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Abstract

This paper studies how innovation reacts to climate change and shapes its economic impacts,
focusing on US agriculture. We show in a model that directed innovation can either mitigate or
exacerbate climate change’s potential economic damage depending on the substitutability between
new technology and favorable climatic conditions. To empirically investigate the technological
response to climate change, wemeasure crop-specific exposure to damaging extreme temperatures
and crop-specific innovation embodied innewvariety releases andpatents. Wefind that innovation
has re-directed since the mid 20th century toward crops with increasing exposure to extreme
temperatures. Moreover, this effect is driven by types of agricultural technology most related
to environmental adaptation. We next show that US counties’ exposure to induced innovation
significantly dampens the local economic damage from extreme temperatures. Combining these
estimates with the model, we find that directed innovation has offset 20% of potential losses in US
agricultural land value due to damaging climate trends since 1960, and that innovation could offset
13% of projected damage by 2100. These findings highlight the vital importance, but incomplete
effectiveness, of endogenous technological change as a source of adaptation to climate change.
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1 Introduction

This paper studies how technological progress, possibly the most important engine for productivity
growth in human history, responds to climate change, possibly the biggest looming threat to produc-
tivity growth in the near future. Our area of focus is US agriculture, where both forces have had
tangible effects in recent times. The last century has witnessed transformative progress in agricultural
biotechnology, evidenced by an explosion of private-sector research spending and the emergence of
now ubiquitous high-yielding plant varieties. The same period has also seen rising temperatures dra-
matically alter agricultural productivity (Lobell and Field, 2007; Schlenker and Roberts, 2009; Lobell,
Schlenker and Costa-Roberts, 2011). Yet little is known about how the pace and focus of agricultural
innovation has shifted in response to temperature change or shaped the economic consequences of
an increasingly extreme environment. Understanding the process by which technological solutions
emerge in response to changing and increasingly extreme temperature patterns is essential for as-
sessing economic resilience to global warming, which will continue over the 21st century even under
optimistic scenarios for reducing greenhouse gas concentrations.

Historically, innovation has been a critical part of the American agricultural sector’s response to
new environmental challenges. Olmstead and Rhode (2008, 2011) describe how biological innovation
fueled the early expansion of US agriculture, and historians acknowledge the importance of novel
hybrid seeds for withstanding early 20th century droughts (Crow, 1998; Sutch, 2008, 2011). Today,
agricultural biotechnology firms employ a similar narrative to promote their investments in climate-
resistant technology. The most prominent item on Syngenta’s website reads “Helping farmers. Fighting
climate change.” and links to a “growth plan” that promotes, among other goals, developing new
innovations for “making agriculture more resilient” in the face of climate change’s “existential threat”
(Figure A1). The sustainability chief of Monsanto, quoted in a 2017 news article, emphasized that
“making sure ourproducts canwithstandextremeweather” is a toppriority tomeet growing“demand
for seeds that can thrive [in] more extreme environments” (Gupta, 2017).

This paper empirically investigates how technological progress has reacted tomodern temperature
change and shaped its economic impact in the US agricultural sector. We answer two specific
questions. First, has innovation re-directed toward crops most exposed to climate distress and the
technologies most suited to boosting climatic resilience? Second, how has any shift in the direction
of innovation affected the agricultural sector’s resilience to climate extremes? We use our answers to
quantify the extent to which technology has mitigated the economic damage of climate change in the
past and to project future damages after accounting for endogenous technological change.

We begin with a theoretical model that describes how climate change might shift market incen-
tives for innovation, and in turn how directed innovation might shape the economic effects of climate
change. We model equilibrium in a single market (e.g., the agricultural sector) with spatially hetero-
geneous production, centralized technology development by a profit-maximizing monopolist, and
a climate shock that reduces aggregate production possibilities. Our results convey the economic
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logic by which directed innovation could either mitigate or exacerbate aggregate climate damage
depending on underlying features of technology and demand. If technological advances substitute for
favorable climatic conditions onaverage—for example, bymaking crops increasinglyheat anddrought
resistant—then equilibrium technology development unambiguously increases in response to climate
distress and reduces the economic impact of a worsening climate. Higher prices for distressed crops
intensify this mechanism in general equilibrium. Conversely, if technological advances complement
favorable climatic conditions on average—for example, by increasing average yields at the cost of
making environmental requirements more exact—then directed innovation can exacerbate climate
damages. Profit incentives guide innovators away from propping up “ecological losers” and toward
pushing forward “ecological winners,” consistent with the intuition that innovation concentrates in
the largest, most productive sectors (e.g., Schmookler, 1966).

To determine the role of technological progress in shaping the economic consequences of climate
change, it is therefore essential to turn to the data. The first part of our empirical analysis compares
technology development since 1960 across crops that have experienced different productivity shocks
due to changing temperature realizations. To measure temperature-induced productivity shocks, we
start with county-level data on daily temperature realizations. We combine these data with expert-
elicited estimates of the maximum growing temperature for individual plant species from the UN
Food and Agriculture Organization’s EcoCrop database to measure the potential exposure of a given
plant to extreme heat in a given location over a specific period of time.1 Focusing on temperature
extremes is consistent with the literature following Schlenker and Roberts (2009) that identifies the
increased likelihood of extreme heat as the dominant channel through which climate change affects
staple-crop yields, as well as similar findings across a larger panel of crops in our county-level data.2
Finally, we average local crop-specific extreme-heat exposure over each crop’s planting locations in
a pre-analysis period to obtain a given crop’s aggregate exposure to extreme heat. The change in
this measure over time is our measure of exposure to damaging temperature change. The cross-crop
variation in this measure, and hence the identification of parameters in our empirical design, derives
from interacting the essentially random variation in the geography of warming across the US with
pre-determined differences in both crops’ planting locations and physiology.

Tomeasure innovation, we compile comprehensive data of all for-sale plant varieties and their time
of introduction from the USDA’s Variety Name List, obtained via a Freedom of Information Act (FOIA)
request. This measure has the benefits of (i) an unambiguous mapping to our productivity shocks,
which are measured at the crop level, and (ii) homogeneous coverage over a period of heterogeneous
intellectual property rights for plant biotechnology (Moscona, 2021). We complement theVarietyName

1EcoCrop is frequently used in research at the intersection of agronomics and climate change to estimate crop-specific
climate tolerance (see, for instance, Hĳmans et al., 2001; Ramirez-Villegas, Jarvis and Läderach, 2013; Kim et al., 2018).

2Recent developments in agricultural science identify, as a physiological mechanism, that temperature directly damages
plant tissue via heat stress, hinders plant photosynthesis, and induces water stress. See, for more details, studies by Lobell
et al. (2013) and Schauberger et al. (2017). In Online Appendix D, we document that extreme-heat exposure as wemeasure it
has large, negative effects on crop yields, and explains a large share of the overall impact of temperatures on crop production.
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List with two additional data sources. A database of all Plant Variety Protection (PVP) certificates, a
weak form of intellectual property protection for seeds introduced in 1970, allow us to replicate our
main findings on an independently collected dataset and investigate more detailed characteristics of
inventors. A database of crop-specific patents in agricultural patent classes allow us to study effects
outside of biotechnology and explore the characteristics of inventions.

Our first main result is that biotechnology development since 1960, measured by new variety
releases in the Variety Name List, has been directed toward crops that have become more exposed to
extremeheat over time. Themean crop in our sample sees about a 20% increase in variety development
caused by changing extreme-heat exposure. This result is robust to controlling for crop-level proxies
for market size, pre-period trends in innovation, and pre-period climatic characteristics. The result is
quantitatively similar when the outcome is measured using the PVP certificate data. Using a decadal
panel-data model, we find that the largest effects of extreme temperatures on innovation appear
within the decade, with some lagged effects and no evidence of anticipation.

We next probe the mechanisms that underpin the baseline finding by studying its heterogeneity
across crops, types of inventor, and types of invention. First, we find that the elasticity of innovation
to extreme-heat exposure is higher for more widely planted crops, but find limited evidence that it
differs across natural instruments for price elasticity or ease of crop switching. Next, using the PVP
certificate data that record the developer of each variety, we find that the redirection of technology
is stronger in the private sector than in the public sector. This is consistent with our theoretical
model based on profit incentives and with narrative evidence emphasizing the importance of private
biotechnology firms for adaptive innovation. Finally, using the patent data, we find that increased
extreme-temperature exposure predicts a higher number and share of patents that directly mention
keywords related to climate change, heat, and drought. By contrast, there is no significant relationship
with patents that do not mention these keywords. These results suggest that climate change does not
uniformly induce all types of agricultural innovation, for instance through a channel of raising crop
prices and demand for all inputs, but instead more precisely induces innovation related to adaptation
for hotter and drier conditions.

We also explore alternative channels for the effect of the climate on agricultural innovation. We
first show that, conditional on changes in extreme-heat exposure, changes in extreme-cold exposure
have no discrenible effect on innovation and changes in drought exposure measured by the Palmer
Drought Severity Index (PDSI) have an imprecise and comparatively small effect. The latter result
is consistent with findings in the agronomic literature that extreme heat is itself an important cause
of water stress (e.g., Lobell et al., 2014). Next, using data on changes in planting patterns over time,
we find (i) that the extent of observed crop switching does not attenuate the relationship between
temperature change and innovation and (ii) that temperature-induced expansions in total planted area
have an independent positive effect on technology development. Finally, using international data on
hourly temperature realizations and planting patterns, we find that trends in non-US extreme-heat
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exposure have essentially no relationship with either trends in our US measure or the direction of US
innovation. This result reminds that adaptive innovation in the US may not translate to addressing
climatic threats elsewhere in the world.

Having established the direction of technology’s response to temperature change, we turn next
toward quantifying the extent to which technology has mitigated temperature changes’ economic
harms. Previous studies have tried to identify overall adaptation to climate change by comparing
short and long-run responses of economic outcomes to temperature change (Dell, Jones and Olken,
2012; Burke and Emerick, 2016). By contrast, we use a different approach based on locations’ exposure
to directed innovation. We measure both (i) a county-level measure of local extreme-heat exposure,
taking into account both its temperature realizations and the temperature sensitivity of its crop
mix, as well as (ii) a county-level measure of innovation exposure, the extreme-heat exposure of the
county’s crop mix across all other counties growing each crop. The previous set of findings on the
re-direction of technology documented that counties with higher innovation exposure have more
climate-induced technology at their disposal. Our regression model, derived from the theory, allows
innovation exposure to affect the sensitivity of local agricultural outcomes to county-level extreme-
heat exposure via an interaction term. Our interest is whether more innovation-exposed counties
have a significantly greater or smaller sensitivity of local agricultural outcomes to extreme heat.

We find that higher innovation exposure significantly mutes the negative effect of extreme heat
on agricultural land values. The effect of an additional crop-specific degree-day of extreme heat per
year is a -0.010 percent decrease in land value if a county’s crop composition has the (area-weighted)
median exposure to innovation, compared with -0.003 percent at the 75th percentile of the same
distribution and -0.015 percent at the 25th percentile. The results are very similar using agricultural
revenues and profits, rather than land values, as the outcome variable, and they are robust to directly
controlling for changes in output prices and county-level average temperatures. Finally, the results
are strongest in counties that cultivate crops with larger national market size, consistent with our
previous finding that those crops also had a stronger innovative response to extreme temperatures.

The last part of the paper studies how much of the aggregate economic damage from climate
change has been mitigated by innovation. We show how a special case of the model allows us to
estimate the counterfactuals of interest directly from our empirical panel data model. The counter-
factual also has the following more heuristic interpretation: a world without innovation holds the
heat-to-damage relationship constant, while a world with innovation sees this relationship “flatten”
in proportion to induced innovation. Our baseline estimate is that innovation has mitigated 19.9%
(95% confidence interval: 15.3% to 24.5%) of the potential economic damage from temperature change
in agriculture over the last 50 years. We show that this result is not overly sensitive to alternative
assumptions about resource constraints for research investment and about crop switching. Quantita-
tively, the economic damage mitigated by technology development amounts to about $24 billion in
current USD or 1.7% of total US agricultural land value.
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We repeat the same analysis for future climate scenarios in order to estimate the extent to which
climate damages over the 21st centurymight be dampened by technological progress. Our projections
use the model ensemble method of Rasmussen, Meinshausen and Kopp (2016), which averages the
predictions of a number of leading climate models that are forced by the same standardized pathway
for greenhouse gas concentrations (the IPCC’s Representative Concentration Pathways). Under the
model ensemble forecast forced by RCP 4.5, an intermediate scenario, innovation mitigates 15.1% of
damage by 2050 (95% CI: 9.8% to 20.5%) and 13.0% by 2100 (95% CI: 7.6% to 18.5%). These savings
correspond, respectively, to $218 billion and $1.05 trillion currentUSD (assuming 3%annual inflation),
and to 1.9% and 2.8% of all agricultural land value in the respective forecasts. These sums, while
economically significant, are far from suggesting that technology is capable of absorbing all the risks
associated with climate change, even in a wealthy and research-intensive country.

Our study on the role of technology for adapting to climate damage contributes to a large literature
about directed technological change and the environment. While existing work has mostly focused
on endogenous development of low-emission or “clean” technology (Newell, Jaffe and Stavins, 1999;
Popp, 2002, 2004; Acemoglu et al., 2012, 2016; Aghion et al., 2016), we focus instead on the role of
innovation in mitigating climate damage.3 In this vein, Miao and Popp (2014) studies the innovative
response to natural disasters across countries and Miao (2020) studies how insurance mediates the
innovative response to modern droughts. Also related is work by one of the authors (Moscona,
2022), who investigates technology’s response to the Dust Bowl, a natural disaster that ravaged the
US Great Plains in the 1930s, and finds that crops planted in areas hit harder by Dust Bowl erosion
were the focus of more innovation, measured using variety releases, patenting activity, and research
articles. He argues that this re-direction of technological progressmediated theDust Bowl’s economic
consequences and contributed to the early 20th-century rise of US agricultural biotechnology. Our
results, interpreted alongside these findings, show that innovation responds to modern climate
change, a highly impactful but slow-moving phenomenon, and quantitatively shed light on the
potential for innovation to mediate present and future climate damage.

Existing work studying adaptation to climate change has focused on the theoretical benefits of
reallocating production across space. Costinot, Donaldson and Smith (2016), Rising and Devineni
(2020), and Sloat et al. (2020) study these questions for agricultural crop choice.4 Our approach, by
contrast, focuses on the response of production technology itself, in theory and in practice.

Finally, there has been a long-standing interest in the impact of temperature change on the agri-
cultural sector. Mendelsohn, Nordhaus and Shaw (1994), Schlenker, Hanemann and Fisher (2005),
Schlenker, Hanemann and Fisher (2006), Deschênes and Greenstone (2007) and Fisher et al. (2012)
estimate reduced-form relationships between changing temperatures on agricultural economic out-
comes. Several studies, focusing on specific crops, investigate fluctuations in the relationship between

3A strand of the general literature on directed technological change studies the conditions under which factor scarcity
encourages innovation, in theory (Acemoglu, 2010) and in practice (Hanlon, 2015). We revisit this connection in Section 2.3.

4Desmet and Rossi-Hansberg (2015), Alvarez and Rossi-Hansberg (2021), and Conte et al. (2020) study production
reallocation in response to climate change in multi-sector models.

5



extreme heat and yields in order to infer the potential importance of adaptation.5 Our study takes the
broader, sector-wide view of the first set of papers while using crop-specific variation to measure the
adaptive response of innovation. In so doing, we also extend a classic literature on the role of innova-
tion in shaping US agricultural productivity and overcoming ecological barriers (e.g., Griliches, 1957;
Hayami and Ruttan, 1970; Olmstead and Rhode, 1993, 2008) to the study of modern climate change.

The rest of the paper is organized as follows. Section 2 describes a theoretical model that guides
measurement and interpretation of results. Section 3 describes data and measurement. Sections 4
and 5 present our main results on directed innovation and the downstream impact of temperature
change and technological progress. Section 6 quantifies the aggregate effects of innovation. Section 7
concludes.

2 Model

In this section we present a model in which agricultural technology endogenously responds to pro-
ductivity shocks induced by climate change. Our main results describe primitive conditions on
production technology and equilibrium price responses under which technology development (i)
increases or decreases in response to climate damage and (ii) increases or decreases the resilience
of agricultural production to climate shocks. We preview these results using heuristic language in
Figure 1. This section’s theoretical results fill in the logic of these results and structure our subsequent
empirical analysis and quantification. All detailed derivations and proofs are in Appendix B.

2.1 Set-up

There are two goods, an agricultural crop and a numeraire. The crop is produced by a unit measure
of farms indexed by i ∈ [0, 1]. Each farm has a productivity Ai ∈ [A,A], which describes the location’s
suitability for crop production and has cumulative distribution function F across locations.

There is a single crop-specific technology in our model (e.g., improved seed varieties). Each farm
usesTi ∈ R+ of this input. The input’s productivity in location i depends on an endogenous, aggregate
state variable θ ∈ R+ summarizing technological advancement, and the local productivity Ai . The
farm maximizes profits, taking as given crop price p and technology price q, and using the following
production function:

Yi � α
−α (1 − α)−1G(Ai , θ)αT1−α

i (2.1)

in which α ∈ [0, 1] parameterizes the relative importance of the technological input (and the nor-
malization α−α (1 − α)−1 is for convenience); and G : R2

→ R+ captures the productivity of the

5See, for example, Roberts and Schlenker (2010), Roberts and Schlenker (2011), Lobell et al. (2014), Burke and Emerick
(2016), and Keane and Neal (2020), who study corn and soybeans. Auffhammer and Schlenker (2014) reviews the related
literature on this topic for agricultural economics. A different literature in agronomics and geography, including Rodima-
Taylor, Olwig and Chhetri (2012) and Zilberman et al. (2018), has highlighted the potential for adaptation through new
technology but not been able to quantify its effects.
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Figure 1: Summary of Model Cases

Price	Effects	
Weak

(b)	Innovation	↓	and	
Resilience	↑	

Price	Effects	
Strong

(c)	Innovation	↑	and	
Resilience	↓

In	a	sector	damaged	by	climate	change…

Climate-Substitute	Technology Climate-Complement	Technology

(a)	Innovation	↑	and	
Resilience	↑

technological input as a function of the climate and quality of the technology. We assume that G is
concave in θ, twice continuously differentiable, and satisfies G1 ≥ 0 and G2 ≥ 0 so that more Ai and θ
increase production. It would be straightforward to add other factors of production, like mechanical
inputs, labor, or different types of improved seeds, as long as (2.1) represented the production function
conditional on these choices. This simple and specific production function allows us to focus on the
economic mechanisms of interest and derive equilibrium comparative statics.

The solution of each farm’s profit maximization problem gives the technology demand function

Ti � α
−1p

1
α q−

1
α G(Ai , θ) (2.2)

which is isoelastic in the input price and linear in G(Ai , θ).
A representative innovator determines both the price of the technological input (q) and the quality

of technology (θ). They face amarginal production cost 1−α for the input and a convex, differentiable
quality development cost C : R+ → R+, satisfying d

dθC(0) � 0. Because technology demand is
isoelastic, andwe havemade a convenient normalization formarginal costs, the optimal technological
inputprice is q � 1. Thus the innovator’s choice of quality canbe re-statedmore simply as the following
maximization of aggregate technology demand over quality θ:

max
θ

p
1
α

∫
G(A, θ) dF(A) − C(θ) (2.3)

To close themodel, we assume that demand for each of the goods is represented by a (crop-specific)
inverse demand function p � P(Y), where Y �

∫
Yi (A) dF(A) is total production, and P : R+ → R+ is

continuous and non-increasing. We therefore define equilibrium in terms of aggregates as a tuple of
technology levels, prices, and total production (p , θ,Y) such that farms and technologists optimize
and the output price lies along the aforementioned demand curve.

The focus of our analysis will be comparative statics when varying the productivity distribution.
We equate the “climate” with the productivity distribution across space F, which in the background
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might depend on both temperature realizations and plant biology. We define damaging climate change
as a shift from distribution F to F′ such that the former first-order stochastic dominates the latter.
Under our normalization of G1 ≥ 0, this definition is sufficient for damaging climate change to reduce
aggregate production of each crop holding fixed all other inputs and technology.

2.2 The Climate Substitutability of Technology

To structure our results, we introduce two cases for the relationship between technology and the
climate in the farm’s production function:

Definition 1 (Climate Substitutability of Technology). Technological advances are climate substitutes if
G12 ≤ 0 and climate complements if G12 ≥ 0.

Technological advances are climate substitutes if they reduce the marginal impact of climatic con-
ditions on output. For example, this case is natural if the technological frontier is to develop less
heat or drought sensitive crops that remain productive even in harsher environments. On the other
hand, technological advances are climate complements if they increase the marginal impact of climatic
conditions on output. This is the case, for example, if improved biotechnology is more finely tuned
to a particular set of ecological conditions and therefore less tolerant to fluctuations.6

2.3 Theoretical Results

2.3.1 The Equilibrium Direction of Innovation

Our first result shows how, in a small open economy case of the model which fixes the crop price at
p > 0, the direction of technological change hinges on the climate substitutability of innovation:

Proposition 1 (Direction of Technology: Fixed Prices). Assume that prices are fixed, or P(Y) ≡ p. If the
climate shifts in a damaging way,

1. θ weakly increases in equilibrium if technology is a climate substitute.

2. θ weakly decreases in equilibrium if technology is a climate complement.

The direction of technological change in the model depends on whether farmers are more or less
willing to pay for technological improvements in the new, poorer climate. In the climate substitutes
case, farmers are more willing to pay for technological improvements in the poorer climate because
such improvements are more useful; in the climate complements case, the opposite is true. Note that
in both cases the partial-equilibrium (i.e., fixed θ) effect of the damaging climate shock on production
and technological input demand is negative. Thus the climate substitutes case allows innovation to

6Lobell et al. (2014) describe such an idea as a “general notion that as farmers become more adept at removing all
non-water constraints to crop production, the sensitivity to drought generally increases” (p. 519). See Morgan et al. (2014)
for a discussion and example of this idea in harvester technology.
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concentrate in a “shrinking” market because the market nonetheless becomes more receptive on the
margin to technological improvement.7 The climate complements case, on the other hand, embodies
the idea that the smaller market may also be less receptive to new technology.8

We now allow for price adjustment. A damaging climate shock, holding fixed technology and
inputs, creates crop scarcity and increases prices. This is, from the farmers’ perspective, a price hedge
against the negative shock. It also increases the value marginal product of technology and hence
the marginal return to improvement from the innovator’s perspective. In an endogenous technology
equilibrium, this leads to a technology hedge against the shock that operates on top of the considerations
in Proposition 1. We formalize that this force confirms the sign prediction for technology under the
substitutes case and possibly over-turns the prediction under the complements case:

Proposition 2 (Direction of Technology: Flexible Prices). Assume equilibrium quantities lie along a
non-increasing demand curve, or p � P(Y) for a non-increasing P(·). If the climate shifts in a damaging way,

1. θ weakly increases if technology is a climate substitute.

2. θ may increase or decrease if technology is a climate complement.

2.3.2 Innovation and Resilience

The previous results described when technology development increased or decreased in response to
climate damage. We now describe the related but subtly different conditions under which directed
technology decreases or increases the sensitivity of production to further climatic shifts.

To this end, we first define Π(A, p , θ̂) as the equilibrium profits or land rents of a farm with
productivity A when the price is p and the technology level is θ̂ and R(A, p , θ̂), or “Resilience,” as
the negative of profits’ sensitivity to the weather:

R(A, p , θ̂) � −
∂
∂A
Π(A, p , θ̂) (2.4)

When Resilience increases, the same climate shock has a smaller absolute-value effect on profits. A
similar definition is introduced by Lobell (2014) as the “adaptation” attributable to a new production
technology. Our result signs the change in Resilience between equilibria as a function of the model
case.

Corollary 1 (Resilience). Consider the general environment of Proposition 2 and a damaging climate shift
which moves equilibrium technology from θ to θ′. Then the following properties hold for all (A, p):

1. R(A, p , θ′) ≥ R(A, p , θ) if technology is a climate substitute.

2. R(A, p , θ′) ≥ R(A, p , θ) if technology is a climate complement and θ′ ≤ θ.

7A similar logic underlies the case in which labor scarcity encourages innovation in Acemoglu (2010).
8In Acemoglu (2002), the positive relationship between the fixed factor and amount of innovation is interpreted as a

“market size effect.” These results aredrivenby an assumed complementarity between thefixed factor andnew technologies.
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3. R(A, p , θ′) ≤ R(A, p , θ) if technology is a climate complement and θ′ ≥ θ.

The climate-substituting case features a feedback loop between a negative climate shock increasing
the marginal product of technology and expanding technology decreasing the marginal effects of
climate shocks. New technology “substitutes” for the climate in production and renders the latter
less important on the margin.

The climate-complementing case is more complicated due to the potential misalignment of
marginal product effects and the direction of innovation. If technology contracts because price effects
are weak, directed innovation magnifies the average effect of climate change on the agricultural econ-
omy but reduces the marginal effects. The regress of technology (e.g., “downgrading” high-yielding
seeds to something more weather-robust) is like reducing a complementary input to the climate, and
therefore also makes production less sensitive to the climate. If technology expands due to strong
price effects, however, the opposite is true. New technology is more productive on average and thus
reduces the level of climate damage; however, it is also more sensitive to climate stress and thus in-
creases the marginal effect of damaging climate shifts on agricultural production. This result would
be consistent with the field-level study of Lobell et al. (2014), which shows increasing sensitivity of
corn yields to drought conditions over time in Iowa, Illinois, and Indiana.

