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Abstract

This chapter examines the economics of climate innovation and its role in the clean technol-
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development and diffusion of clean technologies; traces global patterns in technology de-
velopment and deployment; and highlights frontier challenges and open questions related
to climate adaptation, critical mineral supply chains, artificial intelligence, and geopoli-
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1 Introduction

This chapter describes the interplay between climate change, innovation, and technological
change. Despite the fact that global temperatures have already begun to rise, the progression
of technology development and deployment will determine the full extent of environmental
and economic harm. Innovation in renewable energy sources, for example, will shape future
trends in carbon emissions and pollution, in addition to patterns of energy prices and access
around the world. Even under the most optimistic emissions scenarios, however, economic
damage from climate extremes is already rampant—ranging from crop failures to heat-related
deaths to spikes in violent conflict—and will only continue in future decades. Here too,
technology will shape the extent to which individuals, firms, and countries can adapt to new
environmental challenges. The evolution of technology is a key factor shaping the full extent
and economic consequences of global warming.

While innovation is a powerful force, however, there is no guarantee that it will evolve in any
particular direction. History is rife with technological reversals, ranging from the global decline
in nuclear energy investment during the 1990s following the Chernobyl meltdown to a large fall
in US clean technology innovation during the 2010s. A large body of evidence has documented
that the direction of innovation evolves endogenously, responding to economic and political
incentives that may or may not push technology toward developing cheap renewable energy
or new tools for climate adaptation. The political and geopolitical incentives that shape climate
policy also shift over time, generating an important interplay between technology and politics.
While some of the most dramatic advances in solar technology development were the result
of a concerted policy agenda in China to build its solar sector, fossil fuel subsidies are still
widespread around the world. Decision-making by policymakers and innovators will combine
to shape the equilibrium pace and direction of technological change.

The technological transition required for averting the largest rise in global temperature is
substantial, but it has already begun. This is outlined by Table 1. While growth around the
world, especially in China and India, has led to a rise in global carbon emissions since 2000,
the full effect of this increase in economic activity on emissions was offset by a substantial
rise in renewable energy development and deployment (columns 1-2). The renewable share
of electricity generation increased from 18% to 30%, driven in large part by innovation and
declining prices in solar and wind power. While solar capacity increased around the world,
its largest rise was in China, which skyrocketed to account for over a third of all global solar
energy generation (610 GW today compared to just 0.03 GW in 2000). Over the same period,
global electric vehicles rose from zero to 18% of global automobile sales.

That said, the world is far from reaching either the energy targets that existing policies
hope to achieve by 2050 (column 3) or the energy targets that would be required to achieve net
zero emissions by 2050 (column 4). To reach drafted policy goals, renewable capacity would
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need to increase by over fourfold over the next 25 years, with a large share of this increase
coming from a rise in solar capacity (column 3). Even this transformation, however, would be
well below what the latest International Energy Agency (IEA) estimates suggest is required
to achieve net zero emissions by 2050 and limit the rise in global mean temperature to 1.5◦C
(column 4). While these numbers all come with substantial uncertainty, they highlight the full
scale of the energy transition that has already begun and the potential paths that technology
may take going forward.

Throughout the chapter, we emphasize the key role that economics can play in understand-
ing the intersection and interactions between technology, climate policy, and environmental
change. While it is possible to estimate the technological requirements for limiting ever larger
increases in global temperatures (see Table 1), how technology and policy evolve in practice
requires understanding the political and economic incentives that shape innovator decision
making, the equilibrium direction of innovation, and the two-way relationship between politics
and technological change. The importance of new technology development to policy makers
around the world is captured by the substantial rise over the past two decades in policies that
explicitly support technology development to accelerate a transition to clean energy (see Figure
1a).1 As we describe below, regulations and market-based interventions can also affect technol-
ogy development by shifting technology demand; however, this explicit focus on subsidizing
the technology of the future is a clear and growing goal. Yet when we studied all articles that
reference environmental policy published in American Economics Association (AEA) journals
since 2011, the vast majority—roughly 80%—focused on market-based interventions and few
referenced technology or non-market regulation, the most common policy structure in practice
(see Figure 1b). This strikes us as a major missed opportunity.

The goal of this chapter is to present a broad overview of the intersection between climate
change and technology, reviewing core concepts, mechanisms, and existing research, as well
as describing topics that strike us as important and exciting areas for future work. Each
section is meant to be self contained and does not assume substantial prior knowledge of either
environmental economics or the economics of innovation, both of which are important for
understanding the subject matter of this chapter. Our hope is that this chapter serves as a
resource for students interested in pursuing research in these areas, economists of all academic
backgrounds, or policymakers interested in research in economics and related fields.

The next section of this chapter (Section 2) describes the key concepts that are needed

1. To measure characteristics of global climate law and policy, we downloaded the full “Climate Change
Laws of the World” database from https://climate-laws.org/. We download the full text of each document
and classify all documents based on whether they include market-based policies, non-market based polices, or
technology support policies (or combinations thereof). In particular, we first use DeepSeek to classify a subset of
the documents and then used this labeled training dataset to fine-tune RoBERTa, which provided the remaining
classifications. We use a related method to categorize all articles published by American Economics Association
(AEA) journals since 2011, which we scraped from https://www.aeaweb.org/journals. See Appendix A.2.
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Figure 1: The Focus of Climate Policy
Note: Figure 1a plots trends over time in the share of global climate laws and policies from Climate Change Laws
of the World (https://climate-laws.org/) that we categorize as market-based policies, non-market regulatory
mechanisms, and technology support policies. Figure 1b plots trends over time in the share of articles about
environmental economics and published in American Economics Association (AEA) journals since 2011 that
reference market-based policies, non-market regulatory mechanisms, and technology support policies. Additional
methodological details are described in Appendix A.2.

to study the economics of innovation and the environment. These range from micro-level
mechanisms that drive decision making by innovators to macroeconomic models of directed
technological change that provide a framework for understanding the aggregate direction
of technological change. In describing these economic forces, we also document how they
emerge using data on recent trends in technology development, review existing theoretical
and empirical work on these topics, and highlight potential areas for future research.

The third section of this chapter (Section 3) presents a detailed examination of the clean
technology landscape and a description of recent innovation trends. First, we describe a
taxonomy of the full set of technologies relevant for the energy transition, ranging from power
generation to battery and grid development to building and transportation infrastructure. This
provides context for many ideas and examples that come up later in the chapter and is designed
to serve as a reference for readers about the various ways in which technology development
and use are evolving. Second, we provide an overview of the key data sources and empirical
approaches that can be used to measure innovation. We offer a descriptions of the pros and
cons of each strategy, as well as provide examples from recent empirical work. Third, we use
some of these data sources to describe key developments in energy technology over the past
decades, from the take-off of green innovation during the 1990s to China’s surge in recent years
and geographic patterns of technology diffusion.

The fourth section of the chapter (Section 4) describes the relationship between technology
and climate policy. We outline how policy—from environmental regulation that shapes de-
mand for new technologies to the more recent rise of industrial policies and direct technology
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support—affects the level and direction of innovation. We also describe challenges associated
with climate policy evaluation, a series of case studies of recent policy experiments, and the
countervailing effects of government support for the fossil fuel industry.

The fifth section of this chapter (Section 5) turns from mitigation innovation to adaptation
innovation, the development of new technologies that allow economic actors to adjust to more
extreme environmental conditions. We introduce a theoretical framework that describes the
incentives driving adaptation innovation before discussing existing work and open questions
about adaptation, technology diffusion, and interactions between adaptation and mitigation.

Finally, the sixth section of this chapter (Section 6) describes a series of additional areas
that cut across topics or have received more limited attention in economics research to date
but that are increasingly central to modern debates about technology and the environment.
These topics include the importance of critical minerals to clean technology supply chains; the
incentives that shape innovation across clean technology areas; the dual impacts of artificial
intelligence on energy use and innovation; and the geopolitical consequences of the clean
energy transition. While there are many additional topics that we do not cover in this section,
our hope is to highlight the number of fascinating and essential topics left to be explored.

We also provide a companion web application at https://patent-green-trends.streamlit.
app/. The app offers interactive visualizations of patenting trends across various clean and
dirty technologies from 1980 through 2020.2 It serves as an accessible extension of this chapter,
allowing readers to view and compare trajectories by technology and country

2 The Fundamental Economics of Clean Technological Change

2.1 Microeconomic Mechanisms

This section examines the microeconomic mechanisms that shape clean technological change:
how innovation unfolds, who participates, which market failures arise, and the policies used
to address them. Table 2 links stages of the innovation process to the main externalities—
knowledge spillovers, environmental externalities, financial frictions, and coordination problems—
and to the instruments commonly deployed in response. We build on prior reviews of innova-
tion and the environment (Jaffe et al. 2003; Popp et al. 2010; Popp 2019; Armitage et al. 2024),
aiming not to restate them in full but to draw out key mechanisms and highlight recent contribu-
tions. Broader surveys of innovation economics offer additional context and describe many of
these forces in additional detial with applications beyond climate-related technologies (Bloom
et al. 2019; Bryan and Williams 2021; Jones 2021; Howell 2024).

2. Additional details are described in Appendix A.3.
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2.1.1 Technology Readiness Levels (TRLs)

Table 2 organizes the discussion of the economic mechanisms underpinning innovation across
technology readiness levels (TRLs). Organizing innovation by TRLs is a standardized method
of measuring the maturity of a particular technology, which was originally developed by
NASA in the 1970s and is often used to assess technological progress across various streams
of clean energy development. For each stage, Table 2 provides definitions, main actors, key
activities, expected outputs, and illustrative examples drawn from the International Energy
Agency (IEA) Clean Energy Technology Guide.3 Although often depicted as a linear sequence,
innovation in practice is iterative, with feedback loops and reversals. Still, successful diffusion
usually requires moving through the stages outlined in Table 2. For clean technologies, this
journey is especially demanding. Market failures arise at multiple points leading to persistent
underinvestment in development and deployment.

The TRL framework allows these failures to be mapped to distinct phases, clarifying which
policy tools are most relevant. Examples of policies to address each potential market failure are
listed in the bottom section of Table 2. Levels 1 through 9 are the original stages first developed
by NASA. The IEA extends this by adding TRLs 10 and 11: TRL 10 covers technologies that
are commercial and competitive but need further innovation efforts for the technology to be
integrated into energy systems and value chains when deployed at scale. We label this as “early
adoption.” TRL 11 represents technologies that have achieved predictable growth. We further
distinguish between TRL 11 and TRL 11+ to capture the difference between technologies that
are still scaling and those that have achieved widespread market dominance, especially relative
to dirtier alternatives. While the distinctions between TRLs 9, 10, 11, and 11+ can be subtle,
since all refer to technologies considered mature, they differ in the extent of market uptake
and integration. In our examples, we consider technologies with only niche deployment to fall
below TRL 11. TRL 11 corresponds to broad diffusion across markets, while TRL 11+ reflects
full market transformation, marked by robust sales, especially relative to dirtier alternatives.

3. The IEA TRL data tool is available at https://www.iea.org/data-and-statistics/data-tools/
etp-clean-energy-technology-guide

10

https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide
https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide


Page 

TRL 1 TRL 2 TRL 3 TRL 4 TRL 5 TRL 6 TRL 7 TRL 8 TRL 9 TRL 10 TRL 11 TRL 11+

Concept Prototype Demonstration Early Adoption Mature

Definition Initial idea, basic 
principles defined

Concept and 
application formulated

Experimental 
proof‑of‑concept 

demonstrated

Small prototype proven 
in lab under test 

conditions

Large prototype proven 
in relevant conditions

Large prototype 
partially integrated with 

existing systems 
proven in relevant 

conditions

 At or near full scale 
prototype proven in 

operational 
environment with most 
functions available for 
demonstration and test

FOAK (First-of-a-Kind) 
commercial prototype 
completed (full scale) 

and tested in simulated 
and operational 

scenarios

Solution is commercially 
available; Commercial 
operation in relevant 

environment (e.g., niche 
markets)

Commercial and competitive 
but needs further innovation 

efforts for the technology to be 
integrated into energy systems 

and value chains when 
deployed at scale

Market Scaling; volume 
manufacturing ramp; 
mainstream lenders 

comfortable; standards 
published & adopted; 
supply‑chain build‑out

Market Transformation: 
robust sales; established 

global standards; 
commoditisation & service 

ecosystems mature

Climate-Tech 
Examples (2024)

Nuclear Fusion (TRL 1-
3)

Li-Air battery, Ammonia 
as reductant (DRI) for 

iron and steel 
production

Aluminium smelting with 
chloride electrolysis, Pre-

combustion carbon 
capture

Algae-based Biofuels, 
Post-combustion 
carbon capture

Light-water small 
modular reactor, 

Biofuels with CCUS

 Propane heat pumps 
for buildings, Battery 
passport, Onboard 
carbon capture for 

ships

Electricity in the Bayer 
process for Aluminium 

production, High-
temperature gas-cooled 

small modular reactor

 Direct Air Capture, 
Floating offshore wind, 

Hydrogen fuel cell 
electric vehicle

Utility-scale Li-ion battery 
storage,  Battery electric 

vehicles, Electrolyser for H2 
production, CO2 

sequestration in inert 
carbonate materials 

(mineralisation)

Crystalline-silicon solar PV, 
Smart meter, Li-ion batteries, 
Seabed fixed offshore wind 

turbine, Onshore wind, Biofuels 
(enzymatic fermentation 

without CCUS)

Conventional LED, Hydropower, Pumped Storage, 
Geothermal, Pyro/hydro-metallurgy battery recycling

Main actors, activities 
and outputs

Universities & national 
labs – fundamental 

research, preliminary 
physical and 

computational models

Universities & labs – 
conceptual designs, 

refine theoretical 
models

Universities, start-ups, 
and early corporate R&D 

— build lab-scale 
prototypes, test 

feasibility, generate 
proof-of-concept data.

Corporate R&D teams 
and start-ups — 
assemble early 

subsystems, test 
integrated components 

under lab conditions.

Corporate R&D teams 
and start-ups — 

construct large-scale 
prototypes, validate in 
simulated or relevant 

environments.

Engineering teams and 
component 

manufacturers — test 
full-scale prototypes, 

demonstrate 
functionality in 

operational settings.

Project developers, 
component 

manufacturers, and 
infrastructure 

developers — integrate 
systems, validate 

performance at or near 
full scale, assess risks.

Technology vendors 
and investors — deploy 

first commercial 
prototypes, secure 

funding, assess 
bankability.

Utilities, manufacturers, and 
lead customers — begin 
commercial production, 

operate under real 
conditions, monitor 

reliability.

Lead adopters, standards 
bodies, and lenders — scale 

operations, standardise 
processes, support market 

readiness.

Multiple manufacturers, 
infrastructure developers, and 
commercial banks — expand 

manufacturing, stabilise 
supply chains, reduce unit 

costs.

Mass-market producers, 
distributors, and lenders — 
support full market rollout, 
ensure after-sales service, 

maintain quality.

Market Failures

Knowledge Spillovers

Unpriced 
Environmental 

Externalities

Knowledge from basic and applied R&D Knowledge from prototyping Knowledge from demonstration Learning-by-Doing/Learning-by-Using

Financial Frictions
Technological Valley of Death Commercialization Valley of Death Profitability Valley of Death Capital‑market imperfections 

for giga‑projectsHigh Perceived Technology Risk High Capital Intensity, Information
Asymmetry (with financiers)

High Capital Intensity, Information
Asymmetry (with financiers)

Path Dependency in R&D
Coordination Failures, Switching Costs and Path Dependency

Supply-Chain development, Complementary Infrastructure, Workforce Skills, Network Externalities, Standard‑setting

Information
Asymmetry (with consumers)

Po
lic

ie
s

Supply-Push Public R&D funding, University & Lab grants, R&D tax credits, Exploratory 
and “moon‑shot” prizes

Public co-funding for pilots, Seed funding & grants for start-ups, Access to 
public testing facilities, Innovation prizes

Grants for FOAK commercial-scale projects, 
Concessional or blended‑finance loans & loan 

guarantees, Public-Private Partnerships

Production Tax Credits (PTCs), Investment Tax Credits 
(ITCs), Advance Market Commitments or volume‑guarantee 

platforms

Support for supply-chain development, Workforce training & 
development programs, Low-cost financing for 

manufacturing expansion

Demand-Pull Not Applicable Public procurement of demonstration units, Initial 
off-take agreements

Feed-in Tariffs, Contracts for Difference (CfDs), Consumer 
subsidies & rebates, Renewable Portfolio Standards (RPS)

Broad carbon pricing (e.g., ETS, Carbon Tax), Public green 
procurement mandates, Auctions and reverse auctions for 

deployment

Systemic & 
Regulatory Intellectual property (IP) protection frameworks Streamlined permitting for pilot projects Clear regulations for demonstration, Risk-sharing 

frameworks
Information campaigns & consumer labeling, Interconnection 

standards, Early-stage grid & infrastructure planning

Performance standards & mandates, Public investment in 
enabling infrastructure (e.g., grid, pipelines), International 

collaboration on standards

Table 2: Technological Readiness, Market Failures, and Policies
Note: The table summarizes key stages of technology readiness (TRLs) and links them to the main economic mechanisms shaping clean innovation. For
each level, it identifies principal actors, typical activities, expected outputs, and illustrative clean-energy technologies (based on the IEA Clean Energy
Technology Guide, available at https://www.iea.org/data-and-statistics/data-tools/etp-clean-energy-technology-guide). The framework highlights that
market failures occur at multiple stages—ranging from knowledge spillovers and financial frictions to coordination problems—leading to systematic
underinvestment in development and deployment. For clean technologies, advancing through these stages is especially challenging given their long
timelines, capital intensity, and dependence on enabling infrastructure.
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2.1.2 Unpriced Environmental Externalities

One of the most fundamental market failures affecting clean technology development is the
negative environmental externality associated with fossil fuels, represented by the green box
at the right end of Table 2. These include not only the global climate impacts of greenhouse gas
emissions, but also the local health damages from air pollution caused by the combustion of
fossil energy sources. These societal costs are not reflected in market prices, which means fossil
fuels are systematically under-priced. Although air pollution is a more localized externality
than climate change—and might therefore seem easier to internalize—the benefits of cleaner
air are often diffuse, delayed, or not immediately visible. This makes societies more likely to
undervalue pollution control and, as a result, underinvest in abatement technologies or in the
development of new, low-pollution production processes.

This underpricing of pollution distorts the innovation playing field. It gives fossil-based
technologies a cost advantage and makes it harder for clean technologies to compete. The
problem is often worsened by explicit fossil fuel subsidies, which remain in place in many
parts of the world (see Section 4.6). In Table 2, this externality appears in the downstream
part of the technology development process where it directly suppresses demand for clean
technologies relative to dirty alternatives. However, the effects of these unpriced externali-
ties go much deeper. By weakening expected market size and profitability, this externality
discourages private investment from the earliest stages of clean technology development. It
reduces incentives to engage in research and development (R&D), shrinking the pipeline of
future innovation. In this way, it interacts with and amplifies other market failures further
upstream. It can indeed be considered, in effect, as the “mother of all externalities”—with
cascading effects throughout the entire innovation chain.4

This mechanism is captured in the induced innovation hypothesis: when the relative price
of clean technologies increases (for example, via carbon pricing), firms have stronger incentives
to invest in innovation that improves their performance and cost-effectiveness. The dynamic
efficiency argument for carbon pricing rests on this logic, and we provide a longer discussion
of this topic in Section 4.1. Some clean technologies—including solar photovoltaic or electric
vehicles—have reached or are approaching cost parity in certain markets. This is clearly
illustrated by the current level as well as recent trends in the levelized cost of clean energy
sources, displayed in Figure 2).5 However, their diffusion remains limited in many sectors.
This suggests that unpriced externalities and other barriers continue to hold back adoption
even where clean tech is already economically viable. Anticipating these commercialization

4. We are aware that this phrase is most often used in reference to the scope and scale of greenhouse gas
externalities. Here we use it in a different, but in our view equally fitting, sense to describe the cascading effects
of pollution externalities throughout the innovation chain.

5. A “levelized cost” is a metric that aggregates the entire cost of a project over its lifespan and divides it by
the total output, typically measured in a unit of energy like dollars per megawatt-hour.
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Figure 2: Levelized Cost of Electricity
Note: Reproduced from Lazard LCOE+ 2025. In Panel 2a, drawn from page 11 of the report, Lazard applies an
illustrative carbon price range of $40–$60/ton for Gas Combined Cycle, Coal as well as Gas peaking, to highlight
sensitivity across technologies. In Panel 2b, drawn from page 14 of the report, historical values are constructed
using the midpoint of Lazard’s reported high and low LCOE estimates for each technology-year. For nuclear,
figures reflect Lazard’s LCOE v14.0 (inflation-adjusted) based on then-estimated costs for the Vogtle Plant, given
limited public data on new-build projects. Together, the panels underscore the narrowing cost differentials
between certain clean technologies and fossil-based alternatives.

challenges, upstream innovators are less likely to invest in new clean technology development.

2.1.3 Knowledge Spillovers

Knowledge spillovers occur when the benefits of new knowledge extend beyond the individual
or firm that made the original investment in creating it. This is common because new knowledge
has many of the characteristics of a public good: it is non-rival (one firm’s use does not diminish
another’s ability to use it) and often non-excludable (others can access and apply it even when
formal intellectual property protections exist).

These spillovers take different forms at different stages of the innovation process, and are
represented by the blue row in Table 2. Early-stage research often generates ideas and methods
that diffuse widely through publication, collaboration, or informal exchange. At later stages,
firms benefit from learning by doing (LBD) and users from learning by using (LBU), often in
ways that create knowledge others can exploit. Opportunities for knowledge creation exist
throughout the technology lifecycle—but in nearly all cases, that knowledge is difficult to fully
appropriate, contributing to underinvestment across the innovation chain.

R&D Spillovers. When a firm invests in research and development—for example, to dis-
cover a more efficient catalyst for green hydrogen or a more durable material for wind turbine
blades—it inevitably generates knowledge that benefits others. The beneficiaries could be
future innovators in he same technology area, who are now able to build on a larger body of
existing knowledge, or innovators in other areas who are able to apply the new knowledge in
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different ways. While intellectual property rights such as patents are intended to help inno-
vators capture the returns on their inventions, they are imperfect tools and often imperfectly
enforced in large parts of the world. Patent protection does not prevent others from learn-
ing from disclosed information and developing alternative approaches—–so-called “inventing
around” existing intellectual property protection. In fact, patent filings themselves often serve
as valuable inputs for follow-on R&D efforts by competitors and researchers.

This leads to a fundamental misalignment between private and social returns to R&D (e.g.,
Acemoglu et al. 2012). The innovating firm typically bears the full cost and risk of the R&D
investment, but captures only a fraction of the total economic benefit it creates. The remaining
value spills over to others. Because the social return to R&D is much higher than the private
return, private firms tend to invest less in R&D than is socially optimal.

The extent of these spillovers from R&D investments can vary widely across applications.
Some empirical studies have argued that clean energy technologies generate larger knowledge
spillovers than fossil-based ones, adding to their inefficient under-supply since these spillovers
are not internalized by innovators and investors. Dechezleprêtre et al. (2013), for example, find
that clean patents receive up to 60% more forward citations, implying higher social returns.
Studying variation in citation patterns across sections, Noailly and Shestalova (2017) show
that solar and storage patents spill over widely to unrelated domains such as semiconductors
and electrical machinery, suggesting they have high knowledge value beyond their immediate
applications. Spillovers from other areas also shape clean technology development. Andres
et al. (2022) find, for example, that clean technologies draw far more spillovers from AI and
ICT than dirty ones, underscoring complementarities between innovation in clean technology
and knowledge from other areas. However, up and down the “knowledge supply chain,” the
presence of spillovers means that private R&D investment will be below the efficient level.

The fact that knowledge spillovers generate a mismatch between private and social benefits
of R&D investment implies that public R&D can have substantial benefits. Governments can
address underinvestment by directly funding research and by creating incentives for private
actors to invest. Instruments range from support for national laboratories and university-based
research, to competitive grant programs such as those run by the US Department of Energy or
Horizon Europe, to broad-based measures like R&D tax credits. Evaluating US Department of
Energy Small Business Innovation Research (SBIR) grants, Myers and Lanahan (2022) estimate
that each patent by a funded firm gives rise to about three additional patents by others, with
roughly 60% of these spillovers occurring within the United States. Howell (2017) shows that
funding from the SBIR program has large positive effects on patenting and future revenue,
especially for the most financially constrained innovating firms. More generally, a number of
studies investigate the economic impacts of public R&D investment across different areas of
the economy and often estimate high benefit-cost ratios for these investments (e.g., Griliches
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1958; Jones and Summers 2020; Fieldhouse and Mertens 2023; Akerman et al. 2025).

Learning by Doing and Learning by Using. Two important sources of knowledge creation
outside formal R&D are learning by doing and learning by using. These processes generate
cost reductions and performance improvements through experience, both on the supply and
demand sides of the innovation process. Learning by doing refers to cost declines that occur as
firms gain experience in manufacturing and deployment. As production scales, firms improve
workflows, optimize supply chains, reduce waste, and identify process innovations—lowering
unit costs. These effects are captured in the widely observed “learning curves” or “experience
curves” that characterize many clean energy technologies, showing that costs decline sub-
stantially with experience; however, as discussed in Section 2.2.5, they likely also reflect cost
reductions driven by additional research, development and demonstration (RD&D).

Learning by using, by contrast, originates on the demand side. As households adopt new
technologies, they acquire know-how that can diffuse through social networks and feed back
to producers. Evidence from residential solar photovoltaics (PV) illustrates these dynamics.
Bollinger and Gillingham (2012) first documented strong neighbor effects in California, show-
ing that the presence of nearby adopters increased the probability of adoption. Building on
this, Gillingham and Bollinger (2021) analyze Connecticut’s “Solarize” campaigns and find
that community outreach and volunteer ambassadors sharply boosted adoption, with effects
far larger than could be explained by price discounts alone, consistent with social learning.
Complementing these results, Bollinger et al. (2022) use high-resolution data on panel visibility
and show that households are significantly more likely to adopt when they can see neighbors’
panels, with an effect size comparable to a large price reduction. Beyond high-income contexts,
Alem and Dugoua (2022) provide experimental evidence from East Africa that peer commu-
nication raises willingness to pay for solar lanterns, again highlighting the role of information
flows in early adoption.

It is useful, however, to distinguish between learning by using and peer effects. Learning
by using refers specifically to the informational spillovers generated as early adopters gain
experience operating a technology and share that knowledge. Peer effects are a broader
phenomenon: they include social learning, but also other channels such as conformity, status
signaling, or network externalities that increase the value of adoption as more users join.
In practice, it is often difficult to disentangle these mechanisms. For instance, the Solarize
campaigns point to information as the key driver (Gillingham and Bollinger 2021), while
visibility effects may reflect either improved information or social influence. In this sense, peer
effects encompass learning by using but also extend to non-informational channels (Bollinger
et al. 2022).

The resulting knowledge from both learning by doing and learning by using, however, is
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difficult to fully appropriate. Manufacturers and users alike rarely capture the full value of the
learning they generate. As with knowledge spillovers in R&D, this can lead to underinvestment:
rational actors have incentives to wait and free-ride on the learning generated by others. Thus,
there may be substantial value in policy support not only for innovation but also for early
deployment, through instruments such as feed-in tariffs, production tax credits, and other
mechanisms that reward early adopters or subsidize early production. Such tools aim to correct
underinvestment driven by learning spillovers and help accelerate the emergence of cost-
competitive clean technologies. See also Langer and Lemoine (2022), who show that the optimal
time profile of deployment subsidies depends on forward-looking adoption decisions and
heterogeneous private values: efficient schedules tend to rise over time to price discriminate
across adopters, though anticipated cost declines and spending-smoothing considerations can
flatten this trajectory.

Figuring out the appropriate design of such policies and subsidy amount requires quanti-
fying the magnitude of learning effects and the external benefits they generate. Several recent
papers have made important contributions on this front. Van Benthem et al. (2008) examine
California’s solar PV market and show that subsidies are warranted only if learning-by-doing
is strong. They estimate that unit costs fall by about 10% every time cumulative production
doubles. At this rate, the subsidy path that maximizes welfare is very close to the program
California implemented in the mid-2000s, which offered rebates of roughly $2 per watt. The
key insight is that these subsidies are not justified by the environmental benefits from reduced
emissions alone—those are too small on their own—but by the additional future cost reduc-
tions that today’s installations make possible through learning spillovers. Covert and Sweeney
(2022) study the global wind turbine industry and show that a doubling of cumulative ex-
perience reduces costs by 14–29%, while spillovers across models and firms are very limited.
This explains why larger, more efficient turbines require substantial “experience investments”
before becoming competitive. Barwick et al. (2025) estimate a 7.5% learning rate in electric
vehicle (EV) batteries, with learning accounting for more than a third of recent cost declines.
They demonstrate that EV subsidies strongly reinforce learning and generate cross-country
spillovers.

Contracting-Related Spillovers. An important but often overlooked form of spillover arises
in how clean technologies are financed. Novel technologies often require new types of contracts
and project structures, but commercial lenders may lack the expertise to finance unfamiliar
assets—especially large-scale infrastructure (see Armitage et al. (2024) for a longer discussion).
Green banks and public financial institutions can help by piloting financing models and sharing
what works. By developing standardized contract terms—such as those used for rooftop solar
or residential mortgages—they reduce transaction costs, build market confidence, and make
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it easier to bundle projects and attract institutional investors (OECD 2016). This contracting
knowledge lowers barriers for future market participants, but is not easily monetized by early
pioneers. Like other learning spillovers, it justifies early public involvement to create and
diffuse financial know-how.

2.1.4 Financial Frictions

Clean technologies face significant financing challenges as they progress from laboratory in-
novation to market dominance, summarized in the orange box in Table 2. These challenges
manifest as a series of critical funding gaps, commonly known as "Valleys of Death," where
promising technologies stall due to a lack of capital. Understanding these valleys and the
underlying financial frictions is essential for developing effective policy interventions.

The Technological Valley of Death. The first valley occurs between laboratory research and
field demonstration. At this stage, entrepreneurs must bridge the gap between promising
research results and working prototypes that can demonstrate technical performance under
real-world conditions. While capital requirements are smaller than in later phases, they remain
substantial and risky—too large for personal networks but often too uncertain for traditional
venture capital. The key challenge is convincing investors that an innovation represents genuine
commercial potential rather than merely scientific curiosity.

The Commercialization Valley of Death. The second valley represents an even more formidable
challenge: the transition from successful pilot projects to first-of-a-kind commercial-scale fa-
cilities. For clean technologies, this stage typically requires investments ranging from tens of
millions to billions of dollars. The scale far exceeds typical venture capital capacity, while risks
remain too high for conventional project finance. In fact, early venture capital investments in
green technology were due to the combination of uncertainty and heavy capital requirements
for which venture firms were unprepared (see Mallaby 2022). Institutional investors and banks,
who normally fund large infrastructure projects, are reluctant to invest in unproven technolo-
gies lacking established revenue streams. For clean technologies, this valley might be better
characterized as a "Grand Canyon" given its depth and breadth.

The Profitability Valley of Death. Even once a clean technology has proven itself technically
and found early commercial niches, it often enters a profitability Valley of Death. Reaching the
commercial stage often means entering niche markets where high costs are less of a barrier—
for example, early solar panels used in satellites, or luxury EVs like Tesla’s early models
(Nemet 2019). But mass markets require major capital outlays at precisely the point where
revenues remain low and risks high. Private investors are reluctant to finance this stage
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because projects may seem unprofitable until scale is reached or until the clean technology or
production process receives policy support, which can include production tax credits, carbon
pricing, or guaranteed demand. This third valley underscores how market structure and policy
expectations shape the return profile for late-stage clean tech.

These funding gaps reflect structural frictions in innovation finance. Understanding these
frictions is key to designing effective policy instruments that go beyond filling temporary
capital shortfalls. Two mechanisms in particular—information asymmetries and elevated risk
profiles—may explain why private finance often fails to support clean technologies at critical
stages.

Information Asymmetry. A fundamental friction stems from the knowledge gap between
entrepreneurs and financiers. Clean technology entrepreneurs typically possess highly special-
ized technical expertise, while investors—whether venture capitalists or bank loan officers—
often lack the in-house knowledge to properly evaluate underlying science or engineering
viability. This asymmetry makes accurate risk assessment extremely difficult. While infor-
mation asymmetry exists across all innovation sectors, it may be particularly acute in clean
technology compared to areas like software, where investors have greater familiarity with
products and business models (Armitage et al. 2024). The problem is compounded by the
asset-light nature of many clean tech startups, which limits their ability to offer traditional
collateral.

Elevated Risk Profiles. Clean technologies carry inherently higher risk levels due to their
capital intensity, long timelines, and exposure to uncertain regulatory environments. Unlike
software startups, which may require little more than laptops and server space, most clean tech
ventures involve building and testing physical systems—factories, equipment, and infrastruc-
ture. These projects often take a decade or more to reach commercial maturity (e.g., Mallaby
2022). Moreover, as described in Section 2.1.2, clean technologies are often priced above the
efficient level and as a result, their future profitability depends on policy decisions—such as
carbon pricing or subsidy regimes—that are difficult to predict and can change rapidly. The
combination of technological and market risk deters conventional lenders, particularly those
providing project finance, which has traditionally favored established technologies with stable
cash flows and low perceived risk. Noailly and Smeets (2021), for example, provide firm-level
evidence that renewable-energy firms are significantly more sensitive to cash-flow shocks than
fossil-fuel firms, underscoring how financing constraints distort the direction of innovation.

These structural challenges in clean technology financing were dramatically illustrated dur-
ing the "Cleantech 1.0" wave between 2006 and 2011. Venture capital firms invested over $25
billion USD in clean technology during this period, often achieving disappointing returns
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(Gaddy et al. 2017; Mallaby 2022). This experience revealed a fundamental mismatch between
the requirements of capital-intensive, slow-maturing technologies and venture capital prefer-
ences, which typically favor high-growth, short-horizon opportunities. As research by Nanda
(2020) demonstrates, venture capital is more likely to support scale-ups that have already
resolved significant technical uncertainty rather than early-stage firms still navigating basic
development and demonstration challenges. These dynamics are particularly relevant because
a significant share of green R&D is conducted by small, young firms lacking the substantial
capital reserves of established incumbents (Nanda et al. 2015)6. This makes traversing the
valleys of death especially difficult without external support mechanisms.

Policy Responses to Financial Frictions. There are several potential policy solutions to the
financial frictions that limit technology development. Loan guarantee programs—such as the
US Department of Energy’s Title 17 program—allow governments to use their creditworthi-
ness to absorb part of a project’s default risk, enabling riskier projects to access low-cost debt
from private lenders. While these programs have successfully financed major clean technol-
ogy projects, they remain politically contentious. The bankruptcy of Solyndra, a solar panel
manufacturer that received federal loan guarantees, became a rallying point for critics who
argued that the government was "picking winners" (or rather "losers") (Groom 2014). The
concern is that public agencies may lack better information than private markets about which
technologies will succeed, yet by directing large sums to a few projects they magnify the fiscal
and political cost of failure. More broadly, this debate reflects wider disagreements about the
appropriate role of the state in allocating capital under technological uncertainty.

Green banks and other public financial institutions offer a complementary approach.
Seeded with public funds, these institutions can co-invest in projects that are in the national
interest but are unable to secure adequate private financing (Mazzucato and Semieniuk 2018).
While early US green banks focused on financing deployment of already-commercial tech-
nologies at the community level (e.g., community solar), they are increasingly involved in
utility-scale and first-of-a-kind projects. The distinction between traditional loan programs
and green bank activities is narrowing (Armitage et al. 2024). Instrument design also matters:
Pless (2024) finds that R&D grants and tax credits are complementary for smaller, financially
constrained firms—where grants relax liquidity constraints and enable fuller use of cred-
its—while for larger incumbents with easier access to finance the two instruments behave
more like substitutes.

Finally, public-private demonstration funding remains a widely accepted and effective way
to bridge the early-stage gap. Governments can offer cost-sharing grants and support for pilot-
scale projects that allow firms to prove their technical and commercial viability. These programs

6. Nanda et al. (2015) documents that renewables patenting by startups grew from less than 5% in 2000 to
about 20% in 2009.
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are relatively uncontroversial and can generate critical data and operational experience needed
to attract later-stage private capital. Recent research formalizes this intuition: Kotchen and
Costello (2018) show that subsidizing pilot projects can often be the most efficient use of public
climate finance. Because pilots generate information about whether larger investments are
likely to succeed or fail, they help avoid wasteful full-scale failures and can expand the set
of projects that are socially worthwhile. In this way, pilots create value not only when they
succeed but also when they reveal that a costly project should be abandoned.

2.1.5 Path Dependency and Coordination Failures

Beyond financial barriers, clean technology innovation is also shaped by deeper structural
forces—-namely, path dependency and coordination failure. These two concepts are closely
related but analytically distinct, and are represented by the gray boxes in Table 2.

Path dependency explains why one particular path—once chosen—becomes increasingly
difficult to leave. Over time, early steps can lock in a particular technology or system—even if
superior alternatives emerge later. The modern economics of path dependency was formalized
by David (1985) and Arthur (1989), who demonstrated how increasing returns, historical
contingencies, and small early advantages can cause one technology to dominate, not because
it is the best but because it got a head start.

Coordination problems explain why multiple paths may be available but difficult to coordi-
nate on. Coordination failures occur when the actions of multiple agents are complementary—
each actor’s decision depends on what others do—but no one moves first. Without a credible
mechanism to coordinate beliefs or actions, however, the system can become stuck in a subop-
timal equilibrium. In the clean technology context, such failures are pervasive. Adoption of
a new technology may depend on simultaneous investments in infrastructure, supply chains,
services, and regulation—none of which are worthwhile unless the others also materialize.
Each actor hesitates, waiting for others to act.

Both path dependency and coordination failures are underpinned by parts of the innovation
process that exhibit increasing returns, sunk costs, network effects, and complementarities:

• Increasing returns to adoption arise when technologies become cheaper or more valuable
as they scale. These returns may stem from learning by doing, economies of scale, or
R&D spillovers. In clean technology, early adopters face high costs while late adopters
benefit from cumulative improvements. This dynamic discourages early investment
unless coordinated or subsidized.

• Sunk costs in physical infrastructure (pipelines, refineries, transmission grids) or human
capital (specialized skills, routines) create inertia because past investments cannot be
recovered. Retiring a coal plant or retraining a specialized workforce means writing off
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capital already paid for, making actors reluctant to switch even when cleaner options
become competitive.

• Network effects occur when the value of a technology increases with the number of users.
Fossil-based systems benefit from mature networks of suppliers, users, and norms. Clean
technologies must build these networks from scratch.

• Complementarities mean that one technology is more valuable when others are also
in place. Clean technologies rarely function in isolation—they depend on specialized
components, compatible standards, infrastructure, and user practices. These comple-
mentarities raise the value of simultaneous action from multiple actors, creating fertile
ground for coordination failure.

