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1 Introduction

Economic agents monitor macroeconomic statistics and market signals such as prices for clues

about the state of the economy. But the informativeness of such signals is a function of other

agents’ behavior. How does this endogeneity of information affect the efficiency of the business

cycle and the design of optimal policy?

The contribution of this paper is to address this question within a micro-founded, general-

equilibrium, macroeconomic model. Our main lesson is that the optimal policy combines

counter-cyclical taxes with a monetary policy that “leans against the wind.” A complementary,

methodological contribution is to adapt the primal approach of the Ramsey literature to a

setting with both incomplete and endogenous information.

Preview. Our model shares the same core micro-foundations as the textbook New Keynesian

model, except for three, primary modifications. First, we let the nominal rigidity originate in

an informational friction: firms set their prices on the basis of dispersed, noisy information

about the state of the economy. Second, we let the informational friction be also a source

of real rigidity: firms make certain real production decisions on the basis of the same noisy

information. And third, we allow each firm to observe various market signals or macroeconomic

statistics whose informational content is endogenous to the choices of other firms.

Although subsets of these three features have appeared in previous work, their combination

is novel to the literature and essential for our results. We next describe the role played by each

of them and explain how they shape the optimal policy.

The first feature, the information-driven nominal rigidity, needs no motivation: it is familiar

from Woodford (2003a), Mankiw and Reis (2002), Mackowiak and Wiederholt (2009) and a large

follow-up literature. But were it not for our setting’s two other features, the policy problem

would be trivial: the complete-information first best would be implementable with a subsidy

that offsets the monopoly distortion and a monetary policy that stabilizes the price level.

The logic is the same as in the textbook New Keynesian model: the optimal subsidy corrects

the monopoly distortion and the optimal monetary policy neutralizes the nominal rigidity.

Whether the nominal rigidity originates in an informational friction or from Calvo-like sticky

prices makes no difference for this logic.1

Thus consider our setting’s second feature, the information-driven real rigidity. This feature,

which is borrowed from Angeletos and La’O (2010, 2020), guarantees that the full-information

first best is unattainable regardless of the tax and monetary policies: relative to the first best,

some misallocation in resources and some dispersion in relative prices is inevitable, and indeed

1Like in the textbook New Keynesian model, our model allows for lump-sum taxation. Without it, the requisite
subsidy cannot be financed in a non-distortionary way and the first best is not attainable. But as shown in Correia,
Nicolini, and Teles (2008), this does not upset the essence of the argument: it only replaces the first best with the kind
of flexible-price second best characterized in Lucas and Stokey (1983).
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socially desirable, given that firms must base at least some of their production decisions on

heterogeneous information about the state of the economy.

This is where our setting’s third, and most novel, feature comes into play. The welfare

consequences of the real rigidity naturally depend on the precision of the available information.

And because this information is endogenous to the choices of others, an informational

externality and a new role for policy emerge.

By incentivizing firms to respond more aggressively to variation in their beliefs about

the state of the economy, a countercyclical tax on firm revenue or production improves

the aggregation of information, thus also reducing the welfare losses due to incomplete

information. But because such a tax instrument is too blunt, in a sense we explain below, it

has to be complemented by a monetary policy that raises the interest rate above the natural rate

during booms (and lowers it during recessions).

Mechanisms at work. To understand the precise role played by monetary policy, it is useful

to compare our setting to that of Angeletos and La’O (2020). That paper has shown that

the kind of information-driven real rigidity accommodated here redefines the concepts of the

“divine coincidence” and the “output gap” that underlie the modern theory of optimal monetary

policy. The optimal policy still aims at neutralizing the nominal rigidity, but this no more

coincides with minimizing the gap between equilibrium and first-best output, simply because

the full-information first best is no longer the right policy benchmark. Instead, the appropriate

target level of output is one that displays both less sensitivity, or more inertia, with respect to

innovations in underlying fundamentals (total factor productivity) and a positive level of noise-

or sentiment-driven fluctuations.

Whereas Angeletos and La’O (2020) treats the information structure as exogenous, here we

let it be endogenous—this drives our novel policy conclusions. In their setting, the appropriate

gauge for aggregate output is modified for the reason already explained, but the basic policy

guidelines remain unchanged: the optimal tax policy serves only the role of correcting the

monopoly distortion and the optimal monetary policy serves only the role of neutralizing the

nominal rigidity, or replicating the relevant flexible-price outcomes. In our setting, instead, the

optimal policies strike a balance between these familiar goals and the novel goal of inducing

a better aggregation of information through prices and quantity signals. In other words, the

optimal policies trade-off allocative efficiency for informational efficiency.

Our main result is a characterization of this trade-off and its optimal resolution. In

particular, we identify two “informational wedges” that serve as sufficient statistics for how the

endogeneity of information affects the optimal policy mix. One of them relates to the learning

through quantities, the other to the learning through prices. We then show that both wedges

enter the determination of optimal taxes, whereas only the second enters the determination

of monetary policy. We conclude that in the realistic case in which both kinds of learning are
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present, the optimal policy mix combines countercyclical taxes with a monetary policy that

leans against the wind.

Counter-cyclical taxes serve the goal of improving the informational content of both

quantity and price signals. By contrast, monetary policy is exclusively connected to the

informational content of prices: if all learning were to take place through quantity signals, then

optimal monetary policy would only serve the goal of neutralizing the nominal rigidity. Learning

from prices is therefore essential for breaking the “divine coincidence” in our setting.

Let us explain the logic. When firms vary their production decisions more aggressively

with their private information about the state of the economy, they must also vary their prices

more aggressively (and in the direction opposite that of quantities) simply because they face

downward-sloping demand curves. This means that when firms respond more aggressively to

their own information, both the price and the quantity signals become more informative. To

induce firms to internalize this information externality, the optimal policy must make firms’

expected net returns more sensitive to the state of the economy. Countercyclical taxes serve

this goal, whether learning takes place through quantity signals, price signals, or both.

When price signals are absent and the information externality operates entirely through

quantity signals, a countercyclical tax on production alone does the job of incentivizing firms

to use their information in the socially optimal way. In this case, monetary policy is left with

the sole job of neutralizing the nominal rigidity—as desired when information is exogenous.

The particular monetary policy that neutralizes nominal rigidities and implements flexible-

price allocations is one that targets a negative correlation between the price level and aggregate

output; that is, it leans against the wind (Angeletos and La’O, 2020).

When instead learning takes place also through prices, such a tax is not sufficient because it

is too blunt. The ideal tax system subsidizes less the production choices that are free to adjust

after prices have been set, relative to production choices determined at a similar time as prices;

doing so increases the informational content of both quantity and price signals. But note that

this would require not only an unrealistic knowledge of which firm choices are set under what

information, but also an extremely fine-tuned, differential tax system.

A monetary policy that leans even more against the wind relative to the one that implements

flexible prices mimics such a differential subsidy. And in contrast to a differential subsidy, this

monetary policy implements the socially optimal allocation without requiring the policymaker

to know the exact “details” of which production choices and prices are set when and on the basis

of what information.

We conclude that a countercyclical tax on production alone improves learning through both

quantities and prices, but it does not allow the planner to regulate separately the two kinds of

learning. By contrast, combining such a tax with a state-contingent monetary policy facilitates

a finer regulation of the two forms of learning.
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Related Literature. Methodologically, our paper is at the crossroads of two literatures: the

Ramsey literature on optimal taxation and optimal monetary policy (Lucas and Stokey, 1983;

Chari, Christiano, and Kehoe, 1994; Correia, Nicolini, and Teles, 2008); and the literature that

studies the efficient, decentralized use and aggregation of information (Vives, 1988; Angeletos

and Pavan, 2007, 2009).

The latter literature develops and characterizes a notion of constrained efficiency for a

certain class of incomplete-information, linear-quadratic games (such as the “beauty contest”

games popularized by Morris and Shin, 2002). Relative to those works, our analysis considers

different and richer micro-foundations. Furthermore, we are primarily concerned with the

characterization of a particular mix of fiscal and monetary policies, as opposed to an abstract

notion of constrained efficiency. Nevertheless, the optimal policy problem in our paper can

be understood by mapping it to a more abstract constrained-efficiency problem—one that is

conceptually the same as those developed in Vives (1988) and Angeletos and Pavan (2007, 2009).

We view this translation as an integral part of our contribution.

In so doing, we also offer a concrete example of how the primal approach from the Ramsey

literature (Lucas and Stokey, 1983; Chari and Kehoe, 1999) can be adapted to the kind of

endogenous-information settings that we are interested in. As in that literature, the analysis

becomes much more transparent and straightforward once the policy problem is posed in terms

of implementable allocations as opposed to policy instruments. Unlike that literature, however,

we must also take into account how different implementable allocations are associated with

different information structures, due to the endogeneity of the signals that agents observe about

one anothers’ choices. As a result, the implementability results that we develop in this paper

entail a fixed-point relation between allocations and information structures. Since such a fixed-

point relation is endemic to noisy rational expectations equilibrium (REE) settings, the primal

approach we take in this paper could be of broader methodological value.2

The monetary aspect of our analysis is closely related to the following set of papers that

study optimal monetary policy in the presence of informational frictions: Ball, Mankiw, and

Reis (2005); Adam (2007); Lorenzoni (2010); Paciello and Wiederholt (2014); Angeletos and

La’O (2020). All of these papers abstract from endogenous aggregation of information. With

the exception of Angeletos and La’O (2020), they also equate the informational friction with a

particular form of nominal friction. By contrast, the lessons we deliver in this paper hinge on the

joint property that the informational friction interferes with real allocations even when there is

no nominal friction (meaning either that prices are flexible or that monetary policy replicates

flexible-price allocations) and that information is endogenously aggregated.

Our focus on learning through prices also brings to mind the voluminous macro and asset-

pricing literatures that follow in the traditions of, respectively, Lucas (1972) and Grossman and

2Complementary are also Laffont (1985) and Messner and Vives (2001). These papers do not take a Ramsey-like
primal approach but share the spirit of studying optimality directly over a particular set of permissible strategies.
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Stiglitz (1976, 1980). The following three contributions are worth singling out.

Amador and Weill (2010) show in a macro context how public learning through prices can

crowd out valuable private information in the absence of policy. We complement this work by

identifying policies that correct the underlying informational externality, thereby also correcting

the particular problem emphasized in that paper.

Gaballo (2018) demonstrates how private learning through prices can give rise to multiple

equilibria, even when the exogenous noise is small. Such multiplicity is possible in our context

as well (at least in principle) and raises the question of whether more “sophisticated” policies

may be necessary for unique implementation. This, however, does not affect the essence of

our results, as they are derived directly from the solution to the planner’s problem (which is, of

course, generically unique).

Finally, Vives (2017) studies a class of market games in which firms compete in price-

contingent supply schedules and shows how in that context a pecuniary externality may

counteract the effects of the learning externality and even push the equilibrium in the opposite

direction. Our setting instead features no pecuniary externalities due to complete risk sharing

in consumption.3 This explains both why the informational externality alone pins down the

optimal policy and why the direction of the optimal policy intervention is the same regardless

of whether the firms’ production and pricing choices are strategic complements or substitutes.4

Layout. The rest of the paper is organized as follows. Section 2 introduces the baseline model,

which abstracts from nominal rigidity and monetary policy. Section 3 studies constrained

efficiency, implementability, and optimal policy in the baseline model. These results serve

as a stepping stone for the analysis in Section 4. There, we extend the model so that the

informational friction becomes the source of both real and nominal rigidity, and we proceed

to study the optimal mix of fiscal and monetary policies in Section 5. Section 6 discusses the

robustness of these insights to various extensions of the environment and proposes avenues of

future research. Section 7 concludes.

2 The Baseline, Non-Monetary Model

We start with a stripped-down version of our framework which abstracts from nominal rigidity

and monetary policy. This serves three related goals. First, it permits a cleaner exposition of

how the primal approach from the Ramsey literature can be adapted to both dispersed and

endogenous information and, by the same token, how the optimal policy problem can be

3To be precise, we will assume that all agents belong to the same “big family.” As a result, we have complete
markets in the sense that all idiosyncratic risk in consumption is insured away. There are, however, missing markets
in the sense that there is no “futures market” to perfectly aggregate information at the moment employment and
production choices are made. If such a market were to exist, the informational externality would vanish.

4For a more abstract analysis of how the interplay of pecuniary and informational externalities may shape policy,
see Angeletos and Pavan (2009).
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mapped to the more abstract problems studied in Vives (1988) and Angeletos and Pavan (2007,

2009). Second, it sheds light on the role of taxes. And third, it sets the foundations for the

analysis of monetary policy in Sections 4-5.

Time and geography. Time is discrete and periods are indexed by t ∈ {0, 1, 2, ...}. There is

a representative household consisting of a consumer and a continuum of workers. There is

a continuum of “islands”, indexed by i ∈ I = [0, 1], which define the boundaries of local

labor markets as well as the “geography” of information: information is symmetric within an

island, but asymmetric across islands. Each island is inhabited by a representative firm, which

specializes in the production of differentiated commodities.

Each period has two stages. In stage 1, the representative household sends a worker to

each of the islands. Local labor markets then open, workers decide how much labor to supply,

firms decide how much labor to demand, and local wages adjust so as to clear the local labor

market. At this point, workers and firms in each island have perfect information regarding

local productivity, but imperfect information regarding the productivities of other islands.

After employment and production choices are sunk, workers return home and the economy

transitions to stage 2. In stage 2, all information that was previously dispersed becomes publicly

known, and commodity markets open. Quantities are now pre-determined by the exogenous

productivities and the endogenous employment choices made during stage 1, but prices adjust

so as to clear product markets.

The representative household. The utility of the representative household is given by

U =

∞∑
t=0

β̄t
[
U(Ct)−

∫
I
V (ni,t)di

]
with U(C) = 1

1−γC
1−γ and V (n) = 1

εn
ε,where γ ≥ 0 parameterizes the income elasticity of labor

supply (also, the reciprocal of the elasticity of intertemporal substitution), ε ≥ 1 parameterizes

the Frisch elasticity of labor supply, ni,t is the labor of the worker who gets located on island i

during stage 1 of period t, and Ct is aggregate consumption. The latter is the CES aggregator

over all commodities that the household purchases and consumes in stage 2:

Ct =

[∫
I
c
ρ−1

ρ

i,t di

] ρ

ρ−1

where ci,t is the quantity the household consumes in period t of the commodity produced by

the representative firm on island i, and ρ > 1 is the elasticity of substitution across commodities

of different islands.

The representative household receives labor income and profits from all islands in the

economy. Its budget constraint is thus given by the following:∫
I
pi,tci,tdi+Bt+1 ≤

∫
I
πi,tdi+

∫
I
wi,tni,tdi+RtBt,
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where pi,t is the nominal price of the commodity produced by the representative firm on island

i, πi,t is the profit of that firm, wi,t is the nominal wage on island i, and Rt is the nominal gross

rate of return on the riskless bond, and Bt is the amount of bonds held in period t.

The objective of the household is simply to maximize expected utility subject to the budget

and informational constraints faced by its members. Here, one should think of the worker-

members of the household as solving a team problem: they share the same objective (household

utility) but have different information sets when making their labor-supply choices. Formally,

the household sends off its workers in stage 1 to different islands with instructions on how

to supply labor as a function of (i) the information that will be available to them at that

stage and (ii) the wage that will prevail in their local labor market. In stage 2, the consumer-

member collects all income of its worker-members and decides how much to consume of each

commodity and how much to save (or borrow) in the riskless bond.

Firms. The output of the representative firm on island i in period t is given by

qi,t = Ai,t(ni,t)
θ

whereAi,t is the productivity in island i, ni,t is the firm’s employment, and θ ∈ (0, 1] is the degree

of diminishing returns in production. The firm’s realized profit is given by

πi,t = pi,tqi,t − wi,tni,t

Finally, the objective of the firm is to maximize its expectation of the representative consumer’s

valuation of its profit, namely, its expectation of U ′(Ct)πi,t.

Aggregates and market clearing. Labor markets operate in stage 1, while product markets

operate in stage 2. The wage clears the labor market within each island so that labor supply

equals labor demand. For the commodities, market clearing in each product market implies

that consumption is equal to output: ci,t = qi,t ∀i. Nominal prices are normalized so that

the ideal price index, Pt ≡
[∫

p1−ρ
it di

] 1

1−ρ
, is fixed at 1. Aggregate output and employment are

defined by, respectively,

Qt ≡
[∫

I
q
ρ−1

ρ

i,t di

] ρ

ρ−1

and Nt ≡
∫
I
ni,tdi.

Aggregate and idiosyncratic productivity shocks. We assume that the island-specific

productivities Ai,t are log-normally distributed in the cross-section of islands:

ai,t ≡ logAi,t = āt + ξi,t

where āt is the aggregate productivity shock and ξi,t is an idiosyncratic, island-specific, shock.

The aggregate shock is drawn from a Normal distribution with mean µA,t and variance σ2
A,t,
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while the idiosyncratic shock is drawn from a Normal distribution with mean 0 and variance

σ2
ξ,t. The variables µA,t, σA,t and σξ,t are common knowledge in period t but need not be

deterministic: they could be arbitrary functions of the (public) history of past productivity

shocks.5 For future reference, we let κA,t ≡ σ−2
A,t and κξ,t ≡ σ−2

ξ,t .

Information. In stage 1, when key employment and production choices are made, the firms

and workers that are located on any given island face uncertainty about what’s going on on

other islands. More specifically, firms and workers observe the productivity of their own island

but not the productivities of other islands. Because local productivities are correlated (through

the aggregate productivity shocks), local productivity serves also as a noisy private signal of the

distribution of productivities and information of other islands.6

In addition to this information, all firms and workers observe exogenous public and private

signals about the underlying aggregate productivity. The public signal is given by

zat = āt + εzat ,

and the private signal by

xai,t = āt + εxai,t ,

where εzat ∼ N (0, σ2
za) and εxai,t ∼ N (0, σ2

xa) are noises, the first one common and the second one

idiosyncratic across islands. For future reference, we let κxa ≡ σ−2
xa , κza ≡ σ−2

za .

Finally, firms and workers also observe two endogenous signals about the production activity

that is taking place in other islands, one public and one private. In particular, letting

Qt ≡
[∫

I
q
ρ−1

ρ

i,t di

] ρ−1

ρ

measure aggregate output, the endogenous public and private signals are given by, respectively,

zqt = logQt + εzqt and xqi,t = logQt + εxqi,t ,

where εzqt ∼ N (0, σ2
zq) and εxqi,t ∼ N (0, σ2

xq) are noises, the first one common and the second one

idiosyncratic across islands.

The signal zqt is meant to capture macroeconomic data released by various government

agencies. For now, this corresponds to a statistic of aggregate GDP. In the extended monetary

model (Section 4), we add a signal of the aggregate price level. And although we do not explicitly

consider them, signals of aggregate employment or the interest rate introduce the same kind of

public learning as that captured by zqt here.

5For example, the special case in which aggregate productivity follows a random walk can be nested by letting
µt = āt−1 and σt be a constant.

6The assumption that firms and workers know their own productivities perfectly is inessential; all of our results go
through if we allow for uncertainty about local as well as aggregate productivity.
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The signal xqt , on the other hand, is meant to be a proxy for all kinds of private learning

about the state of the economy. For instance, one can think of firms collecting private data

about product conditions in particular markets, as in Townsend (1983) and Amador and Weill

(2010), or of them extracting information from idiosyncratic market transactions, as in Lucas

(1973). The exact modeling of such private sources of information is left outside the analysis,

but the essential feature we capture is their dependence on the behavior of others.7

3 Efficiency, Implementation, and Optimal Policy

In this section we define and characterize the relevant efficiency benchmark, study the

informational externality that underlies it, and show how it can be implemented with taxes.