This result emphasizes that fully understanding the role of innovation as a mediating force for
climate damage requires independentlymeasuring both the redirection of technology and the induced
change in resilience. In other words, neither a mitigating response of directly-measured innovation
nor a pattern of increased resilience fully identifies a model case in Figure 1, which is the level of
precision required for quantifying the effect of directed innovation on aggregate economic outcomes
(e.g., profits or production).

2.4 Extensions: Welfare and Endogenous Focus

The model has simple normative properties driven by a single market failure, the innovator’s
monopoly power. In Appendix C.1, we show how monopoly power leads to under-provision of
technology and insufficient research in equilibrium. But the direction of technological change is
always optimal in equilibrium, in the sense that the planner’s solution has the same directional com-
parative statics for θ as the competitive equilibrium. Moreover, the optimal policy to implement the
first-best is a simple subsidy for the technological good that offsets the monopoly distortion.

In the sameAppendix, we explore richer normative predictions in a variantmodel with a dynamic
externality that stylizes the uninternalized benefits of research today on technological advancement
tomorrow. In this case the planner also internalizes the dynamic externality and incorporates this
into the optimal subsidy. In principle, equilibrium technology can redirect in the “wrong direction”
relative to the planner’s preference because of its sub-optimal inertia via the dynamic externality.

In the main analysis, we defined technological progress as either climate substituting or climate
complementing. In Appendix C.2, we study a variant of the model in which the innovator makes
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separate choices to improve climate-complementary or climate-substituting technologies. We find
that damaging climate induces innovation in the climate substituting technology and contracts in-
novation in the climate-complementing technology. These results could explain, for example, why
Midwestern US corn, which to date has been relatively unexposed to damaging heat trends, shows
evidence of increasing temperature sensitivity over time (Lobell et al., 2014). In Section 4.3.4, we will
present empirical evidence on the redirection of technology toward a priorimore climate-substitutable
technology classes.

2.5 Mapping to Estimation

The previous results show that both the direction and downstream impact of endogenous innovation
in response to climate change is an empirical question, since a number of different scenarios are
possible in the theory. We now describe a specialization of the model that maps directly to our
subsequent empirical analysis.

We allow for multiple crops, indexed by k ∈ {1, . . . , K}, and assume that a unit measure of farmers
grow each crop k. Production has the same form indicated in Equation 2.1. The climate realizations
Ai have cross-sectional distribution Fk (·) among farms growing crop k. Technology, characterized by
price and quantity (θk , qk ), is produced by a crop-specific innovator with the production technology
as described above. And prices lie on crop-specific inverse demand curves Pk (Yk ) where Yk is
production of that crop. Propositions 1 and 2 and Corollary 1 hold in the multi-crop economy due to
the separability of production, demand, and technology development decisions across crops.9

We next assume that, for each farm i, the productivity function G(·) has the form

log G(A, θ) � g0 + g1(A − A) + (g20 + g21(A − A)) log θ (2.5)

This captures a form of climate substitutability and complementarity depending on the sign of g21.10
We assume that the innovator’s cost is C(x) �

x1+η

1+η for some η ≥ 0. And we assume that the inverse
demand curve is Pk (x) ≡ p0x−ε for some ε ≥ 0 and for each crop k.

We solve the model up to approximation around a long-run average climate. Details are provided
in Appendix B.5. We show that aggregate innovation and local agricultural profits satisfy two
estimable regression equations and write their coefficients in terms of model primitives.

Proposition 3 (Regression Equations). Technological quality for each crop k is given by

log θk � log θ0 + δ · (A − Ak ) (2.6)

9In Section 6.2, wediscuss the content of these separability assumptions in the context of our quantitative counterfactuals
and what happens when they are relaxed.

10Technically, the form of substitutability captured here is in log and not level terms. Our derivation in Appendix B.5
demonstrates how the notions are interchangeable up to suitable approximation.
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where Ak �
∫

A dFk (A), δ �
g21−τg1
1+η+τ , and τ �

ε
α+ε(1−α) . Local rents are given by

logΠi � logΠ0 + β · (A − Ai) + γ · (A − Ak ) + φ(A − Ai)(A − Ak ) (2.7)

where k is the locally grown crop, β � g1, γ � −τ(g1 + δ), and φ � g21δ.

Our theoretical results about whether innovation increases or decreases in response to the produc-
tivity shock translate in Equation 2.6 to the cases δ > 0 and δ < 0, respectively. Our main empirical
specificationwillmeasure crop-specific technology by the count of crop-specific plant varieties. In this
interpretation, the climate-substitutability g21 and inverse elasticity of supply η should be interpreted
as features of this technology class. A prediction is that less climate-substitutable technology classes,
or those with lower g21, should have a smaller δ. We will explore this prediction by conducting our
main analysis for multiple types of technology.

Our theoretical results about whether innovation increases or decreases resilience translate in
Equation 2.7 to the cases φ > 0 and φ < 0, respectively. If δ > 0, whichwill prove to be the empirically
relevant case for crop varieties, then this prediction is equivalent to testing g21 > 0 versus g21 < 0
(climate substitutes versus climate complements) or differentiating cases (a) and (c) of Figure 1.

Our counterfactual analysis in Section 6 will be based on mapping our estimates back to this
specialization of the model. In that section, we will discuss the parameter-stability assumptions that
underlie our extrapolation of in-sample findings to out-of-sample counterfactuals via the model.

3 Data and Measurement

To study our questions of interest empirically, we require measurements of exposure to damaging
climate change (both location-specific and aggregate), crop-specific biotechnological innovation, and
local economic outcomes. This section outlines these data in detail.

3.1 Data Sources

Temperature. We use daily, grid-cell level (2.5 mile × 2.5 mile) temperature data since 1950 from the
PRISM ("Parameter-elevation Regressions on Independent Slopes Model") Climate Group.11 We use
temperature data during an April to October growing season. Daily data will be important in light
of evidence that crop productivity depends on realizations of extreme weather (e.g., Hodges, 1990;
Grierson, 2001; Schlenker and Roberts, 2009), discussed in greater detail below.

Crop-specificTemperature Sensitivity. Wecompile estimates of crop-specific temperature tolerance
from the EcoCrop Database, published by the United Nations Food and Agriculture Organization
(FAO). TheEcoCropDatabaseprovides information about crop-specific growing conditions, including

11In particular, we use the format of these data that is available onWolfram Schlenker’s website: http://www.columbia.
edu/~ws2162/links.html, accessed on March 14, 2020.
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numerical tolerance ranges for temperature, rainfall, and pH, for over 2,500 plants. The data were
compiled from expert surveys and textbook references during the early 1990s. As an example, the
EcoCrop data sheet for soybeans (Glycine max) cites 21 references including numerous textbooks (e.g.,
the Handbook of Legumes of World Economic Importance by Duke (1981) and Tropical Pasture and Fodder
Plants (Grasses and Legumes) by Bogdan (1977)) and one communication with an agricultural scientist.
The list of crops included in the analysis, alongside their species names, is reported in Table A1.

The piece of information we use in our main analysis is EcoCrop’s reported upper temperature
threshold for optimal growing.EcoCrop’s data on temperature tolerance is frequently used in agro-
nomics and climate science to estimate crop-specific tolerance to climate change (e.g. Hĳmans et al.,
2001; Ramirez-Villegas, Jarvis and Läderach, 2013; Kim et al., 2018; Hummel et al., 2018). In our
context, crop-specific temperature tolerances will allow us to incorporate the fact that crops are dif-
ferentially affected by heat exposure into our main measure of climate-induced productivity shocks.
Concretely, we will be able to measure how the same temperature change in a fixed location induces
different productivity shocks for different crops.

In principle, a given plant’s reported temperature threshold could combine innate, physiological
differences across plant species, as well as advancements in agricultural technology. Importantly,
therefore, the EcoCrop database is designed to capture the persistent and large differences in temper-
ature sensitivity that exist across crop species. The upper threshold temperatures among our studied
crops vary widely, ranging from 17◦C to 36◦C with a standard deviation of 5.0, representing far
greater differences in heat tolerance than could be affected by technology developed in recent decades
(and far greater temperature differences than those caused by climate change). Moreover, as the
aforementioned example references suggested, EcoCrop is based on survey references with a global
and broad temporal scope, rather than field trials of new, advanced varieties. Nevertheless, when we
turn to our main empirical analysis we replicate our findings controlling directly for the crop-specific
temperature threshold, as well as using a version of crop-level temperature change exposure with a
uniform temperature threshold across crops.

Innovation. We use several complementary measures of crop-specific innovation. Our main mea-
sure of biotechnology development is from the United States Department of Agriculture (USDA)
Variety Name List. The Variety Name List, obtained through a Freedom of Information Act (FOIA)
request by Moscona (2021), is a list of all released crop varieties known to the USDA since the start
of our sample period. According to the USDA, it is compiled "from sources such as variety release
notices, official journals, seed catalogs, and seed trade publications, as well as names cleared for
use by seed companies”; the goal is to be as comprehensive as possible.12 This data set has several
key features. First, it tracks new seeds and plant varieties overtime which, both anecdotally and for
agronomic reasons, were and remain the primary technology used to adapt agricultural production

12Moreover, breeders have an incentive to report new biotechnology to the USDA for inclusion in the list because farmers
check the List to make sure that varieties they purchase were cleared.
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to extreme temperatures. Second, the data set is structured by crop and it is straightforward to link
individual technologies to crops, the units of observation in our empirical analysis (e.g., a corn seed
is a corn innovation). Our main analysis using the List consists of 69 crops, covering all the main
grains, oilseeds, and feed crops as well as a large portion of vegetables grown in the US. Missing
are a number of fruits and tubers, which are not covered. Finally, this data set makes it possible to
track biotechnology innovation during a period of inconsistent and changing intellectual property law
governing seeds and plant varieties, which makes direct measurement from patent data impossible.13

Wecomplement thismaindata setwith data on all PlantVariety Protection (PVP) certificates. Plant
variety protection is a form of intellectual property protection for seeds that is weaker than utility
patent protection and introduced in themiddle of our sample period by theUnited StatesGovernment,
with the Plant Variety Protection Act (PVPA) of 1970.14 The key shortcomings of this measure are
that PVP certificates exist for only a part of our sample period, and the set of certificates is likely a
selected sample due to subsequent changes in patent law. However, the PVP certificates, unlike the
List, contain systematic information on the identity of the applicant, allowing us to investigate which
types of inventors drive the main estimates. We compiled all certificates from the USDA Agricultural
Marketing Service (AMS), and use the number of certificates issued by crop as a complementary and
independently generated measure of crop-level biotechnology development.

Finally, to measure crop-specific innovation across all technology classes, we use US patent data.
Using the patent database PatSnap, we computed the number of patents in Cooperative Patent Classi-
fication (CPC) classes A01B, A01C, A01D, A01F, A01G, A01H, and A01N (i.e., CPC classes that relate
to non-livestock agriculture) that were associated with each crop. To match patents to crops, we
searched for the name of each crop in the Variety Name List in all patent titles, abstracts, and descrip-
tions. Thus, unlike theVariety Name List, a downside to the patent data is that it is less straightforward
to link individual technologies to crops and this linking progress is undoubtedly noisier. We also,
within these patent classes, collect data on patents that mention keywords related to climate change,
heat tolerance, and drought tolerance.15 This allows us to separately measure, within each crop,
patented technologies that are and are not related to climate change.

Geography of Production. We use the 1959 round of the US Census of Agriculture to measure
planted area for all of our studied crops in each US county.16 These data are pre-determined relative
to the innovative outcomes we study. We repeat the same data construction process using the 2012

13Patent protection for seeds was not introduced until 1985 following the Ex Parte Hibberd ruling; even after 1985,
identifying seed patents from patent classification metrics is very challenging (see, e.g., Graff et al., 2003).

14In order to be granted a certificate, a variety must be new, distinct, uniform and stable; thus, as with patent protection,
there is a minimum quality threshold that all certified varieties must meet. A plant variety protection certificate does not
prevent farmers from saving protected seeds of prevent protected seeds from being used in breeding.

15Our keyword search is to require at least one of the following terms, where the asterisk indicates a wildcard, in the title,
abstract, or description: climate change, global warming, drought, heat resist*, heat toler*, extreme temperature, extreme
heat, extreme weather.

16Where possible, we use reported “planted area” in the Census of Agriculture. When these data are not available, we
use “harvested area.” Discrepancies between the two, when they are both reported, are generally small.
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round of the Census of Agriculture, for robustness checks and our analysis of production reallocation.

Agricultural Outcomes. Finally, we combine and harmonize all rounds of theUSCensus of Agricul-
ture from 1959-2017 to measure local agricultural outcomes. The key outcome of interest is the value
of agricultural land per acre, which summarizes the local returns to holders of the fixed factor in our
model, net of costs.Using these data, we construct a decadal panel linking data from the agricultural
census to features of the climate averaged over the entire decade. When there are two Censuses from
within the same decade, we use the later observation (e.g., for the 2010s decade we use data from
the 2017 Census of Agriculture rather than 2012). We also collect data on crop revenue, non-crop
revenue, and profits to use as outcomes in robustness checks.

3.2 Measuring Extreme-Heat Exposure

Our main task to estimate an empirical analogue of “climate distress for crop k in location i at time
t.” Our starting point is the finding in the agronomic literature that exposure to extreme heat is
the quantitatively largest effect of temperature, and modern warming trends, on output (Schlenker
and Roberts, 2009). It is also understood that the relevant “cut-off” temperature beyond which crop
productivity declines can be vastly different across crops (Ritchie and Nesmith, 1991). Empirical
estimates of these temperature cut-offs and the non-linear response of productivity only exist for a
small set of staple crops—for instance, Schlenker and Roberts (2009) study only corn, soybeans, and
cotton. To extrapolate this extreme-heat-exposure approach to our larger panel of crops, we leverage
both our fine-grained temperature data and our measurement of crop-specific “maximum optimal
temperatures” from expert assessments collected in EcoCrop.

The first step is to measure county-specific heat exposure. In the main analysis, we measure heat
exposure in the agronomically standard unit of degree days, or the integral of temperature in excess of
a specified threshold T over time.17 We focus on a summer growing season from April to October,
which is the period in which the overwhelming majority of extreme-heat exposure occurs.18 For
each US county i, time period (e.g., decade) t, and temperature threshold T, we define the number
of realized, growing-season degree days above the threshold as DegreeDaysi ,t (T). Appendix D.1
describes in more detail the mechanics of this calculation from the PRISM data.

We next incorporate the crop-specific information via EcoCrop’s reported “maximum optimal
temperature,” which we denote by TMax

k for each crop k. Specifically, we define extreme-temperature
exposure for county i, time-period t, and crop k as degree-days above this cutoff:

ExtremeExposurei ,k ,t :� DegreeDaysi ,t (TMax
k ) (3.1)

17For instance, relative to the threshold 30◦ C, a single day at a constant temperature 35◦ C contributes 5 degree days.
Five days at the temperature 31◦ C also contribute, in total, 5 degree days. Any number of days at temperature 29◦ C
contributes zero degree days.

18Averaging over all counties and summing over entire 1950-2019 sample, 99.88% of all degree-days over 30◦ occur
from April to October. That number is 98.23% for degree-days over 23◦, the high temperature for wheat, and 99.99% for
degree-days over 36◦, the high temperature for cotton.
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Our main measurements of crop- and location-level Extreme Exposure, introduced respectively in
Sections 4.1 and 5.1, are area-weighted averages of the above.

The underlying variation in this measure comes from two sources. The first is the spatial pattern
of temperatures across the United States. The second is the variation in crop physiology and how
different plants respond to this extreme heat to our best agronomic knowledge. For instance, in
a fixed period, Dunklin County, Missouri, and Stutsman County, North Dakota, will have different
extreme-heat exposures for soybeans (TMax

k � 33) because they experience different weather. But even
within Dunklin County, the same weather patterns induce different extreme exposure for soybeans
and cotton (TMax

k � 36), since the latter is biologically more heat tolerant.

Validation. In order to show directly that this measure of exposure to damaging heat affects crop
productivity, we estimate the relationship between extreme-heat exposure during the 1950s decade
and crop yields at the crop-by-county level using the 1959 Census of Agriculture, which we treat as
our pre-analysis period throughout the analysis. In particular, we estimate:

logyieldi ,k ,1959 � ξ · ExtremeExposurei ,k ,1950 + αi + αk + εik (3.2)

where i indexes counties and k indexes crops. Our findings are reported in Table A2 and convey that
extreme-heat exposure, by our measure, substantially reduces crop yields. The results are similar
both using the full sample of crops recorded in the Census (columns 1-3) and restricting attention to
the staple crops corn, wheat, and soybeans, which have been the focus of prior work (column 4). In
column 4, the within-R2 of our measure (i.e., the R2 after excluding the effect of crop and county fixed
effects) is 0.083, indicating that our measure generates substantial variation in yields. We also show in
Section D.2 that this one-dimensional measure of heat exposure explains a large share of the overall
effect of temperature on staple crop yields by comparing it to a more flexible estimation approach.

We next show that our measure, which incorporates crop-specific cutoffs, explains a much larger
share of variation in crop yields and production than any strategy based on a uniform, crop-invariant
cut-off. In particular, we estimate versions of (3.2) without county fixed effects, and after replacing
ExtremeExposurei ,k with the exposure to degree-days greater than a single cut-off temperature, for all
temperatures between 10 and 45 degrees Celsius. The within-R-squared of the effect of our measure
on either crop yields or production is substantially larger than the within-R-squared of the effect of
exposure to degree-days above any single cut-off temperature (Figure A2). These estimates are also
described in greater detail in Appendix Section D.2.

4 Results: Climate Change and Induced Innovation

We now empirically study how exposure to damaging climate change affects innovation. We find that
increasing exposure to extreme temperatures causes biotechnology development. We then explore
in greater detail the timing of this innovative response; its heterogeneity across crops, inventors, and
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types of technology; its relationship with geographic reallocation of production; and the effects of
temperature damage in the rest of the world.

4.1 Empirical Model

We estimate an empiricalmodel that tests, in the spirit of Propositions 1 and 2, whether new crop-level
biotechnology development responds positively or negatively to crop-level climate distress.

Crop-Level Extreme-Heat Exposure. To estimate crop-level exposure to extreme heat in the entire
US market, we sum the location-by-crop-by-time measure ExtremeExposurei ,k ,t over all counties,
weighting each county by its share of total planted area for that crop in the United States:

ExtremeExposurek ,t �
∑

i



AreaPrei ,k∑
j AreaPrej,k

· ExtremeExposurei ,k ,t


(4.1)

where AreaPrei ,k is the area devoted to crop k in county i prior to our sample period, in 1959.19 As
foreshadowed earlier, the ExtremeExposure measure varies across crops in a given decade, owing
to variation in both the distribution of temperature realizations across space and the crop-specific
temperature cutoffs. In our regression framework below, exogeneity of crop-level∆ExtremeExposurek

is due to the exogeneity of change in temperature realizations across locations (Meehl, Arblaster and
Branstator, 2012; Burke and Emerick, 2016).20 The changes in extreme-heat exposure for each crop in
the sample between the 1950s and 2010s and between the 1980s and 2010s are reported in Table A1;
the sample consists of all crops included in both the Census of Agriculture and the Variety Name List.

Before turning to our main empirical framework, Figure 2 displays changes across decades in both
ExtremeExposurek ,t and in new variety releases for a subset of crops. Changes in ExtremeExposurek ,t

are displayed as the light blue line (left y-axis) and changes in the number of new varieties released
are displayed with the dark blue line (right y-axis). Even in the raw data crop-by-crop, changes in
variety development seem to coincidewith (or slightly lag) changes in extreme-temperature exposure.
Moreover, although most crops experienced an increase in exposure to extreme heat over the full
sample period (Figure A3), the timing of this increase varies across crops. Moreover, for some
crops, exposure to extreme heat did not increase in all decades, and the magnitude of changes
in extreme heat exposure varied substantially across crops and decades. These patterns highlight

19We use land area to weight the average since it is more stable (and weather-independent) than variables like physical
production and because output data are missing in the early Census of Agriculture for a large portion of our studied crops.
For the crops for which we have both area and production, the elasticity of physical production to planted area in the
cross-section of the 1959 Census of Agriculture, for all crops for which data are available (and in a regression with crop
fixed-effects, to capture differential yields), is 1.04 with standard error .002 and within-R2 of 0.94.

20Recent work has documented that variation in heat exposure across different parts of the continental US is due to
natural climate variability and, in particular, the heterogeneous consequences of rising temperatures over the Pacific Ocean
(Meehl, Arblaster and Branstator, 2012). Related prior work has also assumed the exogeneity of changes in extreme-heat
exposure across locations in the US (e.g., Burke and Emerick, 2016). While exogeneity of temperature realizations is
sufficient for identification, we also show that all of our main results are very similar after controlling directly for the other
component of ∆ExtremeExposurek , crop-level variation in the maximum cut-off temperature.
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Figure 2: Changes in Extreme Exposure and Variety Releases Across Decades: Examples
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(c) Rice
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(d) Lettuce
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(e) Carrots
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(f) Lima Beans
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Notes: Each graph reports the change in ExtremeExposurek ,t (light line, left y-axis) and the change in
the (log of the number of) new varieties released (dark line, right y-axis) across decades.

the variation underpinning our analysis and convey the complementarity between our main long-
difference empirical approach, described in the next section, and the a panel approach, which we turn
to in Section 4.3.1.

Estimation Framework. Our baseline regression equation is the following:

yk � exp{δ · ∆ExtremeExposurek + ΓX′k + εk } (4.2)

and is the empirical analogue to Equation 2.6, in differences.21 yk is the number of novel seed varieties
developed for crop k during the period 1960-2016 and ∆ExtremeExposurek is the change in crop-level
extreme heat exposure between our starting and ending decades. X′k is a series of crop-level controls,
which we vary across specifications to probe the sensitivity of our estimates, and includes total land
under cultivation, trends in pre-period innovation, and pre-period climate measures. The former two
controls are natural to hold fixed initial market size. The last ameliorates concerns that our estimates
capture pre-existing trends in innovation or the climate. Since Equation 4.2 is a long-difference
regression, each control captures trends in the impact of that control, since all level differences across

21For consistency with the literature in innovation economics (which follows Hausman, Hall and Griliches, 1984), we
use a Poisson pseudo maximum likelihood estimator. Whenever results from a Poisson model are reported, we use
pseudo-maximum likelihood estimators in order to ensure appropriate standard error coverage; see Wooldridge (1999).
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Table 1: Temperature Distress Induces Crop Variety Development
(1) (2) (3) (4) (5) (6)

Sample	Period 1980-2016

Δ	ExtremeExposure 0.0167*** 0.0171*** 0.0136*** 0.0184*** 0.0226*** 0.0338***
(0.00424) (0.00436) (0.00372) (0.00541) (0.00668) (0.00745)

Log	area	harvested Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes Yes
Average	Temperature	Change No No No No Yes No
Observations 69 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	and	the	
sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	The	controls	included	in	each	specification	are	
noted	at	the	bottom	of	each	column.	Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.	

1950-2016

crops are differenced out.
An estimate of δ > 0 implies that biotechnology development has been directed toward crops that

have been more exposed to extreme temperature; δ < 0 implies that biotechnology development has
been directed away from crops that have been more exposed to extreme temperature.

4.2 Results: Temperature Distress and Variety Development

Table 1 presents our baseline estimates of Equation 4.2. In the first column, only ExtremeExposurek

and the log of total area harvested, our proxy for crop-level market size, are included as predictors.
We find that δ > 0; innovation in variety development was directed toward crops that were more
damaged by temperature change. The point estimate implies that a one standard deviation increase in
climate distress led to an about 0.2 standard deviation increase in new varieties. Moreover, the mean
change in extreme exposure across crops corresponds to a 20% increase in new variety development.

The remaining columns explore the sensitivity of the estimates. In column 2, we control for the
average temperature and average precipitation on land devoted to each crop during the pre-period
and in column 3, we add the number of varieties released for each crop from 1900-1960, equivalent
to the pre-trend in variety development for the long difference specification; the coefficient of interest
remains very similar. In column 4 we control directly for each crop’s cut-off temperature, TMax

k ,
and cut-off temperature squared—again, the coefficient of interest is similar, suggesting that the
estimates are not driven by fixed differences in crop-level sensitivity, which could affect trends in
technology development or the extent to which crop production can shift across seasons. The similar
estimates also indicate that the findings are not driven by differences across crops in ideal planting
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and harvesting dates, which could vary depending on heat sensitivity. In column 5, we control
for the change in the average temperature for each crop over the sample period—this is constructed
analogously to (4.1), except rather thanweight crop allocations by extreme-heat exposureweweight by
county-level average temperature (◦C). The inclusion of this control has little impact on our coefficient
of interest, validating our extreme exposure measure as a strong crop productivity shock operating
independently from changes in mean temperature. Last, column 6 documents that the result is very
similar if we restrict our analysis to decades since 1980.

We visualize the relationship between extreme exposure and innovation in Figure 3a, the (or-
dinary least squares) partial correlation plot of ∆asinh(Varieties)k against ∆ExtremeExposurek after
partialling out all control variables. The relationship is positive, strongly statistically significant
(t � 3.25), and does not appear to be driven by outlier observations. In Figure 3b, we plot the
relationship between extreme-temperature exposure from 1980-present and ∆asinh(Varieties)k from
1950-1980. If this relationship were positive, it could indicate that our main results are driven by pre-
existing trends in temperature change and innovation. However, the relationship is almost exactly
zero and statistically insignificant (t � 0.01). The null result in this falsification exercise is consistent
with a causal interpretation of our findings and with no anticipation effects in the long run.

