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Abstract

Motivated by the problem of sustaining cooperation in large groups with limited

information, we analyze the relationship between group size, monitoring precision,

and incentive instruments in multiagent moral hazard problems and repeated games

with independent, player-level noise. We link the viability of cooperation to the per-

capita channel capacity of the monitoring structure. In static moral hazard problems,

cooperation is impossible if the per-capita channel capacity is much smaller than the

squared inverse of the maximum feasible reward; conversely, cooperation is possible

in some games where this relationship is reversed. In repeated games, cooperation is

impossible if the per-capita channel capacity is much smaller than the discount rate;

again, a converse holds for a class of games. If attention is restricted to team equilibria,

where incentives are provided collectively, cooperation is possible only under much

more severe parameter restrictions. Personalized incentives greatly outperform team

incentives when information is scarce.
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Two neighbours may agree to drain a meadow which they possess in common;

because it is easy for them to know each other’s mind; and each must perceive

that the immediate consequence of his failing in his part is the abandoning of the

whole project. But it is very diffi cult, and indeed impossible, that a thousand

persons should agree in any such action; it being diffi cult for them to concert so

complicated a design, and still more diffi cult for them to execute it; while each

seeks pretext to free himself of the trouble and expense, and would lay the whole

burden on others.

– David Hume, A Treatise of Human Nature

1 Introduction

Hume’s intuition notwithstanding, large groups of individuals often have a remarkable ca-

pacity for cooperation. Large-group cooperation occurs within firms and other organizations

governed by explicit contracts, as well as in long-run relationships where contractual en-

forcement is unavailable (Ostrom, 1990; Ellickson, 1991; Seabright, 2004). In both static

settings with explicit contracts and dynamic settings with informal enforcement, large-group

cooperation typically relies on accurate monitoring of individual agents’actions, together

with sanctions that narrowly target deviators.1 However, the principle that large-group co-

operation requires precise monitoring and personalized sanctions is not clearly expressed in

standard economic models of either static incentive problems (moral hazard in teams, follow-

ing Holmström, 1982) or dynamic ones (repeated games, surveyed by Mailath and Samuelson,

2006). In particular, existing results do not quantify how the “amount”of information needed

to support cooperation depends on the number of agents and the scale of the available in-

centive instruments. Standard models also do not investigate how the relationship between

monitoring precision, group size, and incentive instruments varies depending on whether the

group relies on personalized incentives (e.g., individual bonuses or fines) or team incentives

(e.g., price wars; or, in Hume’s example, “the abandoning of the whole project”).

This paper extends standard models of moral hazard in teams and repeated games by

letting the monitoring structure, the scale of the available incentive instruments (or in the

1Examples include the community resource management settings documented by Ostrom (1990); the
local public goods setting studied by Miguel and Gugerty (2005); and the group lending settings studied by
Karlan (2007) and Feigenberg, Field, and Pande (2013).
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repeated game context, the discount factor), and the size of the group all vary simultane-

ously. These features can vary in a flexible manner: we assume only a uniform upper bound

on the range of the stage game payoffs and a uniform lower bound on the amount of inde-

pendent, player-level “monitoring noise.”Our main results provide necessary and suffi cient

conditions for cooperation as a function of group size, maximum rewards/discounting, and

a measure of monitoring precision. We also establish severe obstacles to cooperation under

team incentives. Notably, personalized incentives greatly outperform team incentives even

when information is scarce, so that precisely monitoring each individual is infeasible. In

sum, we show that large-group cooperation requires precise monitoring and powerful incen-

tive instruments, and that large-group cooperation cannot be based on team incentives for

reasonable parameter values.

We now preview our model and results. We model independent, player-level noise by

assuming that each player i’s action ai stochastically determines an individual outcome xi,

independently across players, and that the distribution of observed signals y depends on the

action profile a = (ai) only through the outcome profile x = (xi).2 As the following example

illustrates, in the absence of noise there may be no tradeoff between group size, monitoring

precision, and discounting or other incentive instruments.

Example 1. Suppose N players repeatedly play a prisoner’s dilemma with a binary

public signal y ∈ {0, 1}, where in each period y = 0 if every player cooperates, and y = 1 if

any player defects. A player’s payoff is the fraction of players who cooperate, less a constant

(independent of N) if she cooperates herself. In this game, each player’s action is pivotal in

determining y when the others cooperate, so the range of values for the discount factor for

which mutual cooperation is a sequential equilibrium outcome is independent of N . Thus, a

single “bit”of information (the binary signal y) can form the basis for cooperation among an

arbitrarily large group of players in a repeated game where the range of stage game payoffs,

the cost of cooperation, and the discount factor are all fixed independent of N .

Now introduce noise. For example, let each player “tremble”in her choice of action with

probability π, independently across players, with π fixed independent of N . Assume that

the distribution of the public signal depends only on the players’realized actions, not their

intended actions. Then a single bit of information can no longer motivate cooperation by

2This setup follows Fudenberg, Levine, and Pesendorfer (1998) and al-Najjar and Smorodinsky (2000,
2001).
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a large group of players for a fixed discount factor. Moreover, a novel implication of the

our results is that the required number of bits of information (e.g., the log of the number of

possible signal realizations) is proportional to N .

Our key technical insight is that the analysis of games with independent noise is facilitated

by basic tools from information theory. Most importantly, we find that a useful measure

of monitoring precision is the channel capacity, C, of the conditional signal distribution

q (Y |X).3 Channel capacity is a standard measure in information theory, which in our context

is defined as the maximum mutual information I (X;Y ) between the profile of individual

outcomes X and the signal Y : that is, the expected reduction in uncertainty about the

outcome profile X that results from observing the signal Y .

Mutual information obeys three elementary inequalities that play important roles in our

theory. First, from the perspective of single-agent moral hazard, the “influence”of a player

i’s action ai on the distribution of the signal Y can be bounded in terms of Iπ(·|a) (Xi;Y ),

the mutual information between player i’s outcome Xi and the signal under the probability

distribution that results when a is played. Specifically, lettingTV (p (·|a′i, a−i) ||p (·|a)) denote

the total variation distance between the signal distributions p (·|a′i, a−i) and p (·|a), and

letting π denote the minimum “noise level”(e.g., the tremble probability in Example 1), it

is straightforward to show that

(TV (p (·|a′i, a−i) ||p (·|a)))
2 ≤ κ (π) Iπ(·|a) (Xi;Y ) , 4 (1)

for some function κ. Inequality (1) is not especially useful for analyzing single-agent moral

hazard problems, but it is useful for analyzing multiagent problems with independent noise.

This is because of a second key inequality:

∑
i

Iπ(·|a) (Xi;Y ) ≤ Iπ(·|a) (X;Y ) ≤ C, (2)

which holds because the individual outcomes Xi are assumed to be independent conditional

on the action profile a. In particular, combining inequalities (1) and (2) bounds the average

3We use capital letters for random variables and lower-case letters for their realizations, so X and Y
denote the (random) outcome profile and signal.

4Inequality (5) in the text also covers the χ2-divergence of p (·|a′i, a−i) from p (·|a), in addition to the TV
distance.
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over players i of the influence of player i’s action ai on the distribution of the signal Y in

terms of the per-capita channel capacity C/N . This simple observation is one of our key

insights. Finally, a third inequality illustrates how our results improve on prior results in the

literature: because the mutual information I (X;Y ) is bounded by the entropy of the signal

Y , which in turn is bounded by the log of the number of possible signal realizations, log |Y|,
we have

C ≤ log |Y| . (3)

Inequality (3) implies that bounds on the players’incentives in terms of channel capacity im-

mediately imply corresponding bounds in terms of the number of possible signal realizations.

This illustrates how our results based on channel capacity improve on prior results based on

the number of possible signal realizations, especially the results of Fudenberg, Levine, and

Pesendorfer (1998) and al-Najjar and Smorodinsky (2000, 2001), which we discuss below.

Turning to our results, we begin by considering static moral hazard in teams problems

with many agents, independent noise, limited liability, and an exogenous upper bound on

rewards, w̄. Our first result (Theorem 1) shows that if w̄2C/N– the product of the square of

the maximum reward w̄ and the per-capita channel capacity C/N– is small, then cooperation

is impossible: all implementable outcomes are consistent with approximately myopic play.

This shows that cooperation in a large team requires large rewards and/or precise monitoring.

Moreover, our second result (Proposition 1) shows that Theorem 1 is tight, in that if w̄2C/N

is large then cooperation is possible in some games.

We then restrict attention to team contracts, where incentives are provided collectively, in

that the players’rewards are co-linear. This restriction makes a bang-bang reward structure

optimal, so increasing C beyond log (2) (i.e., one bit) is no longer valuable. More importantly,

we show that the per-capita expected cost of motivating cooperation with a team contract

explodes withN , unless the maximum reward w̄ is exponentially large relative toN (Theorem

2). The intuition is that the optimal team contract is a tail test, where the players are all paid

w̄ if the number of “good”outcomes xi exceeds a threshold n∗ (and are all paid 0 otherwise).

It can then be shown that the ratio of the probability that one player’s action is pivotal for

the tail test and the probability that the test is passed converges to zero as N →∞, unless
these probabilities are both very close to zero. But a tail test where the pivot probability is

very close to zero provides only small incentives, unless w̄ is very large. Thus, with limited

liability and maximum rewards that are not exceedingly large, team incentives are much less
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cost-effective than personalized incentives, even if information is scarce. This result provides

a novel rationalization for the use of personalized incentive schemes.

We then turn to repeated games. Here, we ask questions analogous to those in the static

model, but with equilibrium continuation payoffs replacing exogenous, bounded rewards.

Our first result here (Theorem 3) shows that cooperation is impossible if (1− δ)−1C/N is

small: that is, if the per-capita channel capacity C/N is much smaller than the discount

rate 1− δ. This impossibility result for cooperation in a repeated game with a discount rate
of 1 − δ is the same as that in a static game with a maximum reward of w̄ = (1− δ)−1/2,

whereas naïve intuition would suggest that the maximum reward in a repeated game is

(1− δ)−1. Theorem 3 builds on a general necessary condition for cooperation in repeated

games that we establish in a companion paper (Sugaya and Wolitzky, 2023; henceforth SW).

Compared to that result, the key difference is that here we assume independent noise, which

allows a connection between the main information measure in SW (the χ2-divergence of

the signal distribution following a deviation from the equilibrium signal distribution) and

channel capacity.

In the online appendix, we show that the relationship among N , δ, and C in Theorem 3

is tight up to a log (N) factor. This entails establishing a “folk theorem”in a setting where

the discount factor, monitoring structure, and stage game (including the number of players

N) all vary simultaneously.

Our final result (Theorem 4) considers the consequences of restricting attention to team

incentives in repeated games. In a repeated game, a team equilibrium is one where all

on-equilibrium-path continuation payoff vectors are co-linear. When the stage game is sym-

metric and continuation payoff vectors lie on the 45◦ line, team equilibria reduce to strongly

symmetric equilibria, which are a standard model of collusion through the threat of price

wars (Green and Porter, 1984; Abreu, Pearce, and Stacchetti, 1986; Athey, Bagwell, and

Sanchirico, 2004). Here, we show that cooperation in a team equilibrium is impossible, un-

less (1− δ)−1 is exponentially large relative to N . This theorem is analogous to Theorem 2 in

the static context, except that Theorem 2 concludes that supporting cooperation in a team

equilibrium is extremely costly, whereas Theorem 4 concludes that it is impossible. This

difference arises because the expected rewards required to support cooperation in Theorem

2 are too large to deliver as continuation payoffs in a repeated game.5

5It is well-known that strongly symmetric equilibria are typically less effi cient than general perfect public
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1.1 Related Literature

This paper contributes to the literatures on static moral hazard in teams problems and

repeated games. The closest papers concern repeated games. Here, prior research has

established folk theorems in the δ → 1 limit for fixed N , as well as “anti-folk”theorems in

the N →∞ limit for fixed δ, but has not considered the case where N and δ vary together.

The closest paper is our companion work, SW. That paper establishes general necessary

and suffi cient conditions for cooperation in repeated games as a function of discounting and

monitoring precision. Relative to SW, the current paper introduces two features specific to

large-population games: independent noise and the possibility that N varies together with

discounting and monitoring. Independent noise is crucial for all of our results, while letting

N vary with discounting and monitoring is the key novelty in our folk theorem (Theorem 5

in the online appendix).

Other than those in SW, the most relevant prior results are those of Fudenberg, Levine,

and Pesendorfer (1998), al-Najjar and Smorodinsky (2000, 2001), and Awaya and Krishna

(2016, 2019). Following earlier work by Green (1980) and Sabourian (1990), these papers

establish conditions under which play in a repeated game is approximately myopic asN →∞
for fixed δ.6 These conditions can be adapted to the case where N , δ, and monitoring vary

together, but the results so obtained are weaker than ours (and are not tight up to log

terms). As we explain in Section 4.2, the key difference is that prior results rely on bounds

on the strength of players’incentives with a worse order in the discount rate than that given

in SW. In sum, prior work has established anti-folk theorems as N → ∞ for fixed δ, while

our paper tightly (up to log terms) characterizes the tradeoff among N , δ, and monitoring

that is required for supporting cooperation.7

Since the monitoring structure varies with δ in our model, we also relate to repeated

games with frequent actions, where the monitoring structure varies with δ in a particular,

equilibria in repeated games. Theorem 4 instead shows that the relationship between N and δ required for
any non-trivial incentive provision differs dramatically between strongly symmetric (more generally, linear)
equilibria and general ones.

6Pai, Roth, and Ullman (2014) establish another, similar anti-folk theorem. Awaya and Krishna instead
establish conditions under which cheap talk is valuable. Green and Sabourian’s papers impose a continu-
ity condition on the mapping from action distributions to signal distributions. Continuity is implied by
independent noise.

7Farther afield, there is also work suggesting that repeated game cooperation is harder to sustain in
larger groups based on evolutionary models (Boyd and Richerson, 1988), simulations (Bowles and Gintis,
2011; Chapter 4), and experiments (Camera, Casari, and Bigoni, 2013).
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parametric manner (e.g., Abreu, Milgrom, and Pearce, 1991; Fudenberg and Levine, 2007,

2009; Sannikov and Skrzypacz, 2007, 2010). The most relevant results here are Sannikov

and Skrzypacz’s (2007) theorem on the impossibility of collusion with frequent actions and

Brownian noise, as well as a related result by Fudenberg and Levine (2007). These results

relate to our impossibility theorem for team equilibrium (Theorem 4), as we explain in

Section 4.3.

Most of the literature on static moral hazard in teams, following Alchian and Demsetz

(1972) and Holmström (1982), does not focus on settings with a large number of agents. An

exception is a set of papers that consider the implications of limited managerial attention

for team size and organizational structure. For example, Calvo and Wellisz (1978) and Qian

(1994) model the “span of control”of a manager in an organizational hierarchy as the number

of immediate subordinates that she can monitor or control. Our results suggest an interpre-

tation of the span of control in terms of information: by Theorem 1, the maximum number

of subordinates that a manager can motivate with any contract with bounded rewards is

proportional to the number of bits of information about the subordinates’performance that

the manager can acquire and process. This connection could perhaps be pursued in future

research.

Finally, we are not aware of prior papers that employ entropy methods in static moral

hazard problems. In repeated games, entropy methods have been used to study issues

including complexity and bounded recall (Neyman and Okada, 1999, 2000; Hellman and

Peretz, 2020), communication (Gossner, Hernández, and Neyman, 2006), and reputation

effects (Gossner, 2011; Ekmekci, Gossner, and Wilson, 2011; Faingold, 2020). However,

other than sharing a reliance on entropy methods, these papers are not very related to ours.

