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Abstract

Motivated by the problem of sustaining cooperation in large groups with limited

information, we analyze the relationship between group size, monitoring precision, and

discounting in repeated games with independent, player-level noise. The viability of

cooperation under independent noise is linked to the per-capita channel capacity of

the stage game monitoring structure. We show that cooperation is impossible if the

per-capita channel capacity is much smaller than the discount rate. A folk theorem

under a novel identification condition provides a near converse. If attention is restricted

to team equilibria (a generalization of strongly symmetric equilibria), cooperation is

possible only under much more severe parameter restrictions.
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Two neighbours may agree to drain a meadow which they possess in common;

because it is easy for them to know each other’s mind; and each must perceive

that the immediate consequence of his failing in his part is the abandoning of the

whole project. But it is very diffi cult, and indeed impossible, that a thousand

persons should agree in any such action; it being diffi cult for them to concert so

complicated a design, and still more diffi cult for them to execute it; while each

seeks pretext to free himself of the trouble and expense, and would lay the whole

burden on others.

– David Hume, A Treatise of Human Nature

1 Introduction

Hume’s intuition notwithstanding, large groups of individuals often have a remarkable ca-

pacity for cooperation, even in the absence of external contractual enforcement (Ostrom,

1990; Ellickson, 1991; Seabright, 2004). Cooperation in large groups typically relies on accu-

rate monitoring of individual agents’actions, together with sanctions that narrowly target

deviators. For example, these are key features of the community resource management prob-

lems documented by Ostrom (1990), the local public goods problems studied by Miguel and

Gugerty (2005), and the group lending settings studied by Karlan (2007) and Feigenberg,

Field, and Pande (2013). Large cartels seem to operate similarly. For example, the Fed-

eration of Quebec Maple Syrup Producers– a government-sanctioned cartel that organizes

more than 7,000 producers, accounting for over 90% of Canadian maple syrup production–

monitors its members’sales, and producers who violate its rules can have their sugar shacks

searched and their syrup impounded, and can also face fines, legal action, and ultimately the

seizure of their farms (Kuitenbrouwer, 2016; Edmiston and Hamilton, 2018). In contrast, it

does not seem that individual maple syrup producers– or the farmers, fishers, and herders

studied by Ostrom, or the villagers in the development economics studies cited above– are

motivated by the fear of starting a price war or other general breakdown of cooperation.

The principle that large-group cooperation requires precise monitoring and targeted sanc-

tions seems like common sense, but it is not reflected in current repeated game models.

The standard analysis of repeated games with patient players (e.g., Fudenberg, Levine, and

Maskin, 1994, henceforth FLM) fixes the parameters of the game other than the discount
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factor δ and considers the limit as δ → 1. This approach does not capture situations where,

while players are patient (δ ≈ 1), they are not necessarily patient in comparison to the pop-

ulation size N (so (1− δ)N may or may not be close to 0). Also, since standard results are

based on statistical identification conditions that hold generically regardless of the number

of players, they also do not capture the possibility that more information may be required

to support cooperation in larger groups. Finally, since there is typically a vast multiplicity

of cooperative equilibria in the δ → 1 limit, standard results also say little about what kind

of strategies must be used to support large-group cooperation: for example, whether it is

better to rely on targeted sanctions (e.g., fines) or collective ones (e.g., price wars; or, in

Hume’s example, “the abandoning of the whole project”).

This paper extends the study of repeated games by investigating the relationship between

the discount factor, the number of players, and the monitoring structure. Rather than

focusing on the δ → 1 limit, we let all these features of the game vary flexibly, assuming only

a uniform upper bound on the range of the stage game payoffs and a uniform lower bound

on the amount of independent, player-level “noise.” Our main results provide necessary

and (somewhat stronger) suffi cient conditions for cooperation as a function of discounting,

group size, and a measure of societal information or monitoring precision. We also establish

severe obstacles to cooperation under collective incentives. In sum, we show that large-group

cooperation requires a high level of patience and/or information, and that it cannot be based

on collective incentives for reasonable parameter values.

We now preview our model and results. We model independent, player-level noise by

assuming that, in each period of the repeated game, each player i’s action ai stochastically

determines an individual outcome xi, independently across players, and that the distribution

of the public signal y depends on the action profile a = (ai) only through the outcome

profile x = (xi).1 As the following example illustrates, absent noise there may be no tradeoff

between discounting, group size, and monitoring precision.

Example 1. Suppose N players repeatedly play a prisoner’s dilemma with a binary

public signal yt ∈ {0, 1} in each period, where yt = 0 if every player cooperates in period

t, and yt = 1 if any player defects in period t. A player’s stage game payoff is the fraction

of players who cooperate, less a constant (independent of N) if she cooperates herself. In

1This setup follows prior work such as Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and
Smorodinsky (2000, 2001).
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this game, each player’s action is pivotal in determining yt when the others cooperate, so

the range of values for the discount factor for which mutual cooperation is a sequential

equilibrium outcome is independent of N . Thus, a single “bit”of information in each period

(the binary signal yt) can form the basis for cooperation in an arbitrarily large group of

players in a repeated game where the range of stage game payoffs, the cost of cooperation,

and the discount factor are all fixed independent of N .

Now introduce noise. For example, let each player “tremble” in her choice of action

with probability π, independently across players and periods, with π fixed independent of

N . Assume that the distribution of the public signal depends only on the players’realized

actions, not their intended actions. Then a single bit of information in each period can no

longer motivate cooperation by a large group of players for a fixed discount factor, because

the probability that a single player is pivotal for the realization of a vector of T binary

signals, for any fixed T , goes to zero as N →∞, and signal realizations in the distant future
have only a small impact on the players’payoffs. Moreover, a novel implication of our results

is that, for any fixed δ, the number of bits of information (e.g., the log of the number of

possible stage game signal realizations) that is required to support cooperation is not only

increasing in N , but in fact is proportional to N .

In general, we model the “amount of information” available to society as the channel

capacity, C, of the conditional signal distribution q (Y |X).2 Channel capacity is a standard

measure in information theory, which in our context is defined as the maximum mutual

information I (X;Y ) between the profile of individual outcomes X and the signal Y , for

any distribution of action profiles: that is, the expected reduction in uncertainty about the

outcome profile X that results from observing the signal Y . Channel capacity is a convenient

measure of information in games with independent noise, because it provides a bound for the

average influence of the players’actions a on the distribution of the signal Y . In addition,

channel capacity is bounded by the entropy of the signal Y , which in turn is bounded by

the log of the number of possible signal realizations.3 Our bound on equilibrium incentives

in terms of channel capacity thus immediately implies a bound in terms of the number

of possible signal realizations. Hence, our results based on channel capacity improve on

2We use capital letters for random variables and lower-case letters for their realizations, so X and Y
denote the (random) outcome profile and signal.

3See, e.g., Cover and Thomas (2006, Theorem 2.6.4).
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prior results based on the number of possible signal realizations (in particular, results of

Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and Smorodinsky (2000, 2001),

which we discuss below).

We obtain three results on the relationship between information, discounting, and group

size in repeated games with independent, player-level noise.

First, if (1− δ)N/C– the ratio of the discount rate 1 − δ and the per-capita channel

capacity C/N– is large, then cooperation is impossible: all repeated game Nash equilibrium

outcomes are consistent with approximately myopic (static optimal) play.4 This shows that

large-group cooperation requires a high level of patience and/or information. We prove this

result by combining inequalities for mutual information in games with independent noise

with bounds on the strength of players’equilibrium incentives in repeated games that we

developed in a companion paper (Sugaya and Wolitzky 2023, henceforth SW).

Second, this result is tight up to a factor of logN . In particular, under a random audit-

ing monitoring structure, where each player’s individual outcome is publicly observed with

independent probability C/N , a folk theorem holds if (1− δ)N (logN) /C → 0. We prove

this result as a corollary of a more general folk theorem for repeated games with product

structure monitoring, where the monitoring structure, discount factor, and stage game all

vary simultaneously.

Third, we contrast these results with the situation under collective incentive-provision.

We model collective incentives by focusing on team equilibria, where the players’equilibrium

continuation payoffs are co-linear. When the stage game is symmetric and the continuation

payoff vectors lie on the 45◦ line, team equilibria reduce to strongly symmetric equilibria,

which are a standard model of collusion through the threat of price wars (Green and Porter,

1984; Abreu, Pearce, and Stacchetti, 1986; Athey, Bagwell, and Sanchirico, 2004). We

show that cooperation in a team equilibrium is impossible, unless (1− δ)−1 is exponentially

large relative to N .5 Practically speaking, this is an impossibility theorem for large-group

cooperation under collective incentives. The intuition is that optimal team incentives take

the form of a tail test, where the players are all punished if the number of “good”outcomes

xi falls short of a threshold n∗. For such a test, the ratio of the probability that one player’s

4Throughout, we refer to δ as the discount factor and 1− δ as the discount rate. Our notion of “approx-
imately myopic play”is that the average static deviation gain across players is small.

5It is well-known that strongly symmetric equilibria are typically less effi cient than general perfect public
equilibria in repeated games. We instead show that the relationship between N and δ required for any
non-trivial incentive provision differs dramatically between strongly symmetric equilibria and general ones.
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action is pivotal for the tail test and the probability that the test is failed converges to zero

as N → ∞, unless these probabilities are both exponentially small in N . But a tail test
where the pivot probability is exponentially small provides only small incentives, unless the

size of the punishment– which is proportional to (1− δ)−1– is exponentially large.

Related Literature. Prior research on repeated games has established folk theorems in

the δ → 1 limit for fixed N , as well as impossibility theorems for cooperation in the N →∞
limit for fixed δ, but has not studied the relationship between δ and N required to support

cooperation. The closest paper is our companion work, SW. That paper establishes necessary

and suffi cient conditions for cooperation in repeated games as a function of discounting and

monitoring precision. Relative to SW, the current paper introduces two features specific to

large-population games: independent noise and the three-way relationship between group

size, discounting, and monitoring. Independent noise is crucial for all of our results, while

letting N vary together with discounting and monitoring is the key novelty in our folk

theorem (Theorem 2).6

Other than those in SW, the most relevant necessary conditions for cooperation are those

of Fudenberg, Levine, and Pesendorfer (1998), al-Najjar and Smorodinsky (2000, 2001),

Pai, Roth, and Ullman (2014), and Awaya and Krishna (2016, 2019). Following earlier

work by Green (1980) and Sabourian (1990), these papers establish conditions under which

equilibrium play in a repeated game is approximately myopic as N →∞ for fixed δ.7 These

conditions can be adapted to the case where N , δ, and monitoring vary together, but the

results so obtained are weaker than ours (and are not tight up to log terms). As we explain

in Section 3, the key difference is that prior results rely on bounds on the strength of players’

incentives with a higher order in the discount rate than that given in SW ((1− δ)−1 vs.

(1− δ)−1/2). In sum, prior work has established impossibility theorems for cooperation as

N → ∞ for fixed δ, while our paper tightly (up to log terms) characterizes the tradeoff

between N , δ, and monitoring that is required for supporting cooperation.8

6SW was split off from an earlier version of the current paper. SW contains the results from the original
paper that do not rely on independent noise or letting N vary together with discounting and monitoring,
while the current paper contains the results that do rely on these features.

7Awaya and Krishna focus on conditions under which cheap talk is valuable. Green and Sabourian’s papers
impose a continuity condition on the mapping from action distributions to signal distributions. Continuity
is implied by independent noise.

8Farther afield, there is also work suggesting that repeated game cooperation is harder to sustain in
larger groups based on evolutionary models (Boyd and Richerson, 1988), simulations (Bowles and Gintis,
2011; Chapter 4), and experiments (Camera, Casari, and Bigoni, 2013).
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The most relevant suffi cient conditions for cooperation are the folk theorems of FLM,

Kandori and Matsushima (1998), and SW. These papers fix the stage game while taking

δ → 1 (and, in the case of SW, also letting monitoring vary), and their proof approach does

not easily extend to the case where N and δ vary together. Our proof of Theorem 2 takes a

different approach, which is based on “block strategies”as in Matsushima (2004) and Hörner

and Olszewski (2006), and involves a novel application of some large deviations bounds.

Since the monitoring structure varies with δ in our model, we also relate to repeated

games with frequent actions, where the monitoring structure varies with δ in a particular,

parametric manner (e.g., Abreu, Milgrom, and Pearce, 1991; Fudenberg and Levine, 2007,

2009; Sannikov and Skrzypacz, 2007, 2010). The most relevant results here are Sannikov

and Skrzypacz’s (2007) theorem on the impossibility of collusion with frequent actions and

Brownian noise, as well as a related result by Fudenberg and Levine (2007). These results

relate to our impossibility theorem for team equilibrium, as we explain in Section 5.

Entropy methods have been used in repeated games to study issues including complexity

and bounded recall (Neyman and Okada, 1999, 2000; Hellman and Peretz, 2020), commu-

nication (Gossner, Hernández, and Neyman, 2006), and reputation effects (Gossner, 2011;

Ekmekci, Gossner, and Wilson, 2011; Faingold, 2020). However, other than the shared

reliance on entropy methods, these papers are not very related to ours.

We also relate to papers on optimal monitoring design, although we consider only as-

ymptotic results rather than exact optimality for fixed parameters. In static moral hazard

problems, optimal monitoring design subject to information-theoretic constraints has been

studied by Georgiadis and Szentes (2020), Li and Yang (2020), and Hoffman, Inderst, and

Opp (2021). Random auditing, which we find to be approximately optimal, also arises

in costly state-verification models (Reinganum and Wilde, 1985; Border and Sobel, 1987;

Mookherjee and Png, 1989).