Sensitivity Analysis: Measurement. Table A3 replicates our baseline results using an alternative
and independently constructed measure of new plant varieties measured from the Plant Variety
Protection certificates. The specifications are identical to columns 1-5 of Table 1, except the sample
period is from 1980 to the present and pre-period innovation is measured from 1970-1980, since the
PVPA authorizing the certificates was passed in 1970. The sample size is also slightly smaller since
asexually propagating crops were excluded from the PVPA. We find that the impact of extreme-
temperature exposure on biotechnology development is positive and significant using this alternative
strategy to measure the dependent variable.

We next show in Table A4 that the results are qualitatively similar usingGDDs in excess of 30◦C for
all crops as the key independent variable (Panel A), a strategywhich does not rely on the crop-specific
temperature tolerances from EcoCrop. Our baseline measure of ∆ExtremeExposure that incorporates
crop-specific temperature tolerances is, however, a stronger predictor of technology development
when the two are included in the same regression (Panel B). This finding, consistent with our earlier
finding for disaggregated production and yield data (Section 3.2), suggests that our new strategy for
incorporating crop-level differences in temperature sensitivity is important for precisely measuring
the crop-level productivity shock. Finally, we show in Table A5 that the results are very similar if we
construct the main independent variable using crop-by-county areas from the 1955, instead of 1959,
Census of Agriculture, or the average of the two.

Sensitivity Analysis: Potential Confounding Forces. The temperature trends we measure are
unavoidably correlated with geography. Hence, one possible source for spurious correlation are
geographic trends in agricultural conditions and/or innovation. We first show that our baseline
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Figure 3: Extreme Exposure and Variety Development: Partial Correlation Plot (OLS)

(a) Partial Correlation Plot (t = 3.25)
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(b) Placebo Partial Correlation Plot (t = 0.01)
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results are stablewhen controlling for polynomials in crop-level area-weighted latitude and longitude,
the share of cropland in each of the ten largest agricultural states, and the share of cropland under
irrigation (Table A6). Schlenker, Hanemann and Fisher (2006) and Schlenker and Roberts (2009)
emphasize that the predominance of irrigation in Western states necessitates different agronomic
modeling of outcomes in the East and West US. When we follow these authors’ suggestions of
measuring climate damage only east of the 100th meridian, we find similar effects of damage on total
US innovation (Table A7). These findings underscore that our results are not driven differences in
geography or, more specifically, by differences in temperature change and agricultural production
between the Eastern and Western parts of the US.

In addition to differences in geographic characteristics, crops also differ along a range of economic
dimensions that have a major impact on agricultural production, including trade and agricultural
policy. To study whether our findings are influenced by broader aspects of the agricultural economy,
we measure crop-specific exposure to five potentially relevant variables: proximity to US experiment
stations (Kantor and Whalley, 2019), insurance coverage, subsidy payments, trade exposure, and the
wealth of producers. We re-produce our main estimates controlling for each of these variables in
Table A8, and our main coefficient of interest is stable across specifications.22

Sensitivity Analysis: Inference. We finally report results that use statistical inference techniques
that are more robust to other, unmeasured and unmodeled confounders. First, we calculate the

22We also find no evidence that changes in crop-level subsidies or insured acres are correlated with changes in crop-level
exposure to extreme heat (not reported), further indicating that the findings are not confounded by policy changes.
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standard errors of Adao, Kolesár and Morales (2019), clustered by state, for our main OLS regres-
sion model underlying Figure 3a. The Adao, Kolesár and Morales (2019) method provides more
correct inference when there are unmodeled shocks at the level of our “share” variable, the crop area
weights. In particular, they allow for county-level confounding shocks, arbitrarily correlated among
themselves at the state level, which cause potential outcomes for crops grown in common locations
to be correlated. We obtain reassuringly similar precision to the baseline estimates (SE: 0.0058). We
also use randomization inference as an alternative strategy to investigate statistical significance. In
the specification with all baseline controls, randomization inference implies that p � 0.007 in the case
of the Poisson estimate and p � 0.003 in the case of the OLS estimate.

Narrative Evidence. In Online Appendix E, we provide narrative evidence that corroborates and
contextualizes our result the biotechnology development responds to modern climate change. As
concrete examples, we describe in detail the scientific underpinning and development history of two
lines of heat-resistant corn, Pioneer’s Optimum AQUAmax and Monsanto’s DroughtGard. In each
case, the plant breeders themselves emphasize how hot and dry conditions in corn-growing areas
motivated product development. This analysis foreshadows our subsequent analysis showing that
agricultural patents corresponding to more heat-exposed crops are also become more likely, over
time, to mention key words related to climate change, heat, and drought (Section 4.3.4).

4.3 Additional Results and Mechanisms

4.3.1 Timing of Technological Response

We have focused on long-difference specifications because both temperature change and innovation
are long-run processes. However, it is important also to know how quickly innovation responds to
temperature change and whether innovative activity has anticipated future changes or lagged past
ones. Figure 2 displayed the substantial variation in extreme-heat exposure and innovation across
decades during our sample period and was a preliminary indication that technology development
has reacted in the same decade as the change in temperature, or in some cases with a lag.

To investigate these questions systematically, we estimate the following panel-data model:

ykt � exp



∑
τ∈T

δt+τ · ExtremeExposurek ,t+τ + ΓX′kt + αk + ωt + εkt




(4.3)

where the outcome variable now is new varieties released for crop k in decade t, and both crop and
decade fixed effects are included. The set of leading or lagged values of extreme-temperature exposure
is denoted byT. Figure 4 shows our dynamic estimates graphically. Each point is the coefficient from a
separate regression estimate of Equation 4.3, inwhichT includes both the relevant lead or lagged value
and the contemporaneous value of the temperature shock. We find no evidence of an anticipation
effect, consistent also with our null result in Figure 3b. Variety development increases markedly
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Figure 4: Extreme Exposure and Variety Development: Panel Estimates
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Notes: Each point reports a coefficient estimate from separate estimations of (4.3). The solid and
dashed lines are 90% and 95% confidence intervals. Standard errors are clustered by crop.

during the decade of the temperature shock and persists during the decade that follows. Table A9
reports additional estimates of Equation 4.3. Across specifications, which include varying numbers
of leads and lags, leading values are small in magnitude and statistically insignificant, while the
contemporaneous and lagged temperature shocks have a positive effect on technology development.

4.3.2 Heterogeneous Effects Across Crops

Our baseline estimates treated all crops as symmetric. In practice crops vastly differ in market size
and production technology, and ourmodel described how these differences can affect the relationship
between climate damage and innovation (see Proposition 3). Here, we study heterogeneity in the
relationship between extreme-heat exposure and innovation. Our findings are reported in Table A10.

We first study whether our baseline effects are heterogeneous based on baseline market size, as
proxied by planted area. We find strong evidence that larger-market crops see a more pronounced
response to climate distress (column 1). However, we do not find evidence of larger effects on crops for
which, using international production and trade data, the United States is a relatively large producer
(column 2) or a relatively large net exporter (column 3). These estimates foreshadow our findings
reported below in Section 4.3.7 that US innovation reacts predominately to crop-level temperature
damage in the US and not the rest of the world. Thus, large markets in the US have the largest pull
on innovation, even if they are not large as a share of global production.

We next study whether the response of innovation depends on the relative impracticality of crop
switching. In our model, a more easily “switchable” crop could have a higher or lower elasticity of
technology development to climate distress, depending on whether it has a higher or lower climate
substitutability of technology. We formalize this link, and the ambiguity of the sign prediction, in
Online Appendix C.3. As a first proxy for “switchability,” we compute the average share of county
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cropland devoted to each crop among counties where it is cultivated. Higher values of this measure
imply that the crop is more constrained in terms of where it can be planted. We find no evidence of
heterogeneous effects along this margin (column 4). We also find very little heterogeneity based on
whether a crop is annual or perennial (column 5). Annual crops are re-planted every year, and as a
result are easier to shift across locations. Together, these results suggest that ease of crop switching,
and its net effect on climate substitutability, is not an important mediating factor in our analysis.

In response to extreme heat, crop production may shift not only across locations but also across
seasons. To investigate whether the response of innovation depends on the possibility of shifting
production toward colder months, we construct an indicator that equals one if a crop has a below-
median value for its lower-bound temperature according to EcoCrop. Consistentwith this hypothesis,
we find some evidence that crops that can withstand lower temperatures see a less pronounced
response to climate distress (column 6). We also investigate the potential role of differences in price
responsiveness (ε) across crops. We use whether or not a crop is perishable as a proxy for the strength
of the price response. However, we do not detect heterogeneous effects along this margin (column 7).

We finally investigate whether proximity to US experiment stations, which could plausibly in-
crease the elasticity of research supply η−1, leads to a greater response of technology to extreme-heat
exposure. In particular, we study whether the results are heterogeneous based on the share of land
area in the same county as an experiment station (column 8). We do find a larger effect for crops that
are grown, on average, closer to US experiment stations; however, the estimate is imprecise and we
therefore interpret it with caution.

4.3.3 Heterogeneous Effects Across Inventors

Our baseline estimates pool technology development across all inventors. However, different parts
of the innovation ecosystem could react differently to new technology demand that results from
temperature change. While the Variety Name List does not collect systematic data on inventor identify
throughout the sample period, the PVP data do. Using the applicant name associated with each PVP
certificate, we classify each applicant as either a private sector firm, a public sector entity, a university,
or none of the above.23 In Table A11 we re-produce our baseline estimates separately for PVPs from
each applicant category. We find large, positive effects for private sector applicants (column 1). While
the effect is also positive for public sector and university applicants, the effect sizes are smaller and
statistically indistinguishable from zero (columns 2-3). These findings indicate that the re-direction
of technology underlying our main results is driven by the private sector, consistent with our model

23Wemake this classification using keyword searches of applicant names. We identify private sector applicants as those
with word fragments INC, LLC, LC, CO, CORP, BV, COMPANY, LP, or LTD in the applicant name. We identify public sector
applicants as those with word fragments USDA, US GOVERNMENT, RESEARCH SERVICE, or EXPERIMENT STATION
in the applicant name. We identify colleges and universities as those with UNIVERSITY, COLLEGE, or INSTITUTE in
the applicant name. By our measure, the average crop in the sample has received since 1980 144.2 total PVP certificates,
116.5 private sector PVP certificates, 9.6 public sector PVP certificates, 11.2 college or university PVP certificates, and 11.2
unclassified PVP certificates. Unclassified certificates could be capturing individual inventors in any sector, or small firms.
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Table 2: Temperature Distress and Climate-Related Patenting

(1) (2)

Dependent	Variable:
Patents	not		
related	to	
the	climate

Patents	
related	to	
the	climate

Δ	ExtremeExposure 0.00335 0.0118**
(0.00458) (0.00552)

All	Baseline	Controls Yes Yes
Observations 69 69

(1) (2)

Dependent	Variable:
Patents	not		
related	to	
the	climate

Patents	
related	to	
the	climate

Δ	ExtremeExposure 0.00335 0.0118**
(0.00458) (0.00552)

All	Baseline	Controls Yes Yes
Observations 69 69

Notes:	The	unit	of	observation	is	a	crop	and	both	columns	report	Poisson	pseudo-
maximum	likelihood	estimates.	The	outcome	variables	are	the	number	of	crop-specific	
agricultural	patents	that	are	not	related	to	the	climate	(column	1)	and	the	number	of	
crop-specific	agricultural	patents	related	to	the	climate	(column	2).	A	patent	is	
classified	as	related	to	the	climate	if	its	title	or	absract	contains	any	of	the	following	
words	or	bigrams:	climate	change,	global	warming,	drought,	heat	resist*,	heat	toler*,	
extreme	temperature,	extreme	heat,	and	extreme	weather.		All	baseline	controls	are	
included	in	both	specifications.	Robust	standard	errors	are	reported	in	parentheses	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Notes:	The	unit	of	observation	is	a	crop	and	both	columns	report	Poisson	pseudo-
maximum	likelihood	estimates.	The	outcome	variables	are	the	number	of	crop-specific	
agricultural	patents	that	are	not	related	to	the	climate	(column	1)	and	the	number	of	
crop-specific	agricultural	patents	related	to	the	climate	(column	2).	All	baseline	
controls	are	included	in	both	specifications.	Robust	standard	errors	are	reported	in	
parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

of innovation in response to profit incentives and changing farmer demand (Section 2.1).
A related question is whether temperature distress shifts patterns of innovation across crops

within inventor or whether it leads to the entry of new inventors to meet the demand for new climate-
resistant technology. To investigate this question, we estimate a crop-by-applicant regression that
includes applicant fixed effects:

yka � exp{δw · ∆ExtremeExposurek + ΓX′k + αa + εka } (4.4)

where a indexes PVP applicants, yka is the number of PVP certificates awarded to applicant a for
crop k since 1980, and αa are applicant fixed effects. The coefficient δw captures the within-applicant
redirection of technology. Estimates of (4.4) are reported in Table A12 and we find that δw is positive,
statistically significant, and statistically indistinguishable in magnitude from our baseline estimates.
These findings indicate that the results are driven by individual firms and organizations re-directing
technology development toward more distressed crops. They are also consistent with our narrative
evidence about the refocusingof cropbreedingwithin large biotechnologyfirmsonheat- anddrought-
resistance (Online Appendix E).

4.3.4 Heterogeneous Effects Across Types of Technology

Our model predicted that the reallocation of agricultural innovation toward climate-distressed crops
should be stronger for climate-substitutable technologies (i.e., those with higher g21). We test this
prediction using two schemes of technology classification in our crop-specific patent data.

Our first strategy formeasuring the climatic specificity of patents is tomeasurewhether or not each
patent mentions climate-related key words, as introduced in Section 3.1. We re-estimate our long-
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Figure 5: Temperature Distress and the Share of Climate-Related Patents
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Notes: This figure reports the partial correlation plot between ∆ExtremeExposurek and the share of
crop-specific patented technologies released since 1960 that are related to the climate. The full set of
baseline controls are included, including the relevant pre-period dependent variable in this context:
the share of climate-related patented technologies developed between 1900-1960. The coefficient
estimate, standard error, and t-statistic are reported at the bottom of the figure.

difference economic model (Equation 4.2) using non-climate-identified patents and climate-identified
patents as separate outcomes in Table 2. We find a small and insignificant effect on the first, and
positive and significant effect on the second, consistent with innovation redirecting toward climate-
related technologies without crowding out other technologies. Figure 5 visualizes the positive and
significant relationship between crop-level climate distress and the share of new crop-level patented
technologies that are related to the climate. These results convey that temperature change has
directly increased the development of new technologies related to climate change, while leaving the
development of other technologies relatively unchanged. This is also consistent with qualitative
evidence on the directed search for climate-resistant traits and varieties (see Online Appendix E).
Moreover, in light of our model, the null response of non-climate patents is inconsistent with strong
price effects driving incentives for innovation. This case would create incentives for all categories of
technology, not just the more climate-adaptive categories (see Propositions 2 and 3).

As a secondary strategy, we investigate the impact of exposure to extreme temperatures on patent-
ing in each major Cooperative Patent Classification (CPC) class associated with crop agriculture.24
The results are reported in Table A13. We find positive effects on fertilizing, planting, and sowing
technologies (CPC Class A01C; column 2) and soil working technologies (A01B; column 3), which are
statistically significant for the former and for their sum (column 4). The coefficients, up to statistical

24We omit patents in A01G, which covers both agriculture and horticulture, and A01H, which did not have consistent
relevance for all plant species over our sample period due to legal changes in the patentability of plants.

26



precision, have comparable magnitude to our baseline effect on crop varieties (reprinted in column
1). However, we find small and statistically insignificant effects of climate distress on innovation in
harvester and mower technologies (column 5) or post-harvest and processing technology (column 6).
These results are consistent with arguments in the economic and historical literature that fertilizer,
planting, and soil modification technology have been crucial in the face of environmental constraints
(Olmstead and Rhode, 2008; Baveye et al., 2011), while mechanical harvesting technology has not
(Hayami and Ruttan, 1971; Ruttan and Hayami, 1984). Moreover, in our own data 30% of patents
related to fertilizing, planting, and sowingmention at least one of the climate-related keywords, while
only 7% of harvest and post-harvest patents do so.

4.3.5 Effects of Other Climate Shocks

Our main analysis focuses on the impact of extreme heat, which has been documented in prior work
(Schlenker and Roberts, 2009) and our own validation analysis (Appendix D.2) to be themain channel
through which temperature affects crop production. We now investigate the relationship between
other measures of climate distress and innovation: extreme cold and drought. To measure crop-level
exposure to extreme cold, we use the lower bound temperature cut-off from the EcoCrop database to
measure, for each crop, and compute exposure to temperatures below this threshold:

Extreme Cold Exposurek ,t �
∑

i



AreaPrei ,k∑
j AreaPrej,k

· DaysBelowLowerBoundi ,k ,t


(4.5)

To measure crop-level exposure to drought, we measure:

Drought Exposurek ,t �
∑

i



AreaPrei ,k∑
j AreaPrej,k

· PDSIi ,t


(4.6)

where PDSIi ,t is the PalmerDrought Severity Index (PDSI)measure in county i and decade t. Drought
itself is often caused by evapotranspiration that results from exposure to extreme heat (Hanson, 1991;
Cheng et al., 2019). Thus, exposure to drought is unlikely to be independent from exposure to extreme
heat, and instead may capture one channel through which extreme heat affects crop production and
hence demand for new technology.

Estimates of an augmented version of Equation 4.2 that includes both extreme cold exposure and
drought exposure are reported in TableA14. Wefindno statistically significant evidence that exposure
to extreme cold affects innovation. We identify a positive but imprecise relationship between drought
exposure and innovation. However, across specifications, the magnitude of the effect of drought is
substantially smaller than the magnitude of the direct effect of extreme heat. In standardized units,
the effect of drought is always below one third the magnitude of the effect of extreme-heat exposure.
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4.3.6 Effects of Creating NewMarkets

Farmers may respond to shifting temperatures by changing the crops that they grow. Such a real-
location in planting across space may have quantitatively important effects on the response of US
agriculture to climate change and may also interact with directed innovation. In Online Appendix F,
we investigate the extent to which temperature change has induced crop switching and, as a result,
affected innovative incentives by changing crop-level market sizes. We briefly summarize our results
here.

First, we find that farmers in a given county switch away from more extreme-heat exposed crops
and toward crops for which local conditions became more favorable. Second, conditional on crop
and county fixed effects, the magnitude of this reallocation is quantitatively small—a one-standard
deviation relative increase in crop-by-county extreme-heat exposure leads to only a 0.018 standard
deviation decline in planted area. Third, when we control directly for our estimates of temperature-
induced changes in planted area in our baseline estimating equation (4.2), the estimated relationship
between extreme-heat exposure and technology development is unchanged. Thus, endogenous
planting reallocation does not bias or mediate our baseline estimates of the relationship between tem-
perature change and technology development. Fourth, we find an independent positive correlation
between heat-induced changes in market size and biotechnology development. This demonstrates an
additional channel by which temperature change affects agricultural innovation.

4.3.7 Response to Global Damages

While our main analysis focuses on the response of US innovation to temperature distress in the US,
in Appendix Gwe investigate howUS innovation has reacted to temperature distress in the rest of the
world. To measure the extreme-heat exposure of each crop globally, we combine the gridded, hourly
temperature dataset of Muñoz-Sabater et al. (2021), which covers the whole world from 1980 to the
present, with geo-coded crop-level planting data from Monfreda, Ramankutty and Foley (2008).25
Figure G1 reports the relationship between crop-level extreme-heat exposure in the US and in the rest
of the world, which we find is essentially flat. This suggests that crop-specific adaptation technology
developed for the US may not be meeting the most pressing needs around the world. This also
indicates that temperature change outside the US does not bias or mediate our baseline finding.

We next directly investigate how US innovation reacts to changes in temperature distress in
the rest of the world by estimating an augmented version of Equation 4.2 that includes crop-level
extreme-heat exposure outside of the US. We find no evidence that US technology responds to
extreme-heat exposure elsewhere in the world, and document that this is not an artifact of our global
measurement strategy by replicating our baseline, within-US results using the newdata. These results
are consistent with existing findings of high home bias in biotechnology innovation (Costinot et al.,

25TheMonfreda, Ramankutty and Foley (2008) dataset was created by combining national, state, and county level census
data with crop-specific suitability data, to construct a 5-by-5 minute grid of the area devoted to each crop circa 2000.
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2019; Moscona and Sastry, 2022). While a full analysis of global innovation is beyond the scope of
this paper, understandingwhichmarkets do and do not shift incentives to develop climate adaptation
technology, and which parts of the world are more or less able to benefit from technological spillovers
from research-intensive markets like the US, seems like an important area for future research.

5 Results: Induced Innovation and Damage Mitigation

The previous section’s results demonstrated that technology development has re-directed toward
crops more exposed to extreme heat in recent history. In this section, we investigate the extent to
which induced innovation has mitigated economic damage from temperature change. Our empirical
strategy, suggested by the model, is to estimate the marginal impact of county-level extreme-heat
exposure as a function of predicted innovation exposure. We find significant evidence that innovation
exposure has mitigated the economic impacts of temperature distress.

5.1 Empirical Model

Extreme-Heat Exposure for Counties. Tomeasure extreme-heat exposure for each county i, we esti-
mate the average crop-specific extreme-heat exposure across all crops grown in the county, weighting
by crop-specific planted areas in the pre-analysis period:

County-Level Extreme Exposurei ,t �
∑

k



AreaPrei ,k∑
k′ AreaPrei ,k′

· ExtremeExposurei ,k ,t


(5.1)

AreaPrei ,k is the land area devoted to crop k in county i in 1959 and ExtremeExposurei ,k ,t is measure of
extreme-heat exposure defined in Section 3.2. County-Level Extreme Exposurei ,t thus incorporates
crop-specific variation in heat sensitivity, departing from previous work on county-level climate
damages that treat all counties the same and estimate the effect of different temperature realizations
across space (e.g., Schlenker, Hanemann and Fisher, 2006). In the model, the measure A −Ai sufficed
to measure local climate distress for the single grown crop (Proposition 3); since US counties grow
many crops, our empirical analogue is simply the weighted average across crops. Figure A5a displays
the the change in County-Level Extreme Exposurei ,t from the 1950s to the 2010s across US counties.

To validate this measure of county-level temperature distress, we estimate county-level relation-
ship between the change in County-Level Extreme Exposurei ,t from the 1950s to the 2010s and the
change in log of agricultural land values over the same period. This estimate is reported in column 1
of Table A15; it is negative and highly significant, consistent with County-Level Extreme Exposurei ,t

capturing damage from climate change that translates into lower rents. In columns 2 and 3we present
the relationship between the change in County-Level Extreme Exposurei ,t and the change in revenue
per acre from crop and non-crop production respectively. We find a large, negative effect on revenues
from crop production but no effect on revenues from non-crop production, suggesting our measure
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finely targeted to the productivity of crop production.

Innovation Exposure for Counties. We next calculate each county’s innovation exposure as the aver-
age across all crops’ national extreme-heat exposure—our main crop-level measure of temperature
distress—weighted by planted areas:

Innovation Exposurei ,t �
∑

k



AreaPrei ,k∑
k′ AreaPrei ,k′

·

∑
j,i



AreaPrej,k∑
j,i AreaPrej,k

· ExtremeExposure j,k ,t




(5.2)

We make only the small change of calculating this variable leaving out the county i to avoid any
mechanical correlation. Thismeasurewill allowus to investigate the role of endogenous technological
progress because, as documented in the first part of the paper, it is a strong predictor of innovation
and hence the existence of new, climate-induced technology that can be used for production in county
i. Equation 5.2 is again the empirical analogue of our model-derived expression for innovation
exposure, A − Ak(i) , modified to incorporate multiple crops and purge the measure of national crop-
level damage driven by the county in question (see Proposition 3). Figure A5b displays the change in
InnovationExposurei ,t from the 1950s to the 2010s across US counties.

Estimation Framework. As our primary dependent variable, we use the price of agricultural land.
Let AgrLandPricei ,t be the agricultural land price per acre of cultivated land, measured from the
Census of Agriculture in decade t in location i.26 The agricultural land price captures the net present
value of profits from agricultural production and has the benefit of capturing both the benefits of new
technology alongside its potentially higher cost. To investigate the role of innovation in mitigating
economic damages from temperature change, we estimate versions of the following equation:

logAgrLandPricei ,t � δi + αs(i),t + β · Extreme Exposurei ,t + γ · InnovationExposurei ,t

+ φ ·
(
Extreme Exposurei ,t × InnovationExposurei ,t

)
+ ΓX′it + εi ,t

(5.3)

where δi is a county fixed effect and αs(i),t is a state-by-time fixed effect. Our coefficients of interest
are β and φ, which capture the direct effect of temperature distress and the heterogeneous effect of
temperature distress depending on each county’s “innovation exposure.” This specification is the
empirical analogue of Equation 2.7, derived in Proposition 3 of the model.

We estimate Equation 5.3 with two main specifications: a two-period “long difference,” with
t ∈ {1959, 2017}, and a decadal panel. We focus on testing the hypothesis that φ > 0. Through the
lens of the simple model taxonomy in Figure 1, combined with our previous finding that climate
distress induced positive innovation, this hypothesis compares case (a) in which mitigation (driven
by the marginal product force) corresponds with increased resilience, against case (c), in which

26The price of land reported in the Census includes the price of the land itself plus buildings and improvements. We
include state-by-time fixed effects in our baseline specification, which soak up any variation in building and improvement
prices that is varies at the state level (as assumed, for instance, by Donaldson and Hornbeck, 2016).
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Table 3: Innovation and Resilience to Climate Damage
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.851*** -1.519*** -0.825*** -0.862*** -0.786*** -0.232** -0.390***
(0.211) (0.240) (0.203) (0.238) (0.226) (0.107) (0.132)
[0.264] [0.304] [0.244] [0.305] [0.279] [0.105] [0.103]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.249*** 0.425*** 0.237*** 0.251*** 0.230*** 0.0912*** 0.128***
(0.0757) (0.0745) (0.0728) (0.0791) (0.0762) (0.0315) (0.0321)
[0.0945] [0.0921] [0.0881] [0.0995] [0.0929] [0.0253] [0.0243]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,931 20,931
R-squared 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Dependent	Variable	is	log	Land	Value	per	Acre

Notes:	The	unit	of	observation	is	a	county-year.		Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	
parentheses,	and	standard	errors	clustered	by	state	are	reported	in	brackets,		and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

mitigation (driven by price effects) corresponds with decreased resilience.

