ ≤
√
3− 1. Thus,

for Y-districting to be optimal, we must have γ ∈ (1/2,
√
3− 1]. Finally, the statement

in Footnote 34 holds because

lim
r↓0

s′1(r) = 1− β1 =− 2− γ

2(2γ − 1)
< 0 and lim

r↓0
s′2(r) = 1+ β2 =

2− γ

2(1− γ)
> 0

are both strictly increasing in γ.

APPENDIX B: Estimators
In this section, we formally define our estimators and show that they satisfy standard

statistical properties. Fix a US state. We assume throughout that there is a large number
of voters, so that the vote share in a precinct n with type sn in district d and election
y with aggregate shock rdy is given by vny =Φ((sn − rdy)/

√
γ). Let µs and σ2

s be the
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mean and variance of the distribution of precinct types, defined by µs = EF [s] and
σ2
s = V arF [s]. For convenience, we repeat some definitions from the main text. Let

wny =Φ−1(vny), T denote the number of elections, D the number of districts, and Ndy

the set of precincts in district d and election y. Define

wdy =

∑
n∈Ndy

knywny∑
n∈Ndy

kny

, wd• =

∑
y
wdy

T
, w•y =

∑
d
wdy

D
, w•• =

∑
d,y

wdy

DT
,

e2n =
1

DT

∑
d,y

∑
n∈Ndy

kny(wny −w•y)
2∑

n∈Ndy

kny

,

e2d =

∑
d,y

(wdy −wd•)
2

D(T − 1)
, e2 =

∑
y
(w•y −w••)

2

T − 1
,

cov =

∑
y,d,d′>d

(wdy −wd•)(wd′y −wd′•)

D(D−1)

2
(T − 1)

=
De2 − e2d
D− 1

,

where the last equality follows from

e2 =

∑
y

(∑
d

1

D
(wdy −wd•)

)2

(T − 1)

=
1

D

∑
d,y

(wdy −wd•)
2

D(T − 1)
+

D− 1

D

∑
y,d,d′>d

(wdy −wd•)(wd′y −wd′•)

D(D−1)

2
(T − 1)

=
1

D
e2d +

D− 1

D
cov.

To construct our estimators, we use the following proposition.

Proposition 1: In our empirical model,

Ee2d =
1− γ

γ
, Ecov = ρ

1− γ

γ
, Ew•• =

µs√
γ
, and Ee2n =

σ2
s

γ
+ (1− ρ)

D− 1

D

1− γ

γ
,

and

e2d
d
=

1− γ

D(T − 1)γ

[
(1− ρ)χ2

(D−1)(T−1) + (1+ (D− 1)ρ)χ2
T−1

]
,

where d
= denotes equality in distribution, and χ2

(D−1)(T−1) and χ2
T−1 denote independent

χ2 random variables with (D− 1)(T − 1) and T − 1 degrees of freedom, respectively.
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Consider the following point estimators of γ, ρ, µs, and σs:

γ̂ =
1

1+ e2d
, ρ̂=

cov

e2d
, µ̂s =

w••√
1 + e2d

, and σ̂s =

√
e2n − D−1

D
(e2d − cov)

1 + e2d
.

By Proposition 1, 1/γ̂, ρ̂/γ̂ − ρ̂, µ̂s/
√
γ̂, and σ̂2

s/γ̂ are unbiased estimators of 1/γ,

ρ/γ − ρ, µs/
√
γ, and σ2

s/γ. Moreover, by the law of large numbers for D(T − 1)→∞,

we have that γ̂, ρ̂, µ̂s, and σ̂s are consistent estimators of γ, ρ, µs, and σs.

Proposition 1 also gives us a confidence interval for γ. Specifically, for any α ∈ (0,1),

let qα be the α-quantile for (1− ρ̂)χ2
(D−1)(T−1) +(1+ (D− 1)ρ̂)χ2

T−1. Then, a one-sided
1− α confidence interval for γ is (γ̂α,1) where

γ̂α =
1

1+ D(T−1)

q(α)
e2d

.

Proof of Proposition 1: Denote

rd• =

∑
y
rdy

T
, r•y =

∑
d
rdy

D
, sdy =

∑
n∈Ndy

knysn∑
n∈Ndy

kny

, s•y =

∑
d
sdy

D
.

First, we have

Ew•• = E
1

DT

∑
d,y

∑
n∈Ndy

kny(sn − rdy)

√
γ
∑

n∈Ndy

kny

= E

∑
n∈Ndy

knysn

√
γ
∑

n∈Ndy

kny

=
µs√
γ
,

where the first equality is by vny = Φ((sn − rdy)/
√
γ) and the definition of vny and

w••, the second is by E[rdy] = 0 and district equipopulation, and the fourth is by the
definition of µs. Second, we have

Ee2d = E

∑
d,y

(
T−1
T

rdy − 1
T

∑
y′ ̸=y

rdy′

)2

D(T − 1)γ
=

DT
[(

T−1
T

)2
+ T−1

T2

]
(1− γ)