While coordination failures can exist without path dependency, they are typically less prob-
lematic: if actors are initially uncoordinated, they may still coordinate in the future, especially
with better information. In contrast, path-dependent lock-in may be much harder to escape.
Once entrenched, the system itself tips the scales against change. A particularly subtle form
of coordination failure involves self-fulfilling expectations. Beliefs about a technology’s future
adoption shape present-day investment and policy decisions. If firms or financiers expect clean
technologies to remain niche, they will underinvest, thereby ensuring their own pessimism be-
comes reality. Smulders and Zhou (2025) show that when clean and dirty technologies are
close substitutes, expectations alone can determine which one dominates in the long run.

In practice, the underlying mechanisms—increasing returns, sunk costs, network effects,
and complementarities—often reinforce each other. For example, increasing returns, which
drive path dependence, can interact with complementarities to make coordination failure more
likely. Still, it is analytically useful to distinguish them. The distinction clarifies where policy
should aim to break incumbent lock-in and where it should instead focus on synchronizing
actions and shaping expectations. Effective industrial climate policy must often do both. In
what follows, we explore several concrete mechanisms of path dependence and coordination
failure. Some of these are also reviewed in Armitage et al. (2024) and Pia and Dumas (2025).

Path Dependency in R&D. emerges through the specialization of human capital. Once
researchers invest time and resources in building expertise within a specific technological
domain, switching fields is costly—both in terms of retraining and in lost productivity during
transition. These sunk costs of training, combined with increasing returns to specialization,
create a strong incentive to continue working within a familiar research trajectory. Empirical
evidence supports this. Aghion et al. (2016) show that auto firms’ past patenting strongly
predicts whether they continue in clean or dirty technologies. Dugoua and Gerarden (2025)
find that higher gas prices spur more clean patenting, but almost entirely from incumbents
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already specialized in clean fields. We return to these mechanisms in Section 2.2.2, in the
broader context of directed technological change.

Path Dependency in the Workforce. Related dynamics play out in the broader labor market.
As fossil fuel assets shut down, workers in these sectors face the risk of stranded human
capital—skills that are no longer in demand. Without effective retraining or compensation, this
can create significant political resistance to transition, particularly in regions heavily dependent
on fossil employment. Even in the absence of geographical mismatch, the energy transition
is likely to produce frictions: labor shortages in clean sectors, displaced workers in carbon-
intensive ones, and institutional gridlock (Popp et al. 2024).

Path Dependency in Infrastructure. Infrastructure represents one of the most powerful
sources of path dependency due to its capital intensity, long lifespans, and high sunk costs
(see Hawkins-Pierot and Wagner 2023, for recent empirical evidence). Coal-fired power plants,
for example, can operate for 40 to 60 years, making it economically irrational to retire them
early, even if cleaner alternatives are available. Another example is the electricity grid, which
was designed around large, centralized, dispatchable generation and one-way power flows to
consumers. This setup is poorly suited to high shares of variable, decentralized renewables
like wind and solar. Upgrading the grid to a flexible, smart, bi-directional system with storage
and demand response capabilities requires not only capital but also institutional coordination.
Legacy infrastructure can lock societies into outdated technological models for decades, even
when they are no longer efficient or aligned with policy goals. For a detailed review of how
such dynamics create stranded assets in the transition to a carbon-free economy, see Van der
Ploeg and Rezai (2020).

Path Dependency in Consumer Behavior. Habits, norms, and preferences embed path de-
pendencies that persist long after conditions change. Formative shocks can leave deep im-
prints: US cohorts exposed to higher gasoline prices in their teenage years continue to drive
less and use transit more decades later (Severen and Van Benthem 2022). Food consumption
patterns also adjust only slowly—regional taste preferences in India constrain caloric gains
from cheaper or more nutritious alternatives (Atkin 2016). When shocks force consumers
to experiment, hidden inefficiencies are revealed: a London Underground strike led many
commuters to discover and permanently adopt better routes (Larcom et al. 2017). Inertia can
likewise undermine adoption of new technology: households given improved cooking stoves
in India often reverted to traditional practices, erasing anticipated health and environmental
benefits (Hanna et al. 2016). These examples highlight how routines, learned familiarity, and
social norms function as a kind of sunk cost, slowing the uptake of even cost-competitive or
environmentally superior innovations.
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Path Dependency in Institutions. Perhaps the most entrenched source of path dependency
is institutional inertia, particularly the political and economic power amassed by fossil fuel
incumbents. Over time, these actors have embedded themselves in policymaking processes,
using tools such as lobbying, campaign contributions, and influence over regulatory agencies
to maintain favorable treatment—a dynamic often described as “regulatory capture.” These
institutions are not neutral arbiters of transition but active participants in defending the status
quo. As a result, rules, incentives, and oversight structures may be slow to adapt or may even
reinforce fossil fuel dependence.

Coordination Failures in EV Charging. A classic form of coordination failure arises around
technical standards. In the early phases of electric vehicle (EV) deployment, car manufac-
turers adopted incompatible charging connectors and protocols—CHAdeMO, CCS, Tesla’s
proprietary standard—fragmenting the market. Without a common standard, EV users faced
uncertainty about charger compatibility, while infrastructure providers were reluctant to invest
in charging stations that might quickly become obsolete. Each firm waited for others to move
first. This low-investment equilibrium, driven by a lack of coordination, slowed the rollout of
public charging infrastructure and dampened consumer adoption (Li 2023).

The issue was not technological but institutional. Charging standards exhibit classic strate-
gic complementarities: the value of a given plug or protocol rises with the number of compat-
ible vehicles and stations. As with other network goods, expectations matter: firms hesitate
to commit to a standard unless they expect others to follow. In this setting, standardization
bodies or government mandates can play a catalytic role. In the US, a turning point came
when several manufacturers voluntarily adopted Tesla’s NACS standard in 2023–2024, fol-
lowed by federal policy that conditioned charging infrastructure funding on interoperability
requirements. Similar challenges have played out in the EU, though with earlier harmoniza-
tion via the Type 2 Mennekes standard. The lesson is clear: left to the market, coordination
on standards may emerge too late or not at all—stalling the clean technology transition. More
generally, Gregoire-Zawilski and Popp (2024) study the effect of technology standards on in-
novation in grid technology and find that they (intuitively) reduce patenting activity by large
incumbent firms, but at the same time increase firm entry and overall patenting quality.

Complementary Investments: The Chicken-and-Egg Problem of EVs and Charging Infras-
tructure. Another persistent coordination failure arises from the need for complementary
investments across different actors in the clean technology ecosystem. EVs again offer a text-
book example: widespread adoption depends on a dense network of public charging stations,
while investment in that infrastructure depends on a sufficiently large EV user base. This cre-
ates a chicken-and-egg problem. Consumers hesitate to buy EVs due to “range anxiety”—the
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fear of being unable to find a charger when needed—while infrastructure providers hesitate to
build chargers without a guaranteed flow of users.

From an economic perspective, this is a classic case of interdependent expectations: each
actor’s willingness to invest is contingent on what others are expected to do. Without coordi-
nation, all parties delay action, resulting in systemic underinvestment. Moreover, the problem
spans multiple domains: utilities must plan for grid upgrades to handle rising demand from
chargers; local authorities must permit and support infrastructure roll-out, and automakers
must commit to EV production at scale. Each of these investments only pays off if the others
materialize. In such a setting, public investment and clear policy signals—such as national in-
frastructure plans, EV sales mandates, or consumer purchase incentives—can help synchronize
decisions across actors and shift the system to a high-uptake equilibrium.

Coordination Under Competing Clean Technology Options. Coordination failures can also
emerge in the context of technological competition between incompatible clean technology
paradigms. A prominent example is the early-stage rivalry between fuel cell electric vehicles
(FCEVs) and battery electric vehicles (BEVs). Both were seen as plausible alternatives to
internal combustion engines, yet each required a distinct ecosystem of inputs, infrastructure,
and complementary capabilities. Fuel cells required investment in hydrogen production,
storage, and refueling networks; batteries required scaling lithium-ion manufacturing and a
charging infrastructure. These technologies are systemically incompatible—investments in
one do not support the other—creating a situation where coordination on a dominant design
was necessary for scale and cost reductions to materialize.

In this setting, firms faced a strategic coordination problem: each had an incentive to delay
investment until it became clear which technology others would back. For years, no dominant
standard emerged. The resolution did not come through deliberate coordination, but rather
from an exogenous technological shock. Rapid improvements in lithium-ion battery perfor-
mance dramatically lowered battery costs, shifting expectations and investment decisively
toward BEVs. As documented by Dugoua and Dumas (2024), national innovation systems
then realigned accordingly, reallocating R&D support and industrial policy tools away from
hydrogen and toward battery platforms.

This episode illustrates a key feature of clean technology transitions: coordination prob-
lems do not only concern infrastructure or standards. They also arise between alternative
clean energy paths, especially when technologies are not interoperable. Without a salient
coordinating signal—whether from policy or external technological change—firms may ratio-
nally underinvest in all options, delaying convergence and the emergence of scalable industrial
ecosystems.
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Conclusions on Path Dependency and Coordination Failures. The policy response depends
on which dynamic is more binding. Where path dependence dominates, intervention must
counteract the built-in advantages of incumbent technologies. This can involve early-stage R&D
support for clean alternatives, de-risking initial investments, or compensating for stranded
assets, with the aim of overcoming sunk costs and giving new technologies a foothold. Where
coordination failures are more salient, policy works best as a coordination device. Credible
long-run targets, backed by public investment, and institutions such as procurement schemes,
standards, or infrastructure plans can help synchronize expectations and actions across firms,
financiers, and consumers.

2.1.6 Information Asymmetries in Consumer Adoption

Information asymmetries present a major barrier to the early adoption of clean technologies.
Consumers often lack the expertise to assess product quality, evaluate long-term performance,
or verify vendor claims—particularly for complex technologies like rooftop solar, heat pumps,
or energy-efficient appliances. This uncertainty leads to risk aversion and reinforces a status
quo bias toward familiar options, even when cleaner alternatives may offer better value over
time (Samuelson and Zeckhauser 1988; Gillingham and Palmer 2014; Sallee 2014; Allcott
and Knittel 2019). Evidence from vehicle and housing markets illustrates the point: car buyers
substantially undervalue future fuel savings (Gillingham et al. 2021), while homeowners tend to
fully capitalize fuel costs (Myers 2019), and tenants in rental markets often remain uninformed
about energy expenditures, leading to under-investment by landlords (Myers 2020).

The challenge is further exacerbated by “greenwashing,” the practice of making exaggerated
or misleading environmental claims. When consumers are repeatedly exposed to low-quality
or deceptive “green” offerings, trust erodes, making it harder for genuinely superior products
to gain traction. Even well-intentioned consumers may struggle to distinguish between truly
impactful innovations and marketing spin (Lyon and Maxwell 2011).

Government and third-party certifications can help reduce these asymmetries by offering
trusted, standardized signals of product quality and environmental performance. Yet their
effectiveness depends on credibility, consumer awareness, and the extent to which the in-
formation is accessible and understandable. Labels can act as heuristics that substitute for
detailed information, leading some consumers to pay a large premium for certification while
ignoring operating costs (Giraudet et al. 2018; Houde 2018). Coarse certification may even
crowd out higher-quality signals and create bunching at thresholds, with ambiguous welfare
effects under imperfect competition (Houde 2025).

This discussion is closely related to the broader economics of energy efficiency, which
surveys mechanisms behind the so-called “efficiency gap” and the roles of information, split
incentives, and behavioral frictions (Allcott and Greenstone 2012; Gerarden et al. 2017; Fowlie
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and Meeks 2021; Gillingham and Myers 2025).

2.1.7 Conclusion: Interconnected Market Failures

The unpriced carbon externality resulting from dirty production and knowledge spillovers
that result from innovation are often treated as the central market failures in clean technology
development. The goal of this section was to describe these market failures but also to show
that a broader set of frictions—including demand-side uncertainty, financing constraints, and
coordination problems—also hinders investment and deployment across the innovation supply
chain. While we have discussed each of these issues largely in isolation, it is important
to emphasize that they are not isolated problems. Rather, they form a tightly linked and
mutually-reinforcing chain of barriers (see Table 2).

Any factor that weakens demand for clean technologies—such as the failure to price neg-
ative externalities—also dampens incentives to supply clean technologies in the first place.
Lower expected demand reduces firms’ willingness to invest in knowledge creation, shrinking
the pipeline of R&D projects and limiting the number of technologies that advance to demon-
stration or commercialization. Weak or uncertain demand—which can be exacerbated by
coordination challenges—also raises the perceived risk for private investors, making it harder
for clean technologies to cross the so-called “Valleys of Death” between stages. And any clean
technology brought to market must still compete in a system characterized by infrastructural
and institutional inertia—often against incumbent technologies that benefit from explicit (see
Section 4.6) or implicit subsidies by not paying their full social costs.

The scale and complexity of these barriers often mean that no single instrument—whether
R&D funding or carbon pricing—can address the full set of market failures. Effective strategy
requires enabling conditions for clean technologies to emerge, scale, and compete. This in-
cludes demand-side measures, infrastructure investment, institutional capacity, and credible
long-term signals. Recent policies reflect this broader approach (see Section 4 and more specif-
ically Sections 4.1 and 4.2). Subsidies, green banks, and production tax credits are not only
tools for correcting market failures but also for constructing markets where none exist. When
integrated into a coherent mix, such instruments can reduce uncertainty, mobilize investment,
and enable clean technologies to scale and mature within competitive markets.

These mechanisms also have a strong spatial dimension: the concentration of activity—from
R&D and demonstration to production and deployment—shapes how market failures manifest,
as co-location reduces frictions, knowledge spillovers travel more readily, financing is easier
to secure, and some coordination problems may be less severe; the literature on innovation
ecosystems and clusters shows how interactions among universities, firms, investors, and pub-
lic bodies influence research productivity and commercialization (Guzman et al. 2024), regional
clusters promote entrepreneurial entry and start-up employment by lowering search, input,
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and information costs (Delgado et al. 2010), and comparative evidence highlights that these
territorial dynamics differ systematically across contexts, with the U.S. benefiting from higher
mobility and integrated markets while Europe faces barriers that limit diffusion (Crescenzi
et al. 2007).

2.2 Macroeconomic Modeling

The previous section described the process of clean technology innovation, including the var-
ious market frictions and failures that emerge over the course of the innovation process. In
this section, we turn to macroeconomic models that describe the forces that shape the overall
rate and direction of technological change. While economists and policymakers have long
recognized that the progression of climate change and its economic damage will be shaped
by technological progress, most early models at this intersection assumed that technological
change was “exogenous” and progressed at some pre-specified rate (e.g., Nordhaus 1994).
More recent approaches directly model how economic incentives shape the direction of tech-
nological change (see e.g., Acemoglu 2002) and take into account the fact that innovation can
respond dynamically to changing market conditions and policies (see e.g., Acemoglu et al. 2012;
Acemoglu et al. 2016). This endogeneity of technological progress can change the costs and
benefits of different policies, as well as the timing of optimal policy, in dramatic ways.

Directed technological change models in environmental economics have been described
extensively in recent review articles (see e.g., Hémous and Olsen 2021; Dechezleprêtre and
Hémous 2022). Here, we summarize the main modeling approaches and several empirical
applications, before describing frontier areas that could be the subject of future work.

2.2.1 Baseline Directed Technological Change Model

This section summarizes the baseline directed technological change model applied to the de-
velopment of clean technology, largely based on the model presented in Acemoglu et al. (2012).
A key goal of these models is to understand the implications of endogenous technological
change for optimal policy. Pre-existing views of optimal policy had fallen into different camps,
with some advocating for limited and gradual intervention in order to limit the growth costs of
an energy transition (the “Nordhaus approach”) and others advocating for large, immediate,
and permanent intervention (the “Stern” or “Al Gore” approach) or even zero growth policies
(the “Greenpeace approach”) in order to ward off climate catastrophe. Directed technological
change models make it possible to evaluate these different proposals, taking into account how
innovation shifts in response to policy and, in turn, shapes the economic consequences of an
energy transition.

The model features production with both “clean” and “dirty” inputs and two key exter-
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nalities. The first is an environmental externality, which came up in Section 2.1.2: production
using dirty inputs leads to environmental degradation. The second is a knowledge externality,
which also came up in Section 2.1.3: advances in clean (dirty) inputs make future innovation
in that area more productive (i.e., innovation “builds on the shoulders of giants”). While
Section 2.1.3 described the many sources of knowledge spillovers that can exist during the
innovation process, directed technological change models typically focus on dynamic knowl-
edge spillovers within a particular technology area as the main externality. Policy intervention
is then motivated by the fact that private innovators ignore both the environmental harm of
innovation in dirty technology and the positive knowledge spillovers from innovation.

Model Set Up. We first describe the production side of the economy, before turning to
consumption (where the environmental externality lives) and innovation (where the knowledge
spillover externality lives). There is a final good Y produced competitively with a clean input
Yc and a dirty input Yd:

Y = (Y
ϵ−1
ϵ

c + Y
ϵ−1
ϵ

d )
ϵ

ϵ−1 (1)

Most analyses assume that ϵ > 1 so that the two goods are substitutes (e.g., a gasoline versus
an electric car, or a clean versus dirty manufacturing production process). For j ∈ {c, d}, the
input Yj is produced with labor Lj and a continuum of machines xji:

Yj = L1−α
j

∫ 1

o

A1−α
ji xαjidi, 0 < α < 1 (2)

The Aji are themselves an outcome of endogenous choices made by innovators. Optimal use
of a given intermediate xji is increasing in the productivity Aji of that intermediate.

There is a unit mass of infinitely lived representative consumers with utility:

∞∑
t=0

1

(1 + ρ)t
u(Ct, St) (3)

where Ct is consumption of the final good at time t, St is the quality of the environment at time
t, and ρ > 0 is the discount rate. Utility is increasing in both consumption of the final good and
the quality of the environment (e.g., absence of pollution, lack of extreme heat, etc.). Further
assume St ∈ [0, S̄] where utility is −∞ when S approaches zero and utility is flat at S = S̄.

Production of the dirty input causes environmental harm:

St+1 = −ξYdt + (1 + δ)St (4)

for S ∈ (0, S̄). In the case of environmental harm from pollution, S̄ can be thought of as
the unpolluted level and S = 0 as the absorbing lower bound, while δ > 0 is the rate of
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environmental regeneration. Absent policy intervention, this environmental harm is not taken
into account by producers using the dirty input.

Finally, innovation takes place in each period as scientists s of unit mass choose to work
in either the clean or dirty sectors. Once they make their sector choice, they are randomly
allocated to a machine. Each scientist has a probability ηj of successfully improving an existing
machine. If successful, this leads to a quality improvement of γ > 0 (i.e., Ajit = (1 + γ)Aji,t−1)
and the innovator gains monopoly rights to sell the machine for one period. This could be
thought of as having patent rights over the machine, making it possible for the innovator to
capture some of the benefits of their knowledge creation. If they are unsuccessful, then there
is no improvement in the technology (i.e., Ajit = Aji,t−1) and monopoly rights are allocated
randomly.

Laissez-Faire Equilibrium. Absent policy intervention, innovators choose which sector to
enter by maximizing profits, taking into account final machine demand in each sector. Profits
are given by:

πij = (pij − ψ)xij (5)

where pij is the price of the machine and ψ is marginal cost. From the final producer profit
maximization problem, machine demand xij is given by:

xij = (
αpj
pji

)
−1
1−αAjiLji (6)

and taking into account the probability and impact of technology quality improvement in each
technology line, the law of motion of input quality in each sector j is given by:

Ajt = (1 + γηjsjt)Aj,t−1 (7)

This directly captures the knowledge externality and the idea that existing innovation builds
on the quality of previous machines. Technology advances in previous periods increase the
potential technology quality today (and in the future).

Combining equations (5)-(7) with the convenient normalization ϕ = α2 we can derive
expected profits from entering sector j:

Πj = ηj(1 + γ)(1− α)αp
1

1−α

jt LjiAj,t−1 (8)

The key object that determines the direction of innovation, however, is not total profits that can
be expected from entering either sector, but the relative profits from entering the dirty versus
entering the clean sector. This ratio will determine the area in which scientists choose to invest
their time and resources. The ratio in expected profits between the clean and dirty sectors is
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given by the following expression:

Πct

Πdt
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(9)

When this ratio exceeds one, it is more profitable to enter the clean sector; when this is below
one, the dirty sector is more attractive. There are four key forces shaping this trade-off.

1. Chance of success: Innovation is directed to the sector with the higher probability that
R&D efforts yield a successful improvement.

2. Price effect: Innovation tends to flow to the sector that is technologically behind (with
higher prices), because a quality improvement there leads to a larger proportional reduc-
tion in production costs and prices. This force is stronger when ϵ is small, i.e. when clean
and dirty goods are poor substitutes.

3. Market size effect: A larger customer base increases the returns to innovation. When
ϵ > 1, the more advanced sector attracts more demand, amplifying its advantage.

4. Productivity effect: Innovation yields larger private gains in sectors that are already
more productive. A higher past productivity level Aj,t−1 means that each new step on
the quality ladder multiplies a larger base, so the payoff from successful R&D is greater.
This captures the idea of “standing on the shoulders of giants” and also generates path
dependency, since it will lead new innovation to concentrate in the sector that is already
more productive (see Section 2.1.5).

Expressing prices in terms of technology levels and letting φ = (1 − α)(1 − ϵ) (which will
be negative in the usual case when ϵ > 0), we can express the ratio between expected profits in
the two sectors as:

Πct

Πdt

=
ηc
ηd

( 1 + γηcsct
1 + γηdsdt

)−ϕ−1Ac,t−1

Ad,t−1

−ϕ

(10)

An immediate implication of this formulation is that innovation always takes place in the
relatively more advanced sector, so long as ϵ > 0 and hence φ < 0. This path dependency
implies that if the initial technology level is higher in the dirty input or production process
compared to the clean input or production process (i.e., if Ad,0 > Ac,0), innovation always
takes place only in the dirty technology. Moreover, due to the environmental externality from
production using the dirty input (equation (4)), this will always lead to an environmental
disaster, defined as a situation where St reaches zero in finite time.

One clear takeaway is that there is no reason that clean technology should develop on its own
and absent policy intervention. In this baseline model, assuming that the productivity of dirty
technology had an initial advantage—as was surely the case—there would be little incentive for
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scientists to enter clean technology development at all. In other words, innovation incentives
in the laissez-faire path can lock the economy into dirty innovation and makes an eventual
environmental disaster unavoidable.

The Role of Policy. The disaster that emerges from the laissez-faire equilibrium immediately
suggests that there is an important role for policy. When can a temporary research subsidy
ward off environmental disaster? Increasing innovation in the clean sector has two competing
effects. First, by making clean production relatively more efficient, it reduces labor allocated
to the dirty sector. This is because, as clean inputs now deliver more output per unit of effort,
firms have an incentive to reallocate workers and resources toward clean production, reducing
the share of activity in the dirty sector. Second, by making clean production relatively more
efficient, it lowers the overall cost of the final good and can thereby increase production in the
dirty sector. Because cheaper clean inputs reduce production costs economy-wide, the final
good’s price falls. The lower price raises aggregate demand and expands total output. As
output grows, demand increases for both clean and dirty inputs, so efficiency gains in the clean
sector may indirectly boost dirty production.

The elasticity of substitution between the clean and dirty inputs determines which effect
dominates. When the two inputs are strong substitutes (i.e., ϵ > 1/1 − α), a temporary clean
research subsidy will prevent environmental disaster by reducing Yd over time. When the two
inputs are weak substitutes (i.e., ϵ < 1/1 − α), a temporary research subsidy cannot prevent
environmental disaster since increasing clean innovation increases Yd over time, generating
further environmental degradation.

The social optimum can always be achieved, however, through the combination of a carbon
tax on the use of the dirty input, a clean research subsidy, and a subsidy for the use of all
machines (where subsidies are financed by lump sum taxes). Intuitively, two policy levers are
needed in order to correct for the two market failures. First, the (intra-temporal) environmental
externality means that firms producing using the dirty input do not take into account their
impact on the environment. Second, the (inter-temporal) knowledge externality means that
firms innovating in both clean and dirty technology do not take into account their impact
on future innovators. A carbon tax fixes the environmental externality without affecting the
knowledge spillover. Research subsidies can correct the under supply of clean innovation and
prevent directed innovation from locking the economy into into the dirty technology state, but
does not correct the environmental externality. Only both instruments in concert can correct
the static distortions from the environmental externality and the dynamic distortions from the
knowledge spillover.

Finally, policy intervention can be temporary, since once Act catches up to Adt, innovators
will choose to advance clean technology instead of dirty technology on their own. However,
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during the period of time that it takes Act to catch up, growth is reduced and environmental
degradation continues. The longer the intervention is delayed and the gap betweenAdt andAct

is allowed to grow, the worse the environmental outcome and the longer the necessary period
of reduced growth so that Act can catch up.

Directed vs. Undirected Innovation. The model with directed technological change that
directly accounts for innovation investment decisions departs in important ways from models
that do not take this into account. Under laissez-faire and without optimal policy, environmen-
tal disaster arises earlier with directed technological change than in an equivalent economy
without directed technological change. This is because innovator incentives push toward
further technological advancement of the dirty technology, which has an initial productiv-
ity advantage. This process leads to a doom loop in which directed innovation accelerates
environmental destruction.

However, when clean and dirty inputs are strong substitutes, a temporary research subsidy
can prevent environmental disaster in a model with directed technological change, but not in an
otherwise identical model without directed innovation. With directed innovation, the research
subsidy shifts research focus toward clean technology. Once Act overtakes Adt, innovators
will continue to increase clean technology quality on their own and the research subsidy
can be removed. This positive feedback loop between quality improvements and innovative
investments is absent in models without directed technological change.

Thus, models with directed innovation are neither more nor less “optimistic” in all cases.
Incorporating directed innovation increases the potential costs of inaction but also highlights
the powerful role of policy—even temporary policy—in spurring technological change.

Quantification and estimation. A few studies have estimated directed-change models on US
data. Acemoglu et al. (2016) show that the optimal policy relies on a large, front-loaded subsidy
to clean R&D combined with a carbon tax that rises and then declines; this mix keeps warming
below 2◦C, while delaying action by 50 years lowers welfare by 1.7% of permanent consumption
and using only a carbon tax instead of the mix raises costs by 1.9%. Fried (2018) calibrates a
three-sector model with US R&D and energy data, finding that endogenous innovation reduces
the carbon tax needed to cut emissions by 30% in 20 years by about one-fifth and shifts R&D
strongly toward green technologies.

2.2.2 Empirical Analysis of Directed Technological Change

Several papers have investigated the key components of the directed technological change
model empirically (see Popp 2019, for a recent review). These studies highlight that technology
development responds dynamically to changing market incentives, including prices and policy
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interventions. They also provide evidence of the knowledge spillovers that are central to the
Acemoglu et al. (2012) model and justification for clean R&D subsidies.

Aghion et al. (2016) study how price effects and knowledge spillovers shape innovation
in the automotive industry. They combine data on all patenting in automotive technology
classes, and further use the patent technology classification scheme to classify each patent as
either clean or dirty. They then investigate how clean and dirty innovation are affected by both
the relevant knowledge stock (i.e., capturing the knowledge spillovers that can be targeted by
R&D policy) and fuel prices (i.e., capturing the margin that can be targeted by tax policy).
They measure each firm’s fuel price exposure by constructing a weighted sum of the fuel price
across all countries, where the weights are the share of each firm’s patents filed in each country.
They parameterize the knowledge stock in both clean and dirty technology using the history
of patenting in that area by other firms and by the firm in question.

The main finding is that patenting responds strongly both to changes in fuel prices and to
knowledge stocks. Increased fuel prices lead to more clean technology patenting and less dirty
technology patenting. A higher clean technology knowledge stock is associated with more
clean technology patenting (while a higher dirty technology stock has the opposite effect), and
a higher dirty technology knowledge stock leads to more dirty technology patenting (while a
higher clean technology stock has no discernible effect). Recall from the previous section that
the key question is whether and when the clean technology stock overtakes the dirty technology
stock — this is the point at which innovators will choose to invest in clean technology even
absent policy intervention. In simulations, the authors investigate how fuel price increases will
affect the timing of this transition. The estimates suggested that a fuel price increase of 20%
would have been required for the clean stock to overtake the dirty stock by the 2020s.

This study echoes findings from earlier work on induced innovation, showing that both
market prices and the supply of knowledge are important drivers of clean energy innovation.
Newell et al. (1999) use a product-characteristics model of consumer durables to show that
increases in energy prices shifted innovation toward greater energy efficiency and accelerated
the adoption of more efficient technologies. Popp (2002) shows that both supply-side factors,
captured by the existing stock of scientific knowledge, and demand-side forces, such as higher
energy prices, drive energy-efficient patenting.

More recent work has further documented how policy can tilt the direction of innovation
between clean and dirty applications. Calel and Dechezleprêtre (2016) show that the introduc-
tion of a European carbon market increased low-carbon patenting by regulated firms with no
evidence of crowd-out (see also Benatti et al. 2023). Relatedly, Moore et al. (2025) show that a
carbon tax on transport fuel in Sweden led to a rise in low-carbon transportation patenting. An-
alyzing policy differences across countries, Popp (2006) shows that pollution regulation spurs
the development of pollution-control technologies (with limited cross-border spillovers); John-
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stone et al. (2010a) analyze how a variety of renewable energy policies affect clean innovation
at varying levels of market-readiness; and Noailly (2012) focuses on regulations and energy
efficiency of buildings. Finally, Calel (2020) finds that while the European carbon market in-
creased low-carbon patenting, cap-and-trade programs primarily encourage the adoption of
existing technologies (rather than new technology development). Further exploring firm-level
trade-offs between innovation and technology adoption, as well as how both are affected by
policy, could be an important area for future work.

It is important to remember that, absent policy intervention, there is no guarantee that
innovation will push in the direction of greater energy efficiency—the exact opposite can
happen. Knittel (2011) shows that from 1980 to the early 2000s, the US automobile sector
prioritized advancements in power and size instead of fuel efficiency. Had power and size been
held at their 1980 levels, fuel economy could have increased by 60% during the same period
of time. Moreover, while the evidence cited above suggests that innovation can dynamically
shift in response to policy changes, there are also forces constraining rapid shifts in technology.
One is technology lock-in, introduced in Section 2.1.5. For example, Hawkins-Pierot and
Wagner (2023) show that the electricity price when US manufacturing plants open has long-run
effects on their energy intensity and technology use. This technology lock-in limits changes
in technology use by incumbents. Dugoua and Gerarden (2025) show that increased clean
technology development following natural gas price spikes is primarily driven by inventors
already working in clean technology. Thus, early career specialization decisions can have long-
run consequences for the direction of innovation and for the overall technological response to
policy change.

Finally, it is worth pointing out that the fact that the direction of innovation shifts in response
to market and policy incentives does not necessarily mean that the new induced innovation
is impactful. Technological change induced by changes in demand may just not be where
the most transformative innovations come from. Nemet (2009), for example, argues that the
rise in demand for wind power led to only incremental new technology development. This
is a key challenge for empirical work in this area and raises the importance of measuring the
direction of innovation not only in terms of the number of new technologies (e.g., new patents)
but also in terms of the impact of those technologies. We describe potential approaches to this
measurement challenge in Section 3.2

2.2.3 Extensions of the Baseline Framework

Recent work has extended the baseline framework to include important additional features of
reality. Many of these topics remain open and essential areas for future research.
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Intermediate Technologies. The baseline model considers only clean and dirty technology;
however, in practice, energy sources can also have intermediate levels of carbon intensity.
This can lead to more complicated and nuanced dynamics (see Dechezleprêtre and Hémous
2022; Lemoine 2024). For example, Acemoglu et al. (2023) study the impact of the shale
gas revolution in the United States, driven by advances in horizontal drilling and hydraulic
fracturing (“fracking”) methods that made natural gas much cheaper. The production of
natural gas from shale deposits increased twelvefold from 2007 to 2018. What was the impact
of this on carbon emissions? On the one hand, natural gas emits much less carbon than
coal per unit of energy. On the other hand, the greater energy efficiency of fossil fuels could
discourage innovation targeting cleaner (green) energy sources and boost long-run emissions.
The authors show that the shale gas boom led to a decline in clean energy patenting and use
a model of directed technological change to show that this led to an increase in US carbon
emissions, pushing the US into a “fossil fuel trap.” While shale gas is one example of an
intermediate technology, moving beyond models with a simple dichotomy between clean and
dirty technologies could be an important area of future work (see also Section 6.1).

Richer Technology Spillovers. The baseline directed technological change model has a sin-
gle inter-temporal spillover: a knowledge spillover within clean and dirty technology areas.
However, in practice, the pattern of knowledge spillovers could be much more complicated (see
Section 2.1.3) and shape both the direction of innovation and optimal policy. These could be
important to understand given how central uninternalized knowledge spillovers are to policy
design and the overall impact of investments in R&D.

One recent example of work in this area is Donald (2023), which builds a model that
incorporates cross-technology knowledge spillovers (e.g., from dirty to clean technology) and
not only within-technology, dynamic spillovers. This incorporates the idea that many new
technology areas do not start from scratch but build on existing technology in other areas.
Advances in clean technology are no different, and often build on earlier advances in dirty
technology; as Donald (2023, p. 1) notes, ”[T]he first Tesla prototype—the Mule 1— was a
combustion engine car that the engineers at Tesla reconfigured by ripping out the engine
and stuffing the engine compartment full of batteries.” These spillovers can limit the value
of temporary, big push policies highlighted by the baseline directed technological change
model, since clean innovation always builds on the existing stock of dirty technology. Jee and
Srivastav (2024) also use patent data to investigate knowledge spillovers between clean and
dirty technology—including indirect links that pass through other “bridging” technologies—
and document cross-sector heterogeneity in these links.

Other studies have investigated the importance of dynamic knowledge spillovers within the
firm and highlighted how the market structure of innovation can affect its focus and direction,
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including the speed of technology transitions (Lensman 2025). Analyses that focus only on
sector-level changes in innovation could miss these important forces.

In future work, economists could do more to document the prevalence of knowledge
spillovers—including spillovers between distinct lines of clean energy research, not only be-
tween clean and dirty research, as well as spillovers along the supply chain—and investigate
how these shape the role of policy and policy design. Using firm-level data and digging into
the market structure of technology development in clean and dirty industries could also be
important. Methodologically, while most existing work has used patent citation information
to capture knowledge spillovers across time and technologies, other studies have highlighted
that citation flows take place only between a small set of firms and often represent business
partnerships rather than the actual flow of ideas (Fadeev 2024). Therefore, new approaches to
capture knowledge spillovers—how new knowledge in one area affects the rate of innovation
in another—would be very valuable.

Supply Chains. While the baseline model incorporates a single clean and dirty input, real-
world production takes place in the context of increasingly complicated and globalized supply
chains. Reducing carbon emissions requires not only developing renewable sources of energy
supply, but also low-emission enabling technologies, like batteries and grids, as well as end-use
technologies that can use renewable or low-carbon inputs, like electric cars and new building
structures. There are currently substantial differences in clean technology investment and
innovation at different parts of the supply chain, and within each stage of the supply chain
(IEA 2021c). New work by Aghion et al. (2025) builds a model of a green technological
transition that spans an entire supply chain, from upstream inputs to final production. The
authors argue that carbon taxation alone is insufficient to drive the energy transition and
make the case for industrial policy tailored to the supply chain, highlighting that coordination
along the production chain is critical and that targeted subsidies can shift the economy toward
sustainable growth.

Despite its clear importance, research at this intersection is limited. Existing empirical work
studying drivers of clean versus dirty innovation is insufficient to explain why there are such
vast differences between investment in certain upstream versus downstream clean technology,
or why innovation differs so drastically across various clean technology areas. Another area
to explore could be the international nature of supply chains and how the green transition
shifts supply chain links across countries. The role of policy could be very different depending
on the extent to which (and which part of) the supply chain is domestic versus international.
Moreover, by shifting which parts of the energy supply chain are controlled by each country,
the energy transition could shift the distribution of economic power and energy supply choke-
points across countries. This could motivate the use of industrial policy as a political tool to
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control foreign access to sources of energy or other key inputs. We return to this topic when
discussing the potential global winners and losers from the green transition in Section 6.4.

Alternative Drivers of Innovation and Policy. New work has highlighted alternative drivers
of the direction of innovation, beyond the trade-off between price and productivity effects
highlighted above. For example, Casey (2023) shows how efficiency standards can shift research
incentives, and Alsina-Pujols and Hovdahl (2024) study how differentiated patent protection
alters relative profitability of clean versus dirty innovation. Aghion et al. (2023) study the
impact of consumer preferences on clean innovation in the automobile sector. This work
highlights the role that narratives could play in shifting the direction of innovation and the
interplay between cultural trends and technological change (see Acemoglu and Johnson 2023).

This would all be interesting to explore in future work, especially given the cultural divides
that exist when it comes to certain renewable technologies and changes over time in the cultural
value of conservation. Moreover, the incentives that drive innovation in upstream parts of the
innovation network, including basic science, could be different from the incentives that shape
downstream technology development, which is closer to commercialization. Exploring these
social and political determinants of the direction of innovation—and showing how much they
matter in different parts of the innovation network—could greatly add to our understanding
of technology development. These alternative drivers of innovation could also limit the effec-
tiveness of standard policy levers or motivate new policy ideas that act on these non-market
forces.

Clean-Dirty Substitutability. The results of the baseline directed technological change model
hinge on the substitutability between clean and dirty technologies. In most models, this
elasticity of substitution is assumed to be greater than one and fixed over time. Using panel
data from 26 countries, Papageorgiou et al. (2017) estimate elasticities of substitution between
two and three depending on the sector, suggesting relatively high levels of substitutability and
potentially large effects of temporary clean research subsidies. Jo and Miftakhova (2024) re-
examine the common assumption in climate-growth models that the elasticity of substitution
between clean and dirty energy is constant. Instead, they propose a dynamic, endogenous
elasticity that evolves with the share of clean energy in the economy. They argue that as
clean technology progresses and its capabilities increase, the extent to which dirty inputs
can be substituted with clean ones increases as well. This leads to a greater elasticity of
substitution over time, which lowers the economic costs of climate change mitigation. A richer
framework could allow elasticities of substitution to vary across areas of the economy or over
time, and more work is needed to understand the key drivers of changes in these elasticities as
technological capabilities evolve.
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2.2.4 Directed Technological Change in a Global Context

So far, we have focused on the interactions between policy and the direction of innovation
in a single country. However, different parts of the world are connected both by trade and
by knowledge spillovers. Trade linkages between countries, alongside uneven regulatory and
innovation capacities, can complicate the conclusions from the baseline directed technological
change model. Several papers have investigated how directed technological change can affect
carbon leakage and the international consequences of unilateral climate policy (Di Maria and
Smulders 2005; Di Maria and Valente 2008; Acemoglu et al. 2014; Hémous 2016). For example,
Acemoglu et al. (2014) highlight how trade between a regulated North and un-regulated South
can lead to the South to fully specialize in production of the dirty input, thereby reducing all
incentive to imitate clean technology development from the North. Thus, coordinated policy
is preferable, especially when clean and dirty inputs are complements in production (Di Maria
and Smulders 2005). Hémous (2016) goes so far as to argue that the combination of directed
innovation and international trade can increase reliance on dirty technology, to the extent that
dirty technology has an initial advantage and foreign markets provide an even larger potential
market size for new technology. In this context, unilateral policy can make matters worse if the
unregulated country speeds up innovation in dirty technology; for this reason, optimal policy
also includes a clean technology subsidy and pollution trade tax.