3.1 Some preliminaries, notation, and the efficiency definition

In addition to the usual resource constraint, the fictitious planner of our economy faces an

informational constraint: the employment and production strategies of any given island i must

be measurable in the vector (ai,t, x
a
i,t, z

a
t , x

q
i,t, z

q
t ). This measurability constraint encapsulates the

informational friction faced by the market mechanism and the planner alike.

Next, note that because there is no capital and all information is revealed at the end of the

period, each period is completely separate from one another. For this reason we may drop

the time t subscript and the analyze the problem as if it were static. The time dimension will

only matter when we study equilibrium implementation and, in particular, the determination

of interest rates.

In principle, we could still consider any allocation in which the employment and output

of an island are arbitrary functions of the aforementioned signals. For the analysis to remain

tractable, however, we must restrict attention to allocations that preserve the Gaussian structure

of the information structure. This is true as long as the employment and production choices of

an island are log-linear in the private (island-specific) signals.8

Indeed, as long as this is the case, we can guess and verify that the information that is

available to any island i in stage 1 can be summarized by the triplet (ai, xi, z), where ai is

the current local productivity; xi is a Gaussian sufficient statistic for all the private (local)

7The assumed signals can be thought of as special cases of a more general class of signals of the form ωqt =
logQt + εaggt + εidiot , where εaggt is aggregate noise and εidiot is idiosyncratic noise. Such signals could be the product
of rational inattention over macroeconomic statistics: the measurement error is the source of aggregate noise and
rational inattention is the source of idiosyncratic noise. Our results readily extend to such signals, modulo of course
that we do not explicitly model the attention choice.

8In the absence of endogenous aggregation of information, the planner’s optimum and the equilibrium can be
characterized under very general assumptions about preferences, technologies, and information structures, as is
done in Angeletos and La’O, 2020. Here, we need to assume power forms for preference and technologies, Gaussian
shocks and signals, and log-linear policies in order ensure log-linearity in employment and production choices. Log-
linearity in employment and production choices, in turn, is needed in order to solve explicitly for the precisions of
the endogenous signals, for their dependence on policy, and for their effects on welfare.
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information about the aggregate state of the economy; and z is a Gaussian sufficient statistic

for all public information.

The precise definitions of these statistics, which are exogenous to the behavior of any single

individual or island but are ultimately endogenous to the entire economy, will be provided

shortly. For now, it suffices to note that the aforementioned tractability requirement boils down

to restricting attention to the space of allocations in which the output of an island is a log-linear

function of the triplet ωi ≡ (ai, xi, z), or

qi = q(ωi) = exp {ϕ0 + ϕaai + ϕxxi + ϕzz} , (1)

for arbitrary scalar coefficients ϕ = (ϕ0, ϕa, ϕx, ϕz) ∈ R4. Let Ω denote the set of all possible ωi;

thus ωi ∈ Ω.

For any such allocation, aggregate output is itself a log-linear function of the aggregate

fundamental and the public statistic:

Q = Q(ā, z) = exp{ϕ′0 + (ϕa + ϕx) ā+ ϕzz} (2)

for some constant ϕ′0 that differs from ϕ0 due to the aggregate effects of dispersion.9 It follows

that the endogenous signals xqi and zq can be transformed into Gaussian signals about the

underlying aggregate productivity, thus preserving the Gaussian structure of information. The

aforementioned sufficient statistics can then be constructed by taking, in effect, the projection

of aggregate productivity onto the relevant signals.

We thus have that xi − ā is idiosyncratic Gaussian noise with variance κ−1
x , and similarly

z − ā is aggregate Gaussian noise with variance κ−1
z , where κx and κz denote the precisions of

these two sufficient statistics. The precisions of these statistics can be expressed as the sum

of the precisions of all the underlying, component signals. And because the precision of the

information contained in the signals xqi and zq about the underlying fundamental hinges on how

strongly economic activity responds to it, κx and κz are endogenous to any allocation chosen by

the planner, in the manner described below.

Lemma 1. Take any log-linear allocation as in (1), with arbitrary ϕ = (ϕ0, ϕa, ϕx, ϕz) ∈ R4. The

precisions of the sufficient statistics x and z generated by this strategy are given by

κx = σ−2
ξ + σ−2

xa + (ϕa + ϕx)2σ−2
xq > 0 and κz = σ−2

za + (ϕa + ϕx)2σ−2
zq > 0. (3)

To understand this result, note that the endogenous signals xqi and zq about aggregate output

can be transformed into simple Gaussian signals about the underlying aggregate productivity

because aggregate output is itself a log-linear function of ā, as in (2). From equation (2), note

9See the Appendix for the exact characterization of the gap ϕ′0 − ϕ0 as a function of the CES parameter ρ and the
variances of the idiosyncratic productivities and idiosyncratic noises. For all intensive purposes, however, one can
safely ignore the “detail” that ϕ′0 6= ϕ0.
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that the sum ϕa + ϕx determines the sensitivity of aggregate output to aggregate productivity.

But this implies that for any given exogenous noises, it is precisely this sensitivity ϕa + ϕx

that determines how much information the endogenous signals xqi and zq contain about

aggregate productivity: the more sensitive is aggregate output to aggregate productivity, the

more informative these signals. It follows that the sum ϕa + ϕx thus determines the precisions

κx and κz of the private and public sufficient statistics.

Next, it is straightforward to show that once we restrict attention to the class of allocations

that satisfy (1), welfare can be expressed as a function of the strategy coefficients ϕ =

(ϕ0, ϕa, ϕx, ϕz) and the information precisions κ = (κx, κz) ∈ R2
+.

Lemma 2. There exists a functionW : R4 × R2
+ → R such that, for any allocation that satisfies

(1), welfare (ex ante utility) is given by W =W(ϕ;κ).

With these observations in mind, we define constrained efficiency (within the log-linear

class of strategies) as follows.

Definition 1. A constrained efficient allocation is a pair (ϕ, κ), consisting of a log-linear

production strategy ϕ and precisions κ, that maximizes welfare subject to condition (3).

Thus, the notion of constrained efficiency we adopt is similar to that of Angeletos and Pavan

(2007, 2009), appropriately adapted to our micro-founded, business-cycle economy. Condition

(1) serves only the need for tractability. Condition (3), on the other hand, is central: it ensures

that the planner must take into account how different allocations sustain different information

structures.10

3.2 Optimal Allocations

We now proceed to characterize the constrained efficient and the best implementable

allocations. In general, these allocations could differ. We will show that this is not the case

in our baseline model (although it is the case in our monetary extension).

Let us start with the constrained-efficient allocation. Recall that we can express welfare as

W (ϕ;κ) where ϕ = (ϕ0, ϕa, ϕx, ϕz) and κ = (κx, κz); a closed-form expression of this function

is provided in the Appendix. Next, recall that the precisions induced by any given strategy are

characterized by condition (3) in Lemma 1; let K : R → R2
+ denote the function that maps the

sum ϕ̄ ≡ ϕa +ϕx into the values of κx and κz according to (3). We can then express the planner’s

problem as follows.

10At the same time, it is important to note that our notion of constrained efficiency does not endow the planner
with any communication channels in addition to those already available to the market: the planner is prohibited
from transferring information from one island to another in any way other than through the endogenous signals
(xqi , z

q).
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Planner’s problem. Choose a strategy ϕ = (ϕ0, ϕa, ϕx, ϕz) and precisions κ = (κx, κz) so as to

maximizeW(ϕ;κ) subject to the constraint that κ = K(ϕa + ϕx).

The solution to this problem is complicated by the fact that this problem is non-concave

and that a closed-form solution for the efficient strategy does not exist. Nevertheless, because

the precisions depend on the strategy only through the sum ϕa + ϕx, we can bypass these

complications by splitting the planner’s problem into two steps. We summarize these steps as

follows but leave the detailed derivations to the Appendix.

Auxiliary Problem 1. Choose ϕ = (ϕ0, ϕa, ϕx, ϕz) so as to maximize W (ϕ;κ) subject to ϕa +ϕx =

ϕ̄ and let ∆ be the Lagrange multiplier on this constraint.

Auxiliary Problem 2. Choose ϕ̄ so as to maximize W (ϕ̄;K(ϕ̄)).

The first step lets the planner optimize over the set of strategies subject to an additional

constraint, namely that the sum ϕa + ϕx equals ϕ̄ for some arbitrary ϕ̄. The second step

then lets the planner optimize over ϕ̄ and over the precisions that are induced by it. The

first-step problem is strictly concave and, in fact, its first-order conditions can be reduced

to a simple linear system. The solution to this problem leads to the conditions (5) and (6)

below, which express the efficient strategy as a function of ∆, the Lagrange multiplier on the

aforementioned auxiliary constraint. The second step then permits us to interpret the wedge

∆ as the shadow value of the informational externality, to prove the existence of a constrained

efficient allocation, and to complete its characterization.

Let us define

β ≡
ε
θ

ε
θ + 1

ρ − 1
> 1 and α ≡

1
ρ − γ

ε
θ + 1

ρ − 1
< 1.

As will become evident below, the coefficient β determines the elasticity of local output to

variations in local productivity, while the coefficient α determines the elasticity of local output

to variations in (expected) aggregate output.

Proposition 1. (i) A constrained efficient strategy always exists and is given by

log q (ω) = ϕ∗0 + ϕ∗aa+ ϕ∗xx+ ϕ∗zz,

where the coefficients (ϕ∗a, ϕ
∗
x, ϕ

∗
z) and the associated precisions (κ∗x, κ

∗
z) are the fixed point to the
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following system:

ϕ∗a = β (4)

ϕ∗x =

{
(1− α)κ∗x

(1− α)κ∗x + κ∗z + κA

}
α

1− α
β + ∆ (5)

ϕ∗z =

{
κ∗z

(1− α)κ∗x + κ∗z + κA

}
α

1− α
β − κ∗z

κA + κ∗z
∆ (6)

κ∗x = σ−2
ξ + (ϕ∗a + ϕ∗x)2σ−2

xq

κ∗z = σ−2
za + (ϕ∗a + ϕ∗x)2σ−2

zq

for some ∆, which itself is proportional to the sum ∂W
∂κz

∂κz
∂ϕ̄ + ∂W

∂κx
∂κx
∂ϕ̄ and is strictly positive

whenever α 6= 0.

(ii) An equilibrium in the absence of policy (zero taxes) also exists and satisfies the same

conditions as the efficient strategy above, replacing ∆ with 0.

Part (i) of Proposition 1 characterizes the efficient strategy. Part (ii) contrasts it to the

equilibrium in the absence of policy intervention (“laissez faire”). Together, these properties

establish that policy intervention is warranted whenever ∆ > 0, which in turn is true whenever

α 6= 0.

Before elaborating on the economic meaning of this result, let us note that the result is

intentionally silent about the constantϕ0. This differs between the laissez-faire equilibrium and

the constrained efficient allocation for a familiar reason that is of no interest here: the monopoly

distortion. This distortion is orthogonal to the informational friction and can be corrected with

an acyclical, or constant, subsidy on production. In what follows, we disregard the monopoly

distortion and concentrate on the informational friction and more specifically on the scalar ∆.

This scalar is a wedge that summarizes the impact of the informational externality on the

efficient production strategy relative to the laissez-faire equilibrium—or, equivalently, relative

to the allocation that would have maximized welfare had information been exogenous.

In the absence of taxes, the equilibrium allocation is described in Proposition 1 but without

the wedge ∆. Note that the precisions κ∗x and κ∗z obtained at the efficient allocation above

are higher than those obtained at the equilibrium, precisely because the planner induces a

higher ϕ̄. Had information been exogenous, ∆ would have been zero and the planner would

have chosen the same allocation as the equilibrium without policy intervention. This is

because in the economy under consideration, barring any informational externalities, there is

no misalignment between the privately and socially optimal use of information.

Any deviation from the equilibrium allocation thus involves a loss in terms of allocative

efficiency: it reduces welfare for given information. But it is only this sacrifice that permits

the planner to engineer an increase in the precision of the available information. Furthermore,

such an increase is welfare improving precisely because the equilibrium use of information
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is efficient to start with. If the latter were not true, as for example in the case of Morris and

Shin (2002), an improvement in the precision of the available information could map to a

deterioration of welfare.

What then justifies the aforementioned sacrifice is precisely that these higher precisions

contribute to higher welfare. In short, the planner trades off less allocative efficiency (i.e., less

welfare for given information) for more informational efficiency (i.e., higher welfare via better

information).

To be precise, the above argument establishes the direction of a local welfare improvement

starting from the equilibrium without policy intervention. But such local arguments are not

necessarily informative about the position of the global maximum when the planner’s problem

fails to be concave as is the case here because, and only because, of the endogeneity of

information.11

A concrete example of how the local argument could fail is that the planner can induce

a high precision for the endogenous signals by choosing, not only a high enough positive

value for the sum ϕa + ϕx, but also a sufficiently negative value for it. This is simply because

the informativeness of the endogenous signals depends only on the absolute value of the

sensitivity of aggregate output to aggregate productivity, not on the sign of this sensitivity. We

can nevertheless rule out this possibility with a different, non-local argument: the planner

can always achieve the same precision along with higher allocative efficiency by choosing the

symmetrically positive value for ϕa + ϕx. This is because the value of ϕa + ϕx that maximizes

allocative efficiency—i.e., the equilibrium one—is positive to start with and the welfare function

is symmetric around this point. Moreover any positive value for ϕa + ϕx that is lower than the

equilibrium one is clearly suboptimal—for locally raising this value would have improved both

allocative and informational efficiency.

The above example also hints at the possible non-convexity of the planner’s problem. By the

same token, we cannot rule out the possibility that there are multiple values of ∆ solving the

system of equations given in Proposition 1. When such a possibility occurs, it means that there

are multiple solutions to the FOCs of the planner’s problem. Only one of them, of course, is the

optimum, for the planner’s optimum is (generically) unique regardless of whether the planner’s

problem is concave or not; all our subsequent results pertain to that solution.

Finally, the discussion above presumes that ∆ > 0, which is the case as long as α 6= 0. When

instead α is zero, ∆ is also zero, and the need for policy intervention vanishes, for the simple

reason that there is no value for knowing the aggregate state of the economy in the knife-edge

case in which α = 0. We expand on this point shortly.

11In the absence of endogenous information, the concavity of the planner’s problem follows directly from the
concavity of preferences and of the production function.
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Figure 1. The wedge ∆ for different values of α (Panel 1) and for different levels of noise in the endogenous public
signal (Panel 2) and the endogenous private signal (Panel 3).

3.3 The Informational Wedge

In Proposition 1, the informational externality, as measured by the sum ∂W
∂κz

∂κz
∂ϕ̄ + ∂W

∂κx
∂κx
∂ϕ̄ , is

itself evaluated at the constrained efficient strategy. By the same token, the wedge ∆ is jointly

determined with the coefficients ϕ∗ and the precisions κ∗. The details can be found in the

Appendix. This complication prevents a closed-form characterization of ∆.

This complication does not matter for the qualitative properties of the efficient strategy

discussed above, nor for the qualitative cyclical properties of the optimal policy that will be

discussed shortly. For these it suffices to know that ∆ is strictly positive as long as α 6= 0.

However, in order to study the comparative statics of ∆ with respect to the economy’s deep

parameters, we must resort to numerical simulations. The model is sufficiently parsimonious

that we may conduct a rather extensive exploration of its parameter space. In Figure 1, we use a

particular parameterization to illustrate a few key findings which are qualitatively robust across

a wide range of parameter values. For each of these simulations, we compute and plot the ∆

that maximizes welfare. Although the model is too stylized to permit a serious quantitative

evaluation, the particular parameterization used in this figure is reasonably realistic: we use

conventional values for the underlying preference and technology parameters and empirically

plausible values for the measurement errors in the endogenous signals.12

Consider first Panel A of Figure 1, which plots ∆ as a function of the degree of strategic

complementarity, or the GE feedback, as measured by α. When α = 0, the GE feedback is

muted and there is no informational externality: ∆ = 0. This coincides with our results stated

in Proposition 1. In this case, firms care only about their own productivity, which they already

know; they do not care about the state of the economy, because the positive demand effect

of others’ production on their revenue is exactly offset by the negative effect on labor costs.

As a result, the social value of learning about the state of economy is zero, and there is no

informational externality. There is therefore no reason for policy to intervene when α = 0.

Away from α = 0, the value of learning about the state of the economy is instead strictly

12The parameterization used here is the same as that used later in the monetary extension, modulo the exclusion
of nominal rigidity and price signals. See Section 5.4 for a detailed description.
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positive, and so is ∆. This is true whether firms’ actions are strategic complements (α > 0) or

strategic substitutes (α < 0). In the former case, the positive effect of others’ production on

a firm’s demand and revenue outweighs the negative effect on labor costs; firms thereby have

an incentive to produce more when other firms produce more. In the latter case, the opposite

properties are true. In both cases, however, firms care to know what others do and either do the

same or the opposite. This explains why ∆ is strictly positive on both sides of α = 0.

Interestingly, though, Panel A of Figure 1 shows that even if we restrict attention to the

positive domain for α, i.e. the region of strategic complementarity, the wedge ∆ is non-

monotonic in α. As α increases from 0 to 1, the wedge ∆ initially increases but eventually starts

falling, converging to zero as α approaches 1.

To understand the downward-sloping region, note that when strategic complementarities

are sufficiently strong, firms care a lot about coordinating their behavior. They thereby find it

optimal to largely disregard any private information about the state of the economy and instead

condition their behavior heavily on the public signal, even if the latter is a rather poor signal

about underlying aggregate fundamentals. In the limit as α → 1, the public signal serves in

equilibrium as a nearly perfect coordinating device, or signal of the behavior of others. This

removes the planner’s desire to distort equilibrium allocations in favor of improving learning.

As for the endogenous private signals, these are optimally disregarded in favor of public signals

in this limit, hence the value of improving their quality vanishes, too. As a result, ∆ approaches

zero as α approaches 1. This limit thereby has the same policy implication as when α = 0, but

the rationale is quite different.

Panels B and C of Figure 1 plot ∆ for different levels of noise in the public and private

endogenous signals, respectively. The relationship is again non-monotonic. When noise in

either of these signals is zero, all firms observe the economy’s fundamentals perfectly; as a result,

there is no need to distort allocations to improve learning and ∆ = 0. As the noise in either of

these signals moves away from zero, learning becomes imperfect and ∆ increases.

To understand the downward-sloping region of Panel B, note that when the noise in the

public signal becomes sufficiently high, holding the private noise fixed, firms endogenously

disregard the public signal in favor of the private signal. As a result, ∆ decreases. However, in

the limit as the noise of the public signal tends to infinity, it is as if there were no public signal

and only a private signal. In this case, firms learn purely from the private signal, but noise in

the private signal implies a strictly positive informational externality. Therefore, as public signal

noise approaches infinity, ∆ falls and converges from above to a strictly positive constant. The

same, but reverse, intuition holds true in Panel C as the noise in the private signal tends to

infinity, holding the public noise fixed.

To sum up, this example highlights why the informational wedge is likely to be highest

when both the degree of strategic complementarity and measurement errors are “moderate.”