2 Moral Hazard in Large Teams

We first consider static multiagent moral hazard problems with independent noise, limited

liability, and bounded rewards.

The Game. There is a finite set of players I = {1, . . . , N}, a finite product set of actions
A = ×i∈IAi, and a payoff function ui : A →R for each i ∈ I. We assume that |Ai| ≥ 2 for

all i, and denote the range of player i’s payoff function by ūi = maxa,a′ ui (a) − ui (a′). For
any ū > 0, we say that payoffs are ū-bounded if ūi ≤ ū for all i.
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Figure 1: The noise structure (π,X ) and the outcome monitoring structure (q,Y) jointly
determine the action monitoring structure (p,Y).

Noise. There is a finite product set of outcome profiles X = ×i∈IXi, where Xi is
the set of individual outcomes for player i. When player i takes action ai, her individual

outcome xi ∈ Xi is drawn from a probability distribution πi (·|ai) ∈ ∆ (Xi). When action
profile a ∈A is played, the outcome profile x ∈X is drawn from the product distribution

π (·|a) = ×iπi (·|ai). We call the pair (X , π) a noise structure. Let πi = minai,xi πi (xi|ai)
and assume that mini πi > 0. For any π > 0, we say that noise is π-bounded if πi ≥ π for all

i. Note that if noise is π-bounded then |Xi| ≤ 1/π for all i. We assume that |Xi| ≥ 2 for at

least one player i, which implies that noise can be π-bounded only for π ≤ 1/2.

A simple example of a noise structure arises when there is independent noise in the

execution of the players’actions, so that ai is player i’s intended action and xi is her realized

action. In this case, X = A and πi (a′i|ai) is the probability that player i “trembles”to a′i
when she intends to take ai.

Monitoring. An outcome monitoring structure (Y , q) consists of a finite set of possible
signal realizations Y and a conditional probability distribution q (·|x) ∈ ∆ (Y) for each

outcome profile x. The signal distribution thus depends only on the outcome profile and

not directly on the action profile. In other words, if we view the action profile, the outcome

profile, and the signal as random variables A, X, and Y , they form a Markov chain A →
X → Y .

Given an outcome monitoring structure (Y , q), we denote the probability of signal profile
y at action profile a by p (y|a) =

∑
x π (x|a) q (y|x). We refer to the pair (Y , p) as the action

monitoring structure induced by (X , π,Y , q). Without loss, we assume that for every y ∈ Y,
there exists x ∈ X such that q (y|x) > 0. Since πi > 0 for each i, this implies that p has full

support: p (y|a) > 0 for all a, y.

Figure 1 summarizes the relationship between the noise structure (X , π), the outcome

monitoring structure (Y , q), and the action monitoring structure (Y , p).
Finally, for any action profile a ∈ A, let ϕa ∈ ∆ (X × Y) denote the joint distribution
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on X × Y when a is played, so that X has distribution π (·|a) and, conditional on each

realization x, Y has distribution q (·|x).

Contracts. A principal specifies contracts for the players and privately recommends

actions. A contract for player i is a function wi : A × Y → R+ specifying a non-negative

reward wi (a, y) for player i when action profile a is recommended and signal y realizes. A

contract is a collection w = (wi). We assume that rewards are w̄-bounded : there exists w̄ > 0

such that wi (a, y) ∈ [0, w̄] for all i, a, y. Thus, the players are protected by limited liability

and there is a maximum feasible reward. A contract is public if it depends only on y, so that

w (a, y) = w (ã, y) for all a, ã, y.

Equilibrium. A manipulation for a player i is a mapping si : Ai → ∆ (Ai). The inter-
pretation is that when player i is recommended ai, she instead plays si (ai). A distribution

over action profiles α ∈ ∆ (A), together with a contract w, is a correlated equilibrium if, for

any player i and manipulation si, we have

∑
a,y

α (a) (ui (a) + p (y|a)wi (a, y)) ≥
∑
a,y

α (a) (ui (si (ai) , a−i) + p (y|si (ai) , a−i)wi (a, y)) .8

A correlated equilibrium (α,w) is public if α ∈
∏

i ∆ (Ai) and w is a public contract. Finally,
the per-capita expected cost incurred by the principal at a correlated equilibrium (α,w) equals

1

N

∑
a,i

α (a) p (y|a)wi (a, y) .

ε-Myopic Play. Player i’s gain from manipulation si at an action profile distribution

α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) .

Thus, the pair (α,w) is a correlated equilibrium if and only if

gi (si, α) ≤
∑
a,y

α (a) (p (y|a)− p (y|si (ai) , a−i))wi (a, y) for all i, si. (4)

Player i’s maximum gain at α ∈ ∆ (A) is ḡi (α) = maxsi:Ai→∆(Ai) gi (si, α). Finally, for any

8Here and throughout, ui and p linearly extend to mixed actions.
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ε > 0, the set of ε-myopic action distributions is

A (ε) =

{
α ∈ ∆ (A) :

1

N

∑
i

ḡi (α) ≤ ε

}
,

and the set of ε-myopic payoff vectors is

V (ε) =
{
v ∈ RN : v = u (α) for some α ∈ A (ε)

}
.

Thus, an action distribution α is ε-myopic if the per-player average deviation gain at α is less

than ε. If the game is symmetric and α is a symmetric distribution, this definition implies

that all players have deviation gains smaller than ε. Otherwise, it allows a few players to

have large gains. In Appendix A, we provide some results comparing V (ε) with the (smaller)

set of payoff vectors that are consistent with all players having small deviation gains.

Mutual Information and Channel Capacity. Given a distribution of outcomes

ξ ∈ ∆ (X ), a standard measure of the informativeness of the signal Y about the outcome X

is the mutual information between the random variables X and Y , defined as

Iξ (X;Y ) =
∑

(x,y)∈X×Y

ξ (x) q (y|x) log

(
q (y|x)∑

x′∈X ξ (x′) q (y|x′)

)
.9

Mutual information measures the expected reduction in uncertainty (entropy) about X that

results from observing Y . The mutual information betweenX and Y is an endogenous object

in our model, as it depends on the distribution ξ of X, which in turn is determined by the

players’actions, a.

Next, denote the set of outcome distributions ξ that can arise for some action distribution

α under noise structure (X , π) by

ϑ =

{
ξ ∈ ∆ (X ) : ∃α ∈ ∆ (A) such that ξ (x) =

∑
a∈A

α (a) π (x|a) for all x ∈ X
}
.

Finally, define the channel capacity of the tuple (X , π,Y , q) as

C = max
ξ∈ϑ

Iξ (X;Y ) .

9In this paper, all logarithms are base e.
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Channel capacity is an exogenous measure of the informativeness of Y about X, as it

is a function of the noise structure (X , π) and the outcome monitoring structure (Y , q).
Channel capacity plays a central role in information theory as the maximum rate at which

information can be transmitted over a noisy channel (Shannon’s channel coding theorem;

Cover and Thomas, 2006, Theorem 7.7.1). Our analysis does not use this theorem; we

only use channel capacity as an exogenous upper bound on mutual information. In turn,

mutual information enters our analysis because it obeys inequalities (1)—(3) displayed in the

introduction. We next explain these inequalities.

Mutual Information Inequalities. Among inequalities (1)—(3), the third one– C ≤
log |Y|– is completely standard: see, e.g., Theorem 2.6.4 of Cover and Thomas (henceforth,

CT). Similarly, if noise is π-bounded then C ≤ −N log π, because |X | =
∏

i |Xi| ≤ 1/πN .

Now consider inequality (1). As condition (4) indicates, the maximum gain gi (si, α)

that player i is willing to forgo in a correlated equilibrium α is related to the expectation

over recommended action profiles a of the “distance” of the signal distribution following

manipulation si, p (·|si (ai) , a−i), from the prescribed signal distribution, p (·|a). We give an

upper bound (generalizing inequality (1)) in terms of the mutual information Iπ(·|a) (Xi;Y )

for two standard notions of this “distance”: the total variation distance,

TV (p (·|a′i, a−i) ||p (·|a)) :=
1

2

∑
y

|p (y|a)− p (y|a′i, a−i)| ,

and the χ2-divergence,

χ2 (p (·|a′i, a−i) ||p (·|a)) :=
∑
y

(p (y|a)− p (y|a′i, a−i))
2

p (y|a)
.

Lemma 1 If noise is π-bounded, then for any a ∈ A, i ∈ I, and a′i ∈ Ai, we have

max
{

(TV (p (·|a′i, a−i) ||p (·|a)))
2
,
π

2
χ2 (p (·|a′i, a−i) ||p (·|a))

}
≤ κ (π) Iπ(·|a) (Xi;Y ) , (5)

where κ (π) = 2 (1− 2π)2 /π.

An intuition for Lemma 1 is that, since player i’s action affects the signal Y only through

the outcome Xi, if a deviation from ai to a′i has a large effect on the distribution of Y ,

11



then Y must provide a large amount of information about Xi. Lemma 1 is related to

standard f-divergence inequalities (Sason and Verdú, 2016), but it differs from standard

results because of the A→ X → Y Markov chain structure of our model and the π-bounded

noise assumption.10 The proof is deferred to the appendix.

We next restate inequality (2) and provide an intuition and proof.

Lemma 2 For any action profile a ∈ A, we have

∑
i

Iπ(·|a) (Xi;Y ) ≤ Iπ(·|a) (X;Y ) ≤ C. (2)

Inequality (2) is where we use the assumption that the Xi are independent conditional

on a. An intuition for the inequality is that if
∑

i I
π(·|a) (Xi;Y ) > Iπ(·|a) (X;Y ) then there is

some redundancy in the information that Y provides about the Xi, which is impossible when

the Xi are conditionally independent. Note that inequality (2) can be strict: for example, if

X1 and X2 are independent Bernoulli (1/2) variables and Y is the parity of their sum, then

I (X1;Y ) = I (X2;Y ) = 0 but I ((X1, X2) ;Y ) > 0.

Proof. We recall some basic concepts from information theory (see, e.g., Chapter 2 of

CT). For any discrete random variable Z with distribution ζ , its entropy is H (Z) =

−
∑

z ζ (z) log ζ (z). For any pair of discrete random variables (Z,Z ′) with joint distribu-

tion ζ, the mutual information I (Z;Z ′) satisfies

I (Z;Z ′) =
∑
z,z′

ζ (z, z′) log

(
ζ (z, z′)

ζ (z) ζ (z′)

)
= H (Z)−H (Z|Z ′) ,

where the conditional entropy H (Z|Z ′) is H (Z|Z ′) = −
∑

z,z′ ζ (z, z′) log ζ (z|z′). We also
recall the independence bound on entropy (CT, Theorem 2.6.6): if Z = (Z1, . . . , ZN) then

H (Z) ≤
∑

iH (Zi), with equality if and only if the Zi are independent.

We now prove inequality (2). Suppressing the superscript π (·|a), we have

∑
i

I (Xi;Y ) =
∑
i

(H (Xi)−H (Xi|Y ))

=
∑
i

H (Xi)−
∑
i

H (Xi|Y ) ≤ H (X)−H (X|Y ) = I (X;Y ) ,

10In turn, Lemma 1 relies on Pinsker’s inequality (CT, Lemma 11.1.1), which states that for any two
probability distributions ζ and ζ ′ on a finite set Z, we have TV

(
ζ||ζ ′

)2 ≤ (1/2)
∑

z ζ (z) log
(
ξ (z) /ξ′ (z)

)
.
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where the inequality follows because, by the independence bound on entropy and inde-

pendence of the Xi, we have H (X) =
∑

iH (Xi) and H (X|Y ) ≤
∑

iH (Xi|Y ). Finally,

I (X;Y ) ≤ C by definition of channel capacity.

3 Cooperation and Non-Cooperation in Moral Hazard

We now present our results on the prospects for cooperation in static multiagent moral

hazard problems. We first allow arbitrary contracts and then consider a restriction to team

contracts, where the agents’rewards are co-linear.

3.1 Arbitrary Contracts

Our first result shows that if the per-capita channel capacity is much smaller than the squared

inverse of the maximum reward, then all correlated equilibria are ε-myopic for small ε. Thus,

cooperation in static moral hazard problems with many agents requires a large amount of

information and/or large rewards.

Theorem 1 Any correlated equilibrium in a multiagent moral hazard problem with N play-

ers, channel capacity C, π-bounded noise, and w̄-bounded rewards is ε-myopic, for

ε =

√
κ (π)

C

N
w̄.

Theorem 1 restricts the set of correlated equilibria when noise is not too small, per-capita

channel capacity is not too large, and maximum rewards is not too large. Conversely, it is

vacuous in the limit where noise is small or the maximum reward is large.11

Theorem 1 is similar to earlier results by Fudenberg, Levine, and Pesendorfer (1998)

and al-Najjar and Smorodinsky (2000, 2001). The key difference is measuring information

by channel capacity rather than the number of possible signal realizations. The approach

of these earlier papers would yield log |Y| in place of
√
C in Theorem 1, which gives a

considerably weaker result as
√
C � C ≤ log |Y|.12

11Since C ≤ −N log π when noise is π-bounded, the per-capita channel capacity C/N cannot be very large
unless noise is small.
12Another related result is Lemma 3 of Sugaya and Wolitzky (2021), which bounds the average influence

of N independent binary random variables on an aggregate signal.
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In addition to yielding a stronger result, information theory also allows a shorter proof.

Proof of Theorem 1. By Lemma 1, for any correlated equilibrium (α,w), any player i,

and any manipulation si, we have

gi (si, α) ≤
∑
a,y

α (a) (p (y|a)− p (y|si (ai) , a−i))wi (a, y)

≤
∑
a

α (a) TV (p (·|si (ai) , a−i) ||p (·|a)) w̄

≤
∑
a

α (a)
√
κ (π) Iπ(·|a) (Xi;Y )w̄.

Theorem 1 follows, as we have

1

N

∑
i

ḡi (α) ≤ 1

N

∑
i

∑
a

α (a)
√
κ (π) Iπ(·|a) (Xi;Y )w̄

≤
√

1

N

∑
i

∑
a

α (a)κ (π) Iπ(·|a) (Xi;Y )w̄

=

√
κ (π)

1

N

∑
a

α (a)
∑
i

Iπ(·|a) (Xi;Y )w̄

≤
√
κ (π)

C

N
w̄,

where the second inequality is by Jensen and the third is by Lemma 2.

We now show that, when per-capita channel capacity is small, Theorem 1 is tight up to

a factor of 3.

Proposition 1 Fix any π > 0. There exists k such that, for any N and C satisfying N/C >

k and any w̄ > 0, there exists a multiagent moral hazard problem with N players, channel

capacity C, π-bounded noise, and w̄-bounded rewards that has a correlated equilibrium that

is not ε-myopic, for

ε =
1

3

√
κ (π)

C

N
w̄. (6)

Note that if we consider a sequence where N →∞ while C/N , π, and w̄ are held fixed,

Proposition 1 implies that not only does an equilibrium that is not ε-myopic exist (for ε

given by (6)), but its per-capita expected cost remains bounded as N → ∞, as this cost
cannot exceed w̄. This will contrast with the situation under a team contract, where we will
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see that the per-capita expected cost of motivating cooperation must explode as N → ∞,
unless the maximum reward w̄ increases exponentially with N .