5.2 Results: Local Adaptation and Resilience

Estimates of Equation 5.3 are reported in Table 3. In column 1, the baseline long-difference speci-
fication with no added controls, we find that φ > 0 and that this relationship is highly statistically
significant. The estimates are very similar when each county is weighted by its pre-period agricul-
tural land area (column 2), or when either the unweighted or weighted specification is estimated
on a decadal panel of counties (columns 6-7). Combined with our estimates of the relationship be-
tween temperature distress and innovation, this result indicates that technological progress is directed
toward damaged crops and leads to increased resilience.

To visualize the findings, Figure 6 reports themarginal impact of exposure to extreme heat (y-axis)
for quantiles of the innovation exposure distribution (x-axis), using the specification from column
1. On the left side of the figure is the marginal effect of extreme-heat exposure for counties that are
relatively less exposed to induced innovation and on the right side of the figure is the marginal effect
of extreme-heat exposure for counties that are relatively more exposed to induced innovation. The
difference in marginal effects between the 75th and 25th percentile is 60% of the median effect, and
the difference from the 90th and 10th percentiles is 115% of the median effect. In the counties most
exposed to induced innovation, we detect no significant impact of extreme heat on land values.

Sensitivity: Alternative Measurement Strategies. While our baseline estimates use the (log of)
agricultural land values as the main dependent variable, Table A16 documents that our findings are
very similar if we instead use in-sample agricultural revenues or profits as the dependent variable.
In columns 1-2 the dependent variable is (log of) crop revenue per acre, in columns 2-3 it is total
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Figure 6: Marginal Effect of County-Level Extreme Exposure as a Function of Innovation Exposure
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Notes: This figure reports marginal effect of extreme-temperature exposure on (log of) agricultural
land values for quantiles of the innovation exposure distribution. The solid and dashed lines are 90%
and 95% confidence intervals respectively.

agricultural profits, and in column 3 it is total agricultural profits per acre; while we are able to
measure revenue specific to crop production, spending is not broken down by crop and non-crop
production and so we are only able to measure profits from all agricultural activities, Nevertheless,
in all specifications we find that β < 0 and that φ > 0.

Sensitivity: Potential Confounding Forces. A potential concern with our approach is that our
innovation exposure measure might be correlated with national crop prices and that prices have
non-log-linear effects on agricultural land values. In the model of Section 2.5, prices have only a log-
linear impact on land values because of the Cobb Douglas structure, and in this case the relationship
between output prices and land values do not bias our estimates of φ. Nevertheless, in practice, the
relationship between prices and land values might be more complicated because input shares are not
fixed. To ameliorate these concerns, we directly measure and control for the change in output prices
of the crops produced in each county. Using data on national crop-level producer prices from the
USDA, we construct a measure of the price of each county’s output bundle in decade t as:27

Output Priceit �
∑

k

AreaPrei ,k∑
k′ AreaPrei ,k′

· log
(
Producer Pricek ,t

)
(5.4)

where Producer Pricek ,t is the national producer price for crop k in averaged over decade t as recorded
by the USDA. Column 3 of Table 3 reports estimates of Equation 5.3 in which we control for both this

27Producer price information is not available for the full set of crops in the baseline analysis. The crops forwhich national
producer price data exist during the period of analysis are: wheat, rye, rice, tobacco, sorghum, soybeans, corn, alfalfa,
cotton, sugar beets, oats, cranberries, peanuts, flax, hay, beans, and hops.
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county-level output price measure, as well as its interaction with County-Level Extreme Exposurei ,t .
Estimates of our coefficient of interest are virtually unchanged.

Another potential question is whether the estimates are capturing amenity value effects of chang-
ing temperature rather than the productivity consequences of climate change (Fisher et al., 2012).
While we are less worried about this issue since our temperature distress measure captures not only
the distribution of temperature changes but also the distribution of crop production and physiology,
in column 4 of Table 3 we control directly for county-level temperature (in degrees Celsius), counties’
cropmix exposure to average temperature changes, and the interaction of the two. Our results remain
very similar. Column 5 includes both the full set of price controls and the full set of temperature
controls and the results are again very similar.

We conduct a series of additional checks that our findings are not driven by features of the baseline
specification. The results are very similar using decade fixed effects in place of state-by-decade fixed
effects (Table A17) and controlling directly for non-linear effects of extreme-heat exposure (Table
A18), which suggests that innovation exposure is not capturing higher order terms of county-level
extreme-temperature exposure. The results are also similar after dropping counties West of the 100th
meridian (Table A19) and removing the effect of local spillovers by estimating a version of innovation
exposure that excludes any variation in crop distress that occurs in other counties in the same state
(Table A20). These findings indicate that the results are not driven by differences in climate change or
innovation between the Eastern andWesterns parts of the US, or the effect of within-state production
spillovers

Sensitivity: Inference. One potential concern is that both climate realizations and the value of land
are spatially correlated. While Table 3 shows that our estimates are precise when we cluster by state,
which is a large geographic unit, in Table A21 we investigate the role of spatial correlation more
systematically. In particular, we estimate Hsiang (2010)’s implementation of Conley (1999) standard
errors, for several possible choices of the kernel cut-off distance. Reassuringly, the results are very
similar across specifications, even after allowing for spatial correlation across long distances.

Technology as the Mechanism: Exploiting Variation in Market Size. We found earlier that the
impact of temperature distress on technology development was stronger for crops with a larger
pre-period market size (see Table A10). If innovation were the mechanism driving the county-level
estimates, we would expect the results in Table 3 to be driven by counties that cultivate crops with a
larger national pre-periodmarket size since thesewere the crops that benefited from themost induced
innovation. To measure the average market size of the crops grown in each county we compute the
following measure of the average, national market size of crops grown in i:

CropMixMarketSizei �
∑

k

AreaPrei ,k∑
k′ AreaPrei ,k′

· log
(
National Area Harvestedpre

k

)
(5.5)
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We then estimate an augmented version of Equation (5.3) that includes a triple interaction between (i)
County-Level Extreme Exposurei ,t , (ii) InnovationExposurei ,t , and (iii) CropMixMarketSizei . If the
adaptive role of innovation were driving the results, we would expect the coefficient on the triple
interaction to be positive.

Table A22 reports estimates of this specification. In all columns, we find that the triple interaction
is positive and statistically significant. Thus, the crops toward which innovation was directed most
strongly are also the crops driving the mitigating impact of “innovation exposure” on land value
decline. This is consistent with our estimates of φ capturing the effect of innovation.

6 Aggregate Damage Mitigation From Directed Innovation

We now combine our empirical estimates and model to quantify the aggregate effect of innovation on
climate damage mitigation, both in and out of sample.

6.1 Methods

Definitions. For each US county i in period t, we use our regression model from Equation 5.3 along
with the coefficient estimates thereof, to predict a location’s land value per acre as a function of climate
realizations. We define two scenarios, letting t0 and t1 represent our pre-period and post-period, re-
spectively. WefirstdefineaNoClimateChange (NCC) scenario inwhichCountyLevelExtremeExposurei ,t

and InnovationExposurei ,t are fixed at their t0 values, or

logAgrLandPriceNCC
i ,t1

� δ̂i + α̂s(i),t1 + β̂ · CountyLevelExtremeExposurei ,t0
+ γ̂ · InnovationExposurei ,t0

+ φ̂ ·
(
CountyLevelExtremeExposurei ,t0

× InnovationExposurei ,t0

)
(6.1)

We next define a No Innovation (NI) scenario in which the interactive effect of innovation exposure is
based on the t0 climate

logAgrLandPriceNI
i ,t1

� δ̂i + α̂s(i),t1 + β̂ · CountyLevelExtremeExposurei ,t1
+ γ̂ · InnovationExposurei ,t1

+ φ̂ ·
(
CountyLevelExtremeExposurei ,t1

× InnovationExposurei ,t0

)
(6.2)

We aggregate the local predictions to a national total value of agricultural land, in (contempora-
neous) dollars, using the pre-determined agricultural land areas in each US county. This translates
local counterfactuals into their aggregate national counterparts AgValNCC

t1
andAgValNI

t1
, the total value

of US cropland in counterfactual scenarios without climate change and with climate change but no
directed innovation. We compare these with the aggregate obtained from the in-sample fitted values
AgValt1

(i.e., a scenario with both climate change and directed innovation) to calculate the following
three statistics of interest. The first and second are the damage due to climate change in scenarios
with and without innovation, expressed as a percentage of the total possible value absent climate
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change:

PctDamageI :� 100 ·
AgValt1

−AgValNCC
t1

AgValNCC
t1

PctDamageNI :� 100 ·
AgValNI

t1
−AgValNCC

t1

AgValNCC
t1

(6.3)

The third is the damage abated by directed technology, as a percentage of counterfactual damage
from climate change absent innovation:

PercentMitigation :� 100 · *
,

PctDamageNI
− PctDamageI

PctDamageNI
+
-

(6.4)

Model Interpretation. Equations 6.1 and 6.2, and hence the aggregate statistics based upon them,
have a structural interpretation in the model of Section 2.5 under the following conditions:28

Corollary 2. The counterfactual calculations correspond with the model’s counterfactuals if (i) prices are
perfectly rigid, or ε � 0, and (ii) climate-induced technology has zero marginal benefit when climate is “ideal”
or ExtremeExposurei � 0.

A formal derivation is given in Online Appendix B.6. The first assumption is to set the price
response across counterfactuals to zero. To justify this assumption, we are reassured by our findings
above suggesting that price effects have not been an important mechanism driving technology devel-
opment (Section 4.3.4) and that they play little role in our county-level estimates, even when included
as an endogenous control (Table 3). The second is to assume that climate-induced technology has
zero effect on land values when the county experiences zero climate distress. This normalization
biases our results for damage mitigation toward zero.

The model also provides structural interpretations for the counterfactual-relevant estimated co-
efficients (β, γ, φ) as functions of the following deep parameters: the climate substitutability g21,
the direct productivity effect of extreme exposure g1, the farm profit share α, the inverse elasticity
of crop demand ε, and the inverse elasticity of technology supply η. The internal validity of our
counterfactual estimates relies on these deep parameters, and hence the (β, γ, φ), being stable across
the two scenarios. This assumption might be violated, for instance, if climate change alters market
structure in either upstream technology markets or downstream crop markets. Modeling such forces
is ultimately outside the scope of our analysis. Another important assumption is the separability of
innovation supply across crops. We discuss strategies to relax this assumption, using an extension of
the model, below.
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Figure 7: Historical Damage Mitigation Via Innovation
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Notes: The top panel displays the percent of economic damage from historical temperature change,
since 1960, mitigated by innovation across three model specifications: (i) the baseline (unweighted,
only fixed effects as controls), (ii) the agricultural-land-area-weighted estimate (only fixed effects as
controls), and (iii) the estimate that controls directly for the output prices and interactions (in addition
to all fixed effects). The bottompanel shows the aggregate economic damage from temperature change
(%) in each model, both with (blue) and without (orange) directed innovation. Standard errors were
computed via a bootstrap and 95% confidence intervals are reported.

6.2 Results: Historical Damage Mitigation

Figure 7 reports our estimates of the extent to which temperature damages since 1960 have been
mitigated by innovation (top panel), along with the extent of aggregate damage both with and
without innovation (bottom panel). The first column shows our baseline estimates, which treat the
1960s climate as the “no-climate-change” baseline and use our empirical estimates from the panel
specification in column 6 of Table 3. We show error bars corresponding to 95% confidence intervals
from a bootstrap procedure.29 Innovation has mitigated 19.9% of damage from climate change in our
sample. The savings amount to 1.7% of total agricultural land value in the US, or about 24 billion in
current USD.

28The state-by-time fixed effects have no structural interpretation in our model, and thus we hold them constant. In
numerical experiments corresponding to each result presented below, however, in which we randomize the value of each
state-by-time fixed effect based on the observed distribution, our results are stable. This suggests that the distribution of
state trends does not drive our findings.

29The data were bootstrapped 1000 times clustering by county. Coefficient estimates from (5.3) were re-calculated and
the procedure described in Section 6.1 repeated for each pseudo-sample. The standard deviation of the set of aggregated
measures across pseudo-samples was used to generate the standard error of each value in Figure 7.
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The second column reports the same results if instead we use our coefficient estimates from the
area-weighted specification in Table 3. These findings suggest larger damages (9.4% in the observed
scenario with innovation) but very comparable percent mitigation (19.0%). The last column uses the
version of the model that controls directly for prices and thus allows us to more directly implement
our assumption of rigid prices in the counterfactual.30 Reassuringly, this scenario implies almost
identical damage and mitigation to the baseline (6.6% and 19.4%, respectively).

Robustness: Alternative Counterfactual Trends for Innovation. Our baseline analysis assumes
that there is no aggregate resource constraint for innovation across crops. Thus, firms are not
forced to reduce investment in innovation in crop k when they want to increase investment in crop
k′; instead, they substitute away from other (non-agricultural) activities. We do not consider this
assumption extreme within the studied sample for two reasons. First, agricultural R&D investment,
and investment in biotechnology in particular, experienced unprecedented growth during our sample
period. From 1960 to 2000, private sector R&D investment in crop breeding increase nearly 1500%
(Figure A4). Second, much of the historical increase in agricultural biotechnology research was
redirected from other adjacent fields. Monsanto, now a ubiquitous player in seed development,
started as a non-agricultural chemical company specializing in food additives, cleaning products, and
pharmaceuticals. The companies that would become Syngenta began with a focus on pharmaceutical
research and chemical production.

Nevertheless, we investigate the extent to which our baseline estimate is sensitive to relaxing this
separability assumption. In Appendix C.4, we introduce a variant of our model in which research
investment across crops cannot exceeda threshold (e.g., the total research capacity of thebiotechnology
sector), and this aggregate threshold can be increased at some cost. When this cost of increasing the
aggregate threshold is zero, we get back our baseline model. When this cost is infinitely convex, we
get a model with an immutable capacity for research and hence a purely “zero-sum” redistribution
of research in response to incentives. In all models in-between, there is a marginal crop that sees no
induced innovation when the climate shifts, and this marginal crop has a technology demand shock
less than or equal to some measure of central tendency of damages across crops.

We replicate this exercise in the numerical counterfactual in the following parameteric way. We
calculate area-weighted quantiles q ≤ 0.5 of the observed distribution of crop-level exposures and re-
solve themodel under the assumption that the cropwith exposure q has zero induced innovation. Our
upper bound of q � 0.5 simulates a “zero-sum” case, where increasing research investment in crop
k requires removing research investment from some crop(s) k′. Appendix Figure A6 shows damage
mitigation as a function of q. For choices of q between 0 and 0.45, estimated damage mitigation is
almost identical to our baseline result. In the extreme, zero sum benchmark (q � 0.5), innovation still
mitigates 16.2% of damages; As expected, this is lower than our baseline estimate, but still far from
zero. The reason this number is still positive is that transferring innovation from less to more affected

30We do this, in a very slight variant of Equations 6.1 and 6.2, by holding prices fixed at their observed values.
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crops dampens the most extreme climate damages.

Robustness: Crop Switching. We discussed how accounting for endogenous crop switching may
ormay not change our estimates for directed innovation in response to climate damage in Section 4.3.6
and Appendix F. We found in the data that an ex ante proxies for “switchability” had limited bite for
predicting innovation (Table A10) and that exposure to extreme temperatures induced relatively little
crop switching (Appendix F). Nonetheless, it may be important to take into account crop switching
as an alternative angle for adaptation in our counterfactual scenarios.

We explore two counterfactual scenarios that take into account crop switching. In the first, we
impose observed modern crop areas instead of pre-period areas to calculate heat exposure. This
intuitively provides an upper bound for the effects of land re-allocation on our main results, since it
retroactively assumes an (infeasible) allocation of crops from the future in the past. A disadvantage is
that modern crop allocations are clearly not pre-determined with respect to our regressors of interest,
and so the estimates come with all the associated caveats. This exercise yields lower estimates of the
level of climate damage, but a comparable number for damage mitigation (14.5%).

We next use our empiricalmodel of planting patterns’ response to both climate change, outlined in
Appendix H, to estimate more realistically the interaction between crop switching and the mitigation
effects of technology. Using our empirical model of how temperature change has affected planting
allocations, we predict the area devoted to each crop in each county by the post-period. Using
predicted post-period planted areas, we again find smaller climate damages than we did using
observed planted areas but a comparable percentage mitigation (18.9%).

6.3 Projecting Future Climate Scenarios

In this final subsection, we apply the same methods developed for in-sample counterfactuals to
quantify the role of technology for mitigating expected future climate damages.

Methods. This analysis maintains the assumption that, while the relationship between climate
distress and local outcomes can change over time as a function of innovation, both the speed of
technology’s response to climate change and the effectiveness of that technology remain constant. In
the language of our model’s deep parameters, this requires stability of the climate substitutability g21,
the direct productivity effect of extreme exposure g1, the farm profit share α, the inverse elasticity of
crop demand ε, and the inverse elasticity of technology supply η.

This assumption becomes more tenuous as we extend our predictions further into the future. On
the one hand, some ecologists and agronomists argue that temperatures may pass critical thresholds
beyond which innovation cannot help within biological constraints (Eisenstein, 2013). In the model,
this would map to a lower climate substitutability g21 and hence a reduction in the responsiveness
of technology to climate change, the effectiveness of that technology for boosting resilience, and
aggregate damage mitigation. On the other hand, innovation itself may experience a paradigm shift
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that changes the rate and effectiveness of new technology development. The parallel advances of
direct gene editing techniques (e.g., with CRISPR-Cas9 technology), more precise DNA sequencing
technologies, and big-data techniques for analyzing both genetic and agricultural data may generate
such a paradigm shift (Taranto et al., 2018; Abdelrahman et al., 2018). In the model, this could map to
a higher elasticity of supply η−1 and hence an increase in the responsiveness of technology to climate
change, the effectiveness of that technology for boosting resilience, and aggregate damagemitigation.

We use projections for daily temperature realizations from a surrogate/model mixed ensemble
method developed by Rasmussen, Meinshausen and Kopp (2016) and applied in the state-of-the-art
regional climate projections of Hsiang et al. (2017).31 This method averages the predictions of a
number of leading climate models (28 to 44, depending on the scenario) that have a common input for
greenhouse gas concentrations corresponding to one of the International Panel on Climate Change’s
(IPCC’s) Representative Concentration Pathways. We use this model average to forecast the change
in degree days above each relevant cut-off temperature in each US county between a given future
decade (2050-2059 or 2090-2099) and the most recent decade (2010-2019).32 We use crop-level planted
areas from the 2012 Census of Agriculture to estimate county-level temperature damage and construct
our aggregate damage measures, so that our future exposure measures are more precisely estimated.
Finally, we assume that state-level trends grow at a constant rate per year in and out of sample.

For our main projections, we use the ensemble forecast corresponding to two intermediate con-
centrations scenarios, RCP 4.5 and RCP 6.0. These respectively imply average warming of 1.8 and 2.4
degrees Celsius in the continental United States by the end of the century. They also differ slightly
in the timing of the emissions peak, with RCP 6.0 assuming lower concentrations in the early part
of the 21st century followed by a more pronounced ramp-up.33 The correlation between crop-level
extreme-heat exposure from the 1950s-2010s and projected extreme head exposure from the 2010s-
2090s under RCP 4.5 is 0.46, indicating that, while they are positively correlated, the distribution of
projected damages across crops does not exactly match the distribution of damages to date. We print
the predicted changes in Extreme Exposure in the second-to-last column of Table A1.

Results: Directed Technology and Future Climate Damage. Figure 8 replicates our main results
for percent mitigation and damages with and without innovation for each RCP and two end-points,

31We thank James Rising for invaluable advice on how to use these data, which are available at Rasmussen and Kopp
(2017). We defer to Rasmussen, Meinshausen and Kopp (2016) and its accompanying documentation for details on data
construction, but two points are worth highlighting. First, each model has independent prediction for regional as well as
aggregate climate trends. Second, the forecasts use existing relationships between long-run mean temperatures and daily
realizations to impute forecasts for daily temperatures. Thus the projections account for broad climatic trends, but do not
incorporate the additional possibility of weather extremes becoming more (or less) likely conditional on the same mean
temperatures.

32We adjust for the distinction between using the entire year for the projections and the growing season April to October
for our main analysis by multiplying these projected changes by the fraction of observed degree days, for each cutoff,
that occur during the growing season in the historical sample. Finally, we add our estimates of projected changes to our
observed degree days in the 2010s to create our forecast in level units.

33See the discussion on p. 2030 as well as Figure 5 of Rasmussen, Meinshausen and Kopp (2016) for the specific
implications for temperatureprojections, andMeinshausen et al. (2011) for detaileddiscussionof the concentrationpathways
and their interpretation.
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Figure 8: Projected Damage Mitigation via Innovation Over the 21st Century
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Notes: The top panel displays the percent of economic damage from projected temperature change
mitigated by innovation across two climate scenarios and post-periods. The bottom panel shows
the aggregate economic damage from temperature change (%) in each model, both with (blue) and
without (orange) directed innovation. Standard errors were computed via a bootstrap and 95%
confidence intervals are reported.

the middle of the century (2050-2059) and the end of the century (2090-2099). In all cases, innovation
mitigates between 13 and 16% of the damage, slightly lower than our in-sample estimates. This
damage mitigation implies larger savings in dollar terms (or percentages of total value), however,
since climate change escalates over time. Under the projected RCP 4.5 scenario, directed innovation
recovers 1.9% and 2.8% of all agricultural land value in the US respectively by mid-century and the
end of the century. This translates in present-value terms, if we assume 3% inflation, to $218 billion
and $1.05 trillion. Table A23 provides damage estimates under each of these climate scenarios, as well
as the more extreme RCP 8.5 scenario (which allows for a ramp-up in emissions that is worse than
most reasonable notions of “business as usual”).34 Finally, we estimate projected economic damages
from climate change as well as the percent mitigated by technology development after accounting
for planted area changes due to crop switching. These estimates are reported in Appendix Table A24
and are very similar to our baseline projections.

The Value of Curbing Climate Change. Figure 9 compares the impact of directed innovation on
economicdamage from temperature change to the impact of shifting the trend in carbon emissions. We

34For the RCP 8.5 scenario in the 2090s, we truncate the maximum value of local GDD exposure at 15,000, which is far
beyond even the tails of the observed GDD distribution. This prevents a few large agricultural counties (less than 1% of the
sample) from having extreme predictions for the damages from climate change.
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Figure 9: Comparing Climate Scenarios, With and Without Innovation
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Notes: Each bar represents the value of US agricultural land in 2050-2019 relative to the best case RCP
(RCP 6.0) in the scenario with directed technology. Blue bars are scenarios with directed innovation
and orange bars are counterfactual scenarios with directed innovation shut down. The RCP used for
each projection is noted at the bottom of each pair of bars.

focus on the 2050-2059 end decade, in which RCP 6.0 is the most optimistic concentration pathway,
followed by RCPs 4.5 and 8.5 respectively. This comparison between the effects of technological
progress within a given climate scenario and the effects of moving between the climate scenarios
themselves (e.g., via reducing emissions) may be a more interpretable counterfactual than freezing
the climate in place, given the existing accumulation of greenhouse gases in the atmosphere.

Comparing the blue columns across RCPs shows that land values are highest under RCP 6.0,
3.5% lower than this under RCP 4.5, and 9.4% lower than this under RCP 8.5. These estimates are
substantially larger than our prediction for the damage mitigation due to directed technology within
each emissions scenario, which is the difference between the orange and blue column in each pair.

Our estimates in Figure 9 also imply that the losses in percent terms from more damaging con-
centration pathways increase when innovation is shut off. This suggests a potentially important
interaction between social incentives for developing damage-mitigating technologies, as studied in
our analysis, and emission-mitigating technologies, which ultimately control greenhouse gas con-
centrations. In short, damage mitigation and emissions reductions are social substitutes: a more
damage-resilient economy faces a lower social cost of greenhouse gases, which may reduce incentives
to develop emissions reducing technology in the first place. We leave a full model of the endogenous
development of both emission-reduction and damage-mitigation technologies to future research.
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7 Conclusion

Are some sectors doomed to be ill-fated victims of climate change or do theyhave the tools to “innovate
around” nature’s new challenges? We study this question in US agriculture and document that
technological progress has reacted dramatically in response to threats posed by temperature change,
substantially dampening its economic impact. Combining comprehensive data on US agricultural
innovation with a new measure of crop-specific temperature distress, we find that innovation has
been directed toward more distressed crops and toward technologies that are potentially relevant for
environmental adaptation. We next find that counties exposed to new climate-induced technology
development experienced more muted changes in land value as a result of temperature change.

Our best estimates suggest that the re-direction of technology has abated 20% of the economic
damage to US agriculture from extreme temperature since 1960, and may abate 13-16% over the
coming century. Adaptation via technological progress, according to our estimates, is economically
significant but not a panacea. Even in the US, a country that has a comparatively large and wealthy
agricultural sector and is a global leader in agricultural R&D, 80% of climate damage as we measure
it has been unchecked by technology development.