Finally, in Sugaya and Wolitzky (2021) we studied the relationship between N , δ, and

information in repeated random-matching games with private monitoring and incomplete

information, where each player is “bad”(a Defect commitment type) with positive proba-

bility. In that model, society has enough information to determine which players are bad

after a single period of play, but this information is disaggregated, and supporting coop-

eration requires suffi ciently quick information diffusion. In contrast, the current paper has

complete information and public monitoring, so the analysis concerns monitoring precision
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(the “amount”of information available to society) rather than the speed of information dif-

fusion (the “distribution”of information). In general, whether the obstacle to cooperation

is that society’s information is insuffi cient or disaggregated distinguishes large-population

repeated game models, such as Fudenberg, Levine, and Pesendorfer (1998), al-Najjar and

Smorodinsky (2001), and the current paper, from community enforcement models, such as

Kandori (1992), Ellison (1994), and our earlier paper.

2 Repeated Games with Independent Noise

We consider a general model of repeated games with independent, player-level noise.

Stage Games. A stage game G = (I,A, u) consists of a finite set of players I =

{1, . . . , N}, a finite product set of actions A = ×i∈IAi, and a payoff function ui : A → R

for each i ∈ I. We assume that |Ai| ≥ 2 for all i, and denote the range of player i’s payoff

function by ūi = maxa,a′ ui (a) − ui (a′). Given ūi, by adding a constant, without affecting
incentives, we can assume that |ui (a)| ≤ ūi/2. For any ū > 0, we say that payoffs are

ū-bounded if ūi ≤ ū for all i.

Payoff Sets. The feasible payoff set is F = co
{
{u (a)}a∈A

}
⊆ RN (where co denotes

convex hull). Let F ∗ ⊆ F denote the set of payoff vectors that weakly Pareto-dominate a

payoff vector which is a convex combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F
and there exists a collection of static Nash equilibria αn ∈ ∆ (A) and non-negative weights

βn such that v ≥
∑

n βnu (αn) and
∑

n βn = 1.9 For any ε > 0, let B (ε) denote the set of

payoff vectors v such that the cube with center v and side-length 2ε lies entirely within F ∗:

that is, B (ε) =
{
v ∈ RN : Bv (ε) ⊆ F ∗

}
, where Bv (ε) = ×i∈I [vi − ε, vi + ε]. We compute

B (ε) in a public goods game in Appendix B. Our folk theorem (Theorem 2) will provide

conditions under which all payoff vectors in B (ε) are attained as repeated game equilibria.

In contrast, our impossibility theorem (Theorem 1) will provide conditions under which

all repeated game equilibria are “ε-myopic.”To define this, let a manipulation for a player

i be a mapping si : Ai → ∆ (Ai). The interpretation is that when player i is “supposed”to
play ai, she instead plays si (ai). Player i’s gain from manipulation si at an action profile

9Here and throughout, we linearly extend payoff functions to mixed actions. In this paper, “Nash equi-
librium”always allows mixed strategies.
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distribution α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) .

Player i’s maximum gain at α ∈ ∆ (A) is ḡi (α) = maxsi:Ai→∆(Ai) gi (si, α). For any ε ≥ 0,

the set of ε-myopic action distributions is

A (ε) =

{
α ∈ ∆ (A) :

1

N

∑
i

ḡi (α) ≤ ε

}
,

and the set of ε-myopic payoff vectors is

V (ε) =
{
v ∈ RN : v = u (α) for some α ∈ A (ε)

}
.

Note that A (ε) and V (ε) are convex polytopes, and that A (0) is the set of static correlated

equilibria, with V (0) the corresponding payoff set. Since A (ε) → A (0) and V (ε) → V (0)

as ε → 0, A (ε) and V (ε) approximate the sets of static correlated equilibria and the cor-

responding payoff set as ε → 0. In general, an action distribution α is ε-myopic if the

per-player average deviation gain at α is less than ε. If the game is symmetric and α is

a symmetric distribution, this implies that all players have deviation gains smaller than ε.

Otherwise, it allows a few players to have large gains. In Appendix A, we provide some

results comparing V (ε) with the (smaller) set of payoff vectors that are consistent with all

players having small deviation gains (i.e., the set of stage game ε-correlated equilibria).

Noise. We assume the presence of independent, player-level noise. Formally, there is a

finite product set of outcome profiles X = ×i∈IXi, where Xi is the set of individual outcomes
for player i. When action profile a∈ A is played, the outcome profile x∈ X is drawn from

a product distribution π (·|a) = ×iπi (·|ai), where πi (·|ai) ∈ ∆ (Xi). We call the pair (X , π)

a noise structure. Let πi = minai,xi πi (xi|ai) and assume that mini πi > 0. For any π > 0,

we say that noise is π-bounded if πi ≥ π for all i. Note that if noise is π-bounded then

|Xi| ≤ 1/π for all i. We assume that |Xi| ≥ 2 for at least one player i, which implies that

noise can be π-bounded only for π ≤ 1/2.

A simple example of a noise structure arises when there is independent noise in the

execution of the players’actions, so that ai is player i’s intended action and xi is her realized
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Figure 1: The noise structure (X , π) and the outcome monitoring structure (Y , q) jointly
determine the action monitoring structure (Y , p).

action. In this case, X = A and πi (a′i|ai) is the probability that player i “trembles”to a′i
when she intends to take ai. Another example is a moral hazard in teams problem, where

Ai ⊆ [π, 1− π] is a set of “effort levels”corresponding to the probability of “success”on an

individual task, Xi = {Success, Failure}, and πi (Success|ai) = ai.

Monitoring. An outcome monitoring structure (Y , q) consists of a finite set of possible
signal realizations Y and a conditional probability distribution q (·|x) ∈ ∆ (Y) for each

outcome profile x. The signal distribution thus depends only on the outcome profile and

not directly on the action profile. In other words, if we view the action profile, the outcome

profile, and the signal as random variables A, X, and Y , they form a Markov chain A →
X → Y .

Given an outcome monitoring structure (Y , q), we denote the probability of signal profile
y at action profile a by p (y|a) =

∑
x π (x|a) q (y|x). We refer to the pair (Y , p) as the action

monitoring structure induced by (X , π,Y , q). Without loss, we assume that for every y ∈ Y,
there exists x ∈ X such that q (y|x) > 0. Since πi > 0 for each i, this implies that p has full

support: p (y|a) > 0 for all a, y. We also linearly extend p to mixed actions: for α ∈ ∆ (A),

p (y|α) =
∑

a α (a) p (y|a).

Figure 1 summarizes the relationship between the noise structure (X , π), the outcome

monitoring structure (Y , q), and the action monitoring structure (Y , p).
Finally, for any action profile a ∈ A, let ϕa ∈ ∆ (X × Y) denote the joint distribution

on X × Y when a is played, so that X has distribution π (·|a), and, conditional on each

realization x, Y has distribution q (·|x).

Repeated Games. A repeated game with independent noise Γ = (I,A, u,X , π,Y , q, δ)
is described by a stage game (I,A, u), a noise structure (X , π), an outcome monitoring

structure (Y , q), and a discount factor δ ∈ [0, 1). In each period t = 1, 2, . . ., (i) the players

observe the outcome of a public randomizing device zt drawn from the uniform distribution
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over [0, 1], (ii) the players take actions a, (iii) the outcome x is drawn from distribution π (·|a),

and (iv) the signal y is drawn from distribution q (·|x) and is publicly observed.10 A history

hti for player i at the beginning of period t thus takes the form hti =
(
(zt′ , ai,t′ , yt′)

t−1
t′=1 , zt

)
.

A strategy σi for player i maps histories hti to distributions over actions ai,t. A strategy

σi is public if it depends on hti only through the public history h
t =

(
(zt′ , yt′)

t−1
t′=1 , zt

)
. A

Nash equilibrium is a strategy profile where each player’s strategy maximizes her discounted

expected payoff. A perfect public equilibrium (PPE) is a profile of public strategies that,

beginning at any period t and any public history ht, forms a Nash equilibrium from that

period on. Let E ⊆ RN denote the set of PPE payoff vectors .

Repeated Game Outcomes and Occupation Measures. A repeated game outcome

µ ∈ ∆ ((A×X × Y)∞) is a distribution over infinite paths of actions, individual outcomes,

and signals. Each strategy profile σ induces a unique outcome µ. In turn, each outcome

µ induces a marginal distribution over period t action profiles αµt ∈ ∆ (A), as well as an

occupation measure over action profiles, defined as

αµ = (1− δ)
∞∑
t=1

δt−1αµt .

The occupation measure describes the “discounted expected fraction of periods”where each

action profile is played in the course of the repeated game. Intuitively, it captures how the

stage game is played “on average.” Note that the players’payoffs are determined by the

occupation measure, as

(1− δ)
∑
t

δt−1
∑
a

αµt (a)u (a) =
∑
a

(1− δ)
∑
t

δt−1αµt (a)u (a) =
∑
a

αµ (a)u (a) = u (αµ) .

We say that a repeated game strategy profile σ is ε-myopic if the corresponding occupa-

tion measure αµ ∈ ∆ (A), viewed as a correlated action profile in the stage game, is ε-myopic:

that is, if αµ ∈ A (ε). In this case, the players’repeated game payoffs are also ε-myopic: the

repeated game payoff vector is u (αµ) ∈ V (ε).

10It is natural to require that players’realized payoffs depend only on their own actions and the signal.
However, this assumption is not necessary for our analysis.
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3 Necessary Conditions for Cooperation

This section develops our first main result: cooperation is impossible if the per-capita channel

capacity of the outcome monitoring structure (Y , q) is much smaller than the discount rate
1−δ. Before stating the result, we define channel capacity and establish some of its properties.

3.1 Information Theory Preliminaries

Mutual Information and Channel Capacity. Given a distribution of outcomes ξ ∈
∆ (X ), a standard measure of the informativeness of the signal Y about the outcome X is

the mutual information between the random variables X and Y , defined as

Iξ (X;Y ) =
∑

(x,y)∈X×Y

ξ (x) q (y|x) log

(
q (y|x)∑

x′∈X ξ (x′) q (y|x′)

)
.11

Mutual information measures the expected reduction in uncertainty (entropy) about X that

results from observing Y . The mutual information betweenX and Y is an endogenous object

in our model, as it depends on the distribution ξ of X, which in turn is determined by the

players’actions, a.

We denote the set of outcome distributions ξ that can arise for some action distribution

α under noise structure (X , π) by

Ξ =

{
ξ ∈ ∆ (X ) : ∃α ∈ ∆ (A) such that ξ (x) =

∑
a∈A

α (a) π (x|a) for all x ∈ X
}
.

Finally, define the channel capacity of the tuple (X , π,Y , q) as

C = max
ξ∈Ξ

Iξ (X;Y ) .

Channel capacity is an exogenous measure of the informativeness of Y about X, as it

is determined by the noise structure (X , π) and the outcome monitoring structure (Y , q).
Channel capacity plays a central role in information theory as the maximum rate at which

11In this paper, all logarithms are base e. For a joint distribution ϕ ∈ ∆ (X × Y) with mar-
ginals ϕX ∈ ∆ (X ) and ϕY ∈ ∆ (Y) and conditionals ϕX|Y ∈ ∆ (X ) and ϕY|X ∈ ∆ (Y), the de-

finition of mutual information is usually written as
∑

(x,y)∈X×Y ϕ (x, y) log
(

ϕ(x,y)
ϕX (x)ϕY (y)

)
. This equals∑

(x,y)∈X×Y ϕX (x)ϕY|X (y|x) log
(

ϕY|X (y|x)∑
x′∈X ϕX (x′)ϕY|X (y|x′)

)
, which is the form of the definition used above.
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information can be transmitted over a noisy channel (Shannon’s channel coding theorem;

Cover and Thomas, 2006, Theorem 7.7.1). Our analysis does not use this theorem; we only

use channel capacity as an exogenous upper bound on mutual information. In turn, mutual

information is a useful measure for our analysis because it satisfies two key inequalities,

which we now discuss.

Mutual Information Inequalities. The first mutual information inequality we use

relates Iπ(·|a) (Xi;Y ), the mutual information between player i’s individual outcome Xi and

the signal Y , and a measure of the “influence” of player i’s action on the distribution of

the signal Y . In our setting, the most useful measure of the “influence”of i’s action is the

χ2-divergence of p (·|αi, a−i) from p (·|a), which is defined as the variance (with respect to

p (·|a)) of the likelihood ratio difference 1− p (y|αi, a−i) /p (y|a): that is,

χ2 (p (·|a′i, a−i) ||p (·|a)) :=
∑
y

(p (y|a)− p (y|αi, a−i))2

p (y|a)
.

We show that, with full-support noise, χ2-divergence can be bounded in terms of mutual

information.

Lemma 1 If noise is π-bounded, then for any a ∈ A, i ∈ I, and αi ∈ ∆ (Ai), we have

χ2 (p (·|αi, a−i) ||p (·|a)) ≤ κ (π)2 Iπ(·|a) (Xi;Y ) , (1)

where κ (π) =
√

2 (1− 2π) /π.

The logic is that, since player i’s action affects the signal Y only through the outcome

Xi, if a deviation from ai to a′i has a large effect on the distribution of Y , then Y must pro-

vide a large amount of information about Xi. Lemma 1 is related to standard f-divergence

inequalities (Sason and Verdú, 2016), which relate common measures of the difference be-

tween probability distributions such as the total variation distance, χ2-divergence, and KL-

divergence, but it differs from standard results because of the A → X → Y Markov chain

structure of our model and the full-support noise assumption.

The point of bounding χ2-divergence in terms of mutual information is that mutual in-

formation also obeys a second inequality, which says that mutual information is sub-additive

across players under independent noise.

