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Abstract

Motivated by the problem of sustaining cooperation in large groups with limited
information, we analyze the relationship between group size, monitoring precision, and
discounting in repeated games with independent, player-level noise. The viability of
cooperation under independent noise is linked to the per-capita channel capacity of
the stage game monitoring structure. We show that cooperation is impossible if the
per-capita channel capacity is much smaller than the discount rate. A folk theorem
under a novel identification condition provides a near converse. If attention is restricted
to team equilibria (a generalization of strongly symmetric equilibria), cooperation is

possible only under much more severe parameter restrictions.
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Two neighbours may agree to drain a meadow which they possess in common,;
because it is easy for them to know each other’s mind; and each must perceive
that the immediate consequence of his failing in his part is the abandoning of the
whole project. But it is very difficult, and indeed impossible, that a thousand
persons should agree in any such action; it being difficult for them to concert so
complicated a design, and still more difficult for them to execute it; while each
seeks pretext to free himself of the trouble and expense, and would lay the whole
burden on others.

—David Hume, A Treatise of Human Nature

1 Introduction

Hume’s intuition notwithstanding, large groups of individuals often have a remarkable ca-
pacity for cooperation, even in the absence of external contractual enforcement (Ostrom,
1990; Ellickson, 1991; Seabright, 2004). Cooperation in large groups typically relies on accu-
rate monitoring of individual agents’ actions, together with sanctions that narrowly target
deviators. For example, these are key features of the community resource management prob-
lems documented by Ostrom (1990), the local public goods problems studied by Miguel and
Gugerty (2005), and the group lending settings studied by Karlan (2007) and Feigenberg,
Field, and Pande (2013). Large cartels seem to operate similarly. For example, the Fed-
eration of Quebec Maple Syrup Producers—a government-sanctioned cartel that organizes
more than 7,000 producers, accounting for over 90% of Canadian maple syrup production—
monitors its members’ sales, and producers who violate its rules can have their sugar shacks
searched and their syrup impounded, and can also face fines, legal action, and ultimately the
seizure of their farms (Kuitenbrouwer, 2016; Edmiston and Hamilton, 2018). In contrast, it
does not seem that individual maple syrup producers—or the farmers, fishers, and herders
studied by Ostrom, or the villagers in the development economics studies cited above—are
motivated by the fear of starting a price war or other general breakdown of cooperation.
The principle that large-group cooperation requires precise monitoring and targeted sanc-
tions seems like common sense, but it is not reflected in current repeated game models.
The standard analysis of repeated games with patient players (e.g., Fudenberg, Levine, and

Maskin, 1994, henceforth FLM) fixes the parameters of the game other than the discount



factor 0 and considers the limit as 6 — 1. This approach does not capture situations where,
while players are patient (§ ~ 1), they are not necessarily patient in comparison to the pop-
ulation size N (so (1 —¢) N may or may not be close to 0). Also, since standard results are
based on statistical identification conditions that hold generically regardless of the number
of players, they also do not capture the possibility that more information may be required
to support cooperation in larger groups. Finally, since there is typically a vast multiplicity
of cooperative equilibria in the 6 — 1 limit, standard results also say little about what kind
of strategies must be used to support large-group cooperation: for example, whether it is
better to rely on targeted sanctions (e.g., fines) or collective ones (e.g., price wars; or, in
Hume’s example, “the abandoning of the whole project”).

This paper extends the study of repeated games by investigating the relationship between
the discount factor, the number of players, and the monitoring structure. Rather than
focusing on the ¢ — 1 limit, we let all these features of the game vary flexibly, assuming only
a uniform upper bound on the range of the stage game payoffs and a uniform lower bound
on the amount of independent, player-level “noise.” Our main results provide necessary
and (somewhat stronger) sufficient conditions for cooperation as a function of discounting,
group size, and a measure of societal information or monitoring precision. We also establish
severe obstacles to cooperation under collective incentives. In sum, we show that large-group
cooperation requires a high level of patience and /or information, and that it cannot be based
on collective incentives for reasonable parameter values.

We now preview our model and results. We model independent, player-level noise by
assuming that, in each period of the repeated game, each player i’s action a; stochastically
determines an individual outcome x;, independently across players, and that the distribution
of the public signal y depends on the action profile a = (a;) only through the outcome
profile = (x;).! As the following example illustrates, absent noise there may be no tradeoff

between discounting, group size, and monitoring precision.

Example 1. Suppose N players repeatedly play a prisoner’s dilemma with a binary
public signal y; € {0,1} in each period, where y, = 0 if every player cooperates in period
t, and y; = 1 if any player defects in period t. A player’s stage game payoff is the fraction

of players who cooperate, less a constant (independent of ) if she cooperates herself. In

IThis setup follows prior work such as Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and
Smorodinsky (2000, 2001).



this game, each player’s action is pivotal in determining y; when the others cooperate, so
the range of values for the discount factor for which mutual cooperation is a sequential
equilibrium outcome is independent of N. Thus, a single “bit” of information in each period
(the binary signal y;) can form the basis for cooperation in an arbitrarily large group of
players in a repeated game where the range of stage game payoffs, the cost of cooperation,
and the discount factor are all fixed independent of N.

Now introduce noise. For example, let each player “tremble” in her choice of action
with probability 7, independently across players and periods, with 7 fixed independent of
N. Assume that the distribution of the public signal depends only on the players’ realized
actions, not their intended actions. Then a single bit of information in each period can no
longer motivate cooperation by a large group of players for a fixed discount factor, because
the probability that a single player is pivotal for the realization of a vector of T" binary
signals, for any fixed T', goes to zero as N — o0, and signal realizations in the distant future
have only a small impact on the players’ payoffs. Moreover, a novel implication of our results
is that, for any fixed §, the number of bits of information (e.g., the log of the number of
possible stage game signal realizations) that is required to support cooperation is not only

increasing in IV, but in fact is proportional to N.

In general, we model the “amount of information” available to society as the channel
capacity, C, of the conditional signal distribution ¢ (Y'|X).? Channel capacity is a standard
measure in information theory, which in our context is defined as the maximum mutual
information I (X;Y) between the profile of individual outcomes X and the signal Y, for
any distribution of action profiles: that is, the expected reduction in uncertainty about the
outcome profile X that results from observing the signal Y. Channel capacity is a convenient
measure of information in games with independent noise, because it provides a bound for the
average influence of the players’ actions a on the distribution of the signal Y. In addition,
channel capacity is bounded by the entropy of the signal Y, which in turn is bounded by
the log of the number of possible signal realizations.®> Our bound on equilibrium incentives
in terms of channel capacity thus immediately implies a bound in terms of the number

of possible signal realizations. Hence, our results based on channel capacity improve on

2We use capital letters for random variables and lower-case letters for their realizations, so X and Y
denote the (random) outcome profile and signal.
3See, e.g., Cover and Thomas (2006, Theorem 2.6.4).



prior results based on the number of possible signal realizations (in particular, results of
Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and Smorodinsky (2000, 2001),
which we discuss below).

We obtain three results on the relationship between information, discounting, and group
size in repeated games with independent, player-level noise.

First, if (1 —0) N/C—the ratio of the discount rate 1 — ¢ and the per-capita channel
capacity C'/N—is large, then cooperation is impossible: all repeated game Nash equilibrium
outcomes are consistent with approximately myopic (static optimal) play.* This shows that
large-group cooperation requires a high level of patience and/or information. We prove this
result by combining inequalities for mutual information in games with independent noise
with bounds on the strength of players’ equilibrium incentives in repeated games that we
developed in a companion paper (Sugaya and Wolitzky 2023, henceforth SW).

Second, this result is tight up to a factor of log N. In particular, under a random audit-
ing monitoring structure, where each player’s individual outcome is publicly observed with
independent probability C'//N, a folk theorem holds if (1 — ) N (log N) /C — 0. We prove
this result as a corollary of a more general folk theorem for repeated games with product
structure monitoring, where the monitoring structure, discount factor, and stage game all
vary simultaneously.

Third, we contrast these results with the situation under collective incentive-provision.
We model collective incentives by focusing on team equilibria, where the players’ equilibrium
continuation payoffs are co-linear. When the stage game is symmetric and the continuation
payoff vectors lie on the 45° line, team equilibria reduce to strongly symmetric equilibria,
which are a standard model of collusion through the threat of price wars (Green and Porter,
1984; Abreu, Pearce, and Stacchetti, 1986; Athey, Bagwell, and Sanchirico, 2004). We
show that cooperation in a team equilibrium is impossible, unless (1 — (5)_1 is exponentially
large relative to N.? Practically speaking, this is an impossibility theorem for large-group
cooperation under collective incentives. The intuition is that optimal team incentives take
the form of a tail test, where the players are all punished if the number of “good” outcomes

x; falls short of a threshold n*. For such a test, the ratio of the probability that one player’s

4Throughout, we refer to § as the discount factor and 1 — § as the discount rate. Our notion of “approx-
imately myopic play” is that the average static deviation gain across players is small.

5Tt is well-known that strongly symmetric equilibria are typically less efficient than general perfect public
equilibria in repeated games. We instead show that the relationship between N and § required for any
non-trivial incentive provision differs dramatically between strongly symmetric equilibria and general ones.
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action is pivotal for the tail test and the probability that the test is failed converges to zero
as N — oo, unless these probabilities are both exponentially small in N. But a tail test
where the pivot probability is exponentially small provides only small incentives, unless the

size of the punishment—which is proportional to (1 — 5)_1—is exponentially large.

Related Literature. Prior research on repeated games has established folk theorems in
the 0 — 1 limit for fixed NN, as well as impossibility theorems for cooperation in the N — oo
limit for fixed ¢, but has not studied the relationship between 0 and N required to support
cooperation. The closest paper is our companion work, SW. That paper establishes necessary
and sufficient conditions for cooperation in repeated games as a function of discounting and
monitoring precision. Relative to SW, the current paper introduces two features specific to
large-population games: independent noise and the three-way relationship between group
size, discounting, and monitoring. Independent noise is crucial for all of our results, while
letting N vary together with discounting and monitoring is the key novelty in our folk
theorem (Theorem 2).°

Other than those in SW, the most relevant necessary conditions for cooperation are those
of Fudenberg, Levine, and Pesendorfer (1998), al-Najjar and Smorodinsky (2000, 2001),
Pai, Roth, and Ullman (2014), and Awaya and Krishna (2016, 2019). Following earlier
work by Green (1980) and Sabourian (1990), these papers establish conditions under which
equilibrium play in a repeated game is approximately myopic as N — oo for fixed 6.7 These
conditions can be adapted to the case where N, §, and monitoring vary together, but the
results so obtained are weaker than ours (and are not tight up to log terms). As we explain
in Section 3, the key difference is that prior results rely on bounds on the strength of players’
incentives with a higher order in the discount rate than that given in SW ((1 —48)" vs.
(1-— 5)_1/ 2). In sum, prior work has established impossibility theorems for cooperation as
N — oo for fixed d, while our paper tightly (up to log terms) characterizes the tradeoff

between N, ¢, and monitoring that is required for supporting cooperation.®

6SW was split off from an earlier version of the current paper. SW contains the results from the original
paper that do not rely on independent noise or letting N vary together with discounting and monitoring,
while the current paper contains the results that do rely on these features.

T Awaya and Krishna focus on conditions under which cheap talk is valuable. Green and Sabourian’s papers
impose a continuity condition on the mapping from action distributions to signal distributions. Continuity
is implied by independent noise.

8Farther afield, there is also work suggesting that repeated game cooperation is harder to sustain in
larger groups based on evolutionary models (Boyd and Richerson, 1988), simulations (Bowles and Gintis,
2011; Chapter 4), and experiments (Camera, Casari, and Bigoni, 2013).



The most relevant sufficient conditions for cooperation are the folk theorems of FLM,
Kandori and Matsushima (1998), and SW. These papers fix the stage game while taking
d — 1 (and, in the case of SW, also letting monitoring vary), and their proof approach does
not easily extend to the case where N and § vary together. Our proof of Theorem 2 takes a
different approach, which is based on “block strategies” as in Matsushima (2004) and Hoérner
and Olszewski (2006), and involves a novel application of some large deviations bounds.