Our analysis leaves several important issues unexplored. One is the relationship between techno-
logical progress in advanced economies and global adaptation to climate change. We found that US
innovation responded strongly to within-US climatic distress and did not respond to non-US climatic
distress. This finding, combined also with the observation that agricultural innovations are highly
attuned to the environments for which they are designed (Moscona and Sastry, 2022), suggests that an
innovative response inwealthy, research-intensive countriesmay not boost global resilience to climate
change. In fact, directed innovation concentrated in only a few places could deepen global disparities
in agricultural productivity. Direct study of this issue is an important topic for future research.

A second is the interaction between incentives for damage-mitigating innovation and climate-
improving (e.g., emission-mitigating) innovation. The two are “social substitutes” in the following
sense: improving climate-resilience of production reduces the marginal harm of worse weather, and
improving the weather reduces the marginal benefit of climatic resilience. Studying the interaction
of these effects, positively or normatively, is an open area for further research.
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Figure A1: Climate Change Focus in Agricultural Biotechnology

Notes: The Syngenta homepage (top) and landing page for the Good Growth Plan (bottom), accessed
on January 19, 2021.
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Figure A2: Explanatory Power of ExtremeExposure vs. Uniform Temperature Cut-Offs
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(b) Crop Production
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Notes: The blue bars are from a histogram of within-R-squared measures for the relationship between
crop yields (A2a) or production (A2b) and exposure to temperatures above each temperature cut off
from 10 to 45 degrees Celsius. The specification also includes crop fixed effects. The dotted black
line reports the within-R-squared from the same specification in which our measure of extreme-heat
exposure is included on the right hand side.

Figure A3: Changes in Extreme Exposure over the Sample
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Notes: This figure displays the distribution of crop-level changes in ExtremeExposure between the
1950s and the 2010s.
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Figure A4: Trends in Private Sector R&D Investment
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Fuglie and Pray (1995) and Fernandez-Cornejo (2004).
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Figure A5: Distribution of Extreme-Heat Exposure and Innovation Exposure Across Counties

(a) Local Extreme Exposure (1950s-2010)

(b) Innovation Exposure (1950s-2010s)

Notes: Counties are color coded by decile, with darker colors indicating higher deciles.
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Figure A6: Historical Damage Mitigation as a Function of “Zero Choice”
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Notes: The x-axis indicates what area-weighted quantile value of extreme exposure among crops was
used as the “zero effect” for the innovation counterfactual, as discussed in the main text. The baseline
estimate treats zero extreme exposure as the zero effect. The “zero-sum” effect uses the area-weighted
median across crops.
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Table A1: List of Crops in Main Sample and Summary Statistics

Crop		Name Species	Name
log	total	land	

area

Δ	Extreme	
Exposure	(1950s-

2010s)

Δ	Extreme	
Exposure	(1950s-
2010s),	Rank

Δ	Predicted	
Extreme	

Exposure	(2010s-
2090s)

Δ	Predicted	
Extreme	

Exposure	(2010s-
2090s),	Rank

escarole	endive	and	chicory Cichorium	endivia 9.3 1112.2 1 2278.7 9
lettuce	and	romaine Lactuca	sativa	var.	capitata 12.2 831.1 2 2233.5 10
collards Brassica	oleracea	var.	viridis 7.0 803.1 3 2584.5 7
radishes Raphanus	sativus	var.	radicula 10.0 800.3 4 2043.2 12
green	onions	and	shallots Allium	fistulosum 7.7 695.9 5 1472.4 23
carrots Daucus	carota 11.3 663.3 6 1526.7 22
kale Brassica	oleracea	var.	acephala 6.4 657.0 7 1932.8 13
chewings	fescue	seed Festuca	rubra	var.	commutata 10.1 565.3 8 1916.4 14
celery Apium	graveolens	var.	dulce 10.3 527.5 9 771.2 35
ladino	clover	seed Trifolium	repens 9.7 462.7 10 2724.5 4
spinach Spinacia	oleracea 10.6 413.6 11 2976.1 2
cabbage Brassica	oleracea	var.	capitata 11.6 393.2 12 1719.5 18
alsike	clover	seed Trifolium	hybridum 9.9 325.7 13 1408.8 24
bentgrass	seed Agrostis	stolonifera 10.0 318.3 14 801.3 31
dry	onions Allium	cepa 11.5 304.3 15 1644.7 20
lupine	seed Lupinus	angustifolius 9.3 300.7 16 3723.3 1
broccoli Brassica	oleracea	var.	italica 10.3 294.6 17 1084.9 29
white	clover	seed Trifolium	repens 10.1 252.7 18 452.7 44
perennial	ryegrass	seed Lolium	perenne 10.7 226.3 19 118.6 54
hairy	vetch	seed Vicia	villosa	sp.	varia 10.2 212.4 20 242.9 49
beets Beta	vulgaris 9.7 196.9 21 1111.3 28
vetch	seed Vicia	sativa	ssp.	nigra 11.3 187.2 22 1638.6 21
cauliflower Brassica	oleracea	var.	botrytis 10.0 185.3 23 1220.1 26
other	vetch	seed Astragalus	cicer 8.8 180.0 24 245.9 48
sugar	beets Beta	vulgaris	var.	saccharifera 13.6 171.5 25 689.9 39
muskmelons Cucumis	melo 11.8 129.1 26 1150.2 27
squash Cucurbita	mixta 10.6 120.8 27 582.5 40
barley Hordeum	vulgare 16.5 102.1 28 1687.2 19
lentils Lens	culinaris 10.6 79.1 29 131.4 53
asparagus Asparagus	officinalis 12.0 56.4 30 216.6 50
crimson	clover	seed Trifolium	incarnatum 10.9 52.6 31 931.5 30
green	lima	beans Phaseolus	lunatus 11.3 51.1 32 515.2 43
common	ryegrass	seed Lolium	multiflorum 11.7 46.6 33 5.7 68
sudangrass	seed Sorghum	x	drummondii 10.4 23.6 34 111.7 56
sorghum Sorghum	bicolor 16.5 8.4 35 47.0 63
cotton Gossypium	hirsutum 16.5 4.7 36 17.0 66
dry	field	and	seed	peas Vigna	unguiculata 12.7 4.2 37 1.2 69
watermelons Citrullus	lanatus 12.5 0.9 38 60.5 61
emmer	and	spelt Triticum	spelta 10.9 -0.2 39 2636.3 6
eggplant Solanum	melongena 8.2 -1.6 40 37.3 64
birdsfood	trefoil	seed Lotus	corniculatus 8.9 -1.7 41 1727.5 16
sunflower	seed Helianthus	annuus 9.5 -6.3 42 24.7 65
green	peas Pisum	sativum 9.7 -9.7 43 2674.1 5
cowpeas Vigna	unguiculata 11.2 -14.2 44 7.9 67
coastal	bermuda	grass Cynodon	dactylon 11.7 -21.9 45 538.0 41
rice Oryza	sativa 14.3 -32.1 46 717.4 37
okra Hibiscus	sabdariffa 9.8 -33.1 47 529.7 42
corn Zea	mays 18.3 -33.7 48 72.2 60
soybeans Glycine	max 16.9 -34.9 49 86.0 59
tall	fescue	seed Festuca	arundinacea 11.8 -36.1 50 2507.9 8
turnips Brassica	campestris 9.0 -36.2 51 170.2 52
buckwheat Fagopyrum	esculentum 10.8 -37.4 52 380.0 45
mung	beans Vigna	radiata 9.5 -45.0 53 51.7 62
rye Secale	cereale 14.1 -48.5 54 2848.7 3
pumpkins Cucurbita	maxima 8.9 -55.1 55 101.2 57
tobacco Nicotiana	tabacum 13.9 -57.0 56 321.8 47
peanuts Arachis	hypogaea 13.0 -72.9 57 112.5 55
alfalfa	and	alfalfa	mixtures Medicago	sativa 17.1 -76.7 58 773.9 34
redtop	seed Panicum	virgatum 11.1 -89.4 59 211.0 51
orchardgrass	seed Dactylis	glomerata 10.9 -91.4 60 92.0 58
oats Avena	sativa 17.1 -121.1 61 2228.9 11
wheat Triticum	aestivum 17.3 -124.3 62 1790.9 15
lespedeza Lespedeza	cuneata 14.9 -143.9 63 1720.6 17
popcorn Sapium	sebiferum 11.7 -145.1 64 693.7 38
durum	wheat Triticum	durum 13.9 -149.6 65 793.2 33
sweetclover	seed Melilotus	albus 11.6 -155.1 66 797.5 32
flaxseed Linum	usitatissimum 14.8 -203.4 67 757.4 36
bluegrass	(junegrass)	seed Poa	pratensis 10.8 -214.0 68 360.1 46
bromegrass	seed Bromus	inermis 10.4 -337.3 69 1241.8 25
Notes:	This	table	reports	the	crop	name;	species	name	(from	EcoCrop);	log	of	planted	area	in	1959;	change	in	extreme	exposure	from	the	1950s-2010s;	rank	in	
change	in	extreme	exposure	from	the	1950s-2010s;	predited	change	in	extreme	exposure	from	the	2010s-2090s	(RCP	4.5);	and	rank	in	predited	change	in	
extreme	exposure	from	the	2010s-2090s	(RCP	4.5),		for	all	crops	in	the	baseline	analysis.
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Table A2: Temperature Distress and Crop Yields

(1) (2) (3) (4)

Staples	(Corn,	
Wheat,	Soy)

ExtremeExposure	/	1000 -0.0915*** -0.0774*** -0.0891*** -0.131***
(0.0179) (0.0178) (0.0172) (0.0383)

County	Fixed	Effects Yes Yes Yes Yes
Crop	Fixed	Effects Yes Yes Yes Yes
Only	East	of	100th	Meridian No Yes No No
Crop	Fixed	Effects	x	East	of	100th	Meridian No No Yes Yes
Observations 26,566 22,621 26,566 5,556
R-squared 0.937 0.947 0.942 0.959

log	Yield

Notes:	The	unit	of	observation	is	a	crop-county.		The	outcome	variable	is	crop	yield	measured	in	the	1959	US	Census	of	
Agriculture.	In	column	4,	we	restrict	the	sample	to	corn,	wheat,	and	soy.	The	fixed	effects	included	in	each	specification	are	
noted	at	the	bottom	of	each	column.	Standard	errors	are	clustered	by	state		and	*,	**,	and	***	indicate	significance	at	the	10%,	
5%,	and	1%	levels.	

All	Crops

Table A3: Temperature Distress and Crop Varieties: Plant Variety Protection Certificates

(1) (2) (3) (4) (5)

Δ	ExtremeExposure 0.0161* 0.0209* 0.0184** 0.0397*** 0.0410***
(0.00933) (0.0111) (0.00887) (0.0148) (0.0144)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes
Pre-period	PVP	certificates	(1970-1980) No No Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes
Average	Temperature	Change No No No No Yes
Observations 62 62 62 62 62

Dependent	Variable	is	Plant	Variety	Protection	(PVP)	Certificates

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	plant	variety	
protection	(PVP)	certificates	released	since	1980.	ExtremeExposure	is	similarly	computed	as	the	change	in	the	
number	of	crop-specific	extreme	GDDs	between	the	1980s	and	2010s,	while	the	pre-period	is	defined	as	
1970-1980	since	PVP	was	intrduced	in	1970.	Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	
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Table A4: Temperature Distress and Crop Varieties: GDDs in Excess of 30◦ C
(1) (2) (3) (4) (5)

Δ	ExtremeExposure	(GDD	over	30	C) 0.00443*** 0.00476*** 0.00347** 0.00361** 0.00362*
(0.00163) (0.00158) (0.00148) (0.00164) (0.00208)

Δ	ExtremeExposure	(GDD	over	30	C) 0.00115 0.00113 6.01e-05 -0.00226 -0.00178
(0.00240) (0.00243) (0.00205) (0.00234) (0.00245)

Δ	ExtremeExposure	(our	measure	with	crop-level	variaiton) 0.0137* 0.0143* 0.0135** 0.0244*** 0.0267***
(0.00748) (0.00778) (0.00591) (0.00840) (0.00902)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes
Pre-period	PVP	certificates	(1970-1980) No No Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes
Average	Temperature	Change No No No No Yes
Observations 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	In	Panel	A,	the	
independent	variable	of	interest	is	the	change	in	the	number	of	growing	degree	days	(GDDs)	in	excess	of	30	degrees	Celsius.	In	Panel	
B,	our	baseline	measure	of	Δ	ExtremeExposure	that	incorporates	crop-level	variation	in	temperature	sensitivity	is	included	
alongside	the	number	of	growing	degree	days	(GDDs)	in	excess	of	30	degrees	Celsius.		Robust	standard	errors	are	reported	in	
parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Panel	A:	Extreme	Exposure	as	Growing	Degree	Days	over	30C

Panel	B:	Growing	Degree	Days	over	30C	Alongside	Baseline	Measure

Table A5: Temperature Distress and Crop Varieties: Crop Area Measurement Sensitivity
(1) (2) (3) (4) (5) (6)

Sample	Period 1980-2016

Δ	ExtremeExposure 0.0213*** 0.0214*** 0.0156*** 0.0200*** 0.0253*** 0.0318***
(0.00420) (0.00457) (0.00416) (0.00559) (0.00710) (0.00866)

Δ	ExtremeExposure 0.0196*** 0.0193*** 0.0144*** 0.0185*** 0.0224*** 0.0321***
(0.00437) (0.00453) (0.00398) (0.00545) (0.00690) (0.00870)

Log	area	harvested Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes Yes
Average	Temperature	Change No No No No Yes No
Observations 65 65 65 65 65 65

1950-2016

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	and	the	
sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	ExtremeExposure	was	computed	using	crop-by-
county	areas	from	the	1955	Census	of	Agriculture	in	Panel	A,	and	using	the	average	of	1955	and	1959	in	Panel	B.	Robust	
standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Panel	A:	Crop-by-County	Areas	from	the	1955	Census	of	Agriculture

Panel	B:	Average	Between	1955	and	1959	Measures
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Table A6: Temperature Distress and Crop Varieties: Geographic Controls

(1) (2) (3) (4) (5)

Δ	ExtremeExposure 0.0241*** 0.0288*** 0.0231*** 0.0254*** 0.0355***
(0.00749) (0.00815) (0.00651) (0.00733) (0.00894)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes
Average	Temperature	Change Yes Yes Yes Yes Yes
Area-weighted	latitude	and	longitude Yes Yes No No Yes
Area-weighted	latitude	and	longitude	squared No Yes No No Yes
State	shares	for	ten	most	agticultural	states No No Yes No Yes
Share	cropland	irrigated No No No Yes Yes
Observations 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	
The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	column.		Robust	standard	errors	are	
reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A7: Temperature Distress and Crop Varieties: East of the 100th Meridian
(1) (2) (3) (4) (5) (6)

Sample	Period 1980-2016

Δ	ExtremeExposure 0.00157*** 0.00173*** 0.00123*** 0.00140*** 0.00142** 0.00158**
(0.000451) (0.000467) (0.000441) (0.000525) (0.000590) (0.000652)

Log	area	harvested Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes Yes
Average	Temperature	Change No No No No Yes No
Observations 69 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	and	the	
sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	ExtremeExposure	was	computed	using	only	
production	and	temperature	data	from	East	of	the	100th	meridian.	Robust	standard	errors	are	reported	in	parentheses	and	
*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

1950-2016
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Table A8: Temperature Distress and Crop Varieties: Economic Controls

(1) (2) (3) (4) (5) (6) (7)

Δ	ExtremeExposure 0.0226*** 0.0931*** 0.0902*** 0.0282*** 0.0133* 0.0187*** 0.0188***
(0.00669) (0.0268) (0.0292) (0.00912) (0.00777) (0.00686) (0.00631)

US	Experiment	Station	Exposure	(area-weighted) -0.264
(1.359)

log	Insured	Acres 0.420***
(0.0766)

log	Total	Subsidies	($) 0.366***
(0.0824)

log	Exports	-	log	Imports 0.170**
(0.0830)

Share	global	cropland	in	the	US 5.278***
(1.546)

Profits	per	farm	(area-weighted) 0.00490*
(0.00255)

log	total	profits	(area-weighted) 0.561**
(0.269)

Log	area	harvested Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes Yes Yes
Average	Temperature	Change Yes Yes Yes Yes Yes Yes Yes
Observations 69 18 18 27 35 69 69

(1) (2) (3) (4) (5) (6) (7)

Δ	ExtremeExposure 0.0226*** 0.0931*** 0.0902*** 0.0282*** 0.0133* 0.0187*** 0.0188***
(0.00669) (0.0268) (0.0292) (0.00912) (0.00777) (0.00686) (0.00631)

US	Experiment	Station	Exposure	(area-weighted) ✓

log	Insured	Acres ✓

log	Total	Subsidies	($) ✓

log	Exports	-	log	Imports ✓

Share	global	cropland	in	the	US ✓

Profits	per	farm	(area-weighted) ✓

log	total	profits	(area-weighted) ✓
Log	area	harvested Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes Yes Yes
Average	Temperature	Change Yes Yes Yes Yes Yes Yes Yes
Observations 69 18 18 27 35 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	The	controls	included	in	each	
specification	are	noted	at	the	bottom	of	each	column.	Data	on	the	location	of	US	crop	experiment	stations	are	from	Kantor	and	Whalley	(2019).	Farm	
profits	were	computed	from	the	US	Census	of	Agriculturein	the	baseline	year	(1959).	Data	on	crop-level	trade	and	global	production	are	from	FAO	
STAT	and	data	on	insurance	coverage	and	subsidies	are	from	the	USDA	Risk	Management	Agency's	(RMA)	Summary	of	Business	Reports,	which	we	
digitized.			Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released.	The	controls	included	in	each	
specification	are	noted	at	the	bottom	of	each	column.	Data	on	the	location	of	US	crop	experiment	stations	are	from	Kantor	and	Whalley	(2019).	Farm	
profits	were	computed	from	the	US	Census	of	Agriculturein	the	baseline	year	(1959).	Data	on	crop-level	trade	and	global	production	are	from	FAO	
STAT	and	data	on	insurance	coverage	and	subsidies	are	from	the	USDA	Risk	Management	Agency's	(RMA)	Summary	of	Business	Reports,	which	we	
digitized.			Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A9: Temperature Distress and Crop Varieties: Panel Estimates

(1) (2) (3) (4)

EE,	second	lead 0.000341

(0.00272)

EE,	first	lead 0.000657 0.000745 0.00135

(0.00187) (0.00233) (0.00169)

EE,	current	decade 0.00349*** 0.00432*** 0.00465** 0.00263**

(0.00127) (0.00166) (0.00227) (0.00115)

EE,	first	lag 0.00308**

(0.00152)

Crop	&	Year	Fixed	Effects Yes Yes Yes Yes

log	Area	Harvested	x	Year	Fixed	Effects Yes Yes Yes Yes

Pre-Period	Varieties	x	Year	Fixed	Effects Yes Yes Yes Yes

Observations 483 414 345 345

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop-decade	pair.	Standard	errors,	clustered	by	crop,	are	reported	in	parentheses	

and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	
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Table A10: Temperature Distress and Crop Varieties: Heterogeneity Analysis
(1) (2) (3) (4) (5) (6) (7) (8)

Δ	ExtremeExposure 0.00438 0.0237*** 0.0187*** 0.0215** 0.0235*** 0.0325*** 0.0135** 0.0145***
(0.00510) (0.00667) (0.00622) (0.00854) (0.00866) (0.00912) (0.00604) (0.00545)

Δ	ExtremeExposure	x	 	

Above	Median	US	Area	(=1) 0.0258***
(0.00741)

Above	Median	as	Share	of	Global	Area	(=1) -0.00948
(0.0112)

Above	Median	Net	Exports	(=1) -0.00283
(0.0113)

Above	Median	"Switchability"	(=1) 0.00111
(0.00900)

Annual	Crop	(=1) 0.00561
(0.00920)

Cold-Weather	Crop	(=1) -0.0162*
(0.00883)

Not	Perishable	(=1) 0.00130
(0.0123)

US	Experiment	Station	Exposure 0.213
(0.169)

Log	area	harvested Yes Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes Yes Yes Yes Yes
Pre-period	varieties Yes Yes Yes Yes Yes Yes Yes Yes
Cuf-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes Yes Yes Yes Yes
Observations 69 35 35 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	vairable	is	the	number	of	crop-specific	varieties.	Each	column	in	includes	an	interaction	term	between	
crop-level	extreme	heat	exposure	and	a	different	crop-level	variable,	noted	in	the	leftmost	column.	Robust	standard	errors	are	reported	in	parentheses	and	
*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A11: Temperature Distress and Crop Varieties: Effects by Type of Inventor
(1) (2) (3) (4)

Private	Sector	
Firms

Public	Sector Universities None	of	the	
Above

Δ	ExtremeExposure 0.0476*** 0.00424 0.00217 0.0194**
(0.0181) (0.0147) (0.0128) (0.00831)

Log	area	harvested Yes Yes Yes Yes
Pre-period	climate	controls Yes Yes Yes Yes
Pre-period	PVP	certificates	(1970-1980) Yes Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. Yes Yes Yes Yes
Observations 62 62 62 62

Plant	Variety	Protection	Certificates	Awarded	to:

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	plant	variety	
protection	(PVP)	certificates	released	since	1980	awarded	to	the	noted	type	of	inventor.	
ExtremeExposure	computed	as	the	change	in	the	number	of	crop-specific	extreme	GDDs	between	the	
1980s	and	2010s,	while	the	pre-period	is	defined	as	1970-1980	since	PVP	was	intrduced	in	1970.	
Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	
5%,	and	1%	levels.	
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Table A12: Temperature Distress and Crop Varieties: Within-Inventor Re-Direction of Technology

(1) (2) (3)

Sample: All	Applicants
Applicants	
with	>5	

Certificates

Applicants	
with	>10	
Certificates

Δ	ExtremeExposure 0.0408*** 0.0466*** 0.0525***
(0.0147) (0.0158) (0.0169)

Applicant	Fixed	Effects Yes Yes Yes
All	Baseline	Controls Yes Yes Yes
Observations 45,689 12,200 7,198

Dependent	Variable	is	Plant	Variety	Protection	
Certificates

Notes:	The	unit	of	observation	is	a	crop-by-applicant.	The	outcome	variable	is	the	
number	of	crop-specific	plant	variety	protection	(PVP)	certificates	released	by	each	
applicant	since	1980.	ExtremeExposure	is	similarly	computed	as	the	change	in	the	
number	of	crop-specific	extreme	GDDs	between	the	1980s	and	2010s,	while	the	
pre-period	is	defined	as	1970-1980	since	PVP	was	intrduced	in	1970.	Standard	
errors,	double-clustered	by	crop	and	applicant,	are	reported	in	parentheses	and	*,	
**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A13: Temperature Distress and Patenting, by Class

(1) (2) (3) (4) (5) (6)

Harvest
Post-
Harvest

Crop	
Varieties	
(Baseline)

Fertilizing,	
Planting,	

and	Sowing	
Patents	
(A01C)

Soil	
Working	
Patents	
(A01B)

All	Planting	
and	Soil	
Working	
Patents	

(A01B	&	C)

Harvester	
and	Mower	
Patents	
(A01D)

Post-
Harvest	

Technology	
Patents	
(A01F)

Δ	ExtremeExposure 0.0136*** 0.00930** 0.00860 0.00939** 0.000824 -0.00496
(0.00372) (0.00406) (0.00623) (0.00439) (0.00426) (0.00728)

All	Baseline	Controls Yes Yes Yes Yes Yes Yes
Observations 69 69 69 69 69 69

Dependent	variable	is	change	in:

Notes:	The	unit	of	observation	is	a	crop.	The	dependent	variable	in	each	specification	is	noted	at	the	top	of	
each	column;	in	each	case,	it	is	a	different	technology	type,	either	seed	varieties	(column	1)	or	patent	
grants	from	a	particular	patent	class,	with	the	CPC	class	noted	in	the	technology	description	(columns	2-6).	
Baseline	controls	are	included	in	each	specification,	and	the	pre-period	innovation	control	in	each	column	
corresponds	to	the	number	of	variety	releases	or	patent	grants	from	1900-1960	corresponding	to	the	
technology	class(es)	of	the	dependent	variable.	Robust	standard	errors	are	reported	in	parentheses	and	*,	
**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Planting	and	Pre-Harvest
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Table A14: The Effects of Drought and Extreme Cold on Innovation
(1) (2) (3) (4) (5)

Δ	ExtremeHeatExposure 0.0200*** 0.0202*** 0.0160*** 0.0214*** 0.0225***
(0.00486) (0.00447) (0.00434) (0.00598) (0.00722)

Δ	DroughtExposure 0.358* 0.493* 0.286 0.284 0.258
(0.216) (0.264) (0.355) (0.327) (0.382)

Δ	ExtremeColdExposure 0.000653 -0.000427 -0.00245 -0.00352 -0.00305
(0.00321) (0.00384) (0.00343) (0.00331) (0.00382)

Log	area	harvested Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes Yes
Pre-period	varieties No No Yes Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes Yes
Average	Temperature	Change No No No No Yes
Observations 69 69 69 69 69

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	
released	and	the	sample	period	for	each	specification	is	listed	at	the	top	of	each	column.	The	controls	
included	in	each	specification	are	noted	at	the	bottom	of	each	column.	Robust	standard	errors	are	
reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A15: County-Level Estimates: Direct Effect of Temperature Distress
(1) (2) (3)

Dependent	Variable: log	Land	Value	
per	Acre

Revenue	per	
Acre	from	Crop	
Production

Revenue	per	
Acre	from	Non-

Crop	
Production

County-Level	Extreme	Exposure -0.437*** -147.9*** 0.0634
(0.104) (54.72) (39.19)

County	Fixed	Effects Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes
Observations 6,000 5,880 5,876
R-squared 0.988 0.654 0.606

Notes:	The	unit	of	observation	is	a	county-year.	All	columns	include	county	and	state-by-census	
round	fixed	effects.	Standard	errors	are	double	clustered	at	the	county	and	state-by-decade	levels	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