12



Lemma 2 For any action profile a ∈ A, we have

∑
i

Iπ(·|a) (Xi;Y ) ≤ Iπ(·|a) (X;Y ) ≤ C, (2)

The first inequality in (2) is where we use the assumption that (Xi)i∈I are independent

conditional on a. (The second inequality, Iπ(·|a) (X;Y ) ≤ C, is immediate from the definition

of C.) The logic is that if
∑

i I
π(·|a) (Xi;Y ) > Iπ(·|a) (X;Y ) then there is some redundancy in

the information that Y provides about the different outcomes Xi, which is impossible when

(Xi)i∈I are conditionally independent. Note that inequality (2) can be strict: for example, if

X1 and X2 are independent Bernoulli (1/2) variables and Y is the parity of their sum, then

I (X1;Y ) = I (X2;Y ) = 0 but I ((X1, X2) ;Y ) > 0.

Combining Lemmas 1 and 2 (and dividing by N) yields the inequality

1

N

∑
i

χ2 (p (·|a′i, a−i) ||p (·|a)) ≤ κ (π)2 C

N
.

We thus obtain a bound for the average influence of a player’s action on the signal distribution

(measured by χ2-divergence) in terms of the per-capita channel capacity C/N . This will be

a key step in the proof of Theorem 1.

3.2 An Impossibility Theorem for Large-Group Cooperation

We are now ready to state our first main result.

Theorem 1 In any repeated game with N players, channel capacity C, π-bounded noise,

and ū-bounded payoffs, every Nash equilibrium is ε-myopic, for

ε =

√
δ

1− δ
C

N
κ (π) ū, (3)

where κ (π) =
√

2 (1− 2π) /π.

In particular, for any π > 0, ū > 0, and ε > 0; and any sequence of repeated games (Γ)k

with π-bounded noise and ū-bounded payoffs such that (1− δ)N/C → ∞ (where δ, N , and

C depend on k); there exists k̄ such that, for every k ≥ k̄, all Nash equilibria in game Γk are

ε-myopic.
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Theorem 1 is a counterpoint to the folk theorem. While the folk theorem gives conditions

under which the equilibrium payoff set is “large”in the limit where δ → 1 while the other

parameters of the game are held fixed, Theorem 1 shows that supporting non-myopic payoffs

requires not only that the discount rate 1− δ is small in absolute terms, but also that it is
not much larger than the per-capita channel capacity C/N . This conclusion holds for any

sequence of repeated games satisfying a uniform lower bound on noise and a uniform upper

bound on the range of the stage game payoffs.

Theorem 1 can be compared to prior results by Fudenberg, Levine, and Pesendorfer

(1998), al-Najjar and Smorodinsky (2000, 2001), and Pai, Roth, and Ullman (2014). These

papers measure information by the number of possible signal realizations |Y| (rather than
channel capacity), and establish impossibility results for cooperation when N → ∞ for

fixed δ and |Y|. When N , δ, and |Y| vary together, arguments similar to the ones in these
papers could be used to show that cooperation is impossible (i.e., all repeated game Nash

equilibrium occupation measures are ε-myopic) if (1− δ)2N/ log |Y| → ∞.12 Compared

to this result, Theorem 1 is qualitatively stronger in two ways: it replaces log |Y| with
C ≤ log |Y|, and it replaces (1− δ)2 with 1 − δ. The first of these improvements comes

from the mutual information inequalities noted above. The second improvement comes from

applying Theorem 1 of SW, which bounds the strength of equilibrium incentives in repeated

games by a factor of (1− δ)−1/2, rather than the naïve bound of (1− δ)−1. This improved

bound relies on focusing on incentives at the occupation measure, rather than considering

incentives history-by-history as in the prior literature.13

12Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and Smorodinsky (2001) focus on strategies
that condition only on public signals, yielding the stronger conclusion that cooperation collapses to static
ε-Nash equilibria, rather than “ε-correlated equilibria”as in the present paper. A similar restriction would
likewise let us strengthen the conclusion of Theorem 1 to a version of ε-Nash equilibrium.
13An intuition for Theorem 1 of SW can be seen by considering a strategy where an agent’s performance

is reviewed every T periods, with continuation play determined by the outcome of the review. For the agent

to put weight independent of δ on the outcome of the review, a review must occur every O
(

(1− δ)−1
)

periods. This implies that the standard deviation of the count of each signal realization over the course

of the review is O
(

(1− δ)−1/2
)
, and hence the probability that a single signal is pivotal for the review is

O
(

(1− δ)1/2
)
. Since the gain from deviating in a single period is O (1− δ), the agent’s “incentive strength”

is O
(

(1− δ)1/2
/ (1− δ)

)
= O

(
(1− δ)−1/2

)
.
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We can also compare Theorem 1 to an immediate implication of Theorem 1 of SW,

namely that Theorem 1 also holds when (3) is replaced by

ε =
1

N

∑
i

√
δ

1− δ max
a∈A

χ2 (p (·|si (ai) , a−i) ||p (·|a))ū. (4)

This alternative result does not involve mutual information, and it also does not require

a lower bound on noise. However, it is inadequate for the current paper’s objectives, for

two reasons. First, we wish to bound incentives in terms of an single aggregate measure of

societal information. This is achieved in (3)– where ε is bounded in terms of C– but not in

(4)– where ε is bounded in terms of (1/N)
∑

i

√
maxa χ2 (p (·|si (ai) , a−i) ||p (·|a)), which is

the average ofN distinct, player-specific information measures. Second, we wish to generalize

and strengthen the prior results of Fudenberg, Levine, and Pesendorfer (1998), al-Najjar and

Smorodinsky (2000, 2001), and Pai, Roth, and Ullman (2014). We have already explained

how this is achieved by the bound in (3). However, it is not achieved by the bound in (4), as

absent noise there is no general relationship between (1/N)
∑

i

√
maxa χ2 (p (·|si (ai) , a−i) ||p (·|a))

and the cardinality of the signal space |Y|.
While we have assumed that the signal y is publicly observed for simplicity, Theorem 1

also holds for repeated games with private monitoring. Indeed, the same result holds for

the blind repeated game, where in each period the signal y is observed only by a mediator

(rather than being directly observed by the players themselves), who then privately recom-

mends actions to the players. Theorem 1 thus depends only on the precision of the signal y

(measured by channel capacity), and not on how information about y is distributed among

the players.14

Proof of Theorem 1. Theorem 1 of SW implies that, for any Nash equilibrium outcome

µ, any player i, and any manipulation si, we have

gi (si, α
µ) ≤

√
δ

1− δ
∑
a

αµ (a)χ2 (p (·|si (ai) , a−i) ||p (·|a))ū.

14See SW for more on blind games.
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Hence, by Lemma 1,

gi (si, α
µ) ≤

√
δ

1− δ
∑
a

αµ (a) Iπ(·|a) (Xi;Y )κ (π) ū.

Taking the maximum over manipulations si and averaging across players gives

1

N

∑
i

ḡi (α) ≤ 1

N

∑
i

√
δ

1− δ
∑
a

αµ (a) Iπ(·|a) (Xi;Y )κ (π) ū

≤
√

1

N

∑
i

δ

1− δ
∑
a

αµ (a) Iπ(·|a) (Xi;Y )κ (π) ū

=

√
δ

1− δ
1

N

∑
a

αµ (a)
∑
i

Iπ(·|a) (Xi;Y )κ (π) ū

≤
√

δ

1− δ
C

N
κ (π) ū,

where the second inequality is by Jensen and the third is by Lemma 2. This establishes

Theorem 1.

In large groups, the necessary condition for cooperation implied by Theorem 1– that

(1− δ)N/C is not too large– is easier to satisfy in some classes of repeated games than in

others. For example, if the space of possible signal realizations Y is fixed independent of
N , then, since C ≤ log |Y|, the necessary condition implies that (1− δ)−1 must be at least

proportional to N , which is a restrictive condition in large groups. This negative conclusion

applies for traditional applications of repeated games with public monitoring where the signal

space is fixed independent of N , such as when the public signal is the market price facing

Cournot competitors, the level of exploitation of a common-pool resource, the output of

team production, or some other aggregate statistic.

However, in other settings C naturally scales linearly with N , so (1− δ)N/C is small

whenever players are patient– regardless of group size. In repeated games with random

matching (Kandori, 1992; Ellison, 1994; Deb, Sugaya, and Wolitzky, 2020), players match

in pairs each period, and each player observes her partner’s action. In these games, C =

N log |Ai|, so per-capita channel capacity is independent of N . Intuitively, in a random
matching game each player gets a distinct signal of the overall action profile, so the total

amount of information available to society is proportional to N . Similarly, channel capacity
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scales linearly with N in public monitoring games where the public signal is a vector that

includes a distinct signal of each player’s action, as in the ratings systems used by online

platforms like eBay and AirBnB (Dellarocas, 2003; Tadelis, 2016). In general, C/N can

be expected to be roughly independent of the population size in settings where players are

monitored “separately,”rather than being monitored jointly through an aggregate statistic.

Remark 1 In applications like Cournot competition, resource exploitation, or team produc-

tion, the signal space may be modeled as a continuum, in which case the cardinality bound

C ≤ log |Y| is vacuous. However, Theorem 1 extends to the case where Y is a compact

metric space and there exists another compact metric space Z and a function fN : XN → Z
(which can vary with N) such that the signal distribution admits a conditional density of the

form qY|Z (y|z), where Y, Z, and qY|Z are fixed independent of N . (For example, in Cournot
competition z is industry output and y is the market price, which depends on z and a noise

term with variance fixed independent of N .) In this case,

C = max
ξ∈Ξ

∫
y∈Y

∑
x∈X

ξ (x) qY|Z
(
y|fN (x)

)
log

(
qY|Z

(
y|fN (x)

)∑
x′∈X ξ (x′) qY|Z (y|fN (x′))

)
dy,

which is bounded by

C̄ = max
qZ∈∆(Z)

∫
y∈Y

∫
z∈Z

qZ (z) qY|Z (y|z) log

(
qY|Z (y|z)∫

z′∈Z qZ (z′) qY|Z (y|z′) dz′

)
dzdy.

Since C̄ is independent of N , it follows that C is bounded independent of N .

Remark 2 Theorem 1 also extends to games where noise is independent across “groups”of

players, rather than individuals. For example, consider a repeated game with random match-

ing, where the actions (ai, aj) of matched partners i and j generate an outcome xi,j with

probability πi,j (xi,j|ai, aj) satisfying minai,aj ,xi,j πi,j (xi,j|ai, aj) ≥ π, independently across

matches. Then Lemma 2 holds with 2C in place of C, because the sum
∑

i I
π(·|a)

(
Xi,m(i);Y

)
(wherem (i) denotes i’s partner) can be split into two sums of the mutual information of inde-

pendent random variables, where each sum is bounded by C as in Lemma 2. Theorem 1 then

likewise holds with 2C in place of C. More generally, if the players interact in disjoint groups

of size K each period with independent noise across groups, then Lemma 2 and Theorem 1

hold with KC in place of C. Note that the K = N case entails dropping the assumption of
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independent noise entirely, but then Theorem 1 holds with ε =
√

(δ/ (1− δ))Cκ (π) ū, which

does not depend on N .

4 Suffi cient Conditions for Cooperation

This section establishes a folk theorem for repeated games with public, product structure

monitoring, where the discount factor, monitoring structure, and stage game (including the

number of players N) vary simultaneously. The theorem will imply that the relationship

between N , δ, and C in Theorem 1 is tight up to a log (N) factor.

Our folk theorem allows independent noise, but does not require it: this section does

not require that mini πi > 0. We do however require that monitoring has a product struc-

ture: there exist sets (Yi)i∈I and a family of conditional distributions (qi (yi|xi))i,yi,xi such
that Y =

∏
i Yi and q (y|x) =

∏
i qi (yi|xi) for all y, x. That is, the public signal y con-

sists of conditionally independent signals of each player’s individual outcome. Note that

if (Y , q) has a product structure, then so does the action monitoring structure (Y , p),
meaning that there exists a family of conditional distributions (pi (yi|ai))i,yi,ai (given by
pi (yi|ai) =

∑
xi
πi (xi|ai) qi (yi|xi)) such that p (y|a) =

∏
i pi (yi|ai) for all y, a.

We also need an identification condition. For any η ∈ (0, 1), we say that the action

monitoring structure (Y , p) satisfies η-individual identifiability if

∑
yi:pi(yi|ai)≥η

(pi (yi|ai)− pi (yi|αi))2

pi (yi|ai)
≥ η for all i ∈ I, ai ∈ Ai, αi ∈ ∆ (Ai\ {ai}) . (5)

This condition is a variant of FLM’s individual full rank condition and Kandori and Mat-

sushima’s (1998) assumption (A2”). It says that the influence on the signal distribution

(measured by χ2-divergence) of a deviation from ai to any mixed action αi supported on

Ai\ {ai} is at least η, ignoring signals that occur with probability less than η under ai. Intu-
itively, this requires that deviations from ai are suffi ciently detectable, and that in addition

detection does not rest on very rare signal realizations. This assumption will ensure that

players can be motivated by rewards whose variance and maximum absolute value are both

of order (1− δ) /η.15

15If (5) were relaxed by taking the sum over all yi (rather than only yi such that pi (yi|ai) ≥ η), player i
could be motivated by rewards with variance O ((1− δ) /η), but not necessarily with maximum absolute value
O ((1− δ) /η). Our analysis requires controlling both the variance and absolute value of players’rewards,

18



We establish the following folk theorem. (Recall that B (ε) is the “target”set of payoff

vectors defined in Section 2, and E is the set of PPE payoff vectors.)