Proof. As in Example 1, consider anN -player prisoner’s dilemma where the probability that

a player’s individual outcome is a success is 1−π if she cooperates and π if she defects. Divide
the N players into C/ log 2 teams, each of size b(log 2)N/Cc or d(log 2)N/Ce. Suppose that,
for each team, the signal Y reveals whether the number of successes in the team is at least

(1− π) (log 2)N/C (the mean number of successes, modulo rounding): note that the channel

capacity of this signal is at most log (|Y|) = log
(
2C/ log 2

)
= C. Now consider the contract

that, for each team, pays everyone w̄ if the number of successes is at least (1− π) (log 2)N/C

and pays 0 otherwise. By the de Moivre—Laplace Theorem, the probability that a single

success is pivotal is
1 + o (1)√

2ππ (1− π) (log 2)N/C
,

where π = 3.14 . . . and o (1) denotes a function that converges to 0 as N/C → ∞. Thus,
each player’s “incentive strength”(the maximum static gain from defection that the player

is willing to forgo), which equals the pivot probability multiplied by (1− 2π) w̄, is

1− 2π√
2π (1− π) (log 2)

√
C

πN
w̄ (1 + o (1)) =

1√
4 (log 2)π (1− π)

√
κ (π)

C

N
w̄ (1 + o (1)) .

Since π > 0 and
√

4 (log 2)π ≈ 2.95 < 3, for suffi ciently largeN/C this exceeds (1/3)
√
κ (π)C/Nw̄.

3.2 Team Contracts

We now consider the implications of restricting attention to team contracts. A team contract

is a public contract w where the players’ rewards are co-linear: for each player i 6= 1,

there exists a constant bi ∈ R such that, for all signals y, y′, we have wi (y′) − wi (y) =

bi (w1 (y′)− w1 (y)).13 A public equilibrium (α,w) is a team equilibrium if w is a team

contract. Team equilibria model collective incentive schemes, such as equity shares in a

partnership, price wars in an oligopoly, or Hume’s threat of “the abandoning of the whole

project.”

13We allow the possibility that some bi are negative, which can be interpreted as dividing the agents are
divided into two teams with opposing interests.
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We show that, while team contracts can support cooperation under conditions similar

to those in Theorem 1 and Proposition 1, the per-capita expected cost so incurred explodes

with N , unless the maximum payment w̄ is exponentially large relative to N .

Theorem 2 Fix any π > 0 and any sequence of multiagent moral hazard problems with N

players, channel capacity C, π-bounded noise, and w̄-bounded rewards (where N , C, and w̄

vary along the sequence, while π is fixed), with N →∞. The following hold:

1. If N/w̄2 →∞ then, for any ε > 0, eventually all team equilibria are ε-myopic.14

2. If there exists ρ > 0 such that exp (N1−ρ) /w̄ → ∞ then, for any ε > 0 and K > 0,

eventually all team equilibria are either ε-myopic or incur a per-capita expected cost

greater than K.

Unlike Theorem 1 and Proposition 1, Theorem 2 does not depend on channel capacity.

Intuitively, the optimal team equilibrium takes a bang-bang form even when the realized

outcome profile is perfectly observed, so a binary signal that indicates whether or not the

maximum reward should be delivered is as effective as any more informative signal.

The point of Theorem 2 is that general (“personalized”) incentives greatly outperform

team incentives even if monitoring provides only a single bit of information, unless the

maximum reward w̄ is exponentially large relative to N . This point can be illustrated by

comparing two simple incentive schemes in the context of the N -player prisoner’s dilemma,

where the probability that a player’s individual outcome is a success is 1−π if she cooperates
and π if she defects.

First, consider randomly monitoring one agent : at the end of each period, a single random

player is monitored, and is paid w if her outcome is a success and 0 if her outcome is a

failure, while the other players are paid 0. Letting g denote the cost of cooperating, this

scheme (which is not a team contract) supports cooperation if (1− 2π)w/N ≥ g, and

each player’s equilibrium expected reward is (1− π)w/N . Thus, whenever the maximum

reward w̄ exceeds gN/ (1− 2π), randomly monitoring one agent can support cooperation

at a constant per-capita expected cost of g (1− π) / (1− 2π), regardless of the number of

agents N . Intuitively, the probability that a player’s action is pivotal for her reward and

14Here and in all results stated in terms of sequences of games, “eventually”means “for games suffi ciently
far along the sequence.”
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the probability that she is rewarded are both of order 1/N , so incentives can be provided at

bounded cost whenever w̄ is large relative to N .

Next, consider collectively monitoring all agents: there is a threshold number of successes

n∗ such that, at the end of each period, each player is paid w if the number of successes

exceeds n∗, and everyone is paid 0 otherwise.15 We argue that this scheme (which is a team

contract) cannot support cooperation at a bounded per-capita expected cost as N increases,

unless the maximum reward w̄ is exponentially large relative to N .

Observe that, due to independent noise, the distribution of the number of successes n is

approximately normal, with mean (1− π)N and standard deviation
√
π (1− π)N . Denote

the z-score of the threshold number of successes n∗ by z∗ = (n∗ − (1− π)N) /
√
π (1− π)N ,

and let φ and Φ denote the standard normal pdf and cdf. Then each player is willing to

cooperate under the collective monitoring scheme if and only if

(1− 2π)φ (z∗)w√
π (1− π)N

≥ g, (7)

as the LHS of this inequality is the product of w and the probability that a player’s action

is pivotal for the event {n ≥ n∗}, and the RHS is the cost of cooperating. At the same time,
the contract’s per-capita expected cost equals (1− Φ (z∗))w. So, if the per-capita expected

cost equals K, so that w = K/ (1− Φ (z∗)), we can rewrite (7) as

(1− 2π)K√
π (1− π)N

× φ (z∗)

1− Φ (z∗)
≥ g. (8)

Now, if (8) holds with K bounded as N → ∞, the ratio φ (z∗) / (1− Φ (z∗)) must increase

at least linearly with
√
N . However, this ratio is the standard normal Mills ratio, which is

approximately equal to z∗ when z∗ � 0. Thus, z∗ must increase at least linearly with
√
N .

But, since φ (z∗) decreases exponentially with z∗, and thus must decrease exponentially with

N , (7) then implies that w must increase exponentially with N . This argument establishes

that a team contract can support cooperation at a bounded per-capita expected cost only if

the maximum reward is exponentially large relative to N . Intuitively, the probability that

a player’s action is pivotal for the team reward is of order φ (z∗) /
√
N while the probability

15The analysis of such “tail tests”as optimal incentive contracts goes back to Mirrlees (1975). The proof
of Theorem 2 implies that the size of the penalty in a Mirrleesian tail test must increase exponentially with
the variance of the noise. We are not aware of a reference to this point in the literature.
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that the team is rewarded is 1−Φ (z∗), and the former is much smaller than the latter unless

z∗ is large, which is consistent with incentive compatibility only if w̄ is exponentially large.

We also note a converse to Theorem 2: if the maximum reward is exponentially large in

N , cooperation can be supported at a bounded per-capita expected cost by a team contract

with threshold n∗ = N . Under this contract, the agents are only paid in the unlikely event

that all of them succeed.

4 Repeated Games with Many Players

We now turn to repeated games with independent noise. The setting is analogous to the

static multiagent moral hazard problems considered above, but with equilibrium continuation

payoffs replacing contracts.

4.1 Model

We describe our repeated game model and some associated concepts. A repeated game with

independent noise Γ = (I,A, u,X , π,Y , q, δ) is described by a stage game (I,A, u), a noise

structure (X , π), an outcome monitoring structure (Y , q), and a discount factor δ ∈ [0, 1). In

each period t = 1, 2, . . ., (i) the players observe the outcome of a public randomizing device

zt drawn from the uniform distribution over [0, 1], (ii) the players take actions a, (iii) the

outcome x is drawn from distribution π (·|a), and (iv) the signal y is drawn from distribution

q (·|x) and is publicly observed.16 A history hti for player i at the beginning of period t thus

takes the form hti =
(
(zt′ , ai,t′ , yt′)

t−1
t′=1 , zt

)
. A strategy σi for player i maps histories hti to

distributions over actions ai,t. A strategy σi is public if it depends on hti only through the

public history ht =
(
(zt′ , yt′)

t−1
t′=1 , zt

)
. A Nash equilibrium is a strategy profile where each

player’s strategy maximizes her discounted expected payoff. A perfect public equilibrium

(PPE) is a profile of public strategies that, beginning at any period t and any public history

ht, forms a Nash equilibrium from that period on.

A repeated game outcome µ ∈ ∆ ((A×X × Y)∞) (not to be confused with a single profile

of individual outcomes x) is a distribution over infinite paths of actions, individual outcomes,

and signals. Each strategy profile σ induces a unique outcome µ. In turn, each outcome

16It is natural to require that players’realized payoffs depend only on their own actions and the signal.
However, this assumption is not necessary for our analysis.
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µ induces a marginal distribution over period t action profiles αµt ∈ ∆ (A), as well as an

occupation measure over action profiles, defined as

αµ = (1− δ)
∞∑
t=1

δt−1αµt .

Intuitively, the occupation measure captures how the game is played “on average.”Note that

the players’payoffs are determined by the occupation measure, as

(1− δ)
∑
t

δt−1
∑
a

αµt (a)u (a) =
∑
a

(1− δ)
∑
t

δt−1αµt (a)u (a) =
∑
a

αµ (a)u (a) = u (αµ) .

4.2 Non-Cooperation in Repeated Games

The following theorem is the analogue of Theorem 1 for repeated games.

Theorem 3 Any Nash equilibrium occupation measure in a repeated game with N players,

channel capacity C, π-bounded noise, and ū-bounded payoffs is ε-myopic (and hence any

Nash equilibrium payoff vector is ε-myopic), for

ε =

√
2κ (π)

π

δ

1− δ
C

N
ū.

In particular, for any fixed noise level π, if the per-capita channel capacity C/N is much

smaller than the discount rate 1− δ, then equilibrium play (i.e., the equilibrium occupation

measure) is ε-myopic for small ε. Thus, cooperation in a repeated game with many players

requires a large amount of information and/or low discounting.

Theorem 3 is analogous to Theorem 1 with a maximum reward of w̄ = (1− δ)−1/2 ū. This

result may be counterintuitive, as continuation payoffs in a repeated game are weighted by

(1− δ)−1, not (1− δ)−1/2. However, with imperfect monitoring it is impossible to make each

period fully responsible for determining continuation play for the rest of the game, so an

average “incentive strength”of (1− δ)−1 cannot be attained. This last point is formalized

by Theorem 1 of SW, which uses a recursive variance decomposition argument to establish

an incentive strength bound of order (1− δ)−1/2.17 In turn, Theorem 3 follows easily from

17An intuition for Theorem 1 of SW (which holds even with private monitoring) can be seen by considering
a strategy where an agent’s performance is reviewed every T periods, with continuation play determined
by the outcome of the review. For the agent to put weight independent of δ on the outcome of the review,

19



Theorem 1 of SW and Lemmas 1 and 2 of the current paper.18

Proof of Theorem 3. By Theorem 1 of SW, for any Nash equilibrium outcome µ, any

player i, and any manipulation si, we have

gi (si, α
µ) ≤

√
δ

1− δ
∑
a

αµ (a)χ2 (p (·|si (ai) , a−i) ||p (·|a))ū.

Hence, by Lemma 1,

gi (si, α
µ) ≤

√
2κ (π)

π

δ

1− δ
∑
a

αµ (a) Iπ(·|a) (Xi;Y )ū.

Theorem 3 follows, as we have

1

N

∑
i

ḡi (α) ≤ 1

N

∑
i

√
2κ (π)

π

δ

1− δ
∑
a

αµ (a) Iπ(·|a) (Xi;Y )ū

≤
√

1

N

∑
i

2κ (π)

π

δ

1− δ
∑
a

αµ (a) Iπ(·|a) (Xi;Y )ū

=

√
2κ (π)

π

δ

1− δ
1

N

∑
a

αµ (a)
∑
i

Iπ(·|a) (Xi;Y )ū

≤

√
2κ (π)

π

δ

1− δ
C

N
ū,

where the second inequality is by Jensen and the third is by Lemma 2.

Theorem 3 also holds for repeated games with private monitoring. Indeed, the same

result holds for the blind repeated game, where in each period the signal y is observed only

by a mediator (rather than being directly observed by the players themselves), who then

privately recommends actions to the players. This shows that Theorem 3 depends only on

the precision of the signal y (measured by channel capacity), not how information about the

a review must occur every O
(

(1− δ)−1
)
periods, so the standard deviation of the count of each signal

realization over the course of the review is O
(

(1− δ)−1/2
)
, and hence the probability that a single signal

is pivotal for the review is O
(

(1− δ)1/2
)
. Since the gain from deviating in a single period is O (1− δ), the

agent’s “incentive strength”is O
(

(1− δ)1/2
/ (1− δ)

)
= O

(
(1− δ)−1/2

)
.

18A subtle difference between the proofs of Theorems 1 and 3 is that the former uses TV distance, while
the latter uses χ2-divergence. TV distance gives a sharper bound in static games, while χ2-divergence is
required for SW’s recursive approach, which gives a sharper bound in repeated games.
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signal is distributed across the players.19

In large groups, the necessary condition for cooperation implied by Theorem 3– that

(1− δ)N/C is not too large– is easier to satisfy in some classes of repeated games than in

others. For example, if the space of possible signal realizations Y is fixed independently of
N , then, since C ≤ log |Y|, the necessary condition implies that (1− δ)−1 must be at least

proportional to N , which is a restrictive condition. This negative conclusion applies for tra-

ditional applications of repeated games with public monitoring where the signal space is fixed

independent of N , such as when the public signal is the market price facing Cournot com-

petitors, the level of exploitation of a common-pool resource, the output of team production,

or some other aggregate statistic.

However, in other settings C scales linearly with N , so (1− δ)N/C is small whenever

players are patient– regardless of group size. In repeated games with random matching

(Kandori, 1992; Ellison, 1994; Deb, Sugaya, and Wolitzky, 2020), the players match in pairs

each period, and each player observes her partner’s action. In these games, C = N log |Ai|,
so per-capita channel capacity is independent of N . Intuitively, in a random matching

game each player gets a distinct signal of the overall action profile, so the total amount

of information available to society is proportional to N . Similarly, channel capacity scales

linearly with N in public monitoring games where the public signal is a vector that includes

a distinct signal of each player’s action, as in the ratings systems used by online platforms

like eBay and AirBnB. In general, C/N can be expected to be roughly independent of

the population size in settings where players are monitored “separately,”rather than being

monitored jointly through an aggregate statistic.

Remark 1 In applications like Cournot competition, resource exploitation, or team produc-

tion, the signal space may be modeled as a continuum, in which case the cardinality bound

C ≤ log |Y| is vacuous. However, our results extend to the case where Y is a compact metric
space and there exists another compact metric space Z and a function fN : XN → Z (which
can vary with N) such that the signal distribution admits a conditional density of the form

qY|Z (y|z), where Y, Z, and qY|Z are fixed independent of N . (For example, in Cournot
competition z is industry output and y is the market price, which depends on z and a noise

19For more on blind games, see SW.
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term with variance fixed independent of N .) In this case,

C = max
ξ∈ϑ

∫
y∈Y

∑
x∈X

ξ (x) qY|Z
(
y|fN (x)

)
log

(
qY|Z

(
y|fN (x)

)∑
x′∈X ξ (x′) qY|Z (y|fN (x′))

)
,

which is bounded by

C̄ = max
qZ∈∆(Z)

∫
y∈Y

∫
z∈Z

qZ (z) qY|Z (y|z) log

(
qY|Z (y|z)∫

z′∈Z qZ (z′) qY|Z (y|z′)

)
.