There is much left to explore at the intersection of directed innovation, trade, and interna-
tional knowledge spillovers. First, to what extent are foreign market opportunities an important
driver of the direction of innovation? While global markets are often much larger than domestic
markets, Dechezleprêtre and Glachant (2014) use data on country-level policy and innovation
in the wind industry and find that the effect of domestic demand on innovation is an order of
magnitude larger than the effect of foreign demand. This is consistent with work in other con-
texts documenting strong home bias in technology development (Costinot et al. 2019; Moscona
and Sastry 2025). That said, foreign markets still clearly matter; as one clear example, Chinese
R&D in solar technology and other clean energy sources is clearly oriented toward developing
low-cost products that could serve other emerging markets. While this process is likely driven
both by financial incentives and the desire to accumulate soft power through the deployment
of energy technology, it suggests that international trade could accelerate the development
of certain technologies (in this case, clean technologies). However, more work is needed to
understand the impact of these global economic and political incentives.

Second, what forces shape knowledge spillovers across countries? And how strong are
these spillovers to begin with? Dechezleprêtre et al. (2011) show that clean technologies flow
disproportionately among high-income countries and almost never to low-income countries.
Parts of this analysis would surely be turned on its head by the recent take-off of climate
mitigation innovation in China; nevertheless, there are many barriers to the flow and applica-
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bility of knowledge across countries. One example is that advances in mitigation technology
from high-income countries may be less appropriate elsewhere. They may prioritize certain
auxiliary functions over cost reduction; they may rely on complementary infrastructure or
capital, including the existence of a well-functioning grid, that does not exist in low-income
contexts; they could be designed for temperate environmental conditions and fail in tropical
or desert conditions (e.g., solar cells that respond poorly to thermal and irradiance stresses,
decay quickly in tropical humid conditions, or lose functionality without frequent dust and
sand cleaning in desert conditions). Thus, even for a given technology area, knowledge devel-
oped in one country may not be applicable elsewhere. This issue compounds once you take
into account that there are many renewable technology areas—solar, wind, nuclear, geother-
mal, etc.—and countries may be differentially suited to each one (see Figure 18 below). Thus,
understanding the determinants and impact of international knowledge spillovers on climate
mitigation technology could be an important area for future work.

Third, there is relatively little work about the coordination and diffusion of R&D poli-
cies across countries. In theory, what should this coordination look like? Should countries
specialize in different technologies or each invest in a portfolio of technologies? Politically,
R&D support policies may have greater opportunities for international agreement than taxes
on production or trade, where no country wants to unilaterally place itself at a productivity
disadvantage and policy intervention is more inherently zero-sum. In practice, how does one
country’s support for climate-mitigating R&D affect support policies in all countries? Could
action by a small set of countries lead to a “race to the top” effect, to the extent that other coun-
tries also feel compelled to support their clean energy sectors to compete? Or could support for
clean technology by one country perversely lead others to double down and specialize in dirty
technology, as has been argued is currently the case of China and the US (Gelles et al. 2025)?
These all strike us as very important and open areas for research.

2.2.5 Integrated Assessment Models and Learning Curves

While directed technological change models highlight the mechanisms that govern how inno-
vative effort is allocated between clean and dirty technologies, much of climate policy analysis
relies on a different class of models: integrated assessment models (IAMs). IAMs take a more
aggregate perspective, linking economic activity, emissions, and the climate system in a single
framework. Their main strength is the ability to connect economic dynamics with physical
climate processes to provide internally consistent projections of emissions, climate change,
damages, and mitigation costs.

IAMs are used extensively in practice, for example in major policy assessments such as the
Intergovernmental Panel on Climate Change (IPCC) reports, as well as in national and inter-
national policy evaluation exercises. They are employed to estimate the social cost of carbon,
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to project the costs of meeting temperature targets, and to explore optimal carbon price tra-
jectories. Early IAMs treated technological change as exogenous: productivity growth or cost
reductions followed fixed schedules, unaffected by market conditions or policy. Later models
introduced limited forms of endogeneity, most often through learning by doing or reduced-
form representations of R&D. These mechanisms allow costs to decline with deployment or
investment, but remain highly stylized.

This contrasts with the directed technological change framework, where innovation is
modeled as an explicit decision and policy can directly redirect innovative effort through
instruments such as carbon pricing or R&D subsidies. The empirical evidence described in the
previous sections highlights the potential importance of treating innovation as endogenous,
subject to changes in both rate and direction as economic incentives evolve. IAMs generally
represent innovation only in aggregate terms, allowing productivity or cost to respond to
policy intervention in a more mechanical way. Conversely, directed technological change
models often have a highly stylized representation of the environment (see equation (4)), and
have been difficult to fully quantify.

The aim of this section is not to provide a comprehensive survey of how IAMs treat tech-
nology. Readers seeking such coverage can consult Gillingham et al. (2008), Nordhaus (2010),
Grubb et al. (2021b), and Dietz (2024). The objective here is to offer a concise overview be-
fore turning to the role of learning curves, the main approach by which IAMs represent cost
reductions in clean technologies.

Technological Change in IAMs. IAMs that allow innovation to evolve in response to policy
typically focus on one of two mechanisms: R&D-based innovation and learning by doing. Both
create feedback from policy to technology costs, but in stylized form.

R&D-based models introduce a knowledge stock that accumulates through research spend-
ing and reduces abatement costs. The ENTICE model is the canonical example: it augments
the original DICE model (Nordhaus 1992) with an explicit energy R&D sector, so that carbon
pricing or subsidies induce research effort that lowers future costs (Popp 2004). A different
extension by Dietz and Stern (2015) embeds endogenous growth in a DICE model, allow-
ing climate policy to affect long-run productivity, and combines this with convex damages
and fat-tailed risks. While both approaches extend the same framework, their focus differs:
Popp (2004) emphasizes sectoral energy R&D, while Dietz and Stern (2015) emphasize growth
dynamics and risk.

Learning-by-doing models link cost declines to cumulative deployment in a mechanical
way, most often through an experience curve in which each doubling of capacity reduces costs
by a fixed learning rate. Policy that accelerates deployment thus directly reduces costs, creating
path dependence in technology choice. This formulation is widely used in large-scale IAMs,
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particularly for renewables and storage (e.g., Stehfest et al. 2014; Luderer et al. 2015).
Some models combine both mechanisms. WITCH, for example, is a multi-region dynamic

growth model with an explicit energy system. It includes two R&D channels: one for economy-
wide energy efficiency, where knowledge stocks accumulate through research with spillovers
across regions, and another for technology-specific backstops, where dedicated R&D lowers
costs alongside learning by doing from deployment (Bosetti et al. 2006; Bosetti et al. 2014;
Emmerling et al. 2016). This dual structure captures both the incentives for strategic free-
riding on others’ R&D and spillovers from early deployment. Model runs highlight how
carbon pricing, R&D support, and deployment policies interact in shaping long-run costs.

Recent work by Coppens et al. (2025) provides a systematic comparison of these represen-
tations. Using an analytical IAM and estimation from hundreds of scenarios, they show that
assuming exogenous cost trends lowers near-term carbon prices and backloads abatement,
while incorporating learning-by-doing creates a deployment externality that justifies stronger
early action. By contrast, R&D-driven change delivers results close to the exogenous case only
if R&D costs are modest. Their Table 1 is especially valuable: it surveys 22 major IAM families,
showing that most still rely on exogenous assumptions, with few incorporating R&D explicitly.
This divergence in modeling approaches explains much of the variation in IAM projections of
mitigation costs and policy stringency.

Earlier work by Hart (2019) explicitly embeds a directed technological change mechanism
within an IAM-style growth model, thereby linking the two traditions. The model shows that
clean-research subsidies should be front-loaded and decline over time, while optimal carbon
prices rise monotonically. Hart finds that carbon pricing alone can deliver about 91% of the
welfare gains of the full policy mix, whereas subsidies alone achieve only 36%.

Learning Curves: Evidence and Interpretation. A widely used approach to modeling inno-
vation in IAMs is through technology learning curves. In their standard form, unit costs are
assumed to decline as a power law in cumulative deployment:

Ct = C0Q
−α
t ,

where Ct is the unit cost at time t, C0 is the initial cost, Qt is cumulative installed capacity
or output up to time t, and α > 0 is the learning elasticity. Each doubling of cumulative
deployment reduces costs by a fixed percentage, known as the learning rate. This functional
form is attractive for large-scale models because it is simple, empirically grounded, and creates
a feedback in which early deployment lowers future costs.

While stylized, learning curves of this form are often a reasonable representation of real-
world data. Figure 3 illustrates this for solar photovoltaics and lithium-ion batteries. The
costs of both solar photovoltaics and batteries have declined substantially over time, coinciding

41



1968 1974 1980 1986 1992 1998 2004 2010 2016 2022
Year

1

10

100
So

la
r c

os
t (

US
D/

W
)

Solar cost
Solar patent stock
Solar capacity

10000

100000

So
la

r p
at

en
t s

to
ck

1

10

100

1000

So
la

r c
ap

ac
ity

 (G
W

)

(a) Solar Time-Series

0 2 4 6 8 10 12
log(Solar patent stock) or log(Solar capacity in GW)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g(

So
la

r c
os

t (
US

D/
W

)) r=-0.987

r=-0.977

Solar patent stock
Solar capacity

(b) Solar “Learning Curves”

1968 1974 1980 1986 1992 1998 2004 2010 2016 2022
Year

2 × 102

3 × 102

4 × 102

6 × 102

Ba
tte

ry
 c

os
t (

20
24

$/
kW

h)

Battery cost
Battery/EV patent stock
EV capacity

100000

Ba
tte

ry
/E

V 
pa

te
nt

 st
oc

k

10000

100000

1e+06

1e+07

Nu
m

be
r o

f E
Vs

 so
ld

(c) Battery Time-Series

12 13 14 15 16
log(Battery patent stock) or log(Number of EVs sold)

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

lo
g(

Ba
tte

ry
 c

os
t (

20
24

$/
kW

h)
)

r=-0.949

r=-0.942

Battery/EV patent stock
Number of EVs sold

(d) Battery “Learning Curves”

Figure 3: Learning Curves for Solar Photovoltaics and Lithium Ion Battery

Note: Panels (a) and (c) plot costs, cumulative deployment, and patent stocks over time for solar PV and lithium-
ion batteries. Panels (b) and (d) show learning curves by plotting costs against cumulative deployment and
against cumulative patent stocks on log–log axes. In both technologies, costs decline steadily as deployment and
patenting rise, producing near-linear relationships.
Patent data are from PATSTAT (DocDB families, year = first filing). Patent stocks are calculated as the undiscounted
cumulative sum of patent flows over time, starting from the earliest patents observed in the PATSTAT dataset
(dating back to the late 19th century). For details on patent data construction and processing steps, see Appendix
A.3. Cost and deployment data come from multiple sources. Solar module costs are from OWID et al. (2025),
accessed via Our World in Data, and containing earlier series from Nemet (2009) and Farmer and Lafond (2016).
Battery pack costs are from Bloomberg NEF (2024). Solar deployment refers to installed PV capacity from IRENA
(2024a), accessed via Our World in Data. For batteries, deployment is proxied by the number of electric cars sold,
taken from IEA (2025c), also via Ritchie (2024b) at Our World in Data.

with large increases in patenting activity (Figures 3a and 3c). When costs are plotted against
cumulative deployment, they follow an almost linear trend on log–log axes (Figures 3b). A
similar pattern emerges when costs are plotted against cumulative patent stocks, used here as
a proxy for knowledge accumulation (Figure 3d). These figures show clear cost reductions in
these technologies that coincide with increases in both R&D activity and deployment. This dual
relationship is consistent with decomposition studies showing that, alongside deployment,
innovation was a major contributor to recent solar and battery cost reductions (Kavlak et
al. 2018; Ziegler and Trancik 2021).
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Some work has investigated the mechanisms underlying these cost decline curves, which are
used as a catch-all proxy for innovation trends in IAMs. Engineering-based decompositions of
photovoltaics find that increased cell efficiency, reductions in silicon use, lower input prices, and
economies of scale all contributed, with public and private R&D identified as the single most
important high-level mechanism over 1980–2012 (Nemet 2006; Kavlak et al. 2018). More recent
studies emphasize how hardware innovations spilled over into “soft” balance-of-system costs,
so that improvements in modules and inverters indirectly lowered installation and permitting
costs as well (Klemun et al. 2023; Kavlak et al. 2025). For lithium-ion batteries, engineering
analyses show that global price declines of more than 90% since commercialization can be
explained both by cumulative production and by inventive activity, with estimated learning
rates of roughly 20–25% per doubling of output and “inventive-activity rates” of around 40%
per doubling of patent filings (Ziegler and Trancik 2021). These findings suggest that experience
and innovation interacted: deployment expanded markets, while sustained R&D in chemistry
and materials science produced stepwise improvements in performance.

The appeal of learning curves in IAMs is that they provide a tractable way to incorporate
real-world technology cost declines into climate modeling and allow the rate of these cost
declines to respond to policy. At the same time, they fully abstract from the many mecha-
nisms that underlie this cost decline—including experience, R&D, scale economies, and input
markets—and parameterize technological change using only a single time-series correlation.
This makes it challenging to model more detailed interactions between policy, innovation,
and technology deployment; moreover, this framework also abstracts from any changes in the
direction of innovation and how that can mediate the relationship between technology devel-
opment and environmental damage. Developing frameworks that take innovation incentives
and directed technological change seriously, while also allowing for clear and tractable policy
simulation, seems like a potentially impactful area for future research.

3 The Clean Technology Landscape: Data and Trends

3.1 A Taxonomy of Clean Technologies

3.1.1 Overview

Economic models often reduce technology choice to a binary: “clean” versus “dirty.” While
analytically convenient, this framing obscures the diversity within clean technologies. The
portfolio spans multiple sectors, stages of maturity, and modes of impact. Even just focusing
on technologies that increase renewable energy efficiency, restricting attention to solar, wind,
and electric vehicles, understates both the range of available options and their role in meeting
climate targets.
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Our aim in this section is pragmatic: to give economists a compact, sector-by-sector map
of mitigation and adaptation technologies that exist, and to extend this taxonomy beyond the
usual suspects. Readers are encouraged to approach this section à la carte: skim areas you
know, slow down in areas that are new, and use it to understand which technologies exist and
where existing technological holes remain. Another goal of this section is to make clear the
energy transition is a result of innovation across a range of different areas, all of which are
linked by knowledge spillovers and coordination challenges outlined in Section 2.1. Moreover,
we hope that this taxonomy also makes clear how the impact of policy could also be different
across technology areas and clarifies where in the innovation ecosystem specific policies may
have particular bite.

Why breadth matters. The importance of looking beyond the “usual suspects” becomes
clear in the IEA’s scenario analysis (IEA 2020a, 2020b). Two contrasting pathways illustrate
the point. The Stated Policies Scenario (STEPS) reflects current and announced policies; in this
world, emissions decline only modestly, with progress driven largely by mature and early-
adoption technologies such as efficiency improvements, deployment of solar PV and wind,
incremental electrification of transport and buildings, and associated grid reinforcement (see
Table 1). STEPS relies little on technologies that have not yet reached the market.

The Sustainable Development Scenario (SDS), in contrast, is a normative pathway consistent
with bringing energy-sector CO2 emissions to net zero around 2070, with residual emissions
of roughly 3 Gt balanced by removals. In the near term, efficiency and renewables account for
about 70% of the gap between SDS and STEPS through 2040. Beyond 2040, however, further
reductions depend increasingly on technologies that are not yet mature: (i) deeper electrifi-
cation supported by advanced batteries and heat pumps; (ii) carbon capture, utilization and
storage (CCUS), including negative-emissions options such as bio-energy with CCS (BECCS)
and direct air capture; (iii) low-carbon hydrogen and hydrogen-derived fuels for industry and
long-distance transport; and (iv) sustainable bio-energy.

In total, more than one-third of the cumulative emissions reductions, according to these
projections, come from technologies that are today at the demonstration or large-prototype
stage (see Figure 4). A further 41% come from technologies in the early adoption phase,
while only 25% derive from technologies that are already mature. Heavy industry and long-
distance transport are projected to be especially dependent on technology in its early stages
(e.g., hydrogen-based steel or low-carbon chemicals in the case of the former and sustainable
aviation fuels or ammonia- or methanol-based shipping in the case of the latter).

The IEA also explores a Faster Innovation Case consistent with net zero by 2050. Here the
reliance on immature technologies rises even further: by 2050, CO2 savings from technologies
currently at prototype or demonstration stage would need to be about 75% higher than in
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(Figure 3.1). The contribution of technologies at large prototype or demonstration 

stage to emissions reductions are even higher in heavy industry and long-distance 
transport, where no commercially available and scalable options for achieving deep 

emissions reductions exist today. 

 Global energy sector CO2 emissions reductions by current technology 
readiness category in the Sustainable Development Scenario relative to the 
Stated Policies Scenario 

 
IEA 2020. All rights reserved. 

Notes: Percentages refer to cumulative emissions reductions by 2070 between the Sustainable Development 
Scenario and the Stated Policies Scenario enabled by technologies at a given level of maturity. 

Technologies that are only at the large prototype or demonstration stage today contribute 
almost half of the emissions reductions in 2070 in the Sustainable Development Scenario. 

The energy trajectories in the Sustainable Development Scenario are largely 

determined by how the cost and technical performances of competing technologies 

evolve through innovation, but are also affected by changing policy priorities and 

consumer choices. All these factors are interlinked and interact dynamically over 

time. For example, the pace of decline in the cost of lithium-ion (Li-ion) batteries 
influences the rate of take-up of electric vehicles, which affects how competitive they 

are against biofuels as a means of decarbonisation, particularly in light-duty vehicles. 

Other factors, including battery capacity, efficiency and (dis)charge power, also play 

a role in determining the attractiveness of electric vehicles, as in determining the 

economic viability of using Li-ion batteries to provide storage for electricity systems. 

Deployment is both a cause and effect of cost and performance for each of the 

technologies that drive the transition to net-zero emissions: the faster their take-up, 
the greater the economies of scale and learning effects, and the greater the 

incentives to seek out incremental gains through yet more innovation in a virtuous 

cycle. 
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Figure 4: Energy Sector CO2 Emissions Reductions by Current TRL
Note: Reproduced from Figure 3.1 in IEA (2020b). The figure decomposes cumulative CO2 reductions in the
IEA’s Sustainable Development Scenario (SDS) relative to the Stated Policies Scenario (STEPS) by the maturity
of the underlying technologies. “Mature” refers to technologies already widely deployed (around TRL 11),
“early adoption” to those with at least one commercial design but competing variants still emerging (TRL ≥9),
“demonstration” to designs proven at pilot or demonstration scale but not yet commercial (TRL 7–8), and “large
prototype” to technologies currently at prototype stage (around TRL 5). The key insight is that only about one-
quarter of the SDS reductions come from mature options, while more than one-third depend on technologies that
are today at the demonstration or prototype stage, highlighting the central role of innovation in achieving net
zero.

the SDS, and roughly 45% of all reductions would come from options not yet commercially
deployed. Together, these estimates suggest that understanding the full technology landscape
could be key to understanding both clean innovation today and the energy transition over the
coming decades.

Roadmap for what follows. The sections that follow map mitigation options by sector—
power, transport, industry, buildings, and cross-cutting systems such as storage, hydrogen,
grids, and carbon management—linking them to emissions profiles where possible (see Table
3 for reference). We then turn to adaptation technologies, whose role is increasingly intertwined
with mitigation (see Table 4 for reference). Throughout, we return to the technology readiness
level (TRL) framework introduced in Section 2.1.1 to describe the current state of maturity of
each technology area.

3.1.2 Power Generation

The power generation sector accounts for around 28% of global greenhouse gas (GHG) emis-
sions, driven primarily by coal (20%) and natural gas (6%). It is also the sector where decar-
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Table 3: Taxonomy of Mitigation Technologies and Associated GHG Emissions.

Sector Category/Subcategory

Global
GHG

emissions
in 2020 (%)

Example technologies (TRL)

Power Generation
28%

Coal 20%
Nat. Gas 6%

Oil 1%

Renewable
Crystalline Si PV (10); Thin
film PV (5-6); Floating offshore
wind (8); Hydropower (11);
Ocean salinity gradient and
thermal (4-5); Small modular
reactors (5); CCUS
Post-combustion chemical
absorption (8); CCUS
supercritical CO2 cycle (5-6)

Solar Power –
Wind Power –
Hydropower –
Geothermal Power –
Ocean Power –

Other
Nuclear Power –
Biomass Power –
Fossil Power with CCUS –

Cross-Cutting
Technologies

Energy Storage – Grid-forming inverter with PV
or wind (7-8); Superconduct.
high-voltage (7); Lithium-ion
battery storage (9); Direct air
capture (6–7); Direct lithium
extraction from brine (7-8)

Grid Technologies –
Critical Minerals –
Carbon Management –
Hydrogen –

Buildings
7%

Residential 5%
Commercial 1%
Refrigerants 1%

Building Envelopes – Dynamic glazing (8); LED
lighting: Conventional (11),
Polymer (9); Induction cooking
appliances (11); Air-to-air heat
pumps (10); Membrane heat
pumps (5);

Lighting
Appliances and Equipment –
Heat Pumps –
Cooling
Data Centers and Networks

Transport
16%

Road 12%
Biofuels Micro-algae (3-4);
Battery electric cars (9);
Sustainable aviation fuel:
HEFA (9-10), e-fuels (4-6);
Methanol/ammonia-fuelled
ships (6–7)

Fuel Economy of Cars/Vans –
Biofuels –
Electric Vehicles –
Trucks and Buses

Rail
Aviation 1%
International Shipping 2%

Industry
31%

Cement and Concrete 5% Cement kiln with CCUS (4-8);
Alternative materials for
cement (3-9); Hydrogen direct
reduced iron (4–7); Blast
furnaces with CCUS (5-9);
High temperature heat
electrification (3)

Chemicals and Plastics 4%
Pulp and Paper
Iron and Steel 5%
Aluminium
E-waste Recycling
Oil and Gas 5%
Cross-cutting Industry –

Agriculture, Land-Use
and Landfills

18%

Crops 7%

Cultured meat (5-9);
plant-based meat (9)

Livestock 6%
Landfills and Waste 4%
Land Use and Forests 1%
Agriculture Fuel Combustion <1%

Note: This figure groups technologies largely based on the Cooperative Patent Classification of patented
technologies. Data on the shares of global GHG emissions are from the Rhodium Group, available at
https://rhg.com/research/global-greenhouse-gas-emissions-2021/.
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bonization is most advanced, owing to rapid cost declines in renewable energy technologies.
The central challenge is shifting from demonstrating the technical feasibility of renewable-
based systems to managing the complexities of large-scale deployment and integration.

Mature Renewables: Solar Photovoltaics and Onshore Wind. Solar photovoltaics (PV) and
onshore wind are the main pillars of global power sector decarbonization. Both have moved
from niche applications to mainstream energy sources. The IEA assesses crystalline-silicon
PV and onshore wind at TRL 10: commercially established and competitive, but requiring
continued innovation to support integration into energy systems at scale. Deployment has
been expanding at a historic pace, with PV and onshore wind expected to dominate renewable
capacity growth through 2030. The primary driver has been a sustained and dramatic reduction
in costs: Lazard estimates indicate that the levelized cost of electricity (LCOE) from utility-scale
solar PV fell by more than 80% between 2009 and 2025, from $359/MWh to $58/MWh (see
Figure 2). Onshore wind followed a similar, though less steep, trajectory, with costs falling
to around $61/MWh in 2025. By comparison, new-build gas combined cycle plants have
an LCOE of about $78/MWh (versus $31/MWh for marginal operating costs of depreciated
plants), while coal averages $122/MWh for new build and $73/MWh for marginal operation.
These figures highlight the competitiveness of renewables in new capacity additions.

With cost competitiveness largely achieved, the main barriers now lie in integration. Vari-
ability, seasonal dependence, and geographic constraints limit the extent to which solar and
wind can replace fossil generation without complementary technologies. Institutional and
infrastructural barriers—including lengthy permitting processes and grid connection delays—
have emerged as significant bottlenecks. Further innovation remains critical in cross-cutting
areas such as grid technologies and large-scale storage, which are essential for system-level
flexibility and reliability.

Emerging Renewables: Offshore Wind and Ocean Energy. Offshore wind is less mature
than its onshore counterpart but is poised for rapid growth, benefiting from stronger and more
consistent wind resources at sea. Fixed-bottom offshore wind is commercially established
(TRL 10), but innovation is advancing in floating turbines (TRL 5–7), which could unlock
the vast resource potential of deep waters. Offshore projects face higher upfront costs and are
vulnerable to inflation, high interest rates, and supply chain challenges, yet they remain central
to many national decarbonization strategies (e.g., EC 2020). Beyond electricity, offshore wind
is increasingly explored as a source for low-emissions hydrogen production (TRL 5). Other
experimental designs, such as airborne wind systems, remain at early prototype stages (TRL
4–5).

Ocean energy encompasses a portfolio of less mature technologies, including tidal, wave,
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salinity gradient, and thermal energy. Their predictability is an advantage, but high costs and
technical risks in harsh marine environments constrain commercialization. Tidal range and
tidal stream systems are approaching readiness (TRL 9), while wave energy converters are
at TRL 7–8 but not yet cost-competitive. Salinity gradient and ocean thermal remain at the
prototype stage (TRL 4–5).

Firm and Dispatchable Low-Carbon Power: Nuclear, Geothermal, and Hydropower. A
system dominated by variable renewables will likely require complementary sources of firm,
dispatchable low-carbon electricity to ensure grid stability and energy security.

Hydropower remains the largest renewable source globally and is a fully mature technology
(TRL 11). Its principal value lies in its flexibility: reservoirs can operate as large-scale storage,
balancing fluctuations in wind and solar output. However, opportunities for new large-scale
projects are limited by site availability and social and environmental concerns. Nearly 40%
of existing global capacity is more than 40 years old (IEA 2021a), highlighting the need for
refurbishment and modernization to enhance flexibility.

Geothermal energy exploits subsurface heat for electricity and direct use. Conventional
hydrothermal systems (dry steam and flash plants) are commercially established (TRL 11) but
geographically constrained. Enhanced Geothermal Systems (EGS), currently at TRL 6–7, aim to
create artificial reservoirs, offering the potential to expand geothermal deployment far beyond
favorable natural sites.

Nuclear power provides zero-carbon, dispatchable electricity at scale. Large Generation
III/III+ light-water reactors are mature (TRL 10–11), but in many advanced economies the
sector is constrained by high capital costs, long construction times, and challenges of public
acceptance and waste disposal (see Rauch 2023, for a recent discussion). Innovation efforts
increasingly focus on Small Modular Reactors (SMRs), a diverse class of advanced designs
(TRL 4–9) that aim to reduce costs and construction risks through modularity and factory
fabrication. While proponents emphasize their potential for flexibility and industrial heat
applications, SMRs have yet to demonstrate commercial deployment.

3.1.3 Cross-cutting Technologies

Technologies in this category underpin decarbonization across the energy system. They are
essential to support the large-scale integration of renewables in power generation, but their
role extends well beyond the power sector to both transport and industry.

Battery storage. Electrochemical batteries provide critical short-term flexibility for electricity
systems and are also central to electrified transport. Lithium-ion is the dominant technology
(TRL 9), with costs having fallen dramatically over the past decade. However, costs are
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increasingly linked to volatile mineral markets for lithium, cobalt, and nickel (see Section 6.3).
This has accelerated innovation in alternative chemistries. Sodium-ion batteries (TRL 7), for
example, use abundant and inexpensive materials and are beginning to reach the market,
particularly for stationary storage. Leading designs contain no lithium, cobalt, or graphite
and often replace copper with aluminum as the current collector, reducing cost and supply-
chain risks (IEA 2025c). Their lower energy density makes them especially suited to stationary
storage and urban micro-mobility. Progress has been rapid, from TRL 3–4 in 2021 to TRL 8–9
by 2023–24. Metal–air systems, such as zinc–air or iron–air (TRL 7–8) are attracting interest
for long-duration storage, with designs targeting discharge times of 100+ hours. These could
provide a cost-effective solution for balancing renewables over multi-day periods.

Smart Grids. If batteries provide the physical capacity for flexibility, smart grids provide the
digital infrastructure. Advanced sensors, communications, and control software allow grid
operators to monitor and manage electricity flows in real time. This enables demand response,
coordinated charging of EVs, and the seamless integration of distributed resources such as
rooftop PV. Core technologies—–including smart meters and advanced control systems–are
largely mature (TRLs 7–11). The main challenge is not technical feasibility but investment and
deployment, which remain far below what is needed in net-zero pathways (Davis et al. 2023).

Critical Minerals. The clean energy transition depends on secure supplies of critical min-
erals, including lithium, cobalt, nickel, and rare earths, essential for batteries, motors, wind
turbines, and grid equipment (see Section 6.3). These supply chains are highly concentrated
geographically and vulnerable to geopolitical, environmental, and market risks. Innovation
efforts focus on mineral substitution, efficiency improvements, recycling, and new extraction
methods (Andersen and Noailly 2022). Direct lithium extraction from brines is at TRL 7–8,
phytomining (using plants to accumulate metals) is at TRL 5–6, and deep-sea mining remains
at an early stage (TRL 3).

Carbon Management. Carbon capture, utilization, and storage (CCUS), direct air capture
(DAC), and bioenergy with CCS (BECCS) are critical to address emissions that are otherwise
hard to abate. In industry, CCUS is indispensable for process emissions (e.g., clinker produc-
tion); in power, it can decarbonize residual fossil capacity or enable BECCS as a carbon removal
option; in transport, captured CO2 can be converted into synthetic fuels. Capture technologies
are technically demonstrated across a wide range of applications (e.g., post-combustion amine
systems for biomass power with CCUS at TRL 8–9; direct air capture at TRL 6–7). Storage
pathways likewise span a broad spectrum, from early-stage approaches such as mineralisa-
tion of supercritical CO2 (TRL 3) to CO2-enhanced oil recovery, which is well-established and
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deployed commercially (TRL 11). Project announcements for 2030 exceed 430 MtCO2/year of
capture capacity, yet this remains far below the 1.6 GtCO2/year required in the IEA Net Zero
Scenario (IEA 2024f). Key challenges are high costs, the need for shared transport and storage
networks, and the establishment of stable policy frameworks.

Hydrogen. Hydrogen is a cross-cutting zero-carbon energy carrier and feedstock with uses
in industry (e.g. ammonia, refining, emerging roles in ironmaking), heavy transport, and
shipping, and as a candidate for long-duration energy storage. Today, however, over 99% of
hydrogen production uses unabated fossil fuels (without carbon capture) (IEA 2024e). Scaling
low-carbon supply requires either green hydrogen via electrolysis powered by low-emissions
electricity or blue hydrogen via fossil-based production with CCUS (see above). Technology
readiness spans TRL 4–11: electrolysis overall ranges from TRL 4–9, with polymer electrolyte
membrane (PEM) and alkaline systems commercial (TRL 9); wastewater electrolysis remains at
prototype stage (TRL 4); seawater electrolysis is emerging (TRL 5); fossil-based hydrogen with
CCUS varies by configuration (TRL 4–6). The binding constraints are cost and infrastructure:
access to low-cost clean electricity and high utilization for electrolyzers; CO2 transport and
storage for blue hydrogen; and hydrogen networks for production, storage (e.g. salt caverns),
and transport (pipelines or carriers such as ammonia).

3.1.4 Buildings

Buildings account for about 7% of global GHG emissions from direct on-site combustion
(space and water heating, cooking). Their climate impact is larger once indirect emissions from
purchased electricity and heat are reallocated to the sector, lifting the total to the mid-teens
(see Table 3). A broader lifecycle view, which includes emissions from producing construction
materials such as steel and cement, raises the contribution further and underscores how tightly
buildings are coupled to the wider energy system.

Decarbonization relies on improving energy efficiency and electrifying end uses. Efficiency
lowers the energy required to deliver comfort and services; electrification shifts the remainder
to low-emissions power. The long lifetime of buildings creates lock-in: poor performance at
construction can persist for 50–100 years, so high standards for new builds are essential, and
deep retrofits may be the only decarbonization option for the existing stock. Managing non-
CO2 emissions from refrigeration and air conditioning through leak reduction and lower-GWP
refrigerants is also important.

On the building fabric, high-performance envelopes reduce heating and cooling loads at
source. Advanced fenestration (high-performance glazing, frames, and shading) is commer-
cially established (roughly TRL 8–9) and can cut heat losses and solar gains substantially. Wall
and façade systems span a range of designs from conventional high-R insulation to modular
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prefabricated panels (mid- to high-TRL), with the choice driven by climate, heritage constraints,
and retrofit logistics.

For lighting and appliances, efficient luminaires (notably LEDs) are fully mature (TRL 9–11)
and deliver large savings with short payback periods, while advanced controls (occupancy
and daylight sensors) reduce peak loads and smooth demand. Direct-current lighting for
building microgrids is emerging (around TRL 7); its value rises where on-site PV and storage
are present by avoiding conversion losses. Clean cooking is increasingly electric (TRL 11), with
solar solutions available in specific contexts (TRL 9).

Heat pumps are central to electrifying space and water heating. Modern units typically
deliver about 2–4 kWh of heat per 1 kWh of electricity (higher in mild climates, lower in very
cold ones) (IEA 2022c). Designs serve different needs and sit at different maturity levels. Air-
to-air systems (split/packaged units) provide room or zonal heating and cooling where no
hydronic system exists and are fully commercial (TRL 9–10); heat-recovery VRF/VRV vari-
ants suit multi-zone homes and commercial buildings needing simultaneous heating/cooling
(TRL 10). Air-to-water systems feed radiators or underfloor loops and supply domestic hot
water (TRL 9–10), while cold-climate air-source models extend reliable operation well below
0◦C (TRL 8–9). Central heat-pump water heaters serve multi-family and commercial hot-
water loads (TRL 9–10). For harder retrofits, high-temperature air-to-water units deliver about
70–90◦C to legacy radiators without full emitter upgrades (mid-TRL, ∼7). Membrane heat
pumps target dehumidification and latent-load control in hot–humid climates or ventilation-
led retrofits (TRL 5–7). Integrated heat-pump plus thermal storage concepts aim to shift loads
to off-peak periods and support the grid (early, TRL 3–4). Where drilling is feasible, ground-
source systems offer the highest seasonal efficiency for large or cold-climate loads (TRL 9).

Cooling demand is rising rapidly with incomes and heat exposure. Mature options include
efficient vapour-compression units and evaporative cooling in suitable climates (TRL 4-9).
Solid-state concepts (thermoelectric, electrocaloric) remain early-stage (TRL 4-6) and are not
yet cost-competitive. Desiccant-based systems for dehumidification (TRL 9) are commercially
available and can be valuable in humid regions when coupled with ventilation strategies.
Across cooling, better envelopes and shading materially reduce peak loads, easing pressure on
grids during heat waves.

Overall, better envelopes and efficient devices cut loads; heat pumps electrify residual ther-
mal demand; improved refrigerant management reduces F-gas emissions. Because buildings
are the largest electricity consumer, raising performance in this sector eases the scale and speed
required from power-sector decarbonization while improving comfort and lowering operating
costs for households and firms.
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3.1.5 Transport

Transport is the second-largest source of energy-related CO2 and accounts for roughly 16% of
global GHG emissions (see Table 3). Options and constraints differ sharply by mode. Road
transport is moving quickly, whereas aviation (about 2%) and shipping (about 1%) remain
harder to decarbonize because of long asset lifetimes, international operations, and the need
for energy-dense fuels. Within road transport (about 12%), electrification leads for light-duty
vehicles, with heavier-duty cycles and weak-grid settings requiring a broader toolkit.

Biofuels. Liquid biofuels delivered the earliest reductions by cutting emissions from conven-
tional cars already on the road and they continue to matter where electrification is slow (e.g.
in regions with under-developed grids) and for aviation and shipping. The climate benefits
of biofuels vary widely and depend on their full lifecycle impacts. First-generation fuels, pro-
duced from food crops such as corn (ethanol) or soy and palm oil (biodiesel), are commercially
mature (TRL 9–11) but raise the greatest sustainability concerns. Their cultivation competes
with food production and can drive deforestation or peatland drainage, leading to large direct
and indirect land-use change emissions that may negate the climate benefit for decades (Far-
gione et al. 2008; Keeney and Hertel 2009). Second-generation (advanced) fuels rely on wastes,
residues, or lignocellulosic feedstocks. Some routes, such as hydrotreated vegetable oil (HVO)
and HEFA for aviation, are already commercial (TRL 9–10), while others such as cellulosic
ethanol and biomass-to-liquids Fischer–Tropsch remain less mature, as noted above. Lifecycle
performance is generally stronger than first-generation fuels, since feedstocks do not directly
compete with food and land-use pressures are lower, though production costs remain high.
Third-generation fuels such as algae are at the basic research and early pilot stages (TRL 3–4).
They offer advantages—high yields without land competition—but remain far from large-scale
deployment.

Electrification of Road Transport. Electrification is the main pathway for decarbonizing road
transport, but it is not a one-size-fits-all solution. It dominates light-duty applications; in heavy-
duty, it competes with other options depending on duty cycle, terrain, and infrastructure.

Battery Electric Vehicles (BEVs) have become the dominant technology pathway, with rapid
market growth driven by supportive policies—such as vehicle efficiency standards, purchase
subsidies, and phase-out dates for internal combustion engines (IEA 2023a)—alongside signif-
icant technological progress, especially in lithium-ion battery performance and cost reduction.
While the core vehicle technology is mature (TRL 9), challenges remain, particularly around
the widespread deployment of public charging infrastructure and the integration of millions
of EVs onto the grid. Smart charging solutions and grid upgrades are needed to manage new
loads and leverage EVs as grid resources. Moreover, the security and sustainability of battery
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supply chains, heavily dependent on a few critical minerals, are key concerns (see Section 6.3).
Charging technologies are evolving alongside vehicle advancements. Battery swapping

(TRL 8–9) offers rapid exchange of depleted batteries, particularly in regions with high EV
adoption. Conductive charging (TRL 8) remains the standard, while fast and ultra-fast charg-
ing (TRL 7–8) is being deployed in public stations to reduce charging time. Smart charging
(TRL 7) optimizes grid interactions, preventing overload during peak hours. Inductive charg-
ing (TRL 5), while promising for wireless charging, is still in the early stages of deployment.