Since the monitoring structure varies with ¢ in our model, we also relate to repeated
games with frequent actions, where the monitoring structure varies with ¢ in a particular,
parametric manner (e.g., Abreu, Milgrom, and Pearce, 1991; Fudenberg and Levine, 2007,
2009; Sannikov and Skrzypacz, 2007, 2010). The most relevant results here are Sannikov
and Skrzypacz’s (2007) theorem on the impossibility of collusion with frequent actions and
Brownian noise, as well as a related result by Fudenberg and Levine (2007). These results
relate to our impossibility theorem for team equilibrium, as we explain in Section 5.

Entropy methods have been used in repeated games to study issues including complexity
and bounded recall (Neyman and Okada, 1999, 2000; Hellman and Peretz, 2020), commu-
nication (Gossner, Herndndez, and Neyman, 2006), and reputation effects (Gossner, 2011;
Ekmekci, Gossner, and Wilson, 2011; Faingold, 2020). However, other than the shared
reliance on entropy methods, these papers are not very related to ours.

We also relate to papers on optimal monitoring design, although we consider only as-
ymptotic results rather than exact optimality for fixed parameters. In static moral hazard
problems, optimal monitoring design subject to information-theoretic constraints has been
studied by Georgiadis and Szentes (2020), Li and Yang (2020), and Hoffman, Inderst, and
Opp (2021). Random auditing, which we find to be approximately optimal, also arises
in costly state-verification models (Reinganum and Wilde, 1985; Border and Sobel, 1987;
Mookherjee and Png, 1989).

Finally, in Sugaya and Wolitzky (2021) we studied the relationship between N, 0, and
information in repeated random-matching games with private monitoring and incomplete
information, where each player is “bad” (a Defect commitment type) with positive proba-
bility. In that model, society has enough information to determine which players are bad
after a single period of play, but this information is disaggregated, and supporting coop-
eration requires sufficiently quick information diffusion. In contrast, the current paper has

complete information and public monitoring, so the analysis concerns monitoring precision



” of information available to society) rather than the speed of information dif-

(the “amoun
fusion (the “distribution” of information). In general, whether the obstacle to cooperation
is that society’s information is insufficient or disaggregated distinguishes large-population
repeated game models, such as Fudenberg, Levine, and Pesendorfer (1998), al-Najjar and
Smorodinsky (2001), and the current paper, from community enforcement models, such as

Kandori (1992), Ellison (1994), and our earlier paper.

2 Repeated Games with Independent Noise
We consider a general model of repeated games with independent, player-level noise.

Stage Games. A stage game G = (I, .A,u) consists of a finite set of players I =
{1,..., N}, a finite product set of actions A = X;c;A4;, and a payoff function u; : A — R
for each i € I. We assume that | A4;| > 2 for all 4, and denote the range of player i’s payoff
function by 4; = max, . u; (a) — u; (a’). Given 4;, by adding a constant, without affecting
incentives, we can assume that |u; (a)| < @;/2. For any @ > 0, we say that payoffs are

u-bounded if u; < u for all 7.

Payoff Sets. The feasible payoff set is F' = co {{u(a)},c,} € RY (where co denotes
convex hull). Let F* C F denote the set of payoff vectors that weakly Pareto-dominate a
payoff vector which is a convex combination of static Nash payoffs: that is, v € F*if v € F
and there exists a collection of static Nash equilibria «,, € A (A) and non-negative weights
3, such that v > > B u(ay,) and > B, = 1.7 For any € > 0, let B (¢) denote the set of
payoff vectors v such that the cube with center v and side-length 2¢ lies entirely within F™*:
that is, B(e) = {v € RV : B, (¢) C F*}, where B, (¢) = X;e; [v; — €,v; + €]. We compute
B (g) in a public goods game in Appendix B. Our folk theorem (Theorem 2) will provide
conditions under which all payoff vectors in B (¢) are attained as repeated game equilibria.

In contrast, our impossibility theorem (Theorem 1) will provide conditions under which
all repeated game equilibria are “c-myopic.” To define this, let a manipulation for a player
i be a mapping s; : A; — A (A;). The interpretation is that when player i is “supposed” to

play a;, she instead plays s; (a;). Player i’s gain from manipulation s; at an action profile

9Here and throughout, we linearly extend payoff functions to mixed actions. In this paper, “Nash equi-
librium” always allows mixed strategies.



distribution o € A (A) is

gi (si,a) = Z a(a) (u;i (si (ai) ,a—;) —ui (a)).
Player i’s maximum gain at o € A(A) is g; (o) = max,.4,—a(4,) 9i (5i, ). For any ¢ > 0,

the set of e-myopic action distributions is

Ale) = {@GA(A):%Z@(O&)SE},

and the set of e-myopic payoff vectors is
V(ie)={veRY:v=u(a) for some a € A(e)}.

Note that A (¢) and V' (¢) are convex polytopes, and that .4 (0) is the set of static correlated
equilibria, with V' (0) the corresponding payoff set. Since A (¢) — A(0) and V (¢) — V (0)
as ¢ — 0, A(e) and V (¢) approximate the sets of static correlated equilibria and the cor-
responding payoff set as ¢ — 0. In general, an action distribution « is e-myopic if the
per-player average deviation gain at « is less than . If the game is symmetric and « is
a symmetric distribution, this implies that all players have deviation gains smaller than ¢.
Otherwise, it allows a few players to have large gains. In Appendix A, we provide some
results comparing V' (¢) with the (smaller) set of payoff vectors that are consistent with all

players having small deviation gains (i.e., the set of stage game e-correlated equilibria).

Noise. We assume the presence of independent, player-level noise. Formally, there is a
finite product set of outcome profiles X = X;c1X;, where X; is the set of individual outcomes
for player i. When action profile a€ A is played, the outcome profile z€ X’ is drawn from
a product distribution 7 (-|a) = x;m; (-|a;), where 7; (-|a;) € A (X;). We call the pair (X, 7)
a noise structure. Let m, = min,, ,, m; (z;|a;) and assume that min; m; > 0. For any = > 0,
we say that noise is m-bounded if m; > = for all 7. Note that if noise is m-bounded then
|X;| < 1/x for all i. We assume that |X;| > 2 for at least one player ¢, which implies that
noise can be m-bounded only for 7 < 1/2.

A simple example of a noise structure arises when there is independent noise in the

execution of the players’ actions, so that a; is player ¢’s intended action and z; is her realized
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Figure 1: The noise structure (X', 7) and the outcome monitoring structure (), ¢q) jointly
determine the action monitoring structure (), p).

action. In this case, X = A and 7, (a}|a;) is the probability that player i “trembles” to a;
when she intends to take a;. Another example is a moral hazard in teams problem, where
A; C[x,1 — 7] is a set of “effort levels” corresponding to the probability of “success” on an

individual task, X; = {Success, Failure}, and 7; (Success|a;) = a;.

Monitoring. An outcome monitoring structure (), q) consists of a finite set of possible
signal realizations ) and a conditional probability distribution ¢ (-|z) € A ()Y) for each
outcome profile z. The signal distribution thus depends only on the outcome profile and
not directly on the action profile. In other words, if we view the action profile, the outcome
profile, and the signal as random variables A, X, and Y, they form a Markov chain A —
X =Y.

Given an outcome monitoring structure (), ¢), we denote the probability of signal profile
y at action profile a by p (y|a) = > 7 (z]a) ¢ (y|x). We refer to the pair (), p) as the action
monitoring structure induced by (X, 7,), q). Without loss, we assume that for every y € ),
there exists z € X’ such that ¢ (y|x) > 0. Since 7, > 0 for each 4, this implies that p has full
support: p(yla) > 0 for all a,y. We also linearly extend p to mixed actions: for a € A (A),
p(yla) = >, ala)p(yla).

Figure 1 summarizes the relationship between the noise structure (X, 7), the outcome
monitoring structure (), ¢), and the action monitoring structure (), p).

Finally, for any action profile a € A, let ¢ € A (X x )) denote the joint distribution
on X x ) when a is played, so that X has distribution 7 (:|a), and, conditional on each

realization z, Y has distribution ¢ (|z).

Repeated Games. A repeated game with independent noise I' = (I, A,u, X, 7, Y, q, )
is described by a stage game (I,.4,u), a noise structure (X, 7), an outcome monitoring
structure (Y, q), and a discount factor § € [0,1). In each period t = 1,2, ..., (i) the players

observe the outcome of a public randomizing device z; drawn from the uniform distribution
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over [0, 1], (ii) the players take actions a, (iii) the outcome x is drawn from distribution 7 (+|a),
and (iv) the signal y is drawn from distribution ¢ (-|z) and is publicly observed.'® A history
h! for player i at the beginning of period ¢ thus takes the form h} = ((zt/, iy, yt/)f,_:ll ,zt).
A strategy o; for player i maps histories hf to distributions over actions a;;. A strategy
o; is public if it depends on h} only through the public history h' = ((ztl,yt/)i,;ll ,zt). A
Nash equilibrium is a strategy profile where each player’s strategy maximizes her discounted
expected payoff. A perfect public equilibrium (PPE) is a profile of public strategies that,
beginning at any period ¢ and any public history h', forms a Nash equilibrium from that

period on. Let £ C RY denote the set of PPE payoff vectors .

Repeated Game Outcomes and Occupation Measures. A repeated game outcome
p e A((Ax X xY))is a distribution over infinite paths of actions, individual outcomes,
and signals. Each strategy profile ¢ induces a unique outcome p. In turn, each outcome
i induces a marginal distribution over period ¢ action profiles o € A (A), as well as an

occupation measure over action profiles, defined as

o0

at = (1-9) Z 5 lal,
t=1
The occupation measure describes the “discounted expected fraction of periods” where each
action profile is played in the course of the repeated game. Intuitively, it captures how the
stage game is played “on average.” Note that the players’ payoffs are determined by the

occupation measure, as

1=0)) "> af(@ula) =) (1-0)> "ol () ula) = a"(a)u(a) =u(a").
t a a t a

We say that a repeated game strategy profile o is e-myopic if the corresponding occupa-

tion measure o € A (A), viewed as a correlated action profile in the stage game, is e-myopic:

that is, if o € A (¢). In this case, the players’ repeated game payoffs are also e-myopic: the

repeated game payoff vector is u (a#) € V (e).

10Tt is natural to require that players’ realized payoffs depend only on their own actions and the signal.
However, this assumption is not necessary for our analysis.
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3 Necessary Conditions for Cooperation

This section develops our first main result: cooperation is impossible if the per-capita channel
capacity of the outcome monitoring structure (), ¢) is much smaller than the discount rate

1—4. Before stating the result, we define channel capacity and establish some of its properties.

3.1 Information Theory Preliminaries

Mutual Information and Channel Capacity. Given a distribution of outcomes & €
A (&), a standard measure of the informativeness of the signal ¥ about the outcome X is

the mutual information between the random variables X and Y, defined as

€.V — q(ylz) 1
reE= 2 feeis <zx@(£<x/> q <y\:c'>) |
Mutual information measures the expected reduction in uncertainty (entropy) about X that
results from observing Y. The mutual information between X and Y is an endogenous object
in our model, as it depends on the distribution ¢ of X, which in turn is determined by the
players’ actions, a.
We denote the set of outcome distributions ¢ that can arise for some action distribution

« under noise structure (X, ) by
E= {5 € A(X):da € A(A) such that £ (x) = Za(a)w(w[&) for all z € X}.
acA

Finally, define the channel capacity of the tuple (X, 7, ), q) as

C =maxI*(X;Y).

e

Channel capacity is an exogenous measure of the informativeness of Y about X, as it
is determined by the noise structure (X, 7) and the outcome monitoring structure (Y, q).

Channel capacity plays a central role in information theory as the maximum rate at which

UIn this paper, all logarithms are base e. For a joint distribution ¢ € A (X x)) with mar-
ginals g, € A(X) and ¢y, € A(Y) and conditionals pyy, € A(X) and pyx € A(Y), the de-
finition of mutual information is usually written as »°., vy ¢ (2,y)log (%). This equals

, oy (T)p y|z) log soy‘xfylw) ~ |, which is the form of the definition used above.
(zy)€X XY ¥ X y|x Zz’g)( o (@ )‘Py\x(ykﬂ )

11



information can be transmitted over a noisy channel (Shannon’s channel coding theorem;
Cover and Thomas, 2006, Theorem 7.7.1). Our analysis does not use this theorem; we only
use channel capacity as an exogenous upper bound on mutual information. In turn, mutual
information is a useful measure for our analysis because it satisfies two key inequalities,

which we now discuss.