Theorem 2 For any ū > 0 and ε > 0; and any sequence of repeated games (Γ)k with ū-

bounded payoffs and product structure monitoring satisfying η-individual identifiability such

that (1− δ) log (N) /η → 0 (where δ, N , and η depend on k); there exists k̄ such that, for

every k ≥ k̄, we have B (ε) ⊆ E.

To see why Theorem 2 implies that Theorem 1 is tight up to a log (N) factor, consider

a game where X = A with uniform noise, so that πi (a′i|ai) = π for all i, ai, a′i 6= ai, and

assume that π < (maxi |Ai|+ 1)−1. Suppose that the outcome monitoring structure (Y , q)
is given by η-random auditing, where in every period the public signal perfectly reveals

each player’s identity and realized individual outcome with probability η. That is, under

η-random auditing, Yi = Xi ∪ {∅} for all i, and

qi (yi|xi) =


η if yi = xi,

0 if yi ∈ Xi\ {xi} ,
1− η if yi = ∅,

so that pi (yi|ai) =

 ηπi (yi|ai) if yi ∈ Xi,
1− η if yi = ∅.

Note that the channel capacity under η-random auditing is at most ηN log (maxi |Ai|). In
addition, η-random auditing satisfies ηπ-individual identifiability, because, any i, ai, αi, we

have

∑
yi:pi(yi|ai)≥ηπ

(pi (yi|ai)− pi (yi|αi))2

pi (yi|ai)
≥

(
pi (ai|ai)−maxa′i 6=ai pi (ai|a

′
i)
)2

pi (ai|ai)

=
(η (1− (|Ai| − 1) π)− ηπ)2

η (1− (|Ai| − 1) π)

≥ η (1− |Ai| π) ≥ ηπ,

where the last inequality uses π < (maxi |Ai|+ 1)−1. Thus, by Theorem 2, η-random auditing

is a monitoring structure with channel capacity at most C = ηN log (maxi |Ai|), under which
a folk theorem holds whenever (1− δ)N log (N) /C → 0. Therefore, Theorem 1’s conclusion

so we need the stronger condition. We also note that the current definition of η-individual identifiability
coincides with

√
η-individual identifiability in the terminology in SW.
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that play is ε-myopic if (1− δ)N/C →∞ can be improved by at most a log (N) factor.16

The assumption that payoffs are uniformly bounded plays a different role in Theorems 1

and 2. Theorem 1 requires bounded payoffs to bound the variation in players’continuation

payoffs. Theorem 2 requires bounded payoffs to bound players’one-shot deviation gains.

For example, the conclusion of Theorem 2 does not hold for repeated Bertrand competition

where the size of the market (and hence the gain from undercutting one’s rivals to win the

entire market) is proportional to the number of firms.17

We now discuss the proof of Theorem 2. Theorem 2 is a folk theorem for repeated games

with public monitoring.18 The standard proof, following FLM and Kandori and Matsushima

(1998), relies on continuation payoffs transfers along hyperplanes tangent to the boundary of

the PPE payoff set. Unfortunately, this approach encounters diffi culties when N and δ vary

simultaneously. The problem is that when N is large, changing each player’s continuation

payoff by a small amount can result in a large overall movement in the continuation payoff

vector. Mathematically, FLM’s proof relies on the equivalence of the L1 norm and the

Euclidean norm in RN . Since this equivalence is not uniform in N , their proof does not

apply when N and δ vary simultaneously.19

Our proof of Theorem 2 is instead based on the “block strategy”approach introduced

by Matsushima (2004) and Hörner and Olszewski (2006) in the context of repeated games

with private monitoring. We view the repeated game as a sequence of T -period blocks of

periods, where T is a number proportional to (1− δ)−1. At the beginning of each block,

a target payoff vector is determined by public randomization, and with high probability

16Note that Theorem 1 holds verbatim if C is taken to be an upper bound for channel capacity rather
than its exact value, because the theorem’s conclusion is stronger when C is smaller.
17For repeated Bertrand competition with a fixed market size, Theorem 2 holds vacuously as B (ε) = ∅

for suffi ciently large N . In contrast, the public goods game in Appendix B is an example with uniformly
bounded payoffs where B (ε) is “large”for all N .
18Specifically, it is a “Nash threat”folk theorem, as F ∗ is the set of payoffs that Pareto-dominate a convex

combination of static Nash equilibria. To extend this result to a “minmax threat” theorem, players must
be made indifferent among all actions in the support of a mixed strategy that minmaxes an opponent. This
requires a stronger identifiability condition, similar to Kandori and Matsushima’s assumption (A1).
19To see the problem in more detail, η-individual identifiability implies that the movement in each player’s

per-period continuation payoff required to provide incentives is of order (1− δ) /η, so the movement of the
continuation payoff vector in the L2 norm is O

(√
N (1− δ) /η

)
. Fix a ball B contained in V ∗, and consider

the problem of generating the point v = argmaxw∈B w1– the point in B that maximizes player 1’s payoff–
using continuation payoffs drawn from B. Since player 1’s continuation payoff must be within O (1− δ)
distance of v, the greatest movement along a tangent hyperplane is O

(√
1− δ

)
. FLM’s proof approach thus

requires
√
N (1− δ) /η �

√
1− δ, or (1− δ)N/η2 � 1, while we assume only (1− δ) log (N) /η � 1. Thus,

while the conditions for Theorem 2 are tight up to log (N) slack, FLM’s approach requires slack N .
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the players take actions throughout the block that deliver the target payoff. Players accrue

promised future rewards throughout the block based on the public signals of their actions,

and the distribution of target payoffs in the next block is set so as to deliver the promised

rewards. By η-individual identifiability, incentives can be provided with per-period rewards

of maximum size O (η−1), and the rewards can be normalized to have zero mean. Therefore,

by the law of large numbers, when T � η−1, with high probability the total reward that a

player accrues over a T -period block is of order less than T , and is thus small enough that

it can be delivered by appropriately specifying the distribution of target payoffs at the start

of the next block.

The main diffi culty in the proof is caused by the low-probability event that a player

accrues an unusually large total reward over a block, so that at some point the target payoff

for the next block cannot be further incremented. In this case, the player can no longer be

motivated to take a non-myopic best response, and all players’behavior in the current block

must change. Thus, if any player’s reward is “abnormal,”all players’payoffs in that block

may be far from the target equilibrium payoffs.

To prove the theorem, we must ensure that abnormal rewards do not compromise either

ex ante effi ciency or the players’ incentives. Effi ciency is preserved if the blocks length T

is large enough that the probability that any player’s total reward is abnormal is small.

Since the per-period rewards have size O (η−1) and the length of a block is O
(
(1− δ)−1),

standard concentration bounds imply that the probability that a given player’s total reward

is abnormal is exp (−O (η/ (1− δ))). Hence, by the union bound, the probability that any
player’s total reward is abnormal is at most N exp (−O (η/ (1− δ))), which converges to 0

when (1− δ) log (N) /η → 0. This step in the proof accounts for the log (N) slack.

Finally, since all players’ payoffs are affected whenever any player’s reward becomes

abnormal, incentives would be threatened if one player’s action affected the probability that

another player’s reward becomes abnormal. We avoid this problem by letting each player’s

reward depend only on the signals of her own actions. This separation of rewards across

players is possible because we assume product structure monitoring. We do not know if

Theorem 2 can be extended to non-product structure monitoring.20

20As noted above, we conjecture that the approach of FLM and Kandori and Matsushima yields a folk theo-
rem if (1− δ)N/η2 → 0. Their approach requires only pairwise identifiability rather than a product structure,
so we conjecture that the product structure can be relaxed to pairwise identifiability if (1− δ)N/η2 → 0.
We do not know if such a relaxation is possible under the weaker hypothesis of Theorem 2.
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5 Team Equilibria

We now consider a restricted class of equilibria– team equilibrium– which model collective

incentive-provision in repeated games. We will show that cooperation is possible in this class

of equilibria only if the discount rate is exponentially small relative to the population size.

We view this as an impossibility theorem for cooperation under collective incentives for any

“reasonably large”group. More colorfully, the result can be seen as a formalization of Hume’s

intuition that large groups cannot support cooperation by threatening “the abandoning of

the whole project.”

Formally, a team equilibrium is a PPE where the players’continuation payoffs at all public

histories are co-linear: for each player i 6= 1, there exists a constant bi ∈ R such that, for all
public histories h, h′, we have wi (h′) − wi (h) = bi (w1 (h′)− w1 (h)), where wi (h) denotes

player i’s equilibrium continuation payoff at history h. Relabeling the players if necessary,

we can take |bi| ≤ 1 for all i without loss. Note that if bi ≥ 0 for all i then the players’

preferences over histories are all aligned; while if bi < 0 for some i then the players can

be divided into two groups with opposing preferences. Note also that the notion of team

equilibrium generalizes strongly symmetric equilibrium (SSE) in symmetric games, where

bi = 1 for all i.21

Our result for team equilibria is as follows.

Theorem 3 For any π > 0, ū > 0, ε > 0, and ρ > 0; and any sequence of repeated games(
Γk
)
with π-bounded noise and ū-bounded payoffs such that (1− δ) exp (N1−ρ)→∞ (where

δ and N depend on k); there exists k̄ > 0 such that, for every k > k̄, all team equilibria in

game Γk are ε-myopic.

Theorem 3 shows that collective incentives are ineffective unless the discount rate is

exponentially small relative to N . Comparing Theorem 2 with Theorem 3, we see that

targeted incentives are much more effective than collective ones when the discount rate is

not exponentially small. Notably, this result holds even when information is scarce (e.g., C

is relatively small), so that precisely monitoring all players is infeasible.

Theorem 3 differs from Theorem 1 in the required relationship between N and δ, and also

in that Theorem 3 holds for any outcome monitoring precision, so the channel capacity C

21Thus, team equilibrium generalizes SSE in two ways: to asymmetric games, and to an arbitrary linear
relationship among the players’continuation payoffs.
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does not show up in the statement. The intuition for why the theorem does not involve C is

that optimal team equilibria take a bang-bang form even when the realized outcome profile

is perfectly observed, so a binary signal that indicates which of two extreme continuation

payoff vectors should be implemented is as effective as any more informative signal.

It is well-known that, with noisy monitoring, SSE are ineffi cient for any discount factor

(e.g., Mailath and Samuelson, 2006, Proposition 8.2.1). In contrast, Theorem 3 shows that

the relationship between N and δ required to provide any non-trivial equilibrium incentives

is dramatically different between SSE (or, more generally, team equilibria) and arbitrary

equilibria.

To see the logic of Theorem 3, consider the case where the game is symmetric and

bi = 1 for all i, so linear equilibria are SSE. Suppose also that X = A with binary actions
and symmetric noise, so that |Ai| = 2 and π (ai|ai) = 1 − π, π (a′i|ai) = π for each ai 6=
a′i. Finally, suppose we wish to enforce a symmetric pure action profile ~a0 = (a0, . . . , a0),

where ḡi (~a0) = ν. By standard arguments, it can be shown that an optimal SSE takes

the form of a “tail test,” where the players are all punished if the number n of players

for whom xi = a0 falls below a threshold n∗.22 Due to independent noise, when N is

large the distribution of n is approximately normal, with mean (1− π)N and standard

deviation
√
π (1− π)N . Now, denote the threshold z-score of a tail test with threshold n∗

by z∗ = (n∗ − (1− π)N) /
√
π (1− π)N , let φ and Φ denote the standard normal pdf and

cdf, and let τ ∈ [0, ū/ (1− δ)] denote the size of the penalty when the tail test is failed. We
then must have

φ (z∗)√
π (1− π)N

τ ≥ ν and Φ (z∗) τ ≤ ū,

where the first inequality is the incentive compatibility condition that the product of the

pivot probability φ (z∗) /
√
π (1− π)N and the penalty size τ must exceed the gain from

deviating ν, and the second inequality is the promise-keeping condition that the expected

penalty cannot exceed the stage-game payoff range. Dividing the first inequality by the

second, we obtain
φ (z∗)

Φ (z∗)
≥ ν

√
π (1− π)N

ū
.

The left-hand side of this inequality is the Mills ratio of the standard normal distribution,

22The analysis of tail tests as optimal incentive contracts under normal noise goes back to Mirrlees (1975).
The logic of Theorem 3 shows that the size of the penalty in a Mirrleesian tail test must increase exponentially
with the variance of the noise.
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which is approximately equal to |z∗| when z∗ < 0. Hence, to satisfying incentive compati-

bility and promise-keeping, |z∗| must increase at least linearly with
√
N . But since φ (z∗)

decreases exponentially with |z∗|, and hence exponentially with N , Theorem 3 now follows

from incentive compatibility, which implies that the product of φ (z∗) /
√
π (1− π)N and

ū/ (1− δ) (the upper bound for τ) must exceed ν.
Intuitively, the weakness of team equilibrium is that the probability that a single player’s

action is pivotal for a tail test is of order φ (z∗) /
√
N , while the probability that the test is

failed is Φ (z∗), and the former is much smaller than the latter unless z∗ is much less than

zero, which in turn is consistent with equilibrium incentives only if (1− δ)−1 is exponentially

large.

We also note a converse to Theorem 3: if πai,ai is suffi ciently large for each ai and

(1− δ) exp (N1+ρ) → 0 for some ρ > 0, then a folk theorem holds for team equilibria.

Intuitively, a target action profile a can now be enforced by a tail test where the players are

all punished only if xi 6= ai for every player i.