Since C̄ is independent of N , it follows that C is bounded independent of N .

Theorem 3 can be compared to prior results by Fudenberg, Levine, and Pesendorfer

(1998), al-Najjar and Smorodinsky (2000, 2001), and Pai, Roth, and Ullman (2014), which

establish anti-folk theorems as N →∞ for fixed δ. When N and δ vary together, the argu-

ments in these papers can be used to show that cooperation is impossible if (1− δ)2N →∞.
The same result can also be obtained by directly applying Theorem 1 with w̄ = (1− δ)−1 ū,

as continuation payoffs in a repeated game are weighted by (1− δ)−1. In contrast, Theorem

3 gives the qualitatively stronger result that cooperation is impossible if (1− δ)N → ∞.
The improvement comes from applying Theorem 1 of SW, which bounds incentive strength

by a multiple of (1− δ)−1/2, rather than (1− δ)−1.

Indeed, the bound in Theorem 3 is essentially the best possible. To show this, in the

online appendix we establish a folk theorem in a setting where the discount factor, monitoring

structure, and stage game (including the number of players N) all vary simultaneously. The

theorem has the following corollary.

Corollary 1 For any ε > 0, there exists a sequence of repeated games with public moni-

toring with N players, channel capacity C, π-bounded noise, and ū-bounded payoffs (where

N , δ, and C vary along the sequence, while π and ū are fixed), satisfying N → ∞ and

(1− δ)N log (N) /C → 0, and a corresponding sequence of Nash equilibria that, eventually,

are not ε-myopic.

As Theorem 3 shows that, for any ε > 0, all equilibria are eventually ε-myopic along any

sequence of repeated games where (1− δ)N/C →∞, Corollary 1 implies that Theorem 3 is
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tight up to a factor of logN .20

4.3 Team Equilibria

Finally, we consider the consequences of restricting to collective incentives in repeated games.

A team equilibrium is a PPE where the players’continuation payoffs at all public histories

are co-linear: for each player i 6= 1, there exists a constant bi ∈ R such that, for all public
histories h, h′, we have ωi (h′) − ωi (h) = bi (ω1 (h′)− ω1 (h)), where ωi (h) denotes player

i’s equilibrium continuation payoff at history h. This notion generalizes that of strongly

symmetric equilibrium (SSE) in symmetric games, where bi = 1 for all i.

Our result for team equilibria is as follows.

Theorem 4 Fix any π > 0 and any sequence of repeated games with public monitoring with

N players, channel capacity C, π-bounded noise, and ū-bounded rewards (where N , δ, C,

and ū vary along the sequence, while π is fixed), with N → ∞. If there exists ρ > 0 such

that (1− δ) exp (N1−ρ) /ū → ∞ then, for any ε > 0, eventually all team equilibrium payoff

vectors are ε-myopic.

Theorem 4 is the repeated game analogue of Theorem 2. The main difference between

these results is that unbounded per-capita expected rewards cannot be delivered as contin-

uation payoffs in a repeated game. Hence, whereas Theorem 2 allows the possibility that

cooperation can be motivated at an unbounded per-capita cost in static moral hazard prob-

lems where exp (N1−ρ) /w̄ →∞, Theorem 4 shows that cooperation cannot be motivated at
all in repeated games where (1− δ) exp (N1−ρ) /ū → ∞. To see the logic, note that player
i’s continuation payoff at history h in a repeated game is given by

ωi (h) = (1− δ)ui (a (h)) + δE [ωi (h, y)] ,

where a (h) is the equilibrium action profile at period h (assumed to be pure to ease notation)

and ωi (h, y) is player i’s next-period continuation payoff following signal realization y. The

20While the relationship among N , δ, and C in Theorem 3 is tight, the extra π−1 term in Theorem 3 (as
compared to Theorem 1) is unnecessary: it can be shown that Theorem 3 remains valid when κ (π) /π is
replaced by 2κ (π). The proof of this stronger version of Theorem 3 is more intricate, and we omit it.
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analogue of player i’s static reward upon signal realization y is then

Wi (y) :=
δ

1− δ (ωi (h, y)− ωi (h)) ,

as with this definition player i chooses her current-period action ai to maximize

ui (ai, a−i (h)) + E [Wi (y)] = ui (ai, a−i (h)) +
δ

1− δE [ωi (h, y)]− δ

1− δωi (h) ,

where the last term is a constant independent of ai. But note that, since ωi (h) is a feasible

stage game payoff, we have

E [Wi (y)] =
δ

1− δ (E [ωi (h, y)]− ωi (h))

= ωi (h)− ui (α (h)) ∈ [−ū, ū] .

Thus, expected rewards in a repeated game are bounded by the range of the stage game

payoffs, independent of δ. This observation explains the differing conclusions of Theorems 2

and 4.

Theorem 4 is related to Proposition 1 of Sannikov and Skrzypacz (2007), which is an

anti-folk theorem for SSE in a two-player repeated game where actions are observed with

additive, normally distributed noise, with variance proportional to (1− δ)−1.21 As a tail test

is optimal in their setting, the proof of Theorem 4 implies that non-vanishing incentives can

be provided only if (1− δ)−1 increases exponentially with the variance of the noise. Since in

their model (1− δ)−1 increases with variance only linearly, they likewise obtain an anti-folk

theorem. Similarly, Proposition 2 of Fudenberg and Levine (2007) is an anti-folk theorem

in a game with one patient player and a myopic opponent, where the patient player’s action

is observed with additive, normal noise, with variance proportional to (1− δ)−ρ for some
ρ > 0; and their Proposition 3 is a folk theorem when the variance is constant in δ. Theorem

4 suggest that their anti-folk theorem extends whenever variance asymptotically dominates

(− log (1− δ))1/(1−ρ) for some ρ > 0, while their folk theorem extends whenever variance is

asymptotically dominated by (− log (1− δ))1/(1+ρ) for some ρ > 0.

21Their interpretation is that the players change their actions every ∆ units of time, where δ = e−r∆

for fixed r > 0 and variance is inversely proportional to ∆, for example as a consequence of observing the
increments of a Brownian process.
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5 Conclusion

This paper has developed a theory of large-group cooperation in moral hazard problems

and repeated games. Our key assumption is that monitoring is imperfect and respects a

degree of independence across players. Our main results establish necessary and suffi cient

conditions for cooperation in terms of the ratio of the squared inverse of the maximum

feasible reward (in static problems) or the discount rate (in repeated games) and the per-

capita channel capacity of the monitoring structure. We also show that cooperation in a

team equilibrium, where the players’rewards are co-linear, is possible only under much more

stringent conditions. This result demonstrates a sense in which large-group cooperation must

rely on personalized sanctions. Notably, this result holds even when information is scarce,

so that precisely monitoring all players is infeasible.

Our results raise several questions for future theoretical and applied research. On the

theory side, this paper has focused on insuffi cient monitoring precision as an obstacle to

large-group cooperation. In reality, insuffi cient precision coexists with other obstacles to

cooperation, such as decentralized monitoring (as in community enforcement models) and

the possibility that a small fraction of players may be irrational or fail to understand the

equilibrium being played (as in Sugaya and Wolitzky 2020, 2021). Combining these features

may help develop a richer and more realistic perspective on the determinants of large-group

cooperation. We also believe it could be interesting to explore the implications of independent

noise and limited monitoring precision for organizational design, for example the design of

large hierarchies. Finally, another open question is whether some version of our results

survives under an appropriate relaxation of independent noise.

As for applied work, more systematic empirical or experimental evidence on the deter-

minants of large-group cooperation under imperfect monitoring would be valuable.22 For

example, a novel prediction of our paper is that personalized incentive contracts are much

more cost-effective than team contracts in large groups, even when the total amount of avail-

able information about the agents’performance is small. It would be interesting to test this

prediction.

22Camera and Casari (2009) and Duffy and Ochs (2009), among others, run experiments on repeated games
with random matching and private monitoring, i.e., community enforcement. Community enforcement raises
additional issues beyond the ones we focus on, which arise even under public monitoring. Camera, Casari,
and Bigoni (2013) include a treatment with public monitoring, and find that larger groups cooperate less.
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Appendix

A How Large is V (ε)?

Theorems 1 and 3 give conditions under which all equilibrium payoffs lie in the set

V (ε) =

{
v ∈ RN : v = u (α) for some α such that

1

N

∑
i

ḡi (α) ≤ ε

}
.

Payoffs in V (ε) are attained by action distributions where the per-player average deviation

gain is less than ε; however, a few players can have large deviation gains. A more standard

notion of “ε-myopic play” requires that all players’deviations gains are less than ε. The

corresponding payoff vectors are the static ε-correlated equilibrium payoffs, given by

CE (ε) =
{
v ∈ RN : v = u (α) for some α such that ḡi (α) ≤ ε for all i

}
.

Here we compare the sets V (ε) and CE (ε). We first give an example where V (ε) and

CE (ε) are very different (and V (ε) cannot be replaced by CE (ε) in Theorems 1 and 3).

We then give a condition under which maximum per-capita utilitarian welfare
∑

i vi/N in

V (ε) is little greater than that in CE (c
√
ε), for a constant c. Intuitively, V (ε) and CE (ε)

can be very different if incentive constraints bind for only a few players and these players’

actions have large effects on others’payoffs; while maximum utilitarian welfare in V (ε) and

CE (c
√
ε) is similar if each player’s action has only a small effect on every opponent’s payoff.

For an example where V (ε) and CE (ε) differ, consider a “product choice”game where

player 1 is a seller who chooses high or low quality (H or L), and the other N − 1 players

are buyers who choose whether to buy or not (B or D). If the seller takes a1 ∈ {H,L} and
a buyer i takes ai ∈ {B,D}, this buyer’s payoff is given by

1 {ai = B} (−1 + 2× 1 {a1 = H}) ,

while the seller’s payoff is given by

2k

N
− 1 {a1 = H} ,
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where k ∈ {0, 1, . . . , N} is the number of buyers who take B. Suppose also that the players
tremble with independent, uniform noise π ∈ (0, 1/3). Note that in this game the payoff

range is bounded by 3 and noise is bounded by π.

In this game, for any ε > 0, when N is suffi ciently large, we have (H,B, . . . , B) ∈
A (ε), and hence (1, 1, . . . , 1) ∈ V (ε). This follows because the per-player average devi-

ation gain at action profile (H,B, . . . , B) equals 1/N : the seller has a deviation gain of

1, while each buyer has a deviation gain of 0. Thus, Theorems 1 and 3 do not preclude

(1, 1, . . . , 1) (or any convex combination of (1, 1, . . . , 1) and (0, 0, . . . , 0)) as an equilibrium

payoff vector, even when (1− δ)N/C is very large. This is reassuring, because the moni-

toring structure given by perfect monitoring of the seller’s realized action (i.e., Y = {H,L},
q (y|x) = 1 {y = x1}) has channel capacity log 2 and supports the payoff vector (1, . . . , 1) for

all w̄ ≥ 1/ (1− 2π) and all N ≥ 2 in static moral hazard; and supports the payoff vector

((1− 3π) / (1− 2π) , . . . (1− 3π) / (1− 2π)) for all δ ≥ 1/ (2− 3π) and all N ≥ 2 in repeated

games.23 In contrast, the greatest symmetric payoff vector in CE (ε) is (ε, ε, . . . , ε), because

the seller’s deviation gain equals the probability that she takes H.

Intuitively, even though the effi cient action profile (H,B, . . . , B) is not a static ε-correlated

equilibrium, it can be supported with “not very informative”monitoring. The reason is that

only the seller is tempted to deviate at the effi cient action profile, so monitoring one player

suffi ces to support this action profile regardless of the number of buyers.

Next, for any d ∈ (0, ū), say that per-capita externalities are bounded by d if
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤
d/N for all i 6= j, a′j, a. For example, in a repeated random matching game, d can be taken

as the maximum impact of a player’s action on her partner’s payoff, which is independent

of N . In contrast, in the product choice game, per-capita externalities cannot be bounded

uniformly in N , because the seller exerts an externality of 2 on each buyer who purchases.

In games with bounded per-capita externalities, any level of per-capita utilitarian welfare

that is atttainable in V (ε) can also be approximated in CE
(√

8dε
)
.

Proposition 2 Assume that per-capita externalities are bounded by d. Then, for any ε ∈
23This is a standard calculation, which results from considering “tolerant trigger strategies”that prescribe

Nash reversion with probability φ when y = L. The smallest value of φ that induces the seller to take H is
given by φ = (1− δ) / (δ − 3δπ), and substituting this into the value recursion v = (1− δ) (1) + δ (1− πφ) v
yields v = (1− 3π) / (1− 2π).
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(0, 2d) and any v ∈ V (ε), there exists v′ ∈ CE
(√

8dε
)
such that

∣∣∣∣∣ 1

N

∑
i

(vi − v′i)
∣∣∣∣∣ ≤

√
2ε

d
ū.

Proof. We establish the stronger conclusion that, for any v ∈ V (ε) and any c ≥
√

8d/ε,

there exists v′ ∈ CE (cε) such that |
∑

i (vi − v′i) /N | ≤ 4ū/c. (The stated conclusion follows

by taking c =
√

8d/ε.) Fix ε ∈ (0, d) and α ∈ A (ε). Let J = {i : ḡi (α) > cε/2}, and note
that |J | ≤ 2N/c. Let α̃ ∈ ∆ (A) be an action distribution that has the same marginal on

AI\J as α and that satisfies ḡi (α̃) ≤ cε for all i ∈ J : for example, take a Nash equilibrium
in the game among the players in J where the action distribution among the players in I\J
is held fixed. Since

∣∣ui (a′j, a−j)− ui (a)
∣∣ ≤ d/N for all i 6= j, a′j, a, and the actions of at

most 2N/c players differ between α̃ and α, we have ḡi (α̃) ≤ ḡi (α) + 4d/c for each i ∈ I\J .
Since ḡi (α) ≤ cε/2 (as i ∈ I\J) and 4d/c ≤ cε/2 (as c ≥

√
8d/ε), we have ḡi (α̃) ≤ cε.

Since we also assumed that ḡi (α̃) ≤ cε for all i ∈ J , we have ḡi (α̃) ≤ cε for all i ∈ I, and
hence u (α̃) ∈ CE (cε). Finally, since the actions of at most 2N/c players differ between α̃

and α, we have |ui (α̃)− ui (α)| ≤ 2d/c ≤ 2ū/c for all i ∈ I\J , and by definition of ū we
have |ui (α̃)− ui (α)| ≤ ū for all i ∈ J . Since c > 2 (as ε < 2d) and |J | ≤ 2N/c, we have∣∣∑

i∈I (ui (α̃)− ui (α))
∣∣ ≤ (N − 2N/c) 2ū/c+ (2N/c) ū ≤ 4Nū/c.