Mutual Information Inequalities. The first mutual information inequality we use
relates 17019 (X;;Y), the mutual information between player i’s individual outcome X; and
the signal Y, and a measure of the “influence” of player ¢’s action on the distribution of
the signal Y. In our setting, the most useful measure of the “influence” of ¢’s action is the
x2-divergence of p (-|a;, a_;) from p(-|a), which is defined as the variance (with respect to

p(:|a)) of the likelihood ratio difference 1 — p (y|ay, a_;) /p (yla): that is,

(0 () p(fa)) = 32 PPl 0-0)

- p(yla)

We show that, with full-support noise, y?-divergence can be bounded in terms of mutual

information.

Lemma 1 If noise is m-bounded, then for any a € A, i € I, and o; € A (A;), we have

X (p (lai,az) [lp (o) < s ()" 1719 (X3 Y), (1)
where k (1) = V2 (1 — 2x) /.

The logic is that, since player ¢’s action affects the signal Y only through the outcome
X;, if a deviation from a; to a; has a large effect on the distribution of Y, then Y must pro-
vide a large amount of information about X;. Lemma 1 is related to standard f-divergence
inequalities (Sason and Verdu, 2016), which relate common measures of the difference be-
tween probability distributions such as the total variation distance, y2-divergence, and KL-
divergence, but it differs from standard results because of the A — X — Y Markov chain
structure of our model and the full-support noise assumption.

The point of bounding y2-divergence in terms of mutual information is that mutual in-
formation also obeys a second inequality, which says that mutual information is sub-additive

across players under independent noise.
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Lemma 2 For any action profile a € A, we have

STt (XY < 19 (G Y) < 0 (2)

The first inequality in (2) is where we use the assumption that (X;),., are independent
conditional on a. (The second inequality, I7¢1*) (X;Y) < C, is immediate from the definition
of C.) The logic is that if >, ™14 (X;;Y) > I™01%) (X;Y) then there is some redundancy in
the information that Y provides about the different outcomes X;, which is impossible when
(Xi),c; are conditionally independent. Note that inequality (2) can be strict: for example, if
X, and X, are independent Bernoulli(1/2) variables and Y is the parity of their sum, then
[(X1;Y) =1 (Xs;Y) =0but I((X1,X2);Y) > 0.

Combining Lemmas 1 and 2 (and dividing by N) yields the inequality
2 ¢

%Zx (b (e a) Ip (1) < # (2)°

We thus obtain a bound for the average influence of a player’s action on the signal distribution
(measured by y2-divergence) in terms of the per-capita channel capacity C/N. This will be
a key step in the proof of Theorem 1.

3.2 An Impossibility Theorem for Large-Group Cooperation

We are now ready to state our first main result.

Theorem 1 In any repeated game with N players, channel capacity C', w-bounded noise,

and u-bounded payoffs, every Nash equilibrium is e-myopic, for
e =4]———k(7m)ua, (3)

where k (1) = V2 (1 — 2x) /7.

In particular, for any T > 0, u > 0, and € > 0; and any sequence of repeated games (F)]C
with m-bounded noise and u-bounded payoffs such that (1 —§) N/C — oo (where 6, N, and
C depend on k); there exists k such that, for every k > k, all Nash equilibria in game T'* are

e-myopic.
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Theorem 1 is a counterpoint to the folk theorem. While the folk theorem gives conditions
under which the equilibrium payoff set is “large” in the limit where 6 — 1 while the other
parameters of the game are held fixed, Theorem 1 shows that supporting non-myopic payoffs
requires not only that the discount rate 1 — ¢ is small in absolute terms, but also that it is
not much larger than the per-capita channel capacity C'/N. This conclusion holds for any
sequence of repeated games satisfying a uniform lower bound on noise and a uniform upper
bound on the range of the stage game payoffs.

Theorem 1 can be compared to prior results by Fudenberg, Levine, and Pesendorfer
(1998), al-Najjar and Smorodinsky (2000, 2001), and Pai, Roth, and Ullman (2014). These
papers measure information by the number of possible signal realizations |)| (rather than
channel capacity), and establish impossibility results for cooperation when N — oo for
fixed 0 and |Y|. When N, ¢, and || vary together, arguments similar to the ones in these
papers could be used to show that cooperation is impossible (i.e., all repeated game Nash
equilibrium occupation measures are e-myopic) if (1 —6)> N/log|Y| — c0."? Compared
to this result, Theorem 1 is qualitatively stronger in two ways: it replaces log|)| with
C < log|Y|, and it replaces (1 — 5)2 with 1 — §. The first of these improvements comes
from the mutual information inequalities noted above. The second improvement comes from
applying Theorem 1 of SW, which bounds the strength of equilibrium incentives in repeated
games by a factor of (1 — 6)"/, rather than the naive bound of (1 — ¢)~'. This improved
bound relies on focusing on incentives at the occupation measure, rather than considering

incentives history-by-history as in the prior literature.®

12Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and Smorodinsky (2001) focus on strategies
that condition only on public signals, yielding the stronger conclusion that cooperation collapses to static
e-Nash equilibria, rather than “e-correlated equilibria” as in the present paper. A similar restriction would
likewise let us strengthen the conclusion of Theorem 1 to a version of e-Nash equilibrium.

13 An intuition for Theorem 1 of SW can be seen by considering a strategy where an agent’s performance
is reviewed every T periods, with continuation play determined by the outcome of the review. For the agent

to put weight independent of § on the outcome of the review, a review must occur every O ((1 — 5)71)
periods. This implies that the standard deviation of the count of each signal realization over the course
of the review is O ((1 — 5)71/ 2), and hence the probability that a single signal is pivotal for the review is

0] ((1 — (5)1/2). Since the gain from deviating in a single period is O (1 — §), the agent’s “incentive strength”

is0((1-9)"2/(1-9)=0(1-87").
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We can also compare Theorem 1 to an immediate implication of Theorem 1 of SW,

namely that Theorem 1 also holds when (3) is replaced by

f= s ma (0 (s (a0 I Gl )

This alternative result does not involve mutual information, and it also does not require
a lower bound on noise. However, it is inadequate for the current paper’s objectives, for
two reasons. First, we wish to bound incentives in terms of an single aggregate measure of
societal information. This is achieved in (3)—where ¢ is bounded in terms of C—but not in
(4)—where ¢ is bounded in terms of (1/N) >, \/max, x2 (p (-si (a;) ,a_;) |[p (-|a)), which is

the average of NV distinct, player-specific information measures. Second, we wish to generalize

and strengthen the prior results of Fudenberg, Levine, and Pesendorfer (1998), al-Najjar and
Smorodinsky (2000, 2001), and Pai, Roth, and Ullman (2014). We have already explained
how this is achieved by the bound in (3). However, it is not achieved by the bound in (4), as

absent noise there is no general relationship between (1/N) ", y/max, x2 (p (:]s; (a;) ,a—;) ||p (-

and the cardinality of the signal space |)|.

While we have assumed that the signal y is publicly observed for simplicity, Theorem 1
also holds for repeated games with private monitoring. Indeed, the same result holds for
the blind repeated game, where in each period the signal y is observed only by a mediator
(rather than being directly observed by the players themselves), who then privately recom-
mends actions to the players. Theorem 1 thus depends only on the precision of the signal y
(measured by channel capacity), and not on how information about y is distributed among
the players.

Proof of Theorem 1. Theorem 1 of SW implies that, for any Nash equilibrium outcome

1, any player ¢, and any manipulation s;, we have

gi (51, 0") Zau p(lsi (a:) ,a-3) ||p (-]a))a.

14Gee SW for more on blind games.
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Hence, by Lemma 1,

gi (si, ™) Za” It (X Yk () a

Taking the maximum over manipulations s; and averaging across players gives

sl < —Z\/ 5 20 (@17 (X V)w (@)
< \/ 7Y . (0 109 ()5 ()
— 1_5Nzau )zi:]wcla)(xi;y)mz)u

[ 0 C
< v _

where the second inequality is by Jensen and the third is by Lemma 2. This establishes

Theorem 1. =

In large groups, the necessary condition for cooperation implied by Theorem 1—that
(1 —0) N/C is not too large—is easier to satisfy in some classes of repeated games than in
others. For example, if the space of possible signal realizations ) is fixed independent of
N, then, since C' < log|Y|, the necessary condition implies that (1 —§)~" must be at least
proportional to N, which is a restrictive condition in large groups. This negative conclusion
applies for traditional applications of repeated games with public monitoring where the signal
space is fixed independent of IV, such as when the public signal is the market price facing
Cournot competitors, the level of exploitation of a common-pool resource, the output of
team production, or some other aggregate statistic.

However, in other settings C' naturally scales linearly with N, so (1 —0) N/C' is small
whenever players are patient—regardless of group size. In repeated games with random
matching (Kandori, 1992; Ellison, 1994; Deb, Sugaya, and Wolitzky, 2020), players match
in pairs each period, and each player observes her partner’s action. In these games, C' =
Nlog |A;|, so per-capita channel capacity is independent of N. Intuitively, in a random
matching game each player gets a distinct signal of the overall action profile, so the total

amount of information available to society is proportional to N. Similarly, channel capacity
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scales linearly with N in public monitoring games where the public signal is a vector that
includes a distinct signal of each player’s action, as in the ratings systems used by online
platforms like eBay and AirBnB (Dellarocas, 2003; Tadelis, 2016). In general, C'/N can
be expected to be roughly independent of the population size in settings where players are

monitored “separately,” rather than being monitored jointly through an aggregate statistic.

Remark 1 In applications like Cournot competition, resource exploitation, or team produc-
tion, the signal space may be modeled as a continuum, in which case the cardinality bound
C < log|Y| is vacuous. However, Theorem 1 extends to the case where ) is a compact
metric space and there exists another compact metric space Z and a function f¥ : XN — Z
(which can vary with N ) such that the signal distribution admits a conditional density of the
form qy z (y|2), where Y, Z, and gy z are fived independent of N. (For example, in Cournot
competition z s industry output and y is the market price, which depends on z and a noise

term with variance fixed independent of N.) In this case,

— max N ayz (yIfN (2))
O=naf 2 E@anz (" (@) log (zm €@ vz I <:c'>>) W
which 1s bounded by

_ qyz (yl2)
C = max / / z z) 1o dzdy.
12e82) ey |cz qz ( )C]y|z (y|2) log (fz’EZ gz (#') iz (y|2") dz' Yy

Since C is independent of N, it follows that C' is bounded independent of N.

Remark 2 Theorem 1 also extends to games where noise is independent across “groups” of
players, rather than individuals. For example, consider a repeated game with random match-
ing, where the actions (a;,a;) of matched partners i and j generate an outcome x;; with
probability m;; (v;;]a;,a;) satisfying ming, o, ., , Ti; (vi5]a,a;) > m, independently across
matches. Then Lemma 2 holds with 2C' in place of C, because the sum ) . [7Cla) (Xi7m(z-); Y)
(where m (i) denotesi’s partner) can be split into two sums of the mutual information of inde-
pendent random variables, where each sum is bounded by C' as in Lemma 2. Theorem 1 then
likewise holds with 2C in place of C'. More generally, if the players interact in disjoint groups
of size K each period with independent noise across groups, then Lemma 2 and Theorem 1

hold with KC' n place of C'. Note that the K = N case entails dropping the assumption of
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independent noise entirely, but then Theorem 1 holds with e = +/(0/ (1 — 9)) Ck (x) 4, which
does not depend on N.

4 Sufficient Conditions for Cooperation

This section establishes a folk theorem for repeated games with public, product structure
monitoring, where the discount factor, monitoring structure, and stage game (including the
number of players N) vary simultaneously. The theorem will imply that the relationship
between N, ¢, and C' in Theorem 1 is tight up to a log (V) factor.