A quantitative translation of this statement, however, is beyond the scope of this paper. That
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said, we will offer a back-of-the-envelope calculation of the wedge and of its footprint on both

taxes and monetary policy within a calibrated version of the monetary extension in Section 4.

Finally, let us emphasize that although α matters for the magnitude of ∆, it does not matter

for its sign: ∆ > 0 for both α > 0 and α < 0. This is because the nature of the informational

externality is invariant to whether firm choices are strategic complements or substitutes, and

because there is no inefficiency other than the informational externality.13

3.4 Implementation and Optimal Policy

Our notion of constrained efficiency allows the planner to choose allocations and associated

information structures without any consideration of whether and how these outcomes can be

implemented in a market-based equilibrium. We now show how such an allocation can in fact

be achieved with countercyclical taxes.

Consider any combination of the following tax instruments: a linear tax τR(ā, z) on firm

revenue or sales, a linear tax τL(ā, z) on household labor income, and a linear tax τC(ā, z)

on household consumption (a sales tax that is uniform across commodities). These taxes are

collected in stage 2 and can be contingent on the information that is publicly available at that

time. To maintain tractability and guarantee that equilibrium allocations are log-Normal, these

taxes are assumed to be log-linear functions of (ā, z). Finally, we assume that in order for the

government to balance its budget, the government has access to additional lump-sum taxes or

transfers to the household.

With ω ∈ Ω once again summarizing the information available to an island in stage 1

(inclusive of its productivity), we define an equilibrium as follows.

Definition 2. A (log-linear) equilibrium is the combination of signal precisions (κx, κz) ∈ R+
2

and a production strategy q : Ω → R+ as in (1), along with an employment strategy n : Ω → R+,

tax rate functions τR, τL, τC : R2 → R, a wage functionw : Ω→ R+, a price function p : Ω×R2 →
R, and household consumption demand and labor supply functions, such that:

(i) Given the signal precisions, the remaining elements constitute a competitive equilibrium

in the sense that the production and employment choices are optimal for the firms and the

households, the wages and the prices clear the labor and goods markets, and the government’s

budget constraint is satisfied in all states.

(ii) Given the production strategy, the signal precisions are generated according to (3).

Next, we show that any such tax combination reduces to a single tax wedge between the

marginal return and the marginal cost of labor. The key implementability constraint is then

identified in the following lemma.
13Had there been pecuniary externalities or other sources of inefficiency, as for example in Angeletos and Pavan

(2007, 2009) and Vives (2017), we would expect the wedge ∆ between the equilibrium and the optimal allocations to
combine the informational externality with these other sources of inefficiency. To the extent that the sign of the latter
depends on the sign of the firms’ strategic interaction, the sign of ∆ could also depend on it.
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Lemma 3. A production strategy is implementable with the aforementioned tax instruments if

and only it solves the following fixed-point problem:

q (ω)
ε

θ
+ 1

ρ
−1 =

(
ρ−1
ρ

)
θA(ω)

ε

θE
[
(1− τ(ā, z))Q(ā, z)

1

ρ
−γ |ω

]
, ∀ω, (7)

where q(ω) is the production of an island of type ω, A(ω) is its productivity, Q(ā, z) is aggregate

output, and 1−τ(ā, z) is the combined tax wedge induced by the aforementioned tax instruments.

The proof of this result is similar to the characterization of equilibrium in Angeletos and La’O

(2010) but with the inclusion of a tax wedge. Basically, condition (7) means that the marginal

cost of production in each island is equated to the local expectation of the marginal revenue

product, net of taxes.

Let us express the tax wedge as follows

− log(1− τ(ā, z)) = τ0 + τAā+ τzz, (8)

for some known coefficients (τ0, τA, τz) ∈ R3. The coefficient τ0 parameterizes the mean value

of the tax and helps correct the monopoly distortion—a familiar function that, as already

mentioned, is of no interest to us. Central for our purposes are instead the coefficients τA
and τz. These coefficients determine the elasticities of the tax with respect to, respectively, the

underlying fundamental and the public statistic; as we explain next, their ultimate function is

to regulate how information is used and aggregated in equilibrium.14

To see how such contingent taxes can impact the decentralized use and aggregation of

information, suppose the tax is negatively correlated with innovations in aggregate productivity

and positively correlated with the common noise. Anticipating these correlations, firms

choosing output according to equation (7) will have an incentive during stage 1 to react more

strongly to any information they may have about aggregate productivity and less strongly

to any information they may have about the common noise. It follows that firms will

unambiguously increase their response to their private sources of information; whether they

will at the same time reduce their response to common information then depends on whether

the positive correlation of the tax with the underlying common noise is sufficiently strong

relative to its negative correlation with respect to aggregate productivity. This explains why

state-contingent taxes can separately regulate both ϕx and ϕz, the sensitivities to private and

public information.15

14Here we have chosen to express the taxes as a function of ā and z. But since logQ and logN are both linear
(and indeed non-colinear) combinations of ā and z, we could equivalently condition taxes on any pair among the set
{logQ(ā, z), logN(ā, z), ā, z}.

15To be precise, the argument made above only explains how taxes impact individual firm incentives holding the
behavior of other firms constant; that is, it explains the impact of the policy on best responses, but not on equilibrium
behavior. However, the equilibrium could fail to inherit the comparative-static properties of best responses only
when the degree of complementarity is too strong (namely α > 1), which is never the case here due to the assumed
micro-foundations.
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We can then deduce the relevant policy implications by characterizing the tax wedge that

implements the efficient allocation. Let ε denote the noise in the public signal z.

Proposition 2. There exists a state-contingent tax policy as in (8) that implements the efficient

allocation. The optimal tax is countercyclical in either of the following senses: Corr(τ, ā) < 0,

Corr(τ, ā|z) < 0, and Corr(τ,Q) < 0. Moreover, the tax is positively correlated with the noise:

Corr(τ, ε) > 0.

The countercyclicality of optimal taxes follows directly from comparing equilibrium and

efficient allocations. Recall that, when information is endogenous, efficiency dictates the

government to raiseϕx, the sensitivity of production to private information, so as to boost social

learning. At the same time, it also dictates to lower ϕz, the sensitivity to public information, so

as to preserve allocative efficiency. How can the tax system provide the agents with the right

incentives for these goals to materialize in equilibrium? For the agents to find it optimal to

raise their response to their private information about aggregate productivity, it better be that

they expect the tax to fall—and hence their net-of-tax returns to increase—with any positive

innovations in aggregate productivity. And for them to find it optimal to decrease their response

to public information, it better be that they expect the tax to increase with the public signal

or, equivalently, with the noise in it. This explains why the optimal tax must be negatively

correlated with ā and positively correlated with ε along the equilibrium.

Note that it is the combination of the two cyclical properties of the tax—its negative

correlation with ā and its positive correlation with ε—that achieves full efficiency. However, it is

only the negative correlation with ā that is the key instrument for increasing ϕx and thereby for

boosting the aggregation of information over the business cycle. The positive correlation with

the noise is instrumental only for reducing ϕz, which is necessary for preserving some allocative

efficiency, but is irrelevant for the efficiency of learning.

Finally, let us clarify the following subtlety. The taxes identified above guarantee the existence

of an equilibrium that implements the planner’s optimum but does not rule out the existence of

other equilibria that are worse in terms of information aggregation and welfare. Whether these

taxes are present or not, multiplicity of equilibria is possible solely because of the endogeneity of

information, and for reasons similar to those articulated in Amador and Weill (2010) and Gaballo

(2018).16 If multiplicity happens to occur with the particular linear taxes we have described, and

if the planner wants to guarantee uniqueness of the equilibrium that implements the optimum,

then the planner may have to resort to more sophisticated, non-linear taxes. But since our

policy lessons are derived directly from the optimal allocation itself, they directly extend to such

16In particular, this possibility appears to hinge on whether learning is private or public. When learning is
private, there is strategic complementarity in the use of private information: the more other agents rely on private
information, the more precise the information contained in endogenous private signals, and the higher the individual
willingness to rely on them. This opens the door to multiple equilibria. By contrast, when learning is public, there is
strategic substitutability, contributing to uniqueness.
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policies: any taxes that implement the optimum have to be countercyclical.

4 The Monetary Model

In this section we consider the full version of our model which allows the informational

friction to be the source of both real and nominal rigidity. This model sheds light on the joint

determination of optimal fiscal and monetary policies.

Set up. We modify the baseline model in three dimensions. First, we introduce price rigidities.

In particular, we assume that firms set nominal prices in stage 1 while information is still

dispersed, and cannot adjust them in stage 2 in response to the new information that becomes

available at that stage. We refer to this scenario as “sticky prices” and to the alternative in which

prices are free to adjust in stage 2 as “flexible prices.”17

Second, we allow firms to make an additional labor-demand choice in stage 2 and,

accordingly, we let households make a second labor-supply choice in that stage. In particular,

we assume the production of the typical commodity be given by

y(ω, ā, z) = A(ω)n(ω)θl(ω, ā, z)1−θ,

where y(ω, ā, z) denotes output, n(ω) denotes the labor input in stage 1, l(ω, ā, z) denotes the

labor input in stage 2, and θ ∈ (0, 1); accordingly, we assume the per-period utility of the

representative household be given by

U(C(ā, z))−
∫

1

ε
n(ω)εdF (ω|ā, z)−

∫
1

ε
l(ω, ā, z)εdF (ω|ā, z),

where C(ā, z) is the same CES aggregator as that in the baseline model, F (·|ā, z) is the cdf of ω

conditional on the aggregate state (ā, z), and ε > 1.

Third, we let firms and workers in each island observe signals of the (nominal) prices set

by firms in other islands in addition to signals of the (real) quantities. In particular, we denote

by Y (ā, z) and P (ā, z) the real aggregate output and the nominal price level18 and let each firm

17This terminology is borrowed from Angeletos and La’O (2020) but is non-standard. What that work and our paper
alike call “sticky prices” is often referred to in the related literature as “flexible prices with information constraints” in
order to emphasize that that there is no ad hoc nominal rigidity of the Calvo type. Nevertheless, the terminology
proposed in Angeletos and La’O (2020) and adopted here is most appropriate for understanding the mapping
between models in which the nominal rigidity originates from an informational friction, as the model used here and
in related works (e.g., Woodford, 2003b), and the textbook New Keynesian framework, in which the nominal rigidity
takes the Calvo-like form. The adopted terminology is also consistent with that in Correia, Nicolini, and Teles (2008)
and Correia et al. (2013); in those works, “sticky firms” refer to a group of firms whose prices cannot be measurable
in the concurrent aggregate productivity. Clearly, the essence is the same whether this restriction is interpreted as
“pre-determined prices” or as “informationally-constrained prices.”

18Y (ā, z) is defined by the same CES aggregator asC(ā, z), replacing c(ω, ā, z) with y(ω, ā, z), and P (ā, z) is defined
as the corresponding ideal price index. Clearly, Y (ā, z) = C(ā, z) by market clearing in the goods market (or,
equivalently, by resource feasibility).
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observe a total of four endogenous signals about these objects. Two of these signals are public

and are given by

zy = log Y (ā, z) + εzy and zp = logP (ā, z) + εzp,

where εzy ∼ N (0, σ2
zy) and εzp ∼ N (0, σ2

zp) are their respective noises. The remaining two are

private and are given by

xyi = log Y (ā, z) + εxyi and xpi = logP (ā, z) + εxpi ,

where εxyi ∼ N (0, σ2
xy) and εxpi ∼ N (0, σ2

xp) are their respective noises. We interpret the former

two signals as readily accessible and commonly known macroeconomic statistics and the latter

two as proxies for private learning about economic activity.

Remark. Relative to the baseline model, the only new terms in both technology and

preferences are those pertaining to l(ω, ā, z), the second-stage labor input. The inclusion of this

input, and the fact that it can adjust freely to the realized state of nature, ensures that markets

clear: firms can adjust their supply to meet demand at the pre-determined (or information-

constrained) prices. This type of assumption is standard in the New Keynesian literature,

including the strand that emphasizes informational frictions.

Consider, for instance, the models studied in Mankiw and Reis (2002), Woodford (2003a) and

Mackowiak and Wiederholt (2009). The unique type of labor featured in these models maps

exactly to the second-stage labor input in our framework. What is truly new in our framework

is therefore the first-stage labor input, or the inclusion of a production choice that is subject

to the same informational friction as the firms’ pricing choice. This circles back to our earlier

discussion of how the “real” rigidity (the property that at least some production decisions are

made on the basis of incomplete and endogenous information) is essential for our results.

At the same time, let us emphasize that the inclusion of the second-stage labor input per se

does not drive our results. As will become clear from Proposition 4 below, if we shut down the

learning from prices, the following two properties hold regardless of θ, the relative importance

of the second-stage input. First, the rationale for a monetary policy that departs from replicating

flexible price allocations disappears; and second, the optimal taxes are still driven by the same

logic (and indeed the same math) as in our baseline model.

Substance and solution strategy. As in the baseline model, the essential issue here is the

endogeneity of the information contained in these signals. If, instead, information had been

exogenous, our framework would have been nested in that of Angeletos and La’O (2020).

Their results would have guaranteed that the following key lessons from the New Keynesian

framework (Correia, Nicolini, and Teles, 2008) extend to the presence of informational frictions.

First, that optimal taxes are acyclical; and, second, that optimal monetary policy merely

neutralizes the nominal rigidity, or replicates flexible prices. From this perspective, our key

contribution here is to show how the endogeneity of information upends these lessons.
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There is a subtle technical difference from our baseline model due to the introduction of

price signals. In the baseline model, all endogenous signals are well defined for arbitrary

allocations and regardless of whether such allocations were chosen directly by the planner

or implemented via decentralized markets. The same is true here for the quantity signals,

but not for the price signals: the latter are well defined only in the context of market-based

implementations.

This precludes the solution strategy taken in the baseline model. There, we could define and

characterize a natural efficiency benchmark without explicit consideration of implementability.

Here, we must first characterize the set of the combinations of quantities, prices, and

information structures that can be implemented as a market outcome given the available policy

instruments; and only then can we proceed to identify the best allocation within this set.

Taxes and monetary policy. The above discussion brings to the forefront the question of what

the available policy instruments are. We maintain the taxes from the baseline model but add

monetary policy as a new instrument.

The following property extends from our baseline model to the present setting: a tax on firm

revenue is equivalent to a tax on firm output, total employment, or payroll; a tax on household

labor income or consumption; or any other tax that has a uniform impact across the two labor

inputs. With this in mind, we think of the tax on firm revenue as a proxy for all of the above and

specify it as as follows:

− log(1− τ(ā, z)) = τ0 + τAā+ τzz, (9)

for some scalars (τ0, τA, τz) and for some random variable z that is a sufficient statistic for all

available public information (similarly defined as in the baseline model). We describe monetary

policy with the following policy rule for the nominal interest rate:

log (1 +R(ā, z)) = ρ0 + ρAā+ ρzz, (10)

for some scalars (ρ0, ρA, ρz). Condition (9) is the same as (8) in the baseline model; condition

(10) is the analogue for monetary policy. We impose a log-linear specification on both policies

in order to preserve the Gaussian nature of the information structure.

In the following section, we first characterize the combinations of allocations, prices, and

information structures that can be implemented with arbitrary policies of the aforementioned

kind. We then identify the best allocation within this set. Finally, we characterize the policies

that support it as an equilibrium. Before jumping into the formal arguments, it is useful to

anticipate the following two properties, which help clarify the role played by monetary policy.

First, note that the coefficients ρz and ρA parameterize the response of monetary policy to

the public signal and the innovations in aggregate output, respectively. Since firms set prices in

stage 1, when they know z but not ā, monetary policy can have real effects insofar as it responds

to the variation in ā that is not spanned by z. By the same token, ρz has no impact on the
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real allocations and the information structure; only ρA matters. This conclusion contrasts with

taxation, in which case both τz and τA have real effects.

Second, if prices had been flexible (i.e., free to adjust in stage 2), taxes would still have real

effects, but monetary policy would not. Therefore, by letting prices be sticky (i.e., determined

in stage 1), we effectively expand the set of allocations and information structures that can

be attained by the planner. In particular, an important intermediate step of the subsequent

analysis will be to show that, for any given tax policy, there always exists a monetary policy that

replicates the corresponding flexible-price outcomes, as well as monetary policies that induce

different allocations and information structures. A key final result will be that the former kind

of monetary policy is optimal when there are only quantity signals, whereas the latter kind

becomes optimal once there are price signals.

5 Implementability and Optimality

This section contains our main results. We first characterize the allocations and prices that can

be supported by the available policy instruments. This gives us the “primal” representation of

the policy problem. We use this to identify the optimal allocation and the optimal information

structure. We proceed to recover the policies that support this allocation and information

structure in an equilibrium.

5.1 Implementability in the Monetary Model

As in the baseline model, we guess (and subsequently verify) that the relevant information

available to any island in stage 1 can be summarized by the tripletω = (a, x, z) withω ∈ Ω, where

a is local productivity; x is a Gaussian sufficient statistic for all private information regarding

the aggregate state; and z is a Gaussian sufficient statistic summarizing all public information

regarding the aggregate state. We similarly guess (and subsequently verify) that the employment

and production levels of any island ω can be expressed as follows:

log q(ω) = ϕ0 + ϕaa+ ϕxx+ ϕzz and log l(ω, ā, z) = l0 + lAā+ laa+ lxx+ lzz, (11)

where q(ω) is now defined as q(ω) ≡ A(ω)n(ω)θ, a composite of productivity and the first-stage

labor choice, and where (ϕ0, ϕa, ϕx, ϕz) ∈ R4 and (l0, lA, la, lx, lz) ∈ R5 are coefficients that are

indirectly under the control of the planner.

Three clarifications are needed here. First, although q(ω) plays a similar technical role as in

the baseline model, it now has a more subtle interpretation: instead of being the entire output

of a firm or island, it is the component of it that is determined in stage 1, that is, it excludes the

input that is free to adjust to monetary policy. Second, although the planner has control over

the nine coefficients (ϕ0, ϕa, ϕx, ϕz; l0, lA, la, lx, lz) ∈ R9 that parameterize the state dependence
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of the real allocations, this control is limited by certain implementability restrictions. These

restrictions will be derived shortly.

The third clarification is the following. Since firms set prices in stage 1 along with first-stage

labor (equivalently q), it would seem most natural to specify firms’ behavior in terms of a pair of

strategies for q and p. However, one can always recast a firm’s pricing-setting choice as a choice

of a state-contingent plan for how its flexible stage-2 input, l, will adjust to realized demand.

For this reason we may specify firms’ behavior as a pair of strategies for q and l. This recasting,

which shifts focus away from price-setting choices towards implementable allocations, works

best for our purposes and is a defining feature of the primal approach to optimal policy.19

In fact, this equivalence can be inferred from our following equilibrium definition.

Definition 3. A (log-linear) equilibrium is a combination of signal precisions (κx, κz) ∈ R2, a

“sticky” price function p : Ω → R, production & employment strategies q : Ω → R+, n : Ω → R+,

l : Ω× R2 → R as in (11), policies τ : R2 → R and R : R2 → R as in (9) and (10), a wage function

w : Ω→ R+, and household consumption demand and labor supply functions, such that:

(i) Given the signal precisions and the tax and monetary policies, employment and prices are

optimal for the firms, quantities are optimal for the household, the labor and goods markets clear,

the government’s budget constraint is satisfied, and the nominal interest rate satisfies

U ′ (C(ā, z)) = β̄E
[

(1 +R(ā, z))
P (ā, z)

P (ā+1, z+1)
U ′ (C(ā+1, z+1))

∣∣∣∣ ā, z] (12)

where (ā+1, z+1) corresponds to the aggregate state in the following period.