B Proof of Lemma 1

We first show that

TV (p (·|a′i, a−i) ||p (·|a))
2 ≤ κ (π) Iπ(·|a) (Xi;Y ) . (9)
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Let Y+ = {y : p (y|a) ≥ p (y|a′i, a−i)}, so that TV(p (·|a′i, a−i) ||p (·|a)) = p (Y+|a)−p (Y+|a′i, a−i),
and let X+

i = {xi : πi (xi|ai) ≥ πi (xi|a′i)}. For any a, i, and a′i, we have

TV (p (·|a′i, a−i) ||p (·|a))

=
∑
xi

(πi (xi|ai)− πi (xi|a′i))ϕa
(
Y+|xi

)
=

∑
xi

(πi (xi|ai)− πi (xi|a′i))
(
ϕa
(
Y+|xi

)
− ϕa

(
Y+
))

≤
(
πi
(
X+
i |ai

)
− πi

(
X+
i |a′i

))(
max
xi

(
ϕa
(
Y+|xi

)
− ϕa

(
Y+
))
−min

xi

(
ϕa
(
Y+|xi

)
− ϕa

(
Y+
)))

≤ (1− 2π)

(
max
xi

(
ϕa
(
Y+|xi

)
− ϕa

(
Y+
))
−min

xi

(
ϕa
(
Y+|xi

)
− ϕa

(
Y+
)))

, (10)

where first equality holds because ϕa (Y+|xi) = ϕa
′
i,a−i (Y+|xi), and the second inequality

holds because πi
(
X+
i |ai

)
≤ 1− π and πi

(
X+
i |a′i

)
≥ π. Next, for any xi, we have

ϕa
(
Y+|xi

)
− ϕa

(
Y+
)
≤

√√√√1

2

∑
y

ϕa (y|xi) log

(
ϕa (y|xi)
ϕa (y)

)

=

√√√√ 1

2πi (xi|ai)
∑
y

ϕa (xi, y) log

(
ϕa (xi, y)

ϕa (xi)ϕa (y)

)

≤

√√√√ 1

2π

∑
x′i,y

ϕa (x′i, y) log

(
ϕa (x′i, y)

ϕa (x′i)ϕ
a (y)

)
=

√
Iπ(·|a) (Xi;Y )

2π
,

where the first inequality is by Pinsker; the second inequality holds because, for each x′i,

πi (x
′
i|ai) ≥ π and

∑
y

ϕa (x′i, y) log

(
ϕa (x′i, y)

ϕa (x′i)ϕ
a (y)

)
=

1

ϕa (x′i)

∑
y

ϕa (y|x′i) log

(
ϕa (y|x′i)
ϕa (y)

)
≥ 0,

by the information inequality (CT, Theorem 2.6.3); and the last equality is by the definition

of mutual information. Hence, maxxi (ϕa (Y+|xi)− ϕa (Y+)) ≤
√
Iπ(·|a) (Xi;Y ) /2π, and,

similarly, minxi (ϕa (Y+|xi)− ϕa (Y+)) ≥ −
√
Iπ(·|a) (Xi;Y ) /2π. Substituting these inequal-

ities in (10) and squaring both sides establishes inequality (9).
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We next show that

χ2 (p (·|a′i, a−i) ||p (·|a)) ≤ 2κ (π)

π
Iπ(·|a) (Xi;Y ) .

For any xi ∈ Xi and y ∈ Y, we have ϕa (xi, y) = πi (xi|ai)ϕa (y|xi) = p (y|a)ϕa (xi|y). Hence,

since πi (xi|ai) ≥ π, we have

(ϕa (y|xi)− p (y|a))2 =

(
p (y|a)

πi (xi|ai)
(ϕa (xi|y)− πi (xi|ai))

)2

≤
(
p (y|a)

π
(ϕa (xi|y)− πi (xi|ai))

)2

.

(11)

Now, for any a, i, and a′i, we have

χ2 (p (·|a′i, a−i) ||p (·|a)) =
∑
y

(∑
xi

(πi (xi|ai)− π (xi|a′i))ϕa (y|xi)
)2

p (y|a)

=
∑
y

(∑
xi

(πi (xi|ai)− πi (xi|a′i)) (ϕa (y|xi)− p (y|a))
)2

p (y|a)

≤
∑
xi

(πi (xi|ai)− πi (xi|a′i))
2
∑
y

∑
xi

(ϕa (y|xi)− p (y|a))2

p (y|a)

≤ 2 (1− 2π)2

π2

∑
y

p (y|a)
∑
xi

(ϕa (xi|y)− πi (xi|ai))2 ,

≤ 4 (1− 2π)2

π2

∑
y

p (y|a)
∑
xi

ϕa (xi|y) log

(
ϕa (xi|y)

πi (xi|ai)

)
=

2κ (π)

π
Iπ(·|a) (Xi;Y ) ,

where the first inequality follows by Cauchy-Schwarz; the second follows by (11) and

∑
xi

(πi (xi|ai)− πi (xi|a′i))
2 ≤

(πi (X+|ai)− πi (X+|a′i))
2

+ (πi (X\X+|ai)− πi (X\X+|a′i))
2
≤ 2 (1− 2π)2 ;

and the third follows by Pinsker.
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C Proof of Theorem 2

Fix a team equilibrium (α,w) with coeffi cients (b1, b2, . . . , bN), where (without loss) |bi| ≤ 1

for all i. Let w (y) = w1 (y). For any player i with bi ≥ 0 and any manipulation si, we have

gi (si, α) ≤
∑
r

α (r)
∑
y

(p (y|r)− p (y|si (ri) , r−i)) biw (y)

≤
∑
r

α (r)
∑
y

max
ai

(p (y|r)− p (y|ai, r−i))w (y) .

Since a symmetric inequality holds for players with bi < 0, and w (y) ∈ [0, w̄] for all y,

we see that
∑

i ḡi (α) /N is bounded by the solution to the following program, which is

parameterized by N , w̄, and π:

max
(X ,π),(Y,q),r,a,w

2

N

∑
i

∑
y

(p (y|r)− p (y|ai, r−i))w (y) s.t.

p (y|ã) =
∑
x

(∏
i

πi (xi|ãi)
)
q (y|x) for all y, ã,

πi (xi|ãi) ≥ π for all i, xi, ãi,

w (y) ∈ [0, w̄] for all y.

To prove the first statement in the theorem, we show that, for any π > 0, the value of this

program converges to 0 along any sequence (N, w̄) where min {N,N/w̄2} → ∞. To prove the
second statement, we show that, for any π > 0 and ρ > 0, the value of this program with the

additional constraint
∑

y p (y|r)w (y) ≤ K converges to 0 along any sequence (N, w̄) where

min {N, exp (N1−ρ) /w̄} → ∞ (and, hence, any team equilibrium that incurs a per-capita

expected cost of at most K must be ε-myopic for small ε).

The following lemma establishes that the solution is a tail test (with or without the

additional constraint
∑

y p (y|r)w (y) ≤ K).

Lemma 3 The above program is solved by a tail test, where Y = X = A = {0, 1}N ; q (y|x) =

1 {y = x} for all y, x; ri 6= ai for all i; πi (ri|ri) = 1− π and πi (ai|ri) = π for all i, ri 6= ai;

and, letting n = |{i : yi = ri}|,

w (y) = 1 {n ≥ (1− π)N} w̄.
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Moreover, the program with the additional constraint
∑

y p (y|r)w (y) ≤ K is also solved

by a tail test, where now

w (y) =


w̄ if n > n∗,

βw̄ if n = n∗,

0 if n < n∗,

for some n∗ ∈ {0, 1, . . . , N} (not necessarily equal to (1− π)N) and β ∈ [0, 1].

We prove Lemma 3 in the next subsection. Lemma 3 implies that the value of the program

without the constraint
∑

y p (y|r)w (y) ≤ K is

2 (1− 2π)

(
N − 1

(1− π)N − 1

)
(1− π)(1−π)N−1 ππN w̄.

This equals 2 (1− 2π) w̄ times the maximum of theBinomial (N − 1, 1− π) probability mass

function. The first statement in the theorem follows as the latter quantity is proportional to

N−1/2, by the De Moivre-Laplace theorem.

For the second statement, by Lemma 3, the program becomes

max
n∗∈{0,1,...,N},β∈[0,1]

2w̄ (1− 2π) (β Pr (n−i = n∗ − 1) + (1− β) Pr (n−i = n∗))

s.t. β Pr (n = n∗) + Pr (n ≥ n∗ + 1) ≤ K

w̄
,

where n−i = |{j 6= i : yj = rj}| and the probabilities are binomial with parameter 1 − π.

We show that, for any ρ > 0, there exist c0, c1 > 0 such that, for each N , the value of the

program is at most

max
{

2w̄ exp
(
−c0N

1−ρ) , c1N
−ρ/2K

}
.

This completes the proof, as if K is fixed and min {N, exp (N1−ρ) /w̄} → ∞ then both terms

go to 0.

We bound the program separately for n∗ such that |n∗ − (1− π)N | > N1−ρ/2 and n∗

such that |n∗ − (1− π)N | ≤ N1−ρ/2. In the first case, by Hoeffding’s inequality, there exists

c0 > 0 such that

min {Pr (n−i ≥ n∗ − 1) ,Pr (n−i ≤ n∗)} ≤ exp
(
−c0N

1−ρ) .
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Since the value of the program is at most 2w̄min {Pr (n−i ≥ n∗ − 1) ,Pr (n−i ≤ n∗)}, this
gives the desired bound when |n∗ − (1− π)N | > N1−ρ/2.

For the second case, the value of the program is at most

2w̄
β Pr (n−i = n∗ − 1) + (1− β) Pr (n−i = n∗)

β Pr (n = n∗) + Pr (n ≥ n∗ + 1)

K

w̄

≤ 2
(β Pr (n−i = n∗ − 1) + (1− β) Pr (n−i = n∗))

β Pr (n ≥ n∗) + (1− β) Pr (n ≥ n∗ + 1)
K

≤ 2

(
Pr (n−i = n∗ − 1)

Pr (n ≥ n∗)
+

Pr (n−i = n∗)

Pr (n ≥ n∗ + 1)

)
K.

By McKay (1989, Theorem 2), for any m ≥ (1− π)N , we have

Pr (n ≥ m) ≥
√
Nπ (1− π) Pr (n−i = m− 1)

1− Φ
(

(m− πN) /
√
Nπ (1− π)

)
φ
(

(m− πN) /
√
Nπ (1− π)

) .

If (1− π)N ≤ n∗ ≤ (1− π)N + N1−ρ/2, applying this inequality for m ∈ {n∗, n∗ + 1},
together with the inverse Mills ratio inequality (1− Φ (x)) /φ (x) ≥ 1/ (1 + x), we have

Pr (n−i = n∗ − 1|r−i)
Pr (n ≥ n∗|r) +

Pr (n−i = n∗|r−i)
Pr (n ≥ n∗ + 1|r) ≤ 2

1√
Nπ (1− π)

(
n∗ + 1− πN√
Nπ (1− π)

+ 1

)

≤ 2

(
N−ρ/2√
π (1− π)

+
1

Nπ (1− π)
+

1√
Nπ (1− π)

)
.

Thus, there exists c1 > 0 such that the value of the program is at most c1N
−ρ/2K. Symmet-

rically, the same bound applies when (1− π)N −N1−ρ/2 ≤ n∗ ≤ (1− π)N .

C.1 Proof of Lemma 3

First, consider the sub-program where (X , π,Y , q) is fixed, so the objective is maximized
over (r, a, w). By Blackwell’s theorem, the value of the sub-program with signal distribution

p is greater than that with signal distribution p̂, if p̂ is a garbling of p. (That is, viewing p

and p̂ as |Y|× |A| matrices, there is a |Y| × |Y| Markov matrix M such that p̂ = Mp.) For

any noise structure (X , π), the action monitoring structure (Y , p) induced by any outcome
monitoring structure (Y , q) is clearly a garbling of that induced by the outcome monitoring
structure where Y = X and q (y|x) = 1 {y = x} for all y, x, so that p (y|a) = π (y|a) for all
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y, a. It is thus without loss to focus on this (Y , q).
In addition, if we let X = A and, for each r, a ∈ A and i, let

π̄i (yi|ri) =


1− π if yi = ri,

π if yi = ai,

0 otherwise,

π̄i (yi|ai) =


1− π if yi = ai,

π if yi = ri,

0 otherwise,

and π̄i (yi|ãi) = 1 {yi = ãi} for ãi /∈ {ai, ri} ,

then πi is a garbling of π̄i for each i, and hence π is a garbling of π̄. To see this, since

π < 1/2, the matrix π̄i is invertible, and the matrix inverse π̄−1
i is given by

π̄−1
i (yi|ri) =


1−π
1−2π

if yi = ri,

− π
1−2π

if yi = ai,

0 otherwise,

π̄−1
i (âi|ai) =


1−π
1−2π

if yi = ai,

− π
1−2π

if yi = ri,

0 otherwise,

and π̄−1
i (yi|ãi) = 1 {yi = ãi} for ãi /∈ {ai, ri} .

We can then calculate the matrix Mi := πiπ̄
−1
i as

Mi (yi|ãi) =


(1−π)πi(yi|ãi)−π(1−πi(yi|ãi))

1−2π
if ãi ∈ {ai, ri} ,

πi (yi|ãi) otherwise,

and note that, for ãi ∈ {ai, ri},

∑
yi

Mi (yi|ãi) =
|Ai| − 1− π
|Ai| − 1− |Ai| π

− (|Ai| − 1)
π

|Ai| − 1−Aπ = 1,

and
∑

yi
Mi (yi|ãi) = 1 for ãi /∈ {ai, ri}; and that, since πi (yi|ãi) ≥ π for all yi, ãi,

(1− π) πi (yi|ãi)− π (1− πi (yi|ãi))
1− 2π

≥ (1− π) π − π (1− π)

|Xi| − 1− |Xi| π
= 0,

and Mi (yi|ãi) ≤ 1 for all yi, ãi. Thus, Mi is a Markov matrix satisfying πi = Miπ̄i.
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It is thus without loss to take (X , π) = (A, π̄). The program then simplifies to

max
r,a,w

2

N

∑
i

∑
y

π̄ (y|r)
(

1− π̄i (yi|ai)
π̄i (yi|ri)

)
w (y) s.t.

w (y) ∈ [0, w̄] for all y.

Here it is without loss to take ai 6= ri for all i, as if ai = ri then the same value can be

attained by taking w (y) independent of yi, at which point ai can then be taken different

from ri without affecting the value. Next, note that, for each y, the objective is increasing

in w (y) (and hence is maximized at w (y) = w̄) if

1

N

∑
i

π̄i (yi|ai)
π̄i (yi|ri)

≤ 1,

and is decreasing in w (y) (maximized at w (y) = 0) otherwise. Finally, since π̄i (ri|ri) =

1− π ≥ π = π̄i (ri|ai) for all i, this inequality holds if and only if |{i : yi = ri}| ≥ (1− π)N .

This proves the first part of the lemma.

Now add the constraint
∑

y p (y|r)w (y) ≤ K. Letting λ ≥ 0 denote the corresponding

multiplier, for each y, the Lagrangian is increasing in w (y) if and only if

1

N

∑
i

π̄i (yi|ai)
π̄i (yi|ri)

≤ 1− λ.

It follows that w (y) takes the prescribed form.

D Proof of Theorem 4

Fix a team equilibrium with coeffi cients b = (1, b2, . . . , bN), where |bi| ≤ 1 for all i. Let

I+ = {i : bi ≥ 0} and I− = {i : bi < 0}. Define

vi =

 infh ωi (h) if i ∈ I+,

suph ωi (h) if i ∈ I−,
and v̄i =

 suph ωi (h) if i ∈ I+,

infh ωi (h) if i ∈ I−.