Our folk theorem allows independent noise, but does not require it: this section does
not require that min; 7, > 0. We do however require that monitoring has a product struc-

ture: there exist sets (J;),.; and a family of conditional distributions (g; (y:|x)) such

i:yiﬁri
that ¥ = [[, Vi and ¢ (y|z) = [[, ¢ (vi|z;) for all y,z. That is, the public signal y con-
sists of conditionally independent signals of each player’s individual outcome. Note that
if (),q) has a product structure, then so does the action monitoring structure (), p),

meaning that there exists a family of conditional distributions (p; (y;|a;)) (given by

ivyi7ai
pi (yilai) = >_,. mi (il ai) g (yi|@;)) such that p (yla) =[], pi (yi]a;) for all y, a.
We also need an identification condition. For any n € (0,1), we say that the action

monitoring structure (), p) satisfies n-individual identifiability if

Z (pZ (y1|czz) (;Zf(;()y2|al))2 >n for all 7 € ], a; € .Ai, o; € A (Az\ {al}) . (5)

yi:pi(yilai)>n

This condition is a variant of FLM’s individual full rank condition and Kandori and Mat-
sushima’s (1998) assumption (A2”). It says that the influence on the signal distribution
(measured by y?-divergence) of a deviation from a; to any mixed action «; supported on
A\ {a;} is at least n, ignoring signals that occur with probability less than 7 under a;. Intu-
itively, this requires that deviations from a; are sufficiently detectable, and that in addition
detection does not rest on very rare signal realizations. This assumption will ensure that

players can be motivated by rewards whose variance and maximum absolute value are both

of order (1 —¢) /n.'

15Tf (5) were relaxed by taking the sum over all y; (rather than only y; such that p; (y;a;) > n), player i
could be motivated by rewards with variance O ((1 — ¢) /n), but not necessarily with maximum absolute value
O ((1 =6) /n). Our analysis requires controlling both the variance and absolute value of players’ rewards,
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We establish the following folk theorem. (Recall that B (¢) is the “target” set of payoff
vectors defined in Section 2, and E is the set of PPE payoff vectors.)

Theorem 2 For any u > 0 and € > 0; and any sequence of repeated games (F)k with u-
bounded payoffs and product structure monitoring satisfying n-individual identifiability such
that (1 —8)log (N) /n — O (where §, N, and n depend on k); there exists k such that, for
every k >k, we have B (¢) C E.

To see why Theorem 2 implies that Theorem 1 is tight up to a log (V) factor, consider
a game where X = A4 with uniform noise, so that m; (a}|a;) = = for all i,a;,a, # a;, and
assume that 7 < (max; |4;| + 1)~". Suppose that the outcome monitoring structure (Y, q)
is given by n-random auditing, where in every period the public signal perfectly reveals
each player’s identity and realized individual outcome with probability 7. That is, under

n-random auditing, J; = X; U {0} for all 4, and

nmi(Yila;) 1Ly € A,
¢ (yilzi) = ¢ 0 if y; € X\ {z;}, sothat p;(yla;) = _
1—ny if y; = 0.
1— Ui if Y; = @,

Note that the channel capacity under n-random auditing is at most 1NV log (max; [4;]). In
addition, n-random auditing satisfies nm-individual identifiability, because, any ¢, a;, o;, we

have

(pi (yilai) — pi (yi|ai))2 (pi (aila;) — maXa! #a; Pi (ai|a§))2
2 pi (yilas) pi (ai]a;)
(n(1 = (JA| = 1) 7) — nm)®

n(1— (A —1)x)
= n(1—[Ailx) = nm,

vi:pi(yilai) >nm

where the last inequality uses 7 < (max; |.A;| + 1)~'. Thus, by Theorem 2, 77-random auditing
is a monitoring structure with channel capacity at most C' = nN log (max; |.4;|), under which

a folk theorem holds whenever (1 — 0) N log (V) /C' — 0. Therefore, Theorem 1’s conclusion

so we need the stronger condition. We also note that the current definition of n-individual identifiability
coincides with /7-individual identifiability in the terminology in SW.
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that play is e-myopic if (1 — §) N/C — oo can be improved by at most a log (V) factor.'6

The assumption that payoffs are uniformly bounded plays a different role in Theorems 1
and 2. Theorem 1 requires bounded payoffs to bound the variation in players’ continuation
payoffs. Theorem 2 requires bounded payoffs to bound players’ one-shot deviation gains.
For example, the conclusion of Theorem 2 does not hold for repeated Bertrand competition
where the size of the market (and hence the gain from undercutting one’s rivals to win the
entire market) is proportional to the number of firms.!”

We now discuss the proof of Theorem 2. Theorem 2 is a folk theorem for repeated games
with public monitoring.'® The standard proof, following FLM and Kandori and Matsushima
(1998), relies on continuation payoffs transfers along hyperplanes tangent to the boundary of
the PPE payoff set. Unfortunately, this approach encounters difficulties when N and § vary
simultaneously. The problem is that when N is large, changing each player’s continuation
payoff by a small amount can result in a large overall movement in the continuation payoff
vector. Mathematically, FLM’s proof relies on the equivalence of the L' norm and the
Euclidean norm in RY. Since this equivalence is not uniform in N, their proof does not
apply when N and § vary simultaneously.!?

" approach introduced

Our proof of Theorem 2 is instead based on the “block strategy’
by Matsushima (2004) and Horner and Olszewski (2006) in the context of repeated games
with private monitoring. We view the repeated game as a sequence of T-period blocks of
periods, where T is a number proportional to (1 — 5)71. At the beginning of each block,

a target payoff vector is determined by public randomization, and with high probability

16Note that Theorem 1 holds verbatim if C is taken to be an upper bound for channel capacity rather
than its exact value, because the theorem’s conclusion is stronger when C' is smaller.

7"For repeated Bertrand competition with a fixed market size, Theorem 2 holds vacuously as B (¢) = ()
for sufficiently large N. In contrast, the public goods game in Appendix B is an example with uniformly
bounded payoffs where B (¢) is “large” for all N.

18Specifically, it is a “Nash threat” folk theorem, as F* is the set of payoffs that Pareto-dominate a convex
combination of static Nash equilibria. To extend this result to a “minmax threat” theorem, players must
be made indifferent among all actions in the support of a mixed strategy that minmaxes an opponent. This
requires a stronger identifiability condition, similar to Kandori and Matsushima’s assumption (Al).

19To see the problem in more detail, n-individual identifiability implies that the movement in each player’s
per-period continuation payoff required to provide incentives is of order (1 — ) /7, so the movement of the

continuation payoff vector in the L? norm is O (\/N (1-4¢)/ n). Fix a ball B contained in V*, and consider

the problem of generating the point v = argmax,,c g w1—the point in B that maximizes player 1’s payoff—
using continuation payoffs drawn from B. Since player 1’s continuation payoff must be within O (1 — 9)
distance of v, the greatest movement along a tangent hyperplane is O (\/ 1-— (5). FLM'’s proof approach thus
requires VN (1 —6) /n < /1=, or (1 —6) N/n? < 1, while we assume only (1 — §)log (N) /n < 1. Thus,
while the conditions for Theorem 2 are tight up to log (N) slack, FLM’s approach requires slack N.
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the players take actions throughout the block that deliver the target payoff. Players accrue
promised future rewards throughout the block based on the public signals of their actions,
and the distribution of target payoffs in the next block is set so as to deliver the promised
rewards. By n-individual identifiability, incentives can be provided with per-period rewards
of maximum size O (7!), and the rewards can be normalized to have zero mean. Therefore,
by the law of large numbers, when 7' > n~!, with high probability the total reward that a
player accrues over a T-period block is of order less than 7', and is thus small enough that
it can be delivered by appropriately specifying the distribution of target payoffs at the start
of the next block.

The main difficulty in the proof is caused by the low-probability event that a player
accrues an unusually large total reward over a block, so that at some point the target payoff
for the next block cannot be further incremented. In this case, the player can no longer be
motivated to take a non-myopic best response, and all players’ behavior in the current block
must change. Thus, if any player’s reward is “abnormal,” all players’ payoffs in that block
may be far from the target equilibrium payoffs.

To prove the theorem, we must ensure that abnormal rewards do not compromise either
ex ante efficiency or the players’ incentives. Efficiency is preserved if the blocks length T
is large enough that the probability that any player’s total reward is abnormal is small.
Since the per-period rewards have size O (57') and the length of a block is O ((1 — 5)_1),
standard concentration bounds imply that the probability that a given player’s total reward
is abnormal is exp (—O (n/ (1 — §))). Hence, by the union bound, the probability that any
player’s total reward is abnormal is at most N exp (—O (n/ (1 — 4))), which converges to 0
when (1 — 0)log (N) /n — 0. This step in the proof accounts for the log (N) slack.

Finally, since all players’ payoffs are affected whenever any player’s reward becomes
abnormal, incentives would be threatened if one player’s action affected the probability that
another player’s reward becomes abnormal. We avoid this problem by letting each player’s
reward depend only on the signals of her own actions. This separation of rewards across
players is possible because we assume product structure monitoring. We do not know if

Theorem 2 can be extended to non-product structure monitoring.?’

20 As noted above, we conjecture that the approach of FLM and Kandori and Matsushima, yields a folk theo-
rem if (1 — &) N/n? — 0. Their approach requires only pairwise identifiability rather than a product structure,
so we conjecture that the product structure can be relaxed to pairwise identifiability if (1 — &) N/n? — 0.
We do not know if such a relaxation is possible under the weaker hypothesis of Theorem 2.
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5 Team Equilibria

We now consider a restricted class of equilibria—team equilibrium—which model collective
incentive-provision in repeated games. We will show that cooperation is possible in this class
of equilibria only if the discount rate is exponentially small relative to the population size.
We view this as an impossibility theorem for cooperation under collective incentives for any
“reasonably large” group. More colorfully, the result can be seen as a formalization of Hume’s
intuition that large groups cannot support cooperation by threatening “the abandoning of
the whole project.”

Formally, a team equilibrium is a PPE where the players’ continuation payoffs at all public
histories are co-linear: for each player i # 1, there exists a constant b; € R such that, for all
public histories h, h', we have w; (h') — w; (h) = b; (w1 (B') — wq (h)), where w; (h) denotes
player i’s equilibrium continuation payoff at history h. Relabeling the players if necessary,
we can take |b;| < 1 for all ¢ without loss. Note that if b; > 0 for all i then the players’
preferences over histories are all aligned; while if b; < 0 for some i then the players can
be divided into two groups with opposing preferences. Note also that the notion of team
equilibrium generalizes strongly symmetric equilibrium (SSE) in symmetric games, where
b, =1 for all 7.2

Our result for team equilibria is as follows.

Theorem 3 For any ™ > 0, u > 0, ¢ > 0, and p > 0; and any sequence of repeated games
(T*) with m-bounded noise and u-bounded payoffs such that (1 — &) exp (N'7) — oo (where
§ and N depend on k); there exists k > 0 such that, for every k > k, all team equilibria in

game T* are e-myopic.

Theorem 3 shows that collective incentives are ineffective unless the discount rate is
exponentially small relative to N. Comparing Theorem 2 with Theorem 3, we see that
targeted incentives are much more effective than collective ones when the discount rate is
not exponentially small. Notably, this result holds even when information is scarce (e.g., C
is relatively small), so that precisely monitoring all players is infeasible.

Theorem 3 differs from Theorem 1 in the required relationship between N and ¢, and also

in that Theorem 3 holds for any outcome monitoring precision, so the channel capacity C'

21 Thus, team equilibrium generalizes SSE in two ways: to asymmetric games, and to an arbitrary linear
relationship among the players’ continuation payoffs.
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does not show up in the statement. The intuition for why the theorem does not involve C' is
that optimal team equilibria take a bang-bang form even when the realized outcome profile
is perfectly observed, so a binary signal that indicates which of two extreme continuation
payoff vectors should be implemented is as effective as any more informative signal.

It is well-known that, with noisy monitoring, SSE are inefficient for any discount factor
(e.g., Mailath and Samuelson, 2006, Proposition 8.2.1). In contrast, Theorem 3 shows that
the relationship between N and ¢ required to provide any non-trivial equilibrium incentives
is dramatically different between SSE (or, more generally, team equilibria) and arbitrary
equilibria.