(ii) Given the production and pricing strategies, the signal precisions are generated

accordingly.

Our equilibrium definition is analogous to our earlier equilibrium definition for the baseline

flexible-price model (Definition 2); the only modifications here are the following. First, because

prices are now sticky, i.e. measurable in ω, second-stage labor must adjust in order for goods

markets to clear. Second, the nominal interest rate is such that it satisfies the intertemporal

Euler equation for the household (2), written here in recursive form. Third, we again impose that

the precisions of the private and public signal are generated endogenously by the allocation;

however, we have yet to show how they are generated. We turn to this consideration next.

Implementability results. The rest of this subsection is organized in three results. The

first result (Lemma 4) characterizes the information structures that are induced by the

aforementioned strategies under arbitrary coefficients (ϕ0, ϕa, ϕx, ϕz; l0, lA, la, lx, lz) ∈ R9. The

second result (Proposition 3) works out the implementability restrictions on these coefficients;

together with the first result, this amounts to finding the set of the implementable combinations

19For examples of the primal approach applied to models with nominal rigidity, see Correia, Nicolini, and Teles
(2008) and Correia, Farhi, Nicolini, and Teles (2013), as well as the related work of Angeletos and La’O (2020).
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of allocations and information structures. The last result (Lemma 5) characterizes the

associated prices.

We start with the first result, which is the analogue of Lemma 1 in the baseline model.

Lemma 4. Take any pair of strategies as in (11). Let κx and κz denote the precisions of

the sufficient statistics of, respectively, the private and the public information that obtain in

equilibrium when all firms follow the aforementioned strategies. Then,

κx = σ−2
xa + Φ2σ−2

xy + Ψ2σ−2
xp and κz = σ−2

za + Φ2σ−2
zy + Ψ2σ−2

zp (13)

where

Φ = ϕa + ϕx + (1− θ)(la + lx + lA) and Ψ =
1

ρ
(ϕa + ϕx + (1− θ)(la + lx)) (14)

measure the elasticities of, respectively, the aggregate level of output and the aggregate price level

with respect to the underlying fundamental, conditional on the public information.

The interpretation of (13) is straightforward: the terms κxy ≡ Φ2σ−2
xy and κxp ≡ Ψ2σ−2

xp that

show up in κx capture the precision of the private learning that obtains through the quantity

and price signals, respectively; the corresponding terms in κz capture the corresponding public

learning. Only (14) deserves some explanation. To this goal, note that (11) implies that aggregate

output can be expressed, up to a constant, as

log Y (ā, z) = (ϕa + ϕx + (1− θ)(la + lx + lA)) ā+ (ϕz + (1− θ)lz) z.

Because z and, hence, also the second term above is known, observing the available quantity

signal is akin to observing the first term above plus measurement error. This explains the

formula for and interpretation of Φ. The logic for Ψ is similar, except that it requires the

characterization of the equilibrium price level. This missing piece follows from the last result

of this subsection (Lemma 5) and from the more detailed analysis in the Appendix.

Let us move on to the second result, which identifies the relevant implementability

restrictions. The exact definitions of α and β for the monetary model are in the proof of

Proposition 3 in the Appendix. We also assume that the parameters are such that α >

0. Although this assumption is required only for the characterization of optimal fiscal and

monetary policy in Section 5.3, this is the most realistic case; we thus assume it from the outset.

Proposition 3. (i) A pair of strategies as in (11) can be implemented as an equilibrium with an

appropriate combination of a linear tax and monetary policy as in (9) and (10) if and only if the
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following conditions are satisfied:20

ϕa = β (15)

la =
1

θ
(ϕa − 1) (16)

lx + lA
κx

κA + κx + κz
=

1

θ
ϕx (17)

lz + lA
κz

κA + κx + κz
=

1

θ
ϕz (18)

(ii) Had prices been flexible (i.e., free to adjust to realized demand), a pair of strategies as in

(11) would have been implemented if and only if the following condition was satisfied in addition

to conditions (15)-(18):

lA =
1

θ

ϕx
β

κA + κx + κz
κx

. (19)

Proposition 3 plays a role similar to the familiar “implementability” results in the Ramsey

literature: it represents the optimal policy problem in terms of the allocations that are induced

by the policy rather than the policy instruments themselves. In our context, Proposition 3 sheds

light on how the planner can regulate the decentralized use of information and thereby also its

aggregation through the available price and quantity signals.

As in the baseline model, the planner can induce any ϕx and ϕz she may desire by

appropriately choosing the contingencies of the taxes. However, conditional on picking these

coefficients, her control over the remaining coefficients is limited either entirely (under flexible

prices) or partially (under sticky prices). In particular, if prices were flexible, the planner would

have no further control: all remaining coefficients would be fixed functions of the chosen pair

(ϕx, ϕz) and deep parameters. Instead, since prices are sticky, the planner has an extra degree of

freedom: by appropriately choosing monetary policy, it can induce any lA it wishes and thereby

also influence the pair (lx, lz), over and above its control of the pair (ϕx, ϕz).

More specifically, whether prices are flexible or sticky, the absence of a differential tax on

the two types of labor implies that the equilibrium necessarily equates the (expected) marginal

rate of transformation between these two types of labor with the corresponding marginal rate

of substitution in preferences. This explains how and why (la, lx, lz) are related to (ϕa, ϕx, ϕz) in

(15)-(18).21 Furthermore, if prices were flexible, once taxes had been set to achieve the desired

ϕx and ϕz, the sensitivity of second-stage employment and production to the realized aggregate

productivity would be pinned down by equating the realized marginal returns and costs of

stage-2 labor. It is this restriction that gives (19). But since prices are sticky, this restriction is

no more present: by designing the extent to which monetary policy accommodates the realized

20There is also a restriction between ϕ0 and l0 which we omit because it is of no interest: ϕ0 and l0 are irrelevant for
both the endogenous precisions and business-cycle properties of the real allocations.

21In particular, the equality of expected marginal rates of transformation and substitution gives E[log l(ω, ā, z)] =
const + logn(ω), where const includes second-order terms; using then log q(ω) = logA(ω) + θ logn(ω) and noting
that this condition must be satisfied for every ω = (a, x, z), gives the constraints in part (i) of Proposition 3.
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productivity shock, the planner can effectively choose any lA she wishes, in addition to the free

choice of the pair (ϕx, ϕz). In other words, sticky prices amount to an extra degree of freedom.

Finally, note that as the planner chooses a higher lA, which amounts to a more

accommodative monetary policy, firms respond optimally by raising the sensitivity of their own

prices to the information they have about aggregate productivity when they set their prices,

thus, partly offsetting the monetary policy. This explains why lx and lz are negatively related to

lA in the way defined by conditions (17) and (18), and why the planner has no control over lx
and lz other than that afforded through the free choice of lA. In short, when prices are sticky,

monetary policy affords exactly one extra degree of freedom over choosing allocations.

So far we have shown that the set of implementable allocations and information structures is

characterized by the combination of condition (11), Lemma 4, and Proposition 3. We conclude

this subsection with the characterization of the prices that are associated with any element of

this set.

By consumer optimality and market clearing in the goods markets, we have

p(ω)

P (ā, z)
=

(
c(ω, ā, z)

C(ā, z)

)− 1

ρ

and c(ω, ā, z) = y(ω, ā, z) = q(ω)l(ω, ā, z)1−θ.

Combining these equilibrium conditions with (11), we reach the following result.

Lemma 5. Pick any allocation and information structure that satisfy the combination of

condition (11), Lemma 4, and Proposition 3. The associated equilibrium prices satisfy

log p(ω) = ψ0 + ψaa+ ψxx+ ψzz,

where ψa and ψx are pinned down by

ψa = −1

ρ
(ϕa + (1− θ)la) and ψx = −1

ρ
(ϕx + (1− θ)lx),

while ψz is indeterminate.

Because any component of monetary policy that is public information at the moment prices

are set cannot have any real effect, the dependence of monetary policy and prices to z is

indeterminate. By contrast, the dependence of a firm’s price on its own productivity and on its

private signal are uniquely determined. To understand why, note first that, once the planner

has picked a real allocation, there is a unique collection of relative prices that support it in

equilibrium. Note next that the relative price of two firms, A and B, can move in a particular

manner with the private information of firm A only if the nominal price of firm A moves in the

exact same manner, simply because the nominal price of firm B cannot possibly be contingent

on the private information of another firm. Furthermore, this is true whether the relevant

private information is a private signal about the aggregate state of the economy or merely the
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firm’s own productivity. This provides the intuition for why ψa and ψx are uniquely pinned

down once the corresponding production coefficients are fixed. The specific formulas given

in the lemma above follow from the optimality conditions of the household or, equivalently, the

inverse demand functions faced by the firms.

A direct corollary of Proposition 3 and Lemma 5 is that by controlling lA, and thereby lx,

monetary policy also influences ψx, the sensitivity of prices to local information. In particular,

by (17), ψx is decreasing in lA: the more firms expect monetary policy to accommodate the

realized productivity shock, the higher their incentive to raise their prices in response to any

private information they may have about aggregate productivity. This observation anticipates

the role of monetary policy in regulating the aggregation of information through prices.

5.2 Optimal Allocations

We now proceed to identify the best implementable allocation and information structure. First,

we express welfare as a function of the strategy coefficients presented in condition (11) and the

precisions of the private and public sufficient statistics provided in (13).

Lemma 6. There exists a functionW : R11 → R such that the expected utility of the representative

household can be expressed asW(ϕ, l;κx, κz).

Next, we use Lemma 4 and Proposition 3 to express the planner’s problem as follows.

Planner’s Problem. Choose strategy coefficients ϕ = (ϕ0, ϕa, ϕx, ϕz) and l = (l0, lA, la, lx, lz) and

precisions κx and κz so as to maximizeW(ϕ, l;κx, κz) subject to (13) and (15)-(18).

Like standard Ramsey policy problems, this problem imposes certain implementability

constraints on the set of allocations that the planner can choose; as explained before, these

constraints are summarized by conditions (15)-(18). In our problem the planner must also take

into account that different allocations induce different information structures; this explains why

the planner controls κx and κz, subject to condition (13).

The solution to this problem is characterized in the following result.

Proposition 4. There exist scalars ∆Y > 0 and ∆p > 0, which depend on the information

parameters, such that the optimal allocation satisfies

log q (ω) = ϕ∗0 + ϕ∗aa+ ϕ∗xx+ ϕ∗zz

log l (ω, ā, z) = l∗0 + l∗Aā+ l∗aa+ l∗xx+ l∗zz
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with the following coefficients:

ϕ∗a = β (20)

ϕ∗x =

{
(1− α)κ∗x

(1− α)κ∗x + κ∗z + κA

}
α

1− α
β + (∆y + ∆p) (21)

ϕ∗z =

{
κ∗z

(1− α)κ∗x + κ∗z + κA

}
α

1− α
β − κ∗z

κA + κ∗z
(∆y + ∆p) (22)

l∗a = l̂a (23)

l∗x = l̂x +

(
κ∗x

κA + κ∗x + κ∗z

)
λ∆p (24)

l∗z = l̂z +

(
κ∗z

κA + κ∗x + κ∗z

)
λ∆p (25)

l∗A = l̂A − λ∆p (26)

where (l̂a, l̂x, l̂z, l̂A) are the coefficients that would have obtained if prices were flexible (but taxes

were fixed at their sticky-price optimal level) and λ is a positive scalar that is invariant to

information parameters (it only depends only on preferences and technologies).

This result establishes that the impact of learning on the optimal implementable allocations

resembles qualitatively that in the baseline model. In particular, the scalars ∆y and ∆p are the

Lagrange multipliers that measure the social value of increasing the endogenous precisions of

the quantity and price signals, respectively.

Consider first the sensitivity of first-stage decisions to information. Modulo the new

definitions of α and β, the coefficients given by the conditions (21) and (22) coincide with their

counterparts in Proposition 1 if we let the total information wedge be ∆ ≡ ∆y + ∆p. The

intuition is of course the same. The planner corrects the information externality and boosts

social learning by raising the sensitivity of first-stage decisions to private information. At the

same time, it preserves allocative efficiency by lowering the sensitivity to public information.

Let us now turn to second-stage decisions. Suppose for a moment that agents did not learn

from price signals (formally, let σ2
zp = σ2

xp = ∞). As a result, ∆p = 0, and by conditions

(24)-(26) second-stage coefficients would coincide with their counterparts under flexible prices.

Likewise, Proposition 4 would coincide exactly with Proposition 1 for the baseline model with

condition (26) requiring that monetary policy be set so as to replicate flexible prices. Therefore,

the novelty here relative to our baseline analysis is to allow for learning through prices and to

show how this requires optimal monetary policy to depart from the benchmark of replicating

flexible-price allocations without changing the essence of the optimal taxes.

To gain intuition for this result, recall that sticky prices provide the planner with an extra

degree of freedom. Whether the planner uses this extra lever and, thus, moves away from the

allocations that would obtain under flexible prices depends on whether the distorted allocations
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come with a further boost to social learning. This is the case when, and only when, prices serve

as a signal of the state of the economy.

The argument above suggests that in the general case in which agents learn also from prices,

optimal implementable allocations differ from those that would be consistent with flexible

prices. More specifically, note that, as the planner increases ϕx to render social learning more

effective, if monetary policy were to replicate the flexible-price outcomes, by Proposition 3 this

increase in ϕx would have been associated with an increase in lA. Condition (26) establishes

that it is actually optimal to reduce lA relative to this benchmark. That is, the optimal level of

output moves less with productivity than its flexible-price counterpart (with taxes).

There are two complementary ways to understand this result. One is in terms of monetary

policy mimicking a missing tax instrument. Another is in terms of the optimal covariation

between nominal prices and real economic activity that monetary policy should aim to

implement. We discuss the first perspective here and the second in the next subsection.

To understand the first perspective, let us momentarily abstract from sticky prices and

monetary policy. Let us also put aside how Proposition 4 was obtained in the first place, where

the wedges ∆y and ∆p originate, and what they capture. Instead, let us treat those wedges

as exogenous and take as given that the planner wishes to implement the real allocations

characterized in Proposition 4. What is the most direct way to achieve this goal if the planner

has access to a completely unrestricted set of tax instruments?

The answer is that the planner should apply a differential subsidy on the early and the

late production choices. In particular, the subsidy on early production choices should be

higher than the subsidy on later production choices. To read this property from Proposition

4, note first that what we have called “flexible-price allocations” corresponds, under the present

perspective, to the allocations implemented with a uniform subsidy across all production

choices, i.e. to both n and l (equivalently q and l). It follows from condition (26) that relative

to the case where all production choices are equally subsidized, late production choices ought

to be subsidized less by an amount proportional to ∆p. Equivalently, n has to be subsidized in

proportion to the sum ∆y + ∆p, but l has to be subsidized only in proportion to ∆y.

From this perspective, a monetary policy that leans further against the wind relative to

the one that implements flexible-price outcomes assumes the role of the missing differential

subsidy. Such a monetary policy, by contracting during a boom and expanding during a

recession, mimics the effect of introducing a procyclical subsidy that has a bigger footprint on

the late production choices than on the earlier ones. This as-if differential tax partly offsets the

uniform subsidy, so that in the end the effective subsidy on l is proportional only to ∆y, whereas

that on n is proportional to the sum ∆y + ∆p, as desired.

This echoes how monetary policy works in the textbook New Keynesian model: in that

model, too, whenever monetary policy departs from flexible-price allocations, it does so only

to mimic a missing tax instrument (Correia, Nicolini, and Teles, 2008). In particular, in the oft-
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considered case of a monetary policy that “leans against cost-push shocks,” the missing tax

instrument is the uniform (across inputs) state-contingent subsidy needed to offset a time-

varying monopoly. Here, this kind of tax instrument is allowed, and thereby the rationale for

this policy is different. Monetary policy still mimics some type of missing tax instrument, but in

this case it is a subsidy that can differentiate between early and late choices.

Clearly, such a differential subsidy is hard to envision in the real world, especially given the

difficulty of figuring out the exact timing of the different production choices and the information

upon which they are based. This explains why we view a “direct” implementation implausible

in practice. An “indirect” implementation via monetary policy helps bypass this problem for

the following basic reason: insofar as certain production decisions take place at a similar time

or on the basis of similar information as price-setting decisions, monetary policy will naturally

have less control over these real decisions relative to those that must adjust after prices are

fixed. In other words, monetary policy naturally has a differential real effect, akin to that

of a differential tax. Importantly, monetary policy allows the planner to mimic the needed

differential tax without explicit knowledge of which real decisions are made on the basis of

restricted information, or which ones are most directly regulated by monetary policy.

This discussion explains the mechanics of the optimal monetary policy, but not the function

served by it. To understand this, and to pave the way for the second perspective on what

monetary policy accomplishes (which we turn to in the next subsection), we must ask why

Proposition 4 holds in the first place, and in particular why optimality calls for a larger subsidy

on n than on l. The abstract math is that n contributes to learning through both quantities and

prices, wheres l contributes only through quantities. The logic is that, because firms choose n

at the same time and on the basis of the same information as p, a more information-sensitive

n translates to more information revelation through both quantities and prices. By contrast,

because l adjusts after prices have been fixed, a more information-sensitive l contributes to

more learning only through quantities. It follows that internalizing the social learning through

quantities calls for a procyclical subsidy on both n and l, whereas internalizing the social

learning through prices calls for a subsidy only on l, or equivalently for a monetary policy that

mimics the aforementioned differential tax.

We expand on this logic and formally characterize the policy mix that supports the optimal

allocation in the next subsection.

5.3 Optimal Policy Mix

To characterize the optimal combination of fiscal and monetary policy, we simply combine the

the results in Propositions 3 and 4 to obtain the following result.

Proposition 5. (i) The optimal tax is countercyclical, as in the baseline model. In particular,

τ∗A + τ∗z = −χ1∆y − χ2∆p, (27)
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for some positive scalars χ1, χ2.

(ii) The optimal monetary policy is less accommodative of the productivity shock than the

policy that replicates flexible-price allocations. In particular,

ρ∗A = ρ̂A + χ3∆p, (28)

where χ3 is a positive scalar and ρ̂A is the coefficient in the interest-rate rule that replicates

flexible-price outcomes.

This result translates the informational wedges from Proposition 4 into policy prescriptions.

Part (i) says that optimal taxes are countercyclical, part (ii) says that monetary policy deviates

from the benchmark of replicating flexible prices towards further “leaning against the wind,” or

raising interest rates more aggressively during booms.

The intuition behind part (i) is similar to that in our baseline model. The novelty is that there

are now two informational wedges driving optimal taxes, one related to the learning through

quantities and the other related to the learning through prices. This is because countercyclical

taxes incentivize firms to react more aggressively to their information when making their

production and pricing choices, thereby improving the learning through both channels.

The logic for taxes holds true even if monetary policy were restricted to replicate flexible-

price outcomes. For any given information structure, replication of flexible-price outcomes

maximizes allocative efficiency by minimizing relative-price distortions. But part (ii) of

Proposition 4 establishes that when and only when there is learning through prices, optimal

monetary policy deviates from this benchmark: it trades-off less allocative efficiency, or more

relative-price distortions, for the sake of inducing more learning through prices.

