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Abstract

Economic theories often progress through the discovery of “anomalies.” Canonical
examples of anomalies include the Allais Paradox and the Kahneman-Tversky choice
experiments, which are constructed menus of lotteries that highlighted particular flaws
in expected utility theory and spurred the development of new theories for decision-
making under risk. In this paper, we develop algorithmic procedures to automatically
generate such anomalies. Our algorithmic procedures take as inputs an existing theory
and data it seeks to explain, and then generate examples on which we would likely ob-
serve violations of our existing theory if we were to collect data. As an illustration, we
produce anomalies for expected utility theory using simulated lottery choice data from
individuals who behave according to cumulative prospect theory. Our procedures re-
cover known anomalies for expected utility theory in behavioral economics and discover
novel anomalies based on the probability weighting function. We conduct incentivized
experiments to collect choice data on our algorithmically generated anomalies, finding
that participants violate expected utility theory at similar rates to the Allais Paradox
and Common Ratio Effect. While this illustration is specific, our anomaly generation
procedures are general and can be applied in any domain where there exists a formal
theory and rich data that the theory seeks to explain.
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1 Introduction

Anomalies play a central role in improving economic theories. An anomaly is neither a

hypothesis test nor a test statistic for whether an existing model is misspecified.1 But rather

it is a carefully constructed example that provides clues as to how or why a theory may

fail empirically. In this paper, we ask whether machine learning can automatically generate

anomalies for our existing economic theories.

As a concrete example, consider the field of decision-making under risk. Shortly after the

axiomatization of expected utility theory (von Neumann and Morgenstern, 1944), questions

arose surrounding its descriptive accuracy: how well does expected utility theory describe the

risky choices of people? To illustrate a possible empirical weakness, Allais (1953) produced

the now celebrated “Allais Paradox,” which is a hypothetical pair of menus of lotteries and

choices depicted in Table 1. The hypothetical menus in the Allais Paradox are crafted so

(a) Menu A

Lottery 0 $1 million
100%

Lottery 1 $1 million $0 $5 million
89% 1% 10%

(b) Menu B

Lottery 0 $0 $1 million
89% 11%

Lottery 1 $0 $5 million
90% 10%

Table 1: Menus of lotteries in the Allais Paradox (Allais, 1953).

Notes: We highlight in green the hypothetical choices on these two menus. Allais (1953) originally denomi-
nated the payoffs in French Francs, and we reproduce the version of the Allais Paradox used in Slovic and
Tversky (1974).

that expected utility theory restricts the possible choices across the two menus. Due to the

independence axiom, the only choices that are consistent with expected utility theory are

selecting lotteries (A0, B0) or lotteries (A1, B1). Allais conjectured that many individuals

would, in fact, select lotteries (A0, B1), and indeed researchers subsequently found this to

be true empirically (e.g., Slovic and Tversky, 1974; Kahneman and Tversky, 1979; Huck

and Müller, 2012).2 This was only the beginning as researchers steadily accumulated more

anomalies for expected utility theory.3 Eventually, Tversky and Kahneman (1992) suggested

1Constructing test statistics and hypothesis tests for model misspecification is a celebrated and founda-
tional literature in econometrics and economic theory. See, for example, Sargan (1958); Afriat (1967, 1973);
Hansen (1982); Varian (1982); Conlisk (1989); Choi et al. (2014); Bugni, Canay and Shi (2015); Kitamura
and Stoye (2018); Polisson, Quah and Renou (2020); Dembo et al. (2021) among many others.

2Blavatskyy, Ortmann and Panchenko (2022) conducted a meta-analysis of 81 experiments in 29 papers
that test variations of the Allais Paradox, finding that its empirical strength depends on features of the
experimental design, such as whether the payoffs are real vs. hypothetical, etc.

3For example, Allais (1953); Kahneman and Tversky (1979) produced the Certainty Effect or Common
Ratio Effect, Slovic and Lichtenstein (1983); Tversky and Thaler (1990) produced anomalies to highlight

1



that cumulative prospect theory could resolve many of these anomalies. Armed with a new

theory, the cycle repeats itself: researchers have since crafted new anomalies, suggesting

elements that were missing from cumulative prospect theory that in turn prompted the

development of new theories of choice under risk.4

Indeed the field of decision-making under risk is not exceptional, as anomalies have

played a crucial role in the development of game theory, asset pricing, and many other fields.

Scientific discovery in economics often advances through the generation of anomalies that

highlight possible inconsistencies between theories and nature. As anomalies are generated,

researchers invest great effort in robustly evaluating them and developing improved theories

to resolve them.

Anomalies are generated through a creative process that involves both empirical intuition

and an existing theory. A researcher like Allais first builds an empirical intuition about how

people behave and contrasts their intuitions with an existing theory. In order to highlight any

discrepancies, the researcher then carefully crafts an anomaly, or a concrete example where

the theory’s predictions differ from what they believe to be the likely empirical patterns. We

rely on researchers for each of these steps.