To see the logic of Theorem 3, consider the case where the game is symmetric and
b; = 1 for all 7, so linear equilibria are SSE. Suppose also that X = A with binary actions
and symmetric noise, so that |A;| = 2 and 7 (a;la;) = 1 — 7, 7 (a}la;) = & for each a; #
a;. Finally, suppose we wish to enforce a symmetric pure action profile @y = (ao, ..., aop),
where g; (dp) = v. By standard arguments, it can be shown that an optimal SSE takes
the form of a “tail test,” where the players are all punished if the number n of players
for whom x; = ag falls below a threshold n*.22 Due to independent noise, when N is
large the distribution of n is approximately normal, with mean (1 — ) N and standard
deviation \/z(l—T)N . Now, denote the threshold z-score of a tail test with threshold n*
by 2 = (n* — (1 —x)N) /y/z (1 —x) N, let ¢ and ® denote the standard normal pdf and
cdf, and let 7 € [0,a/ (1 — J)] denote the size of the penalty when the tail test is failed. We

then must have

zg(bl(—zj)z)]\ﬁ >v and P ()7 <47,
where the first inequality is the incentive compatibility condition that the product of the
pivot probability ¢ (2*) /\/7 (1 — ) N and the penalty size 7 must exceed the gain from
deviating v, and the second inequality is the promise-keeping condition that the expected
penalty cannot exceed the stage-game payoff range. Dividing the first inequality by the

second, we obtain
0(z) _vyz(1-mN
D (2*) ~ u '

The left-hand side of this inequality is the Mills ratio of the standard normal distribution,

22The analysis of tail tests as optimal incentive contracts under normal noise goes back to Mirrlees (1975).
The logic of Theorem 3 shows that the size of the penalty in a Mirrleesian tail test must increase exponentially
with the variance of the noise.
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which is approximately equal to |z*| when z* < 0. Hence, to satisfying incentive compati-
bility and promise-keeping, |2*| must increase at least linearly with /N. But since ¢ (z*)
decreases exponentially with |z*|, and hence exponentially with N, Theorem 3 now follows
from incentive compatibility, which implies that the product of ¢ (z*) /\/z (1 — ) N and
u/ (1 —0) (the upper bound for 7) must exceed v.

Intuitively, the weakness of team equilibrium is that the probability that a single player’s
action is pivotal for a tail test is of order ¢ (z*) /v/N, while the probability that the test is
failed is ® (2*), and the former is much smaller than the latter unless z* is much less than
zero, which in turn is consistent with equilibrium incentives only if (1 — 5)71 is exponentially
large.

We also note a converse to Theorem 3: if 7, ,, is sufficiently large for each a; and
(1 —0)exp (N't*) — 0 for some p > 0, then a folk theorem holds for team equilibria.
Intuitively, a target action profile a can now be enforced by a tail test where the players are
all punished only if x; # a; for every player 1.

Theorem 3 is related to Proposition 1 of Sannikov and Skrzypacz (2007), which is an
impossibility theorem for SSE in a two-player repeated game where actions are observed
with additive, normally distributed noise, with variance proportional to (1 — (5)71.23 As
a tail test is optimal in their setting, the proof of Theorem 3 implies that non-vanishing
incentives can be provided only if (1 — §) ™" increases exponentially with the variance of the
noise. Since in their model (1 — 5)71 increases with variance only linearly, they likewise
obtain an impossibility result. Similarly, Proposition 2 of Fudenberg and Levine (2007) is an
impossibility theorem in a game with one patient player and a myopic opponent, where the
patient player’s action is observed with additive, normal noise, with variance proportional
to (1 —0)” for some p > 0; and their Proposition 3 is a folk theorem when the variance
is constant in 0. Theorem 3 suggest that their impossibility theorem extends whenever

1/(1-p) for some p > O, while their folk

variance asymptotically dominates (—log (1 —4))
theorem extends whenever variance is asymptotically dominated by (—log (1 — 6))*™™) for

some p > 0.

23The interpretation is that the players change their actions every A units of time, where § = e~" for
fixed r > 0, and variance is inversely proportional to A, for example as a consequence of observing the
increments of a Brownian process.

24



6 Conclusion

This paper has developed a theory of large-group cooperation in repeated games. Our key
assumption is that monitoring is imperfect and respects a degree of independence across
players. Our main results establish necessary and (somewhat stronger) sufficient conditions
for cooperation in terms of the number of players, the discount factor, and the per-capita
channel capacity of the monitoring structure. We also show that cooperation in a team
equilibrium, where the players’ rewards are co-linear, is possible only under much more
stringent conditions. This result demonstrates a sense in which large-group cooperation
must rely on targeted sanctions. Notably, this result holds even when information is scarce,
so that precisely monitoring all players is infeasible.

Our results raise several questions for future theoretical and applied research. On the
theory side, this paper has focused on insufficient monitoring precision as an obstacle to large-
group cooperation. In reality, noisy monitoring coexists with other obstacles to cooperation,
such as decentralized monitoring (as in community enforcement models) and the possibility
that a small fraction of players may be irrational or fail to understand the equilibrium being
played (as in, e.g., Sugaya and Wolitzky 2020, 2021). Combining these features may lead
to a richer and more realistic perspective on the determinants of large-group cooperation.
We also believe it could be interesting to explore the implications of independent noise and
limited monitoring precision for organizational design, for example the design of managerial
hierarchies. Finally, another open question is whether some version of our results survives
under an appropriate relaxation of independent noise.

As for applied work, more systematic empirical or experimental evidence on the deter-
minants of large-group cooperation under imperfect monitoring would be valuable.?* For
example, a novel prediction of our paper is that targeted sanctions are much more effective
than collective ones in large groups, even when the total amount of available information

about agents’ performance is small. It would be interesting to test this prediction.

24Camera and Casari (2009) and Duffy and Ochs (2009), among others, run experiments on repeated games
with random matching and private monitoring, i.e., community enforcement. Community enforcement raises
additional issues beyond the ones we focus on, which arise even under public monitoring. Camera, Casari,
and Bigoni (2013) include a treatment with public monitoring, and find that larger groups cooperate less.
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Appendix

A Comparison of V (¢) and e-Correlated Equilibria

Theorem 1 gives conditions under which all equilibrium payoffs lie in the set

1
Vie) = {v € RY : v =wu(a) for some a such that —Zgi (a) < &?} .
N4
Payoffs in V' (¢) are attained by action distributions where the per-player average deviation
gain is less than €; however, a few players can have large deviation gains. A more standard
notion of “c-myopic play” requires that all players’ deviations gains are less than €. The

corresponding payoff vectors are the static e-correlated equilibrium payoffs, given by
CE () = {veR" :v=u(a) for some a such that g; (a) < e forall i}.

Here we compare the sets V (¢) and C'E (¢). We first give an example where V (¢) and
CE (¢) are very different (and V' (¢) cannot be replaced by C'E (¢) in Theorem 1). We then
give a condition under which maximum per-capita utilitarian welfare ), v;/N in V' (¢) is little
greater than that in C'E (cy/e), for a constant c. Intuitively, V' (¢) and C'E (g) can be very
different if incentive constraints bind for only a few players and these players’ actions have
large effects on others’ payoffs; while maximum utilitarian welfare in V' (¢) and C'E (¢\/e) is
similar if each player’s action has only a small effect on every opponent’s payoff.

For an example where V' (¢) and C'E (¢) differ, consider a “product choice” game where
player 1 is a seller who chooses high or low quality (H or L), and the other N — 1 players
are buyers who choose whether to buy or not (B or D). If the seller takes a; € {H, L} and
a buyer i takes a; € {B, D}, this buyer’s payoff is given by

1{a; =B} (-14+2x1{a; = H}),
while the seller’s payoft is given by
2k

m—l{CLl:H},
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where k € {0,1,..., N — 1} is the number of buyers who take B. Suppose also that the
players tremble with independent, uniform noise = € (0,1/3). Note that in this game the
payoff range is bounded by 3 and noise is bounded by 7.

In this game, for any ¢ > 0, when N is sufficiently large, we have (H,B,...,B) €
A (e), and hence (1,1,...,1) € V (¢). This follows because the per-player average de-
viation gain at action profile (H, B,..., B) equals 1/N: the seller has a deviation gain
of 1, while each buyer has a deviation gain of 0. Thus, Theorem 1 does not preclude
(1,1,...,1) (or any convex combination of (1,1,...,1) and (0,0,...,0)) as an equilib-
rium payoff vector, even when (1 — §) N/C' is very large. This is reassuring, because the
monitoring structure given by perfect monitoring of the seller’s realized action (i.e., Y =
{H,L}, q(ylxr) = 1{y = 21}) has channel capacity log2 and supports the payoff vector
(1=3r)/(1—-27m),...(1=3x)/(1—2x)) for all § > 1/(2—3x) and all N > 2. 1In
contrast, the greatest symmetric payoff vector in CE (¢) is (g,¢,...,¢€), because the seller’s
deviation gain equals the probability that she takes H.

Intuitively, even though the efficient action profile (H, B, ..., B) is not a static e-correlated
equilibrium, it can be supported with “not very informative” monitoring. The reason is that
only the seller is tempted to deviate at the efficient action profile, so monitoring one player
suffices to support this action profile regardless of the number of buyers.

Next, for any d € (0, @), say that per-capita externalities are bounded by d if |uz (a;, a_j) — U, (a)| <
d/N for all i # j,a},a. For example, in a repeated random matching game, d can be taken
as the maximum impact of a player’s action on her partner’s payoft, which is independent
of N. In contrast, in the product choice game, per-capita externalities cannot be bounded
uniformly in N, because the seller exerts an externality of 2 on each buyer who purchases.

In games with bounded per-capita externalities, any level of per-capita utilitarian welfare

that is attainable in V' (¢) can also be approximated in CE (\/ 8d€>.

Proposition 1 Assume that per-capita externalities are bounded by d. Then, for any e €

25This is a standard calculation, which results from considering “tolerant trigger strategies” that prescribe
Nash reversion with probability ¢ when y = L. The smallest value of ¢ that induces the seller to take H is
given by ¢ = (1 —0) /(6 — 307), and substituting this into the value recursion v = (1 —0) (1) + 6 (1 — 7o) v
yields v = (1 = 3x) / (1 — 2x).
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(0,2d) and any v € V (¢), there exists v' € CE (\/ 8d€> such that

< 2e
<4/ du.

Proof. We establish the stronger conclusion that, for any v € V (¢) and any ¢ > \/W,
there exists ' € CE (ce) such that |>, (v; — v}) /N| < 4u/c. (The stated conclusion follows
by taking ¢ = y/8d/e.) Fix ¢ € (0,d) and o € A(e). Let J = {i : g; (a) > c£/2}, and note
that |J| < 2N/c. Let & € A (A) be an action distribution that has the same marginal on

Ap as a and that satisfies g; (&) < ce for all ¢ € J: for example, take a Nash equilibrium
in the game among the players in J where the action distribution among the players in I\.J
is held fixed. Since |uZ (a},a,j) — U (a)| < d/N for all i # j,a},a, and the actions of at
most 2N/c players differ between & and «, we have g; (&) < g; (o) + 4d/c for each i € T\ J.
Since g; (o) < ce/2 (as i € I\J) and 4d/c < ce/2 (as ¢ > 4/8d/e), we have g; (&) < ce.
Since we also assumed that g; (&) < ce for all i € J, we have g; (&) < ce for all i € I, and
hence u (&) € CE (ce). Finally, since the actions of at most 2/V/c players differ between &
and «, we have |u; (&) — u; ()] < 2d/e < 2u/c for all ¢ € I\J, and by definition of @ we
have |u; (&) —u; ()| < @ for all i € J. Since ¢ > 2 (as ¢ < 2d) and |J| < 2N/c, we have
> ier (wi (&) — w; ()| < (N = 2N/c)2u/c+ (2N/c) i < 4Nu/c. =

B The Set B (¢) in a Public Goods Game

Consider the public goods game where each player chooses Contribute or Don’t Contribute,
and a player’s payoff is the fraction of players who contribute less a constant ¢ € (0,1)
(independent of N) if she contributes herself. Fix any v € (0,1 —¢), let v = (v,...,v) € RY,
and let ¢ = cv(1—c—wv)/4 > 0. We show that B, (¢) C F for all N. Since no one
contributing is a Nash equilibrium with 0 payoffs, this implies that B, (¢) C F*, and hence
v € B (e), for all N.

Fix any N. Since the game is symmetric, to show that B, (¢) C F' it suffices to show
that, for any number n € {0, ..., N}, there exists a feasible payoff vector where n “favored”
players receive payoffs no less than v + ¢, and the remaining N — n “disfavored” players

receive payoffs no more than v — e. First, consider the mixed action profile o' where favored
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v+€e

7 and disfavored players always contribute. At this

players contribute with probability

profile, favored players receive payoff f (n) := £ + (1 — £) (1) — ¢*££, while disfavored
players receive payoff g (n) = %% 4 (1—2) (1) — ¢. Now consider the mixed action
(vte)?

profile o where favored players contribute with probability ey and disfavored players

v+e
HON

payoff at profile o' multiplied by

Note that each player’s payoff at profile o equals her

contribute with probability

v+E
f(n)

f (n) %2 = v + ¢, while disfavored players receive payoff

f(n)
it = (- (122

vte— (1_71)“)0(@“) (since f (n) < 1)

. Therefore, at profile a2, favored players receive payoff

IA

IA

v—¢e (sincee=cv(l—c—v)/4).