In the previous subsection, we have explained how the counter-cyclicality of the optimal

monetary policy can be understood in terms of mimicking a missing tax instrument. We now

expand on a second, complementary perspective, which relates to why the optimal monetary

policy “leans against the wind” in the sense of inducing a negative relation between prices and

real economic activity and, in particular, why this helps improve social learning.

To this goal, it is important to understand first the reference point from which the optimal

monetary policy departs. For any given information structure, had monetary policy replicated

flexible-price outcomes, it would have maximized allocative efficiency and minimized relative-

price distortions. But it would not have stabilized the nominal price level. Instead, it would

have allowed the nominal price level to move in the direction opposite that of real output, for

the reason first explained in Angeletos and La’O (2020).

Let us first review this reason. Due to the real rigidity, it is efficient for the relative production

of any two firms to vary with their relative information, or beliefs, about the state of the

economy. Next, because the demand curve faced by any given firm is downward-sloping, in

order to preserve efficient movements in relative production, a firm’s nominal price must move
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in the direction opposite its real quantity in response to any variation in its private information.

But aggregate booms tend to correlate with a wave of optimism across a majority of firms, while

efficiency dictates that the prices of these firms move in the direction opposite their quantities.

As a result, the aggregate price level must be negatively correlated with aggregate output in order

to preserve allocative efficiency.

Let us now relate this benchmark to our own result. If taxes were set to zero and monetary

policy were to replicate flexible-price outcomes, nominal prices would have moved in the

direction opposite aggregate output and aggregate productivity. In our context, this would have

already allowed prices to aggregate and reveal information about the state of economy. Starting

from this benchmark, the cost of a slightly different monetary policy in terms of allocative

efficiency is only second order. But the benefit of inducing more learning is first order—and

this is precisely what the ∆y and ∆p wedges capture. Furthermore, because nominal prices

are negatively related to real economic activity in the benchmark, the direction of the optimal

deviation thereby is clear: it is optimal to raise both the positive correlation of the real quantities

with the underlying fundamental and the corresponding negative correlation with prices.

For the reasons already explained, both goals can be accomplished in large part by a pro-

cyclical subsidy, or counter-cyclical tax, on production. But insofar as there is learning through

prices, monetary policy should lean even more against the wind relative to the flexible-price

benchmark. If instead monetary policy were to move in the other direction, that of stabilizing

the price level, it would both impede learning and reduce welfare.

Finally, were we to consider a version of this model with fully flexible prices, i.e. zero nominal

rigidity, but with learning from both quantities and prices, then the optimal allocation described

above would be unattainable. Under flexible prices we would no more have the extra lever

afforded by monetary policy, and consequently we would no more be able to use that lever

to mitigate the distortion between first and second-stage input choices: equilibrium would

necessarily equate their marginal rate of transformation with their corresponding marginal

rate of substitution (as in condition 19). In this restricted case, there would still be value

for countercyclical taxes, but the optimal tax would be less countercyclical than the one

characterized under sticky prices. By the same token, there would be less learning.

5.4 A Numerical Illustration

Our model is too stylized to permit a quantitative evaluation of the theoretical results obtained

above. In our model all the learning takes place “within a period,” whereas in a more realistic

model it would take place across periods. Notwithstanding this limitation, it is instructive to

illustrate our results within a “calibrated” version of our model.

We focus on a case where learning is all private. This can be motivated in at least one

of two ways. First, in the tradition of Lucas (1972), one may have a prior that most learning
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happens in a decentralized fashion. Second, in the tradition of Sims (2003), Woodford (2003b)

and Mackowiak and Wiederholt (2009), one may argue that even if aggregate statistics are readily

available, firms may pay little attention to them, effectively observing them with idiosyncratic

noise. Formally, we set σzy = σzp =∞ and let all information be private.22

Consider first ε, the inverse of the Frisch elasticity of labor supply, and γ, which in models

without capital captures mainly the income elasticity of labor supply. We follow Woodford

(2003b) and set ε = 1.3 and γ = 0.2. These values imply that the complete-information version

is consistent with the empirical regularity that output and employment have the same cyclical

behavior over the business cycle and real wages are relatively flat. We next set θ = 0.5, which

means that roughly half of production is fixed on the basis of incomplete information and half

adjusts freely to realized aggregate demand. To calibrate the idiosyncratic risk in TFP, we refer

to the NBER-CES Manufacturing Database, which computes a measure of TFP for all 6-digit

NAICS manufacturing industries. This suggests a value for σξ equal to 0.08, or an 8% standard

deviation in firm-level TFP from year to year. For aggregate productivity, on the other hand, we

set σA equal to 0.02, or a 2% standard deviation in aggregate TFP.

We do not have a strong prior on what is the appropriate parameterization of the degree of

strategic complementarity. This naturally depends on whether one interprets α narrowly, as a

measure of the aggregate demand externalities allowed in our simple model, or more broadly

as a proxy for all other additional sources of complementarity left outside our model, such as

those originating from financial frictions. Under the narrow interpretation, Angeletos and La’O

(2010) argue that a value of α around or above 0.5 can be justified for an “elastic” neoclassical

economy of the kind argued for in the RBC literature (King and Rebelo, 1999). We adopt this as

our baseline value but explore how the results vary as we vary α in the entire [0, 1] range.

What about the noise in the available private signals? For our baseline, we set σxy =

σxp = 0.03 on the basis of the following rationale. These values, along with our value for

idiosyncratic TFP, imply that the overall signal-to-noise ratio in a firm’s overall information

about aggregate output is equal to 1.23 This means that whenever aggregate output goes up

by one unit, the average forecast of it goes up by half a unit. In other words, the size of the

forecast error is commensurate to the size of the innovation in the forecast. Such a pattern is

broadly consistent with the evidence from surveys of macroeconomic forecasts documented in

Coibion and Gorodnichenko (2012, 2015). We use these values as our baseline but explore how

the results vary as we vary the noise in either signal.

Figure 2 computes the wedges ∆Y and ∆p as a function of α and the levels of noise in the

two endogenous signals. Both wedges in the monetary model behave qualitatively the same as

22The assumption σzp = ∞ can also be motivated on purely empirical grounds, that the signal contained in
inflation about real economic activity is almost negligible (e.g., Angeletos, Collard, and Dellas, 2018).

23The variance of a firm’s posterior about aggregate TFP is (σ−2
ξ +σ−2

xy +σ−2
xp )−2, which under our parameterization

is approximately (0.02)2, or the same as σ2
A. And since aggregate output is proportional to aggregate TFP, this verifies

the claim made above.
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Figure 2. The two wedges (∆Y in the first row, ∆p in the second) for different values of the strategic complementarity
(first column), the noise in the price signal (second column) and the noise in the quantity signal (third column).

the wedge in the baseline model.24

We now turn to optimal policy. Because aggregate output is a log-linear function of aggregate

TFP, we can readily re-express the tax and the nominal interest rate that support the optimal

allocation as follows:

− log(1− τ) = τ∗Y log Y and log(1 +R) = ρ∗Y log Y.

Under this representation, τ∗Y measures the optimal cyclical elasticity of the tax and ρ∗Y measures

the optimal cyclical elasticity of the nominal interest rate.25 Similarly, let ρ̂Y denote the cyclical

elasticity of the nominal interest rate required to replicate the corresponding flexible-price

allocation. The difference ρ∗Y − ρ̂Y thereby provides a simple measure of the countercyclicality

of monetary policy: the more positive this quantity is, the less accommodative the optimal

monetary policy is over the business cycle. Finally, to assess the overall impact of the optimal

fiscal-and-monetary policy mix, we compute the quantity y∗A/y
◦
A − 1, where y∗A and y◦A denote

the elasticities of aggregate output to TFP under, respectively, the planner’s optimum and the

“laissez faire” equilibrium in which taxes are non-contingent and monetary policy replicates

flexible prices.

Figure 3 illustrates how the optimal countercyclicality of fiscal and monetary policy depends

on the degree of strategic complementarity and the level of noise in the available price and

quantity signals. Let us first comment on the signs of the measures seen in this figure. The

negative value for τ∗Y means that the optimal taxes are countercyclical. Similarly, the positive

24Also note that when θ < 1, there is an upper bound on α, which is obtained by taking the highest admissible
value of ρ; this is given by 0.72 under our parameterization. This explains the domain of α in the figure.

25These elasticities are given simply by τ∗Y = τ∗A/y
∗
A and ρ∗Y = ρ∗A/y

∗
A, where τ∗A and ρ∗A are the corresponding

elasticities in terms of productivity, as characterized in Proposition 5, and y∗A is the elasticity of aggregate output to
aggregate productivity along the optimal allocation.
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Figure 3. The countercyclicality of the tax (first row) and the countercyclicality of monetary policy, as manifested in
nominal interest rates (second row), and their overall effect on output (third row), for different values of the strategic
complementarity (first column), the level of noise in the price signals (second column), and the level of noise in the
quantity signals (last column).

value for ρ∗Y − ρ̂Y indicates that optimal monetary policy “leans against the wind:” interest rates

are higher than their flexible-price counterparts. Together, fiscal and monetary policy render

output more responsive to the underlying TFP shock than in the laissez faire benchmark with

non-contingent taxes and a monetary policy that replicates flexible prices.

Let us next turn to the effect of α, the degree of strategic complementarity. Here, we see

the policy translation of the non-monotonic pattern we documented earlier for the wedges:

the value of both countercylical taxes and countercyclical monetary policy is highest when α is

neither too high nor too low. For extreme values of α, there is little such value either because

firm decisions are nearly independent (for low α) or because the complementarity is so strong

that firms optimally disregard any private information and hence there is little scope for social

learning to begin with (for high α).

The effect of the two levels of noises on the optimal policies also mirror their effects on the

wedges. The only subtlety here is the following. As explained earlier on, the optimal monetary

policy deviates from the benchmark of replicating flexible prices only insofar as there is learning

through prices. It follows that when the noise in the price signals is sufficiently large, such a

deviation is not worthwhile, which in turn explains why ρ∗Y − ρ̂Y converges to zero as σxp alone

goes to infinity. By contrast, because countercyclical taxes serve the dual role of improving the
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aggregation of information through both quantities and price signals, τ∗Y stays bounded away

from zero as either σxp or σxy become larger and larger. For τ∗Y to vanish, both sources of learning

have to be muted.

Finally, let us note that although our model is far too stylized to allow for a serious

quantitative evaluation, Figure 3 indicates that the documented effects could be non-trivial.

Depending on the exact parameterization (within the range considered), the optimal policy may

have taxes decrease up to 25 bps and the nominal rate increase up to 25 bps for every percentage

point increase in output over the business cycle; the optimal output response is greater than the

laissez-faire counterpart by a comparable amount.

6 Discussion

In this section, we discuss the robustness of our insights to various perturbations of the

environment and hint at possible directions for future work.

6.1 Imperfectly informed policy

Our analysis has focused on the imperfection of information within the private sector, but has

assumed that policy itself can be contingent on the true state. Let us first clarify that this

assumption does not require an informational asymmetry between the policymaker and the

private sector at any given point of time.

To see this, consider our extended model. The private decisions made in stage 2 are

conditioned on exactly the same information as that upon which the policymaker sets taxes and

monetary policy. Still, policy “works” because it affects incentives faced in stage 1, when that

information is coarser. This highlights that our basic insights hold even if policy can depend

only on public information, provided that: (i) such information arrives gradually; (ii) policy

can react to public information that was not available at the time certain private decisions

were made; and (iii) private decisions are influenced by the anticipation of such future policy

reaction. Such anticipatory effects of policy are common place in richer macroeconomic

models, where private decisions are forward looking. The novelty here is to illustrate how they

can regulate the aggregation of information.

In this light, it is essential that policy responds to information that was not originally

available to private agents. This is what the contingency of the taxes or the interest rate on

the realized productivity captures. But such future information of the policymaker need not be

perfect.

To see this, consider our baseline model and let taxes depend on two noisy public signals:

the original one available in stage 1, and an additional one which becomes available at stage 2.

Denote the former by zt, as before, and the latter by z′t. Let the latter be given by z′t = at + ε′t,

37



where ε′t is the measurement error in the policymaker’s observation of the fundamental in stage

2. The original analysis is nested by letting the variance of ε′t be zero. More generally, as long as

this measurement error is unpredictable, every agent’s stage-1 expectation of the policy satisfies

Ei
[
τ(z′t, zt)

]
= Ei [τ(at, zt)] .

It follows that the set of stage-1 decisions implemented by policies contingent on (z′t, zt) is

the same as that implemented by policies contingent on (at, zt). And because, at least in our

baseline model, only stage-1 decisions enter the precisions of the endogenous signals, it follows

that the two types of policies are equally effective in regulating the aggregation of information.

This of course does not mean that such measurement error is of no consequence. To the

extent that the variation in taxes (or monetary policy) induced by such measurement error

necessarily distorts private decisions made in stage 2, this may naturally limit the desirability of

the state-contingent policies we have identified. Intuitively, we expect the optimal cyclicality of

taxes and of monetary policy to attenuate with the level of such measurement error. Clearly, this

consideration could be important quantitatively, but it does not change the qualitative lesson.

In the above argument we let z′t be an exogenous signal of the fundamental and concluded

that the noise in it is likely to reduce (in absolute value) the optimal τA. But now consider the

case in which z′t is an endogenous signal, given for example by z′t = log Yt + ε′t. In this case, there

is a force contributing in the opposite direction: a higher absolute value for τA reveals valuable

information to the policymaker itself. This appears to reinforce our message in the following

sense: the kind of policies we characterize in this paper may facilitate not only more learning

within the private sector but also more information transmission from the private sector to the

policymaker and therefore to better, more informed, policies. We leave the investigation of this

idea for future work.

6.2 Learning from policy

Throughout our analysis we have assumed that agents observe taxes and the interest rate only in

the second stage, after the fundamental is revealed and all actions have been taken. But what if

agents can observe a signal of the policy itself—the tax rate or the interest rate—at the moment

they make their decisions? We now sketch why this possibility does not change the essence of

the policy problem. In fact, it only reinforces our policy lessons.

To start with, consider our baseline real model and let agents observe, in addition to the

previously introduced signals, the following private signal about the tax rate:26

xτ = − log(1− τ(ā, z)) + εxτ ,

26The focus on private signals facilitates the two interpretations discussed next. But the formal argument would
not change if the signal were public.
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where εxτ is Gaussian idiosyncratic noise, with fixed variance. This noise could be interpreted

as a proxy for rational inattention.27 Alternatively, xτ could be the actual tax faced by an agent,

in which case εxτ corresponds to an idiosyncratic tax shock. Regardless of the interpretation,

using our log-linear specification of τ, we have that xτ contains the same information as that of

the following, “normalized” signal:

x̄τ ≡ xτ − τ0 − τzz
τA

= ā+ ε̃xτ ,

where ε̃xτ ≡ εxτ/τA. Thus, by choosing a larger absolute value for τA, the planner can now

induce more learning via the above signal. Intuitively, the more counter-cyclical taxes are, the

more informative is any signal about them.

How does this modify the optimal policy problem? In our baseline analysis, the planner

chooses a negative value for τA so as to induce more cyclicality in aggregate output and thereby

more learning through signals of aggregate output. This was an indirect way of manipulating

the information available to agents. Now, there is also a direct way of doing so, calling for an

even more negative value for τA.28

A similar logic applies to monetary policy. Consider our extended monetary model and let

agents observe a noisy private signal of the interest rate. Again, the noise can be interpreted as

either a proxy for rational inattention or as an idiosyncratic interest-rate shock. In either case,

a monetary policy that induces a more countercyclical aggregate interest rate is beneficial not

only for the reasons explained in our main analysis, but also because it directly boosts agents’

learning from interest rates.

27Such an interpretation stretches the assumption that the variance of εxτ is exogenously fixed. See Subsection 6.4
for why this issue may not be essential.

28Let us sketch the formal argument. In the original model, welfare was expressed as W (ϕ, κ), where ϕ is the
elasticity of output with respect to productivity and κ is the vector of precisions of the two sufficient statistics.
Furthermore, κ was a function of only ϕ, which was itself regulated by τA. It followed that the optimal choice of
τA was solving the following FOC: {

∂W

∂ϕ
+
∂W

∂κ

∂κ

∂ϕ

}
∂ϕ

∂τA

∣∣∣∣
τ∗
A

= 0,

where ∂ϕ
∂τA

was encapsulating implementability. Now, welfare is still given by the same function of ϕ and κ, but now
the latter depends not only on ϕ (in essentially the same way as before) but also on τA (because of the direct effect of
τA on the precision of z̄τ ). As a result, the total derivative of welfare with respect to τA is now given by

dW

dτA
=

{
∂W

∂ϕ
+
∂W

∂κ

∂κ

∂ϕ

}
∂ϕ

∂τA
+
∂W

∂κ

∂κ

∂τA
.

Note that ∂W
∂κ

> 0 (more information is socially valuable, for the reasons already explained) and ∂κ
∂|τA|

> 0 (precision
increases with the absolute value of τA). Evaluating the above at τ∗A, i.e. the tax that is optimal in the absence of the
policy signal, gives (remember that τ∗A < 0)

dW

dτA
=
∂W

∂κ

∂κ

∂τA
= −∂W

∂κ

∂κ

∂|τA|
< 0,

which proves that it is optimal, at least locally, to reduce τA below τ∗A. To complete the argument, one only has to
verify that this local-deviation logic extends globally. We suspect that this can be done in a similar way as in the proof
of Proposition 1.
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6.3 Removing state-contingent taxes

Throughout we have allowed the planner to vary taxes with the business cycle, thus providing

economic agents with the incentive to respond more strongly to their private information about

the state of the economy. We have shown that this leads monetary policy to deviate from the

benchmark of replicating flexible-price allocations towards inducing a more counter-cyclical

price level. But what if such state-contingent taxes were unavailable?

In this case, monetary policy must substitute not only for the differential tax missing in our

main analysis, but now also for the uniform tax that was previously used to induce efficient

first-stage production choices. In more practical terms, this means that monetary policy must

balance its previously-articulated role of inducing a more counter-cyclical price level with its

new role of inducing more pro-cyclical aggregate output. Depending on which role is more

important, which in turn depends on which form of learning (from prices or quantities) is

stronger, monetary policy could now be either more or less counter-cyclical than the one that

replicates flexible prices.

To illustrate this point, the left panel of Figure 4 plots the wedge between the optimal

sensitivity of the interest rate to aggregate output when taxes are constrained to be zero

(denoted by ρ∗Y,τ=0) and its counterpart in the benchmark case where the planner ignores

the informational externality and replicates flexible prices (denoted by ρ̂Y,τ=0); this wedge is

plotted for different parameterizations of the precisions of the endogenous private signals.

More specifically, we shut down the public signals, we fix the sum of the precisions of the two

endogenous private signals (i.e., the sum 1/σ2
xy + 1/σ2

xp), and we vary their ratio. As we move

from the left to the right on the x axis, we therefore let the output signal become more precise at

the expense of the price signal. In the right panel, we report the corresponding optimal counter-

cyclicality of the aggregate price level.

The qualitative message of the figure is clear. When learning occurs mostly through prices,

the role articulated in our main analysis dominates and monetary policy is more “hawkish”

than the one that implements flexible prices (i.e., ρ∗Y,τ=0 >ρ̂Y,τ=0). But once learning through

quantities becomes sufficiently important, the need to substitute for the missing counter-

cyclical taxes takes over and monetary policy turns “dovish” (i.e., ρ∗Y,τ=0 <ρ̂Y,τ=0).