Theorem 3 is related to Proposition 1 of Sannikov and Skrzypacz (2007), which is an

impossibility theorem for SSE in a two-player repeated game where actions are observed

with additive, normally distributed noise, with variance proportional to (1− δ)−1.23 As

a tail test is optimal in their setting, the proof of Theorem 3 implies that non-vanishing

incentives can be provided only if (1− δ)−1 increases exponentially with the variance of the

noise. Since in their model (1− δ)−1 increases with variance only linearly, they likewise

obtain an impossibility result. Similarly, Proposition 2 of Fudenberg and Levine (2007) is an

impossibility theorem in a game with one patient player and a myopic opponent, where the

patient player’s action is observed with additive, normal noise, with variance proportional

to (1− δ)−ρ for some ρ > 0; and their Proposition 3 is a folk theorem when the variance

is constant in δ. Theorem 3 suggest that their impossibility theorem extends whenever

variance asymptotically dominates (− log (1− δ))1/(1−ρ) for some ρ > 0, while their folk

theorem extends whenever variance is asymptotically dominated by (− log (1− δ))1/(1+ρ) for

some ρ > 0.

23The interpretation is that the players change their actions every ∆ units of time, where δ = e−r∆ for
fixed r > 0, and variance is inversely proportional to ∆, for example as a consequence of observing the
increments of a Brownian process.
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6 Conclusion

This paper has developed a theory of large-group cooperation in repeated games. Our key

assumption is that monitoring is imperfect and respects a degree of independence across

players. Our main results establish necessary and (somewhat stronger) suffi cient conditions

for cooperation in terms of the number of players, the discount factor, and the per-capita

channel capacity of the monitoring structure. We also show that cooperation in a team

equilibrium, where the players’ rewards are co-linear, is possible only under much more

stringent conditions. This result demonstrates a sense in which large-group cooperation

must rely on targeted sanctions. Notably, this result holds even when information is scarce,

so that precisely monitoring all players is infeasible.

Our results raise several questions for future theoretical and applied research. On the

theory side, this paper has focused on insuffi cient monitoring precision as an obstacle to large-

group cooperation. In reality, noisy monitoring coexists with other obstacles to cooperation,

such as decentralized monitoring (as in community enforcement models) and the possibility

that a small fraction of players may be irrational or fail to understand the equilibrium being

played (as in, e.g., Sugaya and Wolitzky 2020, 2021). Combining these features may lead

to a richer and more realistic perspective on the determinants of large-group cooperation.

We also believe it could be interesting to explore the implications of independent noise and

limited monitoring precision for organizational design, for example the design of managerial

hierarchies. Finally, another open question is whether some version of our results survives

under an appropriate relaxation of independent noise.

As for applied work, more systematic empirical or experimental evidence on the deter-

minants of large-group cooperation under imperfect monitoring would be valuable.24 For

example, a novel prediction of our paper is that targeted sanctions are much more effective

than collective ones in large groups, even when the total amount of available information

about agents’performance is small. It would be interesting to test this prediction.

24Camera and Casari (2009) and Duffy and Ochs (2009), among others, run experiments on repeated games
with random matching and private monitoring, i.e., community enforcement. Community enforcement raises
additional issues beyond the ones we focus on, which arise even under public monitoring. Camera, Casari,
and Bigoni (2013) include a treatment with public monitoring, and find that larger groups cooperate less.
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Appendix

A Comparison of V (ε) and ε-Correlated Equilibria

Theorem 1 gives conditions under which all equilibrium payoffs lie in the set

V (ε) =

{
v ∈ RN : v = u (α) for some α such that

1

N

∑
i

ḡi (α) ≤ ε

}
.

Payoffs in V (ε) are attained by action distributions where the per-player average deviation

gain is less than ε; however, a few players can have large deviation gains. A more standard

notion of “ε-myopic play” requires that all players’deviations gains are less than ε. The

corresponding payoff vectors are the static ε-correlated equilibrium payoffs, given by

CE (ε) =
{
v ∈ RN : v = u (α) for some α such that ḡi (α) ≤ ε for all i

}
.

Here we compare the sets V (ε) and CE (ε). We first give an example where V (ε) and

CE (ε) are very different (and V (ε) cannot be replaced by CE (ε) in Theorem 1). We then

give a condition under which maximum per-capita utilitarian welfare
∑

i vi/N in V (ε) is little

greater than that in CE (c
√
ε), for a constant c. Intuitively, V (ε) and CE (ε) can be very

different if incentive constraints bind for only a few players and these players’actions have

large effects on others’payoffs; while maximum utilitarian welfare in V (ε) and CE (c
√
ε) is

similar if each player’s action has only a small effect on every opponent’s payoff.

For an example where V (ε) and CE (ε) differ, consider a “product choice”game where

player 1 is a seller who chooses high or low quality (H or L), and the other N − 1 players

are buyers who choose whether to buy or not (B or D). If the seller takes a1 ∈ {H,L} and
a buyer i takes ai ∈ {B,D}, this buyer’s payoff is given by

1 {ai = B} (−1 + 2× 1 {a1 = H}) ,

while the seller’s payoff is given by

2k

N − 1
− 1 {a1 = H} ,

26



where k ∈ {0, 1, . . . , N − 1} is the number of buyers who take B. Suppose also that the
players tremble with independent, uniform noise π ∈ (0, 1/3). Note that in this game the

payoff range is bounded by 3 and noise is bounded by π.

In this game, for any ε > 0, when N is suffi ciently large, we have (H,B, . . . , B) ∈
A (ε), and hence (1, 1, . . . , 1) ∈ V (ε). This follows because the per-player average de-

viation gain at action profile (H,B, . . . , B) equals 1/N : the seller has a deviation gain

of 1, while each buyer has a deviation gain of 0. Thus, Theorem 1 does not preclude

(1, 1, . . . , 1) (or any convex combination of (1, 1, . . . , 1) and (0, 0, . . . , 0)) as an equilib-

rium payoff vector, even when (1− δ)N/C is very large. This is reassuring, because the

monitoring structure given by perfect monitoring of the seller’s realized action (i.e., Y =

{H,L}, q (y|x) = 1 {y = x1}) has channel capacity log 2 and supports the payoff vector

((1− 3π) / (1− 2π) , . . . (1− 3π) / (1− 2π)) for all δ ≥ 1/ (2− 3π) and all N ≥ 2.25 In

contrast, the greatest symmetric payoff vector in CE (ε) is (ε, ε, . . . , ε), because the seller’s

deviation gain equals the probability that she takes H.

Intuitively, even though the effi cient action profile (H,B, . . . , B) is not a static ε-correlated

equilibrium, it can be supported with “not very informative”monitoring. The reason is that

only the seller is tempted to deviate at the effi cient action profile, so monitoring one player

suffi ces to support this action profile regardless of the number of buyers.

Next, for any d ∈ (0, ū), say that per-capita externalities are bounded by d if
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤
d/N for all i 6= j, a′j, a. For example, in a repeated random matching game, d can be taken

as the maximum impact of a player’s action on her partner’s payoff, which is independent

of N . In contrast, in the product choice game, per-capita externalities cannot be bounded

uniformly in N , because the seller exerts an externality of 2 on each buyer who purchases.

In games with bounded per-capita externalities, any level of per-capita utilitarian welfare

that is attainable in V (ε) can also be approximated in CE
(√

8dε
)
.

Proposition 1 Assume that per-capita externalities are bounded by d. Then, for any ε ∈
25This is a standard calculation, which results from considering “tolerant trigger strategies”that prescribe

Nash reversion with probability φ when y = L. The smallest value of φ that induces the seller to take H is
given by φ = (1− δ) / (δ − 3δπ), and substituting this into the value recursion v = (1− δ) (1) + δ (1− πφ) v
yields v = (1− 3π) / (1− 2π).
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(0, 2d) and any v ∈ V (ε), there exists v′ ∈ CE
(√

8dε
)
such that

∣∣∣∣∣ 1

N

∑
i

(vi − v′i)
∣∣∣∣∣ ≤

√
2ε

d
ū.

Proof. We establish the stronger conclusion that, for any v ∈ V (ε) and any c ≥
√

8d/ε,

there exists v′ ∈ CE (cε) such that |
∑

i (vi − v′i) /N | ≤ 4ū/c. (The stated conclusion follows

by taking c =
√

8d/ε.) Fix ε ∈ (0, d) and α ∈ A (ε). Let J = {i : ḡi (α) > cε/2}, and note
that |J | ≤ 2N/c. Let α̃ ∈ ∆ (A) be an action distribution that has the same marginal on

AI\J as α and that satisfies ḡi (α̃) ≤ cε for all i ∈ J : for example, take a Nash equilibrium
in the game among the players in J where the action distribution among the players in I\J
is held fixed. Since

∣∣ui (a′j, a−j)− ui (a)
∣∣ ≤ d/N for all i 6= j, a′j, a, and the actions of at

most 2N/c players differ between α̃ and α, we have ḡi (α̃) ≤ ḡi (α) + 4d/c for each i ∈ I\J .
Since ḡi (α) ≤ cε/2 (as i ∈ I\J) and 4d/c ≤ cε/2 (as c ≥

√
8d/ε), we have ḡi (α̃) ≤ cε.

Since we also assumed that ḡi (α̃) ≤ cε for all i ∈ J , we have ḡi (α̃) ≤ cε for all i ∈ I, and
hence u (α̃) ∈ CE (cε). Finally, since the actions of at most 2N/c players differ between α̃

and α, we have |ui (α̃)− ui (α)| ≤ 2d/c ≤ 2ū/c for all i ∈ I\J , and by definition of ū we
have |ui (α̃)− ui (α)| ≤ ū for all i ∈ J . Since c > 2 (as ε < 2d) and |J | ≤ 2N/c, we have∣∣∑

i∈I (ui (α̃)− ui (α))
∣∣ ≤ (N − 2N/c) 2ū/c+ (2N/c) ū ≤ 4Nū/c.

B The Set B (ε) in a Public Goods Game

Consider the public goods game where each player chooses Contribute or Don’t Contribute,

and a player’s payoff is the fraction of players who contribute less a constant c ∈ (0, 1)

(independent of N) if she contributes herself. Fix any v ∈ (0, 1− c), let v = (v, . . . , v) ∈ RN ,
and let ε = cv (1− c− v) /4 > 0. We show that Bv (ε) ⊆ F for all N . Since no one

contributing is a Nash equilibrium with 0 payoffs, this implies that Bv (ε) ⊆ F ∗, and hence

v ∈ B (ε), for all N .

Fix any N . Since the game is symmetric, to show that Bv (ε) ⊆ F it suffi ces to show

that, for any number n ∈ {0, . . . , N}, there exists a feasible payoff vector where n “favored”
players receive payoffs no less than v + ε, and the remaining N − n “disfavored” players

receive payoffs no more than v− ε. First, consider the mixed action profile α1 where favored

28



players contribute with probability v+ε
1−c and disfavored players always contribute. At this

profile, favored players receive payoff f (n) := n
N
v+ε
1−c +

(
1− n

N

)
(1) − cv+ε

1−c , while disfavored

players receive payoff g (n) := n
N
v+ε
1−c +

(
1− n

N

)
(1) − c. Now consider the mixed action

profile α2 where favored players contribute with probability (v+ε)2

(1−c)f(n)
and disfavored players

contribute with probability v+ε
f(n)
. Note that each player’s payoff at profile α2 equals her

payoff at profile α1 multiplied by v+ε
f(n)
. Therefore, at profile α2, favored players receive payoff

f (n) v+ε
f(n)

= v + ε, while disfavored players receive payoff

g (n)
v + ε

f (n)
=

(
f (n)−

(
1− v + ε

1− c

)
c

)
v + ε

f (n)

≤ v + ε−
(

1− v + ε

1− c

)
c (v + ε) (since f (n) ≤ 1)

≤ v − ε (since ε = cv (1− c− v) /4).

C Proof of Lemma 1

Since χ2-divergence is a convex function, it suffi ces to consider the case where αi is degenerate

on some a′i ∈ Ai. For any xi ∈ Xi and y ∈ Y, we have ϕa (xi, y) = πi (xi|ai)ϕa (y|xi) =

p (y|a)ϕa (xi|y). Hence, since πi (xi|ai) ≥ π, we have

(ϕa (y|xi)− p (y|a))2 =

(
p (y|a)

πi (xi|ai)
(ϕa (xi|y)− πi (xi|ai))

)2

≤
(
p (y|a)

π
(ϕa (xi|y)− πi (xi|ai))

)2

.

(6)
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Now, for any a, i, and a′i, we have

χ2 (p (·|a′i, a−i) ||p (·|a)) =
∑
y

(∑
xi

(πi (xi|ai)− πi (xi|a′i))ϕa (y|xi)
)2

p (y|a)

=
∑
y

(∑
xi

(πi (xi|ai)− πi (xi|a′i)) (ϕa (y|xi)− p (y|a))
)2

p (y|a)

≤
∑
xi

(πi (xi|ai)− πi (xi|a′i))
2
∑
y

∑
xi

(ϕa (y|xi)− p (y|a))2

p (y|a)

≤ 2 (1− 2π)2

π2

∑
y

p (y|a)
∑
xi

(ϕa (xi|y)− πi (xi|ai))2

≤ (1− 2π)2

π2

∑
y

p (y|a)

(∑
xi

|ϕa (xi|y)− πi (xi|ai)|
)2

≤ 2 (1− 2π)2

π2

∑
y

p (y|a)
∑
xi

ϕa (xi|y) log

(
ϕa (xi|y)

πi (xi|ai)

)
= κ (π)2 Iπ(·|a) (Xi;Y ) ,

where the first inequality follows by Cauchy-Schwarz; the second follows by (6) and

∑
xi

(πi (xi|ai)− πi (xi|a′i))
2 ≤

(πi (X+|ai)− πi (X+|a′i))
2

+ (πi (X\X+|ai)− πi (X\X+|a′i))
2
≤ 2 (1− 2π)2 ;

the third follows by the L1 − L2 norm inequality (using
∑

xi
ϕa (xi|y)− πi (xi|ai) = 0); and

the fourth follows by Pinsker’s inequality (CT, Lemma 11.1.1), which states that for any

two probability distributions ζ and ζ ′ on a finite set Z, we have (
∑

z |ζ (z)− ζ (z′)|)2 ≤
2
∑

z ζ (z) log (ζ (z) /ζ ′ (z)).