In this paper, we develop algorithmic procedures to automate this anomaly generation

process. Like a researcher, our procedures take as input an existing theory. But additionally,

our procedures take in rich data that the theory seeks to explain and use supervised machine

learning algorithms to build a predictive model. The resulting black box, predictive model

serves as our procedures’ empirical intuition, exploiting the fact that supervised machine

learning algorithms often uncover novel predictive signals that we may overlook ourselves

and our existing theories may not capture.5 Our procedures then automatically contrast the

predictive model with the existing theory and return anomalies – small, generated datasets

on which we would likely observe violations of our existing theory if we were to collect data.

To build these algorithmic procedures, we must first develop an econometric framework

for anomaly generation that abstracts from any particular economic domain. As mentioned,

anomalies play a key role, for example, in choice under risk, game theory, and asset pricing,

framing effects and preference reversals, and finally Kahneman and Tversky (1984); Tversky and Kahneman
(1991) produced anomalies to highlight loss aversion.

4Recent examples include salience theory (Bordalo, Gennaioli and Shleifer, 2012, 2022), betweenness
preferences and certainty independence (Cerreia-Vioglio, Dillenberger and Ortoleva, 2015, 2020), simplicity
preferences (Oprea, 2022; Puri, 2022), and cognitive uncertainty (Enke and Graeber, 2023; Enke and Shubatt,
2023).

5Mullainathan and Spiess (2017); Athey (2017); Camerer (2019) provide broad overviews on the role of
machine learning in economics. See Peysakhovich and Naecker (2017); Peterson et al. (2021) for applications
in choice under risk and uncertainty, Hartford, Wright and Leyton-Brown (2016); Wright and Leyton-Brown
(2017); Fudenberg and Liang (2019); Hirasawa, Kandori and Matsushita (2022) in strategic behavior in
normal-form games, and Gu, Kelly and Xiu (2018); Kelly and Xiu (2023) in asset pricing.

2



yet theories across these economic domains share little resemblance. Expected utility theory

is a collection of axioms that restrict preference relations over lotteries, Nash equilibrium is an

equilibrium condition on choices in normal-form games, and the capital asset pricing model is

a model of homogeneous investors optimizing in a frictionless marketplace. An econometric

framework for anomaly generation must therefore capture this immense diversity of economic

theories.

To tackle this challenge, we abstractly model theories as black box mappings, which, when

given any finite dataset, return correspondences that summarize their derived implications

between some features and modeled outcomes. Expected utility theory, for example, derives

implications about an individual’s choice behavior from datasets of menus of lotteries and

choice probabilities. We introduce four assumptions on such theory mappings and then

establish two results. First, for any theory satisfying these assumptions, there exist anomalies

or minimal datasets that would be incompatible with the theory if observed like the Allais

Paradox. Second, any theory satisfies these assumptions if and only if it can be equivalently

represented as an allowable function class. A theory’s allowable function class summarizes

all mappings between the features and the theory’s modeled outcome that are consistent

with its underlying structure (whatever that may be). Any theory can therefore be analyzed

as if it searches for allowable functions that are consistent with any given dataset.

Given the tractable characterization of theories based on their allowable function classes,

we next ask how we can search for anomalies. We observe that anomaly generation can be

interpreted as an adversarial game between a falsifier and the theory. Given an estimated

prediction function, the falsifier proposes conjectured datasets, or finite collections of features

and the estimated prediction function evaluated on those features, and the theory attempts

to explain those conjectured datasets by fitting an allowable function. The falsifier’s payoff

is increasing in the theory’s average loss on the proposed dataset, and the theory’s payoff is

decreasing in its average loss. We show that anomalies can be characterized as conjectured

datasets that induce a strictly positive, average loss for the theory in such a game.

Based on this characterization, our first anomaly generation procedure directly optimizes

the falsifier’s adversarial problem as a max-min optimization program over a theory’s allow-

able functions. We analyze the statistical properties of this feasible implementation of the fal-

sifier’s max-min program, establishing finite-sample bounds on how well it approximates its

population analog. Furthermore, practically optimizing this max-min program may be chal-

lenging – the falsifier’s maximization over proposed datasets will typically be non-concave,

and so standard techniques may not apply (e.g., Rockafellar, 1970; Freund and Schapire,

1996). We therefore leverage recent results in adversarial learning and non-convex/concave

min-max optimization to develop a gradient descent ascent procedure and analyze its conver-
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gence properties (Jin, Netrapalli and Jordan, 2019; Razaviyayn et al., 2020). The resulting

gradient descent ascent procedure generates anomalies by iteratively updating the falsifier’s

conjectured dataset to maximize the average loss of the theory’s best-responding allowable

function.