Which of these two scenarios is more relevant in practice, and how they interact with our

earlier point about policy signals, is an empirical/quantitative question beyond the scope of

our paper. We would thus like to close this subsection with the following two remarks.

First, when learning from quantities is relatively more important, there may be a rationale for

“dovish” monetary policy in the sense described above, but this does not necessarily translate to

targeting a less counter-cyclical price level. This is evident in the right panel of Figure 4, where

the optimal sensitivity of the price level is shown to be relatively flat in the relative importance
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Figure 4. The wedge ρ∗Y,τ=0 − ρ̂Y,τ=0 (left panel a) and the sensitivity Pa of the price level to aggregate TFP (right
panel) for different values of r ∈ (0, 1), where 1/σ2

xy = rκ̄ and 1/σ2
xp = (1− r) κ̄, for some positive constant κ̄.

of two kinds of learning.29

Second, in the US data all relevant macroeconomic outcomes (aggregate employment,

output, the price level, the interest rate) are nearly orthogonal to utilization-adjusted TFP

at business-cycle frequencies. This does not mean that our theory is inapplicable. The

productivity shock in our model is merely a proxy for all shocks that drive efficient business

cycles. It follows that the resolution to the aforementioned question hinges on the resolution to

the more challenging, long-standing question of what fraction of the business cycle is efficient.

6.4 Rational inattention

Like Woodford (2003a) and others, we have invited the interpretation of the idiosyncratic noise

in the observation of the available quantity, price, and policy signals as a proxy for rational

inattention à la Sims (2003). We have not, however, taken this interpretation “seriously” in the

sense of endogenizing the agents’ inattention or information-acquisition choice. Had we done

so, policy could regulate the information structure not only via the channel studied so far (the

equilibrium aggregation of information) but also via an additional channel: the equilibrium

collection of information.

This, however, need not change our main conclusions. To understand why, note first

that there is no deep conceptual difference between the use of information and the collection

of information: both notions ultimately relate to how closely actions track the underlying

fundamental. Efficiency in the use of information thereby naturally extends to efficiency in the

collection of information, at least insofar as we model the cost of information as an arbitrary

but fixed function of the joint distribution between the agents’ actions and the underlying

fundamentals. This point has been formalized in Angeletos and La’O (2020) for an environment

similar to the one considered here but excludes the endogenous aggregation of information.30 It

follows that the informational externality originating in the aggregation of information remains

29Of course, this figure serves only as proof of concept.
30See in particular Online Appendix B of Angeletos and La’O (2020).
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the sole source of inefficiency, and its correction remains the sole goal for policy. In a nutshell,

the lessons developed here are robust to endogenizing the acquisition of information.

There are, however, two possible exceptions to this statement (and to the result of Angeletos

and La’O (2020) upon which the above argument rests). The first regards the aforementioned

assumption that the cost of information can be expressed as a fixed, policy-invariant function

of the joint distribution between the agents’ actions and the exogenous state of nature. This

assumption is commonplace in the macroeconomics literature on rational inattention, (e.g.,

Mackowiak and Wiederholt, 2009, 2015; Myatt and Wallace, 2012; Sims, 2010). But it may be

violated if the cost of information depends on the joint distribution between the agents’ actions

and endogenous economic outcomes: think of agents tracking the relevant quantities and

prices directly, as opposed to tracking the underlying, possibly much richer, state of nature. As

explained in Angeletos and Sastry (2019) and Hébert and La’O (2020), this possibility may or may

not give rise to an additional externality, depending on certain “details” of the cost functional,

such as whether the cost functional takes the Sims-Shannon mutual-information form or other

forms proposed in recent decision-theoretic literature. How this subtle issue interacts with our

paper’s policy lesson is an open question.

The second exception regards risk sharing. Our paper and Angeletos and La’O (2020) alike

have abstracted from incomplete risk sharing by assuming that all agents belong to a single “big

family.” This guarantees that there is no social value from reducing the inequality caused by

dispersed information or rational inattention. If, instead, one allows for such a social value, and

if there is also a limit to how much redistribution can be obtained via taxes, then there could be

a reason for regulating the use of information away from the benchmarks we have characterized

here. Colombo, Femminis, and Pavan (2014) provide an example of this sort, albeit in a model

that abstracts from endogenous information aggregation.

6.5 Inefficient business-cycle shocks

Throughout the analysis, we have focused on productivity shocks. These can be thought more

generally as proxies for shocks that trigger efficient business cycles. What if we were instead

to consider shocks that trigger socially inefficient business cycles, such as shocks to monopoly

markups or other distortions?

When the planner can undo the impact of such shocks on allocations with appropriate state-

contingent taxes, the planner can also guarantee that welfare is invariant to the precision of

information about them. In this “ideal” case, the optimal taxes and the optimal monetary

policy are determined as if information were exogenous. But if policy is sufficiently constrained

so that equilibrium allocations are sensitive to such shocks, welfare is likely to decrease with

the precision of information about them.31 It follows that, with inefficient fluctuations, the

31See Angeletos, Iovino, and La’O (2016) for the articulation of this point in a model that is similar to the present
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basic logic behind our results works in reverse: the policymaker now wishes to minimize the

information revealed through quantities and prices about these shocks. Paciello and Wiederholt

(2014) and Baeriswyl and Cornand (2010) study models featuring inefficient fluctuations but

abstract from the endogenous aggregation of information. The former focuses on the firms’

collection of information, the latter on the signaling role of policy. A bridge between their

analyses and ours is an interesting direction for future research.

7 Conclusion

In this paper we have shown that the endogeneity of information contained in macroeconomic

statistics and market outcomes about the state of the economy calls for counter-cyclical taxes

coupled with a monetary policy that leans against the wind. We have explained how such

policies incentivize firms to act more aggressively on their private information about the

economy, thus improving the information revealed to other firms, boosting allocative efficiency,

and reducing the “noise” in business cycles. We have distinguished two main channels of such

learning, one through real quantities and another through nominal prices, and have explained

how each of them contributes to shaping optimal policy.

Our model contains three key features: (i) a real rigidity due to informational friction;

(ii) a nominal rigidity due to informational friction; and (iii) the endogenous aggregation

of information. Although subsets of these features can be found in previous work, their

combination is novel to the literature and critical to our policy lessons.

The real rigidity, isolated in our baseline analysis, was essential for understanding why there

is social value in improving the aggregation of information in the first place: were it not for

the real aspect of the informational friction, a monetary policy that replicates flexible prices

would have implemented the complete-information first-best outcomes, negating the value of

any intervention. The nominal rigidity, on the other hand, was key to letting monetary policy

be non-neutral and, hence, be able to assist in the aforementioned goal. And finally, were it

not for the endogeneity of information aggregation, the state-contingency of taxes would be

unnecessary and there would be no reason for monetary policy to depart from replicating the

flexible-price benchmark.

In deriving these lessons, we have allowed the planner to vary taxes with the business

cycle, thus providing economic agents with an incentive to respond more strongly to their

private information about the state of the economy. In the New Keynesian literature, such

state-contingent taxes are typically assumed away so as to open the door for monetary policy

to stabilize the economy against inefficient fluctuations, such as those triggered by shocks

to monopoly power or other distortions. Such shocks are absent here and so, too, is the

one but abstracts from endogenous information.

43



standard rationale for state-contingent taxes and monetary policy. Instead, state-contingent

taxes and monetary policy are useful because they serve a novel function: they help internalize

informational externalities and boost social learning. The quantitative evaluation of this

function is an open question.
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A Appendix

A.1 Proofs for Section 3

Proof of Lemma 1. Take any log-linear strategy of the form q(a, x, z) = ϕ0 + ϕaa + ϕxx + ϕzz,

for arbitrary coefficients (ϕ0, ϕa, ϕx, ϕz). The endogenous public signal is then given by

zq = logQ(ā, z) + εzq

where

logQ(ā, z) = ϕ′0 + ϕaa+ ϕxx+ ϕzz

is the log of aggregate output. It follows that the public signal zq can be transformed into an

unbiased Gaussian signal z̃q about aggregate productivity, defined as follows:

z̃q ≡ zq − ϕ′0 − ϕzz
ϕa + ϕx

= ā+ ε̃zq

where ε̃zq ≡ εzq/(ϕa + ϕx). The precision of this signal is

κzq ≡
1

V ar(ε̃zq)
= (ϕa + ϕx)2σ−2

zq .

Standard Bayesian updating then implies that the sufficient statistic z of available public

information is given by a weighted average of the exogenous productivity signal za and the

(normalized) endogenous output signal z̃q:

z =
κza
κz

za +
κzq
κz

z̃q,

where κza and κzq are the precisions of these two signals, while κz = κza + κzq is the overall

precision of the sufficient statistic z.

The analysis of the private signal xqi is similar: it can be transformed into an unbiased signal

with precision κxq = (ϕa + ϕx)2σ−2
xq . QED.

Proof of Lemma 2. Take any log-linear strategy of the form (1). For arbitrary coefficients ϕ =

(ϕ0, ϕa, ϕx, ϕz) and arbitrary precisions κ = (κx, κz), the implied level of welfare (ex-ante utility)

can be expressed as:

Eu =W(ϕ;κ) ≡ 1

1− γ
expVc(ϕ;κ)− 1

ε
expVn(ϕ;κ), (A.1)

where

Vc(ϕ;κ) ≡ (1− γ) (ϕ0 + (ϕa + ϕx + ϕz)µ) (A.2)

+
1

2
(1− γ)

(
ρ− 1

ρ

)[
ϕ2
a

κξ
+
ϕ2
x

κx
+ 2

ϕaϕx
κx

]
+

1

2
(1− γ)2

[
ϕ2
z

κz
+

(ϕa + ϕx + ϕz)
2

κA

]
,

Vn(ϕ;κ) ≡ ε

θ
(ϕ0 + (ϕa + ϕx + ϕz − 1)µ) (A.3)

+
1

2

ε2

θ2

[
(ϕa − 1)2

κξ
+
ϕ2
x

κx
+ 2

(ϕa − 1)ϕx
κx

+
ϕ2
z

κz
+

(ϕa + ϕx + ϕz − 1)2

κA

]
.
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QED.

Proof of Proposition 1. We prove the two parts of the proposition together. Recall from

Lemma 1 that any given strategy induces a κx and a κz as functions of ϕa + ϕx; let K1(ϕa + ϕx)

and K2(ϕa + ϕx) denote the first and second element of the vector K(ϕa + ϕx) as defined in (3).

We can then express the planner’s problem as follows:

Planner’s problem. Choose ϕ = (ϕ0, ϕa, ϕx, ϕz) and κ = (κx, κz) so as to maximize W (ϕ;κ)

subject to κ = K(ϕa + ϕx).

To solve this problem, we proceed in two steps. The first step is to characterize the strategy

that is optimal subject to the constraint that the sum ϕa + ϕx is kept constant at some ϕ̄ ∈ R
and accordingly the precisions κx and κz are kept constant at κx = K1(ϕ̄) and κz = K2(ϕ̄). The

second step is to optimize over the sum ϕ̄ and the precision κx and κz subject to the constraint

that κx = K1(ϕ̄) and κz = K2(ϕ̄). The first step permits us to characterize the efficient allocation

as a function of the Lagrange multiplier associated with the constraint ϕa +ϕx = ϕ̄. The second

step permits us to interpret this Lagrange multiplier as the shadow value of the informational

externality, to prove the existence of an efficient allocation, and to complete its characterization

by showing that this multiplier is strictly positive.

Thus consider the first step. Fix some ϕ̄ ∈ R, let κ = K(ϕ̄), and consider the following

constrained problem:

Auxiliary problem 1. Choose ϕ so as to maximizeW(ϕ;κ) subject to ϕa + ϕx = ϕ̄.

Note that W is differentiable in ϕ for fixed κ. Let η̃ denote the Lagrange multiplier for the

constraint ϕa + ϕx = ϕ̄. The first-order conditions for this problem are then the following:

ϕ0 : 0 =
∂W
∂ϕ0

,

ϕa : 0 =
∂W
∂ϕa

+ η̃,

ϕx : 0 =
∂W
∂ϕx

+ η̃,

ϕz : 0 =
∂W
∂ϕz

.

Using the characterization ofW, the first of these conditions reduces to the following:

ϕ0 : 0 = expVc (ϕ;κ)− 1

θ
expVn (ϕ;κ) . (A.4)

This guarantees that Vc = Vn − log θ at the efficient allocation and gives ϕ0 as a function of

ϕa, ϕx, ϕz, κx, κz and exogenous parameters. Let V ≡ Vc = Vn − log θ and let η ≡ e−V η̃. The rest
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of the first-order conditions reduce to the following:

ϕa : 0 =

(
ρ− 1

ρ

)
ϕa
κξ

+

(
ρ− 1

ρ

)
ϕx
κx

+ (1− γ)
(ϕa + ϕx + ϕz)

κA

− ε
θ

(ϕa − 1)

κξ
− ε

θ

ϕx
κx
− ε

θ

(ϕa + ϕx + ϕz − 1)

κA
+ η,

ϕx : 0 =

(
ρ− 1

ρ

)
ϕx
κx

+

(
ρ− 1

ρ

)
ϕa
κx

+ (1− γ)
(ϕa + ϕx + ϕz)

κA

− ε
θ

ϕx
κx
− ε

θ

(ϕa − 1)

κx
− ε

θ

(ϕa + ϕx + ϕz − 1)

κA
+ η,

ϕz : 0 = (1− γ)
ϕz
κz

+ (1− γ)
(ϕa + ϕx + ϕz)

κA
− ε

θ

ϕz
κz
− ε

θ

(ϕa + ϕx + ϕz − 1)

κA
.

For fixed η, this is a linear system of three equations in the three coefficients ϕa, ϕx and ϕz.

Subtracting the first equation from the second, we obtain

ϕ∗∗a =
ε
θ

ε
θ + 1

ρ − 1
≡ β.

We can then solve the remaining two equations for ϕx and ϕz as follows:

ϕ∗∗x =

{
(1− α)κx

(1− α)κx + κz + κA

}
α

1− α
β +

1
ε
θ + 1

ρ − 1

{
κx (κz + κA)

(1− α)κx + κz + κA

}
η

ϕ∗∗z =

{
κz

(1− α)κx + κz + κA

}
α

1− α
β − 1

ε
θ + 1

ρ − 1

{
κxκz

(1− α)κx + κz + κA

}
η

Letting

∆ ≡ 1
ε
θ + 1

ρ − 1

(
κx (κz + κA)

(1− α)κx + κz + κA

)
η,

gives conditions (5) and (6). Finally, note that ∆ is a simple rescaling of the Lagrange multiplier

η, so we can think of ∆ itself as the relevant Lagrange multiplier. Using then the above results

along with the constraint ϕa + ϕx = ϕ̄, we can express ∆ (or equivalently η) as follows:

∆ = ϕ̄−
{

κx + κz + κA
(1− α)κx + κz + κA

}
β. (A.5)

Substituting this into conditions (5) and (6), we can obtain the optimal coefficients as functions

of the sum ϕ̄ and the precisions κx and κz. Let ϕ(ϕ̄;κ) denote this solution; for the rest of this

proof, whenever we write ϕ, we mean ϕ = ϕ(ϕ̄;κ).

We can then express the level of welfare obtained at this solution as a function of the sum ϕ̄

and the precisions κx and κz. In particular, using the FOC with respect to ϕ0, we get that

W(ϕ;κ) =

( ε
θ − 1 + γ

1− γ
θ

ε

)
expVc(ϕ;κ). (A.6)
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Since ε
θ − 1 + γ > 0 and ε

θ > 0, we can consider the following monotone transformation of

welfare:

T W(ϕ;κ) ≡ 1

1− γ
Vc(ϕ;κ).

Using then the characterization of the efficient coefficients, we conclude that

T W(ϕ(ϕ̄;κ), κ) = W (ϕ̄;κ) ≡ A(κ)−B(κ) (ϕ̄− f(κ))2 , (A.7)

where

B(κ) ≡ ε

2θ(1− α)

κA + (1− α)κx + κz
κx(κA + κz)

> 0,

and

f(κ) ≡ κA + κx + κz
(1− α)κx + κz + κA

β = arg max
ϕ̄

W (ϕ̄;κ) = arg max
ϕ̄
W(ϕ(ϕ̄;κ), κ).

(The precise value of A(κ) has no particular interest, so it is omitted.) This result has a simple

interpretation. Note that f(κ) identifies the sum ϕ̄ = ϕa+ϕx that would have been efficient had

information been exogenous (equivalently, ϕ(f(κ);κ) are simply the coefficients of the efficient

allocation when ∆ = 0). Hence, (A.7) expresses welfare as a monotone transformation of the

quadratic distance between any value ϕ̄ that the planner may choose and the one that would

have been optimal from a purely allocative perspective. Clearly, the only reason that the efficient

ϕ̄ may differ from f(κ) is the informational externality.

We now proceed to the second step, namely that of optimizing over the sum ϕ̄ = ϕa+ϕx and

the induced precisions κx = K1(ϕ̄) and κz = K2(ϕ̄). Letting

W̄ (ϕ̄) ≡ W (ϕ̄;κ(ϕ̄)) ,

the planner’s problem reduces to the following uni-dimensional problem:

Auxiliary problem 2. Choose ϕ̄ ∈ R so as to maximize W̄ (ϕ̄).

First, note that, because f(κ) > 0, it is necessarily the case that, for any given κ, W (ϕ̄;κ) >

W (−ϕ̄;κ) whenever ϕ̄ > 0. And because κ(ϕ̄) = κ(−ϕ̄), it is immediate that W̄ (ϕ̄) > W̄ (−ϕ̄)

whenever ϕ̄ > 0, which means that it is never optimal to choose ϕ̄ < 0.

Next, we can show that

∂W

∂κz
=

ε

2θκ2
z

ϕ2(ϕ̄;κ)2 =
ε(β − (1− α)ϕ̄)2

2θ(1− α)2(κA + κz)2
.

Along with the fact that κz is a quadratic function of ϕ̄, this guarantees that

∂W

∂κz

∂κz
∂ϕ̄
→ 0 as ϕ̄→∞.

In words, the social value of a marginal increase in the precision κz of public information

vanishes as this precision goes to infinity. A similar result holds for private information:

∂W

∂κx
=

ε

2θ(1− α)κ2
x

ϕ1(ϕ̄;κ)2 =
ε(β − ϕ̄)2

2θ(1− α)κ2
x

,
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and hence
∂W

∂κx

∂κx
∂ϕ̄
→ 0 as ϕ̄→∞.

At the same time, because
∂W

∂ϕ̄
= −2B(κ) (ϕ̄− f(κ)) ,

and because B(κ)→ ε
2θ(1−α)κx

> 0 and f(κ)→ β as κz →∞, we have that

∂W

∂ϕ̄
→ −∞ as ϕ̄→∞.

Combining, we conclude that

∂W̄ (ϕ̄)

∂ϕ̄
→ −∞ as ϕ̄→∞.

Along with the facts that W̄ (ϕ̄) is continuous in ϕ̄ and that it is without loss of optimality to

restrict ϕ̄ ∈ [0,∞), this guarantees the existence of a solution to auxiliary problem 2 (and hence

the existence of an efficient allocation).