D(T − 1)γ
=

1− γ

γ
,

where the first equality is by vny = Φ((sn − rdy)/
√
γ), the definition of wdy and wd•,

and rearrangement, the second is by V ar[rdy] = 1− γ and Cov[rdy, rdy′ ] = 0 for y ̸= y′,
and the third is by rearrangement. Third, we have

Ecov = E

∑
y,d,d′>d

(rdy − rd•)(rd′y − rd′•)

D(D−1)

2
(T − 1)γ

= ρ
1− γ

γ
,
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where the first equality is again by vny = Φ((sn − rdy)/
√
γ) and the definition of wdy

and wd•, and the second is by Cov[rdy, rd′y] = ρ(1− γ) for d ̸= d′, Cov[rdy, rd′y′ ] = 0 for
y ̸= y′, and rearrangement. Fourth, we have

Ee2n = E
1

DT

∑
d,y

∑
n∈Ndy

kny(sn − s•y + rdy − r•y)
2

γ
∑

n∈Ndy

kny

= E

∑
n∈Ndy

kny(sn − s•y)
2

γ
∑

n∈Ndy

kny

+E

∑
d
(rdy − r•y)

2

γD
=

σ2
s

γ
+E

∑
d

(
D−1
D

rdy − 1
D

∑
d′ ̸=d

rd′y

)2

γD

=
σ2
s

γ
+E

∑
d

[(
D−1
D

)2
r2dy +

1
D2

∑
d′ ̸=d

r2d′y −
2(D−1)

D2 rdyrd′y +
2

D2

∑
d′ ̸=d,d′′>d′

rd′yrd′′y

]
γD

=
σ2
s

γ
+

[(
D− 1

D

)2

+
D− 1

D2 − ρ
2(D− 1)

D2 + ρ
(D− 1)(D− 2)

D2

]
1− γ

γ

= σ2
s + (1− ρ)

D− 1

D

1− γ

γ
,

where the first equality is by vny = Φ((sn − rdy)/
√
γ), the definition of wny and w•y,

and rearrangement, the second is by independence across elections and district equipop-
ulation, the third is by the large number of voters and rearrangement of the sec-
ond term, the fourth is by quadratic expansion, the fifth is by E[r2dy] = 1 − γ and
E[rdyrd′y] = ρ(1− γ) for d′ ̸= d, and the sixth is by rearrangement.

Finally, let r = (r11, . . . , r1T , . . . , rD1, . . . , rDT )
′. Then we can write∑

d,y

(rdy − rd•)
2 = r′Ar

where

A=



T−1
T

. . . − 1
T

. . . 0 . . . 0
... . . . ... . . . ... . . . ...

− 1
T

. . . T−1
T

. . . 0 . . . 0
... . . . ... . . . ... . . . ...
0 . . . 0 . . . T−1

T
. . . − 1

T

... . . . ... . . . ... . . . ...
0 . . . 0 . . . − 1

T
. . . T−1

T


.
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Note that

E[rr′]
1− γ

=Σ=



1 . . . 0 . . . ρ . . . 0
... . . . ... . . . ... . . . ...
0 . . . 1 . . . 0 . . . ρ
... . . . ... . . . ... . . . ...
ρ . . . 0 . . . 1 . . . 0
... . . . ... . . . ... . . . ...
0 . . . ρ . . . 0 . . . 1


.

By the spectral theorem, there is an orthogonal matrix P (so that P ′P = P ′P = I) and
a diagonal matrix Λ with positive diagonal elements λ1, . . . , λDT such that Σ1/2AΣ1/2 =

P ′ΛP . Define u= PΣ−1/2r/
√
1− γ (so that r =Σ1/2P ′u

√
1− γ). Then

r′Ar

1− γ
= u′PΣ1/2AΣ1/2P ′u= u′PP ′ΛPP ′u= u′Λu=

DT∑
i=1

λiu
2
i

where u∼N(0, I), and λ1, . . . λDT are the roots of the characteristic equation

|Σ1/2AΣ1/2 − λI|= 0 ⇐⇒ |AΣ− λI|= 0.

Note that

AΣ=



T−1
T

. . . − 1
T

. . . ρT−1
T

. . . −ρ 1
T

... . . . ... . . . ... . . . ...
− 1

T
. . . T−1

T
. . . −ρ 1

T
. . . ρT−1

T

... . . . ... . . . ... . . . ...
ρT−1

T
. . . −ρ 1

T
. . . T−1

T
. . . − 1

T

... . . . ... . . . ... . . . ...
−ρ 1

T
. . . ρT−1

T
. . . − 1

T
. . . T−1

T


.

After some algebra, we obtain

|AΣ− λI|= (−1)DTλD(λ− 1 + ρ)(D−1)(T−1)(λ− 1− (D− 1)ρ)T−1,

showing that r′Ar/(1− γ)
d
= (1− ρ)χ2

(D−1)(T−1) + (1+ (D− 1)ρ)χ2
T−1, and hence

e2d =
r′Ar

D(T − 1)γ

d
=

1− γ

D(T − 1)γ

[
(1− ρ)χ2

(D−1)(T−1) + (1+ (D− 1)ρ)χ2
T−1

]
. Q.E.D.
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