Several innovations are emerging to address specific challenges related to battery chemistry.
Sodium-ion batteries (TRL 8) offer a lower-cost, more abundant alternative to lithium-ion,
beginning to enter markets for stationary storage and some vehicles. Solid-state batteries
(TRL 6) promise higher energy density and safety but remain in early development. Lithium-
sulfur batteries (TRL 5–6) have potential for higher energy density, while lithium-air batteries
(TRL 2) are still at the research stage with major technical hurdles to overcome.

Another alternative is Fuel Cell Electric Vehicles (FCEVs), powered by hydrogen. While less
mature than BEVs, fuel cell technologies (TRL 8–9) show promise for applications like long-haul
trucking, where the weight and refuelling time of large batteries are prohibitive (IEA 2025c).
However, the development of FCEVs is tied to the broader hydrogen economy, which faces
challenges like the high cost of low-carbon hydrogen and the lack of widespread hydrogen
refuelling infrastructure.

Aviation and Shipping. Aviation has limited near-term options for decarbonization. The
leading pathway is sustainable aviation fuels (SAF)—liquid fuels that are chemically almost
identical to kerosene and can be used directly in current aircrafts. The most advanced SAF
route is HEFA (hydroprocessed esters and fatty acids), which converts waste oils and animal
fats into jet fuel. HEFA fuels are already commercial (TRL 9–10), but their supply is constrained
by limited feedstocks and high costs. Other SAF options are earlier in development. Power-to-
liquid “e-fuels” combine green hydrogen with captured CO2 to make synthetic fuels (TRL 4–6).
Biomass gasification followed by Fischer–Tropsch synthesis, with carbon capture and storage,
is another pathway (TRL 5). Airframe and propulsion efficiency improvements have also
continued: ultra-high bypass ratio engines are at advanced development (TRL 6–7) while
open-rotor concepts and blended-wing bodies are earlier (TRL 3–4).

Multiple alternative marine fuels are being tested; however, unlike aviation, no single drop-
in solution exists. Biofuels, methanol, ammonia, and hydrogen span applications from pilot
to early commercial, depending on engine and vessel class (roughly TRL 4–9). Production,
on-board storage, engines, and global bunkering will require large, coordinated investment.
In the interim, operational measures reduce fuel use now: dynamic route, trim, and draught
optimization are mature (TRL 9–10); engine waste-heat recovery is advanced (TRL 8–9); wind-
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assisted propulsion—kites and rotor/sail systems—is at demonstration to early commercial
stages (TRL 7–9); and increased automation/connected systems remain earlier (TRL 6).

3.1.6 Industry

The industrial sector, encompassing manufacturing, mining, and construction, accounts for
roughly one-quarter of direct global CO2 emissions and remains among the most difficult to
decarbonize (see Table 3). Challenges stem from the diversity of industrial processes, the need
for high-temperature heat, and emissions arising directly from chemical reactions (“process
emissions”), particularly in cement, steel, and chemical production. According to the IEA,
more than half of the emissions reductions required in heavy industry to achieve net zero
depend on technologies that are not yet commercially available at scale (IEA 2021b).

Cross-Cutting Strategies and Technologies in Industry. Several decarbonization strategies
apply across multiple sub-sectors. These include improvements in energy and material effi-
ciency, electrification of processes, the substitution of fossil fuels with low-carbon fuels and
feedstocks, and the deployment of carbon capture. A central cross-cutting challenge is the pro-
vision of industrial heat, which is typically classified by temperature level. Low- to medium-
temperature heat, up to around 400◦C, accounts for about half of industrial heat demand. A
portfolio of increasingly mature technologies is available here: heat pumps, which are highly
efficient for applications up to 200◦C (TRL 7); electric boilers, which are commercially mature
and can operate up to 300◦C (TRL 9); and other electric and electromagnetic heating options
(TRL 9). Bio-coal and biomethane are also mature substitutes for fossil fuels (TRL 8–9). In
contrast, high-temperature heat above 400◦C presents a greater challenge. Options include
combustion of low-carbon fuels such as green or blue hydrogen (TRL 8–9) and biomass, while
direct electrification technologies like electric arc or plasma heating remain at earlier stages of
development (TRL 3–4). Thermal batteries, capable of storing heat in insulated materials, are
an emerging solution for applications up to 1500◦C.

Decarbonization Pathways for Key Industrial Sectors. Decarbonization will likely require
major changes to the production processes in the most emissions-intensive sub-sectors. In
cement and concrete, over half of total emissions are process emissions from limestone cal-
cination. Mitigation options include deploying CCUS on cement kilns, which range from
demonstration to pre-commercial stages (TRL 4–8), electrifying kilns (TRL 5), and shifting to
alternative cementitious materials. Some alternatives, such as alkali-activated binders, are
already commercially mature (TRL 9), whereas others, including materials derived from mag-
nesium silicates or non-carbonate calcium sources, are in early research phases (TRL 3–4).
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In iron and steel production, decarbonization can occur through retrofitting blast furnaces
with CCUS (TRL 5–9) or by replacing coking coal with biomass-based reductants (TRL 9). A
more transformative option involves Direct Reduced Iron (DRI) using low-carbon hydrogen
as the reducing agent (TRL 4–7). Several breakthrough technologies, including ore electrol-
ysis and flash ironmaking, are at the prototype stage (TRL 4–5) and could offer longer-term
solutions.

The chemicals and plastics sector faces dual challenges, as fossil fuels are used both for
energy and as feedstock. Potential strategies include applying CCUS to ammonia and methanol
production (TRL 5–11), switching to bio-based feedstocks (TRL 5–8), and using low-carbon
hydrogen to produce ammonia and methanol (TRL 7–8). Electrification of steam crackers, a
central process in plastics production, is a key innovation at the large prototype stage (TRL 5).
Advanced recycling methods such as pyrolysis and gasification, which convert waste plastics
into feedstocks, are moving from demonstration to commercial scale (TRL 6–9).

In aluminum production, emissions are driven primarily by electricity use in smelting and
by the consumption of carbon anodes. Decarbonization pathways include the use of renewable
electricity and the development of inert anodes, which release oxygen instead of CO2 and are
currently at the pre-commercial demonstration stage (TRL 7). Additional innovations include
electrifying high-temperature heat in alumina refining (TRL 3) and exploring hydrogen-based
heating options (TRL 5).

The pulp and paper industry is distinctive in its extensive use of biomass residues such
as black liquor for energy. Opportunities for further decarbonization include increasing effi-
ciency, electrifying heat, and deploying CCUS. Waste-to-energy systems such as black liquor
gasification are already mature (TRL 9), while high-temperature heat pumps (TRL 7) and elec-
tric boilers (TRL 9) can provide fossil-free heating. Innovations in dewatering and drying,
including processes based on supercritical CO2, are still at very early research stages (TRL 2)
but could deliver large efficiency gains.

E-waste Recycling. The rapid growth of electronic waste represents both a challenge and
an opportunity. Collection and sorting technologies are largely mature and commercially de-
ployed (TRL 10–11). Pre-processing and disassembly, by contrast, span a wide range of readi-
ness levels: robotic disassembly techniques are still in early stages (TRL 3), while conventional
mechanical and thermal processes are well established (TRL 11). Processing technologies such
as hydrometallurgy and pyro-smelting are commercially available (TRL 11), although more
advanced variants, including direct recycling and novel hydrometallurgy, remain at interme-
diate stages (TRL 5–6). Digital innovations, including battery passports (TRL 6) and the use of
digital twins (TRL 10), are being deployed to improve tracking and process efficiency.
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Emissions Management in Fossil Fuel Operations. Finally, reducing methane emissions
from oil and gas operations represents a critical near-term mitigation opportunity. Methane
is a potent greenhouse gas, and emissions occur through both leaks and deliberate venting.
A suite of mature technologies exists to address these emissions. Monitoring and repair
programs are well established (TRL 9–11), satellite-based systems now provide wide-area
detection capabilities (TRL 10), and low-emission equipment such as dry-seal compressors
and electric motors is fully commercial (TRL 11). Methane that cannot be recovered can be
destroyed using flares (TRL 11) or ventilation air methane oxidisers (TRL 10), which convert it
into less potent CO2.

3.1.7 Agriculture, Land Use, and Landfills

The agriculture, forestry, and other land use (AFOLU) sector, together with waste, is responsible
for roughly 18% of global greenhouse gas emissions (see Table 3). These emissions are domi-
nated by the potent non-CO2 gases methane (CH4) and nitrous oxide (N2O). Decarbonization
in this domain may require a multi-faceted approach, encompassing shifts in food production
and consumption, improvements in on-farm practices and land management, and the effective
control of emissions from waste.

Alternative Proteins: Shifting Production and Consumption. Livestock production is a
central driver of agricultural emissions, and shifting protein sources away from conventional
animal agriculture could be a powerful mitigation lever. A diverse set of alternative protein
technologies is emerging at different levels of technological maturity (Smith et al. 2024). Plant-
based meat alternatives are fully mature and commercially available (TRL 9). They deliver
substantial climate benefits, requiring far less land and water and producing up to 90% lower
GHG emissions than conventional beef. Insects, long consumed in many regions, are also a
mature option (TRL 9), offering highly efficient feed conversion ratios and significantly lower
resource requirements compared to livestock. However, cultural and political barriers may
limit the adoption of these low-carbon food sources.

Other alternative proteins are less mature but rapidly advancing. Algae, a highly pro-
ductive and versatile source of protein and oils, can be cultivated on non-arable land with
non-potable water, thus avoiding competition with traditional agriculture; current systems are
at demonstration to early commercial stages (TRL 8–9). Microbial fermentation encompasses
both biomass fermentation and precision fermentation. The former, used to produce mycopro-
teins, is commercially mature (TRL 9), while the latter—precision fermentation that programs
microorganisms to produce specific animal proteins such as casein or egg white—spans a
wider maturity range from prototype to early adoption (TRL 5–9). Cultured meat, produced
by cultivating animal cells in bioreactors, remains at the pre-commercial stage (TRL 5–8). Its
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long-term climate impact is uncertain and depends critically on the carbon intensity of the en-
ergy used in production. If powered by a fossil-heavy grid, its lifecycle emissions may exceed
those of conventional beef, since CO2 is longer-lived in the atmosphere than methane.

On-Farm Mitigation and Land Management. Beyond shifting consumption, significant re-
ductions in agricultural emissions can be achieved through changes in production practices and
land use. Precision agriculture constitutes a suite of mature technologies (TRL 8–9), including
GPS-guided equipment, remote sensing, and satellite imagery, that enable variable-rate appli-
cation of fertilizers, water, and pesticides. These practices reduce nitrous oxide emissions, cut
fuel consumption, and maintain yields while lowering overall input use, though they require
investment in data, skills, and equipment (Balafoutis et al. 2020).

Livestock emissions can also be mitigated through feed additives that inhibit enteric
methane formation. The synthetic compound 3-NOP (marketed as Bovaer) is commercially
available in several markets (TRL 8–9) and consistently reduces methane emissions by around
30% (Kebreab et al. 2023; Global Methane Hub 2024). Seaweed-based additives, such as As-
paragopsis, show higher potential—up to 80% reductions in trials—but remain less mature
(TRL 6–7) due to challenges in large-scale cultivation, durability, and safety. Another option
is the application of biochar, a carbon-rich product generated through pyrolysis of biomass.
Adding biochar to soils creates a stable carbon sink with storage timescales of decades to cen-
turies, while also improving soil health and yields. Biochar is considered a mature technology
(TRL 8–9), though its net climate benefits depend on the sustainability of feedstocks and the
cleanliness of the pyrolysis process (Chiaramonti et al. 2024; Kammann and Cowie 2024).

Landfill Emissions Management. Methane from the anaerobic decomposition of organic
waste in landfills is another significant source of emissions. Landfill gas capture is a fully
commercial and widely deployed technology (TRL 9) (Bogner et al. 2007). Gas collection
systems—comprising wells, covers, and piping—capture methane for flaring or for use as a
renewable energy source, displacing fossil fuels. Modern engineered landfills can achieve
capture efficiencies above 85%, with performance improving as sites are capped and operated
over time (U.S. EPA, Office of Air and Radiation, Climate Change Division 2024).

3.1.8 Adaptation Technologies

Adaptation technologies reduce vulnerability to climate hazards by addressing risks from heat,
drought, flooding, storms, and other physical impacts. Their scope is largely distinct from mit-
igation, but there are notable overlaps. For example, nature-based solutions such as mangrove
restoration protect coastlines while also sequestering carbon; distributed renewable energy
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Table 4: Taxonomy of Climate Adaptation Technologies
Area Description

A
gr

ic
ul

tu
re

an
d

Fo
re

st
ry

Agriculture

Development of crops tolerant to abiotic stresses (e.g., heat, drought,
salinity); improved land and water use efficiency; precision agriculture
tools (e.g., soil moisture monitoring, variable rate irrigation); climate-
informed planting and harvesting systems; and resilient greenhouse
technologies for controlled environment agriculture.

Ecological corridors
Design and implementation of habitat corridors and buffer zones to fa-
cilitate species migration, maintain landscape connectivity, and enhance
ecosystem resilience to climate change.

Livestock or Poultry

Improved shelter and ventilation for heat stress; heat-resilient breeds;
modified feeding strategies to account for forage loss or nutritional
shifts; and water storage and delivery systems adapted to drought and
high temperatures.

Fisheries

Heat- and salinity-tolerant species and strains; recirculating aquaculture
systems (RAS) to reduce exposure to climate-sensitive water conditions;
alternative protein feeds (e.g., insect- or algae-based); and monitoring
systems for water temperature, oxygen levels, and disease risk.

Food Processing

Off-grid cold storage and refrigeration powered by renewable energy;
improved insulation and packaging to preserve food under high tem-
peratures; and decentralised processing technologies to reduce spoilage
and maintain food quality during climate-related disruptions.

Coastal and Rivers

Hard infrastructure (e.g., dams, dykes, breakwaters); nature-based so-
lutions such as dune restoration, cliff stabilisation, artificial reefs, and
coral protection; and systems for flood control, stormwater manage-
ment, and flood or hurricane risk monitoring and mapping.

Water Conservation

Rainwater harvesting; desalination (including reverse osmosis powered
by renewable energy); grey water reuse (e.g., from basins or showers);
leak detection and reduction in distribution systems; water filtration and
off-grid purification; wastewater treatment (including solar-powered
systems); aquifer recharge; and saltwater intrusion barriers to protect
freshwater resources.

Infrastructure

Underground or reinforced power lines to reduce storm vulnerability;
high-performance insulation materials (e.g., vacuum glazing, natural or
recycled materials); green and reflective roofs to mitigate urban heat;
solar- or waste heat-powered HVAC systems; and urban green infras-
tructure to manage flood risk and reduce heat exposure.

H
ea

lth

Pollution

Emission reduction technologies (e.g., catalytic converters), particulate
matter capture systems, advanced air quality monitoring networks, low-
cost sensors for pollutants like PM and ozone, adaptive emission con-
trols, and real-time pollutant mapping platforms.

Diseases

Integrated disease surveillance systems, climate-driven epidemiologi-
cal forecasting models, mobile diagnostics, rapid response units for out-
breaks, and biocontrol innovations targeting climate-sensitive vector-
borne diseases (e.g., mosquitoes and ticks).

M
on

ito
rin

g

Weather High-resolution local forecasts, extreme event early warning systems,
seasonal climate outlooks, and downscaled climate projection tools.

Water
Watershed and groundwater sensor networks, remote sensing for sur-
face water extent, real-time flood/drought mapping and water quality
monitoring.

Species
Biodiversity inventories using eDNA and camera traps, GPS teleme-
try for migratory species, AI-driven species identification, and invasive
species alert platforms.

Note: Largely based on the Y02A section of the Cooperative Patent Classification
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systems can provide resilient power during extreme weather events; and sustainable land
management practices can improve soil moisture retention while enhancing carbon storage.

Table 4 summarizes key adaptation technology areas, ranging from water management
and climate-resilient agriculture to health systems, infrastructure resilience, and ecosystem-
based approaches. Priorities vary across regions, reflecting differences in exposure, adaptive
capacity, and development objectives. While mitigation pathways are often global in orienta-
tion, adaptation is inherently place-specific, requiring locally tailored technological solutions
supported by context-appropriate policy and investment frameworks. We describe adaptation
technology development in more detail in Section 5.

3.2 Measuring Innovation and Where it Comes From

Before describing key patterns and trends in clean technology innovation, we present a brief
introduction to innovation data and strategies for measuring new technology development.
Each measurement strategy comes with its own trade-offs, and there are often benefits to
combining multiple measurement strategies in order to understand the process of innovation
and technological change.

Patents. The most common strategy for measuring new technology development is using
new patent applications or awards.7 This strategy has several appealing features, including
the fact that it uses fully public and standardized data, allows for long time series, and provides
a wealth of information about each technology, including characteristics of the inventor and
of the patented technology itself. The categorization of each patent into a series of patent
technology classes makes it relatively straightforward to identify all patents related to specific
technology areas, including clean energy or climate adaptation (see Veefkind et al. 2012b, on
the identification of patent classes related to climate mitigation technology). Patent citation
information can be used to approximate the “importance” of each technology, and the full
citation network can be used to understand knowledge flows and spillovers across inventors,
firms, or technology areas (e.g., Donald 2023; Lensman 2025). Since patents are required to
reference all relevant prior art, the patent citation network paints a clear picture of the earlier
inventions on which new technologies are built. The way in which innovation builds on past
knowledge is a key feature of many models of directed technological change (see Section 2.2).

With recent advances in using language as data, patent text is increasingly exploited both
to develop new proxies for the importance of each technology (e.g., Kelly et al. 2021) and to

7. A useful open source tool for exploring US patent data is PatentsView since it has also harmonized a range
of patent-level information, including inventor names, inventor locations, etc. For global coverage, PATSTAT is
widely used and includes data from most major patent authorities. Another resource is Lens.org, which allows
users to browse patent data directly through a web interface, filter by technology codes (e.g., Y02E 10/50 for solar
PV), and generate summary statistics about applicants, inventors, and countries via its “Analysis” tab.

59

https://patentsview.org/home
https://www.epo.org/en/searching-for-patents/business/patstat
https://www.lens.org/


delve into further detail about what each technology accomplishes (see Dugoua et al. 2022;
Ganguli et al. 2024). The fact that individual patented technologies are often protected in
multiple countries (referred to as “patent families”) also makes it possible to track international
technology diffusion in a systematic way (e.g., Dechezleprêtre et al. 2011; Probst et al. 2021;
Touboul et al. 2023, on the international diffusion of mitigation and adaptation technology).

Patent data also has several drawbacks. First, patented inventions may or may not lead
to commercialized products or new technologies that ultimately are adopted and increase
productivity. There is no guarantee that changes in the number of patents correspond to
changes in what the researcher may ultimately care about. Second, patenting propensities can
differ substantially across firms (e.g., because of differences in the use of trade secrets), sectors
(e.g., because of differences in characteristics of technology), and countries (e.g., because of
differences in legal support or access), making these comparisons challenging. Third, patent
quality can be highly skewed, and strategic or defensive patents add to this challenge since they
likely represent limited technological advance. Changes over time or across technology areas
in these strategic incentives can lead to major differences in measured patenting rates. Finally,
there are many technological advances that are never patented, including trade secrets and
other information kept within the firm, new ideas in parts of the world where patent protection
enforcement is limited, and a range of new knowledge that is not patentable, including a large
share of service-sector innovation.

R&D expenditures. Another approach is using R&D investment statistics. For example, the
International Energy Agency (IEA) maintains detailed statistics of public investment in energy
technology research, development, and demonstration.8 Compustat maintains systematic data
on R&D investments made by public firms. An advantage to measuring R&D investment is
that, unlike measuring patenting or other “outputs” of research investment, there is no time lag
between when the firm or public entity decides to invest in innovation and when it is observed
in the data. Moreover, R&D information captures investments in technologies that may never
be patented or made public but that could nevertheless represent important advances in the
area of interest. The downside to R&D data, however, is that innovation inputs are not the
same thing as innovation output, and it is challenging to link changes in research budgets to
changes in new technology development or productivity. This is especially true given the
varied incentives, tax-related and otherwise, to increase reported R&D expenditure.

Scientific publications. Data on scientific publications are useful for measuring the “up-
stream” scientific advances that often underlie new technology development.9 The advantage

8. The IEA data can be accessed and analyzed at this link.
9. A useful open source data source for publication information is OpenAlex, which compiles a range of earlier

data efforts and has conducted a lot of useful data processing and labeling.
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of this approach is that it is often the only way to observe frontier knowledge production
and the arrival of completely new scientific ideas and approaches. Fundamental scientific ad-
vances are often published in scientific journals, but often not directly linked to a new patent or
product. Moreover, as with patent data, citation and authorship information make it possible
to directly measure knowledge spillovers and collaboration patterns. Also similar to patent
data, article text can be used to probe the nature of new ideas further. The downsides are
that publication information often fails to capture proprietary or applied research, and there
is often a long time lag between scientific publication and the development of a new product
or process. As with the patent data, differences in publication conventions across fields and
countries can make these comparisons challenging.

Venture capital and start-up investment. Venture capital investment has been responsible
for some of the most transformative technologies of the last several decades, both in developed
(Lerner and Nanda 2020) and developing (Lerner et al. 2024) countries. New start-ups are
often highly commercially oriented, and investment databases can make it possible to observe
valuations of different business models, stages of development of different products, and
investor networks and characteristics. However, these databases are often proprietary and
costly and can have limited coverage outside of the largest entrepreneurial ecosystems.10 Start-
ups — and venture-backed businesses in particular — also represent only a subset of innovative
firms and, as we described above, venture capital has a checkered past when it comes to
investing in clean technology (see Mallaby 2022). That said, venture firms are increasingly
investing in climate adaptation start-ups that help individuals, firms, or governments cope
with climate hazards (see e.g., Tailwind Futures 2024). A study of recent trends suggests that
entrepreneurial start-up firms may play a more prominent role in the future than they have
in the past (Van Den Heuvel and Popp 2023). One prominent example is the case of small
modular nuclear reactors, which are gaining steam in the US (Rauch 2023).

New product development or commercialization. A shortcoming to all the strategies above
is that they can fail to perfectly capture what researchers may often care about, which is the
development of a new technology or product that is brought to market and used directly
in production or by consumers. Most patented technologies are never brought to market;
scientific publications and research investments are often far upstream from commercializable
technologies; and start-up business models often fail, and the ones that survive represent only a
subset of the market. Therefore, some studies attempt to measure new product development or
commercialization directly; however, this approach does not lend itself naturally to all contexts

10. Common venture investment databases include Pitchbook, Crunchbase, and Refinitiv. Especially outside
the US, Pitchbook seems to have the most comprehensive coverage (see Lerner et al. 2024, who compare the
coverage of these sources in a large sample of countries).
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and can be challenging or impossible in many settings.
One example of this approach comes from agriculture, where studies have used the release

of new seed varieties in order to understand how technology development and adoption
respond to worsening climate trends (see Butler and Huybers 2013; Singh et al. 2020; Xiong
et al. 2021; Moscona and Sastry 2023; Moscona 2025). Another example is studies of innovation
in the biomedical sciences that investigate how different forces affect the development of new
drugs or diagnostics (e.g., Williams 2013; Budish et al. 2015) The exact approach to measuring
for-market products will likely vary across contexts, but the value of developing such an
approach for understanding the process of technology development, energy efficiency, or
production resilience could be high.

Downstream efficiency or productivity. When studying clean technology investments or
climate adaptation innovation, the researcher may ultimately care about the impact on down-
stream energy costs and efficiency or on production resilience. In the context of energy tech-
nology development, it is possible to directly measure the prices of different energy sources.
For example, in an influential paper, Way et al. (2022) uses cost reduction patterns across many
technologies to forecast the economic impact of the energy transition (see also Figure 2). It
may also be possible to directly measure technology improvements (e.g., solar cell efficiency,
wind blade size, battery cost, etc.). When studying climate adaptation technology, it can be
important to estimate how new technology affects actual production resilience or human health
to understand its real-world impact. Some papers, for example, have shown that exposure to
air conditioning—the most prominent climate adaptation technology—reduces the marginal
effect of extreme heat on mortality (Barreca et al. 2016). Others have shown that exposure to
climate-induced adaptation technology development in agriculture reduces the marginal effect
of extreme heat on agricultural productivity (Moscona and Sastry 2023; Moscona 2025). New
approaches to connect new innovations and technology development to their downstream
consequences for producers and consumers could be very valuable.

3.3 The Dynamics and Geography of Clean Innovation

In this section, we use the data described above—especially data on patenting—to describe key
trends in climate mitigation innovation over the course of the past several decades. First, we
track the early take-off of green innovation starting in the 1990s. Second, we discuss the drop-
off in innovation during the 2010s, known as the “Green Drop.” Third, we describe the rise of
China in clean technology development, perhaps the most dramatic change in the innovation
landscape in recent years. Finally, we describe the process of clean technology diffusion.
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3.3.1 The Takeoff of Green Innovation: 1990-2010

The two decades from 1990 to 2010 marked a break in the trajectory of energy technology.
Unlike the clean technology response to the 1970s oil-shock response (Popp 2002)—a wave of
research that receded when fuel prices fell—this period saw a sustained, policy-led shift toward
low-carbon innovation. New climate institutions, domestic markets for clean technologies, and
targeted industrial policies moved emerging clean technologies from high-cost niches to the
edge of large-scale deployment. The period incubated a new generation of technologies and
established the conditions for later diffusion.

Patents provide clear evidence of the shift. Figure 5 shows that patenting on clean tech-
nologies rose continuously throughout the period, and especially sharply towards the end
of the 2000s. Solar and batteries increased most strongly, while carbon capture grew from a
small base. Fuel cells and hydrogen displayed a different cycle: rapid growth to a mid-2000s
peak followed by decline, reflecting the well-documented boom and bust in this sector (Melton
et al. 2016; Dugoua and Dumas 2024). Fossil-related technologies—combustion power, fossil
supply, and internal combustion engines—also grew. Thus, the clean-technology surge of this
era may be better seen as largely additional to, rather than substitutive of, fossil innovation. That
said, by the end of the period, the number of new patents related to dirty technologies began
to level off or even decline in some areas.

Public research, development, and demonstration (RD&D) funding followed a comparable
pattern, a first indication that public support drove part of the increase in clean technology de-
velopment. Section 2.1 describes a range of market failures, chief among them the externalities
from production using dirty technology, that can justify public intervention. Figure 6 shows
that funding rose steeply around 1980 in response to the oil crises, with nuclear capturing a
large part of the increase, especially in Japan. Spending then declined through the 1990s before
rising again from the early 2000s. The composition also shifted: nuclear RD&D fell sharply,
while funding for energy efficiency and renewable technologies increased. In the United
States, the sharp spike in 2009 reflects the stimulus package under the American Recovery and
Reinvestment Act. Venture capital also entered the sector during this period. Cleantech in-
vestment, negligible in the 1990s, grew quickly after 2004 but collapsed with the 2008 financial
crisis (Gaddy et al. 2017). We examine this collapse in greater detail in Section 3.3.2.

Policy changes from 1990–2010 also strengthened incentives for clean technology innova-
tion. What changed in this period was the introduction of demand-pull measures that created
more stable markets for clean technology and reduced investment risk. International agree-
ments set the broader context. The UNFCCC in 1992 created a framework for cooperation, and
the Kyoto Protocol in 1997 (in force 2005) introduced binding targets. Kyoto lacked strong en-
forcement mechanisms, and the United States did not ratify it, but the agreement nonetheless
encouraged several countries to adopt more ambitious domestic measures. The most influen-
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Figure 5: Patenting Trends in Energy Technologies

Note: Panels (a) and (b) plot annual patent family counts for clean and dirty energy technologies in levels, while
panels (c) and (d) use a log scale. These figures show international patent families, defined as DocDB families in
PATSTAT with applications filed in at least two different countries. The year refers to the filing date of the first
application in the family. For details on patent data construction and processing steps, see Appendix A.3.
The log panels highlight proportional growth, making it possible to observe the expansion of small but important
categories such as carbon capture and storage (CCS), which remain limited in absolute terms. Clean patenting
rises strongly after the mid-2000s, led by solar and batteries, with wind and smart grids also increasing. There is
a clear drop across many clean technologies around 2012, a phenomenon we return to in Section 3.3.2. In contrast,
dirty technologies continued to grow through about 2015, after which some categories—especially transportation-
related ones—show sharp declines.

tial policies were national interventions that guaranteed prices or sales volumes. Germany’s
Renewable Energy Sources Act of 2000 established long-term, technology-specific feed-in tar-
iffs with priority grid access. By eliminating price and market risk, it unlocked investment and
triggered large-scale deployment, particularly in photovoltaics. In the United States, state-level
Renewable Portfolio Standards mandated rising shares of renewable electricity, creating pre-
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Figure 6: Public RD&D Spending on Clean Energy

Note: Data are from the IEA Energy Technology RD&D Budget database (2025) and reported in constant USD.
Values cover public budgets classified as “Research, development and demonstration.” “Total IEA” is the aggregate
across all reporting countries, and technology categories follow IEA definitions.
Trends across countries (Panel a) show that spending rises steeply after the 1970s oil shocks, declines through the
1990s, and climbs again from the mid-2000s, with a sharp US spike in 2009 under the American Recovery and
Reinvestment Act. Since 2010, China has expanded rapidly and now ranks alongside the US and EU+UK+CH as
a leading funder, while Japan and Korea remain significant but below past peaks.
By technology (panel b), nuclear still absorbs the largest share, but recent growth comes from renewables, energy
efficiency, hydrogen and fuel cells, and power/storage technologies. Fossil RD&D has fallen relative to its 1980s
peak; note that this category includes CCS funding. The overall pattern shows that while the early surge was
nuclear-led, recent increases are broader, with clean energy technologies steadily gaining weight in public RD&D
portfolios.

dictable demand that drove growth, especially in wind. The EU Emissions Trading System,
launched in 2005, provided a broad carbon price signal. In its first phase, allowance prices were
low and volatile, which limited the impact. In the second phase (2008–2012), however, higher
and more stable prices emerged, and evidence shows that the ETS did stimulate innovation in
regulated sectors (Calel and Dechezleprêtre 2016).

Two factors reinforced these trends. Niche markets provided early opportunities for learn-
ing and scale. In photovoltaics, Japanese firms built reliable demand by integrating solar cells
into consumer electronics and later expanded under Japan’s first residential subsidy program.
This foundation made the technology ready for large-scale deployment once German feed-in
tariffs created a mass market (Nemet 2019). Rising oil and gas prices in the mid-2000s also
improved the competitiveness of alternatives and coincided with the cleantech venture boom.

Innovation during this period was highly concentrated (see also Dechezleprêtre et al. 2011).
A small group of advanced economies (Japan, the United States, and Europe, with Germany
particularly prominent) accounted for the majority of climate-mitigation inventions. Figure 7
displays clean technology patenting over time, grouped by both the country or region of the
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Figure 7: Geography of Clean Energy Patenting Over Time

Note: Panels (a) and (b) show international patent families, while panels (c) and (d) show all families. International
families are PATSTAT DocDB families with applications filed in at least two countries. “Origin country” is
assigned hierarchically: inventor country; if missing, applicant country; if missing, the country of the authority
of the family’s first filing. “Authority” refers to the office of the family’s first filing. Years correspond to the first
filing year of the family. See Appendix A.3 for data processing details.
Among international families, the vast majority originated with inventors in the United States, Japan, and Europe.
This pattern still holds, but since 2010, Chinese inventors have claimed a growing share. The shift is far more
dramatic when all families are considered: because many Chinese patents are filed only domestically, China’s
share rises steeply from around 2005 and reaches nearly 70% by 2020.
Filing authorities show a parallel evolution. The USPTO, EPO, and JPO were the main destinations through the
2000s, but by 2020, CNIPA had become one of the largest offices even when counting only international families.
Taken together, the figure illustrates both the globalization of clean innovation and the central role of China’s
domestic patent system, while also showing that the geography of origin and the geography of protection are
fairly aligned.
JPO = Japan Patent Office; EPO = European Patent Office; USPTO = United States Patent and Trademark Office;
CNIPA = China National Intellectual Property Administration.
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inventor (Figures 7a and 7c) and by the patent office in which the patent was filed (Figures
7b and 7d). We display the results both for patents that were filed in multiple patent offices,
often indicating that it is a particularly high-quality or broadly applicable technology (Figures
7a and 7b) and for the full sample of global patents filed in any authority (Figures 7c and 7d).
Before 2010, the vast majority of patents originated from Japan, the United States, and Europe,
and most patents were also filed in those authorities, indicating that mitigation technologies
were designed for these high-income markets. The dramatic rise of China, both in terms of
both where new technologies are developed and where they are commercialized, is apparent
across all sub-figures. We return to this rise in Section 3.3.3.

Within each country, regional clusters reinforced progress. In Japan, national agencies such
as NEDO (the New Energy and Industrial Technology Development Organization) and AIST
(the National Institute of Advanced Industrial Science and Technology) coordinated large-scale
programs with industry and academia, supporting advances in photovoltaics, efficiency, and
hybrid vehicles (Yamaguchi 2001; Åhman 2006; Suzuki et al. 2014). In Germany, manufacturing
centered in the “Solar Valley” of Bitterfeld–Wolfen/Thalheim, while Fraunhofer ISE in Freiburg
provided applied research capacity (Brock et al. 2021; Llanos-Paredes 2023). Denmark built
a strong wind industry around firms such as Vestas, supported by suppliers, universities,
and national test facilities that enabled rapid iteration (Lema et al. 2014) (see also Section 4.2
for examples of successful case studies of climate industrial policies). In California, venture
capital and entrepreneurship targeted energy hardware and materials, catalyzing rapid firm
entry (Gaddy et al. 2017; Lerner and Nanda 2020).

International patenting patterns confirm this concentration. Figure 8 shows the origin–by-
destination flows of foreign-oriented patent families, groups of patents that are related to
the same focal technology but protected in multiple countries (e.g., a patented technology
first protected in the US and subsequently protected in Japan and South Korea). These flows
indicate an intent to commercialize or license technologies in other markets. Japanese inventors
filed extensively at the USPTO, with additional flows to the EPO and CNIPA of roughly similar
size. US inventors frequently patented in Europe, reflecting its importance as a destination
market. Within Europe, Germany hosted the largest pool of clean inventors, followed by France,
the United Kingdom, and Italy. Overall, these cross-filings highlight how a small group of
economies acted both as the principal sources of clean innovation and as the main targets for
international protection, further reinforcing the patterns highlighted by Figure 7.

3.3.2 A Pause in Clean Energy Innovation: The 2011–2014 Patenting Dip

Between 2011 and 2014, clean energy patenting fell sharply. This decline has been documented
before–most clearly by Popp et al. (2022), who showed that filings for a wide range of clean
technologies dropped across major patent offices during this period. With the benefit of several
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Figure 8: Flows of Foreign-Oriented Clean Energy Patent Families

Note: The figure shows foreign-oriented patent families, defined (following WIPO) as families with inventors or
applicants in one country that are filed in at least one other country. Origin is taken as the inventor country; if
missing, the applicant country; if still missing, the authority country of the first filing. The destination is the office
of the foreign filing(s). For readability, European national offices and the EPO are grouped together. Note that a
family with German inventors filed in France is considered foreign-oriented in this context. For details on patent
data construction and processing steps, see Appendix A.3.
In both 2005 and 2020, the United States, Japan, and the main European countries (Germany, France, the UK)
account for the bulk of foreign-oriented families, while East Asia stands out as a second major hub with Japan,
South Korea, and Taiwan all highly visible. The largest flows are Japan→USPTO, Japan→China, and US→Europe,
and these remain prominent throughout the period. China was already significant in 2005, as an important
destination, with CNIPA among the main authorities alongside USPTO and EPO. By 2020, its importance had
grown sharply on the inventor side, making it one of the leading origins of foreign-oriented families. We also note
that India appears by 2020 as one of the top ten origin countries. Together, these flows highlight the enduring
dominance of the US, Japan, and Europe, the central role of East Asia, and the rapid rise of China as both a source
and destination of foreign-oriented clean patenting.
JPO = Japan Patent Office; EPO = European Patent Office; USPTO = United States Patent and Trademark Office;
CNIPA = China National Intellectual Property Administration.

years of additional data, we can now revisit this episode to see how persistent it was and what
happened next.

Figure 9a shows trends in international clean patent families across the four major patent
offices. The patterns are broadly similar: counts rose steadily until peaking around 2011–2012,
then declined to a low point in 2014 before recovering. The size of this “green patenting drop“
varies by office: about 11% at the JPO, 8.6% at the EPO, 2.8% at the CNIPA, and only 2% at
the USPTO. This figure focuses only on international families. If instead we consider all clean
families (i.e., including those filed only in a single patent office), the picture in China looks
very different: domestic clean patenting continued to grow during this period, though at a
slower pace than in the 2000s.

The green patenting drop is also not confined to one or two clean technologies. It shows
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up in solar, wind, batteries, and many other low-carbon technologies alike11. However, the
recovery was relatively quick across all regions. By 2020, each major authority recorded more
clean technology filings than before the dip. The rebound was weaker in Japan, while China
recovered rapidly and now rivals the USPTO in the number of clean patent families. In contrast,
fossil-related patenting shows no similar rebound. In all authorities, dirty technology filings
held steady or continued declining.

So what happened? The causes are likely multiple and overlapping. First, the timing
coincides with a cleantech VC bust. Following a wave of investment into capital-intensive
clean technologies, cleantech venture funding collapsed after 2011. More than half the capital
invested from 2006–2011 was never recovered (Gaddy et al. 2017). By 2013, annual VC flows into
the sector had fallen by over 80%. The bust was reinforced by the post-2008 credit crunch, which
left young cleantech firms especially vulnerable; tight financial conditions disproportionately
curtailed green patenting during this period (Aghion et al. 2024).

Second, policy support weakened or became more uncertain. Tax credits and feed-in tariffs
were cut or allowed to expire in key markets such as Germany or Spain, undermining incentives
to invest in new technology. International negotiations also faltered in Copenhagen in 2009
(Reuters 2009). There were also shifts in relative prices for reasons unrelated to these policy
changes. The post-2008 shale boom in the United States pushed gas prices to record lows,
making renewables relatively less competitive and re-directing technical effort toward fossil
extraction (Acemoglu et al. 2023; Dugoua and Gerarden 2025).

China’s rapid scale-up of solar manufacturing may have also put pressure on international
firms and may have discouraged further innovation in places like the US and Europe. Massive
industrial support for domestic solar manufacturing led to global oversupply and plunging
PV prices, squeezing margins and innovation budgets in Europe and the US (Hart 2020;
Banares-Sanchez et al. 2024). Technological maturity may have played a role, too. With
the manufacturing scale-up initiated by China, both wind and solar may have converged on
dominant designs with a greater focus on process improvements rather than a rise in the
number of newly patented technologies.