D Proof of Lemma 2

We recall some basic concepts from information theory (see, e.g., Chapter 2 of Cover and

Thomas, 2006). For any discrete random variable Z with distribution ζ , its entropy is

H (Z) = −
∑

z ζ (z) log ζ (z). For any pair of discrete random variables (Z,Z ′) with joint
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distribution ζ, the mutual information I (Z;Z ′) satisfies

I (Z;Z ′) =
∑
z,z′

ζ (z, z′) log

(
ζ (z, z′)

ζ (z) ζ (z′)

)
= H (Z)−H (Z|Z ′) ,

where the conditional entropy H (Z|Z ′) is H (Z|Z ′) = −
∑

z,z′ ζ (z, z′) log ζ (z|z′). We also
recall the independence bound on entropy (Cover and Thomas, Theorem 2.6.6): if Z =

(Z1, . . . , ZN) then H (Z) ≤
∑

iH (Zi), with equality if and only if the Zi are independent.

We now prove inequality (2). Suppressing the superscript π (·|a), we have

∑
i

I (Xi;Y ) =
∑
i

(H (Xi)−H (Xi|Y ))

=
∑
i

H (Xi)−
∑
i

H (Xi|Y ) ≤ H (X)−H (X|Y ) = I (X;Y ) ,

where the inequality follows because, by the independence bound on entropy and inde-

pendence of the Xi, we have H (X) =
∑

iH (Xi) and H (X|Y ) ≤
∑

iH (Xi|Y ). Finally,

I (X;Y ) ≤ C by definition of channel capacity.

E Proof of Theorem 2

E.1 Preliminaries

Fix any ε > 0. If ε ≥ ū/2 then B (ε) = ∅ and the conclusion of the theorem is trivial, so

assume without loss that ε < ū/2. We begin with two preliminary lemmas. First, for each

i ∈ I and ri ∈ Ai, we define a function fi,ri : Yi → R that will later be used to specify player

i’s continuation payoff as a function of yi.

Lemma 3 Under η-individual identifiability, for each i ∈ I and ri ∈ Ai there exists a
function fi,ri : Yi → R such that

E [fi,ri (yi) |ri]− E [fi,ri (yi) |ai] ≥ ū for all ai 6= ri, (7)

E [fi,ri (yi) |ri] = 0, (8)

Var (fi,ri (yi) |ri) ≤ ū2/η, and (9)

|fi,ri (yi)| ≤ 2ū/η for all yi. (10)
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Proof. Fix i and ri. Let Y∗i = {yi : pi (yi|ri) ≥ η}, and let

pi (ri) =
(√

pi (yi|ri)
)
yi∈Y∗i

and Pi (ri) =
⋃
ai 6=ri

(
pi (yi|ai)√
pi (yi|ri)

)
yi∈Y∗i

.

Note that (5) is equivalent to d (pi (ri) , co (Pi (ri))) ≥
√
η for all i ∈ I, ri ∈ Ai, where

d (·, ·) denotes Euclidean distance in R|Y∗i |. Hence, by the separating hyperplane theorem,
there exists x = (x (yi))yi∈Y∗i ∈ R

|Y∗i | such that ‖x‖ = 1 and (pi (ri)− p) · x ≥
√
η for all

p ∈ Pi (ri). By definition of pi and Pi, this implies that
∑

yi∈Y∗i

(
pi(yi|ri)−pi(yi|ai)√

pi(yi|ri)

)
x (yi) ≥

√
η

for all ai 6= ri. Now define

fi,ri (yi) =
ū
√
η

 x (yi)√
pi (yi|ri)

−
∑
ỹi∈Y∗i

pi (ỹi|ri)√
pi (ỹi|ri)

x (ỹi)

 for all yi ∈ Y∗i , and

fi,ri (yi) = 0 for all yi /∈ Y∗i .

Clearly, conditions (7) and (8) hold. Moreover, since E [fi,ri (yi) |ri] = 0 and the term∑
ỹi∈Yi

√
pi (ỹi|ri)xi (ỹi) is independent of yi, we have

Var (fi,ri (yi) |ri) = E

[
ū2x (yi)

2

ηpi (yi|ri)

]
− E

[
ūx (yi)√
ηpi (yi|ri)

]2

≤ ū2

η

∑
yi∈Y∗i

x (yi)
2 ≤ ū2

η
,

and hence (9) holds. Finally, (10) holds since, for each yi ∈ Y∗i ,

|fi,ri (yi)| ≤
(
|x (yi)|+

∑
ỹi∈Y∗i

pi (ỹi|ri) |x (ỹi)|√
ηpi (yi|ri)

)
ū ≤

1 +
∑
ỹi∈Y∗i

pi (ỹi|ri)

 ū

η
≤ 2ū

η
.

Now fix i ∈ I and ri ∈ Ai, and suppose that yi,t ∼ pi (·|ri) for each period t ∈ N,
independently across periods (which would be the case in the repeated game if ri were taken

in every period). By (9), for any T ∈ N, we have

Var

(
T∑
t=1

δt−1fi,ri (yi,t)

)
=

T∑
t=1

δ2(t−1)Var (fi,ri (yi,t)) ≤
1− δ2T

1− δ2

ū2

η
.
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Together with (8) and (10), Bernstein’s inequality now implies that, for any T ∈ N and

f̄ ∈ R+, we have

Pr

(
T∑
t=1

δt−1fi,ri (yi,t) ≥ f̄

)
≤ exp

− f̄ 2η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄ ū
)
 . (11)

Our second lemma fixes T and f̄ so that the bound in (11) is suffi ciently small, and some

other conditions used in the proof also hold.

Lemma 4 There exists κ > 0 such that, whenever (1− δ) log (N) /η < κ, there exist T ∈ N
and f̄ ∈ R that satisfy the following three inequalities:

60ūN exp

−
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ ε, (12)

8
1− δ

1− δT
(
f̄ +

2ū

η

)
≤ ε, (13)

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η

)
≤ ε. (14)

Proof. Let T be the largest integer such that 8ū
(
1− δT

)
/δT ≤ ε, and let

f̄ =

√
36

(
log

(
60ū

ε

)
+ log (N)

)
1− δT

1− δ
ū2

η
.

Note that if (1− δ) log (N) /η → 0 then 1−δT → ε/ (ε+ 8ū), and hence (1− δ) log (N) /
(
η
(
1− δT

))
→

0. Therefore, there exists κ > 0 such that, whenever (1− δ) log (N) /η < κ, we have

4

9

√
36

(
log

(
60ū

ε

)
+ log (N)

)
1− δ

1− δT
1

η
≤ 1 and (15)

8ū

(√
36

(
log

(
60ū

ε

)
+ log (N)

)
1− δ

1− δT
1

η
+

1− δ
1− δT

2

η

)
≤ ε. (16)

It now follows from straightforward algebra (provided in Appendix E.4) that (12)—(14) hold.
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E.2 Equilibrium Construction

Fix any T and f̄ that satisfy (12)—(14), as well any v ∈ B (ε). For each extreme point v∗ of

Bv (ε/2), we construct a PPE in a T -period, finitely repeated game augmented with contin-

uation values drawn from Bv (ε/2) that generates payoff vector v∗. By standard arguments,

this implies that Bv (ε/2) ⊆ E (Γ), and hence that v ∈ E (Γ).26 Since v ∈ B (ε) was chosen

arbitrarily, it follows that B (ε) ⊆ E (Γ).

Specifically, for each ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v, we construct a public
strategy profile σ in a T -period, finitely repeated game (which we call a block strategy profile)

together with a continuation value function w : HT+1 → RN such that, letting ψi
(
hT+1

)
=

δT

1−δ
(
wi
(
hT+1

)
− v∗i

)
, we have

Promise Keeping: v∗i =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (17)

Incentive Compatibility: σi ∈ argmax
σ̃i

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (18)

Self Generation: ζ iψi
(
hT+1

)
∈
[
− δT

1− δ ε, 0
]

for all i and hT+1. (19)

Fix ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v. We construct a block strategy profile σ
and continuation value function ψ which, in the next subsection, we show satisfy these three

conditions. This will complete the proof of the theorem.

First, fix a correlated action profile ᾱ ∈ ∆ (A) such that

ui (ᾱ) = v∗i + ζ iε/2 for all i, (20)

and fix a probability distribution over static Nash equilibria αNE ∈ ∆ (
∏

i ∆ (Ai)) such that
ui
(
αNE

)
≤ v∗i − ε/2 for all i. Such ᾱ and αNE exist because v∗ ∈ Bv (ε/2) and Bv (ε) ⊆ F ∗.

We now construct the block strategy profile σ. For each player i ∈ I and period t ∈
{1, . . . , T}, we define a state θi,t ∈ {0, 1} for player i in period t. The states are determined
by the public history, and so are common knowledge among the players. We first specify

players’prescribed actions as a function of the state, and then specify the state as a function

26Specifically, at each history hT+1 that marks the end of a block, public randomization can be used
to select an extreme point v∗ to be targeted in the following block, with probabilities chosen so that the
expected payoff E [v∗] equals the promised continuation value w

(
hT+1

)
.
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of the public history.

Prescribed Equilibrium Actions: For each period t, let rt ∈ A be a pure action

profile which is drawn by public randomization at the start of period t from the distribution

ᾱ ∈ ∆ (A) fixed in (20), and let %NEt ∈
∏

i ∆ (Ai) be a mixed action profile which is drawn
by public randomization at the start of period t from the distribution αNE. The prescribed

equilibrium actions are defined as follows.

1. If θi,t = 0 for all i ∈ I, the players take at = rt.

2. If there is a unique player i such that θi,t = 1, the players take at = (r′i, r−i,t) for

some r′i ∈ BRi (r−i,t) if ζ i = 1, and they take %NEt if ζ i = −1, where BRi (r−i) =

argmaxai∈Ai ui (ai, r−i) is the set of i’s best responses to r−i.

3. If there is more than one player i such that θi,t = 1, the players take %NEt .

Let α∗t ∈
∏

i ∆ (Ai) denote the distribution of prescribed equilibrium actions, prior to

public randomization zt.

(It may be helpful to informally summarize the prescribed actions. So long as θi,t = 0 for

all players, the players take actions drawn from the target action distribution ᾱ. If θi,t = 1

for multiple players, the ineffi cient Nash equilibrium distribution αNE is played. If θi,t = 1

for a unique player i, player i starts taking static best responses; moreover, if ζ i = −1 then

αNE is played.)

It will be useful to introduce the following additional state variable Si,t, which summarizes

player i’s prescribed action as a function of (θj,t)j∈I :

1. Si,t = 0 if θj,t = 0 for all j ∈ I, or if there exists a unique player j 6= i such that

θj,t = 1, and for this player we have ζj = 1. In this case, player i is prescribed to take

ai,t = ri,t.

2. Si,t = NE if θi,t = 0 and either (i) there exists a unique player j such that θj,t = 1,

and for this player we have ζj = −1, or (ii) there are two distinct players j, j′ such

that θj,t = θj′,t = 1. In this case, player i is prescribed to take %NEi,t .

3. Si,t = BR if θi,t = 1. In this case, player i is prescribed to best respond to her

opponents’actions (which equal either r−i,t or %NE−i,t, depending on ζ i and (θj,t)j 6=i.)
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States: At the start of each period t, conditional on the public randomization draw of

rt ∈ A described above, an additional (“fictitious”) random variable ỹt ∈ Y is also drawn
by public randomization, with distribution p (ỹt|rt). That is, the distribution of the public
randomization draw ỹt conditional on the draw rt is the same as the distribution of the

realized public signal profile ỹt at action profile rt; however, the distribution of ỹt depends

only on the public randomization draw rt and not on the players’actions. For each player i

and period t, let fi,ri,t : Yi → R be defined as in Lemma 3, and let

fi,t =


fi,ri,t (yi,t) if Si,t = 0,

fi,ri,t (ỹi,t) if Si,t = NE,

0 if Si,t = BR.

(21)

Thus, the value of fi,t depends on the state (θn,t)n∈I , the target action profile rt (which

is drawn from distribution ᾱ as described above), the public signal yt, and the additional

variable ỹt.27 Later in the proof, fi,t will be a component of the “reward”earned by player

i in period t, which will be reflected in player i’s end-of-block continuation payoff function

ψ : HT+1 → R.

We can finally define θi,t as

θi,t = 1

{
∃t′ ≤ t :

∣∣∣∣∣
t′−1∑
t′′=1

δt
′′−1fi,t′′

∣∣∣∣∣ ≥ f̄

}
. (22)

That is, θi,t is the indicator function for the event that the magnitude of the component of

player i’s reward captured by (fi,t′′)
t′−1
t′′=1 exceeds f̄ at any time t

′ ≤ t.

This completes the definition of the equilibrium block strategy profile σ. Before proceed-

ing further, we note that a unilateral deviation from σ by any player i does not affect the

distribution of the state vector
(

(θj,t)j 6=i

)T
t=1
. (However, such a deviation does affect the

distribution of (θi,t)
T
t=1.)