C Proof of Lemma 1

Since y2-divergence is a convex function, it suffices to consider the case where ; is degenerate
on some a;, € A;. For any z; € X; and y € Y, we have ¢ (z;,y) = m; (z;]a;) p* (y|z;) =

p (yla) ¢ (x;|y). Hence, since m; (x;]a;) > m, we have

(¢ (ylz:) —p (y\a))Q - (&M)) (" (wily) — mi (%’az))) < (p =

e il (g ()~ s o)

(6)
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Now, for any a, i, and a}, we have

> (3., (mi (wilas) — mi (wilal)) o (ylas))?

- p(yla)

>, (i (wilas) = i (wila)) (" (yla:) = p (yla))*
Z( p(yla) : o)

3 (i () = i o)) 3 = %’fy?; He
< -2y Zp (1) Y2 (2" () = s )
< u;r—fl)zp(ylow (leoa(xily)— (]a;) I)

< 1_% Zp (yla Zso (zi]y) log<m<(xz|az))>

= kK (m)? 10 (Xi;Y)7

X2 (p (laj,az) ||p (la)) =

IN

where the first inequality follows by Cauchy-Schwarz; the second follows by (6) and

e (T (XFag) — 7 (X af))? 2
i (wila;) — m; (T5]a;))” < , <2(1—27)%;
2 () (il + (m (X\X T a;) — mi (X\X T |af)) ( )

the third follows by the L' — L* norm inequality (using »_, ¢ (zi|y) — m; (x:]a;) = 0); and
the fourth follows by Pinsker’s inequality (CT, Lemma 11.1.1), which states that for any
two probability distributions ¢ and ¢’ on a finite set Z, we have (3, ¢ (2) — ¢ (2)])* <

232, ¢(2)1og (€ (2) /¢ (2)).

D Proof of Lemma 2

We recall some basic concepts from information theory (see, e.g., Chapter 2 of Cover and
Thomas, 2006). For any discrete random variable Z with distribution ¢, its entropy is

H(Z) = —=3_((2)log((z). For any pair of discrete random variables (Z, Z’) with joint
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distribution ¢, the mutual information I (Z; Z’) satisfies

1(Z:2) = 3¢ (2. 2) log (%) —H(Z)- H(22).

where the conditional entropy H (Z|Z') is H (Z|Z") = —3_. .. ((2,2') log ( (z|2'). We also
recall the independence bound on entropy (Cover and Thomas, Theorem 2.6.6): if 7 =
(Z1,...,ZN) then H (Z) <>, H (Z;), with equality if and only if the Z; are independent.

We now prove inequality (2). Suppressing the superscript 7 (:|a), we have

ZI(Xm = > (H(X) - H(X|Y))

= Y HX)-Y HX|Y)<H(X)-H(X[Y)=1(X;Y),

where the inequality follows because, by the independence bound on entropy and inde-
pendence of the X;, we have H (X) = ) . H (X;) and H (X|Y) < >, H (X;|Y). Finally,
I(X;Y) < C by definition of channel capacity.

E Proof of Theorem 2

E.1 Preliminaries

Fix any ¢ > 0. If ¢ > @/2 then B (¢) = () and the conclusion of the theorem is trivial, so
assume without loss that ¢ < 4/2. We begin with two preliminary lemmas. First, for each
t € [ and r; € A;, we define a function f;,, : J; — R that will later be used to specify player

1’s continuation payoff as a function of y;.

Lemma 3 Under n-individual identifiability, for each i € I and r; € A; there exists a
function f; .+ Vi — R such that

B [fir: (i) Iri] = B [fir, (42) ai]
E [fir: (yi) Iri]

Var (fir, (vi) )

| firs (i)

v
<

for all a; # r;,

(
0, (8
(

u*/n, and

AN

IN

2u/n  for all y;. (10
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Proof. Fix i and r;. Let YV = {y; : p; (yi|ri) > n}, and let

Pi\Yi| @i

pi(ri) = ( Di (3/z|72)) . and P (ri) = U (£> :

g ai 7T pi <yi|ri) i€V
Note that (5) is equivalent to d (p; (r;),co(F;(r3))) > /n for all i € I,r; € A;, where
d ('> )
there exists © = (v (yi))yeys € R

P, (r;). By definiti f p; and P;, this implies that [ pelwilri)—pi(yilai) ;) >

p € P;(r;). By definition of p; and P;, this implies aZwEM( N/ r(yi) > /0
for all a; # r;. Now define

Yil. Hence, by the separating hyperplane theorem,
such that ||z| = 1 and (p; (r;) —p) - > /7 for all

Yi

a pi(ilrs) .
fire W) = — (7:) | forally; €Y, and
\/ﬁ Di <y1|rl) y;* Di yz|7’z

fir: (i) = 0 forally ¢ ;.

Clearly, conditions (7) and (8) hold. Moreover, since E|[fi,, (v;)|r:] = 0 and the term

pi (Gs|ri)x; (;) is independent of y;, we have

9i€Yi

# (3:)° ary) | _w @

Var (fir, (yi)|ri) =B | ——~| - B | —==| < — x (yi)? < —,

npi (Yilri) npi (yilrs) M ey "

and hence (9) holds. Finally, (10) holds since, for each y; € YV,

| ()| + 225,69 Pi (ilra) | (3:)] i u 20
[ firs (wi)| < — a< (14 ) i) | - <=
npi (Yilri) et oo

Now fix i € I and r; € A;, and suppose that y;; ~ p; (-|r;) for each period ¢ € N,
independently across periods (which would be the case in the repeated game if r; were taken

in every period). By (9), for any T' € N, we have

T
ar (Z 8" fir (Yir) ) 252 CDVar (fir (yig)) < 1__ 2
t=1
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Together with (8) and (10), Bernstein’s inequality now implies that, for any T € N and
f € R, we have

T B f—2
Pr (Z 5t_1fi,n‘ (yiﬂf) > f) < exXp _2 ( L : (11)
t=1

o ar+ 2 fﬂ)
Our second lemma fixes T'and f so that the bound in (11) is sufficiently small, and some

other conditions used in the proof also hold.

Lemma 4 There exists s > 0 such that, whenever (1 — §)log (N) /n < s, there exist T € N
and f € R that satisfy the following three inequalities:

-\ 2
(5) 7

60uN exp v - < g (12)

2 (11—652 u? + %%ﬂ)

1—-6 /- 2u
8 + =] < ¢ 13
1—5T( 77) = ° (13)

1-6T 1-6(. 2
4a T T T ( +?) < e (14)

Proof. Let T be the largest integer such that 8u (1 — (5T) /67 < e, and let

- 60u 1—6" 2
= 1 — log (N —.
7 \/36(og( ) o)) 5
Note that if (1 — §) log (V) /n — 0 then 1-6" — &/ (¢ + 8a), and hence (1 — §)log (N) / (n (1 — ")) —
0. Therefore, there exists s > 0 such that, whenever (1 — §)log (N) /n < 3z, we have

4 60w 1—-61

60w 1—-61 1—6 2
81 36 (1 —_— | N - - < e 16
u(\/ <og<€>+og( )>1—5TT]+1—5T7]> < ¢ (16)

It now follows from straightforward algebra (provided in Appendix E.4) that (12)—(14) hold.
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E.2 Equilibrium Construction

Fix any T and f that satisfy (12)—(14), as well any v € B (¢). For each extreme point v* of
B, (¢/2), we construct a PPE in a T-period, finitely repeated game augmented with contin-
uation values drawn from B, (¢/2) that generates payoff vector v*. By standard arguments,
this implies that B, (¢/2) C E (T'), and hence that v € F (T').?° Since v € B (¢) was chosen
arbitrarily, it follows that B (¢) C E (I').

Specifically, for each ¢ € {—1,1}" and v* = argmax, Bu(e/2) G * v, we construct a public
strategy profile ¢ in a T-period, finitely repeated game (which we call a block strategy profile)
together with a continuation value function w : H*** — R such that, letting ; (A" ') =

15T6 (w; (RTF') = v}), we have

T

Z Y s+ 1, (hT+1)] for all 4, (17)

=1

Promise Keeping: v} = ! 5T

T

Incentive Compatibility: o, € argmax 70— [Z & g 4 1, (hT+1)] for all 4, (18)
t=1

T

1—-6"

Self Generation: ~ (ab; (B) € [ 5 O] for all i and AT, (19)

Fix ¢ € {-1,1}" and v* = argmax,c g, (-/2) ¢ - v- We construct a block strategy profile o
and continuation value function ¢) which, in the next subsection, we show satisfy these three
conditions. This will complete the proof of the theorem.

First, fix a correlated action profile @ € A (\A) such that
w; (@) =v] + (,e/2 for all i, (20)

and fix a probability distribution over static Nash equilibria o¥¥ € A (T], A (A;)) such that
u; (aNF) < v —¢/2 for all i. Such @ and o7 exist because v* € B, (¢/2) and B, (¢) C F*.

We now construct the block strategy profile o. For each player i € I and period t €
{1,...,T}, we define a state 6;; € {0, 1} for player i in period ¢. The states are determined
by the public history, and so are common knowledge among the players. We first specify

players’ prescribed actions as a function of the state, and then specify the state as a function

26Specifically, at each history h”7*! that marks the end of a block, public randomization can be used
to select an extreme point v* to be targeted in the following block, with probabilities chosen so that the
expected payoff E [v*] equals the promised continuation value w (hT‘H).
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of the public history.

Prescribed Equilibrium Actions: For each period ¢, let 7, € A be a pure action
profile which is drawn by public randomization at the start of period ¢ from the distribution
@ € A(A) fixed in (20), and let o'¥ € []; A (A;) be a mixed action profile which is drawn
by public randomization at the start of period ¢ from the distribution a™¥. The prescribed

equilibrium actions are defined as follows.

1. If 0;, = 0 for all « € I, the players take a;, = r;.

2. If there is a unique player ¢ such that #,; = 1, the players take a, = (r},r_;;) for
some 1, € BR;(r_;;) if ¢; = 1, and they take o]F if (; = —1, where BR; (r_;) =

argmax, c 4. i (a;,7—;) is the set of i’s best responses to r_;.

3. If there is more than one player i such that 6;; = 1, the players take o} ¥.

Let af € [[, A (A;) denote the distribution of prescribed equilibrium actions, prior to
public randomization z;.

(It may be helpful to informally summarize the prescribed actions. So long as 6, = 0 for
all players, the players take actions drawn from the target action distribution a. If 6,, = 1
for multiple players, the inefficient Nash equilibrium distribution o¥¥ is played. If 6, = 1
for a unique player i, player i starts taking static best responses; moreover, if (; = —1 then
a™M¥ is played.)

It will be useful to introduce the following additional state variable S; ;, which summarizes

player ¢’s prescribed action as a function of (Qj,t)j el

1. S;y =0if0,;, = 0 for all j € I, or if there exists a unique player j # ¢ such that
0+ =1, and for this player we have (; = 1. In this case, player i is prescribed to take

Qit = Ti¢-

2. S,y = NE if 0;; = 0 and either (i) there exists a unique player j such that §;, = 1,
and for this player we have (; = —1, or (ii) there are two distinct players j, j' such

that 0;, = 0;,, = 1. In this case, player 7 is prescribed to take o}\".

3. Siy = BR if 0;; = 1. In this case, player ¢ is prescribed to best respond to her

opponents’ actions (which equal either r_;; or o/, depending on ¢; and (05) .2:-)
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States: At the start of each period ¢, conditional on the public randomization draw of
r, € A described above, an additional (“fictitious”) random variable ¢; € ) is also drawn
by public randomization, with distribution p (g;|r;). That is, the distribution of the public
randomization draw ¢; conditional on the draw r; is the same as the distribution of the
realized public signal profile g; at action profile r;; however, the distribution of ¢; depends
only on the public randomization draw r, and not on the players’ actions. For each player

and period ¢, let f;,,, : Vi — R be defined as in Lemma 3, and let

fi,'l‘q‘,,t (yie) if Sip =0,
fi7t = fi,T‘i,t (giﬂf) if Si,t = NEa (21)
0 it S;» = BR.