These mechanisms likely reinforced each other. Policy pull weakened just as private in-
vestment collapsed, while Chinese scale-up accelerated as incumbents retrenched. The result
was a temporary but broad-based contraction in clean energy patenting. The rebound that
followed suggests this was not a structural break in innovation capacity but a pause driven
by short-term financial, policy, and market shifts. More broadly, as described in Section 2.2,
it shows how responsive innovation is to short-term changes in the alignment of investment,
policy, and industrial dynamics.

11. These trends can be explored via our companion web app here.
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Figure 9: The “Green Drop” and the Rise of Chinese Patenting

Note: Panel a shows trends in international patent families between 2000 and 2020 across clean and dirty tech-
nologies, while panel b zooms in on clean patenting at CNIPA and USPTO, distinguishing between all families
and the international subset. “International” refers to PATSTAT DocDB families filed in at least two jurisdictions;
year = first filing. The figure shows more lines for CNIPA because it distinguishes between invention families
and all families. CNIPA records also cover weaker forms of patent protection that do not exist at the USPTO. The
USPTO lines, by contrast, capture only standard invention families. For details on patent data construction and
processing steps, see Appendix A.3.
The data highlight two patterns. First, a sharp “green drop” in international clean patenting occurred in the early
2010s, visible across major offices, whereas dirty patenting continued to rise until the mid-2010s before flattening
or declining (see Section 3.3.2 for more details). Second, when looking at all clean families, CNIPA has become
the dominant venue for clean filings. Clean families at CNIPA surge from the mid-2000s, far outpacing USPTO
counts, though most remain domestic. Even among international families, however, CNIPA shows strong growth.
This may not be immediately visible in the figure, since the graph also includes Chinese-only clean families whose
very high counts push the scale upward. If those lines were excluded, the lower curves would appear more clearly,
and the CNIPA international families in particular would stand out as having grown substantially from their low
base in the early 2000s. This underscores both the rapid rise of China as the central hub of clean patenting (see
Section 3.3.3 for more details).
JPO = Japan Patent Office; EPO = European Patent Office; USPTO = United States Patent and Trademark Office;
CNIPA = China National Intellectual Property Administration.

3.3.3 The Rise of China in Clean Technology

After the 2011–2014 slowdown, clean innovation resumed growth in all major economies. What
most clearly marks the post-2015 period, however, is the dramatic rise of China. Its surge in
patenting and deployment rapidly altered the global balance, placing China alongside—and in
some areas ahead of—the US, Europe, and Japan. This ascent was the product of a deliberate,
multi-decade strategy that combined innovation, industrial policy, and large-scale deployment.
It unfolded along three dimensions: the expansion of new technology development (which is
apparent in the patent data), unprecedented increases in R&D investment, and a large-scale
increase in manufacturing and adoption that reshaped global markets.

China’s rise is most evident in clean patenting. Figure 9b reports families filed at CNIPA,
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distinguishing invention families, utility models and designs, and international invention
families (filed in at least two jurisdictions). For comparison, filings at the USPTO are also
shown. The growth at CNIPA is striking.

Patent quality remains contested, though. Critics point to the prevalence of utility models
(i.e., weaker forms of protection for less novel technologies), the large share of patent ap-
plications that are never granted, and the presence of government subsidies that encourage
increasing filing volume. Others argue that the surge reflects genuine inventive activity, noting
its coincidence with rising R&D spending and rapid industrial upgrading. Figure 9b shows
that, even excluding utility models, invention families expanded quickly, with China surpass-
ing the US around 2008. Evidence from granted invention families (not plotted) confirms this
pattern: China overtook the US around 2012 and by 2020 was filing about twice as many. Sim-
ilar results are found for highly cited families.12 Grant rates also differ markedly across offices.
At the USPTO, about 89% of applications filed in 2017 were eventually granted. At CNIPA,
the comparable share was only around 50%, though it had risen to nearly 58% by 2020.13 The
lower CNIPA grant rate has reinforced concerns that many Chinese filings are strategic or of
limited quality.

In response to these criticisms, the Chinese government launched reforms beginning in
2021. The most prominent step was the cancellation of local subsidies that directly rewarded
filing (Xinhua 2021), which likely encouraged volume over substance. These were replaced
by performance-based incentives tied to commercialization and technological contribution.
Stricter examination guidelines and higher fees for low-quality applications were also intro-
duced to deter opportunistic behavior. Taken together, these measures were designed to shift
the system away from patent counts and toward quality and economic relevance.

International patent families present a different picture from the trends using all patent
data (see Figure 7). The total number of patents filed by Chinese inventors has long surpassed
that of US inventors. After 2005, patenting in China accelerated sharply, and by 2020 nearly
70% of clean technology families were filed at CNIPA. This reflects China’s emergence not just
as a prolific filer but as the central locus of global clean technology patenting. When we focus
on international families, on the other hand, Chinese inventors still trail US inventors by a small
margin. While international families are often used as a proxy for higher-quality inventions,
however, it is not obvious that domestic-only patents are inherently low quality. Could China’s
clean-tech market now be large enough that many inventors see little need to patent abroad?
Might recent geopolitical frictions and strategic decoupling further reduce the business case
for foreign filings? Treating single-country families as uniformly weak may be misleading.

12. These trends can be explored via our companion web app here
13. We calculate these rates by dividing the number of clean families filed at authority j in year t that PATSTAT

records as granted. A caveat is that PATSTAT codes a family as granted if at least one application in the family is
granted in any office, so our measure does not account for where the grant occurred.
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More empirical work is needed to provide a nuanced assessment of the quality of domestic
clean-technology patents in China.

China’s patenting outcomes come with equally extraordinary investment in research and
development. Figure 6a shows that China is now among the top investors in public clean
energy RD&D, roughly on par with the United States and Europe. By 2023, its gross domestic
expenditure on R&D reached about $700 billion, or 26% of global R&D spending, up from
only 4% in 2000 (Bonaglia et al. 2024). R&D intensity rose to 2.6% in 2023, nearly matching the
OECD average of 2.7% (OECD 2025). Although most of the R&D is funded by the business
sector14, much of this is conducted by state-owned enterprises or firms backed by state-directed
funds, underscoring the blurred boundary between public and private capital (China Power
Team 2018).

Beyond innovation, the size of China’s manufacturing sector has enabled the deployment
of clean technologies at scale, reshaping the global market as the center of clean technology
adoption. This could help explain why such a large share of Chinese inventors choose to only
protect their technology in China—in many areas, it represents the largest market. Figure 10
tracks installed capacity in solar photovoltaics, wind, and electric vehicles (EVs). In short, China
now has more solar and wind capacity and EVs than all high-income countries combined. For
solar, deployment in high-income countries began to scale around 2010, led by Europe. From
2015 onward, however, China accelerated sharply and by 2023 had overtaken the combined
total of high-income economies. Wind deployment in high-income countries expanded before
2010, but China ramped up quickly in the early 2010s and is now the largest market. The most
dramatic case is EVs. After 2020, China experienced a dramatic increase, moving from fewer
than 2 million EVs to more than 11 million in just four years—a scale-up that left the EU and
United States far behind.15

China’s dominance in clean technology innovation and adoption is reinforced by its control
over supply chains. In solar photovoltaics, in 2022, it held more than 80% of global market
share across all stages, from polysilicon to finished modules (IEA 2022b). In wind, by 2024
Chinese firms accounted for 70% of new global installations (GWEC 2025), with the top four
of the largest turbine manufacturers based in China (BloombergNEF 2025). In electric vehicles
and batteries, China produced 12 million EVs in 2024—over 70% of the world total (Aranca
2025)—and CATL alone supplied nearly 40% of global batteries (SNE Research 2024). In
Section 6.3, we describe in greater details China’s control of the supply chain for minerals, key
ingredients in a large share of clean technologies. China has also consistently met or exceeded

14. 78% in 2025 compared to 69% in the US and 57% for the EU (Eurostat 2024)
15. On a per capita basis, China still lags behind in solar and wind but is far ahead in EVs. Solar capacity stands

at 0.63 kW per person in China, compared with 0.68 in the EU and 0.51 in the US. Wind capacity is 0.37 kW per
person in China, 0.51 in the EU, and 0.44 in the US. For EVs, China leads by a wide margin, with about 8 per 1,000
inhabitants, compared with 5.0 in the EU and 4.4 in the US. EVs now represent almost half of all new passenger
vehicle sales in China (IEA 2025c).
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Figure 10: Clean Technology Deployment Across Regions

Note: Panel 10b has been reproduced from IRENA (2024a), Panel 10a from IRENA (2024b) and data for Panel 10c
are from the IEA’s Global EV Outlook 2025, processed and visualized by Our World in Data. Panel 10b reports total
installed solar electricity capacity (on- and off-grid), including both photovoltaic and concentrated solar power,
measured in gigawatts. Panel 10a reports total installed wind electricity capacity (on- and off-grid), including both
onshore and offshore, also in gigawatts. Panel 10c reports annual sales of electric cars, defined as fully battery-
electric vehicles and plug-in hybrids. The figures illustrate the rapid global expansion of these technologies, with
China emerging as the dominant market for solar, wind, and EV deployment.

its own deployment targets, reaching its 2030 goal for installed wind and solar capacity six
years early, in 2024 (L. 2025).

These outcomes rest on an aggressive and evolving policy framework. In the early 2000s,
China’s accession to the WTO provided the external pressure and political justification to
restructure state-owned enterprises, liberalize input markets, and attract foreign direct invest-
ment, building the industrial foundation for future growth (Zhu 2012). During the mid-2000s,
binding energy-intensity and pollution-reduction targets, together with the 2005 Renewable
Energy Law and wind procurement rules, created predictable home-market demand and pro-
tection for domestic suppliers in efficiency technologies, flue-gas desulfurization, and wind
(Cao et al. 2009; Price et al. 2011). The solar sector remained export-oriented until the 2008
crisis. When European demand collapsed, China introduced a suite of domestic support pro-
grams, including subsidies and a national feed-in tariff (2011), which redirected excess capacity
to the home market, stabilized the industry, and entrenched its cost advantage (Zhang and He
2013) (Nahm 2023).

Since the mid-2010s, this ambition has broadened to securing global primacy and supply
chain control. Industrial strategies such as Made in China 2025 and the 14th Five-Year Plan
mobilized vast financial resources for R&D, promoted vertical integration from raw materials to
final products, and fostered intense domestic competition followed by consolidation (Wübbeke
et al. 2016; Institute for Security and Development Policy 2018; Aglietta et al. 2021). Firms such
as BYD and CATL emerged from this process as globally competitive champions, battle-tested
in domestic price wars and equipped with the scale and integration to dominate international
markets (IEA 2024d).

Taken together, while there is room for debate about the full extent of China’s rise, the
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evidence suggests that China has become a global leader in clean technology innovation,
manufacturing, and deployment. This process involved a combination of state investment,
industrial capacity, and large domestic markets. China’s patenting and R&D investment in-
tensity either match or have surpassed that of advanced economies, and manufacturing scale
has lowered global costs and accelerated worldwide deployment. In many ways, China has
become both the largest clean technology market and a central driver of global innovation, cost
reduction, and supply chain control.

3.3.4 Geographic Gap between Innovation and Diffusion

Clean-tech innovation is concentrated in a few global hubs, with China’s rapid rise alongside
established leaders in the United States, Japan, and Europe (see Probst et al. 2021). This con-
centration highlights an important asymmetry: while invention is geographically concentrated
in a small set of countries, the challenge of emissions reduction is global. For mitigation to suc-
ceed, technology diffusion must occur wherever energy demand is growing, including across
the low and middle-income countries in Africa, Asia, and South America.

Innovation and diffusion are distinct stages of technological change. Patents and R&D
expenditures show where ideas are created and where inventors anticipate markets. Diffusion
is about adoption and use, which depend on local infrastructure, financing conditions, and
institutions in addition to the technology itself. In environmental settings, policy influences
both invention and adoption, but the drivers of diffusion are broader than price or performance
alone. Existing evidence using global patent data suggests that the diffusion of climate-
mitigating technology is limited in practice, especially diffusion to low and middle-income
countries (Dechezleprêtre et al. 2011; Probst et al. 2021)

One force shaping technology diffusion (or the lack thereof) is the broad set of market fric-
tions in the adopting locations that can constrain technology adoption. The earlier Technology-
Readiness-Level-market-failure framework, presented in Table 2, highlights many of these bar-
riers. That framework traced the path of technologies from the first appearance of an idea
through to mass-market adoption, with different barriers binding at different points along the
way. As technologies move toward widespread use, other frictions become decisive: high costs
of capital, inadequate infrastructure, coordination failures, regulatory risk, and information
asymmetries.

Another force shaping technology diffusion is the direction of technology itself and potential
mismatch between frontier technology and technology requirements around the world (see also
Section 2.2.4). Frontier R&D portfolios often reflect the conditions of high-income economies.
In transport, innovation has concentrated on battery electric vehicles, which presuppose re-
liable grids and high purchasing power. Rapson and Muehlegger (2023) point out that, by
contrast, in lower-income settings, near-term decarbonization may be more feasible through
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liquid biofuels that make use of the existing vehicle stock and distribution infrastructure.
In the power sector, advanced economies have focused on deploying large-scale renewables
supported by expanded transmission networks. By contrast, many low- and middle-income
countries face severe grid constraints and instead depend on off-grid and mini-grid solar so-
lutions. Even in the United States, delays in building new transmission lines have become a
major obstacle, showing that infrastructure is often the binding constraint on diffusion (Davis
et al. 2023).

Barriers to diffusion are compounded by the fact that costs vary widely across sectors and
regions. A technology that is competitive in one setting may not be economical in another.
Capital-intensive options are particularly sensitive: where financing is scarce or interest rates
are high, projects that look viable on paper cannot be built. Learning by doing and learn-
ing by using require sustained deployment at scale, so countries with limited rollout may
never capture these cost reductions. Expectations about future demand also matter, since
firms direct investment toward markets where policy signals and procurement create credible
opportunities. Taken together, these dynamics rule out the idea of a single global technol-
ogy hierarchy. Instead, effective decarbonization strategies require portfolios tailored to local
financial, institutional, and infrastructural conditions (Gillingham and Stock 2018).

We think that there are three main lessons from this discussion. First, invention and dif-
fusion indicators both need to be taken into account. Patent counts or R&D expenditures
measure where ideas are generated, but they cannot be taken as evidence of technology adop-
tion. Tracking deployment, investment flows, and complementary infrastructure is equally
important to understand where emissions will actually fall. Second, a major role of policy is
to address the barriers that bind on the diffusion side of the TRL scale. This includes lowering
financing costs, expanding infrastructure and standard-setting, reducing regulatory risk, and
building local skills and institutions. Such measures are not substitutes for innovation policy
but necessary complements. Without them, concentrated invention remains trapped in a few
markets and fails to deliver global emissions reductions. Third, full deployment of mitigation
technology may not be possible without shifting the direction of technological change toward
applications that are relevant and economical, and low- and middle-income countries and
other settings where existing frontier technology is not being adopted.

For comprehensive reviews of diffusion in clean technologies, see Popp et al. (2010) and
Corey et al. (2014). Broader surveys of technology diffusion can be found in Stoneman and
Battisti (2010) and Stokey (2021). Recent evidence on concentrated invention and uneven
international transfer is provided by Probst et al. (2021). Since international trade is a major
channel shaping technology diffusion, we also direct readers to the chapter on this topic in this
volume (Farrokhi et al., Forthcoming).
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4 Climate Policy and Technology

For much of the past three decades, climate policy was framed as a textbook market failure:
greenhouse gas emissions are an externality best corrected by a technology-neutral carbon
price. A tax or cap-and-trade system would internalize the social cost of carbon, markets would
steer capital toward the lowest-cost abatement opportunities, deliver least-cost abatement, and
provide continuous incentives for innovation. This logic was powerful and elegant, and it
inspired an extensive literature focused on market-based policy instruments (see Figure 1),
including many papers showing how they induce innovation and shape technological change.

In practice, political resistance has constrained carbon prices, and other failures—including
knowledge spillovers, coordination problems, capital-market imperfections, and technology
lock-in—further limit the effectiveness of pricing alone. These limits have been reinforced by
geopolitical rivalry, supply-chain vulnerabilities exposed by recent crises, and the sentiment
that existing policies were too slow to deliver decarbonization. For all these reasons, govern-
ments have moved beyond a carbon-price-only paradigm. Many countries are now adopting
a more interventionist model of green industrial policy. This approach is not only about inter-
nalizing an externality; it is about deliberately building, scaling, and in some cases relocating
clean energy innovation and manufacturing.

This section examines how policy shapes innovation through several complementary lenses.
We begin with a brief discussion of the effect of demand-side instruments such as carbon prices
and standards on innovation. We then turn to the rise of green industrial policy, outlining its
rationales, risks, and the lessons from historical and contemporary case studies. Next, we
describe the new wave of large-scale initiatives—the IRA, the EU Green Deal, China’s 14th
Five-Year Plan, India’s PLI schemes, and others—and discuss why rigorous ex post evaluation
will be essential. We then assess the balance between RD&D and deployment subsidies, high-
lighting the risks of premature lock-in. We also explore how political and policy design-driven
uncertainty can undermine credibility and chill investment. Finally, we remind the reader
that not all policy changes push in the direction of greater investment in clean technology; in
fact, recent years have seen the rise of fossil fuel subsidies that could do the exact opposite.
Together, these subsections trace the evolution from first-best prescriptions to the messy but
unavoidable pragmatism of other policy mixes.

Climate policy is a broad domain, spanning decades of economic theory and an extensive
empirical literature. Much of this work is already well surveyed elsewhere (Stavins 2003;
Goulder and Parry 2008; Aldy et al. 2010; Sterner and Robinson 2018; Metcalf 2021; Timilsina
2022; Kotchen 2024, e.g.,). See also Moore and Rising (Forthcoming) in this volume for a review
of central critiques of climate policy in economics. The aim here is therefore not to provide
an encyclopedic review but to offer an entry point for readers new to the field, to highlight
the main debates as they relate to technological innovation and diffusion, and to distill lessons
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from emblematic cases.

4.1 Demand-Side Policy Instruments

A central concern in environmental economics is how different instruments affect incentives for
innovation. Market-based instruments (MBIs)—carbon taxes and cap-and-trade systems—are
widely considered superior to command-and-control (CAC) standards in terms of dynamic
efficiency. Because pollution always carries a price under MBIs, firms profit from any inno-
vation that lowers abatement costs: adopting cleaner inputs reduces tax bills or frees permits
for sale. This incentive is continuous and does not diminish once a compliance threshold is
met. By contrast, under CAC standards, incentives typically end once the firm meets the man-
dated emissions rate or technology requirement. Indeed, stringent CACs can even discourage
disclosure of innovation if regulators tighten the standard in response.

Greaker and Popp (2022) make this distinction concrete with a simple model using the
familiar marginal abatement cost (MAC) and marginal environmental damage (MED) curves.
In their setup, the laissez-faire equilibrium generates excessive emissions because firms ignore
the external damages. Introducing a pollution tax equal to marginal damages aligns private
and social costs: firms abate until MAC = t, and any innovation that shifts the MAC curve
downward immediately raises profits by lowering tax payments or freeing allowances. Under
a fixed performance standard, by contrast, firms are required to reduce emissions to a given
level e∗. Once this target is met, the private gain from further cost-reducing innovation is
flat: lowering the MAC below the compliance point does not generate additional benefit. This
simple framework illustrates why MBIs, in theory, provide stronger dynamic efficiency than
uniform CAC rules.

This dynamic efficiency argument is closely related to the theory of induced innovation. As
first noted by Hicks (1932), changes in relative factor prices direct inventive activity: when a
resource becomes more expensive, innovation is stimulated to economize on its use. Applied
to the environment, this implies that when policies raise the effective price of emissions, firms
have an incentive to search for abatement technologies. Milliman and Prince (1989) formalized
this intuition by showing how environmental regulation shifts firms onto a higher marginal
abatement cost curve, creating an incentive to innovate in order to shift the curve back down.
In this way, environmental policy affects not only the rate but also the direction of technical
change. The literature on directed technical change develops this insight further, stressing that
innovation responds to relative prices, market size, and regulatory signals (Acemoglu 1998).

A large empirical literature provides strong support for the induced innovation hypothesis.
Across a wide range of settings, higher energy prices and more stringent regulations are
consistently associated with increases in patenting and R&D directed toward renewables,
energy efficiency, and other clean technologies. Comprehensive reviews of this evidence are
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Figure 11: Industrial Strategy Policy Instruments
Note: Reproduced and adapted from the IEA ETP 2024 report (IEA 2024a, Fig. 1.37)
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provided by Popp (2019) and Grubb et al. (2021a). This literature reinforces the case for
instruments that make the cost of emissions visible, credible, and predictable over time.

The Porter Hypothesis builds on the same logic. In its “weak” form, it holds that environ-
mental regulation induces innovation that would not otherwise occur. In its “strong” form,
it claims that this innovation can more than offset compliance costs by raising productivity
and competitiveness (Porter and Van Der Linde 1995). The weak version is well established
and overlaps with the induced innovation literature, while evidence for the strong version is
mixed and context dependent, though case studies show instances where regulation-driven
innovation produced net gains (Ambec et al. 2013). In both cases, the mechanism is the same as
in the dynamic efficiency argument: by shifting relative costs and expected market size, policy
directs innovative effort toward cleaner technologies.

Textbook treatments draw a sharp contrast between CAC and MBIs, but in practice, the
boundary is often blurred. Many policies combine elements of both, with hybrid designs
emerging as pragmatic responses to uncertainty about abatement costs and damages. Figure
1a highlights this fact in the data: roughly 80% contain some market-based intervention while
90% contain some non-market regulation, indicating that most contain some combination of the
two. A well-known example is the tradable performance standard, which sets an emissions-
intensity benchmark (for example, tons of CO2 per MWh) and allows firms that exceed the
benchmark to sell credits. Such systems retain some marginal incentive to improve while
avoiding the political costs of an explicit carbon tax (Fischer and Newell 2008).

Despite the theoretical appeal of MBIs, they have not dominated in practice. In the US,
policymakers have repeatedly turned to such standards and hybrid instruments rather than
comprehensive carbon pricing. Some of the most prominent environmental policies follow
this pattern, including the Corporate Average Fuel Economy (CAFE) standards, state-level
Renewable Portfolio Standards (RPS), and the federal Clean Power Plan.

The CAFE program, in place since the 1970s, has raised average fuel efficiency but with
mixed economic efficiency and welfare outcomes. Manufacturers complied by improving en-
gines but also by shifting the fleet mix and exploiting attribute-based loopholes (Klier and Linn
2011). The standards spurred adoption of fuel-saving technologies, yet often at higher cost than
equivalent gasoline price increases (Klier and Linn 2016). Because attribute-based formulas
link stringency to vehicle footprint, they created incentives to enlarge vehicles; the resulting
rise in weight not only undermined efficiency gains but also imposed additional external costs
(Anderson and Auffhammer 2014). Welfare analyses show that alternatives such as feebates
would have achieved the same fuel-economy gains more efficiently, while attribute-based de-
signs created distortions and “attribute gaming” that reduced cost-effectiveness (Durrmeyer
and Samano 2018; Ito and Sallee 2018; Feldman and Levinson 2023).

A similar reliance on standards appears in the power sector. State-level renewable portfolio
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standards (RPS) require utilities to source a rising share of electricity from renewables. Com-
pliance is tracked through renewable energy credits (RECs): utilities that generate or purchase
renewable power receive credits, which can be traded to meet portfolio targets. RPS helped
create markets for wind and solar, but their impacts have been modest and design-dependent.
Using an instrumental-variables approach, Feldman and Levinson (2023) show that higher
REC demand reduced coal use and CO2 emissions, but with small magnitudes, mixed effects
on natural gas, and little evidence that RPS drove most renewable growth. Broader modeling
and review studies find that RPS can cut emissions but at relatively high cost compared with
technology-neutral carbon pricing (Lyon 2016; Young and Bistline 2018; Borenstein and Kellogg
2023). Overall, RPS illustrate that while politically durable, they are second-best instruments
relative to broad carbon pricing.

In Europe, binding renewable targets and vehicle CO2 standards have been central to the
policy mix. Firm-level evidence shows that stringent standards redirected innovation toward
clean technologies such as electric vehicles and hydrogen drivetrains, and away from incremen-
tal improvements to combustion engines (Rozendaal and Vollebergh 2025). This is consistent
with the basic theory which shows that market-based instruments provide stronger incen-
tives than standards, but not that standards have no effect. When standards are demanding
and require technologies not yet in use, they also induce innovation by shifting relative costs
and expected market size. Despite their higher static costs, standards can therefore play an
important role in steering innovation toward next-generation technologies.

Some recent theoretical work also goes further and suggests that market-based instruments
may not always be sufficient to trigger the deep technological shifts required for decarboniza-
tion. When incumbent “dirty” technologies benefit from strong economies of scale, entrenched
infrastructure, or network effects, a carbon price on its own may leave clean alternatives un-
profitable. In such cases, standards that directly mandate a shift—such as bans on new
internal-combustion vehicles or clean electricity requirements—can help overcome lock-in by
guaranteeing demand for emerging technologies and altering firms’ expectations about the
future trajectory of markets (Yeh et al. 2021; Ambec and De Donder 2022).

Fischer (2019) makes this point in the context of industrial decarbonization, arguing that
sectors such as steel, cement, and chemicals face particularly high abatement costs and limited
near-term technological options. For these “hard to abate” activities, a carbon price may not
provide a strong enough or credible signal to induce investment in novel processes. Market-
based performance standards, by setting benchmarks for emissions intensity and rewarding
improvements beyond them, can offer a more practical way to stimulate innovation and cap-
ital investment in low-carbon industrial technologies. Well-designed standards thus provide
greater certainty for firms undertaking costly, long-lived investments, complementing both
carbon pricing and R&D support.
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Figure 12: Policy–Innovation Feedback Loop
Note: The diagram illustrates the bidirectional feedback loop between policy and innovation. Policy signals
create markets and expectations, which in turn induce innovation and cost reductions. These technological
advances then enable higher levels of policy ambition, completing a virtuous cycle. Historical examples include
the Montreal Protocol and the gradual tightening of the Dutch carbon tax, both of which show how innovation
lowers costs and makes stronger regulation feasible.

Importantly, the relationship between policy and innovation is bidirectional. While policy
induces innovation, subsequent technological advances reduce costs and thereby broaden the
scope for more ambitious regulation. This feedback loop has been central to the progressive
ratcheting of climate ambition. The Montreal Protocol illustrates the mechanism clearly: as
substitutes for ozone-depleting substances became available, policymakers were able to tighten
standards further (Dugoua 2023). A similar pattern is visible in the Netherlands, where an
initially modest carbon tax was gradually raised as firms adjusted and clean technologies
became cheaper (Anderson et al. 2021). This dynamic can operate as a virtuous cycle (see
Figure 12): policy signals create markets and expectations, markets in turn stimulate innovation
and cost declines, and these declines make stronger policy both politically acceptable and
economically efficient.

The discussion above shows that while market-based instruments provide strong dynamic
incentives, and standards can also redirect innovation when sufficiently stringent, both ap-
proaches face limits. Political resistance constrains the scope of carbon pricing, and standards
often achieve change only incrementally or at high cost. Moreover, neither tool alone addresses
the wider set of barriers to clean technology: financing gaps, coordination failures, supply-
chain dependencies, or the strategic aims of governments in a world of geopolitical rivalry.
These limits have pushed climate policy beyond a narrow focus on pricing and regulation
toward a broader agenda of industrial strategy.

4.2 The Rise of Industrial Policies

Industrial policy, broadly defined, refers to deliberate state interventions to reshape the struc-
ture of an economy by channeling resources into targeted sectors or technologies. Green
industrial policy applies this logic with an explicit climate objective. Figure 11 illustrates how
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the green industrial policy toolkit now extends far beyond the demand-side instruments re-
viewed in the previous subsection. It spans subsidies, tax credits, concessional finance, loan
guarantees, public procurement, local-content rules, standards, and large-scale investments in
infrastructure and R&D. The aim is to accelerate clean-technology deployment, foster domestic
manufacturing capacity, and create the virtuous cycle in which policy support drives down
costs, reinforces political coalitions, and enables more ambitious climate action.

The return of industrial policy has reignited foundational debates in economics. Proponents
argue that it is justified because the net-zero transition is hampered not just by the unpriced
carbon externality but by multiple, interacting failures: knowledge spillovers, financing fric-
tions, coordination problems, and infant-industry dynamics (see Section 2.1 for an overview of
market failures in clean technologies). According to this argument, if left alone markets would
underprovide investment, leaving critical technologies stranded in “Valleys of Death.”

Critics emphasize that industrial policy is highly vulnerable to government failure. Infor-
mation deficits mean that states often lack the capacity to identify which firms or technologies
will ultimately succeed, leading to costly bets on the wrong pathways. Rent-seeking and
political capture can redirect public resources toward well-connected incumbents rather than
innovative challengers, entrenching inefficiency. Large subsidy programs risk fiscal waste if
they lack clear sunset clauses or cost controls, while local-content rules and “buy national”
provisions can trigger subsidy races and trade disputes. Poorly designed schemes can also
create asset bubbles and overcapacity, with painful collapses once support is withdrawn.

This widening of policy scope has already been studied extensively. Reviews in the climate
and energy fields examine rationales, instruments, and outcomes of industrial policies (Rodrik
2014; Wu and Salzman 2014; Harrison et al. 2017; UN Environment and German Development
Institute 2017; Newell et al. 2019; Tagliapietra and Veugelers 2021; Criscuolo et al. 2023; Hahn
et al. 2024; OECD 2024b; Gerarden et al. 2025). Other surveys in trade and development
economics provide a broader perspective (Rodrik 2008; Harrison and Rodríguez-Clare 2010;
Juhász et al. 2024). Our purpose is not to repeat those debates but to build on them, using
emblematic cases to identify design lessons for green industrial policy.

A key challenge is that the criteria for judging success in industrial policy are multiple and
contested, particularly when applied to climate goals. Traditional assessments focused on out-
comes such as productivity growth, export performance, or the creation of globally competitive
firms. Green industrial policy, by contrast, pursues multiple and sometimes conflicting goals:
lowering technology costs for global mitigation, accelerating domestic deployment to meet
national climate targets, fostering innovative ecosystems, and securing local jobs or supply
chains. China’s solar expansion, for example, sharply reduced global module costs while also
creating international trade frictions. Evaluating effectiveness, therefore, requires attention to
which goals are being prioritized and at what scale.
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Historical precedents outside the climate field provide the benchmarks against which many
current debates about industrial policy are framed. Airbus, for instance, is often remembered as
the archetypal European project: a coordinated multinational effort that created a global cham-
pion in civil aviation, showing how sustained public backing and cross-border cooperation
could succeed in a high-tech, capital-intensive industry (Hodge et al. 2024). In East Asia, tar-
geted state support for semiconductors and shipbuilding—through directed credit, technology
acquisition, and export discipline—demonstrated how industrial planning could propel late-
comer economies into world leadership (Wade 1990; Chu 2016). In the United States, defense
procurement, especially through the Defense Advanced Research Projects Agency (DARPA),
showed how mission-oriented public funding and demand-pull contracts nurtured break-
throughs in computing and information technology (Fuchs 2010; Mazzucato 2013; Azoulay et
al. 2019). These emblematic cases have left a deep imprint on how policymakers and scholars
conceive of industrial strategy today.

Failures and mixed outcomes also loom large. The Concorde program produced a techno-
logical marvel but revealed the dangers of pouring vast public resources into projects lacking
a viable commercial market (EC 2018). Japan’s Fifth Generation Computer project, launched
in the 1980s with the aim of leapfrogging US computing, illustrates how state-led bets can
falter when technological trajectories shift unexpectedly. Several US semiconductor consortia
of the same period likewise struggled to translate government coordination into competitive-
ness (Center for a New American Security 2022). France’s Minitel offers a more ambiguous
lesson: it enabled an early nationwide digital network, familiarizing households with online
services well before the Internet era, but also created lock-in that slowed the shift to open global
standards (Benghozi and Licoppe 2003).

These precedents continue to loom in the background of contemporary debates on industrial
policy. They provide the backdrop against which current strategies for the clean energy
transition can be interpreted. In Table 5 (which also includes all relevant references), we present
a set of emblematic cases and assign them broad labels—“success,” “failure,” or “mixed.”
These labels should be read with caution. They are intended as shorthand to reflect how the
economics and policy community has generally come to view these cases, based on our reading
of the literature, not as definitive verdicts. A case judged a “success” may still contain significant
shortcomings, just as a “failure” may have produced lasting benefits. The classifications
represent a high-level, on-net assessment rather than a full evaluation. We encourage more
detailed reviews of these experiences, since learning from history is indispensable for designing
effective policy today.

Denmark’s wind sector is a frequently cited success story. From the 1980s onward, a combina-
tion of feed-in tariffs, community ownership schemes, and public investment in grid capacity
created a stable environment for deployment. These policies supported the growth of domestic

83



Table 5: Green Industrial Policy Case Studies
Case Type Core instruments Outcome & design lessons Sources

Denmark—Wind Success Public R&D; early feed-in tariffs
with degression; grid planning;
community ownership

Created global OEMs (e.g., Vestas) and now sources
about half of domestic electricity from wind. Lesson:
sustained, adaptive policy—combining R&D, market
creation, and social licence—supports long-term
success while avoiding over-subsidy.

Elliott et al. (2023) and UNFCCC
(2023)

China—Solar Success Export-led manufacturing, then
subsidies for R&D, produc-
tion and adoption; state-backed
credit; JV/FDI and tech transfer;
cluster-based scale-up.

Pushed module costs below $0.25/W and captured
> 80% of global manufacturing. Lesson: state-
backed scale-up drives steep cost declines, but risks
overcapacity and international trade frictions.

IEA (2022b), Gerarden (2023),
Banares-Sanchez et al. (2024), and
OWID et al. (2025)

China—EVs &
Batteries

Success Purchase subsidies and tax breaks
(with local top-ups); other city-
level incentives (license plates);
public procurement pilots; mandate
requiring automakers to meet EV
sales quotas; charging and swapping
infrastructure; R&D support; subsidy
eligibility tied to approved domestic
battery suppliers.

Built the world’s largest EV market and fostered
globally competitive firms (BYD, CATL). Lesson: a
coordinated toolkit addressing supply, demand, and
infrastructure can rapidly create markets; subsidies
should taper as sectors mature to sustain competition.
Also risks of overcapacity and trade frictions.

UN Environment and German
Development Institute (2017), IEA
(2023a), Barwick et al. (2024), and
Barwick et al. (2025)

United States—DOE
Loan Program (incl.
Solyndra & Tesla)

Portfolio success
(with failures)

ARRA-era loan guarantees for first-
of-a-kind (FOAK) projects; portfolio,
VC-like approach

Enabled Tesla and the first utility-scale PVs. Despite
Solyndra’s collapse (after polysilicon price collapse),
portfolio losses were only ∼2.3%, with interest income
exceeding losses. Lesson: frontier technology finance
requires portfolio diversification, tolerance for some
failures, and adaptive review; success is measured at
the portfolio level, not project by project.

Groom (2014), Rodrik (2014), and
Sivaram (2020)

Spain—Solar FIT
boom–bust

Failure Extremely generous feed-in tariffs
without caps or automatic degres-
sion; retroactive tariff cuts

Triggered a 2008 installation surge but subsequent
paralysis (2012–2016) and waves of investor-state
lawsuits. Lesson: cost-control mechanisms (auctions,
tariff degression) are essential, and credibility must
be preserved—retroactive changes destroy investor
confidence and raise future capital costs.

D. Couture (2011), Río and Mir-
Artigues (2014), and Keeley (2022)

Norway—EV uptake Success Large tax exemptions (VAT, purchase
tax); non-price perks (bus lanes,
free parking/tolls); charging
infrastructure support

Achieved the world’s highest EV market share, with
EVs exceeding 80% of new car sales. Lesson: a compre-
hensive incentive package—combining major financial
benefits with practical perks—can rapidly shift con-
sumer markets toward new technologies.

IEA (2023a) and Nolan (2025)

UK—Offshore wind
CfDs

Success Competitive auctions; long-term
contracts-for-difference (CfDs)

Associated with steep declines in offshore wind LCOE
during the 2010s. Lesson: stable long-term market
signals combined with competitive allocation are highly
effective in driving technology cost reductions.

Energy Transitions Commission
(2024)

Germany—
Energiewende

Mixed Generous feed-in tariffs (later
auctions); binding renewable targets;
nuclear phase-out

Delivered rapid expansion of wind and solar capacity,
but costs were shifted to consumers, producing some
of Europe’s highest retail electricity prices. Lesson:
manage ambition and pace with attention to cost
distribution to preserve public and political support.

UN Environment and German
Development Institute (2017), IEA
(2020c), and OECD (2024b)

US—Biofuels Failure Renewable Fuel Standard (RFS);
blending mandates; tradable credits;
tax incentives; procurement; conces-
sional finance; import protection

Scaled first-generation corn ethanol but with limited
net climate gains. Unintended effects included food-
price increases, adverse land-use change, volatile
permit markets, and stalled progress on advanced
biofuels. Lesson: avoid locking in specific pathways
before lifecycle impacts are known; prefer technology-
neutral, performance-based standards with realistic
targets.

Wright (2014) and Stock (2015, 2018)

Note: The table presents illustrative case studies of green industrial policy, along with a brief description and
relevant references. For a more extended description of each case and the lessons they highlight, see Section 4.2.

manufacturers such as Vestas, while early planning for transmission reduced curtailment and
enabled large-scale integration of wind power.

China’s solar strategy illustrates the impact of coordinated state direction (see Section 3.3.3).
Generous credit from state-owned banks, subsidies for both producers and consumers, and
a deliberate effort to build an end-to-end supply chain drove massive domestic demand and
rapid cost declines. Globally, this led to steep reductions in the price of photovoltaics. At the
same time, however, the strategy generated overcapacity, created intense international trade
frictions, and exposed the risks of relying on a single country for critical inputs.

China’s electric vehicle and battery sectors also show the effects of a coordinated industrial
strategy. National and local governments combined consumer subsidies, purchase-tax exemp-
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tions, and public procurement with non-price measures such as license-plate advantages in
major cities. At the same time, large public investment expanded charging networks, while
industrial plans backed battery production through credit, land, and permitting. A dual-credit
system later linked support to vehicle efficiency and range. Subsidies were gradually reduced
as volumes expanded and costs fell. The outcome was the world’s largest EV market and
globally competitive firms such as BYD and CATL at the technology frontier.