Since V (ε) is convex, it suffi ces to show that v, v̄ ∈ V (ε), where v = (vi)i∈I and v̄ = (v̄i)i∈I .

In the following lemma, for any α ∈ ∆ (A) and f : A × Y → R, Eα [f (r, y)] denotes
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expectation where r ∼ α and then y ∼ p (·|r), and Eα,a′i [f (r, y)] denotes expectation where

r ∼ α and then y ∼ p (·|a′i, r−i).

Lemma 4 There exist α ∈ ∆ (A) and ω : A× Y →R such that

v̄ = Eα [u (r)− bω (r, y)] ,

Eα [ui (r)− biω (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biω (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i,

ω (r, y) ∈
[
0,

δ

1− δ ū
]

for all r, y,

Eα [ω (r, y)] ≤ ū for all r, y.

Moreover, if the constraints ω (r, y) ∈
[
0, δ

1−δ ū
]
and Eα [ω (r, y)] ≤ ū are replaced by ω (r, y) ∈[

− δ
1−δ ū, 0

]
and Eα [ω (r, y)] ≥ −ū, then the same statement holds with v in place of v̄.

Proof. Let E = {(1− β) v + βv̄ : β ∈ [0, 1]}. By standard arguments, E is self-generating:

for any v ∈ E, there exist α ∈ ∆ (A) and ω : A× Y → E such that

v = Eα [(1− δ)u (r) + δω (r, y)] and

Eα [(1− δ)ui (r) + δωi (r, y) |ri = ai] ≥ Eα,a′i [(1− δ)ui (a′i, r−i) + δωi (r, y) |ri = ai] ,

for all i, ai ∈ suppαi, a
′
i ∈ Ai. Since v ∈ E and ω (r, y) ∈ E for all r, y, we have vi −

ωi (r, y) = bi (v1 − ω1 (r, y)) for all i, r, y. Since v̄1 ≥ v1 for all v ∈ E, if v = v̄ then

ω1 (r, y) ≤ v1 for all r, y. Hence, taking v = v̄ = (1− δ)u (α) + δEα [ω (r, y)] and defining

ω (r, y) = δ
1−δ (v̄1 − ω1 (r, y)), we have ω (r, y) ∈

[
0, δ

1−δ ū
]
and

Eα [|ω (r, y)|] =
δ

1− δE
α [|(1− δ)u1 (α) + δEα [ω1 (r, y)]− ω1 (r, y)|] = δ |u1 (α)− ω1 (r, y)| ≤ ū.

Moreover, we have

Eα [u (r)− bω (r, y)] = Eα
[
u (r)− b δ

1− δ (v̄1 − ω1 (r, y))

]
= u (α)− Eα

[
δ

1− δ (v̄ − ω (r, y))

]
= u (α)− Eα

[
δ

1− δ ((1− δ)u (α) + δEα [ω (r, y)]− ω (r, y))

]
= (1− δ)u (α) + δEα [ω (r, y)] = v,
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and, for all i, ai ∈ suppαi, a
′
i ∈ Ai,

Eα [(1− δ)ui (r) + δωi (r, y) |ri = ai] ≥ Eα,a′i [(1− δ)ui (a′i, r−i) + δωi (r, y) |ri = ai]

⇐⇒

Eα
[
ui (r) +

δ

1− δ (ωi (r, y)− v̄i) |ri = ai

]
≥ Eα,a′i

[
ui (a

′
i, r−i) +

δ

1− δ (ωi (r, y)− v̄i) |ri = ai

]
⇐⇒

Eα [ui (r)− biω (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biω (r, y) |ri = ai] .

Similarly, if v = v then ω1 (r, y) ≥ v1 for all r, y, and the symmetric conclusion holds.

Taking α and ω as in Lemma 4, we see that
∑

i ḡ (α) /N is bounded by the solution to

the program

max
(Y,p),r,a,ω

1

N

∑
i

(
Er [ω (y)]− E(ai,r−i) [ω (y)]

)
s.t.

ω (y) ∈
[
0,

δ

1− δ ū
]

for all y,

Er [ω (y)] ≤ ū.

This is identical to the program in Theorem 2, with w̄ = (δ/ (1− δ)) ū and K = ū. The

result therefore follows from Theorem 2.
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Online Appendix
This appendix establish a folk theorem for repeated games with public, product structure

monitoring where the discount factor, monitoring structure, and stage game (including the
number of players N) vary simultaneously. A consequence is Corollary 1 in the main text,
which implies that the relationship among N , δ, and C in Theorem 3 is tight up to a log (N)
factor.
A monitoring structure (Y , q) has a product structure if there exist sets (Yi)i∈I and

a family of conditional distributions (qi (yi|xi))i,,yii,xi such that Y =
∏

i Yi and q (y|x) =∏
i qi (yi|xi) for all y, x. That is, the public signal y consists of conditionally independent

signals of each player’s individual outcome. Note that if (Y , q) has a product structure, then
so does (Y , p), meaning that there exists a family of conditional distributions (pi (yi|ai))i,,yii,ai
(given by pi (yi|ai) =

∑
xi
πi (xi|ai) qi (yi|xi)) such that p (y|a) =

∏
i pi (yi|ai) for all y, a.

Next, for any η > 0, we say that an action monitoring structure (Y , p) satisfies η-
individual identifiability if

∑
yi:pi(yi|ai)≥η

(pi (yi|ai)− pi (yi|αi))2

pi (yi|ai)
≥ η for all i ∈ I, ai ∈ Ai, αi ∈ ∆ (Ai\ {ai}) . (12)

This condition is a variant of Fudenberg, Levine, and Maskin (1994)’s individual full rank
condition and Kandori and Matsushima’s (1998) assumption (A2”). It says that the influence
on the signal distribution (measured by χ2-divergence) of a deviation from ai to any mixed
action αi supported on Ai\ {ai} is at least η2, ignoring signals that occur with probability
less than η2 under ai. Intuitively, this requires that deviations from ai are detectable, and
that in addition detection does not rest on very rare signal realizations. This assumption
will ensure that players can be incentivized through rewards whose variance and maximum
absolute value are both of order (1− δ) /η.24
Finally, denote the feasible payoff set by F = co

{
{u (a)}a∈A

}
⊆ RN (where co denotes

convex hull). Let F ∗ ⊆ F denote the set of payoff vectors that weakly Pareto-dominate a
payoff vector which is a convex combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F
and there exists a collection of static Nash equilibria (αn) and non-negative weights (βn)
such that v ≥

∑
n βnu (αn) and

∑
n βn = 1. For each v ∈ RN and ε > 0, let Bv (ε) =∏

i [vi − ε, vi + ε] and let B (ε) =
{
v ∈ RN : Bv (ε) ⊆ F ∗

}
. That is, B (ε) is the set of payoff

vectors v ∈ RN such that the cube with center v and side-length 2ε lies entirely within F ∗.
Let E ⊆ RN denote the set of PPE payoff vectors .
We establish the following folk theorem.

Theorem 5 Fix any ū > 0. For any ε > 0, there exists k > 0 such that, for any repeated
game with ū-bounded payoffs and public, product structure monitoring satisfying η-individual
identifiability, where

(1− δ) log (N) < kη, (13)
24If (12) were weakened by taking the sum over all yi (rather than only yi such that pi (yi|ai) ≥ η),

player i could be incentivized by rewards with variance O ((1− δ) /η), but not necessarily with maximum
absolute value O ((1− δ) /η). Our analysis requires controlling both the variance and absolute value of
players’rewards, so we need the stronger condition. We also note that the current definition of η-individual
identifiability coincides with

√
η-individual identifiability in the terminology in SW.
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we have B (ε) ⊆ E.

To prove Corollary 1 from Theorem 5, consider a game where X = A with uniform noise,
so that πi (a′i|ai) = π for all i, ai, a′i 6= ai, and assume that π < (maxi |Ai|+ 1)−1. Suppose
that the outcome monitoring structure (Y , q) is given by η-random monitoring, where in
every period the public signal perfectly reveals each player’s identity and realized individual
outcome with probability η. That is, under η-random monitoring, Yi = Xi ∪ {∅} for all i,
and

qi (yi|xi) =


η if yi = xi,
0 if yi ∈ Xi\ {xi} ,
1− η if yi = ∅,

so that pi (yi|ai) =

{
ηπi (yi|ai) if yi ∈ Xi,
1− η if yi = ∅.

Note that the channel capacity of random monitoring is at most ηN log (maxi |Ai|). In
addition, random monitoring satisfies ηπ-individual identifiability, because, any i, ai, αi, we
have

∑
yi:pi(yi|ai)≥ηπ

(pi (yi|ai)− pi (yi|αi))2

pi (yi|ai)
≥

(
pi (ai|ai)−maxa′i 6=ai pi (ai|a

′
i)
)2

pi (ai|ai)

=
(η (1− (|Ai| − 1) π)− ηπ)2

η (1− (|Ai| − 1) π)

≥ η (1− |Ai| π) ≥ ηπ,

where the last inequality uses π < (maxi |Ai|+ 1)−1. Thus, by Theorem 5, η-random moni-
toring is a monitoring structure with channel capacity at most C = ηN log (maxi |Ai|) under
which a folk theorem holds whenever (1− δ)N log (N) /C → 0.
Theorem 5 is a folk theorem for PPE in repeated games with public monitoring.25 The

standard proof approach, following Fudenberg, Levine, and Maskin (1994) and Kandori and
Matsushima (1998), relies on transferring continuation payoffs among the players along hy-
perplanes that are tangent to the boundary of the PPE payoff set. Unfortunately, this
approach encounters diffi culties when N and δ vary simultaneously. The problem is that
when N is large, changing each player’s continuation payoff by a small amount can result
in a large overall movement in the continuation payoff vector. Mathematically, Fudenberg,
Levine, and Maskin’s proof relies on the equivalence of the L1 norm and the Euclidean norm
in RN . Since this equivalence is not uniform in N , their proof does not apply when N and
δ vary simultaneously.26 Our proof is instead based on the “block strategy”approach intro-

25Specifically, it is a “Nash threat”folk theorem, as F ∗ is the set of payoffs that Pareto-dominate a convex
combination of static Nash equilibria. To extend this result to a “minmax threat” theorem, players must
be made indifferent among all actions in the support of a mixed strategy that minmaxes an opponent. This
requires a stronger identifiability condition, similar to Kandori and Matsushima’s assumption (A1).
26With random monitoring of M players, the per-period movement in each player’s continuation payoff

required to provide incentives is of order (1− δ)N/M , so the movement of the continuation payoff vec-
tor in RN is O

(
(1− δ)N3/2/M

)
. For any ball B ⊆ F ∗, consider the problem of generating the point

v = argmaxw∈B w1 using continuation payoffs drawn from B. To satisfy promise keeping, player 1’s contin-
uation payoff must be within distance O (1− δ) of v, so the largest possible movement along a translated
tangent hyperplane is O

(√
1− δ

)
. FLM’s proof approach thus requires that (1− δ)N3/2/M �

√
1− δ, or

42



duced by Matsushima (2004) and Hörner and Olszewski (2006) in the context of repeated
games with private monitoring. We sketch the proof here, deferring the details to the next
section.
Fix any v ∈ B (ε). We show that, for suffi ciently large δ, the cube Bv (ε/2) is self-

generating. Since B (ε) is compact, this implies that, for suffi ciently large δ, B (ε) is self-
generating, and hence B (ε) ⊆ E.
Since Bv (ε/2) is a cube, for each extreme point v∗ ∈ Bv (ε/2), there exists ζ ∈ {−1, 1}N

such that v∗i ∈ argmaxω∈Bv(ε/2) ζ iωi for all i. To self-generate Bv (ε/2), it is suffi cient that,
for each ζ ∈ {−1, 1}N and v∗ satisfying v∗i ∈ argmaxω∈Bv(ε/2) ζ iωi for all i, we can find a
number T ∈ N, a T -period strategy σ, and a history-contingent continuation payoffω

(
hT+1

)
such that the following three conditions hold:

Promise Keeping v∗i = (1− δ)
∑T

t=1 δ
t−1Eσ [ui (at)] + δTEσ

[
ωi
(
hT+1

)]
for all i.

Incentive Compatibility σ̃i = σi is optimal in the T -period repeated game with objective
Eσ̃i,σ−i

[
(1− δ)

∑T
t=1 δ

t−1ui (a) + δTωi
(
hT+1

)]
, for all i.

Self Generation ω
(
hT+1

)
∈ Bv (ε/2) for all hT+1.

Since Bv (ε/2) is the cube with center v and side-length ε, and v∗i ∈ argmaxω∈Bv(ε/2) ζ iωi
for all i, we have ω

(
hT+1

)
∈ Bv (ε/2) if and only if ζ i

(
ωi
(
hT+1

)
− vi

)
∈ [−ε, 0] for all

i. Thus, defining ψi
(
hT+1

)
=
(
δT/ (1− δ)

) (
ωi
(
hT+1

)
− v∗i

)
, we can rewrite the above

conditions as

Promise Keeping vi = 1−δ
1−δT E

σ
[∑T

t=1 δ
t−1u (at) + ψi

(
hT+1

)]
for all i.

Incentive Compatibility σ̃i = σi is optimal in the T -period repeated game with objective
Eσ̃i,σ−i

[∑T
t=1 δ

t−1u (a) + ψi
(
hT+1

)
|σ′i, σ−i

]
, for all i.

Self Generation − δT

1−δε ≤ ζ iψi
(
hT+1

)
≤ 0 for all i, hT+1. Moreover, since limδ→1− δT

1−δε =

−∞, it suffi ces to require that ζ iψi
(
hT+1

)
≤ 0 for all i, hT+1.

Fix ζ and v∗, and take T = O
(
(1− δ)−1). We construct a T -period strategy σ and a

“reward function”ψi
(
hT+1

)
that satisfy the above conditions.

By (12), for each recommendation ri, there exists fi,ri (yi) such that (i) augmenting
player i’s utility by fi,ri (yi) incentivizes her to take ri, (ii) the expectation of fi,ri (yi) when
player i takes ri equals 0, and (iii) the variance of fi,ri (yi) is of order 1/η. Indeed, these
properties are achieved by taking fi,ri (yi) proportional to the likelihood ratio difference
minαi∈∆(Ai\{ai}) (pi (yi|ai)− pi (yi|αi)) /pi (yi|ai). (See Lemma 5.)

equivalently (1− δ)N3/M2 � 1, while we assume only (1− δ)N log (N) /M � 1. Hence, while the condi-
tions for Theorem 5 are tight up to log (N) slack, Fudenberg, Levine, and Maskin’s approach would instead
require slack N2/M ≥ N . On the other hand, in SW, we extend Fudenberg, Levine, and Maskin’s proof to
give a folk theorem where discounting and monitoring vary simultaneously for a fixed stage game. There,
this approach works because N is fixed.
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Since v ∈ B (ε) and v∗ ∈ Bv (ε/2), there exists ᾱ ∈ ∆ (A) such that ζ i (ui (ᾱ)− v∗i ) = ε/2.
Suppose that the recommendation profile r is drawn according to ᾱ by public randomization
(and players follow their recommendations), and define the reward function ψ̃i

(
hT+1

)
=∑

t δ
t−1fi,ri,t (yi,t)−ζ i 1−δT

1−δ
ε
2
. We call ψ̃i

(
hT+1

)
the “base reward.”We show that this strategy

and reward function satisfy promise keeping and incentive compatibility, and also satisfy self
generation with high probability. We then show how to modify the strategy and reward
function to ensure that self generation is always satisfied.
Since fi,ri (yi) has 0 mean, promise keeping is immediate:

vi =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui (a) + ψ̃i
(
hT+1

)]
= ui (ᾱ)− ζ i

ε

2
= v∗i .