Thus, the value of f;; depends on the state (6,,;) the target action profile r; (which

ner
is drawn from distribution @ as described above), the public signal y;, and the additional
variable 7;.2" Later in the proof, f;; will be a component of the “reward” earned by player
7 in period t, which will be reflected in player i’s end-of-block continuation payoff function
P HTHY - R,

We can finally define 0;; as

t'—1

"_
> 6" i

=1

Qiytzl{ﬂt’gt:

> f} : (22)

That is, 0;, is the indicator function for the event that the magnitude of the component of
player i’s reward captured by ( fi,tu)i:,_:ll exceeds f at any time ¢’ < t.

This completes the definition of the equilibrium block strategy profile . Before proceed-
ing further, we note that a unilateral deviation from o by any player ¢ does not affect the
distribution of the state vector ((gj’t)#i)T . (However, such a deviation does affect the

t=1
distribution of <9i,t)?:1-)

Lemma 5 For any player v and block strategy &;, the distribution of the random wvector
T

<(9j7t)j¢i> is the same under block strategy profile (G;,0_;) as under block strategy profile
t=1

g.

2"ntuitively, introducing the variable , rather than simply using y;; everywhere in (21), ensures that
the distribution of f;; does not depend on player i’s opponents’ strategies.
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Proof. Since 6;; = 1 implies 6,11 = 1, it suffices to show that, for each ¢, each J C I\ {i},
each h' such that J = {j € I\ {i} : 6§, = 0}, and each z;, the probability Pr <(9j7t+1)j6] |ht, 24, ai,t>
is independent of a;;. Since 6,41 is determined by h' and f;;, it is enough to show that
Pr <<fj,t)jeJ |ht, 24, a@t) is independent of a;.

Recall that S;; is determined by h', and that if j € J (that is, 6;; = 0) then S;; €
{0, NE}. If Sj; = 0 then player j takes r;;, which is determined by z;, y; is distributed ac-
cording to p; (y;|rj.), and f;, is determined by y;;, independently across players conditional
on z. If S;; = NE then g, is distributed according to p; (;|r;), where r;, is determined
by 2, and f;; is determined by ¢;:, independently across players conditional on z;. Thus,
Pr <<fjvt)jej |ht, 24, @i,t> = HjEL,’j# Pr(f;:Sj+, 7)), which is independent of a;, as desired.
[ |

Continuation Value Function: We now construct the continuation value function
W+ H™1 — RY. For each player i and end-of-block history h7+!, player i’s continuation
value 1; (h'*') will be defined as the sum of 7' “rewards” ¢, ,, where t = 1,...,7T, and a
constant term ¢; that does not depend on h7+!,

The rewards v, , are defined as follows:

1. If 0, = 0 for all j € I, then
Uiy =0""firi, (Yir) - (23)
2. If 0;; =1 and 6, = 0 for all j # 7, then
Uiy =06"" (ui (@) — i (af)) . (24)

3. Otherwise,
Vip =01 (=Cu —wi (F) + 1{Siy = O} firy, (i) - (25)

The constant ¢; is defined as

T
¢ = _E 2515—1 (1 {mgxej,t — 0} U; (@) —1 {m;iJXej’t = ].} C-ZU)

—1 J J
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Note that, since u; (@) and v are both feasible payoffs, we have

1—06T

(27)

Finally, for each 7 and h**!, player i’s continuation value at end-of-block history A7*! is

defined as .
W (W) = ¢; + Z Vyze (28)

t=1
E.3 Verification of the Equilibrium Conditions

We now verify that ¢ and 1 satisfy promise keeping, incentive compatibility, and self gen-
eration. We first show that 0,, = 0 for all ¢ and ¢ with high probability, and then verify the

three desired conditions in turn.

Lemma 6 We have

Pr < max 0, = 0) >1—-—. (29)

el te{l,..., T}

Proof. By union bound, it suffices to show that, for each i, Pr (maxte{l iy = 1) <

.....

£/20uN, or equivalently

t
P Sl > T < —— 30
g <teglf)}} tzl Jir) 2 1 ) = 20uN (30)
_ _\T
To see this, let f;; = fi,., (Ui+). Note that the variables <f i,t) are independent (unlike the
’ t=1

~ t
variables ( fi7t)tT:1). Since < fi,t/> and ( fiﬂy)t have the same distribution if S;; # BR,
t/

t'=1

> f) < Pr( max
te{l1,.., T}
T

Since ( ﬁt> are independent, Etemadi’s inequality implies that
t=1

while f;;, = 0 if S;; = BR, we have

t

Z 0" fiw

t

Z 5t,_1fi,t’

> f) : (31)
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Letting x;, = 0" f;.4, note that |z;,| < 2a/n with probability 1 by (10), E[z;,] = 0 by (8),

and

: : 16" @
Var Tiv | = Var (z; ¢) < by (9).
(t’z::l ,t) 1:12::1 ( ,t) 1_5 Y()

n

N\T
Therefore, by Bernstein’s inequality ((11), which again applies because ( fi7t> are inde-
t=1
pendent) and (12), we have, for each t < T,
t f— e
P S vl > ) < . 33
r(; f’t_3>_6011N (33)

Finally, (31), (32), and (33) together imply (30). m
Incentive Compatibility: We use the following lemma (proof in Appendix E.5).

Lemma 7 For each player i and block strategy profile o, incentive compatibility holds (i.e.,

(18) is satisfied) if and only if

suppo; (h') C argmjx E7— [0 iy + VW' aig]  for all t and h'. (34)
a; tCA;

In addition, for allt <t and h', we have

E7 |0 + ¢i7t,|ht] =E° [5’5,_1 <1 {mgx 0 = 0} u; (@) — 1 {mgx 0;p = 1} Qu) |ht} .
J7F J7F
(35)

We now verify that (34) holds. Fix a player 4, period ¢, and history h'. We consider

several cases, which parallel the definition of the reward v, ;.

1. If 0, = 0 for all j € I, recall that the equilibrium action profile is the r; that is
prescribed by public randomization z;. For each action a; # r; 4, by (7) and (23), and

recalling that 4 > max, u; (a) — min, u; (a), we have

R [5t_1ui,t + il 2, aiy =iy — BT [5t_1ui,t + i 0, 2, a5 =

= & (E [Uz (Tt) + fi,’l‘i,t (yz‘,t) |6Lz‘,t = Tz',t} - E [Uz (% T—i,t) + fz‘,m,t (yi,t) |az',t = az’])
> 0, so (34) holds.
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2. If ;; = 1 and 0, = 0 for all j # i, then the reward v, specified by (24) does not
depend on y;;. Hence, (34) reduces to the condition that every action in supp o; (h)

is a static best responses to o_; (h'). This conditions holds for the prescribed action

profile, (r; € BR; (r_is) ,7—i:) or 07"

3. Otherwise: (a) If S;; = 0, then (34) holds because it holds in Case 1 above and (23)
and (25) differ only by a constant independent of y;;. (b) If S;+ # 0, then either
0;. = 0, = 1 for distinct players j,j’, or there exists a unique player j # i with
0+ =1, and for this player we have (; = —1. In both cases, o is prescribed. Since
the reward 1, , specified by (25) does not depend on y;;, (34) reduces to the condition
that every action in supp o; (h') is a static best responses to o_; (h'), which holds for

the prescribed action profile oV .

Promise Keeping: This essentially holds by construction: we have

1-6 d
_ E° 6t_1 i+, hT+1
1— 5T ; Wi 1/)1 ( )
1-4 a
— — o t—1
— W (E ; (5 U + d}iﬂf) + Cz’) (by (28))
1-4 a
= - 5TEO' tzz;(stl (]_ {1’1]1;11)(9]”5 = O} U; (5&) -1 {Hjl;{;LlXeJ’t = 1} g{lj) + C; (by (35))
= v (by (26)), so (17) holds.
Self Generation: We use the following lemma (proof in Appendix E.6).
Lemma 8 For every end-of-block history h' ', we have
a _ 2w
G iy < f+=  and (36)
t=1 N
T _ T
-2 1—9
V| < f+—u+2a : (37)
— " n 1-9
In addition,
1—6"¢
o < — -
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To establish self generation ((19)), it suffices to show that, for each A+, (;¢b; (R*F1) <0
and |y, (RTHY)| < (67/ (1 —6)) . This now follows because

G (hTH) = ¢ (Cz + sz t) > = 65 + f +2u/n  (by (36) and (38))
< i(—a€+8( ) f+2u/ )<0 (by (13)), and
< 509 1) ) <0 (by (13)),
T
WZ (hTH)‘ < |Cz| + Z@th
5T
< 4u T + f+2ua/n (by (27) and (37))
_ 11__55 4+ F+2afn < 15_55 (by (14)),

which completes the proof.

E.4 Omitted Details for the Proof of Lemma 4

We show that, with the stated definitions of T' and £, (15) and (16) imply (12)—(14). First,

note that
1 -4 (1+6)(1-9) 1-6

1o (o) (1-07) " 14T

Hence,

2f (1-0%) 41-6 60z 1—6" a2
L — log ( — | +log (N —
ou(1—o7)  0a1_o" 36(0g(a)+0g( >> 1-0 1

Therefore,

- 2

-(8) - -
60ulN exp — - < 60uN exp — — =60uNexp | ——— | -
2 (e + 2a) 2 (e + Lo a2) 3640’

1—62 1—
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Moreover,

2 36 (log (2) +1log (N)) L5 1 T T
/ ?T = ( g( 2 ) j( )) 1=0 _ +9 log _60u +log (N) ) > log _60u +log (N) .
— _ _ T

361" 3615 1+ € €

Hence, we have

N2
f
i - <§) U . 60
60uN exp - <60uNexp|—(log| — | +log(N) || =e.
2 (1—5” a2 + §§a> €

This establishes (12).

Next, we have

8% ( I %“) _ 8a <\/36 (log (GOT“) + log(N)) 11__5(;% + 11__5(; %) <c  (by (16)).
(39)

This establishes (13).
Finally, by (39) and 8u (1 — ") /6" < e, we have

1-67 1-6/-. 2u 1-67 1-6T1-6 /. 2u e ee€
4u — | = 4u — | < 4- —— < e,
T (Hn) T T 1—5T<f+ >_8+ g =°

This establishes (14).

E.5 Proof of Lemma 7

We show that player 7 has a profitable one-shot deviation from o; at some history h' if and
only if (34) is violated at h'. To see this, we first calculate player i’s continuation payoff
under o from period t + 1 onward (net of the constant ¢; and the rewards already accrued

Zi,zl ;). For each t >t + 1, there are several cases to consider.

1. If 6, = 0 for all j, then by (8) and (23) we have
B (6" i + 0| = 6" (i (05) + B | fir, (i) i | ) = 0" ui (@),

2. If ;v =1 and 0, =0 for all j # i, then by (24) we have
B (6" i + [0 = 6" (s () + i (&) — wi (o)) = 0w (@),
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3. Otherwise: (a) If S;» = 0, then by (8) and (25) (and recalling that player ’s equilib-
rium action is r; » when S; v = 0) we have
E° |:(5tl71'U/i’t/ —+ wi’t/’htl} = 52&/71 <Ul (CY:/) — CZ'IZ — U (CY:/) + E fivTi,t’ (yi,t’) ’ri,t’]> = (Stlil (—Cz’lj)
(b) If S;» # 0, then by (25) we have
B [0 s + 0 0] = 67 (1 (0) — G = w(ag)) = 07 (~G).

In total, (35) holds, and player i’s net continuation payoff under ¢ from period ¢ + 1

;1 51 ( {maxQ v = O} (@) —1 {I?Q?Qj’t/ = 1} gla) |ht] :

T
By Lemma 5, the distribution of <(6’n7t/)n 7,51.) does not depend on player i’s period-t
t=t+1

onward equals

action, and hence neither does player i’s net continuation payoff under o from period ¢ + 1
onward. Therefore, player i’s period-t action a;; maximizes her continuation payoff from

period ¢ onward if and only if it maximizes B7=#[6" u;; + 1, .| 1t az,].

E.6 Proof of Lemma 8

Define

6" (i (@) — wi () if 0, = 0 for all j # 4,

Vi = ’ and
7 61 (=i —u; (o)) otherwise,

W = 8" fias. (yiy) if either 6;, =0 for all j or S;; =0
o 0 otherwise.