63



Table A16: County-Level Estimates: Crop Revenue and Farm Profits
(1) (2) (3) (4) (5) (6)

County-Level	Extreme	Exposure -0.829** -2.029*** -1,278** -4,143*** -8.451* -4.457*
(0.358) (0.411) (498.4) (1,449) (5.045) (2.678)
[0.446] [0.509] [612.6] [1,818] [6.051] [3.299]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.234** 0.570*** 339.7*** 1,252*** 2.687 0.923
(0.114) (0.113) (128.6) (450.4) (1.694) (0.783)
[0.139] [0.135] [134.4] [560.6] [2.068] [0.875]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No Yes No Yes
Observations 5,880 5,880 5,986 5,986 5,982 5,982
R-squared 0.979 0.985 0.727 0.814 0.698 0.886

Dependent	Variable	is:

Notes:	The	unit	of	observation	is	a	county-year.		Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	
reported	in	parentheses,	and	standard	errors	clustered	by	state	are	reported	in	brackets,		and	*,	**,	and	***	indicate	significance	at	the	
10%,	5%,	and	1%	levels.	

log	Crop	Revenue	per	
Acre

Total	Agricultural	
Profits

Agricultural	Profits	per	
Acre

Table A17: County-Level Estimates: No State Fixed Effects
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.768*** -1.756*** -0.690*** -1.023*** -0.797*** -0.200 -0.330**
(0.199) (0.347) (0.198) (0.195) (0.206) (0.127) (0.162)
[0.258] [0.464] [0.253] [0.247] [0.259] [0.0890] [0.137]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.306*** 0.643*** 0.251*** 0.319*** 0.270*** 0.0925** 0.136***
(0.0858) (0.124) (0.0674) (0.0788) (0.0675) (0.0371) (0.0439)
[0.112] [0.164] [0.0834] [0.102] [0.0830] [0.0291] [0.0368]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,931 20,931
R-squared 0.986 0.987 0.986 0.986 0.986 0.968 0.972

Dependent	Variable	is	log	Land	Value	per	Acre

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.		Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	
parentheses,	and	standard	errors	clustered	by	state	are	reported	in	brackets,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	
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Table A18: County-Level Estimates: Controlling for Higher Order Terms
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.861*** -1.550*** -0.838*** -0.872*** -0.798*** -0.232** -0.391***
(0.211) (0.238) (0.203) (0.238) (0.226) (0.107) (0.132)
[0.265] [0.301] [0.245] [0.305] [0.279] [0.105] [0.103]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.259*** 0.445*** 0.247*** 0.261*** 0.240*** 0.0923*** 0.130***
(0.0755) (0.0718) (0.0725) (0.0786) (0.0757) (0.0315) (0.0320)
[0.0942] [0.0885] [0.0876] [0.0988] [0.0921] [0.0251] [0.0239]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
LocalEE	Squared Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,931 20,931
R-squared 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Dependent	Variable	is	log	Land	Value	per	Acre

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.	All	columns	include	local	extreme	exposure	squared	on	the	right	hand	side	of	the	regression.			
Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	parentheses,	and	standard	errors	clustered	by	
state	are	reported	in	brackets.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A19: County-Level Estimates: Sample East of 100th Meridian
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.880*** -1.229*** -0.751*** -0.845*** -0.656** -0.210* -0.260**
(0.263) (0.278) (0.233) (0.290) (0.272) (0.121) (0.129)
[0.339] [0.360] [0.285] [0.383] [0.346] [0.128] [0.105]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.311*** 0.408*** 0.269*** 0.295*** 0.245** 0.0960** 0.127***
(0.103) (0.0990) (0.0934) (0.106) (0.0972) (0.0373) (0.0381)
[0.133] [0.125] [0.117] [0.139] [0.123] [0.0299] [0.0273]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 4,852 4,852 4,842 4,852 4,842 16,956 16,956
R-squared 0.991 0.993 0.991 0.991 0.991 0.981 0.987

Dependent	Variable	is	log	Land	Value	per	Acre	

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.		The	estimation	sample	is	restricted	to	counties	East	of	the	100th	Meridian	in	all	specifications.	
Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	parentheses,	and	standard	errors	clustered	by	state	
are	reported	in	brackets,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Sample	is	Restricted	to	Counties	East	of	the	100th	Meridian
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Table A20: County-Level Estimates: “Leave State Out” Estimates
(1) (2) (3) (4) (5) (6) (7)

County-Level	Extreme	Exposure -0.707*** -1.293*** -0.693*** -0.699*** -0.651*** -0.204* -0.368***
(0.208) (0.220) (0.194) (0.226) (0.214) (0.109) (0.140)
[0.261] [0.273] [0.232] [0.287] [0.261] [0.104] [0.0998]

County-Level	Extreme	Exposure	x	Innovation	Exposure 0.192** 0.339*** 0.187** 0.188** 0.181** 0.0830** 0.121***
(0.0770) (0.0752) (0.0719) (0.0772) (0.0735) (0.0322) (0.0333)
[0.0966] [0.0931] [0.0866] [0.0965] [0.0885] [0.0259] [0.0261]

County	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Weighted	by	Agricultural	Land	Area No Yes No No No No Yes
Output	Prices	and	Interactions No No Yes No Yes No No
Avg.	Temp.	(°C)	and	Interactions No No No Yes Yes No No
Observations 6,000 6,000 5,990 6,000 5,990 20,966 20,966
R-squared 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Dependent	Variable	is	log	Land	Value	per	Acre	

InnovationExposure	is	Computed	Excluding	the	State	in	which	the	County	is	Located

Long	Difference	Estimates	(1950s-2010s) Panel	Estimates

Notes:	The	unit	of	observation	is	a	county-year.	Innovation	exposure	is	calculated	after	excluding	from	the	sample	all	counties	in	the	same	state	as	
the	county	of	interest.	Standard	errors,	double	clustered	at	the	county	and	state-by-decade	levels,	are	reported	in	parentheses,	and	standard	errors	
clustered	by	state	are	reported	in	brackets,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.	

Table A21: County-Level Estimates: Alternative Standard Error Clusters

(1) (2) (3) (4) (5) (6)

250 500 1000 1500 2000

County-Level	Extreme	Exposure 4.828 3.812 3.797 4.825 8.404 3.22
County-Level	Extreme	Exposure	x	Innovation	Exposure 3.894 3.233 2.808 2.957 4.065 2.64

County	Fixed	Effects Yes Yes Yes Yes Yes Yes
State	x	Decade	Fixed	Effects Yes Yes Yes Yes Yes Yes
Notes:	Coefficient	estimate	t-statistics	from	the	baseline	county-level	specification	(Table	3,	Column	1)	with	alternative	
standard	error	clustering	strategies.	Columns	1-5	follow	Hsiang	(2010)'s	implementation	of	Conley	(2008)	standard	
errors,	for	five	different	values	of	the	kernel	cut	off	distance	(measured	in	km).	In	column	6,	standard	errors	are	clustered	by	
state.	

Coefficient	t-statistic	for	kernel	cut-off	distance	(km): State-
level	
cluster
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Table A23: Climate Change Damage, With and Without Innovation: All Projection Estimates

(1) (2) (3) (4) (5)

Scenario End	Decade
Damage	with	

Innovation	(Percent)
Damage	without	

Innovation	(Percent)

Mitigated	By	
Innovation	(Percent	

of	Damage)

Present	Value	of	
Savings	(billion	USD)

2050s 10.7 12.6 15.2 218.1
2090s 18.9 21.7 13.0 1047.1
2050s 7.4 8.8 15.8 159.6
2090s 21.6 25.3 14.4 1344.3
2050s 16.1 19.2 16.0 347.2
2090s 39.3 59.2 33.6 7350.5

RCP	4.5

RCP	6.0

RCP	8.5

Notes: 	The	concentration	pathway	for	each	projection	is	noted	in	the	leftmost	column.	Column	1	lists	the	decade	used	to	
estimate	the	end	period	climate.	Columns	2	and	3	report	percent	damage	in	counterfactuls	with	and	without	innovation	
respectively.	Columns	4	and	5	report	the	percent	of	climate	damage	mitigated	by	directed	innovation	and	the	net	present	
value	(in	billion	USD)	of	savings	due	to	directed	technology.

Table A24: Climate Change Damage, With and Without Innovation: All Projection Estimates with
Predicted Future Areas\

(1) (2) (3) (4) (5)

Scenario End	Decade
Damage	with	
Innovation	
(Percent)

Damage	without	
Innovation	
(Percent)

Mitigated	By	
Innovation	
(Percent	of	
Damage)

Present	Value	of	
Savings	(billion	

USD)
2050s 9.8 11.6 15.5 249.4
2090s 18.2 21.0 13.1 1233.3
2050s 6.7 8.0 16.5 181.9
2090s 20.7 24.0 13.6 1462.5
2050s 15.1 17.9 15.4 385.8
2090s 49.7 56.3 11.8 3088.3

RCP	4.5

RCP	6.0

RCP	8.5

Notes: 	All	estimates	use	predicted	crop	switching	patterns	from	our	empirical	model.	The	concentration	pathway	
for	each	projection	is	noted	in	the	leftmost	column.	Column	1	lists	the	decade	used	to	estimate	the	end	period	
climate.	Columns	2	and	3	report	percent	damage	in	counterfactuls	with	and	without	innovation	respectively.	
Columns	4	and	5	report	the	percent	of	climate	damage	mitigated	by	directed	innovation	and	the	net	present	value	
(in	billion	USD)	of	savings	due	to	directed	technology.
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B Omitted Proofs and Derivations

B.1 Derivation of Expressions in Main Text

We first derive Equation 2.2 starting with the farm’s profit maximization problem:

max
Ti

p · α−α (1 − α)−1G(Ai , θ)αT1−α
i − qTi (B.1)

This is a concave problem, so its optimum is characterized by the first-order condition:

0 � p · α−αG(Ai , θ)αT−αi − q (B.2)

which re-arranges to Ti � α−1p
1
α q−

1
α G(Ai , θ), as desired.

We next derive Equation 2.3. The first step is to solve for the technology firm’s optimal price.
Substituting the technology demand of Equation 2.2 into the innovating firm’s profit-maximization
problem gives the program:

max
q ,θ

(q − (1 − α)) α−1p
1
α q−

1
α

∫
G(A, θ) dF(A) − C(θ) (B.3)

It is straighforward to verify that this program is concave in both q and θ under our maintained
assumptions that G is concave in θ and α ∈ [0, 1). The first-order condition for q, which is necessary
and sufficient for optimality, is(

q−
1
α −

1
α

q−
1
α−1(q − (1 − α))

)
α−1 p

1
α

∫
G(A, θ) dF(A) � 0 (B.4)

This is satisfied for any θ if

q−
1
α −

1
α

q−
1
α−1(q − (1 − α)) � 0 (B.5)

which in turn re-arranges to q � 1. Plugging this back into the outer profit maximization problem
and simplifying yields the desired expression

(1 − (1 − α)) α−1p
1
α 1−

1
α

∫
G(A, θ) dF(A) − C(θ)

� p
1
α

∫
G(A, θ) dF(A) − C(θ)

B.2 Proof of Proposition 1

Consider a damaging shift in the climate from F to F′, meaning that F �FOSD F′. Let (θ, θ′)

respectively be the technology levels in each equilibrium. It is necessary and sufficient for the original
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equilibrium technology level to be optimal for the innovating firm, or satisfy

θ ∈ argmax p
1
α

∫
G(A, θ) dF(A) − C(θ) (B.6)

Because G(·) is concave and twice continuously differentiable in θ, C(·) is convex and differentiable
in θ, d

dθC(0) � 0, and G2 ≥ 0 for any (A, θ), a necessary and sufficient condition is the first-order
condition

p
1
α

∫
G2(A, θ) dF(A) �

d
dθC(θ) (B.7)

and similarly, for the second equilibrium,

p
1
α

∫
G2(A, θ′) dF′(A) �

d
dθC(θ′) (B.8)

If G12 ≤ 0, then A 7→ G2(A, θ) is a decreasing function. Since F �FOSD F′, we have∫
G2(A, θ) dF(A) ≤

∫
G2(A, θ) dF′(A) (B.9)

Nowwe show that θ ≤ θ′. Consider the contradictory case that θ > θ′. Because G(·) is concave in its
second argument, we have G2(A, θ) ≤ G2(A, θ′) for all A and therefore∫

G2(A, θ) dF′(A) ≤
∫

G2(A, θ′) dF′(A) (B.10)

Combined with the previous expressions, this implies,

d
dθC(θ) �

∫
G2(A, θ) dF(A) ≤

∫
G2(A, θ) dF′(A) ≤

∫
G2(A, θ′) dF′(A) �

d
dθC(θ′)

But the initial claim θ > θ′, owing to the strict convexity of C(·), implies d
dθC(θ) > d

dθC(θ′). This is
a contradiction. Therefore θ′ ≥ θ.

If G12 ≥ 0, then the previous argument is reversed. Note first that, because A 7→ G2(A, θ) is an
increasing function, ∫

G2(A, θ′) dF(A) ≥
∫

G2(A, θ′) dF′(A) (B.11)

using first-order stochastic dominance. Now we will verify that θ′ ≤ θ. Consider the contradictory
case that θ′ > θ. Because G(·) is concave in its second argument, we have G2(A, θ) ≥ G2(A, θ′) for
all A and ∫

G2(A, θ) dF′(A) ≥
∫

G2(A, θ′) dF′(A) (B.12)
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Combined with the previous expressions, this implies,

d
dθC(θ) �

∫
G2(A, θ) dF(A) ≥

∫
G2(A, θ) dF′(A) ≥

∫
G2(A, θ′) dF′(A) �

d
dθC(θ′)

But the initial claim θ′ > θ, owing to the strict convexity of C(·), implies d
dθC(θ′) > d

dθC(θ). This is
a contradiction. Therefore θ′ ≤ θ.

B.3 Proof of Proposition 2

Consider a damaging shift in the climate from F to F′, meaning that F �FOSD F′. Let (θ, θ′)

respectively be the technology levels in each equilibrium and (p , p′) respectively be the prices. As
argued in the proof of Proposition 1, necessary conditions for equilibrium under each climate are
respectively

p
1
α

∫
G2(A, θ) dF(A) �

d
dθC(θ) (B.13)

and similarly, for the second equilibrium,

p′
1
α

∫
G2(A, θ′) dF′(A) �

d
dθC(θ′) (B.14)

A second necessary condition in each case is that the price lies on the demand curve. Denote the price
level, as a function of the technology level and productivity distribution, as p∗(θ, F(·)) which solves
the following fixed-point equation for p:

p � P
(
α−1(1 − α)−1p

1
α−1

∫
G(A, θ) dF(A)

)
(B.15)

and observe that equilibrium requires p � p∗(θ, F(·)) (and likewise p′ � p∗(θ′, F′(·))).
Let us argue first that p∗(·) is weakly decreasing in θ and F(·), the latter via the FOSD order. See

that, for any fixed (F(·), θ), the right-hand-side of (B.15) is a continuous, non-increasing function of
p on the range [0,∞]. The left-hand-side is a continuous function that increases without bound from
0. Thus the fixed point solution exists and is unique. Moreover, increasing θ (in the standard order)
or F(·) (in the FOSD order) increases the term

∫
G(A, θ) dF(A) under the global assumptions that

G1 ≥ 0 and G2 ≥ 0, which decreases for every p the value of the right-hand-side of (B.15). Thus the
unique solution is non-increasing in these arguments.

We next make an argument similar to that in Proposition 1 to show that θ′ ≥ θ, for all crops, when
the climate worsens and G12 ≤ 0. We split the argument based on conjectures for the price. Consider
first the case in which p � p∗(θ, F(·)) ≥ p∗(θ′, F′(·)) � p′. This is only possible if θ′ ≥ θ owing to
the previously demonstrated monotonicities of p∗, which proves the desired claim. Consider next
the case in which p � p∗(θ, F(·)) ≤ p∗(θ′, F′(·)) � p′. If G12 ≤ 0, then A 7→ G2(A, θ) is a decreasing
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function. Since F �FOSD F′, we have∫
G2(A, θ) dF(A) ≤

∫
G2(A, θ) dF′(A) (B.16)

Observe in this case that

d
dθC(θ) � p

1
α

∫
G2(A, θ) dF(A) ≤ p′

1
α

∫
G2(A, θ) dF′(A) (B.17)

by combining (B.16) with the previous claim.
We now establish θ′ ≥ θ by, as in the proof of Proposition 1, ruling out the case θ > θ′ by

contradiction. If θ > θ′, then

p′
1
α

∫
G2(A, θ) dF′(A) ≤ p′

1
α

∫
G2(A, θ′) dF′(A) (B.18)

by weak concavity of G(·). Combining this with (B.17) implies that d
dθC(θ) ≤ d

dθC(θ′). But the
conjecture θ > θ′ and the strict convexity of C(·) implies d

dθC(θ) < d
dθC(θ′). This is a contradiction.

Therefore, θ′ ≥ θ as desired.
To establish the secondpoint, it suffices tohave an example of each case. The example of technology

decreasing is given in Proposition 1, as the rigid price case is nested in the more general model. The
example of technology increasing is given here. Consider an economy inwhich C(θ) � θ; P(Y) � Y−ε

for all k and some ε ≥ 0; and G(A, θ) � Aθβ for some β ∈ (0, 1). The original distribution of
productivity places a Dirac mass on productivity A, and the new distribution places a Dirac mass on
A′ ≤ A. The first-order condition for equilibrium technology is

βp
1
α Aθβ−1

� 1 (B.19)

The equilibrium price is p � M0 · (Aθβ)−
ε

1+ε(1/α−1) up to a positive constant M0 which depends on α
and ε. The solution to the fixed point equation which identifies θ is therefore

θ � M1 · A
α(1−ε)

α(1−β)+ε(1−α(1−β)) (B.20)

upagain to apositive constantwhichdependson α and ε. By the same token, θ′ � M1·(A′)
α(1−ε)

α(1−β)+ε(1−α(1−β)) .
See that θ ≥ θ′ if and only if ε ∈ (0, 1). Thus, if ε > 1, we have an example economy in which G12 ≥ 0
but equilibrium technology decreases, for all crops, when the climate gets worse.

72



B.4 Proof of Corollary 1

We first derive the profits of each farmer. Using the expression for technology demand in Equation
2.2, we write the farmer’s profit as

Πi � p · α−α (1 − α)−1G(Ai , θ)α (α−1p
1
α q−

1
α G(Ai , θ))1−α

− q(α−1p
1
α q−

1
α G(Ai , θ)) (B.21)

Combining terms and simplifying, this is

Πi � (1 − (1 − α)) · p · α−α (1 − α)−1G(Ai , θ)α (α−1p
1
α q−

1
α G(Ai , θ))1−α

� pαYi � (1 − α)−1q1−αp
1
α G(Ai , θ)

(B.22)

where Yi is the farm’s production in physical units.35 Moreover, the sensitivity of this to climatic
productivity is

∂
∂Ai
Πi � M0p

1
α G1(Ai , θ) (B.23)

whereM0 � (1−α)−1q1−α > 0 is invariant across equilibria of themodel (as q ≡ 1 from themonopolist’s
pricing problem and α is primitive).

We now prove the result. Let us start with case 1. By the fundamental theorem of calculus, with
differentiable G,

∆R(A, p) � M0p
1
α · (G1(A, θ) − G1(A, θ′))

� −M0p
1
α

∫ θ′

θ
G12(A, z) dz

(B.24)

By the assumption G12 ≤ 0 and the result from Proposition 2 that θ′ ≥ θ, we know the integrand
is non-positive along the entire path. Moreover the constant −M0p

1
α is strictly negative. Thus

∆R(A, p) ≥ 0 for any (A, p).
Consider next case 2. Proposition 2 tells us that we could have either θ′ ≥ θ or the opposite. If

θ′ ≥ θ, ∆R(A, p) ≤ 0 by following the argument above and noting that G12 ≥ 0. If θ′ ≤ θ, then we
revise the first argument to integrate from the lower to the higher technology level

∆Ri � M0p
1
α

∫ θ

θ′
G12(A, z) dz (B.25)

and observe that non-negativity of the constant and G12 implies ∆R(A, p) ≥ 0.

35In this context, profits are also the return to the implicit “fixed factor” in a constant-returns-to-scale re-writing of the
production function. From this logic, it is immediate that the fixed factor earns share α of income.
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B.5 Proof of Proposition 3

We begin with the first-order condition of the innovator for crop k. See that the partial derivative of
G(·) in θ, evaluated at (Ai , θk ), is

∂
∂θ

G(Ai , θk ) �
G(Ai , θk )

θk
(g20 + g21(A − Ai)) (B.26)

We approximate this around the point at which Ai � Ã ∈ [A,A], θk � θ̃, and G(Ai , θ) � G̃ :� G(Ã, θ̃)

for each crop. Since the scale of G̃ and θ̃ is arbitrary, we make the convenient normalizations that
g20 + g21(A − Ã) � 1 and g0 + g1(A − Ã) � 0 (i.e., G(Ã, θ) � θ).

The first-order condition for the innovator’s choice of θk is, applying the approximation to set
G(Ai ,θk )

θk
≈

θk
θk

� 1, is

θ
η
k �� p

1
α

k

∫ 1

0

G(Ai , θk )
θk

(
g20 + g21(A − Ai)

)
dF(Ai) ≈ p

1
α

k

∫ 1

0

(
g20 + g21(A − Ai)

)
dF(Ai) (B.27)

We approximate the log of the integral as

log
∫ 1

0

(
g20 + g21(A − Ai)

)
dF(Ai) �

∫ 1

0

((
g20 + g21(A − Ai)

)
− 1

)
dF(Ai) (B.28)

since the integrand is close to one. Applying this approximation to the first-order condition, and
taking logs, we get

η log θk �
(
g20 − 1

)
+

1
α

log pk + g21(A − Ak ) (B.29)

in which we define the crop-level shock

Ak :�
∫ 1

0
A dFk (A) (B.30)

We now solve for equilibrium prices. Prices, in logs, lie on the following demand curve:

log pk � log p0 − ε log Yk (B.31)

The output of a farm i growing crop k, based on substituting the technology demand of Equation 2.2
into the production function, is

Yi (Ai , θk , pk ) � (α(1 − α))−1p
1
α−1
k G(Ai , θk ) (B.32)

and the expression for total output of crop k is

Yk �

∫
Yi (Ai , θk , pk ) dF(Ai) � (α(1 − α))−1p

1
α−1
k

∫ 1

0
G(A, θk ) dFk (A) (B.33)
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Taking a log and substituting this into Equation B.31 gives

log pk � log p0 − ε
( 1
α
− 1

)
log pk + ε log(α(1 − α)) − ε log

∫ 1

0
G(A, θk ) dFk (A) (B.34)

We again apply an approximation around G̃. Specifically, we do the log-linearization

log
∫ 1

0

G(A, θk )
G̃

dFk (A) ≈
∫ 1

0
log

(G(A, θk )
G̃

)
dFk (A) (B.35)

Using the approximation, and the fact that log G̃ � log θ̃ under the normalization, we write

log pk � log p0 − ε
( 1
α
− 1

)
log pk + ε log(α(1 − α)) − εg0 − εg1(A − Ak )

− ε
(
(g20 + g21(A − Ak )) log θk

)
+ ε log θ̃

(B.36)

We finally approximate the second order term in the price equation around the point at which Ai ≡ Ã:

(A − Ai) log θ ≈ (A − Ã) log θ (B.37)

This is required to obtain a closed-form solution for prices. We then write, using this substitution and
the aforementioned normalization that g20 + g21(A − Ã) � 1,

log pk � (log p0 + ε log θ̃) + ε
(
log(α(1 − α)) − g0 − g1(Ã − Ak ) −

( 1
α
− 1

)
log pk − log θk

)
(B.38)

Solving for pk , we get

log pk �
α

α + ε(1 − α)

(
log p0 + ε log θ̃ + ε log(α(1 − α)) − ε

(
g0 + g1(A − Ak ) + log θk

))
(B.39)

We now solve for the equilibrium level of technology by combining (B.29) and (B.39). Direct
substitution gives

η log θk �

log p0 + ε log θ̃ + ε log(α(1 − α)) − ε
(
g0 + g1(A − Ak ) + log θk

)
α + ε(1 − α)

+
(
g20 − 1

)
+ g21(A − Ak )

(B.40)
We first solve the above for Ak � Ã to derive the constant

log θ̃ �
τ
η

( 1
ε

log p0 + log(α(1 − α))
)

(B.41)

where we define the parameter
τ �

ε
α + ε(1 − α)

(B.42)
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We then observe that we can write

log θk � log θ0 + δ(A − Ak ) (B.43)

where log θ0 � log θ̃ − δ(A − Ã) and slope

δ :�
g21 − τg1

1 + η + τ
(B.44)

We finally consider equilibrium rents. Log rents for farm i, growing crop k, are

logΠi � − log(1 − α) +
1
α

log pk + log G(Ai , θk ) (B.45)

Using the assumed form of log G from (2.5), p from (B.39), and θ from (B.43),

logΠi � − log(1 − α)

+ τ
( 1
ε

log p0 + log θ̃ + log(α(1 − α)) −
(
g0 + g1(A − Ak ) + (log θ0 + δ(A − Ak ))

))
+ g0 + g1(A − Ai) + (g20 + g21(A − Ai))(log θ0 + δ(A − Ak ))

(B.46)

which simplifies, as desired, to

logΠi � logΠ0,i + β · (A − Ai) + γ · (A − Ak(i)) + φ(A − Ai)(A − Ak(i)) (B.47)

with coefficients
β � g1

γ � −τ(g1 + δ)

φ � g21δ

(B.48)

and constant

logΠ0,i � − log(1 − α) + τ
( 1
ε

log p0 + log θ̃ + log(α(1 − α)) − g0 − log θ0

)
+ g0 + g20 log θ0 (B.49)

B.6 Proof of Corollary 2

The stated assumptions translate to g20 � 0 and ε � 0. The latter implies τ � 0. See, under these
conditions, that the regression coefficients in representation (B.48), from the derivation in Appendix
B.5, are β � g1, γ � 0, and φ � g21δ.