Lemma 5 For any player i and block strategy σ̃i, the distribution of the random vector(
(θj,t)j 6=i

)T
t=1

is the same under block strategy profile (σ̃i, σ−i) as under block strategy profile

σ.
27Intuitively, introducing the variable ỹt, rather than simply using yi,t everywhere in (21), ensures that

the distribution of fi,t does not depend on player i’s opponents’strategies.
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Proof. Since θj,t = 1 implies θj,t+1 = 1, it suffi ces to show that, for each t, each J ⊆ I\ {i},
each ht such that J = {j ∈ I\ {i} : θj,t = 0}, and each zt, the probability Pr

(
(θj,t+1)j∈J |ht, zt, ai,t

)
is independent of ai,t. Since θj,t+1 is determined by ht and fj,t, it is enough to show that

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)
is independent of ai,t.

Recall that Sj,t is determined by ht, and that if j ∈ J (that is, θj,t = 0) then Sj,t ∈
{0, NE}. If Sj,t = 0 then player j takes rj,t, which is determined by zt, yj,t is distributed ac-

cording to pj (yj,t|rj,t), and fj,t is determined by yj,t, independently across players conditional
on zt. If Sj,t = NE then ỹj,t is distributed according to pj (ỹj,t|rj,t), where rj,t is determined
by zt, and fj,t is determined by ỹj,t, independently across players conditional on zt. Thus,

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)

=
∏

j∈J,j 6=i Pr (fj,t|Sj,t, rj,t), which is independent of ai,t as desired.

Continuation Value Function: We now construct the continuation value function

ψ : HT+1 → RN . For each player i and end-of-block history hT+1, player i’s continuation

value ψi
(
hT+1

)
will be defined as the sum of T “rewards”ψi,t, where t = 1, . . . , T , and a

constant term ci that does not depend on hT+1.

The rewards ψi,t are defined as follows:

1. If θj,t = 0 for all j ∈ I, then

ψi,t = δt−1fi,ri,t (yi,t) . (23)

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then

ψi,t = δt−1 (ui (ᾱ)− ui (α∗t )) . (24)

3. Otherwise,

ψi,t = δt−1
(
−ζ iū− ui (α∗t ) + 1 {Si,t = 0} fi,ri,t (yi,t)

)
. (25)

The constant ci is defined as

ci = −E
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i . (26)
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Note that, since ui (ᾱ) and v∗i are both feasible payoffs, we have

|ci| ≤ 2ū
1− δT

1− δ . (27)

Finally, for each i and hT+1, player i’s continuation value at end-of-block history hT+1 is

defined as

ψi
(
hT+1

)
= ci +

T∑
t=1

ψi,t. (28)

E.3 Verification of the Equilibrium Conditions

We now verify that σ and ψ satisfy promise keeping, incentive compatibility, and self gen-

eration. We first show that θi,t = 0 for all i and t with high probability, and then verify the

three desired conditions in turn.

Lemma 6 We have

Pr

(
max

i∈I,t∈{1,...,T}
θi,t = 0

)
≥ 1− ε

20ū
. (29)

Proof. By union bound, it suffi ces to show that, for each i, Pr
(
maxt∈{1,...,T} θi,t = 1

)
≤

ε/20ūN , or equivalently

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt
′−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ ε

20ūN
. (30)

To see this, let f̃i,t = fi,ri,t (ỹi,t). Note that the variables
(
f̃i,t

)T
t=1
are independent (unlike the

variables (fi,t)
T
t=1). Since

(
f̃i,t′
)t
t′=1

and (fi,t′)
t
t′=1 have the same distribution if Si,t 6= BR,

while fi,t = 0 if Si,t = BR, we have

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt
′−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
. (31)

Since
(
f̃i,t

)T
t=1

are independent, Etemadi’s inequality implies that

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
≤ 3 max

t∈{1,...,T}
Pr

(∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
. (32)
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Letting xi,t = δt−1f̃i,t, note that |xi,t| ≤ 2ū/η with probability 1 by (10), E [xi,t] = 0 by (8),

and

Var

(
t∑

t′=1

xi,t′

)
=

t∑
t′=1

Var (xi,t′) ≤
1− δT

1− δ
ū2

η
by (9).

Therefore, by Bernstein’s inequality ((11), which again applies because
(
f̃i,t

)T
t=1

are inde-

pendent) and (12), we have, for each t ≤ T ,

Pr

(∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
≤ ε

60ūN
. (33)

Finally, (31), (32), and (33) together imply (30).

Incentive Compatibility: We use the following lemma (proof in Appendix E.5).

Lemma 7 For each player i and block strategy profile σ, incentive compatibility holds (i.e.,

(18) is satisfied) if and only if

suppσi
(
ht
)
⊆ argmax

ai,t∈Ai
Eσ−i

[
δt−1ui,t + ψi,t|ht, ai,t

]
for all t and ht. (34)

In addition, for all t ≤ t′ and ht, we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

]
= Eσ

[
δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

(35)

We now verify that (34) holds. Fix a player i, period t, and history ht. We consider

several cases, which parallel the definition of the reward ψi,t.

1. If θj,t = 0 for all j ∈ I, recall that the equilibrium action profile is the rt that is

prescribed by public randomization zt. For each action ai 6= ri,t, by (7) and (23), and

recalling that ū ≥ maxa ui (a)−mina ui (a), we have

Eσ−i
[
δt−1ui,t + ψi,t|ht, zt, ai,t = ri,t

]
− Eσ−i

[
δt−1ui,t + ψi,t|ht, zt, ai,t = ai

]
= δt−1

(
E
[
ui (rt) + fi,ri,t (yi,t) |ai,t = ri,t

]
− E

[
ui (ai, r−i,t) + fi,ri,t (yi,t) |ai,t = ai

])
≥ 0, so (34) holds.
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2. If θi,t = 1 and θj,t = 0 for all j 6= i, then the reward ψi,t specified by (24) does not

depend on yi,t. Hence, (34) reduces to the condition that every action in suppσi (h
t)

is a static best responses to σ−i (ht). This conditions holds for the prescribed action

profile, (r′i ∈ BRi (r−i,t) , r−i,t) or %NEi,t .

3. Otherwise: (a) If Si,t = 0, then (34) holds because it holds in Case 1 above and (23)

and (25) differ only by a constant independent of yi,t. (b) If Si,t 6= 0, then either

θj,t = θj′,t = 1 for distinct players j, j′, or there exists a unique player j 6= i with

θj,t = 1, and for this player we have ζj = −1. In both cases, %NEt is prescribed. Since

the reward ψi,t specified by (25) does not depend on yi,t, (34) reduces to the condition

that every action in suppσi (h
t) is a static best responses to σ−i (ht), which holds for

the prescribed action profile %NEt .

Promise Keeping: This essentially holds by construction: we have

1− δ
1− δT

Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]

=
1− δ

1− δT

(
Eσ
[

T∑
t=1

(
δt−1ui,t + ψi,t

)]
+ ci

)
(by (28))

=
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)
+ ci

]
(by (35))

= v∗i (by (26)), so (17) holds.

Self Generation: We use the following lemma (proof in Appendix E.6).

Lemma 8 For every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψi,t ≤ f̄ +
2ū

η
and (36)∣∣∣∣∣

T∑
t=1

ψi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η
+ 2ū

1− δT

1− δ . (37)

In addition,

ζ ici ≤ −
1− δT

1− δ
ε

8
. (38)
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To establish self generation ((19)), it suffi ces to show that, for each hT+1, ζ iψi
(
hT+1

)
≤ 0

and
∣∣ψi (hT+1

)∣∣ ≤ (δT/ (1− δ)
)
ε. This now follows because

ζ iψi
(
hT+1

)
= ζ i

(
ci +

T∑
t=1

ψi,t

)
≤ −1− δT

1− δ
ε

8
+ f̄ + 2ū/η (by (36) and (38))

≤ 1− δT

8 (1− δ)

(
−ε+ 8

(
1− δ

1− δT
)(

f̄ + 2ū/η
))
≤ 0 (by (13)), and

∣∣ψi (hT+1
)∣∣ ≤ |ci|+

∣∣∣∣∣
T∑
t=1

ψi,t

∣∣∣∣∣
≤ 4ū

1− δT

1− δ + f̄ + 2ū/η (by (27) and (37))

=
1− δT

1− δ 4ū+ f̄ + 2ū/η ≤ δT

1− δ ε (by (14)),

which completes the proof.

E.4 Omitted Details for the Proof of Lemma 4

We show that, with the stated definitions of T and f̄ , (15) and (16) imply (12)—(14). First,

note that
1− δ2

1− δ2T
=

(1 + δ) (1− δ)(
1 + δT

) (
1− δT

) < 2
1− δ

1− δT
.

Hence,

2f̄
(
1− δ2

)
9ū
(
1− δ2T

) <
4

9ū

1− δ
1− δT

√
36

(
log

(
60ū

ε

)
+ log (N)

)
1− δT

1− δ
ū2

η

=
4

9

√
36

(
log

(
60ū

ε

)
+ log (N)

)
1− δ

1− δT
1

η
≤ 1 (by (15)).

Therefore,

60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 1−δ2T
1−δ2 ū

2
)
 = 60ūN exp

(
−f̄ 2η

361−δ2T
1−δ2 ū

2

)
.
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Moreover,

f̄ 2η

361−δ2T
1−δ2 ū

2
=

36
(
log
(

60ū
ε

)
+ log (N)

)
1−δT
1−δ

361−δ2T
1−δ2

=
1 + δ

1 + δT

(
log

(
60ū

ε

)
+ log (N)

)
≥ log

(
60ū

ε

)
+log (N) .

Hence, we have

60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

(
−
(

log

(
60ū

ε

)
+ log (N)

))
= ε.

This establishes (12).

Next, we have

8
1− δ

1− δT
(
f̄ +

2ū

η

)
= 8ū

(√
36

(
log

(
60ū

ε

)
+ log (N)

)
1− δ

1− δT
1

η
+

1− δ
1− δT

2

η

)
≤ ε (by (16)).

(39)

This establishes (13).

Finally, by (39) and 8ū
(
1− δT

)
/δT ≤ ε, we have

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η

)
= 4ū

1− δT

δT
+

1− δT

δT
1− δ

1− δT
(
f̄ +

2ū

η

)
≤ 4

ε

8
+
ε

8

ε

8
≤ ε.

This establishes (14).

E.5 Proof of Lemma 7

We show that player i has a profitable one-shot deviation from σi at some history ht if and

only if (34) is violated at ht. To see this, we first calculate player i’s continuation payoff

under σ from period t + 1 onward (net of the constant ci and the rewards already accrued∑t
t′=1 ψi,t′). For each t

′ ≥ t+ 1, there are several cases to consider.

1. If θj,t′ = 0 for all j, then by (8) and (23) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1ui (ᾱ).

2. If θi,t′ = 1 and θj,t′ = 0 for all j 6= i, then by (24) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′) + ui (ᾱ)− ui (α∗t′)) = δt

′−1ui (ᾱ).
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3. Otherwise: (a) If Si,t′ = 0, then by (8) and (25) (and recalling that player i’s equilib-

rium action is ri,t′ when Si,t′ = 0) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′)− ζ iū− u (α∗t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1 (−ζ iū).

(b) If Si,t′ 6= 0, then by (25) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′)− ζ iū− u (α∗t′)) = δt

′−1 (−ζ iū).

In total, (35) holds, and player i’s net continuation payoff under σ from period t + 1

onward equals

Eσ
[

T∑
t′=t+1

δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

By Lemma 5, the distribution of
(

(θn,t′)n6=i

)T
t′=t+1

does not depend on player i’s period-t

action, and hence neither does player i’s net continuation payoff under σ from period t + 1

onward. Therefore, player i’s period-t action ai,t maximizes her continuation payoff from

period t onward if and only if it maximizes Eσ−i [δt−1ui,t + ψi,t|ht, ai,t].

E.6 Proof of Lemma 8

Define

ψvi,t =

 δt−1 (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,

δt−1 (−ζ iū− ui (α∗t )) otherwise,
and

ψfi,t =

 δt−1fi,ai,t (yi,t) if either θj,t = 0 for all j or Si,t = 0,

0 otherwise.

Note that, by (23)—(25), we can write ψi,t = ψvi,t + ψfi,t. (Note that, if θn,t = 0 for all n ∈ I,
we have α∗t = ᾱ and hence ψvi,t + ψfi,t = δt−1fi,ai,t (yi,t), as specified in (23).) We show that,

for every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψvi,t ∈
[
−2ū

1− δT

1− δ , 0
]

and (40)∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η
. (41)
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Since ψi,t = ψvi,t + ψfi,t, (40) and (41) imply (36) and (37), which proves the first part of the

lemma.

For (40), note that, by definition of the prescribed equilibrium actions, if θj,t = 0 for all

j 6= i, then (i) if ζ i = 1, we have ui (α∗t ) ≥
∑

a ᾱ (a) min
{
ui (a) ,maxa′i ui (a

′
i, a−i)

}
≥ ui (ᾱ);

and (ii) if ζ i = −1, we have ui (α∗t ) ≤ max
{
ui (ᾱ) , ui

(
αNE

)}
= ui (ᾱ). In total, we have

ζ i (ui (ᾱ)− ui (α∗t )) ≤ 0. Since obviously ζ i (ui (ᾱ)− ui (α∗t )) ≥ −2ū and −ū − ζ iui (α∗t ) ≥
−2ū, we have

ζ iψ
v
i,t =

 δt−1ζ i (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,

δt−1 (−ū− ζ iui (α∗t )) otherwise
∈
[
−2ūδt−1, 0

]
.