Note that, by (23)-(25), we can write ¢, , = ¥}, + %f,t- (Note that, if 6,,, = 0 for all n € I,
we have of = @ and hence 97, + w;t = 6" fiai, (ir), as specified in (23).) We show that,

for every end-of-block history h7+!, we have

T 167

Gy vy, € {—271 — ,0] and (40)
t=1
T _

Sl < Fe (41)
t=1 77
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Since 1, , = V7, + 1/1{,5, (40) and (41) imply (36) and (37), which proves the first part of the

lemma.

For (40), note that, by definition of the prescribed equilibrium actions,
J # 1, then (i) if ¢; = 1, we have u; (of) > >,
and (ii) if ¢, =
¢ (ug (@) — i (af)) < 0. Since obviously ¢; (u; (@) — u; («

@ (a) min {u; (a

—1, we have u; (f) < max {u; (&

—2u, we have

8¢ (ug (@) — i (af)) if 0, = 0 for all j # 4,

Cithiy = S (= — Cug (o))

otherwise

For (41), note that S;; = 0 implies 6, ; = 0, and hence

T
sz 1 {9“5 = 0} 5 lfzam (3/”)
t=1

T
Gy vl <
t=1

Zt’ 1,. tat, fz N (%,t’)
by (10), this inequality implies (41).

Since 0, ;11 = 1 whenever

For the second part of the lemma, by (26), we have

) , MaX, U (al, a_i)} > U

it 0;, = 0 for all
(a);

). u; (@VF)} = u; (@). In total, we have

¥)) > —2u and —u —

Cui (o) >

e [—2a6"1,0].

> £, and in addition |f¢,ai,t (yzt)’ <2u/n

T T
o _ t—1 B 1-6" ,
o Ci( 3135 (1 o = opwior - {mwen =1} )| 55
- E Z(gt 1 1{maxﬁjt—O}gi(vf—ui(@))—i—l{?Qixej,tzl}(a+§iv;‘)
€[0,21)
g .
< E Z(stfl <1 {maxejt—O} <7> {maxejt—l}%a)] by (20)
L t=1
1—6" €
< S
= 1% ((1 20u> (20@)2 ) (by (29))
1-6"¢
< - - i/2).
< =53 (as e < @/2)
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F Proof of Theorem 3

Fix a team equilibrium with coefficients b = (1,b,...,by), where |b;] < 1 for all i. Let

I.={i:b;>0}and I_ ={i:b; <O0}. Define

infh W; (h) if i € I+, B
v, = and ©v; =
sup, w; (h) ifie I, infpw; (h) ifiel_.

sup, w; (h) ifie I,

Since V' () is convex, it suffices to show that v, v € V (¢), where v = (v;),.; and ¥ = (¥;),;-
In the following lemma, for any & € A(A) and f : A x Y — R, E*[f (r,y)] denotes
expectation where r ~ a and then y ~ p (-|r), and E®% [f (r,4)] denotes expectation where

r ~ « and then y ~ p(-|al,r_;).

Lemma 9 There exist « € A(A) and 7 : A x Y —R such that

v o= E%u(r)—br(ry)],
E* [u; (1) — b7 (ryy) |ri = a;] > E*% [u; (al,r—;) — b7 (ryy) |ri = ;] for all i,a; € supp oy, al,

T(ry) € [0, | f 6@] for all r,y,

E*[r (r,y)] < .

Moreover, if the constraints 7 (r,y) € [0, 155u] and B [7 (r,y)] < @ are replaced by T (r,y) €

[—1%611, 0} and B [ (r,y)] > —u, then the same statement holds with v in place of v.

Proof. Let £ = {(1 —p3)v+ pv: p €[0,1]}. By standard arguments, E is self-generating:
for any v € E, there exist & € A (A) and w : A x ) — E such that

v = E*[(1—-0)u(r)+dw(r,y)] and
E*[(1 —0)u; (r) + ow; (r,y) |ri = a;] > Es: (1= &) u; (al,r—;) + dw; (ryy) Iri = ail,

for all i,a; € suppay,a; € A;. Since v € E and w (r,y) € E for all r,y, we have v; —

w; (r,y) = b;(vy —wq (r,y)) for all 4,r,y. Since v > vy for all v € E, if v = ¥ then
wy (r,y) < vy for all r,y. Hence, taking v =0 = (1 — ) u () + E* [w (r,y)] and defining

45



7 (r,y) = 1%5 (01 — wy (r,y)), we have 7 (r,y) € [O, 1%512} and

B [r (r)] = B (1~ 8)u () + OBy (r.9)] — s (1)
(1= 5) (1 (0) — B r))) <

IN

Moreover, we have

B [u ()~ br ()] = B ()~ by (01 = un ()|
— ule) B |25 0w )
= ufa) =B | (L Byu ) + 0" w ()] - w(0)

and, for all 4, a; € supp o, a; € A;,

E*[(1 —0)u; (r) + ow; (r,y) |ri = a;] > B [(1—8)u, (a,r—;) + ow; (ryy) |ri = ai
—
) , ) _
BE” uz(r)‘Fm(wi(T,y) ) |ri = a; A ui(az,r_z)—km(w,(r,y)—vi)lnzai
<
B [u; (r) = bt (ry) [ri = ai] > B [u, (a5, 7-5) = b7 (r,y) |ri = ai

Similarly, if v = v then wy (r,y) > v; for all r,y, and the symmetric conclusion holds. =
Taking a and 7 as in Lemma 9 and recalling that |b;| < 1 for all 4, we see that ) . g (o) /N
is bounded by the value of the program

1

S Z B [7 (y)] — B 7 (y)]] st
T (y) € [0, . f 5@} for all y, (42)
E"[7 (y)] < @. (43)
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In turn, this is bounded by the sum of the value of the program

1

oo N Z E"[7(y)] =B [r ()] st (42),(43), (44)

and the sum of the corresponding program with /_ in place of I.. To prove the theorem, we
show that, for any = > 0 and p > 0, each of these values converges to 0 along any sequence
(N, ) where (1 — 6) exp (N'?) — oo. Without loss, it suffices to consider the first program,
(44).

We first establish that the solution is a tail test. Let N, = [I].

Lemma 10 Program (44) is solved by a tail test, where Y = X = A={0,11"*; q(y|z) =
1{y =z} for all y,x; r; # a; for alli; w; (r;|r;) =1 —x and m; (a;|r;) = & for all i,r; # a;;
and, letting n = |{i : y; = r;}|,

%57] if n > n*,
T(y) = 61%622 ifn=n*
0 if n < n*,

for some n* € {0,1,...,N,} and 8 € [0, 1].

We prove Lemma 10 in the next subsection. Lemma 10 implies that the program becomes

Ny 6
— u(l—2 Prin;j=n"-1 1—-8)Pr(n_;=n"
n*E{O,l,{?J%fi(}ﬁE[O,l] N 1—(5u( ) (BPr(n=n )+ ( B) Pr (n—; = n"))
st. BPr(n=n")+Pr(n>n"+1) < u_,
mu
where n_; = |{j #i:y; =r;}| and the probabilities are binomial with parameter 1 — 7.

Since the value of the program is maximized when N = N, , we henceforth assume that this
is the case. We now show that, for any p > 0, there exist ¢y, c; > 0 such that, for each NV,

the value of the program is at most

o
max { 1 611 exp (—coNl_p) ,clN_p/2u} :

This completes the proof, as if @ is fixed and (1 —§)exp (N'"?) — oo then both terms

converge to 0.
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We bound the program separately for n* such that |n* — (1 — ) N| > N'7#/2 and n*
such that [n* — (1 — ) N| < N'7*/2, In the first case, by Hoeffding’s inequality, there exists
co > 0 such that

min {Pr (n_; > n* —1),Pr(n_; <n*)} <exp (—coN'").

Since the value of the program is at most 2:%@min {Pr (n_; > n* — 1), Pr (n_; < n*)}, this
gives the desired bound when |n* — (1 — ) N| > N1=r/2,

For the second case, the value of the program is at most

§ pBPr(ni=n"—-1)4+1-p)Pr(n;=n"*) a
1-5" BPr(n=n*)+Pr(n>n*+1) Tl
(BPr(n_i =n* — 1)+ (1= ) Pr(n_s = n*))
- BPr(n>n*)+(1—pF)Pr(n>n*+1)
<Pr(ni:n*—1) Pr(n_; =n*) )u

Pr(n > n¥) Pr(n>n*+1)

By McKay (1989, Theorem 2), for any m > (1 — w) N, we have

1_q><<m 1-1)N /m)
¢(<m (1—x)N /m)'

If(1-7)N < n* < (1—7)N + N'"r/2 applying this inequality for m € {n*,n* + 1},
together with the inverse Mills ratio inequality (1 — ® (z)) /¢ (x) > 1/ (1 + x), we have

Pr(in>m)>+/Nr(1—x)Pr(n_;=m—1)

Pr(n_;=n*—1|r_;) N Pr(n_; = n*r_;) < 9 1 —(1—-x)N 1
Pr(n > n*|r) Pr(n>n*+1|r) — Nz (1 —7) ,/Nﬂ(l )

N=/2 1
=7 (\/E(l —m) i Vv Nz (1 —&)) '

Thus, there exists ¢; > 0 such that the value of the program is at most ¢; N ~?/2%. Symmet-

rically, the same bound applies when (1 — ) N — N'=?/2 < p* < (1 —x) N.
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F.1 Proof of Lemma 10

First, consider the sub-program where (X', 7, ), q) is fixed, so the objective is maximized
over (r,a, 7). By Blackwell’s theorem, the value of the sub-program with signal distribution
p is greater than that with signal distribution p, if p is a garbling of p. (That is, viewing p
and p as |YV| x |A| matrices, there is a || x || Markov matrix M such that p = Mp.) For
any noise structure (X, ), the action monitoring structure (), p) induced by any outcome
monitoring structure (), ¢) is clearly a garbling of that induced by the outcome monitoring
structure where J) = X and ¢ (y|x) = 1{y = z} for all y, z, so that p(y|a) = 7 (y|a) for all
y,a. It is thus without loss to focus on this (), q).
In addition, if we let X = A and, for each r,a € A and 1, let

-z ify; =r, l—n ify = ay,
Ti(yilri) = « if y; = a;, T (yila) = = if y; =y,
0 otherwise, 0 otherwise,

and ﬁ'i (yl|dl) =1 {yz = dl} fOI' &1 ¢ {ai,ri},

then m; is a garbling of 7; for each i, and hence 7 is a garbling of 7. To see this, since

7 < 1/2, the matrix 7, is invertible, and the matrix inverse 7; ' is given by

1-7m . 1—7 .
127 if y; =1y, 1—2r if y; = a,
——1 — T : _ ==L (0 1q.) = T : _
Tri (yZ’TZ) - _1,2£ lf Y; = a, Tri (91’%) - - 1—27 lf Yi = Ty,
0 otherwise, 0 otherwise,

and 7' (yila) = 1{ys = @i} for a; ¢ {as, 7}
We can then calculate the matrix M; := 7,7, as

(A—m)mi (yilri) —mmi (yilai)

1—2x if dl =T,
M; (yila;) = (kz)m(y’i‘f});mi(yil”) if a; = a;,
7 (yi)a;) otherwise.

Note that, for each a;, we have Zyi M; (yila;) = 1 and, since 7; (y;|a;) > = for all y;, a;,

(= m)mi (lrd) = ami (o) L QL -mr-x(l-m)

1—2m 1-2rx ’
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(l_ﬂ)m(yikg;ﬂi(y”m > 0. Thus, M; is a Markov matrix satisfying m; = M;7;.

and similarly

It is thus without loss to take (X', 7) = (A, 7). The program then simplifies to

13135—22 (y|r) (1— (‘%'“’))T(y) s.t.

22 (i)

T (y) € [0, u} for all y,

Here it is without loss to take a; # r; for all i, as if a; = r; then the same value can be
attained by taking 7 (y) independent of y;, at which point a; can then be taken different from
r; without affecting the value. Letting A > 0 denote the multiplier on > p(y|r) 7 (y) < 4,

we see that, for each y, the Lagrangian is increasing in 7 (y) if and only if

_Zﬂ-z yzla'z <1_/\
T (yilri) — '

It follows that 7 (y) takes the prescribed form.
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