Let us now consider the counterfactual scenarios. Denote by regular notation quantities under the
intial climate, by primes quantities under the later climate, and by double primes quantities under
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the counterfactual scenario. Given the mapping

logΠi � logAgrLandPricei

Ai � LocalEEi

Ak(i) � InnovationExposurei

wewant to show that logΠ′′i corresponds with each of the expressions in Equations 6.1 and 6.2 under
the assumed conditions.

In the counterfactual without climate change, the climate is instead A′′i � Ai and A′′k � Ak in the
second period. See that

logΠ′′i � logΠ0,i + β · (A − A′′i ) + γ · (A − A′′k(i)) + φ(A − A′′i )(A − A′′k(i))

� logΠ0,i + β · (A − Ai) + γ · (A − Ak(i)) + φ(A − Ai)(A − Ak(i))

� logΠi

or that the two scenarios are identical. This validates the counterfactual.
In the counterfactual without innovation, technology is held counterfactually at θ′′k � θk while the

climate satisfies A′′i ,k � A′i ,k and A′′k � A′k for all locations and crops. Using (B.46) from the derivation
in Appendix B.5, and substituting in ε � 0 (which implies τ � 0) and g20 � 0, we have

logΠ′′i � − log(1 − α) + g0 + g1(A − A′i) + (g20 + g21(A − A′i))(θ0 + δ(A − Ak(i))) (B.50)

See that this corresponds with

logΠ′′i � logΠ0,i + β · (A − A′i) + γ · (A − Ak(i)) + φ · (A − A′i)(A − Ak(i)) (B.51)

given the expressions for the coefficients in Equation B.48 and, in particular, the fact that ε � 0 and
τ � 0 implies that γ � 0.
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C Model Extensions

C.1 Efficiency

In this section, we explore the efficiency properties of the model. For simplicity, we focus on the
fixed-price variant of the model.

C.1.1 Static Baseline

We begin with the main static model introduced in the text. We first fully specify the consumer block
of the model. In addition to the agricultural good (the “crop”), there is a second numeraire good
which can be interpreted as leisure (i.e., negative labor).36 The agent has an endowment z of this good
and consumes at level z. The consumer’s problem is

max
c ,z

pc + z

s.t. z + pc ≤ W + z
(C.1)

where p > 0 is a constant, c is consumption of the crop, and W is the agent’s total income from owning
the farms and the innovative firm. See, from the first-order conditions for consumer optimization,
that demand is completely elastic at p � p.

The social planner’s objective is to maximize the representative household’s income subject to
feasibility constraints. It is straightforward to show that the social planner’s problem can be written
as

max
Y,T (·),θ

pY + z − C(θ) − (1 − α)
∫ 1

0
T (A) dF(A)

s.t. Y ≤ α−α (1 − α)−1
∫ 1

0
T (A)1−αG(A, θ)α dF(A)

(C.2)

after substituting in feasibility constraints. Let λ be the Langrange multiplier on the production
constraint, and note immediately that λ � p in the solution (if the constraint binds at equality). The
remaining first order conditions are

d
dθC(θ) � pα1−α (1 − α)−1

∫ 1

0
T (A)1−αG(A, θ)α−1G2(A, θ) dF(A) (C.3)

for θ; and
(1 − α) � pα−αT (A)−αG(A, θ)α (C.4)

for each T (A). See that (C.4) coincides with decentralized technology demand (2.2) and (C.3) corre-
sponds with decentralized quality choice (2.3) if q � 1 − α, or technology is priced at marginal cost.
Thus the singular source of inefficiency in the decentralized allocation is the monopoly power of the

36For the simplifying reason of ignoring non-negativity constraints, we allow for negative consumption of this good.
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technology producer, which could be fixed by leveraging an appropriate subsidy of rate α (i.e., having
consumers face price (1 − α)q). Moreover, the effect of the monopoly power is to unambiguously
reduce the amount of technology used by each firm (T (A) for all A ∈ [A,A]) and the level of technol-
ogy θ. This is clear from the combination of (C.3) and (C.4) which gives the socially optimal level of
technology:

d
dθC(θ) � (1 − α)−

1
α p

1
α

∫
G2(A, θ) dF(A) (C.5)

which differs from the equilibrium condition (B.7), in the proof of Proposition 1 in Appendix B.2,
by the scaling (1 − α)−

1
α > 1 on the marginal benefit. Under the established assumptions that G is

concave in θ and C is convex in θ, it is immediate that the socially optimal level of technology exceeds
the equilibrium level.

Note finally that, since correcting the externality affects technology demand only up to a scaling
factor, the comparative static in Proposition 1 continues to hold as a comparative static for the planner’s
preferred allocation. This can be verified by going through the steps of the proof in Proposition
B.2 under a different definition for p, which is also a scaling factor. Therefore, the “direction” of
technological change is not different in the planner’s solution and the equilibrium allocation.

C.1.2 With Dynamic Externalities

We now discuss a model extensions that stylizes a second possible source of under-investment in
technology: the dynamic returns to scale in idea production, which are emphasized in classic models
of endogenous technological change (e.g., Romer, 1990), and in this setting reflect the extent to which
agricultural research can build on past discoveries.

Consider an extension of the model with two periods populated with distinct “generations” of
consumers, farmers, and technology producers. We will use primes to distinguish quantities and
prices in the second period. The only primitive difference is that, at period t � 1, the cost of
producing technological quality (or “conducting research”) is lower when quality was higher in the
last period. We model this by having the cost given by f (θ)C(θ′), where f (·) : R+ → R+ is a
decreasing, differentiable, and convex function; 1− f (θ) are the “percentage cost savings” associated
with a given level θ of research in the first period.37

Using the same arguments in the main text, see that the decentralized equilibrium in the first
period is characterized by the following first-order condition for technology quality

d
dθC(θ) � p

1
α

∫
G2(A, θ) dF(A) (C.6)

while the equilibrium in the second period is characterized by

f (θ)
d

dθC(θ′) � p
1
α

∫
G2(A, θ′) dF′(A) (C.7)

37In this formulation, the “savings” could be positive or negative.
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Consider now the problem of a social planner whomaximizes total utility of agents across periods
with discount factor β.38 It is straightforward to show, extending the results above, that optimal
investment at t � 0 and t � 1 satisfy the following system of equations:

d
dθC(θ) − β

(
d

dθ f (θ)
)

C(θ′) � (1 − α)
1
α p

1
α

∫
G2(A, θ) dF(A)

f (θ)
d

dθC(θ′) � (1 − α)
1
α p

1
α

∫
G2(A, θ′) dF′(A)

(C.8)

See that the social planner now wants both to cancel the monopoly markup and to make the first
period producers internalize the value of their technological progress on lowering research costs at
t � 1. A sufficient instrument is a subsidy on research effort at t � 0 proportional to

β ·
d

dθ f (θ) ·
C(θ′)
C(θ)

evaluated at the social planner’s optimum allocation. This naturally increases in the technological
requirements of the second period and decreases in the technology produced in the first period.

Observe that, in contrast to the previous section’s analysis with only the monopoly distortion,
the planner’s problem and the (autarkic) equilibrium allocation differ by more than a scaling factor.
Therefore, the “direction of technological change” or sign of θ′−θmaygenerally differ in the planner’s
solution and the equilibrium solution under different scenarios for the input distributions F and F′.
The intuition is that the social planner may want to boost research in the first period for the sake of
exploiting the dynamic externality—that is, the planner may want the economy so well prepared for
eventual climate damage ex ante, that a large redirection of technology is not necessary ex post.

C.2 Multiple Types of Technology

We now explore a variant model in which whether technology is climate substituting or complement-
ing is an endogenous outcome of the directed innovation process. This recovers the intuition that
climatic change can also push technology toward a climate-mitigating focus even within a specific
studied crop.

C.2.1 Equilibrium and Comparative Statics

The farm continues to consume a scalar technological good in quantity Ti , but this good has two
different “qualities” θ and τ. The production function is

Yi � α
−α (1 − α)−1G(Ai , θ, τ)αT1−α

i

in which we assume
38This implies Pareto weights 1 and β, respectively, on each generation.
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1. Higher Ai corresponds to good climate, or G1 ≥ 0;

2. Both technological qualities improve output, or G2 ≥ 0 and G3 ≥ 0;

3. The technology embodied by θ is climate substituting while the technology embodied by τ is
climate complementing, or G12 ≤ 0 and G13 ≥ 0;

4. The two technologies are substitutes for one another, or G23 ≤ 0.

5. Each technology has a decreasing return, or G22 ≤ 0 and G33 ≤ 0.

An innovative firm produces the technological input at marginal cost 1−α; sets the price of this input;
and chooses research in each area, or (θ, τ), subject to an additive cost C(θ) + K(τ), where C(·) and
K(·) are differentiable and convex.

Let us focus on the fixed-price economy. Essentially identical logic to that underpinning Propo-
sition 1 shows that the first-order conditions determining the quality of each technology are the
following:

d
dθC(θ) � p

1
α

∫
G2(A, θ, τ) dF(A)

d
dθK(τ) � p

1
α

∫
G3(A, θ, τ) dF(A)

(C.9)

Consider now a damaging shift in the climate, as in Proposition 1, to a new productivity distribu-
tion F(A). This induces a weak increase in the climate-substituting technology θ and a weak decrease
in the climate-mitigating technology τ. Informally, this shift has increased the demand for climate-
substituting technologies while decreasing the demand for climate-complementing technologies, and
the substitutability of two inputs intensifies this force. This shows how our model can accomodate
directed technological change within specific crops. The remainder of this subsection gives the more
detailed proof of the claim.

Formally, we show the claim by contradiction. Consider first the possibility in which τ strictly
increases and θ weakly increases. If the strictly increasing technology is τ, then under this conjecture
d

dτK(τ′) > d
dτK(τ). But

d
dτK(τ) �

∫
G3(A, θ, τ) dF(A) ≥

∫
G3(A, θ, τ) dF′(A)

because G13 ≥ 0 and F �FOSD F′; and∫
G3(A, θ, τ) dF′(A) ≥

∫
G3(A, θ′, τ) dF′(A) ≥

∫
G3(A, θ′, τ′) dF′(A) �

d
dτK(τ′)

by G23 ≤ 0 (inputs are substitutes) and concavity of G(·). This implies d
dτK(τ) ≥ d

dτK(τ′) which
contradicts the assumption.

Identical and reverse logic rules out the case that θ strictly decreases and τ weakly decreases,
finding the contradiction in the first-order condition for θ.
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We finally rule out the possibility that θ strictly decreases and τ weakly increases. By increasing
differences of (−θ, τ) in A, implied by our assumptions G12 ≤ 0 and G13 ≥ 0, the positive demand
shift from (θ, τ) to (θ′, τ′) must be larger in the less damaging climate or

G(A′, θ′, τ′) − G(A′, θ, τ) ≤ G(A, θ′, τ′) − G(A, θ, τ)

for any A′ ≥ A. The optimality of (θ′, τ′) in the new climate implies that this choice generates more
profit that (θ, τ), or

p
1
α

∫
G(A, θ′, τ′) dF′(A) − C(θ′) − K(τ′) ≥ p

1
α

∫
G(A, θ, τ) dF′(A) − C(θ) − K(τ)

while increasing differences and F′ �FOSD F implies that (θ′, τ′) would have been strictly better
improvement over (τ, θ) under the old climate, or

p
1
α

∫
G(A, θ′, τ′) dF(A)−p

1
α

∫
G(A, θ, τ) dF(A) > p

1
α

∫
G(A, θ′, τ′) dF′(A)−p

1
α

∫
G(A, θ, τ) dF′(A)

Together, however, these statements imply

p
1
α

∫
G(A, θ′, τ′) dF(A) − C(θ′) − K(τ′) > p

1
α

∫
G(A, θ, τ) dF(A) − C(θ) − K(τ)

which contradicts the optimality of (θ, τ) under the old climate. Therefore this case is impossible.
The only remaining case has θ weakly increase and τ weakly decrease as desired.

C.2.2 Dynamic Externalities and Lock-In

We concludewith a brief discussion of how the previousmodel of endogenous climate complementarity
of technology interacts with the issue of dynamic externalities raised in C.1.2. Consider a variant of
the two-technology model with two periods and myopic agents, as earlier. The cost of investing in θ
in the second period is f (θ)C(θ′), where f (·) : R+ → R+ is a decreasing, differentiable, and convex
function as before; and the cost of investing in τ in the second period is f (τ)C(τ′). It is immediate that
the social planner contemplates separate subsidies for the development of each type of technology to
allow innovators in the first period to internalize the dynamic externality.

Nowmap this exercise to a world in which the climate worsens in the second period relative to the
first. An immediate implication is that the equilibriumallocationmay relatively over-invest in climate-
complementing technologies in the first period due to not internalizing the value of “preparedness”
for climate change in the second period, or having lower costs for climate-substituting technologies
which are relatively more useful in the second period.
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C.3 Variable Utilization

In this section, we introduce a tractable variant of the model which illustrates variable utilization or
a form of switching from a given crop to an outside option. Let Zi ∈ [0, 1] be a utilization level of a
given tract of land. In the model with utilization, the farm’s production function is now given by
Yi ,k � Z1−α

i α−α (1 − α)−1G(Ai , θk )αT1−α
i ,k . Utilization Zi entails an additive cost φ(Zi), where φ(·) is

convex and twice differentiable, and satisfies φ′(0) � 0 and φ′(1) � ∞ to ensure an interior solution for
utilization. This is a reduced form for transforming land from non-agricultural use or from planting
other crops. It is straightforward to show that the farm’s demand for technology now includes an
endogenous utilization term (substituting in the immediately verifiable assumption that qk � 1):

Ti ,k � α−1p
1
α

k Z∗(Ai , θk , pk )G(Ai , θk ) (C.10)

where optimal utilization solves

Z∗(Ai , θk , pk ) ∈ argmax
Zi≥0

Zi · α
−1(1 − α)−1p

1
α

k G(Ai , θk ) − φ(Zi) (C.11)

Let us now revisit the environment of Proposition 1, with fixed prices. It is immediate that
the results of Proposition 1 go through as long as the relevant cross-partial properties are satisfied
by the function (Ai , θk ) 7→ Z∗(Ai , θk , pk )G(Ai , θk ), or climate and technology are appropriately
“complements” or “substitutes” after endogenous utilization is taken into account. We can be more
specific about what this means by calculating this directly.

Let G̃(Ai , θk ) :� Z∗(Ai , θk , pk k)G(Ai , θk ) be the aforementioned product (supressing dependence
on pk), let ψ(·) denote the (by assumption, well-defined) inverse of φ′(·), and normalize for conve-
nience α−1(1 − α)−1p

1
α

k � 1. See that optimal utilization is given by

Z∗ � ψ(G(Ai , θk )) (C.12)

which is, by assumption, an increasing function. Depending on the shape of ψ(·), or more primitively
the shape of φ′(·), this function can be concave, convex, or neither.

The cross-partial derivative of G̃ is the following

∂2

∂Ai∂θk
G̃(Ai , θk ) � G12

(
Z∗ + ψ′(G)

)
+ (2ψ′(G) + ψ′′(G))G1G2 (C.13)

The first term is the familiar term which reflects the “raw” complementarity in G(·) and the indirect
effect via Z∗. The second, under the going assumptions that (G1 ,G2) ≥ 0, inherits its sign from the
sign of 2ψ′ − ψ′′.

Consider first the case in which ψ is not too concave or 2ψ′ > −ψ′′. Then, endogenous utilization
can result in ∂2

∂Ai∂θk
G̃(Ai , θk ) ≥ 0 even when G12 ≤ 0. In this sense, endogenous utilization “fights
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against case 1 and fights for case 2,” referring to the cases of Proposition 1. This embodies the
economic intuition that farmers respond to bad climate shocks by planting less. Even if conditional
on “digging in their heels” and planting they demand more technology, lower planting can be the
dominant effect when utilization is very sensitive to productivity (high ψ′).

If ψ is very concave, or 2ψ′ < −ψ′′, then the sign of the cross partial will be negative as long as
G12 ≤ 0. This is a slightly perverse case in which negative shocks increase the marginal product of
technology because they make the utilization decision more sensitive to productivity. Concretely,
when the climate is good the farm does not adjust much; when the climate is poor, farms adjust more
on all margins, so new technology has an outsized effect on decisions. In this sense, the basic idea
that land adjustments dampen the force of case 1 in Proposition 1 is not a fully robust one.

C.4 Capacity Constraints for Research

In our baselinemodel, the allocation of research effort had no capacity constraints or restrictions across
sectors. The right economic thought experiment was that the innovators were optimally trading off
research in each crop with an unmodeled outside option, like research in other areas of chemistry
or biotechnology. We now relax this assumption in a particularly tractable way to illustrate the dual
process of re-allocation both into agricultural bio-technology and between sectors of this field.

C.4.1 Model

As in Section 2.5, we extend the model to include multiple crops. There are K crops indexed by
k ∈ {1, . . . , K}. For each crop, there is a unit measure of locations which produce the crop. We use
(pk )K

k�1 to denote each crop’s price in terms of the numeraire; (Fk )K
k�1 to denote each crop’s productivity

distribution; and (θk )K
k�1 to denote each crop’s technology level. The production function for each

crop is given by (2.1).
A single representative innovator chooses the price and quality of each technological input. The

innovator faces a constraint that their total dollar investment in quality improvement does not exceed
some level C, or

∑K
k�1 C(θk ) ≤ C. We can think of C as the overall size of the innovator’s “laboratory.”

The innovator can then expand the size of their laboratory at some cost given by ψ(C), where
ψ(·) : R+ → R+ is a differentiable, convex function. The profit maximization problem is therefore:

max
(qk ,θk )K

k�1 ,C
(qk − (1 − α)) α−1

K∑
k�1

p
1
α

k q
−

1
α

k

∫
G(A, θk ) dFk (A) − ψ(C)

s.t.
K∑

k�1
C(θk ) ≤ C

(C.14)

It is straightforward to show, as in the baseline model (see Appendix B.1), that the profit-maximzing
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price is qk ≡ 1 for all crops and therefore the problem reduces to

max
(θk )K

k�1 ,C

K∑
k�1

p
1
α

k

∫
G(A, θk ) dFk (A) − ψ(C)

s.t.
K∑

k�1
C(θk ) ≤ C

(C.15)

Let λ denote the Lagrange multiplier on the capacity constraint and

D(pk , θk , Fk ) :� p
1
α

k

∫
G(A, θk ) dFk (A)

denote crop-specific technology demand in a more compact notation. The first-order condition for
each choice θk is

λC′(θk ) � D(pk , θk , Fk ) (C.16)

Note that, given the concavity of G(·), Dk (·) is a decreasing function of θk holding fixed all other
inputs. The first-order condition for the constraint, assuming that it binds at equality, is

λ � ψ′(C) (C.17)

Therefore, the vector of θk solves the following system of equations:

*
,
ψ′ *

,

K∑
k�1

C(θk )+
-
+
-

C′(θk ) � D(pk , θk , Fk ), ∀k (C.18)

See that increasing research in sector k′ increases the effective marginal cost of research in sector k,
and thus lowers research in sector k. This captures a “soft” capacity constraint.

C.4.2 Tractable Variant

To make more progress, let us specialize to a particularly tractable version of this model. Let C(x) �

x1+η/(1 + η) for some η > 0 and ψ(x) � (χx)1+ζ/(1 + ζ) for some χ ≥ 0 and ζ > 0. Finally, assume
that D(pk , θk , Fk ) ≡ D(pk , Fk ), so we can solve for θk explicitly. The previous system of equations
simplifies to

χ1+ζ *.
,

K∑
k�1

θ
1+η
k

1 + η
+/
-

ζ

θ
η
k � D(pk , Fk ), ∀k (C.19)

Conjecture that θk � A · (D(pk , Fk ))
1
η for some A ≥ 0. Then the above evaluated for any k simplifies

to

χ1+ζA(1+η)ζ *
,

K∑
k�1

(D(pk , Fk ))1+1/η

1 + η
+
-

ζ

� A−η (C.20)
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which implies

A � χ−
1+ζ

η+ζ+ηζ *
,

K∑
k�1

(D(pk , Fk ))1+1/η

1 + η
+
-

−
ζ

ζ+η+ηζ

(C.21)

See that this value of A decreases in the demand for each technology and in the cost shifter χ. We can
solve now for the value of the capacity which is

C � A(1+η)
K∑

k�1

(D(pk , Fk ))1+1/η

1 + η

� χ−
(1+η)(1+ζ)
η+ζ+ηζ *

,

K∑
k�1

(D(pk , Fk ))1+1/η

1 + η
+
-

η
ζ+η+ηζ

See in particular, as ζ → ∞ or marginal costs of expanding the capacity become sufficiently large,
then the model converges to one in which capacity is fixed at C � 1/χ.

This result has also the following implicationwhen read “backward”: the assumption that directed
innovation has a “zero effect” for a given crop maps to a unique level of the cost χ. Consider now
two vectors (θk )K

k�1 and (θ′k )K
k�1 that solve the monopolist’s problem respectively for different prices

and climate distributions (also denoted with primes, in the second case). Assume that the following
condition holds which, in certain units, implies that aggregate demand for technology across crops
increased:

K∑
k�1

(D(p′k , F
′

k ))1+1/η
≥

K∑
k�1

(D(pk , Fk ))1+1/η (C.22)

Now consider a crop that had a positive demand shock or D(p′k , F
′

k ) ≥ D(pk , Fk ). Note that the
growth rate in technology for crop k is, up to A and A′,

θ′k
θk

�
A′

A

(D(p′k , F
′

k )
D(pk , Fk )

) 1
η

(C.23)

and
θ′k
θk

� 1 ⇔ A′

A
�

(D(p′k , F
′

k )
D(pk , Fk )

)− 1
η

(C.24)

Plugging into the expression for A, the right hand side is

*
,

∑K
k�1 D(p′k , F

′

k )1+1/η∑K
k�1 D(pk , Fk )1+1/η

+
-

−
ζ

ζ+η+ζη

�

(D(p′k , F
′

k )
D(pk , Fk )

)− 1
η

(C.25)
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or, taking each side to the power −η,

*
,

∑K
k�1 D(p′k , F

′

k )1+1/η∑K
k�1 D(pk , Fk )1+1/η

+
-

ηζ
ζ+η+ζη

�
D(p′k , F

′

k )
D(pk , Fk )

(C.26)

For fixed η, or convexity of crop-specific costs, this is solved by

ζ �
η

η + 1
log D(p′k ,F

′

k )
D(pk ,Fk )

η
η+1 log

∑K
k�1 D(p′k ,F

′

k )1+1/η∑K
k�1 D(pk ,Fk )1+1/η − log D(p′k ,F

′

k )
D(pk ,Fk )

≥ 0 (C.27)

provided that the crop’s demand growth is lower than the appropriate CES average of overall demand
growth:

log
D(p′k , F

′

k )
D(pk , Fk )

≤
η

η + 1 log
∑K

k�1 D(p′k , F
′

k )1+1/η∑K
k�1 D(pk , Fk )1+1/η

(C.28)

When this holds at equality, then ζ � ∞ and the model simulates a capacity constraint for research.
Thus our approach of normalizing a “zero progress” crop to a measure of central tendency for
observed damages at least qualitatively matches the predictions of this model with flexible capacity.
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D Extreme Exposure: Measurement and Validation

In this Appendix, we first describe in detail how to calculate Extreme Exposure from the raw tem-
perature data. We then show validation that our measure of crop-specific extreme exposure explains
crop yields and, in terms of explanatory power, out-performs non-crop-specific methods based on
the same data.

D.1 Construction

We follow the procedure outlined in Schlenker and Roberts (2009) to compute daily temperature
averages since 1950 from raw data on daily maximum and minimum temperatures. This includes
interpolating the portion of a day that is within a particular temperature range and aggregating
to US counties using only grid cells that are identified via satellite data to contain cropland. We
thank Wolfram Schlenker for making these data available on his website at the following link: http:
//www.columbia.edu/~ws2162/links.html.

We now describe the method in more detail. We first define the following object that counts the
number of degree days relative to a specific cutoff T in a specific (2.5 mile by 2.5 mile) grid cell:

DegreeDays(T; Thigh,d ,g , Tlow,d ,g) :�




0 if Thigh,d ,g < T

Tavg,d ,g − T if Tlow,d ,g > T

g(T; Thigh,d ,g , Tlow,d ,g) otherwise

where Tavg,d ,g :� Tlow,d ,g+Thigh,d ,g
2 is the midpoint of the high and low temperatures and the specific

interpolation function g(·) is given by the following:

g(T; Tmin , Tmax) �
1
π

((
Tavg,d ,g − T

)
· cos−1

(
T − Tavg,d ,g

Tavg,d ,g

)
+

(
Tavg,d ,g · sin

(
T − Tavg,d ,g

Tavg,d ,g

)))

This function smoothly interpolates between 0 and Tlow,d ,g+Thigh,d ,g
2 .

Next, within a given county, we aggregate the previousmeasure across grid cells that have planted
cropland using weights wg :

DegreeDaysi (T; d) :�


∑
grid g∈i

wg · DegreeDays(T; Thigh,d ,g , Tlow,d ,g)


The weights wg on individual grid-cells encode what fraction of the grid-cell is farmland based on
satellite data, as done in Schlenker and Roberts (2009).