For (41), note that Si,t = 0 implies θi,t = 0, and hence∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤
∣∣∣∣∣ζ i

T∑
t=1

1 {θi,t = 0} δt−1fi,ai,t (yi,t)

∣∣∣∣∣ .
Since θi,t+1 = 1 whenever

∣∣∣∑t′=1,..,t δ
t′−1fi,ai,t′ (yi,t′)

∣∣∣ ≥ f̄ , and in addition
∣∣fi,ai,t (yi,t)

∣∣ ≤ 2ū/η

by (10), this inequality implies (41).

For the second part of the lemma, by (26), we have

ζ ici = ζ i

(
−E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i

)

= E

 T∑
t=1

δt−1

1{max
j 6=i

θj,t = 0

}
ζ i (v

∗
i − ui (ᾱ)) + 1

{
max
j 6=i

θj,t = 1

}
(ū+ ζ iv

∗
i )︸ ︷︷ ︸

∈[0,2ū]




≤ E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}(
−ε
2

)
+ 1

{
max
j 6=i

θj,t = 1

}
2ū

)]
by (20)

≤ −1− δT

1− δ

((
1− ε

20ū

) ε
2
−
( ε

20ū

)
2ū
)

(by (29))

≤ −1− δT

1− δ
ε

8
(as ε < ū/2).
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F Proof of Theorem 3

Fix a team equilibrium with coeffi cients b = (1, b2, . . . , bN), where |bi| ≤ 1 for all i. Let

I+ = {i : bi ≥ 0} and I− = {i : bi < 0}. Define

vi =

 infhwi (h) if i ∈ I+,

suphwi (h) if i ∈ I−,
and v̄i =

 suphwi (h) if i ∈ I+,

infhwi (h) if i ∈ I−.

Since V (ε) is convex, it suffi ces to show that v, v̄ ∈ V (ε), where v = (vi)i∈I and v̄ = (v̄i)i∈I .

In the following lemma, for any α ∈ ∆ (A) and f : A × Y → R, Eα [f (r, y)] denotes

expectation where r ∼ α and then y ∼ p (·|r), and Eα,a′i [f (r, y)] denotes expectation where

r ∼ α and then y ∼ p (·|a′i, r−i).

Lemma 9 There exist α ∈ ∆ (A) and τ : A× Y →R such that

v̄ = Eα [u (r)− bτ (r, y)] ,

Eα [ui (r)− biτ (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biτ (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i,

τ (r, y) ∈
[
0,

δ

1− δ ū
]

for all r, y,

Eα [τ (r, y)] ≤ ū.

Moreover, if the constraints τ (r, y) ∈
[
0, δ

1−δ ū
]
and Eα [τ (r, y)] ≤ ū are replaced by τ (r, y) ∈[

− δ
1−δ ū, 0

]
and Eα [τ (r, y)] ≥ −ū, then the same statement holds with v in place of v̄.

Proof. Let E = {(1− β) v + βv̄ : β ∈ [0, 1]}. By standard arguments, E is self-generating:

for any v ∈ E, there exist α ∈ ∆ (A) and w : A× Y → E such that

v = Eα [(1− δ)u (r) + δw (r, y)] and

Eα [(1− δ)ui (r) + δwi (r, y) |ri = ai] ≥ Eα,a′i [(1− δ)ui (a′i, r−i) + δwi (r, y) |ri = ai] ,

for all i, ai ∈ suppαi, a
′
i ∈ Ai. Since v ∈ E and w (r, y) ∈ E for all r, y, we have vi −

wi (r, y) = bi (v1 − w1 (r, y)) for all i, r, y. Since v̄1 ≥ v1 for all v ∈ E, if v = v̄ then

w1 (r, y) ≤ v1 for all r, y. Hence, taking v = v̄ = (1− δ)u (α) + δEα [w (r, y)] and defining
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τ (r, y) = δ
1−δ (v̄1 − w1 (r, y)), we have τ (r, y) ∈

[
0, δ

1−δ ū
]
and

Eα [τ (r, y)] =
δ

1− δE
α [(1− δ)u1 (α) + δEα [w1 (r, y)]− w1 (r, y)]

≤ δ

1− δ (1− δ) (u1 (α)− Eα [w1 (r, y)]) ≤ ū.

Moreover, we have

Eα [u (r)− bτ (r, y)] = Eα
[
u (r)− b δ

1− δ (v̄1 − w1 (r, y))

]
= u (α)− Eα

[
δ

1− δ (v̄ − w (r, y))

]
= u (α)− Eα

[
δ

1− δ ((1− δ)u (α) + δEα [w (r, y)]− w (r, y))

]
= (1− δ)u (α) + δEα [w (r, y)] = v,

and, for all i, ai ∈ suppαi, a
′
i ∈ Ai,

Eα [(1− δ)ui (r) + δwi (r, y) |ri = ai] ≥ Eα,a′i [(1− δ)ui (a′i, r−i) + δwi (r, y) |ri = ai]

⇐⇒

Eα
[
ui (r) +

δ

1− δ (wi (r, y)− v̄i) |ri = ai

]
≥ Eα,a′i

[
ui (a

′
i, r−i) +

δ

1− δ (wi (r, y)− v̄i) |ri = ai

]
⇐⇒

Eα [ui (r)− biτ (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biτ (r, y) |ri = ai] .

Similarly, if v = v then w1 (r, y) ≥ v1 for all r, y, and the symmetric conclusion holds.

Taking α and τ as in Lemma 9 and recalling that |bi| ≤ 1 for all i, we see that
∑

i ḡ (α) /N

is bounded by the value of the program

max
(Y,p),r,a,τ

1

N

∑
i∈I

∣∣Er [τ (y)]− E(ai,r−i) [τ (y)]
∣∣ s.t.

τ (y) ∈
[
0,

δ

1− δ ū
]

for all y, (42)

Er [τ (y)] ≤ ū. (43)
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In turn, this is bounded by the sum of the value of the program

max
(Y,p),r,a,τ

1

N

∑
i∈I+

Er [τ (y)]− E(ai,r−i) [τ (y)] s.t. (42), (43), (44)

and the sum of the corresponding program with I− in place of I+. To prove the theorem, we

show that, for any π > 0 and ρ > 0, each of these values converges to 0 along any sequence

(N, δ) where (1− δ) exp (N1−ρ)→∞. Without loss, it suffi ces to consider the first program,
(44).

We first establish that the solution is a tail test. Let N+ = |I+|.

Lemma 10 Program (44) is solved by a tail test, where Y = X = A = {0, 1}N+; q (y|x) =

1 {y = x} for all y, x; ri 6= ai for all i; πi (ri|ri) = 1− π and πi (ai|ri) = π for all i, ri 6= ai;

and, letting n = |{i : yi = ri}|,

τ (y) =


δ

1−δ ū if n > n∗,

β δ
1−δ ū if n = n∗,

0 if n < n∗,

for some n∗ ∈ {0, 1, . . . , N+} and β ∈ [0, 1].

We prove Lemma 10 in the next subsection. Lemma 10 implies that the program becomes

max
n∗∈{0,1,...,N+},β∈[0,1]

N+

N

δ

1− δ ū (1− 2π) (β Pr (n−i = n∗ − 1) + (1− β) Pr (n−i = n∗))

s.t. β Pr (n = n∗) + Pr (n ≥ n∗ + 1) ≤ ū
δ

1−δ ū
,

where n−i = |{j 6= i : yj = rj}| and the probabilities are binomial with parameter 1 − π.

Since the value of the program is maximized when N = N+, we henceforth assume that this

is the case. We now show that, for any ρ > 0, there exist c0, c1 > 0 such that, for each N ,

the value of the program is at most

max

{
δ

1− δ ū exp
(
−c0N

1−ρ) , c1N
−ρ/2ū

}
.

This completes the proof, as if ū is fixed and (1− δ) exp (N1−ρ) → ∞ then both terms

converge to 0.
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We bound the program separately for n∗ such that |n∗ − (1− π)N | > N1−ρ/2 and n∗

such that |n∗ − (1− π)N | ≤ N1−ρ/2. In the first case, by Hoeffding’s inequality, there exists

c0 > 0 such that

min {Pr (n−i ≥ n∗ − 1) ,Pr (n−i ≤ n∗)} ≤ exp
(
−c0N

1−ρ) .
Since the value of the program is at most 2 δ

1−δ ūmin {Pr (n−i ≥ n∗ − 1) ,Pr (n−i ≤ n∗)}, this
gives the desired bound when |n∗ − (1− π)N | > N1−ρ/2.

For the second case, the value of the program is at most

δ

1− δ ū
β Pr (n−i = n∗ − 1) + (1− β) Pr (n−i = n∗)

β Pr (n = n∗) + Pr (n ≥ n∗ + 1)

ū
δ

1−δ ū

≤ (β Pr (n−i = n∗ − 1) + (1− β) Pr (n−i = n∗))

β Pr (n ≥ n∗) + (1− β) Pr (n ≥ n∗ + 1)
ū

≤
(

Pr (n−i = n∗ − 1)

Pr (n ≥ n∗)
+

Pr (n−i = n∗)

Pr (n ≥ n∗ + 1)

)
ū.

By McKay (1989, Theorem 2), for any m ≥ (1− π)N , we have

Pr (n ≥ m) ≥
√
Nπ (1− π) Pr (n−i = m− 1)

1− Φ
(

(m− (1− π)N) /
√
Nπ (1− π)

)
φ
(

(m− (1− π)N) /
√
Nπ (1− π)

) .

If (1− π)N ≤ n∗ ≤ (1− π)N + N1−ρ/2, applying this inequality for m ∈ {n∗, n∗ + 1},
together with the inverse Mills ratio inequality (1− Φ (x)) /φ (x) ≥ 1/ (1 + x), we have

Pr (n−i = n∗ − 1|r−i)
Pr (n ≥ n∗|r) +

Pr (n−i = n∗|r−i)
Pr (n ≥ n∗ + 1|r) ≤ 2

1√
Nπ (1− π)

(
n∗ − (1− π)N√

Nπ (1− π)
+ 1

)

≤ 2

(
N−ρ/2√
π (1− π)

+
1√

Nπ (1− π)

)
.

Thus, there exists c1 > 0 such that the value of the program is at most c1N
−ρ/2ū. Symmet-

rically, the same bound applies when (1− π)N −N1−ρ/2 ≤ n∗ ≤ (1− π)N .
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F.1 Proof of Lemma 10

First, consider the sub-program where (X , π,Y , q) is fixed, so the objective is maximized
over (r, a, τ). By Blackwell’s theorem, the value of the sub-program with signal distribution

p is greater than that with signal distribution p̂, if p̂ is a garbling of p. (That is, viewing p

and p̂ as |Y|× |A| matrices, there is a |Y| × |Y| Markov matrix M such that p̂ = Mp.) For

any noise structure (X , π), the action monitoring structure (Y , p) induced by any outcome
monitoring structure (Y , q) is clearly a garbling of that induced by the outcome monitoring
structure where Y = X and q (y|x) = 1 {y = x} for all y, x, so that p (y|a) = π (y|a) for all

y, a. It is thus without loss to focus on this (Y , q).
In addition, if we let X = A and, for each r, a ∈ A and i, let

π̄i (yi|ri) =


1− π if yi = ri,

π if yi = ai,

0 otherwise,

π̄i (yi|ai) =


1− π if yi = ai,

π if yi = ri,

0 otherwise,

and π̄i (yi|ãi) = 1 {yi = ãi} for ãi /∈ {ai, ri} ,

then πi is a garbling of π̄i for each i, and hence π is a garbling of π̄. To see this, since

π < 1/2, the matrix π̄i is invertible, and the matrix inverse π̄−1
i is given by

π̄−1
i (yi|ri) =


1−π
1−2π

if yi = ri,

− π
1−2π

if yi = ai,

0 otherwise,

π̄−1
i (yi|ai) =


1−π
1−2π

if yi = ai,

− π
1−2π

if yi = ri,

0 otherwise,

and π̄−1
i (yi|ãi) = 1 {yi = ãi} for ãi /∈ {ai, ri} .

We can then calculate the matrix Mi := πiπ̄
−1
i as

Mi (yi|ãi) =


(1−π)πi(yi|ri)−ππi(yi|ai)

1−2π
if ãi = ri,

(1−π)πi(yi|ai)−ππi(yi|ri)
1−2π

if ãi = ai,

πi (yi|ãi) otherwise.

Note that, for each ãi, we have
∑

yi
Mi (yi|ãi) = 1 and, since πi (yi|ãi) ≥ π for all yi, ãi,

(1− π) πi (yi|ri)− ππi (yi|ai)
1− 2π

≥ (1− π) π − π (1− π)

1− 2π
= 0,
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and similarly (1−π)πi(yi|ai)−ππi(yi|ri)
1−2π

≥ 0. Thus, Mi is a Markov matrix satisfying πi = Miπ̄i.

It is thus without loss to take (X , π) = (A, π̄). The program then simplifies to

max
r,a,τ

1

N

∑
i∈I+

∑
y

π̄ (y|r)
(

1− π̄i (yi|ai)
π̄i (yi|ri)

)
τ (y) s.t.

τ (y) ∈
[
0,

δ

1− δ ū
]

for all y,∑
y

p (y|r) τ (y) ≤ ū.

Here it is without loss to take ai 6= ri for all i, as if ai = ri then the same value can be

attained by taking τ (y) independent of yi, at which point ai can then be taken different from

ri without affecting the value. Letting λ ≥ 0 denote the multiplier on
∑

y p (y|r) τ (y) ≤ ū,

we see that, for each y, the Lagrangian is increasing in τ (y) if and only if

1

N

∑
i

π̄i (yi|ai)
π̄i (yi|ri)

≤ 1− λ.

It follows that τ (y) takes the prescribed form.
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