Let ϕ̄∗ ≥ 0 denote any such a solution. Since W̄ is differentiable, this solution must satisfy
∂W̄
∂ϕ̄ = 0. Using the definition of W̄ , this is equivalent to

∂W

∂ϕ̄
+
∂W

∂κz

∂κz
∂ϕ̄

+
∂W

∂κx

∂κx
∂ϕ̄

= 0. (A.8)

Note that the second and the third term are always non-negative. Whenever 0 ≤ ϕ̄ < f(κ),

the first term is strictly positive, so that the sum is also strictly positive; this rules out ϕ̄∗ ∈
[0, f(κ)).Moreover, when ϕ̄ = f(κ), the first term is zero, but now the other two terms are strictly

positive, so that the sum is also strictly positive; this rules out ϕ̄∗ = f(κ). It follows that ϕ̄∗ > f(κ)

necessarily. From (A.5) and the definition of f(κ), we have that, at the efficient allocation, ∆ =

ϕ̄∗ − f(κ). It follows that ∆ > 0, as claimed in the proposition.

Finally, that ∆ (or equivalently η) represents the shadow value of the informational

externality follows directly from the envelope condition of auxiliary problem 1, namely ∂W
∂ϕ̄ =

−η, along with the first-order condition of auxiliary problem 2, namely condition (A.8). Indeed,

combining these two conditions gives

η =
∂W

∂κz

∂κz
∂ϕ̄

+
∂W

∂κx

∂κx
∂ϕ̄

.

The Lagrange multiplier thereby measures the social value of increasing the precision of

available information by increasing the sensitivity of allocations to local information. QED.
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Proof of Lemma 3. We consider a combination of the following tax instruments: a linear

tax τR(ā, z) on firm revenue, a linear tax τL(ā, z) on household labor income, and a linear

tax τC(ā, z) on household consumption (a sales tax that is uniform across commodities). To

guarantee the existence of an equilibrium where the allocations are log-normal, these taxes are

assumed to be log-linear functions of (ā, z):

− log(1− τR(ā, z)) = τR0 + τRA ā+ τRz z,

− log(1− τL(ā, z)) = τL0 + τLA ā+ τLz z,

log(1 + τC(ā, z)) = τC0 + τCA ā+ τCz z.

Given these taxes, the firm’s realized net-of-tax profits are given by

π(ω, ā, z) =
(
1− τR(ā, z)

)
p(ω, ā, z)q(ω)− w(ω)n(ω),

while the budget constraint of the household is given by

(1 + τC(ā, z))

∫
p(ω, ā, z)c(ω, ā, z)dF (ω|ā, z)

=

∫
π(ω, ā, z)dF (ω|ā, z) + (1− τL(ā, z))

∫
w(ω)n(ω)dF (ω|ā, z) + T (ā, z)

where T (ā, z) is a lump-sum transfer or tax. (By the government budget, the latter is equal to

the revenue from all the taxes.) It follows that the optimal labor supply of the typical worker on

island ω is given by

n(ω)ε−1 = w(ω)E
[

(1− τL(ā, z))
U ′(C(ā, z))

(1 + τC(ā, z))P (ā, z)

∣∣∣∣ω] ,
while the consumer’s stochastic discount factor is given by U ′(Q(ā,z))

(1+τC(ā,z))P (ā,z) . The firm’s objective

is thus given by

E
[

U ′ (Q(ā, z))

(1 + τC(ā, z))P (ā, z)

((
1− τR(ā, z)

)
P (ā, z)Q(ā, z)1/ρq(ω)1−1/ρ − w(ω)n(ω)

)∣∣∣∣ω] .
Taking the FOC for the firm’s problem, substituting the equilibrium wage, and guessing that the

taxes and the allocations are jointly log-normal (which they are in the equilibrium we construct

in the main text), we conclude that the equilibrium level of employment is pinned down by the

following condition:

n(ω)ε−1 =

(
ρ− 1

ρ

)
E

[
χ
(
1− τR(ā, z)

)
(1− τL(ā, z))

1 + τC(ā, z)
U ′ (Q(ā, z))

(
q(ω)

Q(ā, z)

)− 1

ρ
(
θA(ω)n(ω)θ−1

)∣∣∣∣∣ω
]
.

where χ is a constant that depends on second-order terms. The result then follows by defining

the tax wedge as

1− τ(ā, z) ≡
χ
(
1− τR(ā, z)

)
(1− τL(ā, z))

1 + τC(ā, z)
.
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and substituting in for n (ω) ,

n (ω) =

(
q (ω)

A (ω)

) 1

θ

Equivalently, the tax wedge is given by (8) with τ0 ≡ − logχ+ τR0 + τC0 + τL0 , τA ≡ τRA + τCA + τLA ,

and τz ≡ τRz + τCz + τLz . QED.

The following lemma describes the set of strategies as in (1) that can be implemented by a

tax policy as in (8). This is a key step to prove that the optimal allocations defined by (4)-(6) are

implementable.

Lemma 7. Consider any log-linear strategy as in (1). There exists a state-contingent tax policy as

in (8) that implements this strategy as an equilibrium strategy, i.e., that satisfies condition (7), if

and only if ϕa = β.

Proof of Lemma 7. By Lemma 3, the equilibrium strategy must solve the following fixed point:

q (ω)
ε

θ
+ 1

ρ
−1 =

(
ρ− 1

ρ

)
θA(ω)

ε

θE
[
exp(−τ0 − τAā− τzz)Q(ā, z)

1

ρ
−γ |ω

]
(A.9)

with Q(ā, z) given by (2). It follows that the equilibrium strategy is given by

log q (ω) = ϕ̂0 (τ) + ϕ̂a (τ) a+ ϕ̂x (τ)x+ ϕ̂z (τ) z,

where

ϕ̂a (τ) = β

ϕ̂x (τ) =

(
1− θ

εα
τA

)(
(1− α)κx

(1− α)κx + κz + κA

)
α

1− α
β (A.10)

ϕ̂z (τ) =
1

1− α

(
κz
κx
ϕ̂x (τ)− βθ

ε
τz

)
(A.11)

ϕ̂0 (τ) =
1

ε
θ + γ − 1

[
−τ0 +

(
−τA +

(
1

ρ
− γ
)

(ϕ̂a(τ) + ϕ̂x(τ))

)
κA

κA + κx + κz
µ (A.12)

+

(
1

ρ
− γ
)(

ρ− 1

ρ

)
(ϕ̂a(τ) + ϕ̂x(τ))2

2
σ2
x +

1

2

(
1

ρ
− γ
)2

(ϕ̂a(τ) + ϕ̂x(τ))2 σ2
0

+
1

2
τ2
Aσ

2
0 − τA

(
1

ρ
− γ
)

(ϕ̂a(τ) + ϕ̂x(τ))σ2
0 + log

(
θ
ρ− 1

ρ

)]
.

We now prove the claim in the lemma. Pick any log-linear strategy as in (1) for which ϕa = β

and let (ϕ#
0 , ϕ

#
x , ϕ

#
z ) denote the remaining coefficients. From condition (A.10), there is a unique

value for τA that induces ϕ̂x(τ) = ϕ#
x ; this is given by

τA =
ε

θ

{
α− ϕ#

x

(1− α)κx + κz + κA
βκx

}
. (A.13)
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From (A.11), there is then a unique value for τz that induces ϕ̂z(τ) = ϕ#
z ; this is given by

τz =
ε

βθ

{
κz
κx
ϕ#
x − (1− α)ϕ#

z

}
. (A.14)

Combining these two results, we have a unique pair (τA, τz) that induces the desired (ϕ#
x , ϕ

#
z ).

Finally, from (A.12) there is also a unique τ0 that induces ϕ̂0(τ) = ϕ#
0 . QED.

Proof of Proposition 2. From conditions (A.13) and (A.14) in the proof of Lemma 7, the

optimal tax satisfies

τ∗A =
ε

θ

(
α− ϕ∗x

(1− α)κ∗x + κ∗z + κA
βκ∗x

)
,

τ∗z =
ε

βθ

(
κ∗z
κ∗x
ϕ∗x − (1− α)ϕ∗z

)
.

Using the characterization of ϕ∗x and ϕ∗z from Proposition 1, we get

τ∗A = −λ∆ and τ∗z =
κ∗z

κA + κ∗z
λ∆, (A.15)

where

λ ≡ ε

βθ

(1− α)κ∗x + κ∗z + κA
κ∗x

> 0.

It follows that ∆ > 0 is both necessary and sufficient for each of the following properties: τ∗A < 0,

τ∗A + τ∗z < 0, and τ∗z > 0.

To interpret this result, note first that z = ā + ε, where ε is noise. The property that

τ∗A < 0 means the that tax is negatively correlated with aggregate productivity for given

common belief z; that is, it is negatively correlated with the surprise component in realized

aggregate productivity. At the same time, the property that τ∗A + τ∗z < 0 means that the tax is

negatively correlated with aggregate productivity for given noise ε; that is, the overall effect of

the productivity shock is also negative. Third, the property that τ∗z > 0 means that the tax is

positively correlated with the noise. Finally, to understand the overall cyclical behavior of the

optimal tax, consider the covariance between the (log) tax and (log) output. Since

− log(1− τ(ā, z)) = τ∗0 + (τ∗A + τ∗z )ā+ τ∗z ε and logQ(ā, z) = ϕ∗0 + (ϕ∗a + ϕ∗x + ϕ∗z)ā+ ϕ∗zε,

their covariance is given by

Cov(− log(1− τ), logQ) = (τ∗A + τ∗z )(ϕ∗a + ϕ∗x + ϕ∗z)V ar(ā) + τ∗zϕ
∗
zV ar(ε)

Using the fact that V ar(ā) = 1/κA and V ar(ε) = 1/κ∗z and rearranging, we get

Cov(− log(1− τ), logQ) = (τ∗A + τ∗z )(ϕ∗a + ϕ∗x)
1

κA
+

{
τ∗A

1

κA
+ τ∗z

κA + κ∗z
κAκ∗z

}
ϕ∗z.

By (A.15), the last term is necessarily zero. Next, note that ϕ∗a + ϕ∗x is necessarily positive, while

τ∗A + τ∗z is necessarily negative. We conclude that the tax is negatively correlated with aggregate

output. QED.
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A.2 Proofs for Section 4

Proof of Lemma 4. From the consumer’s optimal demand, we have that the (shadow) prices

must satisfy

−ρ (log p(ω)− logP (ā, z)) = (log c(ω, ā, z)− logC(ā, z)) ,

where

log p(ω) = const+ ψaa+ ψxx+ ψzz,

logP (ā, z) = const+ ψaā+ ψxā+ ψzz,

log c(ω, ā, z) = const+ (ϕa + (1− θ)la)a+ (ϕx + (1− θ)lx)x+ (ϕz + (1− θ)lz)z + (1− θ)lAā,

logC(ā, z) = const+ (ϕa + (1− θ)la)ā+ (ϕx + (1− θ)lx)ā+ (ϕz + (1− θ)lz)z + (1− θ)lAā.

It follows that the following must hold for all (a, x, z, ā) :

−ρ(ψaa+ψxx−(ψa+ψx)ā) = (ϕa+(1−θ)la)a+(ϕx+(1−θ)lx)x−(ϕa+(1−θ)la+ϕx+(1−θ)lx)ā,

which is true if and only if

ψa = −1

ρ
(ϕa + (1− θ)la), (A.16)

ψx = −1

ρ
(ϕx + (1− θ)lx). (A.17)

Finally, note that the observation of zp = logP (ā, z) + εp is equivalent to the observation of the

unbiased Gaussian signal

z̃p ≡ zp − const− ψzz
ψa + ψx

= ā+ ε̃p,

where ε̃p = εp/(ψa + ψx). We conclude that the precision of the public price signal is given by

κzp ≡ (ψa + ψx)2σ−2
zp =

1

ρ2
(ϕa + ϕx + (1− θ)(la + lx))2σ−2

zp .

The proof for the public signal on log Y (ā, z) is given in the main text. We thus have

κzy ≡ (ϕa + ϕx + (1− θ)(la + lx + lA))2σ−2
zy ,

which, together with κz = σ−2
za + κzy + κzp, gives the expression for κz in (13). Analogous

arguments give the expression for κx. QED.

Proof of Proposition 3. In equilibrium, l(ω, ā, z) adjusts in stage 2 so as to satisfy the the

consumer’s demand:

p (ω)

P (ā, z)
=

(
q (ω) l (ω, ā, z)1−θ

C(ā, z)

)− 1

ρ

(A.18)
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Solving for l(ω, ā, z) and substituting into the firm’s objective, the latter reduces to the following:

E

[
U ′ (C(ā, z))

P (ā, z)

(
(1− τ(ā, z))C(ā, z)p1−ρP (ā, z)ρ − w2(ω)

(
p

P (ā, z)

)− ρ

1−θ
(
C(ā, z)

q

) 1

1−θ

− w1(ω)
( q
ea

) 1

θ

)∣∣∣∣∣ω
]
.

Note that this objective is strictly concave in p and q which guarantees that the FOCs are both

necessary and sufficient and that they uniquely pin down the solution to the firm’s problem for

given wages. Next, note that the equilibrium wages satisfy

n(ω)ε−1 = w1(ω)E
[
U ′(C(ā, z))

P (ā, z)

∣∣∣∣ω] and l(ω)ε−1 = w2(ω)E
[
U ′(C(ā, z))

P (ā, z)

∣∣∣∣ω] .
Solving these conditions for wagesw1(ω) andw2(ω) and substituting the solutions into the first-

order conditions for the firm’s problem gives us the following two conditions for the equilibrium

price and production choices taken in stage 1:

p (ω)1−ρ+ ρε

1−θ =
E
[
P (ā, z)

ρε

1−θC(ā, z)
ε

1−θ q(ω)−
ε

1−θ

∣∣∣ω]
(1− θ)E

[(
ρ−1
ρ

)
(1− τ(ā, z))C(ā, z)1−γP (ā, z)ρ−1

∣∣∣ω] , (A.19)

q(ω)
ε

θ = p (ω)1−ρ e
ε

θ
aθE

[(
ρ− 1

ρ

)
(1− τ(ā, z))C(ā, z)1−γP (ā, z)ρ−1

∣∣∣∣ω] . (A.20)

Using (A.18), we can restate these conditions in terms of allocations alone as follows:

0 = n(ω)ε−1 − E

[(
ρ− 1

ρ

)
(1− τ(ā, z))U ′ (C(ā, z))

(
c(ω, ā, z)

C(ā, z)

)− 1

ρ
(
θ
c(ω, ā, z)

n(ω)

)∣∣∣∣∣ω
]
,

0 = E

[
l(ω, ā, z)

{
l(ω, ā, z)ε−1 −

(
ρ− 1

ρ

)
(1− τ(ā, z))U ′ (C(ā, z))

(
c(ω, ā, z)

C(ā, z)

)− 1

ρ
(

(1− θ) c(ω, ā, z)
l(ω, ā, z)

)}∣∣∣∣∣ω
]

Rearranging these conditions, we get

E [ l (ω, ā, z)ε|ω] =
1− θ
θ

e−
ε

θ
aq(ω)

ε

θ , (A.21)

q(ω)
ε

θ
+ 1

ρ
−1 = e

ε

θ
aθ

(
ρ− 1

ρ

)
E
[

(1− τ(ā, z))C(ā, z)
1

ρ
−γl (ω, ā, z)

(1−θ)
(
ρ−1

ρ

)∣∣∣∣ω] .(A.22)

The first condition equates the (expected) marginal rates of transformation and substitution

between l and n. We conclude that a set of allocations, prices and policies constitute an

equilibrium if and only if the following hold: (i) the allocations and the tax policy satisfy

conditions (A.21) and (A.22), along with the resource constraint

C(ā, z) =

[∫ (
q(ω)l(ω, ā, z)1−θ

) ρ−1

ρ

dF (ω|ā, z)
] ρ

ρ−1

; (A.23)

(ii) the nominal prices satisfy condition (A.18); and (iii) the interest-rate rule satisfies the Euler

condition

C(ā, z)−γ = β̄ (1 +R(ā, z))P (ā, z)E
[
C(ā+1, z+1)−γ

P (ā+1, z+1)

∣∣∣∣ ā, z] . (A.24)
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We now seek to translate conditions (A.18)-(A.24) in terms of the relevant coefficients that

parameterize the allocations, prices and policy under a log-normal specification. Thus let:

log q(ω) = const+ ϕaa+ ϕxx+ ϕzz,

log l (ω, ā, z) = const+ lAā+ laa+ lxx+ lzz,

logC(ā, z) = log Y (ā, z) = const+ cAā+ czz,

log p(ω) = const+ ψaa+ ψxx+ ψzz,

log(1− τ(ā, z)) = const− τAā− τzz,

log (1 +R(ā, z)) = const+ ρAā+ ρzz,

for some coefficients (ϕa, ϕx, ...., ρA, ρz).

The resource constraint (A.23) is satisfied if and only if

cA = (ϕa + ϕx) + (1− θ)(la + lx + lA), (A.25)

cz = ϕz + (1− θ)lz. (A.26)

Also, the interest rate is pinned down by the Euler equation (A.24). Taking the logs of both sides

and using the fact that expectations about future variables are constant by the assumption of

i.i.d. shocks, we can restate condition (A.24) as

log (1 +R(ā, z)) = const− γ log Y (ā, z)− logP (ā, z).

Using the log-normal specification above, the latter condition is satisfied if and only if

ρA = −γcA − (ψa + ψx), and (A.27)

ρz = −γcz − ψz. (A.28)

Next, we can rewrite the consumer’s demand function as

−ρ (log p(ω)− logP (ā, z)) = (log c(ω, ā, z)− logC(ā, z)) ,

where

log c(ω, ā, z) = log q(ω) + (1− θ) log l(ω, ā, z)

= const+ (ϕa + (1− θ)la)a+ (ϕx + (1− θ)lx)x+ (ϕz + (1− θ)lz)z + (1− θ)lAā.

It follows that the following must hold for all (a, x, z, ā):

−ρ(ψaa+ψxx−(ψa+ψx)ā) = (ϕa+(1−θ)la)a+(ϕx+(1−θ)lx)x−(ϕa+(1−θ)la+ϕx+(1−θ)lx)ā.

This is true if and only if

ψa = −1

ρ
(ϕa + (1− θ)la) and ψx = −1

ρ
(ϕx + (1− θ)lx).
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Finally, note that conditions (A.21) and (A.22) may be rewritten as follows:

E[log l (ω, ā, z) |ω] = const+
1

θ
(log q(ω)− a), and (A.29)

log q(ω) = const+ βa− k(τAE[ā|ω] + τzz) +
α

χ
E[logC(ā, z)|ω], (A.30)

where

β ≡
ε
θ

ε
θ − (ρ− 1)ν

> 1, α ≡
(

1
ρ − γ

) ρνχ
ε
θ − (ρ− 1)ν

,

ν ≡ ε

ρ(ε− 1 + θ) + 1− θ
>

1

ρ
, χ ≡ ε

(ε− 1 + θ) + γ(1− θ)
> 0, k ≡ νρθ

ε
β > 0.

Clearly, condition (A.29) holds for all ω if and only if

la =
1

θ
(ϕa − 1), (A.31)

lx =
1

θ
ϕx − lA

κx
κA + κx + κz

, (A.32)

lz =
1

θ
ϕz − lA

κz
κA + κx + κz

, (A.33)

while condition (A.30) holds for all ω if and only if

ϕa = β, (A.34)

ϕx = −kτA
κx

κA + κx + κz
+
α

χ
cA

κx
κA + κx + κz

, (A.35)

ϕz = −k
(
τA

κz
κA + κx + κz

+ τz

)
+
α

χ

(
cA

κz
κA + κx + κz

+ cz

)
, (A.36)

where cA and cz are given by (A.25)-(A.26).