The US Department of Energy’s Loan Programs Office illustrates how a portfolio model can be
applied to industrial policy. By extending loan guarantees and direct loans, it aimed to finance
first-of-a-kind projects that private lenders considered too risky. Some failures were inevitable,
and Solyndra became a prominent and politically charged example. But this outcome in part
reflected the program’s logic: individual losses were expected as part of a wider portfolio.
Other loans, including early support for Tesla and utility-scale solar, seemed to have long-
run benefits, and overall the portfolio generated positive returns. The case shows that public
finance can tolerate failure while enabling technologies that reshape industries.

Spain’s PV program highlights the risks of unstable policy. High feed-in tariffs triggered a
rapid surge in installations, but retroactive cuts to subsidies undermined investor confidence.
The initial boom left behind a legacy of litigation and damaged credibility, illustrating how
retroactivity can raise financing costs long after the policies themselves have ended.

Norway’s EV rollout is a clear demand-side success aimed at rapid uptake rather than
domestic industry building. A stable package of VAT and registration-tax exemptions, CO2-
based taxation of internal combustion vehicles, reduced tolls and parking charges, selective bus-
lane access, and municipal procurement created a strong cost advantage for electric cars. Early
investment in nationwide fast-charging and reliance on a low-carbon power system reduced
infrastructure and range concerns. As adoption expanded, incentives were phased down
gradually—for example, by reintroducing VAT above certain price thresholds and normalizing
tolls—while avoiding retroactive changes.

The UK’s offshore wind sector demonstrates the value of competitive pull mechanisms.
Contracts-for-difference (CfDs), allocated through regular auctions with transparent sched-
ules, created strong incentives to reduce costs. This framework underpinned one of the fastest
cost declines of any major energy technology. Recent inflationary shocks, however, exposed
vulnerabilities in program design, as strike prices failed to keep pace with rising input costs
and some planned projects stalled.

Germany’s Energiewende combines long-term feed-in tariffs under the Renewable Energy
Act (EEG) with priority grid access and dispatch for renewables. Fixed 20-year tariffs triggered
a surge in solar PV between 2009 and 2012 and strong growth in onshore wind. The costs of
support were recovered through the EEG surcharge on retail electricity bills. Large industrial
consumers were widely exempted, leaving households and small businesses to shoulder most
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of the burden. While wholesale prices fell through the merit-order effect, retail prices rose
as surcharges and network charges increased. Delays in expanding north–south transmission
and local siting conflicts added curtailment and redispatch costs. Later reforms introduced
tariff degression, volume caps, and competitive auctions to contain expenditures, and part of
the financing was shifted to the federal budget.

The US biofuels program, introduced in 2005 and expanded in 2007, mandated rising blend-
ing volumes enforced through tradable Renewable Identification Numbers (RINs), and was
supported by tax credits, import protection, and loan guarantees. It spurred the rapid growth
of corn ethanol and biodiesel, which by the mid-2010s supplied about 10% of US gasoline
consumption and provided income support for rural producers. The outcomes were mixed
and considered by some as a failure. The net climate benefits remain disputed once indirect
land-use change is considered. Advanced biofuels consistently fell short of mandated targets,
leading regulators to issue repeated waivers. RIN price volatility also created compliance
uncertainty for refiners and blenders. And increased demand for corn and soy contributed to
higher food and feed prices, raising concerns over distributional impacts.

Lessons from the cases. The cases above point to a set of practical design lessons. Stable
and predictable rules are essential: retroactive changes, as in Spain’s PV program, undermine
investor confidence for years, while transparent calendars and competitive allocation, as in
UK offshore wind auctions, can anchor investment and drive down costs. Cost discipline
also matters. Degression rules, volume caps, and indexation prevent overspending and re-
duce exposure to macroeconomic shocks, while portfolio approaches, as seen in the US Loan
Programs Office, allow some failures without jeopardizing the program as a whole. Early
investment in infrastructure is critical, as Denmark’s wind expansion showed, whereas delays
in grid reinforcement during Germany’s Energiewende imposed high redispatch costs. Finally,
adaptability seems important. China’s EV and battery support illustrates how subsidies can
be tapered as volumes rise and performance requirements tighten.

A contested territory. Despite these lessons, the role of industrial policy remains highly con-
tested. Supporters emphasize its ability to overcome coordination failures, accelerate learning,
mobilize finance for risky technologies, and address resilience and distributional goals. Critics
warn of fiscal costs, rent capture, market distortion, and the danger of locking in incumbents or
inefficient technologies. Trade partners also raise concerns over spillovers and subsidy races.
These debates underscore that industrial policy is not a settled consensus but a policy space
where evidence, political priorities, and institutional design continue to collide.
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4.3 Looking Ahead: What (and How) to Evaluate

A central task in the coming years is to evaluate the wave of large-scale industrial and climate
policies now being implemented. Table 6 highlights the most prominent cases. In the United
States, the Inflation Reduction Act (IRA) combines tax credits with manufacturing incentives to
accelerate deployment and reshore supply chains. In the European Union, the Green Deal and
the Net-Zero Industry Act (NZIA) aim to scale clean-tech manufacturing, while the Carbon Border
Adjustment Mechanism (CBAM) introduces a new trade instrument against carbon leakage.
China’s 14th Five-Year Plan continues its strategy of intensity targets combined with state-
directed industrial support. India’s Production–Linked Incentive (PLI) schemes target domestic
production in solar, batteries, and EVs. France’s France 2030 program directs investment toward
nuclear, hydrogen, and other strategic technologies. The Just Energy Transition Partnerships
(JETPs) link concessional finance and policy commitments in coal-dependent economies.

These initiatives employ varied instruments—subsidies, tax expenditures, procurement,
loan guarantees, trade measures, and concessional finance—and pursue multiple objectives:
emissions reduction, cost declines, innovation, domestic value creation, and distributional
goals. Their diversity creates a natural laboratory for evaluation.

Rigorous evaluation must go beyond tracking investment flows or installed capacity, how-
ever. It is equally, if not more, important to know how the causal impacts of these policies
affect emissions, innovation, technology costs, industrial outcomes, and political durability
(Pless et al. 2020). Existing research on environmental policy and innovation has already be-
gun applying empirical tools developed more broadly in economics. Using these methods to
study industrial policy raises several core questions:

• Additionality: Did the policy induce investment, jobs, and innovation that would not
otherwise have occurred?

• Cost-effectiveness: What is the public cost per unit of outcome (e.g., per ton of CO2 reduced,
per job created, per unit of capacity)?

• Innovation effects: Did the policy drive technological advance or mainly subsidize mature
deployment?

• Distributional impacts: How are costs and benefits shared across groups, regions, and
sectors?

• Unintended consequences: Did the policy create bubbles, lock-in, or trade frictions?

Evaluation is not merely important to get to an overall assessment of whether the program
was a “success” or “failure.” It is to provide evidence that allows policies to be improved over
time. Because technology costs and performance remain uncertain, programs should include
review points and mechanisms for adjustment.
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Table 6: Overview of Recent Climate and Industrial Policies
Country/Region Policy/Act Overarching Objective Core Mechanisms Target Sectors Budget/Scale Observed/Projected Impact Sources

United States Inflation Reduction Act
(IRA, 2022)

Re-shore manufacturing;
accelerate clean deployment;
compete with China

Uncapped ITC/PTC (base + bonus;
30% ITC if labour rules); 10% Domestic
Content & Energy Community adders;
Direct Pay (tax-exempt) & Transferability;
45X mfg. credit; 45V H2 ; 45Q CCUS; tech-
neutral clean electricity credits from 2025

Power, EVs, batteries,
H2 , CCUS, SAF,
manufacturing

∼$369 B in tax
expenditures (official)

∼$2 T private capex (2025–
2035); ∼1.2 M jobs/yr; U.S.
GHG 32–42% below 2005 by
2030

Bistline et al. (2023), Allcott
et al. (2024), ICF (2024), and
Aldy (2025)

European Union Net-Zero Industry Act
(NZIA, 2024)

Scale EU clean-tech manu-
facturing; reduce strategic
dependencies

Benchmark of ∼40% EU manufacturing
of deployment needs by 2030; fast-track
permitting for “strategic projects”; non-
price criteria in procurement/auctions;
regulatory sandboxes

Solar, wind, batteries,
heat pumps, electroly-
sers, grid tech, CCUS

No single envelope;
leverages EU/national
funds & state-aid
flexibility

Projected up to ∼3 M addi-
tional energy-sector jobs by
2030

Karagianni and Davis (2023),
Blenkinsop (2024), and Strat-
egy& (n.d.)

European Union Carbon Border Adjustment
Mechanism (CBAM, 2023–
2026)

Prevent carbon leakage; level
carbon-cost playing field

Import levy linked to EU ETS price;
transitional reporting (Oct 2023–2025);
certificates required from 2026; deduct
foreign carbon price; phased with ETS
free-allowance phase-out

Cement, iron & steel,
aluminium, fertilisers,
electricity, hydrogen

Revenue mechanism
(not spending)

Modelled import reduction of
covered goods by 4–26% by
2030; induces wider carbon-
pricing adoption

Evans et al. (2023), Hlavackova
(2025), and Taxation and
Customs Union, EC (2025)

China 14th Five-Year Plan (2021–
2025)

Energy security + emissions
peaking; tech self-reliance

Intensity targets (energy/GDP −13.5%,
CO2/GDP −18% by 2025); NEV sub-
sidies/procurement; industrial plans;
national ETS with intensity benchmarks
(no hard cap)

Renewables, NEVs,
batteries, industrial
efficiency

State-directed invest-
ment via budgets,
SOEs, state banks (no
single envelope)

∼70% of global EV sales;
∼73% Li-ion capacity; record
renewables build alongside
continued coal approvals

Rapier (2019), Etcetera Lan-
guage Group, Inc.(Translator)
and Xinhua News Agency
(Original Source) (2021), Green-
peace East Asia (2025), and
NZero (2025)

India Production-Linked Incentive
(PLI, 2020–)

Boost domestic manu-
facturing; reduce import
dependence

Performance-linked subsidies on incre-
mental sales; sector schemes for solar
modules, ACC batteries, auto/EVs, green
H2 & electrolysers

Electronics, auto/EVs,
solar, batteries, H2

∼$23 B across 14
sectors

Mixed execution in green tech
(delays vs. targets); stronger
results in electronics

Kumar et al. (2024) and Reuters
(2025)

France France 2030 (2021–) Tech sovereignty via tar-
geted industrial champions

Direct state investment/calls for projects;
focus on SMRs, green H2 , low-carbon
aviation; critical minerals supply chains

Nuclear (SMRs), H2 ,
aviation, batteries/ma-
terials

EUR 54 B plan Backs specific domestic projects
& supply chains (state-as-
investor model)

Ministry of Ecological
Transition (2022), Service
d’Information du Gouverne-
ment (2024), and Agence
Nationale de la Recherche
(2025)

South Africa Just Energy Transition
Partnership (JETP, 2021–)

Coal-to-clean power
transition with social
protection

$8.5 B concessional package; grid & re-
newables investment; worker/community
support; partnership with donors

Power system; work-
force transition

$8.5 B initial commit-
ment

Early-stage implementation;
template for transition finance
with equity safeguards

Imelda (2023)

Note: The table provides a comparative overview of major recent climate and industrial policy packages across key economies, summarizing objectives,
instruments, target sectors, and expected impacts. For more details, see Section 4.3. Acronyms: ITC = Investment Tax Credit; PTC = Production Tax Credit;
CCUS = Carbon Capture, Utilization and Storage; SAF = Sustainable Aviation Fuel; NEV = New Energy Vehicle; ETS = Emissions Trading System; SMR
= Small Modular Reactor; ACC = Advanced Chemistry Cell. Reported budgets are official estimates or commitments; realized expenditures may differ.
Impacts reflect government and third-party modeling.
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Figure 13: DOE Clean Energy Appropriations: RD&D vs. Deployment
Note: Appropriations in million nominal USD. The bars on the left show annual DOE budgets in FY21–23, which
devoted the bulk of resources to R&D ($12.4bn) and only modest sums to demonstration ($2.0bn) and deployment
($4.0bn). The bars on the right show one-time IĲA/IRA funding, which reversed this pattern: only $1.7bn for
R&D but very large allocations for demonstration ($33.0bn) and deployment ($50.1bn). The figure highlights the
contrast between steady annual appropriations focused on upstream research and exceptional stimulus packages
skewed toward later-stage support. Source: Figure 3 in O’Rear et al. (2025).

4.4 RD&D vs Deployment Investments

The examples above highlight potential synergies between new technology development and
technology deployment. A notable feature of recent US appropriations is the sharp imbalance
between research, development, and demonstration (RD&D) and deployment support. As
Figure 13 shows, annual appropriations channeled most resources to R&D ($12.4 billion),
with only modest sums for demonstration ($2.0 billion) and deployment ($4.0 billion). By
contrast, one-time funding from the IĲA and IRA was heavily weighted toward later stages:
just $1.7 billion for R&D against $33.0 billion for demonstration and $50.1 billion for deployment
(O’Rear et al. 2025). This pattern reflects a broader tilt toward supply-side industrial policy
aimed at scaling domestic manufacturing and subsidizing adoption rather than expanding the
knowledge base.

The case for public R&D enjoys broad consensus: knowledge spillovers, appropriability
problems, and long lead times ensure systematic under-provision by the private sector (see
Section 2.1). Demonstration activities also face persistent financing gaps. By contrast, the
rationale for large-scale deployment subsidies is more contested. They can accelerate uptake
and generate learning by doing, but also risk locking in incumbent designs, crowding out
alternative technological options, and transferring rents to mature producers.

What constitutes an appropriate “balance” between stages of the innovation chain remains
an unanswered question. There is no accepted benchmark for the optimal allocation of re-
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sources, and cross-technology heterogeneity further complicates matters. What is clear is that
many promising options remain at low TRLs, as highlighted earlier in this chapter. In this
setting, a portfolio strategy—maintaining strong support for upstream R&D while targeting
deployment support more selectively—is essential to avoid premature lock-in and to keep
multiple technological pathways open for deep decarbonization.

4.5 The Chilling Effect of Policy Uncertainty

Recent green industrial policies have mobilized record levels of investment, yet their long-term
effectiveness is undermined by a pervasive and often underestimated threat: policy uncertainty.
The energy transition relies on capital-intensive, long-lived assets—from multi-billion-dollar
battery giga-factories to offshore wind farms—whose viability depends on predictable and
credible policy frameworks. Shifts in subsidies, regulations, energy, or carbon prices can
generate a chilling effect, deterring projects and weakening the very objectives such policies
aim to achieve.

Economic theory highlights the option value of waiting: when investments are irreversible,
and the policy or market environment is uncertain, firms rationally delay commitment until
risks are resolved (Bloom et al. 2007). This effect is especially pronounced for R&D, where
uncertainty dampens responsiveness to shocks, prolongs persistence, and slows adjustment
(Bloom 2007). In clean technologies, the result is slower deployment and weaker innovation
incentives precisely when rapid scaling is most urgent. Uncertainty also elevates financing
costs by increasing perceived project risk, raising the cost of capital, and limiting access to
funding. The bias then shifts investment toward short-payback projects that are less effective
in driving long-run decarbonization.

Industrial policies are particularly exposed to political sources of uncertainty. Unlike stan-
dards or market-based instruments, which impose costs on firms without drawing directly
on public budgets, subsidy and tax-credit programs rely on appropriations or foregone rev-
enue. Their fiscal visibility makes them more vulnerable to reversal when political priorities
or budget conditions change. Large-scale subsidy schemes, such as those in the US Inflation
Reduction Act (IRA), are therefore contingent on electoral cycles. President Trump has already
acted aggressively: on his first days in office, he ordered agencies to halt IRA disbursements,
froze grants and loans under an executive order, and directed the EPA to terminate $20 billion
in awards from the Greenhouse Gas Reduction Fund (Britton and Runyon 2025; Guarna and
Turner 2025). These freezes and cancellations have triggered at least sixteen lawsuits and left
major programs in limbo. Additional legislation—the “One Big Beautiful Bill Act”—has be-
gun to eliminate incentives for EVs and to tighten deadlines for renewable projects (Storrow
2025). The prospect of continuing rollbacks is already priced into investment decisions, raising
financing costs and chilling project pipelines.
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Uncertainty does not only stem from political reversals. Even when policies are politically
stable, their design can blur the demand signals on which innovators and investors rely. Car-
bon markets are a prominent example. While cap-and-trade provides quantity certainty, it
leaves allowance prices highly volatile and unpredictable. In California’s program, Borenstein
et al. (2019) show that uncertainty about baseline emissions and the interaction with com-
plementary policies meant that allowance prices were often expected to hit regulatory floors
or ceilings rather than settle at a stable interior equilibrium. Such volatility undermines the
credibility of the price signal as a long-run guide for innovation.

Standards and mandates can create similar ambiguity. The US Renewable Fuel Standard,
for instance, has been characterized by high and volatile credit prices and frequent discre-
tionary adjustments by the Environmental Protection Agency. Stock (2018) argues that these
structural features—annual rulemakings, waiver authorities, and litigation—have politicized
what should be a technocratic process, generating persistent uncertainty about compliance
trajectories and discouraging investment in second-generation fuels. In this sense, instruments
that look durable on paper may still fail to provide innovation incentives if the demand tra-
jectory they imply remains uncertain. The Mercury and Air Toxics Standards provide a clear
example: perceived enforcement probabilities fell sharply during the rule’s rollout, leading
many firms to postpone compliance investments. Resolving uncertainty earlier would have
reduced compliance expenditures but at the cost of higher pollution damages (Gowrisankaran
et al. 2025).

A growing body of empirical work now quantifies the effects of policy uncertainty on clean
investment and innovation, often using new text-as-data approaches (Baker et al. 2016; Dugoua
et al. 2022). Noailly et al. (2024) construct a news-based index that captures the salience of
environmental and climate policy in US newspapers, showing that greater salience is associ-
ated with stronger clean investment. Noailly et al. (2022) develop an Environmental Policy
Uncertainty index and find that higher uncertainty reduces the probability that clean tech-
nology start-ups attract venture capital and increases volatility for firms with green revenues,
highlighting the need to distinguish policy attention from policy uncertainty.

Basaglia et al. (2025) take a narrower focus, creating a Climate Policy Uncertainty index
that tracks articles linking climate, policy, and uncertainty terms. Their index distinguishes
between uncertainty about policy tightening and weakening. They show that higher uncer-
tainty depresses capital spending, R&D, employment, and clean patenting in carbon-intensive
sectors, with the largest effects when policy rollbacks are anticipated. Cross-country evidence
also indicates that uncertainty shocks reduce renewable-energy patenting more sharply than
other forms of innovation, with the impact amplified during recessions or periods of financial
stress (Bettarelli et al. 2024). Market-based evidence points in the same direction. Using option
prices in the EU Emissions Trading System, Fuchs et al. (2024) measure expected carbon price
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volatility and show that higher volatility lowers firms’ decarbonization investment. The effect
is economically large: an increase in uncertainty reduces expected investment by about as
much as an actual drop in the carbon price itself.

Finally, Chen (2025) documents how repeated expirations and renewals of the US wind
Production Tax Credit generated boom–bust investment cycles. These lapses pushed firms to
rush projects before deadlines, leading to poorly timed entry relative to technological advances
and demand growth, causing large welfare losses.

4.6 Fossil Fuel Subsidies

While much of the previous sub-sections described new policies designed (at least in part)
to encourage the development of new clean technologies, there is also a large set of existing
policies that do the exact opposite. Chief among them are fossil fuel subsidies, which tilt rela-
tive prices towards carbon-intensive energy, thereby slowing reallocation to clean technologies
and absorbing fiscal space that could otherwise fund social protection, innovation, and infras-
tructure. The 2022 energy crisis made their role unusually visible: governments responded to
higher prices with large-scale subsidies to households and firms. Fiscal costs rose to record
levels before easing somewhat in 2023, underscoring both the magnitude of intervention and
the political difficulty of reform.

This section focuses on explicit subsidies—direct budgetary transfers, tax expenditures,
and price-gap support that hold retail energy prices below supply cost—distinct from implicit
subsidies such as the underpricing of externalities. Figure 14 illustrates the sharp post-2020
increase, driven largely by petroleum, natural gas, and electricity subsidies. Estimates by the
IEA and OECD place explicit subsidies at USD 1.6 trillion in 2022, declining to USD 1.1 trillion
in 2023 but still well above pre-crisis norms. A central concern is that temporary crisis measures
could become entrenched, undermining long-term phase-out efforts (OECD 2024c).

Subsidies take diverse forms, from tax breaks for producers to price caps and direct trans-
fers for consumers. Among OECD economies, 77% of support is channeled through the tax
system—such as rebates or deductions for exploration and production—while the remainder
comes through direct budgetary measures (Elgouacem 2020). Globally, consumption domi-
nates: 90% of subsidies go to end-users versus just 7% to producers (OECD 2024a). By fuel
type, electricity (36%), natural gas (32%), and oil (31%) account for almost all support, with
coal receiving less than 1% (Institute for Energy Research 2023).

There are also large differences in fossil fuel subsidies across countries (Table 7). Fossil
fuel–rich exporters such as Saudi Arabia and Russia spend over $500 USD per capita to keep
domestic energy below market rates. While most European countries usually spend less than
$100 USD per capita, the 2022 crisis pushed several—including the Netherlands, France, and
the UK—into the top subsidy spenders. Future global competition in energy markets may lead
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Figure 14: Fossil Fuel Subsidies Over Time.
Note: Reproduced from the Fossil Fuel Subsidy Tracker, which compiles estimates from the OECD, IEA, and IMF for
195 economies through 2022. The figure documents the surge in explicit fossil fuel subsidies after 2020—measured
in billions of USD——highlighting the persistence of elevated support levels in the wake of recent global crises.

to even more aggressive subsidies, as some countries double down on fossil fuel production
as an economic and political strategy (see Section 6.4).

The standard rationale for subsidies is affordability, yet empirical evidence consistently
shows they are regressive. Wealthier households consume more energy and thus capture a
disproportionate share of benefits. The richest quintile typically receives more than six times
the subsidy value of the poorest quintile (Potdevin and Wu 2024). The poor, often disconnected
from formal infrastructure, may receive little to no benefit. As a social protection tool, subsidies
are highly inefficient: one IMF study found that only USD 1 of every USD 33 spent on gasoline
subsidies reaches the poorest 20% (Harruch 2024).

Reform is politically challenging once these subsidies are in place; however, there are a
handful of examples of it taking place (Rentschler and Bazilian 2017). Indonesia’s experience
shows that gradual reforms, backed by communication and targeted cash transfers, can succeed
(Nozaki and Shang 2013). The political costs of removal are real but often short-lived: evidence
from Mexico and Bolivia shows temporary approval dips, with more persistent backlash when
trust in government is low (Oca Leon et al. 2024). Survey experiments in Malaysia suggest
that framing reforms in redistributive terms raises support, whereas environmental framing
reduces opposition among skeptics (Innocenti and Bharadwaj 2025). From a macroeconomic
perspective, broad consumption subsidies can also worsen a country’s terms of trade in tight
markets—the EU’s 2022 gas subsidies being a case in point (Gros 2022).

Building on these insights, many questions remain open. How are the benefits and costs
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Table 7: Fossil Fuel Subsidies by Country and Type in 2022
Country Natural Gas Petroleum

Per Capita (USD) Total (USD bn) Per Capita (USD) Total (USD bn)
France 112.57 7.65 279.25 18.97
United Kingdom 503.67 33.73 108.93 7.29
Indonesia 1.79 0.49 131.18 36.14
India 1.76 2.49 30.37 43.04
Iran 511.03 45.25 589.43 52.19
Russia 681.36 97.81 0.00 0.00
Saudi Arabia 454.95 16.56 963.51 35.08
Italy 303.18 17.84 302.94 17.83
Netherlands 774.22 13.71 61.52 1.09
United States 12.39 4.13 23.09 7.69

Note: Reproduced from the Fossil Fuel Subsidy Tracker, which compiles estimates from the OECD, IEA, and IMF.
Figures are reported in nominal terms, both on a per capita basis (USD per person) and as total national subsidies
(USD billions). The table shows that fossil fuel–rich exporters spend substantially more per capita on energy
subsidies than most European or Asian countries, while the 2022 crisis temporarily raised subsidies in several
high-income European economies.

of subsidies distributed across households, and what determines the extent of pass-through
to consumers? How do subsidies shape firm behavior, sectoral competitiveness, and long-
run patterns of energy intensity? What kinds of pricing rules or smoothing mechanisms
can governments adopt to balance political durability, fiscal risk, and inflationary pressures
in volatile markets? When subsidies are reformed, which forms of social protection—cash
transfers, in-kind support, or public services—best shield vulnerable groups, and under what
conditions? At the international level, how do large-scale subsidies spill over through trade,
prices, and investment, and is there scope for coordination to avoid collective inefficiencies?
And finally, what are the long-run industrial consequences: does persistent support lock
in carbon-intensive capital and slow down the transition to cleaner technologies, or can it
sometimes provide a bridge to managed structural change?

5 Innovation and Climate Adaptation

Major temperature increases have already taken place, and will continue to do so regardless
of the path of mitigation technology and future emissions. Adaptation technology may play
an important role in shaping the consequences of this disruption, making it possible for indi-
viduals, firms, cities, or countries to adapt ex post. While mitigation technology development
can be organized around a key and quantifiable central goal—reducing emissions involved in
economic production and consumption—adaptation technology can be more varied and hard
to pin down.

Early in the chapter, we describe a wide range of adaptation technologies (Table 4). Some
are related to infrastructure and engineering, including developing lower-cost strategies for
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coastal and flood protection or more advanced cooling infrastructure. Others are related to
biotechnology, including developing more heat or pest-resistant crop varieties, stress-resistant
livestock, or new antiviral therapies as changing temperatures affect the pattern of human
disease outbreaks (e.g., Hotez and LaBeaud 2023). The development of tracking and early
warning systems, both for climate hazards themselves and also for knock-on effects like disease
outbreaks, may also become relevant. These technologies could give individuals the time and
ability to adapt to these threats in other ways.

In addition to crossing technology areas, different adaptation technologies may facilitate
very different types of adaptation responses. On the one hand, technology might allow indi-
viduals or producers to “adapt in place,” increasing local resilience to climate damages. This
can include directly changing production technology, for example, via the development of
heat-resistant seed varieties that make agricultural production possible as temperatures rise.
Climate monitoring and early warning systems can also facilitate other forms of preparation
for environmental extremes. It can also include changing the local environment to protect
from environmental extremes, without directly changing production technology; examples of
this are expanded use of air conditioning, changes in city or building design, other forms of
geoengineering that alter the local environment, or the development of sea walls and other
defensive investments.

On the other hand, technology can also drive adaptation-via-reallocation. In addition to
reducing the damage that climate change can do to productivity or health, it can also facilitate
the movement of firms and individuals across space and toward regions that are less directly
exposed to damaging climate trends. In agriculture, for example, new technology can make
it possible to expand production to new or ex ante less fertile land. More generally, this can
include anything that facilitates the efficient and productive movement of firms and individuals
toward regions that are less exposed to climate damage, and discovering or exploiting new
economic opportunities in those regions. Thus, the exact direction that adaptation innovation
takes—and the rate of adaptation technology development in the first place—may play a major
role in shaping human responses to climate change.

Despite the many ways that technology can shape and reshape the impacts of climate
change on well-being, there is relatively little existing research investigating the forces that
drive climate adaptation technology development, or the extent to which this technology
development mitigates the economic consequences of global warming16. Hötte and Jee (2022)
show that overall adaptation technology patenting is rising at a much slower rate than clean
energy patenting and than patenting in the economy as a whole, even though economic damage
from climate extremes is accelerating.

Breaking overall innovation down by topic, Figure 15a displays adaptation patent trends

16. For a broader review of the literature on the economics of adaptation and climate damages, see Carleton
et al. (2024) and Auffhammer (2018).
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Figure 15: Adaptation Technology Patenting Over Time

Note: The figure plots the number of all patent families (PATSTAT DocDB), where “all families” include those
filed only domestically as well as those filed in multiple jurisdictions; years correspond to the first filing year. A
patent family is defined following PATSTAT’s DocDB family definition, which groups together all applications
covering the same invention.
Adaptation technologies include patents related to agriculture and forestry, coastal protection, water management,
infrastructure resilience, and health. Monitoring technologies cover weather forecasting, water and species
monitoring, and other information systems. For detailed category definitions, see Table 4, and for patent data
construction and processing steps, see Appendix A.3.
Patenting in both adaptation and monitoring increased through the 2000s, with adaptation showing higher levels
of activity during that period. After 2015, both categories display a sharp uptick, reflecting a recent acceleration in
innovation. This surge is driven largely by growth in Chinese filings, though patent families also expand steadily
across all other major jurisdictions. The pattern holds when restricting attention to international families or to
granted families only.

over time for the five main technology categories identified by the USPTO: coastal protection,
agriculture, infrastructure, water use, and monitoring and information technology. There are
large differences across technology areas; while adaptation-relevant patents in agriculture have
risen sharply, there has been little change in adaptation-relevant patents in coastal protection.
One reason for this gap could be large differences in private-market demand for adaptation
technologies. As we describe below, worsening climate change could increase farmer demand
for more resilient technology, thereby incentivizing new technology development; however,
coastal investment decisions rely on government investment and policy change, which could
be slower, less predictable, and less lucrative. But what truly drives differences in investment
across adaptation technologies in practice, and what is the role of government policy in this
process? And to what extent do these different investments crowd each other in or out? The
answers to these questions could have important implications for estimating climate damages
and understanding optimal policy responses to environmental change.

Beyond understanding trends in innovation, the most important question might be the
extent to which new innovation mitigates economic damages from climate change, especially
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in the most climate-exposed parts of the world. However, there are few studies investigating the
impact of new technologies on climate resilience, and those that exist focus on individual sectors
in fixed locations, abstracting from the ways that technology could facilitate production re-
allocation or mitigate the knock-on effects of rising temperatures (e.g., via disease emergence).
One common theme is that global diffusion of adaptation technology is limited, especially
to developing countries where expected climate damages are largest (Touboul et al. 2023).
Taking all of this into account, what forces shape the development and (global) consequences
of climate adaptation technology?

5.1 Adaptation Technology Development: A Theoretical Framework

We first provide one potential framework for modeling private incentives to invest in adaptation
technology development, based on Acemoglu (2010) and its recent application in Moscona and
Sastry (2023). A key conclusion of the theory is that — as is the case for green technology
development (see Section 2.2) — there is no guarantee that the progression of climate change
leads to stronger incentives for developing adaptation technologies. In fact, under reasonable
conditions, the exact opposite can happen, and there is no clear reason to assume that the
development of adaptation technology will increase as climate damages become more severe.

Model Set Up. The goal is to build as simple a framework as possible that homes in on
the economic mechanisms that drive the relationship between climate change and adaptation
technology development. Consider an economy in which a continuum of producers i ∈ [0, 1]

can produce a single good. The quality of the climate or environment in each location is
Ai ∈ [A′, A′′] with cumulative distribution F (.) across locations. This can capture the extent of
extreme heat, which reduces agricultural output (Schlenker and Roberts 2009), or the extent of
flooding, which disrupts manufacturing production (Castro-Vincenzi 2022; Balboni et al. 2023),
among other sources of climate damage.

There is a technological input, and the producer uses Ti of this input. The productivity of
this input in location i reflects both local fundamentals Ai (i.e., local environmental quality)
and the state of the aggregate technological frontier θ, which are combined in the functionG(.).
In particular, the production function of producer i is:

Yi = α−α(1− α)−1G(Ai, θ)
αT 1−α

i (11)

where Yi is total output and α ∈ [0, 1] captures the relative importance of technology in the
production function. α−α(1 − α)−1 is a normalization added only to simplify the analysis.
Assume that G(.) is concave and twice continuously differentiable. Let G1 and G2 denote the
partial derivatives of G with respect to local innate productivity Ai and technological quality
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θ, respectively. ImposingG1 ≥ 0 andG2 ≥ 0 ensures that output is (weakly) increasing in both
local productivity and the technological level of the economy.

Each producer maximizes profits taking output price p and input cost q as given. Taking
the first order condition of the farmer’s maximization problem:

Ti = α−1p
1
α q

−1
α G(Ai, θ)

Thus, use of the technological input is directly increasing in G(Ai, θ).
Suppose that climate change represents a worsening of climate conditions everywhere.

That is, a damaging climate shift is one in which the climate productivity distribution shifts
from F (.) to FCC(.), where F () first-order stochastically dominates FCC(). The key question
will be how this shift affects the equilibrium technology level θ and ultimately production
resilience in the face of the worsening environmental conditions.

To model innovation, we assume there is a representative innovator that determines both
the price of Ti and the aggregate level of technological progress (θ) in order to maximize
profits. The innovator faces a marginal cost of technology development 1 − α and a convex
cost C(θ) of expanding the technological frontier. Substituting for technology input use from
the producer’s maximization problem, the innovator’s maximization problem becomes:

max
q,θ

(q − (1− α))α−1p
1
α q

−1
α

∫
G(Ai, θ)dF (A)− C(θ) (12)

The first order condition for q is satisfied for any θ if q− 1
α − (q − (1− α)) 1

α
q−

1
α
−1 = 0; thus, the

profit maximizing technology price is q = 1. Plugging this into the original maximand, the
innovator’s problem simplifies to one-dimensional optimization over the technology level θ:

max
θ
p

1
α

∫
G(Ai, θ)dF (A)− C(θ) (13)

Finally, assume that the price of the production good is determined by an inverse demand
function p = D(Y ), where D is continuous and non-increasing and Y is total output in the
economy: Y =

∫
Yi(Ai)dF (A). An equilibrium is defined as price p, output Y , and technology

level θ such that both producers and innovators maximize profits and the crop price lies on the
demand curve.

Before turning to the results, it is important to define two key cases for the role of technology
in production. It will turn out that the distinction between these cases is central for determining
whether overall technology development increases or decreases in response to climate damage,
as well as how endogenous technology development shapes production resilience:

Definition 1. Innovation is climate-substituting if G12 ≤ 0 and a climate-complementing if G12 ≥ 0.
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Here G12 denotes the cross-partial derivative of G(·) with respect to local productivity
Ai and the technological frontier θ and captures whether technological progress increases or
decreases the marginal impact of local climate conditions on output.

In words, Definition 1 means that new technology is a climate substitute if it reduces the
marginal impact of climate damage on output. This would be the case if new technology
development, on average, makes production less sensitive to climate hazards. One example
could be the development of heat-resistant seeds that lessen the impact of high temperatures
on crop production. Another could be factory floor designs that include barrier walls to guard
against flood damage (e.g., Leitold et al. 2021).

New technology is a climate complement if it increases the marginal impact of climate damage
on output. While this may seem counterintuitive, there are a range of examples of new
technologies increasing productivity at the expense of climate resilience. Recent evidence on
US agriculture, for example, suggests that much of recent breeding efforts increases yields at
the expense of resilience to drought, in part because seed varieties can be finely tuned to specific
environmental characteristics and, as a result, are more sensitive to fluctuations (Lobell et
al. 2014). Relatedly, in the case of manufacturing, many new processes involved in battery
production require very specific temperature and humidity ranges (Volta Foundation 2024),
and exposure to extreme heat or humidity can shut down battery production. These new
technologies become much less productive when the environment changes.

Key Theoretical Results. We next describe the main results of the model. The effect of
worsening climate damage on innovation hinges crucially on whether technology tends to be
a climate substitute or a climate complement.17

First, consider a small open economy (i.e., a world with fixed prices). If the climate shifts
in a damaging way, then the technology level (θ) will rise when technology is a climate sub-
stitute and fall when it is a climate complement. When technology is a climate substitute,
producers are more willing to pay for new technology under worse climate conditions, since
improvements are especially valuable in offsetting damage. When technology is a climate
complement, the opposite is true. Thus, whether the equilibrium level of technology rises or
falls in a damaged market depends on how the marginal benefit of technology responds to cli-
mate conditions. In the climate-substituting case, innovation can still increase in a “shrinking”
or “damaged” market because demand for technological improvements rises. The climate-
complementing case, on the other hand, recovers the more common intuition that innovation
concentrates in large or growing markets.

Next, we allow for flexible prices by assuming that equilibrium quantities lie along a
downward-sloping demand curve. In this case, a damaging climate shock reduces output

17. See Moscona and Sastry (2023) for a full discussion and derivation of all results. Here, we just summarize
the results and provide basic intuition.
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and therefore raises prices. Higher prices increase the marginal product of technology for
producers and, as a result, the returns to technological improvement for innovators. In the
climate-substituting case, this reinforces the incentive to improve technology after climate
damage. In the climate-complementing case, price effects work against the marginal-product
channel described in the previous paragraph. Thus, the overall impact of damaging climate
change on the equilibrium level of technology depends on the relative strength of these two
forces.

Finally, consider the extent to which endogenous technology development affects produc-
tion resilience (i.e., the negative of profits’ sensitivity to weather). In the case of climate-
substituting technology, climate damage always increases technology improvement, which, in
turn, increases production resilience. This is true regardless of the strength of price effects. The
climate-complementing technology case, however, is more complicated because the direction
of innovation and the marginal product of new technology can be misaligned. When price
effects are weak, innovation retreats in response to climate damage; however, this paradoxically
increases production resilience since, in this case, technological advancements make produc-
tion more sensitive to weather fluctuations. When price effects are strong, general equilibrium
effects can lead innovation to increase in response to climate damage even though the marginal
product of new technology has declined. In this case, production resilience declines even
though technology development has increased.

Thus, even in a simple theoretical framework, the response of technology development to
climate damage is ambiguous. Depending on specific characteristics of technology improve-
ment, technology development can either advance or retreat in response to damaging climate
trends. As a result, directed technological change can either increase or decrease produc-
tion resilience, dovetailing with the fact that directed innovation can accelerate both climate
catastrophe and a transition to clean technology in the model presented in Section 2.2.1.

Extensions. In the baseline model, there is a single technology, and it is either a climate
complement or a climate substitute. A more realistic setting may be one in which the innovator
can choose the extent to which technology is a climate substitute (i.e., reduces the marginal effect
of negative climate shocks on output). The extent to which this is possible in practice might
vary substantially across contexts; for example, technological features of battery development
might make it infeasible to make production less sensitive to variation in temperature and
humidity without sacrificing efficiency. The same could be true for crop yields. Regardless
of these different circumstances, adding this feature to the model will weakly push toward
directed innovation increasing resilience in response to climate shocks.

A second question is the extent to which climate-induced innovation is efficient. The fact
that innovation increases in response to climate damage (e.g., in the climate-substituting case
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of the baseline model) does not necessarily imply that it increases by the “right amount,”
or that a planner’s solution would coincide with equilibrium technology development. In
the framework above, the only market failure is innovator market power, which leads to the
under-provision of innovation in general but does not lead the direction of innovation to deviate
from the solution to the planner’s problem. This is not the case, however, in a model with
dynamic externalities in which innovation today has uninternalized benefits for technology
development tomorrow. While these dynamic returns to scale are often emphasized in models
of growth and endogenous technological change (e.g., Romer 1990), they could be especially
relevant in the present context since adaptation technology development is just beginning to
ramp up (see Figure 15) and climate damages are expected to get substantially worse in the near
future. More generally, Acemoglu (2023) explores the forces that might prevent the market
from getting “the direction of technology right.”