We sum the previous over all days in the summer growing season April to October, within a given
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decade (e.g., 1950-59, 1960-69) indexed by t:

DegreeDaysi ,t (T) :�
∑

day d∈t

DegreeDaysi (T; d)

The units for this measure are “extreme degree days per decade.”
We finally make this measure crop-specific by substituting in the crop-specific maximum optimal

temperature from EcoCrop. This step is described in the main text. This discussion connects with the
measurement in the main text when we define Extreme Exposure at the location, crop, and time level
as degree days in excess of the crop-specific threshold TMax

k :

ExtremeExposurei ,k ,t :� DegreeDaysi ,t (TMax
k )

D.2 Validation: Extreme Heat Exposure and Crop Yields

We validate this measure of extreme exposure as a shock to crop yields, and also investigate the share
of variation in crop yields caused by temperature that it explains. First, as described in the main
text, we show that ExtremeExposurei ,k has a significant and substantial negative effect on crop yields.
These results are reported in Table A2.

Second, we compare the variation in yields of staple crops (corn, wheat, and soy) explained by
our one-dimensional measure to the variation in yields of staple crops explained by a more flexible
approach that captures exposure to different parts of the temperature distribution. In particular, in
each county we determine the number of days in each five degree bin, with an upper bound of 45
degrees Celsius (that is, our highest bin is the number of days greater than 45 degrees Celsius). We
then interact each of these bins with staple crop fixed effects. This vector of interactions captures the
effect of exposure to temperatures in all parts of the distribution, and allows its effect to differ for each
crop. We then predict crop yields using this full vector of interactions:

log
(
yieldi ,k

)
� Z′Γ + αi + αk + εik (D.1)

where Z′ is the full set of interactions between the number of days in each temperature bin and crop
fixed effects. To gauge the explanatory power of our one-dimensional temperature shock, we compare
the within-R2 of (D.1) to the within-R2 of (3.2), which only includes ExtremeExposurei ,k on the right
hand side (alongwith crop and county fixed effects). Ourmain conclusion is that ExtremeExposurei ,k

explains a large share of the variation in crop yields caused by temperature; across specifications,
its within-R2 is greater than one third that of the within-R2 of (D.1), even though (D.1) includes
many more variables on the right hand side of the regression. For example, when Z′ includes all
temperature bins from 15◦ to 45◦+, the within within-R2 is 0.23, despite the inclusion of 21 regressors,
while the within-R2 from our one-dimensional measure is 0.083.

Third, we compare ExtremeExposurei ,k to alternative measures of exposure to heat that do not
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take into account variation in crop-level sensitivity. In particular, we estimate:

log
(
yieldi ,k

)
� ξ · ExtremeExposurei ,k + αk + εik (D.2)

and recover the within-R2 of our measure of extreme heat exposure. We then estimate:

log
(
yieldi ,k

)
� ξ ·DegreeDaysAbovez

i + αk + εik (D.3)

where DegreeDaysAbovez
i is the total number of degree days above temperature cut-off z in county

i. That is, it is analogous to our baseline measure except it uses the same temperature cut-off z for all
crops. We estimate Equation D.3 for values of z between 10 and 45 degrees Celsius. In Figure A2, we
report the distribution of within-R2 measures for all estimates of (D.3) as a blue histogram, and we
also mark the within-R2 from (D.2) with a dotted black line. Incorporating variation across crops in
temperature sensitivity makes it possible to explain a much larger share of variation in crop yields
than any measure that only exploits variation across places in exposure to high temperatures.
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E Agricultural Innovation andClimate Stress: Background andNarrative
Evidence

In this section, we report case-study evidence from recent advances in biotechnology suggesting that
inventors have been directing innovation toward emergent climate threats. To do this, we provide
background information on how climate stress affects plants (E.1), discuss examples of how plant
breeders develop heat- and drought-resistant varieties (E.2), and provide narrative evidence that the
intensity of heat- and drought-resistant breeding has responded to climatic trends (E.3).

E.1 The Effects of Weather Stress on Plants

Weather patterns may affect an individual plant’s morphology (i.e., physical structure), physiology
(i.e., growth, metabolism, and reproduction processes), and phenotype (i.e., the translation of genes
to observed traits) (Raza et al., 2019). All of these features jointly affect agricultural productivity
outcomes (e.g., yield of corn per planted acre). Thus, understanding the exact effect of a specific
weather feature, like exposure to extreme degree days, on an agricultural productivity outcome, like
corn yield, involves jointly modeling multiple aspects of a plant.

As an illustrative example, relevant to our empirical analysis, Lobell et al. (2013) study the effects
of exposure to degree-days above 30C on maize. Using a biophysical model, the authors find that a
critical pathway from extreme-heat exposure to reducedmaize yield is water stress. More specifically,
extreme heat increases the rate at which plants drawwater from the ground and exhale water through
their leaves. This specific biophysical mechanism is necessarily affected by a number of expressed
traits by the plant—two examples, in the present case, are how the plant drawswater from the ground
and how the plant opens and closes pores in its leafs and stems (stomata) to breathe.

E.2 Breeding Heat- and Drought-Resistance

Traditional breeding methods select plants across a number of traits based on empirically observed
improvements in the field. The selected traits may influence a number of mechanisms regulating
a plant’s resistance to physical stress like extreme heat or drought. Moreover, improvements in
heat- and drought-tolerance based on these traditional, empirical methods may predate scientific
understanding of the exact mechanisms for yield loss due to heat and drought.

As one example, Duvick et al. (2004) survey maize breeding at the private firm Pioneer Hi-Bred
International since the early 1930s.39 The authors describe the firm’s methodology for selecting plant
lines (germplasm) as decidedly empirical:

The one consistent feature of the plant breeding group was its pragmatism. If a method
or source of germplasm worked, it was used whether or not it fit the current styles in

39Today, Pioneer is owned by Corteva Agriscience, which was itself spun off from the agricultural science division of
DuPont.
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breeding theory. [. . . ] Widespread on-farm performance of released hybrids was used to
identify the top-performing inbreds, to winnow the best frommerely average germplasm.

The authors write that severe drought in the 1930s, in the company’s early stages, directed breeding
efforts toward drought-tolerance as an important secondary objective to the primary goal of increasing
grain yield. In their retrospective analysis of seven decades of field-trial data, combined with modern
genetic analysis, the authors argue that increased tolerance to biological and physical stress was
a primary cause of yield improvements. In particular, they highlight a secular trend of increased
tolerance to heat anddrought. Subsequent genetic studies have clarified themechanisms for improved
drought resistance in the Pioneer line. For instance, Habben et al. (2014) suggest an important
mechanism for drought tolerance in modern corn hybrids, including Pioneer’s, is increased catalysis
of ethylene production, which interacts with many different biochemical pathways.

An alternative method for breeding stress tolerance is direct genetic modification of organisms.
Genetic modification, unlike field-trial breeding, is predicated on understanding how a specific
molecule confers a valuable trait, and how insertion of specific genes would make a plant produce
that molecule. One example of a genetically modified organism based on this principle is Monsanto’s
DroughtGardmaize. As described in the original scientific article by Castiglioni et al. (2008), Drought-
Gard maize is genetically modified to produce “Cold Shock Proteins” or CSPs. These proteins are
produced by E. coli and B. subtilis bacteria in response to cold temperature shocks and are associated
with post-shock revival. Castiglioni et al. (2008) describe the process by which the CSP-expression
gene was inserted into rice and maize plants, and they show empirically how CSP production is
associated with tolerance to heat, cold, and water-deficit shocks in these plants.

E.3 The Response of Innovation to Climatic Shocks

As alluded to earlier in the context of Pioneer’s corn breeding, a primary example of private agricul-
tural innovation’s response to climatic conditions is the intensification of hybrid plant development
in response to widespread droughts in the early 20th century. These droughts notably include the
successive droughts of the 1930s that precipitated the Dust Bowl in the US prairies. Crow (1998) and
Sutch (2008, 2011) provide detailed historical accounts of early hybrid corn breeding and adoption.
Moscona (2022) studies the response of innovation to the US Dust Bowl empirically, across a wider
range of crops, as well as the effects on downstream production. While the modern, privatized
biotechnology industry emerged primarily after these early 20th century events, agricultural histori-
ans also write about climatic stress driving innovation in the centuries prior. Olmstead and Rhode
(2011) highlight the important role of state and non-profit breeders in improving heat- and drought-
tolerance for North American wheat. Olmstead and Rhode (2008) more broadly survey biological
innovation in US agriculture in the two centuries before World War II.

Today, asmentioned in the paper’s introduction, agricultural biotechnology companies are “racing
to develop products” that address the problem of “rising temperatures” according to news reports
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(Schulman, 2015). According to Gupta (2017), “Monsanto poured more than $1.5 billion into research
and development efforts last year to design better quality corn seeds and products...’In our breeding
efforts and biotech efforts, we’re making sure our products can withstand that extreme weather,’
explains Pam Strier, Monsanto’s sustainability chief.” In 2019, Syngenta allocated $2 billion toward
developing technologies that will “help farmers prepare for and tackle the increasing threats posed
by climate change” (Syngenta, 2019). Biotechnology companies also note the fact that demand has
grown for climate-resilient seeds—relative to other varieties—because of how essential they are when
the environment is unfavorable: “As the Midwest’s climate grows hotter, Monsanto notes there’s
demand for seeds that can thrive in warmer and more extreme environments” (Gupta, 2017).

A particularly illustrative case study was the North American Drought of 2012-2013 in the US
Plains. Within two years of the drought, Monsanto released the corn variety Genuity DroughtGard
Hybrids and Pioneer-DuPont released Optimum AQUAmax, both of which were designed to remain
productive in low-moisture environments. As reviewed earlier in this section, both technologies were
based on breeding and scientific advances that took place prior to the drought. Nonetheless, their
implementation as marketable products was possibly influenced by the emergent need. In the words
of Connie Davis, corn systems technology development manager for Monsanto:

[We had] great timing to get those hybrids out when we actually saw severe to exceptional
drought in the Western Great Plains. We focused on the field corn just because that was
the biggest need... (Daniels, 2015)

These specific events are consistent with broader trends of improved drought performance in 2012-
2013 compared to a similar drought event in 1988 (Eisenstein, 2013) and, more obviously, relative to
the disastrous droughts that instigated the Dust Bowl of the 1930s (Schaper, 2012).

These patterns are not restricted to maize, or even to staple grains and oilseeds. A news report by
Daniels (2015) surveys breeding investments by Monsanto and DuPont Pioneer toward developing
heat- and drought-resistant fruit and vegetable varieties in California. Genetic modification technol-
ogy, in particular, allows for feasible transferal of drought-resistance “discoveries” from one crop to
another. Raza et al. (2019) surveys several examples of successful traits that have been applied toward
many crops. One example already given was the CSP-expression gene essential to DroughtGard.

Finally, it is worth noting that the public sector and universities are also involved in this innovative
push. In the Request for Applications for the US Department of Agriculture’s “Specialty Crop
Research Initiative,” a recurring grant available for agricultural science, “Climate adaptation” is listed
as a targeted “critical need.” Researchers at the University of California, Davis, for example, received
a $4.5 million grant from the SCRI in 2015 to “support a multidisciplinary research program aimed at
leveraging new technologies to sustain the supply of lettuce in spite of changes in climate” (Filmer,
2015). As one additional example, recent advances led by researchers at the University of Chicago in
RNAde-methylation, and their application to rice and potato cultivars, potentially drastically increase
crop yields as well as tolerance to extreme climate (Yu et al., 2021).
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F Crop Switching, Market Size, and Innovation

Our main analysis studies the relationship between temperature distress and innovation holding the
pre-period distribution of crops fixed. However, farmersmay re-allocate land across crops in response
to temperature-induced productivity changes. Moreover, the presence of systematic re-allocation of
land toward certain crops opens a second potential channel throughwhich temperature changemight
affect innovation.

In this sectionwe (i) empirically document that this re-allocationhas occurredbut that re-allocation
has been small in magnitude, (ii) show that controlling for predicted and actual changes in crop-level
planted area does not affect our baseline results, and (iii) show that nevertheless temperature-induced
changes in market size predict crop-level innovation as suggested by the theory.

F.1 County-level Reallocation

The first sub-question that needs to be answered is whether climate incidence predicts re-allocation
of land in particular areas away from more damaged crops and toward less-damaged crops. Let
Area1959

k ,i be the area planted for crop k in county i in 1959 and let Area2012
k ,i be the same in 2012. For all

county-by-crop observations we estimate the following specification:40

asinh(Area2012
k ,i ) � αks + δi + ψ · asinh(Area1959

k ,i ) + π · ∆ExtremeExposurek ,i + εk ,i (F.1)

where αks are crop-by-state fixed effects and δi are county fixed effects. The inclusion of county fixed
effects absorbs the fact that certain countries have becomemore or less agricultural overall since 1959.
The coefficient π measures the extent to which local temperature distress induces switching away
from a particular crop. Crucially, since ourmeasure of ExtremeExposurek ,i relies only on temperature
realizations and crop-level physiology, ewe canmeasure ExtremeExposurek ,i for all county-crop pairs
even if the crop is not grown in the county during the pre period. Thus, the specification allows us to home
in on the effect of crop-by-county specific climate distress on production allocation.

If crop allocation choices indeed have reacted to changes in temperature, we would hypothesize
that π < 0. This captures both the fact that production has declined where temperature change has
made cultivation less productive and that production has increased where temperature change has
made cultivationmore productive. Wefind that π is negative and statistically significant, as predicted,
but that it is small in magnitude. A one standard deviation increase in crop-by-county temperature
distress reduces planted area by just 0.018 standard deviations. Thus, we find that crop allocation has
reacted to temperature distress as wemeasure it, but the reallocation of production has been limited.

40The specialization to counties with more planted area, we found, dramatically increases the fit of this first regression,
in part because it removes the "obvious" zeros (e.g., regardless of the effects of climate change, there will not likely by any
significant sorghum cultivation in New York County (Manhattan)).
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Table F1: Crop Switching and Technology Development
(1) (2) (3) (4) (5) (6) (7) (8)

Δ	ExtremeExposure 0.0178*** 0.0139*** 0.0217*** 0.0235*** 0.0135*** 0.00998*** 0.0112*** 0.0105**
(0.00486) (0.00374) (0.00594) (0.00687) (0.00381) (0.00344) (0.00402) (0.00435)

log	EE-Predicted	Natl.	Area 0.536* 0.325 0.523** 0.506**
(0.275) (0.248) (0.209) (0.214)

log	Natl.	Area	(endogenous	control) 0.268*** 0.285*** 0.273*** 0.275***
(0.0414) (0.0546) (0.0577) (0.0598)

Log	1959	area	harvested Yes Yes Yes Yes Yes Yes Yes Yes
Pre-period	climate	controls No Yes Yes Yes No Yes Yes Yes
Pre-period	varieties No No Yes Yes No No Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No No Yes No No No Yes
Observations 55 55 55 55 55 55 55 55

Dependent	Variable	is	New	Crop	Varieties	

Notes :	The	unit	of	observation	is	a	crop.	In	columns	1-4,	we	include	log	of	crop-level	planted	area	predicted	by	the	empirical	
model	of	temperature	change	induced	crop	switching.	In	columns	5-8,	we	include	log	of	crop-level	planted	area	in	2012	as	
measured	from	the	Census	of	Agriculture.	The	additional	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	
column.		Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	
levels.	

F.2 Crop Switching and Innovation

Next, we investigate whether accounting for crop-level changes in planted area affect our baseline
estimates. For each county in the sample, we use the estimation of Equation (F.1) to predict the area
devoted to each crop in each county in 2012: EArea

2012
k ,i . We then aggregate these estimate to compute

a measure of “predicted national area” for each crop in 2012 due to changes in extreme temperature
exposure:

EE-PredictedArea2012
k :�

∑
i

EArea
2012
k ,i (F.2)

This captures the area harvested for each crop in 2012—our proxy for market size—as predicted
by changing crop allocations in response to temperature change. Next, we estimate an augmented
version of Equation (4.2) in which we control directly for changes in crop-level market size:

New Seedsk � exp
{
β · ∆ExtremeExposurek + β

MS
· log

(
EE-PredictedArea2012

k

)
+ ΓX′k + εk

}
(F.3)

Our new coefficient of interest βMS captures the impact of temperature-induced expansions in crop
market size on innovative output. The control vector X′k always includes the log of 1959 area planted
for each crop. This ensures that the coefficient βMS measures the effect of expanded market size
holding fixed initial market size. Estimates of Equation F.3 are reports in columns 1-4 of Table F1. The
first key finding is that controlling for temperature-induced changes in market size have virtually no
impact on β, the relationship between temperature distress and variety development. Our baseline
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estimates are not biased by changes in planted area. The second key finding is that, intuitively, βMS is
positive; moreover, is is statistically distinguishable from zero in three of the four specifications. This
suggests that temperature-induced market expansion is an independent and potentially important
channel through which climate change affects patterns of innovation.

As a final check that our baseline estimates operate independently from crop-level changes in
planted area over the sample period, in columns 5-8 of we control directly for themeasured changes in
the planted area of each crop. While this qualifies as a “bad control” and as a result this specification
comes with all the associated caveats, it is reassuring that the relationship between temperature
distress and variety development remains very similar after accounting for endogenous changes in
planted area.
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G Global Analysis

In this section, we describe our investigation of the relationship between global temperature distress
and US innovation. We first explain our strategy for measuring crop-level exposure to extreme
temperatures around the world, and then we describe our main findings using this global data.

G.1 Measurement

Our strategy for measuring crop-level exposure to changes in extreme temperature consists of com-
bining global temperature data from Muñoz-Sabater et al. (2021) with global geo-coded crop-level
planting data from Monfreda, Ramankutty and Foley (2008). Muñoz-Sabater et al. (2021) is the
fifth-generation data set produced by the European Centre for Medium-Range Weather Forecasts,
in collaboration with the European Commission and Copernicus Climate Change Service. It is a
reanalysis data set that combines weather observations from around the world with model data in
order to generate a complete global gridded temperature data set at the hourly level with a grid size
of 0.25 degrees. The data are reported from 1979 to the present, and so for our global analysis we
focus on long-difference specifications comparing the 1980s to the 2010s.

The Monfreda, Ramankutty and Foley (2008) data set, also known as the EarthStat Database,
was created by combining national, state, and county level census data with crop-specific maximum
potential yield data, to construct a 5-by-5 minute grid of the area devoted to each crop circa 2000. Our
final sample consists of the 36 crops that are both represented in Monfreda, Ramankutty and Foley
(2008) and our own baseline sample.

Combining the two sources of data, we measure the change in each crop’s extreme-heat exposure
in all countries outside of the US (∆ExtremeExposureROWk ) exactly as described for the US in Section
3.2 of the paper.

G.2 Results

Figure G1 plots the cross-crop relationship between the change in extreme heat exposure in the US
and in the rest of the world, which is almost completely flat. The set of crops most damaged by high
temperatures in the US is a very different set from that most affected by extreme heat in the rest of the
world, suggesting that crop-specific adaptation technology developed for the US may not be meeting
themost pressing needs around theworld. This finding is a first indication that extreme-heat exposure
in the rest of the world does not bias or mediate our baseline estimates since it is uncorrelated with
crop-level extreme-heat exposure in the US.

Next, in Table G1, we investigate the impact of exposure to extreme heat outside of the US on new
variety development in our baseline specification. In column 1, we re-produce our baseline estimates
of the relationship between extreme heat exposure in the US and new variety development using only
the restricted sample of crops that are part of the global analysis. The relationship remains positive,
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Figure G1: Crop-Level Extreme-Heat Exposure: US vs. the Rest of the World
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Notes: This figure plots the relationship between crop-level ∆ExtremeExposure, computed from the
1980s to the 2010s, in the US compared to the rest of the world. To compute both sets of values,
we combine temperature data from Muñoz-Sabater et al. (2021) with crop-level planting data from
Monfreda, Ramankutty and Foley (2008).

significant, and similar in magnitude on this restricted sample. In the second column, we include
∆ExtremeExposureROWk in the regression. The estimate of the coefficient on ∆ExtremeExposureROWk

is statistically indistinguishable from zero and, if anything, negative. Probing the estimate in greater
detail, we find that the negative point estimate is driven entirely by the US staple crops wheat, corn,
and soy, which have been the subject of substantial innovation but have been relatively less affected
by damaging temperature trends in the rest of the world. When we control for an indicator variable
that equals one for these three crops (column 3), the coefficient estimate on ∆ExtremeExposureROWk

declines by roughly two-thirds and is very close to zero.
The null effect of ∆ExtremeExposureROWk is not driven by differences in the data sources and

measurement strategy that we use to measure extreme-heat exposure outside of the US. In Panel A
of Table G2, we replicate the paper’s main results using the measurement strategy described in this
section. There is a positive and significant relationship between crop-level extreme-heat exposure in
the US and innovation, and the estimate is similar after controlling directly for trends in pre-period
innovation (column 2) and the quadratic polynomial in each crop’s temperature cut-off (column 3).
In Panel B, we show that in the exact same specifications there is no relationship between crop-level
extreme-heat exposure outside of the US and technology development.

Taken together, these results indicate that our main estimates are not affected or mediated by
crop-level temperature distress outside the US. More speculatively, they instead indicate that US
innovation responds responds substantially more strongly (if not exclusively) to climate distress in
the US. This dovetails with a growing body of work that documents strong home bias in technology
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Table G1: Temperature Distress and Innovation: US vs. the Rest of the World
(1) (2) (3)

Δ	ExtremeExposure	in	the	US,	1980s-2010s 0.0183*** 0.0178*** 0.0138**
(0.00644) (0.00664) (0.00674)

Δ	ExtremeExposure	in	the	Rest	of	the	World,	1980s-2010s -0.0226 -0.00787
(0.0150) (0.0154)

Log	area	harvested	in	the	US Yes Yes Yes
Log	area	harvested	in	the	rest	of	the	world No Yes Yes
US	staple	crop	indicator No No Yes
Observations 36 36 36

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	
released	from	1980	to	the	present.	The	controls	included	in	each	specification	are	noted	at	the	bottom	of	
each	column.	US	staple	crops	are	defined	as	corn,	wheat,	and	soy.	In	the	first	column,	we	estimate	the	
relationship	between	our	baseline	measure	of	extreme	heat	exposure	and	new	variety	releases	on	the	
restricted	subsample	used	for	the	global	analysis.	In	columns	2-3,	we	also	include	extreme	heat	exposure	
measured	in	the	rest	of	the	world.		Robust	standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table G2: US vs. the Rest of the World: Sensitivity

(1) (2) (3)

Δ	ExtremeExposure	in	the	US,	1980s-2010s 0.0376** 0.0311** 0.0336**
(0.0147) (0.0123) (0.0131)

Observations 34 34 34

Δ	ExtremeExposure	in	the	Rest	of	the	World,	1980s-2010s -0.0174 -0.0141 -0.0116
(0.0179) (0.0167) (0.0204)

Observations 36 36 36
Log	area	harvested	from	EarthStat Yes Yes Yes
US	Staple	Crop	Indicator Yes Yes Yes
Pre-period	varieties No Yes Yes
Cut-off	temp.	and	cut-off	temp	sq. No No Yes

Panel	A:	Temperature	Distress	in	the	US

Panel	B:	Temperature	Distress	in	the	Rest	of	the	World

Dependent	Variable	is	New	Crop	Varieties

Notes:	The	unit	of	observation	is	a	crop.	The	outcome	variable	is	the	number	of	crop-specific	varieties	released	
from	1980	to	the	present.	The	controls	included	in	each	specification	are	noted	at	the	bottom	of	each	column.	US	
staple	crops	are	defined	as	corn,	wheat,	and	soy.		In	Panel	A,	the	independent	variable	of	interest	is	crop-level	
extreme	temperature	exposure	in	the	US	computed	using	the	ERA-5	temperature	data	and	EarthStat	data	on	crop	
planting	patterns,	in	Panel	B	the	independent	variable	of	interest	is	crop-level	extreme	temperature	exposure	
outside	of	th	US	computed	using	the	ERA-5	temperature	data	and	EarthStat	data	on	crop	planting	patterns.		Robust	
standard	errors	are	reported	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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development (Costinot et al., 2019; Moscona and Sastry, 2022). Moreover, especially since the US
represents a large share of global agricultural innovation, these findings indicate that the rest of the
world may benefit substantially less from climate-induced adaptation technology and international
technological spillovers. While a full analysis of global innovation and technology diffusion is beyond
the scope of this paper, these topics strike us as an important area for future research.
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H Modeling Crop Choice in the Counterfactual

In this section we explore the possibility that the pattern of crop switching might shape the impact
of climate change in future climate scenarios. To project future crop allocations and the extent to
which they change as a result of temperature change, we return to our estimates from Section F.1
and use these alongside our measures of predicted future exposure to extreme temperature at the
crop-by-county level.

Using measures of extreme exposure ∆ExtremeExposurek ,i (d , r) for each decade d ∈ {2050, 2090}
and for each RCP r ∈ {4.5, 6.0, 8.5} we estimate Areak ,i (d , r) as:

asinh(Areak ,i (d , r)) � α̂ks + δ̂i + ψ̂ · asinh(Area2012
k ,i ) + π̂ · ∆ExtremeExposurek ,i (d , r) + εk ,i (H.1)

where estimated coefficients (denoted with a hat) are from Equation F.1 and recall π̂ < 0. We use
these predicted future areas under each climate scenario in our analysis of how crop switching might
affect our estimates of the causal effect of technology development on climate damage. That is, we
re-estimate our counterfactuals after assuming that planting patterns correspond to this endogenous
allocation as predicted by changing temperature realizations. As reported in Section 4.3.6, we find
lower estimates of climate damage under this scenario, but percent mitigation that is comparable to
our baseline (18.9%).
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