Note that conditions (A.31) through (A.34) give the implementability constraints stated in

the proposition, completing the proof of the necessity of these conditions for an allocation to

be part of an equilibrium. We next prove sufficiency.

Pick arbitrary (ϕx, ϕz, lA) and let (ϕa, la, lx, lz) satisfy conditions (A.31) through (A.34). Note

that there is a unique (ϕa, la, lx, lz) that has this property for any given (ϕx, ϕz, lA). Next, pick

an arbitrary ψz and let (cA, cz, ψa, ψx) be determined as in (A.25)-(A.17). Next, let (τA, τz) be the

unique solution to (A.35)-(A.36); for future reference, this solution is given by

τA =
1

χk

{
αcA − χ

κ

κx
ϕx

}
(A.37)

τz =
1

χk

{
αcz − χ

(
ϕz − ϕx

κz
κx

)}
(A.38)

where χk > 0. Finally, set (ρA, ρz) as in (A.27)-(A.28). By construction, the allocations, prices

and policies defined in this way constitute an equilibrium, which completes the sufficiency

argument.
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Part (ii). The proof of this part is similar to that of part (i), except for one key difference: now

the marginal costs and returns of stage-2 employment must be equated state-by-state, not just

in expectation. In particular, we would have

n(ω)ε−1 =

(
ρ− 1

ρ

)
E

[
(1− τ(ā, z))U ′ (C(ā, z))

(
c(ω, ā, z)

C(ā, z)

)− 1

ρ
(
θ
c(ω, ā, z)

n(ω)

)∣∣∣∣∣ω
]
(A.39)

l(ω, ā, z)ε−1 =

(
ρ− 1

ρ

)
(1− τ(ā, z))U ′ (C(ā, z))

(
c(ω, ā, z)

C(ā, z)

)− 1

ρ
(

(1− θ)c(ω, ā, z)
l(ω, ā, z)

)
(A.40)

It is this additional restriction that pins down lA. (A detailed derivation is available upon

request.) QED.

Proof of Lemma 5. The proof is contained in the proof of Proposition 3. In particular, note

that the argument is silent about the value for ψz, which is thereby undetermined. QED.

Proof of Lemma 6. Take any pair of strategies as in (11). Welfare (ex-ante utility) may be

written as

W(ϕ, l;κx, κz) =
1

1− γ
expVc(ϕ, l, κ)− 1

ε
expVl(ϕ, l, κ)− 1

ε
expVn(ϕ, l, κ),

where ϕ = (ϕa, ϕx, ϕz), l = (la, lx, lz, lA), κ = (κx, κz), and where

Vc(ϕ, l, κ) ≡ (1− γ) (ϕ0 + (1− θ)l0 + [(1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz)]µ)

+
1

2
(1− γ)

(
ρ− 1

ρ

)[
(ϕa + (1− θ)la)2

κξ
+

(ϕx + (1− θ)lx)2

κx
+ 2

(ϕa + (1− θ)la) (ϕx + (1− θ)lx)

κx

]
+

1

2
(1− γ)2

[
(ϕz + (1− θ)lz)2

κz
+

((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))2

κA

]
,

Vl(ϕ, l, κ) ≡ ε (l0 + (lA + la + lx + lz)µ) +
1

2
ε2

[(
l2a
κξ

+
l2x
κx

+ 2
lalx
κx

)
+
l2z
κz

+
(lA + la + lx + lz)

2

κA

]
,

Vn(ϕ, l, κ) ≡ ε

θ
(ϕ0 + (ϕa + ϕx + ϕz − 1)µ)

+
1

2

ε2

θ2

[
(ϕa − 1)2

κξ
+
ϕ2
x

κx
+ 2

(ϕa − 1)ϕx
κx

+
ϕ2
z

κz
+

(ϕa + ϕx + ϕz − 1)2

κA

]
.

QED.

Proof of Proposition 4. We henceforth consider a relaxed problem, where we ignore the

constraint on ϕa imposed by (15); it will turn out that the solution to this relaxed problem

satisfies this constraint, which means that the solution to the relaxed problem is also the

solution to our initial problem.

The first-order conditions of the (relaxed) problem with respect to ϕ0 and l0 give

ϕ0 : 0 = expVc −
1

θ
expVn

l0 : 0 = (1− θ) expVc − expVl.

Hence, at the optimal allocation, expV ≡ expVc = 1
θ expVn = 1

1−θ expVl > 0. Let the Lagrange

multipliers on the implementability constraints (16)-(18) be, respectively, eV µa, eV µx, and eV µz.
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Next, as in the proof of Proposition 1, we can represent the informational externalities by two

Lagrange multipliers, one for the sumϕa+ϕx+(1−θ)(la+lx+lA) which determines the precision

of the output signals, κzy and κxy; and another for the sum ϕa + ϕx + (1 − θ)(la + lx) which

determines the precision of the price signals, κzp and κxp. Let these multipliers be, respectively,

eV ηY and eV ηp. We can then state the rest of the first-order conditions of the optimal policy

problem as follows.
The first-order conditions for the stage-1 strategy are the following:

ϕa : 0 =

(
ρ− 1

ρ

)(
(ϕa + (1− θ)la)

κξ
+

(ϕx + (1− θ)lx)

κx

)
+ (1− γ)

((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))
κA

− ε
θ

[
(ϕa − 1)

κξ
+
ϕx
κx

+
(ϕa + ϕx + ϕz − 1)

κA

]
+ ηY + ηp −

1

θ
µa,

ϕx : 0 =

(
ρ− 1

ρ

)(
(ϕx + (1− θ)lx)

κx
+

(ϕa + (1− θ)la)

κx

)
+ (1− γ)

((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))
κA

− ε
θ

[
ϕx
κx

+
(ϕa − 1)

κx
+

(ϕa + ϕx + ϕz − 1)

κA

]
+ ηY + ηp −

1

θ
µx,

ϕz : 0 = (1− γ)

[
(ϕz + (1− θ)lz)

κz
+

((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))
κA

]
− ε
θ

[
ϕz
κz

+
(ϕa + ϕx + ϕz − 1)

κA

]
− 1

θ
µz;

and the first-order conditions for the stage-2 strategy are the following:

la : 0 =

(
ρ− 1

ρ

)(
(ϕa + (1− θ)la)

κξ
+

(ϕx + (1− θ)lx)

κx

)
+ (1− γ)

[
((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))

κA

]
−ε

[
la
κξ

+
lx
κx

+
(lA + la + lx + lz)

κA

]
+ ηY + ηp +

µa
1− θ ,

lx : 0 =

(
ρ− 1

ρ

)(
(ϕx + (1− θ)lx)

κx
+

(ϕa + (1− θ)la)

κx

)
+ (1− γ)

[
((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))

κA

]
−ε

[
lx
κx

+
la
κx

+
(lA + la + lx + lz)

κA

]
+ ηY + ηp +

µx
1− θ ,

lz : 0 = (1− γ)

[
(ϕz + (1− θ)lz)

κz
+

((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))
κA

]
−ε

[
lz
κz

+
(lA + la + lx + lz)

κA

]
+

µz
1− θ ,

lA : 0 = (1− γ)

[
((1− θ)lA + (ϕa + (1− θ)la) + (ϕx + (1− θ)lx) + (ϕz + (1− θ)lz))

κA

]
− ε

[
(lA + la + lx + lz)

κA

]
+ηY +

κx
κA + κx + κz

µx
1− θ +

κz
κA + κx + κz

µz
1− θ .

For any given ηY and ηp, the combination of these seven FOCs with the three

implementability constraints (16)-(18) defines a linear system of 10 equations in 10 unknowns,
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the allocation coefficients (ϕa, ϕx, ϕx) and (lA, la, lx, lz) and the implementability multipliers

(µa, µx, µz). The solution to this system gives the following results. For the stage-1 allocation,

ϕ∗a = β, (A.41)

ϕ∗x =

{
(1− α)κ∗x

(1− α)κ∗x + κ∗z + κA

}
α

1− α
β + δY ηY + δpηp, (A.42)

ϕ∗z =

{
κ∗z

(1− α)κ∗x + κ∗z + κA

}
α

1− α
β − κ∗z

κA + κ∗z
(δY ηY + δpηp) , (A.43)

where

δY ≡ (1− α)θκ∗x(κA + κ∗z)

(γ + ε− 1)((1− α)κ∗x + κ∗z + κA)
> 0, and

δp ≡
(εθ − α(γ + ε− 1 + θ(1− γ)))κ∗x(κA + κ∗z)

ε(γ + ε− 1)((1− α)κ∗x + κ∗z + κA)
> 0.

For the stage-2 allocation,

l∗A = l̂A − λδpηp,

l∗a = l̂a,

l∗x = l̂x +

(
κ∗x

κA + κ∗x + κ∗z

)
λδpηp,

l∗z = l̂z +

(
κ∗z

κA + κ∗x + κ∗z

)
λδpηp,

where

l̂A ≡ (κA + κ∗x + κ∗z)ϕ
∗
x

βκ∗xθ
,

l̂a ≡
1

θ
(ϕ∗a − 1),

l̂x ≡ 1

θ
ϕ∗x − l̂A

κ∗x
κA + κ∗x + κ∗z

,

l̂z ≡
1

θ
ϕ∗z − l̂A

κ∗z
κA + κ∗x + κ∗z

,

where

λ ≡ (γ + ε− 1)(κA + κ∗x + κ∗z)(κA + (1− α)κ∗x + κ∗z)

(1− α)θ(γ + ε− 1 + θ(1− γ))κ∗x(κA + κ∗z)
> 0.

Note that, by Proposition 3, (l̂A, l̂a, l̂x, l̂z) identifies the stage-2 allocation that would obtain in

the (unique) flexible-price equilibrium in which the stage-1 allocation is given by (A.41)-(A.43).

Finally, for the implementability multipliers,

µa = µx = µz = 0.

Letting

∆Y ≡ ηY δY and ∆p ≡ ηpδp
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completes the proof of all the conditions in the proposition.

What remains to be shown is that ∆Y and ∆p (or, equivalently, ηY and ηp) are strictly positive.

In the remainder of the proof, to simplify expressions we focus on the case in which endogenous

information is only public, that is, κxy = κxp = 0. Note that

ηY = e−V
∂W
∂κz

∂κz
∂κzy

∂κzy
∂ϕx

,

ηp = e−V
∂W
∂κz

∂κz
∂κzp

∂κzp
∂ϕx

.

Next, note that ∂κz
∂κzy

= ∂κz
∂κzp

= 1. Also,

∂W
∂κz

= −(1− γ) expVc
(ϕz + (1− θ)lz)2

κ2
z

+
ε

(1− θ)2
expVl

((1− θ)lz)2

κ2
z

+
ε

θ2
expVn

ϕ2
z

κ2
z

. (A.44)

At the optimal allocation, we know that expV ≡ expVc = 1
θ expVn = 1

1−θ expVl, as well as that

µa = µx = µz = 0. Using the first set of equalities, we obtain:

∂W
∂κz

=
eV

κ2
z

{
(γ − 1) (ϕz + (1− θ)lz)2 +

ε

1− θ
((1− θ)lz)2 +

ε

θ
ϕ2
z

}
.

Using the second set of equalities, along with the FOCs with respect to (la, lx, lz, lA), we can

express lz as a function of ϕz and ηY as follows:

lz =
(1− γ)ϕz − κzηY

(ε− 1 + θ) + γ(1− θ)
.

It follows that
∂W
∂κz

= eV
1

β
(1− α)

{
ε

θ

ϕ2
z

κ2
z

+
1− θ

ε− 1 + γ
η2
Y

}
> 0.

Finally, recall that ∂κzy
∂ϕx

> 0 if and only if ϕa + ϕx + (1 − θ)(la + lx + lA) > 0, while ∂κzp
∂ϕx

> 0 if

and only if ϕa + ϕx + (1 − θ)(la + lx) > 0. Combining these results, we conclude that ∆Y > 0

and ∆p > 0 if and only if the optimal allocation satisfies ϕa + ϕx + (1 − θ)(la + lx + lA) > 0 and

ϕa + ϕx + (1− θ)(la + lx) > 0.

To prove that these inequalities are satisfied, we proceed in a fashion similar to the proof of

Proposition 1. Let us define the 2-by-1 vectors

v̄ ≡
[

1
ρ [ϕa + ϕx + (1− θ)(la + lx)]
ϕa + ϕx + (1− θ)(la + lx + lA)

]
and v(κ) ≡

[
1
θρ

(β−1+θ)(κA+κx+κz)
(1−α)κx+κz+κA

1
θ

(β−(1−θ)(1−α))(κA+κx+κz)
(1−α)κx+κz+κA

]
.

It is immediate to show that v1(κ), v2(κ) > 0. As in Proposition 1, v̄ − v(κ) is the distance

between any value v̄ that the planner may choose and the one that would have been optimal

from a purely allocative perspective. Moreover, welfare can be expressed as (a monotone
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transformation of) a quadratic form of this distance. In particular, using the FOCs with respect

to ϕ0 and l0, we get that welfare is given by

W(ϕ, l, κ) =
ε− 1 + γ

1− γ
1

ε
expVc(ϕ, l, κ).

Since ε−1+γ > 0 and 1
ε > 0,we can once again consider the following monotone transformation

of welfare:

T W(ϕ, l, κ) ≡ 1

1− γ
Vc(ϕ, l, , κ).

Using the characterization of the optimal coefficients (ϕ, l) as functions of v̄, we conclude that

T W(ϕ, l, κ) = W (v̄, κ) ≡ A(κ) + (v̄ − v(κ))′B(κ) (v̄ − v(κ)) , (A.45)

whereA(κ) is scalar that identifies the level welfare attained when v̄ = v(κ), whileB(κ) is a 2-by-

2 matrix that identifies the Hessian of the (transformed) welfare function W . The latter is given

by the following:

B(κ) ≡
[
b11 b12
b21 b22

]
, where

b11 ≡ −ερ(1− θ + ρ(−1 + ε+ θ))κx + ερ(1− θ)(1− ρ+ ρε)(κA + κz)

2(−1 + γ + ε)(1− θ)κx(κA + κx + κz)
,

b22 ≡ − ε

2(κA + κz)
− ε2θ

2(−1 + γ + ε)(1− θ)(κA + κx + κz)
,

b12 ≡ b21 ≡
ε2θρ

2(−1 + γ + ε)(1− θ)(κA + κx + κz)
.

Note that b11 < 0 and that the determinant of B(κ) is positive:

det(B(κ)) = b11b22 − b12b21

=
ε3θρ(1− ρ+ ρε)

4(−1 + γ + ε)2(1− θ)κx(κA + κx + κz)

+
ε2ρ(1− θ + ρ(−1 + ε+ θ))κx + ε2ρ(1− θ)(1− ρ+ ρε)(κA + κz)

4(−1 + γ + ε)(1− θ)κx(κA + κz)(κA + κx + κz)

> 0.

It follows that the matrix B(κ) is negative definite and, hence, the aforementioned quadratic

form for welfare in (A.45) is also negative definite. The same type of arguments as in Proposition

1 then imply that the optimal v̄ is positive and indeed greater than v(κ), which in turn guarantees

that ∆Y > 0 and ∆p > 0. QED.

Finally, note that none of the above derivations require the assumption that α > 0. That

restriction will be used only in the proof of Proposition 5.
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Proof of Proposition 5. We prove the proposition in reverse order.

Part (ii). At the optimal allocation, aggregate output is given by log Y (ā, z) = const+c∗Aā+c∗zz,

where c∗A = (ϕ∗a + ϕ∗x) + (1 − θ)(l∗a + l∗x + l∗A) and c∗z = ϕ∗z + (1 − θ)l∗z . If monetary policy were

replicating the flexible-price allocations, then aggregate output would be given by log Y (ā, z) =

const+ ĉAā+ ĉzz, where ĉA = (ϕ∗a +ϕ∗x) + (1− θ)(l̂a + l̂x + l̂A) and ĉz = ϕ∗z + (1− θ)l̂z. Analogous

expressions hold for the price level.

Using condition (A.27) we have

ρ∗A − ρ̂A =

(
1

ρ
− γ
)

(1− θ)(l∗x − l̂x)− γ(1− θ)(l∗A − l̂A).

From Proposition 4, l∗x − l̂x = κ∗x
κA+κ∗x+κ∗z

(l̂A − l∗A); thus,

ρ∗A − ρ̂A =

[(
1

ρ
− γ
)

κ∗x
κA + κ∗x + κ∗z

+ γ

]
(1− θ)

(
l̂A − l∗A

)
=

[
1

ρ

κ∗x
κA + κ∗x + κ∗z

+ γ
κA + κ∗z

κA + κ∗x + κ∗z

]
(1− θ)λ∆p

≡ χ3∆p.

Part (i). Consider now the optimal tax. From conditions (A.37) and (A.38), we know that the

optimal tax satisfies

τ∗A =
1

χk

{
αc∗A − χ

κA + κ∗x + κ∗z
κ∗x

ϕ∗x

}
, and

τ∗z =
1

χk

{
αc∗z − χ

(
ϕ∗z − ϕ∗x

κ∗z
κ∗x

)}
.

Let

τ̂A ≡ 1

χk

{
αĉA − χ

κA + κ∗x + κ∗z
κ∗x

ϕ∗x

}
, and

τ̂z ≡
1

χk

{
αĉz − χ

(
ϕ∗z − ϕ∗x

κ∗z
κ∗x

)}
;

these coefficients identify the tax policy that would be required in order to implement the

optimal stage-1 sensitivities, ϕ∗x and ϕ∗z, if monetary policy were replicating the flexible-price

allocations associated with these stage-1 sensitivities. It is easy to verify that

τ̂A = −λ̄∆ and τ̂z = −λ̄ κ∗z
κA + κ∗z

∆,

where ∆ ≡ ∆Y + ∆p and λ̄ ≡ (εθ−α(−1+γ+ε+θ−γθ))2(κA+(1−α)κ∗x+κ∗z)
(1−α)ε2(−1+γ+ε)θκ∗x

> 0. Note that the optimal tax

satisfies

τ∗A = τ̂A +
1

χk
α(c∗A − ĉA) and τ∗z = τ̂z +

1

χk
α(c∗z − ĉz).
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By Proposition 4,

c∗A − ĉA = (1− θ)(l∗x − l̂x + l∗A − l̂A) = −(1− θ) κA + κ∗z
κA + κ∗x + κ∗z

λ∆p

and

c∗z − ĉz = (1− θ)(l∗z − l̂z) = (1− θ) κ∗z
κA + κ∗x + κ∗z

λ∆p.

Therefore,

τ∗A + τ∗z = τ̂A + τ̂z −
1

χk
α

κA
κA + κ∗x + κ∗z

λ∆p

= −λ̄
(

1 +
κ∗z

κA + κ∗z

)
(∆Y + ∆p)−

1

χk
α

κA
κA + κ∗x + κ∗z

λ∆p.

The statement of the proposition follows from assuming that α > 0 and letting χ1 ≡
λ̄
(

1 + κ∗z
κA+κ∗z

)
> 0 and χ2 ≡ λ̄

(
1 + κ∗z

κA+κ∗z

)
+ 1

χkα
κA

κA+κ∗x+κ∗z
λ > 0. QED.
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