One shortcoming of this framework is that a key determinant of future profitability is
future government decision-making, which is beyond the scope of this model. For example,
incentives to invest in improved sea wall technology are determined by whether, when, and
where governments will decide to build sea walls, which can be shaped by complicated political
incentives and dynamics (see Hsiao 2023). Incorporating political economy and expectations
about future government actions into a model of investment in adaptation technology seems
like an interesting area of future work.

5.2 Climate Damages and Innovation: Empirical Evidence

The fact that the impact of climate damages on adaptation technology development is ambiguous—
and that innovation could either increase or decrease production resilience to climate shocks—
makes it all the more important to investigate this relationship in the data. However, as noted
above, empirical work at this intersection is limited, in part because the set of adaptation
technologies and their potential impacts are so varied.

One sector in which this question has been explored empirically is agriculture. Moscona and
Sastry (2023) investigate how exposure to climate change in the US has affected the direction
of innovation by exploiting heterogeneous exposure to climate damage across crops.18 In
particular, they measure the extreme heat exposure of each crop in each decade since 1950,
driven both by differences in crop geography at baseline and the differential sensitivity of each
crop to extreme heat. First, using data on all new crop variety releases in each year, they find
that new variety development has been directed toward crops with increasing exposure to

18. The importance of adapting technology to specific environmental conditions is a key feature of agricultural
innovation more generally, even absent systematic changes in the environment due to global warming. For
reviews of the economics technology development and diffusion in agriculture, see Sunding and Zilberman
(2001), Pardey et al. (2010), and Alston and Pardey (2021). Many of the microeconomic forces governing climate
adaptation technology development are also common features of agricultural innovation more generally.
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extreme heat; the mean in-sample extreme heat exposure is associated with a 20% increase
in variety development. Second, using data on the universe of agricultural patenting, they
show that the shift in technology development toward more heat-exposed crops was driven
by technologies that would be relevant for climate adaptation, measured using both the text of
the patent abstract and using the technology class of the invention (e.g., soil treatment might
help with climate adaptation while mechanical harvester technology would not).

Finally, they show that this new technology development has offset some of the economic
damage from extreme heat trends: the marginal effect of extreme heat on agricultural profits
and land values is muted for counties growing crops that were more exposed to induced
innovation in the national market. Combined with a model, these estimates imply that directed
innovation has offset only about 20% of the potential economic damage from extreme heat on US
agriculture. That is, innovation to date has been only an incomplete guard against productivity
losses from global warming, even in the US, which has the largest agricultural markets and
R&D ecosystem, making it perhaps the best case scenario for adaptation-via-innovation.

These findings suggest that the “climate substitutes” case of the theory seems to dominate
in this context, and that innovators shift focus toward more adaptation-relevant technologies
as climate damage worsens. Cui and Zhong (2025) find similar results studying the relation-
ship between extreme heat shocks and crop variety development in China; in China, how-
ever, the results are smaller in magnitude, and the development of the most widely-adopted
temperature-induced varieties is driven by the public sector, perhaps reflecting the different
nature of innovation incentives and institutions. Looking farther back in history, Moscona
(2025) studies the response of innovation to the American Dust Bowl of the 1930s, perhaps
the worst environmental catastrophe in US history, that caused widespread damage to the
Plains region. There too, technology development shifted toward the most climate-damaged
crops—the crops planted in areas that the Dust Bowl hit hardest—consistent with historical
accounts that the Dust Bowl was partly responsible for the early take-off of the US agricultural
biotechnology sector (e.g., Crabb 1947; Crow 1998; Sutch 2011).

Zooming out across many natural disasters and countries, Miao and Popp (2014) show that
country-level exposure to natural disasters (e.g., floods, earthquakes) leads to a sharp uptick in
patenting to mitigate disaster risk. Thus, existing evidence seems to suggest that in response
to negative climate realizations, innovation shifts in the direction of offsetting climate damage.
These findings are consistent with evidence from other contexts that negative supply shocks
— or “scarcity” — can drive technological change (e.g., Habakkuk 1962; Acemoglu 2010; San
2023; Flynn et al. 2025). The extent to which this induced innovation offsets economic damage
from climate change, however, is largely an open question. Moreover, much more evidence is
needed to understand whether these findings generalize to other sectors and contexts.
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5.3 Climate Damages and Adaptation Technology Adoption

Other studies take the state of technology development as given and estimate whether the
adoption of new technology can mitigate the productivity and health consequences of climate
change. According to existing estimates, the impact of rising temperatures on mortality repre-
sents a substantial share of overall climate damages since extreme heat substantially increases
mortality, especially for the elderly (e.g., Deschênes and Greenstone 2011; Hsiang et al. 2017).
In the US, however, the relationship between temperature and mortality has declined substan-
tially over time, driven in large part by the widespread adoption of air conditioning (Barreca
et al. 2016). Air conditioning adoption can also substantially reduce the marginal effect of heat
on firm productivity (Zivin and Kahn 2016; Somanathan et al. 2021; Costa et al. 2024). Beyond
air conditioning, other cooling technologies, like “cool” high-albedo roofing (Rawat and Singh
2022), can drastically reduce workplace exposure to extreme heat.

Another set of technologies that mitigate climate damage by altering the local environment
is coastal protection. Benetton et al. (2025) study the construction of a sea wall to protect Venice
and find that, while the sea wall does protect the city and increase local land values, it is far
from paying for itself when these hedonic benefits are compared to the costs. Hsiao (2023)
studies the construction of a sea wall in Jakarta and finds that, paradoxically, the ability of the
government to fund a sea wall can complicate adaptation to climate change. Absent the ability
to commit to future policy, the potential construction of a sea wall can create coastal moral
hazard. Migration away from the coast is inefficiently suppressed by the expectation of future
sea wall construction, and the government is likely unable to commit to never building a sea
wall, especially if a large share of firms and individuals are concentrated in at-risk areas.

This is one example of adaptation-via-technology interacting with other mechanisms of
adaptation (in this case, migration), which we return to below. In this case, the prospect
of a sea wall reduces migration, thereby leading to substantial and unnecessary government
expenditure to finance defensive technology investments.

Other studies directly investigate the adoption of more resilient production technology. For
example, Taraz (2017) shows that Indian farmers increase investment in irrigation in response
to droughts; however, these investments ultimately do little to reduce the effect of climate
extremes on crop yields. Other work finds that irrigation adoption reduces the effect of rainfall
shortages on conflict (Gatti et al. 2021) or output (Balana et al. 2024). Some studies have
shown that improved climate forecast and monitoring technology can also reduce agricultural
damages by affecting insurance uptake (Suarez et al. 2008) and input choice (e.g., seed) (Kayamo
et al. 2023). More generally, better weather tracking can substantially lower overall economic
damages from natural disasters, including hurricanes and floods (e.g., Perera et al. 2019; NOAA
2020); investing in these technologies has a high estimated benefit-cost ratio across contexts,
even in low-income countries (Martinez 2020; Islam et al. 2024).

103



5.4 Interactions with Mitigation and with Other Adaptation Mechanisms

Adaptation technology might have important interactions with mitigation technology devel-
opment or with other mechanisms of adaptation. One prominent example of these feedback
mechanisms is the case of geoengineering, large-scale manipulation of Earth’s climate to coun-
teract the effects of climate change (e.g., reflecting sunlight back into space, directly removing
carbon from the atmosphere, etc.). The Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) even argued that investments in geoengineering and possi-
ble future deployment of techniques ranging from aerosol injections to carbon capture could
reduce current mitigation efforts. Acemoglu and Rafey (2023) formalize this relationship.
They show, in a model with a social planner who can set a carbon tax but not commit to
future tax rates, that geoengineering breakthroughs reduce future damages and hence future
Pigouvian carbon taxes. Anticipating lower carbon taxes in the future, firms reduce their
investments in clean technology development because the lower carbon tax will reduce the
future profitability of these investments. Thus, advancements in geoengineering technology
can lead to underinvestment in socially valuable mitigation technologies. This logic need not
only apply to geoengineering. Any technological advances that reduce economic harms from a
given change in temperature—from heat-resistant seeds to affordable sea wall technology—can
reduce expected profits from clean technology investments.

The development of adaptation technologies is often cited as one rationale for limiting
emissions regulation or public investments in clean technology. For example, in a meeting of
the US House Committee on Science, Space & Technology, Committee Chairman Lamar Smith
stated that the committee should “look to technological innovations that increase resilience and
decrease vulnerability to inevitable climate change” instead of imposing regulation (U.S. House
Committee on Science, Space, and Technology 2018). In this telling, technology development
will inevitably make the economic impacts of global warming less severe, reducing the need
to reduce emissions today. Understanding how beliefs about the current and future potential
of adaptation technology shape decision making—by voters, politicians, and firms—could be
important to explore. The quote referenced above may not represent a sincere belief and instead
be political cover, but it nonetheless raises important questions: what do individuals believe
about the potential impacts of climate adaptation technology, the timing of its development,
and who will benefit? Is this variation in beliefs explained by actual differences in the potential
of new technology to offset climate damages?

While these examples suggest that adaptation technology (or even beliefs about future
adaptation technology) may reduce investment in mitigation, there may also be technological
synergies between adaptation and mitigation technology. In their patent data analysis, Hötte
and Jee (2022) find that 26% of climate adaptation technologies also facilitate mitigation; a large
share of these are related to infrastructure, including the fact that greater insulation technology

104



both maintains moderate temperatures during extreme weather events and increases energy
efficiency. Another example is that more resilient crop varieties also tend to sequester more
carbon. Other papers explore single technologies in greater detail, including work on how
high-albedo roofing can also reduce temperatures (e.g., Bamdad 2023). Exploring the full
set of interactions between adaptation and mitigation technology development seems like an
important avenue for future research.

Adaptation technology development may also interact with other mechanisms of adaptation.
These interactions could be important to take into account. For example, in the case of agri-
culture, Miao (2020) shows that crop insurance can mediate the extent to which technology
development responds to droughts (i.e., the development of drought-tolerant crop traits). In
particular, the study finds that the rise in innovation in response to drought is substantially re-
duced by subsidized crop insurance. This is related to other work showing insurance coverage
reduces climate adaptation in US agriculture across the board (Annan and Schlenker 2015).

The response of innovation could be mediated by endogenous responses beyond insurance
take-up. A number of papers suggest that production re-allocation (e.g., crop switching in the
case of agriculture) could be an important mechanism of adaptation to climate change (e.g.,
Costinot et al. 2016; Rising and Devineni 2020; Sloat et al. 2020). On the one hand, production
reallocation and innovation could be substitutes, meaning that fewer crop switching frictions
could reduce innovation incentives, or alternatively, new technology development may limit
the need for production reallocation by reducing the costs of continuing to produce in the same
place. On the other hand, new technology development may be required to adapt agricultural
production to new land and facilitate the production of specific crops in areas where they had
not been grown previously (see Olmstead and Rhode 2008, on this process in the US). To
our knowledge, however, there is no work studying the interaction between these two main
potential drivers of climate adaptation: production re-allocation and innovation (i.e., changing
the production possibilities frontier).

5.5 Global Outlook: Who Benefits from New Adaptation Innovation?

A major question is who will benefit from adaptation innovation and technology development.
The specific climate threats faced by different parts of the world are distinct, meaning that the
technologies most useful for limiting economic damage will also be different. This suggests
that not only the amount of adaptation technology in general, but also the specific focus of that
new technology, will determine how it re-shapes the global impacts of climate change.

Most global innovation concentrates in a handful of wealthy countries (Boroush 2020) and
the development of climate adaptation technology is no different (Touboul et al. 2023, see also
Sections 3.3.1 and 3.3.4 on the concentration of mitigation innovation). Do innovators also
respond unevenly to climate challenges and damages in different parts of the world? Moscona
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and Sastry (2023) show that while US innovation responds sharply to the cross-crop pattern
of extreme heat exposure in the US — whereby technology development rises for crops that
are most exposed to damaging climate trends — there is no evidence that innovation responds
to damaging climate trends in other parts of the world, especially in low-income countries.
Incentives pulling innovators toward investing in technologies that could allow farmers in
developing countries to adapt to climate change seem limited or absent outside the US.

Still, a remaining possibility is that the technology developed in response to demand from
US producers may itself also be relevant for adaptation in other parts of the world. While
this may be true in some contexts, it does not seem to be the case in agriculture. One way
to see this is to plot US crop-level exposure to damaging climate trends, either in the past or
projected into the future, against crop-level exposure to damaging climate trends in other parts
of the world. The relationship is essentially flat, implying that even the set of crops for which
heat-resistant seeds will be in highest demand—never mind adapting those seeds to differing
ecological conditions—is vastly different. This pattern may generalize to other sectors. For
example, it seems unlikely that the high-cost sea wall approach studied by Benetton et al. (2025)
could be implemented outside a small set of high-income cities.

Another example is related to disease outbreaks. Both slow-moving warming, which can
shift the range of disease vectors and microbes, as well as extreme climate events, can lead to
disease outbreaks (e.g., Zell 2004; McMichael 2015). Many emerging outbreaks take place in
developing countries; however, research investment focusing on either treating the pathogens
that drive these outbreaks or developing monitoring and warning techniques remains limited
(Hotez 2016). Extreme weather warning systems are an important adaptation tool (see above);
however, Linsenmeier and Shrader (2023) document that weather forecasts are substantially
more accurate in rich compared to poor countries.

Zooming out from individual industries, Touboul et al. (2023) study the global diffusion
of climate adaptation technology around the world. They make use of a new patent data
classification system that enables the identification of all patented technologies relevant for
climate adaptation (Angelucci et al. 2018), which makes it possible to track the development
and international transfer of specific adaptation technologies using the patent family system
described in previous sections. The authors show that while there has been a rise in the
development of adaptation-relevant technologies since the 1990s, it has not outpaced overall
patenting growth (i.e, there has not been a major shift toward adaptation-relevant innovation),
and the vast majority of this growth has been concentrated in only a few countries. For example,
23.6% of inventors of adaptation-relevant patents reside in the United States, followed by Japan
(15.8%), Germany (10.8%), South Korea (7.0%), and China (6.5%).

Moreover, this technology is rarely transferred across borders, especially to low-income
countries: the cross-border patent transfer rate for adaptation technologies is lower than both
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the all-technology average or the average for climate change mitigation technologies, and patent
transfer to low-income countries is virtually absent. This absence of adaptation technology
diffusion to developing countries is particularly concerning in light of the fact that, as the
authors show, they are often the places where the incidence of climate hazards, like extreme
temperatures, is most severe.

One potential explanation for the slow or absent diffusion of adaptation technologies is
precisely the role of “technology mismatch” described above. It is possible that adaptation
technology developed in one environment is simply not applicable (or not as productive)
elsewhere; this may be more true for adaptation, which may be more finely linked to specific
production processes or climate threats, than for mitigation technology, which may be more
general-purpose. Understanding the determinants of adaptation technology diffusion seems
like an important area for future work.

Pavanello et al. (2021) and Davis et al. (2021) study international diffusion patterns of
perhaps the most impactful adaptation technology to date: air conditioning. The spread of air
conditioning can explain a large share of the decline in the temperature-mortality relationship
in the United States (Barreca et al. 2016). However, air conditioning adoption rates remain
substantially lower outside the United States, particularly in developing countries, especially in
commercial buildings, where cooling systems may be particularly important for mitigating the
effects of global warming on economic output and productivity. Pavanello et al. (2021) focus on
large emerging economies—Brazil, India, Indonesia, and Mexico—and show that, within each
country, temperature and income jointly predict adoption alongside education, urbanization,
and dwelling quality. While projections suggest that tens of millions of households may be
in a position to adopt air conditioning, current trends imply that access to electricity will be
insufficient to support this higher demand for cooling.

Not all forces push in the direction of greater inequality in the availability of appropriate
adaptation technology, however. One consequence of rising temperatures is that high-income,
innovating countries will begin to experience some of the productivity and health threats that
currently disproportionately affect low- and middle-income countries. This includes exposure
to higher temperatures and extreme climate conditions, but also exposure to agriculture-
damaging plant pathogens (Bebber et al. 2013) and to human diseases (Hotez 2018) that have
historically not affected high-income regions. As global warming progresses, pathogen ranges
shift to include new parts of the world where they previously did not exist. To the extent
that global innovation concentrates disproportionately on threats to production and health
that are present in high-income countries, this process might lead innovation to focus on a
more common set of threats and lead to technology development with widespread benefits.
Moscona and Sastry (2025) show that, in the case of agriculture, while pest and pathogen
range shifts are likely to cause substantial disruption, they may also coordinate technology
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development around more globally-damaging threats to production that partially offset the
negative direct effects of global warming on productivity. Much more research is needed to
understand how innovation shapes the global economic consequences of climate change.

6 Frontier and Cross-Cutting Topics

This final section describes a series of topics about which there has been less research to date
but that strike us as important areas for future work. These topics are related to themes that cut
across previous sections of the chapter and are at the center of ongoing political and economic
debates about climate change and technology.

6.1 The Direction of Clean Technology

A broad range of different technologies and potential technological pathways underlie the
“green technology transition.” Most work to date has focused on understanding drivers of in-
novation in clean versus dirty technologies, both in theory and in practice. Much less attention
has been devoted to understanding which clean technologies have been the focus of innovation,
why certain technologies have been favored over others, and what the optimal distribution of
innovation across clean technologies and energy sources “should” be. Especially as “green
industrial policy” becomes more common around the world (see Section 4.2), answering these
questions will become crucial.

Section 3.1 describes the wide range of technologies that can reduce reliance on fossil
fuels—while some are substitutes for one another, meaning that success in only one is required
for reducing carbon use in that particular area, others rely on complementary knowledge or
are linked in complicated supply chains that reduce reliance on carbon only when functioning
together. Moreover, each particular technology area comes with its own uncertainties about
the progression of future technological breakthroughs and future policy support or political
backlash, all of which could have major effects on potential inventor profits and hence invest-
ment. Understanding how innovators navigate these questions, and the role of policy design
in a context with many potential technological trajectories, strikes us as an important area for
future work.

One feature of innovation that complicates answering these questions is the important role
of knowledge spillovers. Existing work has focused on the impact of dynamic knowledge
spillovers, and these effects have been documented at an aggregate level (for more detail, see
Section 2.2.2). However, knowledge spillovers could vary drastically across technology areas
and, moreover, they could be accompanied by cross-technology spillovers, where innovation
in one area increases the productivity of future innovation in another. This full pattern of
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knowledge spillovers shapes the direction of innovation across different clean technology
areas and helps determine the areas where policy intervention is most relevant. However, little
is known about how this all works in practice.

A second feature of innovation that complicates answering these questions is the role of
uncertainty, both about future technological progress and about future policy intervention
(see Section 4.5). In a simple world with two potential sources of renewable energy that are
substitutes for one another, the clear policy solution may be to focus innovation in one of the
two sources in order to avoid duplicated innovative effort. In fact, models like Acemoglu et
al. (2012) suggest that innovators themselves will endogenously focus on the technology area
that is more productive. However, even in this simple setup, the answer is no longer so simple
once certain technology areas may be subject to unexpected policy intervention or political
backlash, at home or abroad. The recent and sudden policy reversal in US wind energy is a
clear example (e.g., Gelles 2025). These policy swings are especially relevant given the stark
political divides when it comes to renewable energy investments. Section 6.3 describes the
complicated and changing policy landscape around critical minerals, which are key inputs
for many renewable energy technologies. Volatility and policy-driven uncertainty in mineral
supply translate directly into uncertainty about future technology costs.

Moreover, future technological progress may alter which clean technology is most produc-
tive and lowest cost, thereby increasing the value of knowledge in areas that are currently
less competitive. The future pace and scale of cost reductions remain highly uncertain, and
experts have repeatedly underestimated the speed of decline in renewable energy costs. These
underestimates can vary across technologies; for example, cost reductions in photovoltaics beat
projections by a wide margin (Ghadim et al. 2025). Innovation therefore may become ineffi-
ciently concentrated in a few technology areas since innovators are unlikely to internalize the
benefits their discoveries create after these future breakthroughs take place (Acemoglu 2011).
These forces may justify spreading clean energy research across applications and for policy
measures that limit the (potentially) inefficient concentration in a narrow set of applications.

Studying the forces that drive the distribution of innovation across clean technology areas
is also important because, in practice, innovation across these areas does not act and react as
a monolith. Technology development across different applications is subject to unique con-
straints, opportunities, and dynamics, all of which affect the direction of innovation. Nuclear
energy is a clear example. Figure 16 presents trends over time in patenting of technologies
related to nuclear energy across a range of markets. The rise in nuclear energy innovation
during the 1970s and 1980s, driven in large part by Japan, when nuclear was seen as the future
of energy production, was followed by a sharp decline following the Three Mile Island and
Chernobyl nuclear incidents. In recent years, patenting in nuclear energy has taken off again,
driven to a large extent by a state-led push and large-scale investment in China. This rise in
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Figure 16: Nuclear Energy Patenting Over Time
Note: The figure reports counts of all nuclear patent families (PATSTAT DocDB), including domestic families,
international families, and families that were never granted. Years correspond to the first filing year.
Nuclear patenting expanded rapidly from the 1960s through the 1980s, with a striking peak at the JPO. Much of
this peak disappears when restricting to granted families, but Japan still dominates granted nuclear patents in
that period. At the USPTO, EPO, and JPO, the basic pattern is robust whether we look at all applications, granted
families, or international families: activity drops sharply in the 1990s after the Three Mile Island and Chernobyl
accidents, then begins to recover toward the late 2000s before stabilizing at lower levels.
China follows a different trajectory. When considering all families or granted families, CNIPA filings rise extremely
quickly from the mid-2000s. When focusing only on international families, the increase is steadier but still
substantial: by 2020, Chinese international filings reach volumes comparable to those at the USPTO, EPO,
and JPO. This contrast highlights the difference between China’s very large domestic filing surge and its more
measured—but still significant—internationally relevant nuclear innovation.
For details on patent data construction and processing steps, see Appendix A.3. JPO = Japan Patent Office;
EPO = European Patent Office; USPTO = United States Patent and Trademark Office; CNIPA = China National
Intellectual Property Administration.

China would likely have been hard to foresee in 2005, when nuclear patenting was at its nadir
and patenting in China was well below that in both Europe and the US.

This pattern illustrates several features of energy innovation. First, it is subject to wide
swings in market opportunities that are often specific to individual technology areas and
challenging to anticipate—in this case, major shifts in public opinion and changes in top-down
policy that may be more extreme than other areas of innovation and technology development.
Second, while potentially conducive to substantial knowledge spillovers and learning by doing,
concentrating innovative resources in one area comes with major risks. Japan concentrated a
large share of its research investment in nuclear technology and, after the 1990s, its fortunes
fell with that of the global market for nuclear energy (see Figure 6). Third, understanding
the focus of innovation within each energy source may be as important as understanding the
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focus of innovation across them. Within nuclear energy, some advocate for concentrating
investment in expanding conventional reactor development and deployment. This has been
the major focus of investment in China. Others advocate for advanced and small modular
reactors (SMRs)—the main focus of new US nuclear start-ups—which have a broader set of
potential applications and could be mass produced at lower cost, but which rely on substantially
newer and less-proven technology. This trade-off—versions of which exist across renewable
technology areas—is challenging to quantify, especially given the large costs associated with
delays in decarbonization.

More generally, each clean technology and energy source has unique market opportunities
and (political) challenges. Certain parts of the world have high solar energy potential while
others do not (and the same is true for wind). While nuclear energy provision is less reliant
on local weather conditions, SMRs (should they eventually be deployed at scale) may be
much more useful in remote regions where extending transmission lines is difficult or costly.
They may also be attractive in contexts where financing large-scale reactors is prohibitively
difficult. This financing challenge is present even in high-income countries, and is typically
even more severe in low- and middle-income settings. Politically, both renewable energy and
carbon-intensive energy sources are highly polarized in the US, with the former receiving
substantially more support from the Left than the Right and vice versa (Leppert and Kennedy
2024). While nuclear energy receives largely bipartisan support (perhaps surprisingly, given its
controversial history), political tensions remain when it comes to disposing of nuclear waste.
How do all these forces combine to shape the focus of innovation across clean energy sources,
up and down the supply chain? What should the optimal policy be in this complex technology
landscape, taking spillovers and uncertainty seriously? How do political incentives across
technology areas shape technological progress and the set of feasible policy interventions?
These all seem like important questions for future research.

6.2 Economics of Clean Artificial Intelligence

6.2.1 AI as a General-Purpose Technology

Artificial intelligence shows the classic traits of a general-purpose technology: it is widely
applicable, improves quickly, and reshapes complementary activities (Cockburn et al. 2018).
Like electricity or the internet, it has the potential to transform how other technologies are
developed and deployed. AI could help accelerate decarbonization by optimizing power
grids, speeding up clean-tech research, or reducing waste. At the same time, it creates new
demand for electricity, water, and critical minerals, and may also increase the productivity
of fossil-based technologies. Recent work on the economics of AI cautions against overly
optimistic projections. Productivity effects often arrive with a lag as organizations invest in
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complementary changes at the so-called productivity curve (Brynjolfsson and Li 2024). Simple
task-based accounting also suggests that the macroeconomic impact depends on how many
tasks are affected and by how much, not on headline model performance (Korinek 2024;
Acemoglu 2025). This suggests that AI’s climate significance will be shaped less by a sudden
aggregate boost and more by the specific domains in which it is deployed.

6.2.2 AI and Energy Use

Energy use is the aspect of AI’s environmental footprint that is drawing the most attention and
concern. The energy use of AI is a fast-moving and uncertain space. Reliable estimates are
difficult to come about, since companies release little data and models differ widely in their
resource intensity. A widely circulated estimate suggests that training GPT-4 required around
50 GWh of electricity—about 0.02% of California’s annual generation and more than fifty times
the electricity needed to train GPT-3 (The Economist 2024).19

Once a model is deployed, inference typically dominates its lifetime footprint. Experts
estimate that billions of daily queries mean that inference may account for 80–90% of total
energy use (O’Donnell and Crownhart 2025). Recent disclosures from Google provide some of
the first official per-prompt estimates of a major LLM. According to Google, the median Gemini
text prompt consumes about 0.24 Wh of electricity, with associated emissions of 0.03 gCO2e and
0.26 mL of water (Vahdat and Dean 2025). Google notes that this is roughly five to ten times
more than a standard search query, but still comparable to running a light bulb for less than a
minute.

The IEA estimates that global electricity demand from data centers, cryptocurrencies, and
AI could grow from 416 TWh in 2024 to between 700 and over 1,700 TWh by 2035, depending
on how things unfold (IEA 2025a). That’s a wide range—roughly the difference between the
annual electricity use of Brazil and all of Latin America and the Caribbean (Ember 2024). Still,
even the upper end would be about 4% of global electricity demand in 2035 (IEA 2024h, Table
A.3a, p. 299), less than what the world already uses for air conditioning, which was 2,111
TWh in 2022 (Ritchie 2024a). Yet the local and systemic effects can be large. Data centers are
predicted to consume as much as 9.1% of all US electricity by 2030, with some regions like
Virginia potentially reaching up to 50% (EPRI 2024). Modeling studies show that if AI growth
outpaces grid decarbonization or capacity expansion, it could raise both electricity prices and
emissions (Bogmans et al. 2025).

19. No data has been released by OpenAI itself; the number traces back to a simple back-of-the-envelope
calculation (Minde 2023), based on the information that training reportedly cost about $100 million, lasted 100
days, and used roughly 25,000 NVIDIA A100 GPUs.
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6.2.3 Environmental Impacts: Carbon, Water, and Materials

Carbon emissions—not raw electricity demand—are what ultimately matter for AI’s climate
footprint. A kilowatt-hour from coal has a vastly different impact than one from hydro, solar,
or nuclear. In principle, the technologies to run AI on clean power already exist: firms can co-
locate near low-carbon resources, invest directly in renewables and storage, or sign long-term
power purchase agreements (PPAs) to guarantee carbon-free supply. Microsoft’s deal to source
electricity from the Three Mile Island nuclear plant is a striking example: pairing always-on
zero-carbon generation with the fast-growing load from AI data centers (BBC 2024). Other
cases, such as Iceland’s geothermal- and hydro-based facilities, show that siting decisions alone
can produce near-zero-carbon operations.

The central challenge is understanding the incentives that firms face. Will companies face
the right mix of carbon prices, disclosure rules, and contractual opportunities to align AI
expansion with investments in clean energy? For economists, this motivates several poten-
tial research questions. How effective are power purchase agreements (PPAs) and corporate
procurement in driving additional clean generation, rather than simply reshuffling existing
supply? What forms of carbon accounting—hourly, regional, global—most strongly influence
firm behavior? Do carbon prices, tariffs, or grid-congestion charges provide efficient signals
for siting and operating AI infrastructure? And what are the distributional consequences if
clean-energy access for AI comes at the expense of other consumers?

Beyond electricity, other environmental costs are less well measured. Data centers often rely
on millions of liters of water for cooling (Ren 2023), but reporting is sparse—the latest Google
release being the exception. Hardware depends on critical minerals such as copper, gallium,
and rare earths, most of which are mined in developing countries under weak environmental
and labor standards (DOE 2023). Rapid hardware turnover creates mounting e-waste: AI-
related infrastructure could generate up to 5 Mt annually by 2030, in a world where less than
a quarter of e-waste is properly recycled. These lifecycle impacts are unevenly distributed and
remain poorly integrated into most climate scenarios.

6.2.4 Will AI Accelerate Clean-Tech Discovery and Deployment?

AI is emerging as a potentially powerful enabler of innovation in climate technologies. In
batteries, where development has historically been slow and empirical, machine learning can
shorten discovery cycles from decades to years or even months. Models trained on large
datasets of material properties now screen millions of candidates for electrodes and elec-
trolytes, predicting stability, voltage windows, conductivity, and mineral criticality. In one
case, AI-driven screening reduced a set of over 100,000 hypothetical battery materials to just a
few hundred promising contenders within weeks (Dave et al. 2022). AI can also forecast degra-
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dation and cycle life from the first 100–150 charge cycles with about 9% average percentage test
error, avoiding thousands of hours of testing (Severson et al. 2019). Robotic “self-driving” labs
close the loop by autonomously synthesizing and testing new chemistries, as demonstrated in
recent solid-state electrolyte experiments (Chen et al. 2024; Yik et al. 2025). These advances
not only improve performance but also help identify alternatives to scarce minerals like cobalt
and nickel, expanding the frontier toward sodium-ion and long-duration storage options (IEA
2025a).

AI may also help optimize energy systems already in place. Grid operators are applying
AI to forecast demand, integrate renewables, and rebalance networks in real time. The IEA
estimates that such improvements could unlock up to 175 GW of global transmission capacity
by 2030 without building new lines (IEA 2025a). AI is also being deployed to improve predictive
maintenance for wind and solar fleets and to enhance efficiency in buildings and industry.

Energy demand from AI data centers could be a separate driver of clean technology devel-
opment. Amazon, Google, and Microsoft are all making large investments in nuclear energy,
motivated by demand for a powerful energy source without intermittency that can fuel AI
data centers (Penn and Weise 2024). The long-run effect of new energy demand from AI on
the direction of innovation remains to be seen.

It is unlikely that AI’s benefits will flow only to clean technologies. Fossil-fuel industries
are already experimenting with AI to optimize exploration and production, raising the risk
that these tools could also reinforce carbon-intensive activities. At the same time, evidence
from patent data shows that clean-energy technologies absorb AI knowledge spillovers more
effectively than fossil-based ones (Andres et al. 2022; Verendel 2023). This asymmetry suggests
that while both sectors will adopt AI, the relative gains may tilt toward clean technologies.

6.2.5 Rebound Effects

By increasing task efficiency, AI deployment could lead to rebound effects that increase overall
energy demand. For example, the energy required per computation has fallen steadily with
advances in hardware, software, and data-center operations (Cowls et al. 2021); yet efficiency
does not automatically translate into proportional reductions in overall demand. As compute
becomes cheaper, larger models are trained, queries multiply, and applications proliferate.
The result is a potential rebound effect in which the realized savings are smaller than the
engineering gains would suggest. These device-level rebounds are relatively well understood
and can be represented in demand models using standard elasticities. Much harder to assess
are the broader, system-wide rebounds. AI can reduce emissions in existing activities, for
example, by improving grid management or logistics, while at the same time enabling entirely
new services such as generative media, synthetic content, or autonomous assistants that add
to energy demand. Whether these new uses substitute for existing activities or add to them

114



remains uncertain. Reviews emphasize that such indirect effects could in fact be larger than
the direct ones, yet they are rarely included in mainstream climate and energy models (Luers
et al. 2024). For economists, the central questions concern how large these rebounds really
are in practice, how elastic demand for AI services is across different sectors, at what point
efficiency gains enable scale expansion rather than savings, and how indirect effects can be
credibly represented in economic and climate models.

6.2.6 Evolving Policy Landscape

In principle, if electricity markets priced carbon fully and consistently, AI could be treated
like any other source of demand. In practice, emissions remain underpriced, siting decisions
create local bottlenecks, and voluntary pledges have not prevented rising data-center emis-
sions. Governments have begun to act: Ireland and Singapore have paused new facilities
in grid-constrained regions; California has introduced disclosure rules (Patrizio 2023; IEA
2025c); China has announced long-term clean-power targets (Enviliance 2023); and the EU AI
Act embeds environmental provisions, including requirements for documentation of energy
use (EC 2024). These efforts are fragmented, but they reflect a growing recognition that AI
infrastructure is too significant to ignore.

A central question is what kind of information is most useful for guiding decisions. Industry
currently reports metrics such as Power Usage Effectiveness (PUE)—the ratio of total facility
electricity use to the electricity consumed by computing equipment. A PUE of 1.1 means that for
every kilowatt-hour used by servers, an additional 0.1 kWh is consumed by cooling and other
overheads. While widely adopted, PUE focuses only on energy efficiency within the facility;
it says nothing about the carbon intensity of the power consumed, nor about the system-wide
effects of data-center growth. Economists can help by assessing which metrics—PUE, emissions
per unit of compute, or time- and location-specific carbon intensity—are most relevant for
modeling demand, designing policy, and shaping incentives.

Beyond measurement, there are broader uncertainties. How can rebound effects, which
are difficult to quantify, be incorporated into projections? How should mineral supply risks
be accounted for, given the overlap between AI hardware and clean-energy technologies?
What regulatory designs are adaptive enough to keep pace with rapid hardware change and
deployment cycles? And how should labor and skills constraints enter the analysis, given
the overlap between AI expertise and the needs of the green economy? Economists are well
positioned to answer these questions. Developing forward-looking scenarios that integrate
AI into climate pathways and models that capture both direct and indirect effects will also
be essential. Only with such tools can policymakers judge whether AI is likely to accelerate
decarbonization or reinforce existing constraints.
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6.3 Critical Minerals

Critical minerals (CMs) are essential inputs for clean technologies such as batteries, wind
turbines, and electricity networks. Their importance has grown as electrification accelerates:
lithium, cobalt, nickel, copper, graphite, and rare earths now underpin the core hardware of
the energy transition. Under the IEA Net Zero scenario, metals production is projected to
increase in value by almost a factor of four, amounting to roughly USD 11 trillion between now
and 2040. Boer et al. (2024) show that this would put transition metals on a par with crude oil
in macroeconomic importance, with production values similar to those of the entire oil market.

Recent data from the IEA (IEA 2024b, 2025b) confirm that clean energy technologies are
now the main source of demand growth. From 2022 to 2024, clean energy accounted for most
of the increase in demand for battery metals, roughly 70–90% of the total. In 2024, energy
applications made up 62% of lithium demand, about one-third of cobalt and graphite, 29% of
copper, and 17% of nickel. Projections show these shares rising quickly: by 2040 in the Net
Zero scenario, demand from clean technologies more than triples, with lithium use rising more
than tenfold and copper nearly twenty times.

Three points stand out. First, demand growth is rapid and policy-driven. Second, supply
chains are highly concentrated, with more than 40% of strategic minerals having a single top
producer responsible for over half of global output, and refining even more dominated by
China (Figures 17a–17b). Third, prices are also highly volatile, often more so than oil and
gas (Figure 17d), with recent boom-bust cycles across battery metals (Figure 17e). This all
means that CMs are not only a technological input but also a source of macroeconomic and
geopolitical risk. They will shape the trajectory and costs of decarbonization, while also raising
fundamental questions for economics on innovation, political economy, and industrial policy
design.

6.3.1 Supply, Concentration, and Geopolitics

Geographic concentration in critical minerals is extreme. If supply from the largest producer
of any major mineral were disrupted, only half of global demand could be met (IEA 2025b). In
over 40% of strategic minerals, a single producer accounts for more than half of global output
(Figure 17a). Mineral refining is even more concentrated. China dominates nearly all of the
twenty minerals analyzed, with an average market share of about 70%. The only exception is
nickel, where Indonesia has leveraged its large reserves and heavy Chinese investment to move
rapidly up the value chain (Figure 17b).

Concentration has deepened over the past two years (IEA 2025b). The lithium-ion battery
supply chain illustrates the trend. Nickel-based chemistries, which use cobalt and nickel to
achieve higher energy density, are still traded across global markets. In contrast, lithium iron
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(a) Share of top producers in mining (b) Share of top producers in refining

(c) Geographical distribution of the lithium-ion battery supply chain

(d) Price volatility (e) Price over time

Figure 17: Critical Minerals: Concentration and Volatility
Note: Reproduced from the IEA GCMO 2025. The specific page numbers are indicated below. Panel 17d (page 250) shows the monthly price
volatility for selected minerals and fossil fuels, January 2014-March 2025. The IEA notes that due to data availability, the volatility values for
some minerals were calculated over differing time frames: January 2020 to March 2025 for graphite, January 2018 to March 2025 for manganese,
March 2017 to March 2025 for titanium, and September 2019 to March 2025 for indium. Panel 17e (page 19) shows the annual average price
developments for selected minerals, 2020-2024 Panel 17a and 17b (page 251 and 252) show the share of top producers of, respectively, mined
or refined energy-related strategic minerals. The IEA specifies that these are based on the most recent year for which data are available. On
Panel 17a, the figure for silicon refers to silica mining; Gallium, germanium, indium, and tellurium are not shown as they are almost entirely
produced as by-products. On Panel 17b, the figure for titanium refers to titanium metal; manganese to high-purity manganese sulfate, and
molybdenum to ferromolybdenum. Panel 17c (page 209) shows the geographical distribution of the LFP and nickel-based lithium-ion battery
supply chain for the year 2024. Ni-based = nickel-based cathodes. Li = lithium; Ni = nickel; Co = cobalt; Gr = graphite, Mn = manganese, Ph
= phosphate; Material Processing: Mn = battery- grade Mn sulfate, Ph = battery-grade phosphoric acid, Gr = battery-grade graphite. DRC
stands for Democratic Republic of the Congo.
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phosphate (LFP) batteries—cheaper and free of nickel and cobalt, though lower in energy
density and largely suited to smaller cars—have expanded rapidly. This growth has not diver-
sified supply but instead reinforced dependence on China, which dominates LFP production
(Figure 17c). Even in recycling—where new entrants might have been expected—most new
capacity since 2020 has also been built in China.