Next, incentive compatibility holds because

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui (at) + ψ̃i
(
hT+1

)]
= Eσ̃i,σ−i

[
T∑
t=1

δt−1
(
ui (at) + fi,ri,t (yi,t)

)]
− 1− δT

1− δ ζ i
ε

2
,

so the augmented per-period payoff is ui (a)+fi,ri,t (yi,t). Moreover, since the variance of fi,ri
is O (1/η) and T is O

(
(1− δ)−1), by a standard concentration inequality, the self generation

constraint ζ iψ̃i
(
hT+1

)
≤ 0 holds for all i with probability at least

N exp

(
−

1−δT
1−δ ζ i

ε
2√

Tη

)
≈ exp

(
−

√
(1− δ) logN

η

)
.

Therefore, by (13), self generation holds with high probability when k is small. (Lemmas 6
and 8.)
We now modify the strategy and reward to satisfy self-generation at every history. To

this end, define a stopping time as the first period τ such that

ζ i

τ∑
t=1

δt−1fi,ri,t (yi,t) > f̄, (14)

where f̄ is a positive constant less than
((

1− δT
)
/ (1− δ)

)
ε/2. That is, in (the random)

period τ , for a player, the base reward ψ̃i
(
hT+1

)
becomes abnormal. If no such period

arises, define τ = T . By the same concentration argument as above, no player’s base reward
is abnormal (that is, τ = T ) with high probability: in particular,

Pr (τ < T ) ≈ exp

(
−

√
(1− δ) logN

η

)
. (15)

We now define the modified strategy.
If τ = T , then in every period r is drawn according to ᾱ and the reward equals ψ̃i

(
hT+1

)
.

If τ < T , then let I∗ be the set of players whose base reward satisfies (14). For each
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i ∈ I∗, we add or subtract a constant from the rewards of players −i to satisfy self generation.
Since monitoring has a product structure, players −i cannot control the realization of player
i’s reward. Thus, this addition or subtraction does not affect incentives.
If I∗ is a singleton, I∗ = {i}, then player i starts taking a static best response. Meanwhile,

players −i take r−i drawn from ᾱ if ζ i = 1, and take static Nash actions
(
αNEj

)
j 6=i if

ζ i = −1. Let ui (ζ i) be player i’s resulting instantaneous payoff. Since v
∗ ∈ F ∗, we have

ζ i (ui (ζ i)− ui (ᾱ)) ≥ 0. Hence, if player i’s period t reward is fixed at ui (ᾱ) − ui (ζ i), self
generation is satisfied, and player i’s period t augmented payoff equals ui (ᾱ). If instead
|I∗| ≥ 2, then all players’subsequent rewards equal 0.
Since τ = T with high probability by (15), expected payoffs under the modified strategy

and reward are close to v. Further adjusting the rewards by a small constant thus achieves
promise keeping. Moreover, self generation now holds by construction. Finally, for any
period t > τ , incentive compatibility holds, because either a player’s reward is fixed and she
is supposed to take a static best response, or she is incentivized by the base reward function.
To complete the proof, it remains to establish incentive compatibility for periods t ≤ τ .

For t ≤ τ , player i’s augmented period t payoff is ui (ai, r−i) + fi,ri (yi)). Thus, to show that
it is optimal for player i to follow her recommendation, it suffi ces to show that she cannot
gain by manipulating the stopping time τ .
Since monitoring has a product structure, player i cannot influence others’ rewards.

Player i also cannot improve her augmented period t payoffby manipulating her own reward,
because both ui (r)+fi,ri,t (yi,t)) and ui (ζ i)+ui (ᾱ)−ui (ζ i)) equal u (ᾱ) regardless of whether
t ≤ τ or t > τ . However, there is one possible benefit from manipulation: once τ realizes
with I∗ = {i}, the chance of a constant being added or subtracted from player i’s reward
vanishes, but if τ first realizes with I∗ 6= {i}, this addition or subtraction occurs. To prevent
this adjustment from affecting player i’s incentive, a “fictitious”recommendation r̃t is drawn
according to ᾱ, and a fictitious signal ỹ is drawn according to p (ỹ|r̃), and the base rewards are
updated according to the fictitious recommendations and signals even when t > τ . (See (30)
for the definition of the fictitious recommendations and signals.) If player j 6= i’s fictitious
base reward satisfies (14), we add or subtract a constant from player i’s reward. (See (31)
for the definition of the event that induces this addition or subtraction. Note also that
this fictitious update of player j’s base reward is used solely to satisfy player i’s incentives
and does not affect player j’s reward.) Given this modification, player i does not have an
incentive to manipulate her own reward to manipulate the distribution of τ (Lemma 7), and
hence incentive compatibility holds (Lemma 9).

E Proof of Theorem 5

E.1 Preliminaries

Fix any ε > 0. If ε ≥ ū/2 then B (ε) = ∅ and the conclusion of the theorem is trivial, so
assume without loss that ε < ū/2. We begin with two preliminary lemmas. First, for each
i ∈ I and ri ∈ Ai, we define a function fi,ri : Yi → R that will later be used to specify player
i’s continuation payoff as a function of yi.
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Lemma 5 Under η-individual identifiability, for each i ∈ I and ri ∈ Ai there exists a
function fi,ri : Yi → R such that

E [fi,ri (yi) |ri]− E [fi,ri (yi) |ai] ≥ ū for all ai 6= ri, (16)

E [fi,ri (yi) |ri] = 0, (17)

Var (fi,ri (yi) |ri) ≤ ū2/η, and (18)

|fi,ri (yi)| ≤ 2ū/η for all yi. (19)

Proof. Fix i and ri. Let Y∗i = {yi : pi (yi, ri) ≥ η}, and let

pi (ri) =
(√

pi (yi|ri)
)
yi∈Y∗i

and Pi (ri) =
⋃
ai 6=ri

(
pi (yi|ai)√
pi (yi|ri)

)
yi∈Y∗i

.

Note that (12) is equivalent to d (pi (ri) , co (Pi (ri))) ≥
√
η for all i ∈ I, ri ∈ Ai, where d (·, ·)

denotes Euclidean distance in R|Y∗i |. Hence, by the separating hyperplane theorem, there
exists x = (x (yi))yi∈Y∗i ∈ R

|Y∗i | such that ‖x‖ = 1 and (pi (ri)− p) ·x ≥
√
η for all p ∈ Pi (ri).

By definition of pi and Pi, this implies that
∑

yi∈Y∗i
(pi (yi|ri)− pi (yi|ai))x (yi) ≥

√
ηpi (yi|ri)

for all ai 6= ri. Now define

fi,ri (yi) =
ū
√
η

(
x (yi)√
pi (yi|ri)

−
∑
ỹi∈Yi

p (ỹi|ri)√
pi (ỹi|ri)

xi (ỹi)

)
for all yi ∈ Y∗i , and

fi,ri (yi) = 0 for all yi /∈ Y∗i .

Clearly, conditions (16) and (17) hold. Moreover, since E [fi,ri (yi) |ri] = 0 and the term∑
ỹi∈Yi

√
p (ỹi|ri)xi (ỹi) is independent of yi, we have

Var (fi,ri (yi) |ri) = E

[
ū2x (yi)

2

ηpi (yi|ri)

]
− E

[
ūxi (yi)√
ηpi (yi|ri)

]2

≤ ū2

η

∑
yi∈Y∗i

x (yi)
2 ≤ ū2

η
,

and hence (18) holds. Finally, (19) holds since, for each yi ∈ Y∗i ,

|fi,ri (yi)| ≤
(
|x (yi)|+

∑
ỹi∈Y∗i

p (ỹi|ri) |xi (ỹi)|√
ηpi (yi|ri)

)
ū ≤

1 +
∑
ỹi∈Y∗i

p (ỹi|ri)

 ū

η
≤ 2ū

η
.

Now fix i ∈ I and ri ∈ Ai, and suppose that yi,t ∼ pi (·|ri) for each period t ∈ N,
independently across periods (which would be the case in the repeated game if ri were taken
in every period). By (18), for any T ∈ N, we have

Var

(
T∑
t=1

δt−1fi,ri (yi,t)

)
=

T∑
t=1

δ2(t−1)Var (fi,ri (yi,t)) ≤
1− δ2T

1− δ2

ū2

η
.
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Together with (17) and (19), Bernstein’s inequality now implies that, for any T ∈ N and
f̄ ∈ R+, we have

Pr

(
T∑
t=1

δt−1fi,ri (yi,t) ≥ f̄

)
≤ exp

− f̄ 2η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄ ū
)
 . (20)

Our second lemma fixes T and f̄ so that the bound in (20) is suffi ciently small, and some
other conditions used in the proof also hold.

Lemma 6 There exists k > 0 such that, whenever (1− δ) log (N) /η < k, there exist T ∈ N
and f̄ ∈ R that satisfy the following three inequalities:

60ūN exp

−
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ ε, (21)

8
1− δ

1− δT
(
f̄ +

2ū

η

)
≤ ε, (22)

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η

)
≤ ε. (23)

Proof. Let T be the largest integer such that 8ū
(
1− δT

)
/δT ≤ ε, and let

f̄ =

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η
.

Note that if (1− δ) log (N) /η → 0 then 1−δT → ε/ (ε+ 8ū), and hence (1− δ) log (N) /
(
η
(
1− δT

))
→

0. Therefore, there exists k > 0 such that, whenever (1− δ) log (N) /η < k, we have

4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
≤ 1 and (24)

8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
+

1− δ
1− δT

2

η

)
≤ ε. (25)

It now follows from straightforward algebra (provided in Appendix E.4) that (21)—(23) hold
for every k ≥ k̄.

E.2 Equilibrium Construction

Fix any k, T , and f̄ that satisfy (21)—(23), as well any v ∈ B (ε). For each extreme point
v∗ of Bv (ε/2), we construct a PPE in a T -period, finitely repeated game augmented with
continuation values drawn from Bv (ε/2) that generates payoff vector v∗. By standard argu-
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ments, this implies that Bv (ε/2) ⊆ E (Γ), and hence that v ∈ E (Γ).27 Since v ∈ B (ε) was
chosen arbitrarily, it follows that B (ε) ⊆ E (Γ).
Specifically, for each ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v, we construct a public

strategy profile σ in a T -period, finitely repeated game (which we call a block strategy profile)
together with a continuation value function ω : HT+1 → RN such that, letting ψi

(
hT+1

)
=

δT

1−δ
(
ωi
(
hT+1

)
− v∗i

)
, we have

Promise Keeping: v∗i =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (26)

Incentive Compatibility: σi ∈ argmax
σ̃i

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]
for all i, (27)

Self Generation: ζ iψi
(
hT+1

)
∈
[
− δT

1− δ ε, 0
]

for all i and hT+1. (28)

Fix ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v. We construct a block strategy profile σ
and continuation value function ψ which, in the next subsection, we show satisfy these three
conditions. This will complete the proof of the theorem.
First, fix a correlated action profile ᾱ ∈ ∆ (A) such that

ui (ᾱ) = v∗i + ζ iε/2 for all i, (29)

and fix a probability distribution over static Nash equilibria αNE ∈ ∆ (
∏

i ∆ (Ai)) such that
ui
(
αNE

)
≤ v∗i − ε/2 for all i. Such ᾱ and αNE exist because v∗ ∈ Bv (ε/2) and Bv (ε) ⊆ F ∗.

We now construct the block strategy profile σ. For each player i ∈ I and period t ∈
{1, . . . , T}, we define a state θi,t ∈ {0, 1} for player i in period t. The states are determined
by the public history, and so are common knowledge among the players. We first specify
players’prescribed actions as a function of the state, and then specify the state as a function
of the public history.
Prescribed Equilibrium Actions: For each period t, let rt ∈ A be a pure action

profile which is drawn by public randomization at the start of period t from the distribution
ᾱ ∈ ∆ (A) fixed in (29), and let %NEt ∈

∏
i ∆ (Ai) be a mixed action profile which is drawn

by public randomization at the start of period t from the distribution αNE. The prescribed
equilibrium actions are defined as follows.

1. If θi,t = 0 for all i ∈ I, the players take at = rt.

2. If there is a unique player i such that θi,t = 1, the players take at = (r′i, r−i,t) for
some r′i ∈ BRi (r−i,t) if ζ i = 1, and they take %NEt if ζ i = −1, where BRi (r−i) =
argmaxai∈Ai ui (ai, r−i) is the set of i’s best responses to r−i.

3. If there is more than one player i such that θi,t = 1, the players take %NEt .

27Specifically, at each history hT+1 that marks the end of a block, public randomization can be used
to select an extreme point v∗ to be targeted in the following block, with probabilities chosen so that the
expected payoff E [v∗] equals the promised continuation value w

(
hT+1

)
.
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Let α∗t ∈
∏

i ∆ (Ai) denote the distribution of prescribed equilibrium actions, prior to
public randomization zt.
(It may be helpful to informally summarize the prescribed actions. So long as θi,t = 0 for

all players, the players take actions drawn from the target action distribution ᾱ. If θi,t = 1
for multiple players, the ineffi cient Nash equilibrium distribution αNE is played. If θi,t = 1
for a unique player i, player i starts taking static best responses; moreover, if ζ i = −1 then
αNE is played.)
It will be useful to introduce the following additional state variable Si,t, which summarizes

player i’s prescribed action as a function of (θj,t)j∈I :

1. Si,t = 0 if θj,t = 0 for all j ∈ I, or if there exists a unique player j 6= i such that
θj,t = 1, and for this player we have ζj = 1. In this case, player i is prescribed to take
ai,t = ri,t.

2. Si,t = NE if θi,t = 0 and either (i) there exists a unique player j such that θj,t = 1,
and for this player we have ζj = −1, or (ii) there are two distinct players j, j′ such
that θj,t = θj′,t = 1. In this case, player i is prescribed to take %NEi,t .

3. Si,t = BR if θi,t = 1. In this case, player i is prescribed to best respond to her
opponents’actions (which equal either r−i,t or %NE−i,t, depending on ζ i and (θj,t)j 6=i.)

States: At the start of each period t, conditional on the public randomization draw of
rt ∈ A described above, an additional (“fictitious”) random variable ỹt ∈ Y is also drawn
by public randomization, with distribution p (ỹt|rt). That is, the distribution of the public
randomization draw ỹt conditional on the draw rt is the same as the distribution of the
realized public signal profile ỹt at action profile rt; however, the distribution of ỹt depends
only on the public randomization draw rt and not on the players’actions. For each player i
and period t, let fi,ri,t : Yi → R be defined as in Lemma 5, and let

fi,t =


fi,ri,t (yi,t) if Si,t = 0,
fi,ri,t (ỹi,t) if Si,t = NE,
0 if Si,t = BR.