This persistent concentration is reshaping the energy security debate. In the fossil fuel
era, the clean transition was framed as a way to reduce dependence on oil and gas imports
from specific foreign suppliers. Today, however, attention has shifted: the mineral supply
chain itself has become a new source of vulnerability. The analogy with fossil fuels is only
partial. Whereas oil and gas disruptions could halt flows overnight, minerals are embodied in
capital goods, so existing BEVs or wind farms continue to operate. The challenge instead lies
in scaling future capacity. For countries aiming to achieve net-zero emissions, this means that
concentration threatens to slow the roll-out of clean technologies.

Evidence from scenario analysis reinforces this concern. Naegler et al. (2025) combine
integrated assessment modeling with material flow analysis to construct indicators of supply
concentration and weighted country risk. Their results show that while raw-material costs
fall under ambitious decarbonization pathways, geopolitical supply risks remain high. This
finding points to concentration as a structural feature of mineral supply, not a temporary
bottleneck. It also raises a broader policy question: how should countries evaluate the trade-
off between minimizing energy costs and limiting geopolitical risk?

6.3.2 Policy Responses

The geographic concentration of critical minerals has triggered a wave of industrial policies
across major economies. Governments are using diverse instruments, ranging from traceability
systems and recycling mandates to export restrictions and subsidies.

A relatively uncontroversial area is transparency and data sharing. A key example is
the EU’s new battery passport, mandated under the Batteries Regulation for all large-format
batteries by 2027. The passport is a digital record that follows a battery through its life cycle,
covering composition, critical mineral content, origin, performance history, and ownership.
This improves prospects for second-life applications: accurate metadata on state-of-health can
reduce diagnostic labor by up to 40% and lower liability barriers to repurposing and recycling
(Weng et al. 2023; Rizos and Urban 2024). Implementation hurdles remain, however—data
formats differ and firms remain cautious about sharing sensitive information—but the passport
shows how industrial policy can support both resource recovery and market efficiency.

More contentious are export restrictions and subsidy-led strategies. Indonesia’s nickel
policies illustrate the former. By banning ore exports and requiring domestic processing, the
country became the world’s largest nickel refiner in under a decade, largely with Chinese
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capital and technology (Wu and Bird 2025). This secured greater domestic value capture but
also reinforced global midstream concentration. China has extended export controls beyond
minerals such as gallium, germanium and graphite to processing technologies themselves (IEA
2025b), raising supply risks and spillovers for downstream industries.

Subsidy-led policies are especially visible in the EU and the United States. The case of
Northvolt, Europe’s flagship battery start-up, illustrates the risks. Despite extensive public
support, the firm filed for bankruptcy in 2024 after failing to scale production and reduce
defect rates. Commentators have called it a modern “Solyndra moment,” highlighting the
dangers of betting on national champions without addressing structural cost disadvantages
relative to incumbents in China and Korea (Milne 2025; Thomas 2025).

Policy responses are thus mixed. Initiatives such as the battery passport may strengthen
supply chain efficiency and sustainability. Others, such as export bans and poorly designed
subsidies, risk reinforcing concentration or wasting public funds. For economists, the central
questions are: how should governments weigh diversification, efficiency, and competitiveness;
what forms of industrial policy avoid “picking losers”; and how do measures in one jurisdiction
spill over internationally, influencing innovation and comparative advantage elsewhere?

6.3.3 Price Volatility and Market Structure

Critical mineral prices are highly volatile. Across twenty strategic minerals, about three-
quarters have been more volatile than oil and half more volatile than natural gas (see Fig-
ure 17d). The dynamics of the past few years illustrate this clearly. In 2021–22, demand for
battery metals surged while supply lagged, triggering a sharp spike in prices. By 2023–24,
however, new supply came onstream more quickly than expected, and prices fell back across
many key materials (Figure 17e) (IEA 2025b).

These swings are rooted in the way critical mineral markets are structured. They are small,
thin, and often opaque. Trade is dominated by bilateral contracts rather than deep, liquid
exchanges; reliable benchmarks are missing for many battery-grade products; inventories are
patchily reported; and variations in product quality further fragment already thin markets (IEA
2025b). Moreover, supply cannot respond quickly: projects involve long lead times and high
capital costs, while many minerals are by-products of other ores, which severs their supply
from movements in their own price. Geographic concentration further amplifies shocks, as
disruptions in just a few places can ripple through global markets.

Volatility in raw material prices translates directly into volatility in technology costs and
investment timing. A striking example came in 2021–22: the surge in mineral prices was large
enough to halt—and even reverse—a decade-long decline in battery pack costs. For the first
time in more than ten years, battery prices rose rather than fell. When mineral prices corrected
in 2023, costs resumed their downward path, but not enough to return to their pre-surge
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trajectory (Kim 2022). With limited scope for rapid supply responses, Boer et al. (2024) show
that Net Zero pathways could sustain “peak-like” prices unless new technologies and capacity
are deployed quickly.

6.3.4 Innovation, Substitution, and Recycling

Innovation can help relax mineral bottlenecks, though the extent and direction depend on
prices, policy, and research effort. It acts on two margins: raising supply elasticities upstream
through better exploration, extraction, and processing, and lowering material intensity down-
stream via substitution, thrift, and reuse. Elasticities are not fixed technological constants,
and they can be shifted by both policy and technology. As a result, uncertainty about their
true values widens the set of plausible possible future scenarios and complicates modeling.
A simple illustration is lithium, where combining right-sizing of EV batteries, alternative
chemistries, and recycling might be able to cut the projected 2030 demand pathway by roughly
a quarter—close to today’s production—without loss of service (IEA 2025b).

Dugoua et al. (2025) provide an overview of the role and scope for innovation across the
supply chain of critical minerals. On the supply side, three types of innovation stand out. First,
in discovery and extraction, new targeting techniques, advanced geophysics, and approaches
such as direct lithium extraction promise faster and more precise identification of reserves.
Second, in processing, low-carbon and modular methods—for example, hydrometallurgical
routes for nickel and cobalt or improved rare-earth separation—can reduce permitting hurdles
and allow plants to be deployed closer to deposits. Third, in process integration, technologies
that improve coproduct recovery (gallium, germanium, indium) or raise yields make existing
resources go further. Collectively, these innovations lower costs and, more importantly, shorten
development timelines, steepening effective supply elasticities.

What makes these innovations powerful is not only their impact on expected costs but
their effect on risk. Exploration tools that raise the probability of successful discovery reduce
the variance of outcomes. Modular plants shorten lead times and reduce exposure to delays.
Flowsheets built from proven unit operations lower the risk of failure when scaling from
pilot to commercial production. And coproduct recovery diversifies revenues, dampening the
exposure to swings in any single market. For firms, these reductions in uncertainty can matter
more than small shifts in average costs: a project with a shorter and more predictable payback
horizon is far likelier to attract investment.

On the demand side, substitution and thrift are already shifting exposures. Lithium iron
phosphate (LFP) has spread rapidly, lithium–manganese–iron phosphate (LMFP) is emerging,
and sodium-ion is entering early niches. Motor and magnet designs economize on dysprosium
and terbium, while copper thrifting and high-voltage DC grids reduce the metal intensity of
transmission. These shifts do not remove dependence; they relocate it to different minerals
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and stages of the chain, creating new geopolitical and price risks. For firms, the challenge
is portfolio management: balancing exposures across chemistries and platforms when both
prices and policy signals are volatile. Analyzing these decisions requires linking engineering
substitution possibilities with stochastic price and policy paths, and studying how firms hedge
through contracts, product design, and geographic diversification.

Recycling represents a third lever. High-temperature and hydrometallurgical routes are
scaling, and design-for-disassembly together with traceability initiatives (such as battery pass-
ports) reduce frictions for reuse and second-life applications. But two frictions are structural.
First, feedstock arrives with a lag, as products reach end-of-life only after years in use. Second,
growing chemistry diversity fragments the scrap stream, lowering average value-in and raising
sorting costs, especially as cobalt content falls. This makes recycling uniquely sensitive to the
combination of volatile prices and shifting policy incentives: while innovation clearly responds
to shocks, uncertainty about direction can create moving targets for R&D.

Evidence on induced innovation confirms that innovation responds strongly to shocks.
Alfaro et al. (2025) studies Chinese export restrictions on rare earths and documents that these
shocks spurred patenting and entry abroad in separation technologies and magnet substitutes.
The mechanism is consistent with standard induced innovation theory: price and policy signals
redirect inventive effort. Flynn et al. (2025) find that there is a substantial increase in mineral-
specific innovation following a rise in political risk (e.g., internal conflict, military takeover)
where that mineral’s deposits are concentrated. Price volatility and the rapid pace of policy
change—sometimes driven by rapidly-changing political events—combine to make mineral
supply highly volatile and hence make the direction of induced innovation less predictable.
Policy can accelerate innovation, but it can also create moving targets that dissipate effort or
entrench lock-in.

Mineral projects are capital-intensive and highly exposed to price swings, which makes
downside risk a central barrier to investment in new technologies and capacity. For innovation
to take hold, firms need a more predictable revenue horizon. One possible avenue comes
from electricity markets—especially wind power in the UK and Europe—where contracts for
difference (CfDs), cap-and-floor schemes, and proxy revenue swaps have been used to stabilize
cash flows, reduce financing costs, and still preserve market signals (Beiter et al. 2023; Ason and
Dal Poz 2024; Kitzing et al. 2024). Whether such mechanisms can be adapted to critical minerals
remains an open question. Options include long-term sales contracts that guarantee producers
a minimum and maximum price linked to transparent market indices, or public price-support
programs that cushion the revenues of first-of-a-kind refining and recycling plants. A key
research and policy agenda is to identify which tranche of risk is most binding—exploration,
scale-up, or commodity revenue—and to assess whether instruments of this type could ease
those risks without imposing excessive fiscal cost.
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6.3.5 Competing demand and strategic uses

The clean-energy transition is not the only major driver of critical mineral demand. A powerful
combination of defense rearmament and AI infrastructure deployment is reshaping material
markets, creating potential tensions with climate goals. Military and data-center hardware
rely on many of the same minerals that underpin wind turbines, electric vehicles, and solar
photovoltaics. This overlapping demand raises a key question: will it crowd out clean-energy
deployment by straining already thin markets, or will it catalyze supply-chain expansion by
anchoring investment?

Defense and AI are becoming major new sources of mineral demand. Military expenditure
reached record levels in 2024, and AI-related investment is driving a rapid build-out of data
centers and high-performance computing. Both sectors rely on many of the same inputs as
clean energy—rare-earth magnets, gallium and germanium semiconductors, titanium alloys,
high-purity silicon, and copper—creating significant overlap. These pressures are already
visible in policy: the US DoD is funding domestic rare-earth separation (IEA 2025b), and
NATO has prioritized stockpiling and recycling of critical materials (NATO 2025).

Overlapping demand from defense and AI could either crowd out clean technologies by
tightening supply in thin markets, or crowd in new investment by anchoring long-term offtakes
and stimulating innovation (see Dugoua et al. 2025). Overlapping demand can crowd out
clean technologies when sectors with a greater willingness to pay can raise prices and absorb
scarce supply in thin markets, such as gallium or heavy rare earths. Defense procurement
also secures long-term contracts or strategic reserves, effectively pre-empting capacity before
civilian buyers can access it. Policy carve-outs—exemplified by China’s restrictions on gallium
and germanium—create segmented markets that raise transaction costs and limit coordination
across supply chains. In such an environment, shocks transmit quickly, and the macroeconomic
consequences can resemble those of oil or gas price spikes.

At the same time, several mechanisms could generate crowding in. High-value, state-
backed procurement reduces investment risk and improves project bankability, encouraging
new refining and recycling projects outside China. The 2025 US DoD–MP Materials agreement,
which set a price floor and guaranteed long-term offtake for a new rare-earth magnet plant,
illustrates how military demand can underwrite civilian supply (Sangita Gayatri Kannan and
Lange 2025). Technological spillovers further blur the boundary between sectors: gallium
nitride chips developed for radar now improve EV inverters (Oncea 2024; Rahman et al. 2024),
while defense logistics chains built around traceability can pioneer standards later adopted in
civilian recycling.

Which of these dynamics dominates depends on where AI and defense demand intersect
with existing bottlenecks. Minerals such as gallium, dysprosium, and high-purity silicon are
already under pressure due to limited refining capacity and geographic concentration, making
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them especially vulnerable to crowding out. Others, like lithium, are less affected because
they are not heavily used in these applications. The implication is that governance of cross-
sector flows—through monitoring, procurement design, and reserve-release protocols—will
be crucial. Without coordination, clean-tech deployment could slow; with it, strategic demand
might help diversify supply and stabilize investment.

Looking further ahead, the frontier option of off-Earth extraction highlights the uncertainty
of long-run supply. Launch costs have fallen by roughly a factor of twenty in the past decade,
and some argue that continued declines could make asteroid or lunar mining technically fea-
sible. Fleming et al. (2023) suggest that such a shift could sustain metal use while reducing
terrestrial environmental and social costs. The economics and governance of space mining
remain highly uncertain, but the debate illustrates the need to account for long-term options
when designing today’s supply strategies. Anticipation of future frontier supply could dis-
courage near-term diversification, yet ignoring option value risks over-committing to expensive
terrestrial pathways.

6.4 Global Winners and Losers from the Clean Energy Transition

A global shift away from high-carbon sources of energy creates winners and losers, leaving
certain nations well-positioned to profit from a transition toward clean energy. Government
policy can further allow countries to exploit the potential opportunities of a clean transition for
political or geopolitical gain. At the same time, other countries and interest groups, especially
those with greatest control over the supply of dirty energy, stand to lose both revenue and
international influence (Andres et al. 2023), and may respond with policies designed to curtail
a global shift toward clean energy sources over which they would have little control.

There are two reasons that these issues should be at the center of research in climate
economics. First, energy policy is deeply linked to geopolitics and security, both of which
are referenced as a key justification for a majority of the policy changes described in Section
4. This link between energy policy and international influence is likely to only continue as
geopolitical tensions rise. Second, the energy transition is among the most important forces
that are shaping and will shape international relations and international politics over the
coming decades. Environmental and energy economists are uniquely positioned to study
this transition, combining an understanding of energy and resource markets with models of
economic, political, and geopolitical incentives.

The energy transition shifts the key natural resources that undergird global production,
and these resources are distributed unevenly both within and across nations. The global
oil deposits that shaped international conflict during the 20th and early 21st centuries—and
perhaps also the countries that control them—will likely decline in political importance (see
e.g., Yergin 2020). They will be replaced, however, by new resources whose demand will grow
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Figure 18: Renewable Energy Potential Around the World
Note: Panel 18a, reproduced from Global Solar Atlas, reports the long-term average of daily global horizontal
irradiation (GHI) in kWh/m² for 1994–2024, based on the Solargis global solar model. Panel 18b, reproduced
from Global Wind Atlas, measures Global Mean Wind Speed (m/s) at 100m.

with a transition to renewable energy sources. This includes mineral resources, described in
detail in Section 6.3, which are key ingredients to almost every modern technology. It also
includes access to renewable energy sources themselves, which varies across space and shapes
the extent to which each region can generate local renewable energy. Figure 18 displays the
global distribution of the geographic potential of solar and wind energy, driven by variation in
solar irradiation and wind speed, respectively. While some regions could potentially harness
both energy sources, others—including parts of South America, Central Africa, and Southeast
Asia—have limited geographic potential in either. These differences in clean energy potential
could shift the balance of economic power within countries and reshape energy dependencies
across countries.

Natural resources themselves do not determine economic or political outcomes; instead,
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they interact with policy choices, political decisions, and state capacity, often in complex ways.
While local mineral deposits may become a potential source of wealth, recent research has
also shown that lootable mineral resources can cause large spikes in violent conflict, spurring
political turmoil (Berman et al. 2017). Meanwhile, a peace agreement between the Democratic
Republic of Congo (DRC) and Rwanda was secured with US backing in part due to the fact
that the US was able to secure critical mineral access for US companies (Faucon et al. 2025;
Mureithi 2025). More generally, mineral resources are increasingly being used as a bargaining
chip in international negotiations (Chothia 2025). Thus, access to key mineral reserves may
be a factor in global conflict in future years—and innovation will endogenously shape mineral
reliance and the potential for substitution across different potential mineral sources.

While mineral resources themselves are essential, they are only the most upstream compo-
nent of new supply chains that build clean technology. Through concerted policy intervention,
China has gained control of a large share of the processing and refining stages of most minerals.
Despite the environmental and health harms associated with these processes—one reason that
little of this activity takes place in most high-income countries—China has achieved almost
complete control of global mineral supply chains (see Figure 17).

Other countries are also drafting policies to exploit their mineral resources, which have
grown in value in recent years. Indonesia, for example, is attempting to exploit its abundance
in deposits of nickel—a key mineral for EV batteries—with an industrial policy aimed to
develop a vertically integrated domestic EV supply chain, from mineral deposits all the way
to vehicle manufacturing (Wu and Bird 2025). While this approach has already led (with large
strategic investments from China) to the development of a domestic refining industry, the
overall impact of Indonesia’s nickel-oriented industrial policy (and others like it) is unclear.
While essential for many batteries, nickel only represents a small fraction of the cost of EV
production, and many EV models (including those that are gaining global market share) rely
on alternative battery designs (e.g., lithium-iron-phosphate). Manufacturing competition from
regional neighbors may also limit Indonesia’s ability to compete in the downstream parts of
the EV supply chain. Together, these examples highlight how geography and policy combine
to shape the global consequences of the energy transition.

Beyond the role of natural resources, certain countries—due to a combination of targeted
policies and early technological advancements—are already positioning themselves as tech-
nological leaders in clean energy production. Again, China is the best example of this (see
Section 3.3.3). While the scale of China’s renewable energy investments and the resulting cost
reductions have accelerated the global energy transition, they are also leading large parts of
the world—especially low and middle-income countries—to rely on Chinese infrastructure,
technology, and energy. This grants China substantial geopolitical and geo-economic power,
which it has already begun to exercise during international disagreements (e.g., Bradsher 2010).
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Thus, China’s rise may provide cheap and renewable energy for large parts of the world, and it
also allows China to accumulate geopolitical power in a way that would not have been possible
prior to the energy transition.

Other countries that lack domestic sources of fossil fuel are aiming to capitalize on the
transition to a renewable-based energy system, where the ability to develop new technology
may be (on the margin) more impactful when it comes to developing control of energy supply
chains than was the case when most economic activity was dependent on oil (as the French
saying dating back to the 1973 oil crisis goes, “We don’t have oil, but we have ideas”). This is
exemplified by large-scale European investments in hydrogen and solar investments in Japan.

Russia is angling to become a global leader in the provision of nuclear energy. In doing
so, the government hopes to extend its geopolitical influence, and Russian plants are currently
under construction in Bangladesh, China, Egypt, India, Iran, and Turkey, among several other
countries (Mooney and Hancock 2024). Russia is also developing plans to help process the
nuclear waste from countries that operate its plants; given that waste disposal is a key political
obstacle to nuclear deployment, this is likely a very enticing deal, but one that comes with
potentially long-term dependence on the Russian government.

While, in principle, a global transition away from fossil fuels should generate substantial
global welfare benefits, competition over the control of that transition and the resulting eco-
nomic and political gains may involve substantial conflict and new opportunities for coercion.
Understanding the geopolitical impacts of the clean energy transition—including how policy
and technology both shape and are shaped by political incentives—may be the most important
area for future work described in this chapter.

7 Conclusion

This chapter has examined the economics of innovation, technology, and climate policy. We
began with the microeconomic foundations of technological change, where multiple market
failures interact to slow clean innovation. We then turned to macroeconomic models of directed
technological change, which show how policy shapes the focus of new technology development
and its resulting environmental impact. The following sections described the landscape of
clean technology development and recent trends in the rate, direction, and geography of
innovation. We then described adaptation technology development and its impacts before
turning to frontier topics, including critical minerals, artificial intelligence, and the geopolitics
of the energy transition.

This chapter’s primary lens has been economics, with a focus on the role of policy in
shaping incentives to develop and adopt new technology. We have surely left many important
facets of technology and climate change unexplored. Some of these require bridging the
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gap between economics and other fields. For example, we provided a high-level taxonomy
of mitigation technology, but did not attempt the detailed engineering or climate science
assessments needed to judge technological feasibility, or model how the development of these
new technologies interacts with climate projections. We did not delve into the political economy
of policy implementation, where questions of vested interests, public opinion, and institutional
structures determine which policies are adopted and maintained. Our treatment of consumer
adoption emphasized economic concepts such as information asymmetries, but a richer account
would also draw on sociology and behavioral science to explain how norms, cultural values,
and cognitive biases influence technology uptake. Finally, while many sections referenced the
interplay between geopolitics and the energy transition, we did not cover the international law
and governance frameworks that regulate climate agreements, technology transfer, or trade
disputes. Answering many of these questions will likely require cross-field collaboration and
draw on contributions from political science, law, engineering, and other social sciences.

We hope the chapter is useful for scholars and policymakers curious about innovation,
technology, or climate policy, whether new to the field or long engaged with it. Our aim is that
readers leave with fresh ideas on how to apply the rich and expanding toolbox of economics to
the broad set of important questions at the intersection of climate change and technology. The
stakes are high, but with data becoming easier to collect and analyze, the scope for rigorous
and relevant research has never been greater.
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A Data and Methodology

A.1 Sources for Table 1

Table A.1: The World in 2000 and 2025 vs 2050 (with sources)
Metric 2000 2025 ≈ 2023 2050 IEA

STEPS
2050 IEA NZE

Global mean ∆T (◦C) 0.6◦C1 1.2◦C2 1.9◦C2 1.5◦C3

Global GHG emissions (Gt
CO2-eq)

36.2 Gt4 53.0 Gt4 0 Gt C02 + 0.3
Gt CH4

6

Global CO2 emissions (Gt) 26 Gt5 39 Gt5 36 Gt6 0 Gt (net)6

Top GHG emitters (As of 2023)
China
Total (Mt CO2e)
Global Share (%)
Per Capita (t CO2e)

5,243 Mt 4

14.5 % 4

4 t 4

15,944 Mt 4

30 % 4

11 t 4

6,356 Mt* 18

22.2 %* 18

4.9 t* 18

USA
Total (Mt CO2e)
Global Share (%)
Per Capita (t CO2e)

7,203 Mt 4

20 % 4

26 t 4

5,960 Mt 4

11.25 % 4

18 t 4

2,016 Mt* 18

7 %* 18

5.4 t* 18

India
Total (Mt CO2e)
Global Share (%)
Per Capita (t CO2e)

1,845 Mt 4

5.1 % 4

2 t 4

4,134 Mt 4

7.8 % 4

3 t 4

3,184 Mt* 18

11 %* 18

1.9 t* 18

EU27
Total (Mt CO2e)
Global Share (%)
Per Capita (t CO2e)

4,481 Mt 4

12.4 % 4

10 t 4

3,222 Mt 4

6 % 4

7.2 t 4

746 Mt* 18

2.6 %* 18

1.75 t* 18

Fossil-fuel share of primary
energy (%)

85 %7 81 %7 67 %6 20 %6

Renewables share of
electricity (%)

18.30 %8 30 %8 55 %6 88 %6

Global oil demand (Mb/d) 77 Mb/d2 102 Mb/d2 97 Mb/d2 - 105
Mb/d6

24 Mb/d6

Renewable capacity – total
(GW)

800 GW9 - 808
GW

4,448 GW12 23,217 GW10 33,178 GW10

Renewable Energy Breakdown
Hydro (GW) 790 GW11 1,283 GW8 -

1,410 GW10
2,02713 2,685 GW13

Solar (GW) 1 GW14 1,609 GW10 -
1,865 GW12

16,445 GW10 15,468 GW13-
21,618 GW10

Wind (GW) 17 GW14 1,133 GW12 4,189 GW10 7,795 GW13

Top Countries by Renewable Capacity (As of 2023)
Solar PV Capacity (GW)
China
EU27
USA

0.03 GW 15

0.18 GW 15

0.59 GW 15

610 GW 15

257 GW 15

139 GW 15 -
170 GW 18

9,433 GW 18

1,078 GW 18

1,895 GW18

Wind Capacity (GW)
China
EU27
USA

0.34 GW 17

12.3 GW 17

2.4 GW 17

442 GW 17

219 GW 17

148 GW 17

1,516 GW 18

597 GW 18

528 GW 18

EV share of car sales (%) 0 18%16 25%6 100%6

*Only pertains to CO2 emissions.
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Sources:

1 Daniel L. Albritton et al. 2001. “Climate Change 2001: The Scientific Basis. Contribution
of Working Group I to the Third Assessment Report of the Intergovernmental Panel
on Climate Change.” Chap. Summary for Policymakers, edited by J. T. Houghton et al.
Cambridge University Press

2 IEA. 2023b. “World Energy Outlook 2023.” International Energy Agency (Paris)

3 IEA. 2024c. “Global Energy and Climate Model.” International Energy Agency (Paris)

4 EC et al. 2024a. “Edgar Total GHG in CO2eq Dataset.” A Collaboration between European
Commission, Joint Research Centre and International Energy Agency. Accessed July 15,
2025. https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p1

5 EC et al. 2024b. “IEA-Edgar CO2 Dataset.” A Collaboration between European Commis-
sion, Joint Research Centre and International Energy Agency. Accessed July 15, 2025.
https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p1

6 IEA 2021b

7 Energy Institute. 2024. “Share of Primary Energy Consumption That Comes from Fossil
Fuels – Using the Substitution Method Dataset.” Processed by Our World in Data. Original
data from Energy Institute Statistical Review of World Energy. Accessed July 15, 2025.
https://archive.ourworldindata.org/20250624- 125417/grapher/fossil - fuels- share-
energy.html?tab=table

8 IEA. 2024g. “Renewables 2024: Analysis and Forecast to 2030.” International Energy
Agency (Paris), Market Report, 280

9 Selin Oğuz. 2024. “Visualized: Renewable Energy Capacity through Time (2000–2023).”
Decarbonization Channel, Visual Capitalist, June. https://decarbonization.visualcapital
ist.com/visualized-renewable-energy-capacity-through-time-2000-2023/

10 IEA. 2024i. “World Energy Outlook 2024 Extended Dataset.” International Energy Agency.
Accessed July 15, 2025. https://www.iea.org/data-and-statistics/data-product/world-
energy-outlook-2024-extended-dataset

11 2021a

12 IRENA. 2025. “Renewable Capacity Highlights.” International Renewable Energy Agency

13 IEA. 2022a. “Climate Resilience for Energy Security.” International Energy Agency
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14 “The Evolution of Renewable Energy Generation from 2000 to 2040.” 2024. Venair. https:
//venair.com/en/blog/articles/evolution-renewable-energy

15 IRENA. 2024a. “Total Solar Capacity Dataset.” Processed by Our World in Data. Original
data from IRENA, "Renewable Capacity Statistics.". Accessed July 15, 2025. https ://
archive.ourworldindata.org/20250624-125417/grapher/installed- solar-pv-capacity.
html?tab=table

16 Hannah Ritchie. 2024b. “Tracking Global Data on Electric Vehicles.” Our World in Data,
February. https://ourworldindata.org/electric-car-sales

17 IRENA. 2024b. “Total Wind Capacity Dataset.” Processed by Our World in Data. Original
data from IRENA, "Renewable Capacity Statistics.". Accessed July 15, 2025. https ://
archive.ourworldindata.org/20250624-125417/grapher/cumulative- installed-wind-
energy-capacity-gigawatts.html

18 IEA. 2024j. “World Energy Outlook 2024 Free Dataset.” International Energy Agency.
Accessed July 15, 2025. https://www.iea.org/data-and-statistics/data-product/world-
energy-outlook-2024-free-dataset#data-files

A.2 Policy and Article Classification

A.2.1 Collecting Textual Data

The database used for source URLs of environmental policy briefs around the world is the
Climate Change Laws of the world database (Radar 2025). This database contains metadata and
links to national environmental policy briefs around the world since 1947. Using these URLs,
we implemented an adaptive scraping pipeline using Selenium (Adam et al. 2025) that handles
heterogeneous sources—direct PDF downloads and diverse HTML webpages—and extracts
all textual content from the source URL. In the case of URLs relating to HTML webpages,
the primary scraping package used was BeautifulSoup (Richardson 2007), and in the case of
URLs relating to PDFs, the primary scraping package used was PyMuPDF (Artifex Software,
Inc. 2025).

Given the large volume of text for each brief, the texts were then chunked using a semantic
chunking strategy for at most 4,500 character-sized chunks. This approach splits each text into
character segments, which are at most 4,500 characters long in semantically-coherent chunks.
The algorithm does this by breaking the text into sentences, encoding them into embeddings,
and computing cosine similarities between adjacent sentences. Semantic similarity is measured
using the cosine similarity of textual embeddings by comparing the angle between their vector
representations, where smaller angles indicate greater similarity. We selected a multilingual
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embedding model - paraphrase-multilingual-MiniLM-L12-v2 from the Sentence Transformers
package (Reimers and Gurevych 2019) - to account for the non-English texts in our corpus.
This step resulted in almost a million chunks for about ∼7,800 documents.

Once the texts were chunked, further processing, such as translating and cleaning for
gibberish, required knowledge of the language of the source text. For robustness, we used two
packages for detecting the source language of each chunk20: langid (Lui and Baldwin 2012)
and langdetect (Shuyo 2010). To be overly-cautious, we considered as non-english any text
which either package flagged as being non-english. If there was a contradiction in the original
language, we prioritized the classification of langid.

After text preprocessing, we implemented a pipeline to detect and filter out gibberish,
which often arises when non-Latin scripts (e.g., Chinese or Japanese) are misencoded, pro-
ducing unreadable characters (mojibake). Another source of gibberish occurs in the presence
of headers, footers or banners present in the source website or PDF. The pipeline combines
character- and word-level heuristics with frequency statistics: each chunk is normalized to
remove formatting or other unusual characters, then assessed by criteria such as unusual char-
acter and symbol character ratios, long consonant runs (for Latin scripts), and word frequency
profiles based on Zipf scores21 from the wordfreq library (Speer 2022) across a defined set of
languages. A chunk was flagged as gibberish if these measures crossed set thresholds, with the
overall stringency-related parameters determined through extensive trial and error on random
samples of the dataset. For this task, source language identification was necessary as word
frequencies vary across languages; without constraining to the appropriate language set, valid
sentences in languages like Finnish could have been misclassified as gibberish when judged
against English norms.

Once the chunks were filtered for gibberish, we implemented an automated translation
pipeline to translate non-English text into English using the GoogleTranslator interface from
the deep-translator package, which accesses the Google Translate API (Google). This marked
the final stage of the pre-processing pipeline.

A.2.2 Classification

To classify environmental policy documents into three categories—market-based instruments
(MBIs), non-market-based instruments (NBMIs), and technological support (TECH) — we
first generated labeled data using DeepSeek’s API. We designed the following context and
structured prompt that asked the model to return binary dummy variables for each type of
environmental policy instrument, along with a short justification note. Before designing the

20. The language detection was made at the chunk-level, as many documents contained text in several languages.
21. Zipf scores are a way of expressing how common a word is in natural language, based on Zipf’s law which

says that a few words make up most of language usage, while most words are rarely used.
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prompt, we consulted DeepSeek for its interpretations of the instrument types and found its
definitions sufficiently clear, removing the need to explicitly define them in the output structure
and reducing attention due to a lengthier prompt. The final prompt design was as follows:

You are an expert in environmental policy.

Classify the input text into three possible categories:

- Market-based instruments (MBIs)

- Non market-based instruments (NBMIs)

- Technological support (TECH)

Rules:

- For each category, output a dummy variable: 1 if present, else 0.

- Return a single CSV row with the following columns in order:

dummy_mkt,dummy_non,dummy_tech,notes

- The first field (row_index) will be added by the caller; you should not include it.

- Use only 0/1 for the dummy flags. Keep notes concise (<= 120 characters).

User Prompt:

Classify the following text:

Text:

---

{chunk}

---

Return exactly: dummy_mkt,dummy_non,dummy_tech,notes

This request was run iteratively on a representative subset of the dataset—spanning multiple
languages, countries, and time periods — across five days. This process yielded∼18,000 labeled
text chunks that served as a training dataset for fine-tuning a pre-trained Large Language Model
(LLM). We then fine-tuned a RoBERTa model22 on this labeled dataset, training it for two epochs.
Training and validation losses both decreased between the first and second epoch, suggesting
the model was learning without overfitting; we stopped after two epochs to avoid the risk of
overfitting. Performance metrics for RoBERTa showed that strict subset accuracy (requiring all
three labels to be predicted correctly) reached 54.2%, substantially above the 12.5% baseline
expected by random guessing. Micro and macro precision–recall–F1 scores indicate the model
was conservative, tending towards false negatives more than false positives, which is arguably

22. This is a transformer-based language model, based on BERT, which was developed by Facebook AI.
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appropriate for this policy classification context. We trained a single multiclass model instead
of building separate binary classifiers, as it allows the model to learn shared patterns across
classes and account for correlations between the dummy variables.

The final fine-tuned RoBERTa model was then used to predict the classifications of the three
dummy variables for the unclassified text.

A.3 Patent Data

We use the PATSTAT Global 2024 Spring Edition (Version 5.23), a worldwide patent database
maintained by the European Patent Office and available here. The dataset covers applications
from all major patent offices and is designed for cross-country statistical research. We classify
both energy and broader clean technologies, as well as fossil-based technologies, using a
combination of Cooperative Patent Classification (CPC) and International Patent Classification
(IPC) codes together with targeted keyword searches.

The classification has three parts:

1. Energy/Clean technology categories: high-level groupings such as solar, wind, hydro,
geothermal, transport, industry, and other climate-relevant areas. See Tables A.2.

2. Patent codes: specific CPC and IPC codes, with keywords inclusion and exclusion rules to
improve precision.

3. Keyword queries: Lucene-style search strings that capture fossil and other non-renewable
technologies not fully covered by codes.

The detailed list of codes used is downloadable through our companion web application at
https://patent-green-trends.streamlit.app/. These CPC and IPC code strategies build mainly
on the CPC Y02 classification (Veefkind et al. 2012a), the IPC Green Inventory (WIPO) and the
codes used in Dugoua and Gerarden (2025) and Dugoua and Dumas (2024). For identifying
fossil technologies, we implemented the methodology described by EPO and IEA (2021). We
also reviewed and completed our classification schemes based on prior work in this area
(Aghion et al. 2016; Dechezleprêtre et al. 2013; Johnstone et al. 2010b; Lanzi et al. 2011; Popp
et al. 2022).

The PATSTAT Global data are first restricted to invention applications, excluding utility
models, designs, and other non-invention filings. Applications are then aggregated to DOCDB
simple families, which group together filings that share the same priority set. This avoids
double-counting the same invention when it is filed in multiple jurisdictions. The year of each
patent family is defined as the year of the first filing among all applications within the family,
regardless of the country of filing.

169

https://www.epo.org/searching-for-patents/business/patstat.html
https://patent-green-trends.streamlit.app/


Table A.2: Patent Indexing Strategies for Clean, Dirty and Adaptation Technologies
Technology Aggregate CleanDirtyLabels

Solar Renewable Clean Electricity
Geothermal Renewable Clean Electricity
Wind Renewable Clean Electricity
Hydro Renewable Clean Electricity
Ocean Renewable Clean Electricity
Other Renewable Renewable Clean Electricity
Nuclear Clean Electricity
Nuclear Fusion Clean Electricity
Nuclear Fission Clean Electricity
Smart Grids Enabling Clean Electricity
Other Energy Storage Enabling Clean Electricity
Oil and Gas Supply Dirty Electricity, Dirty Transportation
Traditional Combustion Dirty Electricity
Combustion Efficiency Dirty Electricity
Coal Supply Dirty Electricity
Gas Supply Dirty Electricity
Electric Vehicles Clean Transportation
Fuel Cells Enabling Clean Transportation
Batteries Enabling Clean Transportation, Clean Electricity
ICE Efficiency Dirty Transportation
Oil Supply Dirty Transportation
Internal Combustion Engine Dirty Transportation
Hybrid Vehicles Dirty Transportation
Non-Road Transport Other Clean
Building Efficiency Other Clean
Biofuels and Waste Other Clean
Carbon Capture and Storage Enabling Other Clean
Other Enabling Enabling Other Clean
Chemical and Petrochemical Other Clean
Hydrogen Enabling Other Clean
Clean ICT Other Clean
Other Industry Other Clean
Other Road Transport Other Clean
Metals and Minerals Other Clean
Monitoring Species Adaptation
Adaptation All Health Adaptation
Monitoring Water Adaptation
Monitoring Weather Adaptation
Adaptation All Indirect Adaptation
Adaptation Diseases Adaptation
Adaptation Pollution Adaptation
Adaptation Food Adaptation
Adaptation All Agri-Env Adaptation
Adaptation Livestock Adaptation
Adaptation Ecological Adaptation
Adaptation Agriculture Adaptation
Adaptation Infrastructure Adaptation
Adaptation Water Adaptation
Adaptation Coastal and Rivers Adaptation
Adaptation Fisheries Adaptation
Solid Waste Waste
Waste Water Waste
Bio Packaging Waste
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We define international families as those comprising applications filed in at least two distinct
national jurisdictions. The European Patent Office (EPO) and the World Intellectual Property
Organization (WIPO/WO) are not treated as separate jurisdictions, as they represent admin-
istrative filing routes rather than countries. Thus, a family with filings in France (FR) and
Germany (DE) qualifies as international, while one filed in France (FR) and at the EPO does
not.

The country of origin of a family is assigned in several steps. Ideally this is based on the
address of the inventors, but these fields are often missing. When inventor information is
unavailable, we fall back on the country of applicants. To improve coverage, we merge in two
external datasets: Seliger et al. (2019), which provides inventor-based origins up to 2014 and
falls back on applicants where needed, and Seliger and de Rassenfosse (2020), which adds
applicant country codes for 2015. For the remaining families with no recorded origin, we
assign the country where the first filing in the family was filed.

For foreign-oriente families, we follow the World Intellectual Property Organization (WIPO)
definition: a family is foreign-oriented if at least one member is filed at an office outside the
family’s country of origin. Patent Cooperation Treaty (PCT) receiving offices are not considered,
as they act only as intermediaries. Under this definition, a German-origin family with filings
at the German office and the EPO is not foreign-oriented; it would need a filing at another
national office, such as in France or Italy, to qualify.
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B Additional TRL Figures
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Figure A.1: Key technologies along the TRL Scale: Power and Cross-Cutting
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Figure A.2: Key technologies along the TRL Scale: Building and Transport
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Figure A.3: Key technologies along the TRL Scale: Industry
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