(30)

Thus, the value of fi,t depends on the state (θn,t)n∈I , the target action profile rt (which
is drawn from distribution ᾱ as described above), the public signal yt, and the additional
variable ỹt.28 Later in the proof, fi,t will be a component of the “reward”earned by player
i in period t, which will be reflected in player i’s end-of-block continuation payoff function
ψ : HT+1 → R.
We can finally define θi,t as

θi,t = 1

{
∃t′ ≤ t :

∣∣∣∣∣
t′−1∑
t′′=1

δt
′′−1fi,t′′

∣∣∣∣∣ ≥ f̄

}
. (31)

28Intuitively, introducing the variable ỹt, rather than simply using yi,t everywhere in (30), ensures that
the distribution of fi,t does not depend on player i’s opponents’strategies.
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That is, θi,t is the indicator function for the event that the magnitude of the component of
player i’s reward captured by (fi,t′′)

t′−1
t′′=1 exceeds f̄ at any time t

′ ≤ t.
This completes the definition of the equilibrium block strategy profile σ. Before proceed-

ing further, we note that a unilateral deviation from σ by any player i does not affect the

distribution of the state vector
(

(θj,t)j 6=i

)T
t=1
. (However, such a deviation does affect the

distribution of (θi,t)
T
t=1.)

Lemma 7 For any player i and block strategy σ̃i, the distribution of the random vector(
(θj,t)j 6=i

)T
t=1

is the same under block strategy profile (σ̃i, σ−i) as under block strategy profile
σ.

Proof. Since θj,t = 1 implies θj,t+1 = 1, it suffi ces to show that, for each t, each J ⊆ I\ {i},
each ht such that J = {j ∈ I\ {i} : θj,t = 0}, and each zt, the probability Pr

(
(θj,t+1)j∈J |ht, zt, ai,t

)
is independent of ai,t. Since θj,t+1 is determined by ht and fj,t, it is enough to show that

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)
is independent of ai,t.

Recall that Sj,t is determined by ht, and that if j ∈ J (that is, θj,t = 0) then Sj,t ∈
{0, NE}. If Sj,t = 0 then player j takes rj,t, which is determined by zt, yj,t is distributed ac-
cording to pj (yj,t|rj,t), and fj,t is determined by yj,t, independently across players conditional
on zt. If Sj,t = NE then ỹj,t is distributed according to pj (ỹj,t|rj,t), where rj,t is determined
by zt, and fj,t is determined by ỹj,t, independently across players conditional on zt. Thus,

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)

=
∏

j 6=i Pr (fj,t|Sj,t, rj,t), which is independent of ai,t as desired.
Continuation Value Function: We now construct the continuation value function

ψ : HT+1 → RN . For each player i and end-of-block history hT+1, player i’s continuation
value ψi

(
hT+1

)
will be defined as the sum of T “rewards”ψi,t, where t = 1, . . . , T , and a

constant term ci that does not depend on hT+1.
The rewards ψi,t are defined as follows:

1. If θj,t = 0 for all j ∈ I, then

ψi,t = δt−1fi,ri,t (yi,t) . (32)

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then

ψi,t = δt−1 (ui (ᾱ)− ui (α∗t )) . (33)

3. Otherwise,
ψi,t = δt−1

(
−ζ iū− ui (α∗t ) + 1 {Si,t = 0} fi,ri,t (yi,t)

)
. (34)

The constant ci is defined as

ci = −E
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i . (35)
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Note that, since ui (ᾱ) and v∗i are both feasible payoffs, we have

|ci| ≤ 2ū
1− δT

1− δ . (36)

Finally, for each i and hT+1, player i’s continuation value at end-of-block history hT+1 is
defined as

ψi
(
hT+1

)
= ci +

T∑
t=1

ψi,t. (37)

E.3 Verification of the Equilibrium Conditions

We now verify that σ and ψ satisfy promise keeping, incentive compatibility, and self gen-
eration. We first show that θi,t = 0 for all i and t with high probability, and then verify the
three desired conditions in turn.

Lemma 8 We have

Pr

(
max

i∈I,t∈{1,...,T}
θi,t = 0

)
≥ 1− ε

20ū
. (38)

Proof. By union bound, it suffi ces to show that, for each i, Pr
(
maxt∈{1,...,T} θi,t = 1

)
≤

ε/20ūN , or equivalently

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ ε

20ūN
. (39)

To see this, let f̃i,t = fi,ri,t (ỹi,t). Note that the variables
(
f̃i,t

)T
t=1
are independent (unlike the

variables (fi,t)
T
t=1). Since

(
f̃i,t′
)t
t′=1

and (fi,t′)
t
t′=1 have the same distribution if Si,t 6= BR,

while fi,t = 0 if Si,t = BR, we have

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
. (40)

Since
(
f̃i,t

)T
t=1

are independent, Etemadi’s inequality implies that

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
≤ 3 max

t∈{1,...,T}
Pr

(∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
. (41)

Letting xi,t = δt−1f̃i,t, note that |xi,t| ≤ 2ū/η with probability 1 by (19), E [xi,t] = 0 by (17),
and

Var

(
t∑

t′=1

xi,t′

)
=

t∑
t′=1

Var (xi,t′) ≤
T∑
t′=1

Var (xi,t′) =
1− δT

1− δ
ū2

η
by (18).
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Therefore, by Bernstein’s inequality ((20), which again applies because
(
f̃i,t

)T
t=1

are inde-

pendent) and (21), we have, for each t ≤ T ,

Pr

(∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄

3

)
≤ ε

60ūN
. (42)

Finally, (40), (41), and (42) together imply (39).
Incentive Compatibility: We use the following lemma (proof in Appendix E.5).

Lemma 9 For each player i and block strategy profile σ, incentive compatibility holds (i.e.,
(27) is satisfied) if and only if

suppσi
(
ht
)
⊆ argmax

ai,t∈Ai
Eσ−i

[
δt−1ui,t + ψi,t|ht, ai,t

]
for all t and ht. (43)

In addition, for all t ≤ t′ and ht, we have

Eσ
[
δt
′−1ui,t + ψi,t′|ht

]
= Eσ

[
δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

(44)

We now verify that (43) holds. Fix a player i, period t, and history ht. We consider
several cases, which parallel the definition of the reward ψi,t.

1. If θj,t = 0 for all j ∈ I, recall that the equilibrium action profile is the rt that is
prescribed by public randomization zt. For each action ai 6= ri,t, by (16) and (32), and
recalling that ū ≥ maxa ui (a)−mina ui (a), we have

Eσ−i
[
δt−1ui,t + ψi,t|ht, zt, ai,t = ri,t

]
− Eσ−i

[
δt−1ui,t + ψi,t|ht, zt, ai,t = ai

]
= δt−1

(
E
[
ui (rt) + fi,ri,t (yi,t) |ai,t = ri,t

]
− E

[
ui (ai, r−i,t) + fi,ri,t (yi,t) |ai,t = ai

])
≤ 0, so (43) holds.

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then the reward ψi,t specified by (33) does not
depend on yi,t. Hence, (43) reduces to the condition that every action in suppσi (h

t)
is a static best responses to σ−i (ht). This conditions holds for the prescribed action
profile, (r′i ∈ BRi (r−i,t) , r−i,t) or %NEi,t .

3. Otherwise: (a) If Si,t = 0, then (43) holds because it holds in Case 1 above and (32)
and (34) differ only by a constant independent of yi,t. (b) If Si,t 6= 0, then either
θj,t = θj′,t = 1 for distinct players j, j′, or there exists a unique player j 6= i with
θj,t = 1, and for this player we have ζj = −1. In both cases, %NEt is prescribed. Since
the reward ψi,t specified by (34) does not depend on yi,t, (43) reduces to the condition
that every action in suppσi (h

t) is a static best responses to σ−i (ht), which holds for
the prescribed action profile %NEt .
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Promise Keeping: This essentially holds by construction: we have

1− δ
1− δT

Eσ
[

T∑
t=1

δt−1ui,t + ψi
(
hT+1

)]

=
1− δ

1− δT

(
Eσ
[

T∑
t=1

(
δt−1ui,t + ψi,t

)]
+ ci

)
(by (37))

=
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)
+ ci

]
(by (44))

= v∗i (by (35)), so (26) holds.

Self Generation: We use the following lemma (proof in Appendix E.6).

Lemma 10 For every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψi,t ≤ f̄ +
2ū

η
and (45)∣∣∣∣∣

T∑
t=1

ψi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η
+ 2ū

1− δT

1− δ . (46)

In addition,

ζ ici ≤ −
1− δT

1− δ
ε

8
. (47)

To establish self generation ((28)), it suffi ces to show that, for each hT+1, ζ iψi
(
hT+1

)
≤ 0

and
∣∣ψi (hT+1

)∣∣ ≤ (δT/ (1− δ)
)
ε. This now follows because

ζ iψi
(
hT+1

)
= ζ i

(
ci +

T∑
t=1

ψi,t

)
≤ −1− δT

1− δ
ε

8
+ f̄ + 2ū/η (by (45) and (47))

≤ 1− δT

8 (1− δ)

(
−ε+ 8

(
1− δ

1− δT
)(

f̄ + 2ū/η
))
≤ 0 (by (22)), and

∣∣ψi (hT+1
)∣∣ ≤ |ci|+

∣∣∣∣∣
T∑
t=1

ψi,t

∣∣∣∣∣
≤ 4ū

1− δT

1− δ + f̄ + 2ū/η (by (36) and (46))

=
1− δT

1− δ 4ū+ f̄ + 2ū/η ≤ δT

1− δ ε (by (23)),

which completes the proof.
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E.4 Omitted Details for the Proof of Lemma 6

We show that, with the stated definitions of T and f̄ , (24) and (25) imply (21)—(23). First,
note that

1− δ2

1− δ2T
=

(1 + δ) (1− δ)(
1 + δT

) (
1− δT

) < 2
1− δ

1− δT
.

Hence,

2f̄
(
1− δ2

)
9ū
(
1− δ2T

) <
4

9ū

1− δ
1− δT

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η

=
4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
≤ 1 (by (24)).

Therefore,

60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 1−δ2T
1−δ2 ū

2
)
 = 60ūN exp

(
−f̄ 2η

361−δ2T
1−δ2 ū

2

)
.

Moreover,

f̄ 2η

361−δ2T
1−δ2 ū

2
=

36 log
(

60ū
ε

)
log (N) 1−δT

1−δ

361−δ2T
1−δ2

=
1 + δ

1 + δT
log

(
60ū

ε

)
log (N) ≥ log

(
60ū

ε

)
log (N) .

Hence, we have

60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

(
− log

(
60ū

ε

)
log (N)

)
= ε.

This establishes (21).
Next, we have

8
1− δ

1− δT
(
f̄ +

2ū

η

)
= 8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
+

1− δ
1− δT

2

η

)
≤ ε (by (25)).

(48)
This establishes (22).
Finally, by (48) and 8ū

(
1− δT

)
/δT ≤ ε, we have

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η

)
= 4ū

1− δT

δT
+

1− δT

δT
1− δ

1− δT
(
f̄ +

2ū

η

)
≤ 4

ε

8
+
ε

8

ε

8
≤ ε.

This establishes (23).
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E.5 Proof of Lemma 9

We show that player i has a profitable one-shot deviation from σi at some history ht if and
only if (43) is violated at ht. To see this, we first calculate player i’s continuation payoff
under σ from period t + 1 onward (net of the constant ci and the rewards already accrued∑t

t′=1 ψi,t′). For each t
′ ≥ t+ 1, there are several cases to consider.

1. If θj,t′ = 0 for all j, then by (17) and (32) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1ui (ᾱ).

2. If θi,t′ = 1 and θj,t′ = 0 for all j 6= i, then by (33) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′) + ui (ᾱ)− ui (α∗t′)) = δt

′−1ui (ᾱ).

3. Otherwise: (a) If Si,t′ = 0, then by (17) and (34) (and recalling that player i’s equilib-
rium action is ri,t′ when Si,t′ = 0) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′)− ζ iū− u (α∗t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1 (−ζ iū).

(b) If Si,t′ 6= 0, then by (34) we have

Eσ
[
δt
′−1ui,t′ + ψi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′)− ζ iū− u (α∗t′)) = δt

′−1 (−ζ iū).

In total, (44) holds, and player i’s net continuation payoff under σ from period t + 1
onward equals

Eσ
[

T∑
t′=t+1

δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

By Lemma 7, the distribution of
(

(θn,t′)n6=i

)T
t′=t+1

does not depend on player i’s period-t

action, and hence neither does player i’s net continuation payoff under σ from period t + 1
onward. Therefore, player i’s period-t action ai,t maximizes her continuation payoff from
period t onward if and only if it maximizes Eσ−i [δt−1ui,t + ψi,t|ht, ai,t].

E.6 Proof of Lemma 10

Define

ψvi,t =

{
δt−1 (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,
δt−1 (−ζ iū− ui (α∗t )) otherwise,

and

ψfi,t =

{
δt−1fi,ai,t (yi,t) if either θj,t = 0 for all j or Si,t = 0,
0 otherwise.

Note that, by (32)—(34), we can write ψi,t = ψvi,t + ψfi,t. (Note that, if θn,t = 0 for all n ∈ I,
we have α∗t = ᾱ and hence ψvi,t + ψfi,t = δt−1fi,ai,t (yi,t), as specified in (32).) We show that,
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for every end-of-block history hT+1, we have

ζ i

T∑
t=1

ψvi,t ∈
[
−2ū

1− δT

1− δ , 0
]

and (49)∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η
. (50)

Since ψi,t = ψvi,t + ψfi,t, (49) and (50) imply (45) and (46), which proves the first part of the
lemma.
For (49), note that, by definition of the prescribed equilibrium actions, if θj,t = 0 for all

j 6= i, then (i) if ζ i = 1, we have ui (α∗t ) ≥
∑

a ᾱ (a) min
{
ui (a) ,maxa′i ui (a

′
i, a−i)

}
≥ ui (ᾱ);

and (ii) if ζ i = −1, we have ui (α∗t ) ≤ max
{
ui (ᾱ) , ui

(
αNE

)}
= ui (ᾱ). In total, we have

ζ i (ui (ᾱ)− ui (α∗t )) ≤ 0. Since obviously ζ i (ui (ᾱ)− ui (α∗t )) ≥ −2ū and −ū − ζ iui (α∗t ) ≥
−2ū, we have

ζ iψ
v
i,t =

{
δt−1ζ i (ui (ᾱ)− ui (α∗t )) if θj,t = 0 for all j 6= i,
δt−1 (−ū− ζ iui (α∗t )) otherwise

∈
[
−2ūδt−1, 0

]
.

For (50), note that Si,t = 0 implies θi,t = 0, and hence∣∣∣∣∣ζ i
T∑
t=1

ψfi,t

∣∣∣∣∣ ≤
∣∣∣∣∣ζ i

T∑
t=1

1 {θi,t = 0} δt−1fi,ai,t (yi,t)

∣∣∣∣∣ .
Since θi,t+1 = 1 whenever

∣∣∣∑t′=1,..,t δ
t−1fi,ai,t (yi,t)

∣∣∣ ≥ f̄ , and in addition
∣∣fi,ai,t (yi,t)

∣∣ ≤ 2ū/η

by (19), this inequality implies (50).
For the second part of the lemma, by (35), we have

ζ ici = ζ i

(
−E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
ui (ᾱ)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i

)

= E

 T∑
t=1

δt−1

1{max
j 6=i

θj,t = 0

}
ζ i (v

∗
i − ui (ᾱ)) + 1

{
max
j 6=i

θj,t = 1

}
(ū+ ζ iv

∗
i )︸ ︷︷ ︸

∈[0,2ū]




≤ E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}(
−ε
2

)
+ 1

{
max
j 6=i

θj,t = 1

}
2ū

)]
by (29)

≤ −1− δT

1− δ

((
1− ε

20ū

) ε
2

+
( ε

20ū

)
2ū
)

(by (38))

≤ −1− δT

1− δ
ε

8
(as ε < ū/2).
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