While this adversarial procedure exploits nothing beyond the theory’s allowable func-

tions, there in fact exists additional structure for anomaly generation. We introduce con-

ditions under which any theory has a non-trivial, lower-dimensional representation of the

features; that is, there exists some pair of feature values that all allowable functions assign

the same modeled outcome value and it is as if the theory collapses these features together.

As a consequence, some anomalies, like the Allais Paradox, reveal what we call representa-

tional errors that the theory’s lower dimensional representation has failed to capture some

relevant dimension along which modeled outcomes systematically vary. We develop a dataset

morphing procedure to generate representational anomalies for a theory, if they exist. Given

an initial feature value, the dataset morphing procedure locally searches for nearby feature

values that are representationally equivalent under the theory but across which the estimated

prediction function varies.

As an illustration, we apply our anomaly generation procedures to the domain of choice

under risk, returning to our motivating example of anomalies for expected utility theory. We

explore what anomalies for expected utility theory would be uncovered by our procedures

if given simulated lottery choice data from an individual whose choices are consistent with

cumulative prospect theory. Since the properties of cumulative prospect theory have been

well-studied by behavioral economists, we can compare and contrast our algorithmically

generated anomalies against known anomalies for expected utility theory, such as those

produced in Allais (1953), Kahneman and Tversky (1979), and others.

Our anomaly generation procedures recover known anomalies for expected utility theory,

such as first-order stochastic dominance violations that are implied by particular parame-

terization of the probability weighting function. More importantly, thought, our anomaly

generation procedures uncover novel anomalies for expected utility function that are implied

by non-linearities in the probability weighting function. We categorize these novel anomalies

and refer to them as a “dominated consequence effect,” a “reverse dominated consequence

effect,” and a “strict dominance effect.” These are all anomalies for expected utility theory

that involve two menus of two lotteries and mixing lotteries with particular certain prospects.

Provided the lotteries have only two monetary payoffs, the dominated consequence effect is

a generalization of the well-known Common Ratio Effect. The other two anomaly categories

cannot be cast as examples of either the Common Consequence Effect or Common Ratio

Effect, and so these anomaly categories are genuine discoveries about the properties of the
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probability weighting function. These categories, to our knowledge, have not been noticed

before in Allais (1953), Kahneman and Tversky (1979), or elsewhere.

We emphasize that the primary contribution of our work is to develop procedures for

the automatic generation of anomalies. Yet having algorithmically generated anomalies for

expected utility theory that are implied by properties of the probability weighting function,

one cannot help but wonder: do these anomalies for expected utility theory also hold em-

pirically? Investigating this question is where the anomaly generation process ends, and

the careful experimental work that is the hallmark of behavioral economics begins. Indeed,

generating anomalies and then rigorously testing them by collecting new data is a valuable

activity in evaluating our existing theories.

Fully establishing the empirical robustness of our novel categories of anomalies is ob-

viously beyond the scope of the present paper. As a first step, we experimentally test

our algorithmically generated anomalies, recruiting participants on Prolific to make incen-

tivized choices between these lotteries. Participants’ choices on our algorithmically generated

anomalies violate expected utility theory at similar rates to known anomalies like the Al-

lais Paradox and the Common Ratio Effect (e.g., Harless and Camerer, 1994; Blavatskyy,

Ortmann and Panchenko, 2022; Blavatskyy, Panchenko and Ortmann, 2022; McGranaghan

et al., Forthcoming). Our algorithmically generated anomalies hold empirically, at least to

the same benchmark as existing anomalies for expected utility theory. Our data suggest

these new anomalies merit the kind of rigorous experimental scrutiny that has given to other

known anomalies for expected utility theory.

This specific application illustrates the broader potential for our anomaly generation

procedures. Their success in generating novel anomalies in a well-trodden domain like choice

under risk suggests they could be valuable in many other areas. Indeed, our algorithmic

procedures are broadly applicable and can be used in any domain where there exists a

formal theory and rich data that the theory seeks to explain. Furthermore, our procedures

exploit the fact that supervised machine learning algorithms often uncover novel empirical

patterns, ones that our existing theories may not capture. Rather than leaving us with a

black box predictive algorithm, however, our procedures return anomalies – small generated

datasets that may help researchers evaluate and improve theories.

Related work: This paper is part of a growing literature that seeks to integrate machine

learning into the scientific process across various fields. Carleo et al. (2019); Raghu and

Schmidt (2020); Pion-Tonachini et al. (2021); Krenn et al. (2022) provide recent reviews

on the use of machine learning in physical sciences, such as biology, chemistry, and physics.

Substantial progress has already been made in exploring how machine learning interacts with
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economic theories. Several recent papers compare the out-of-sample predictive performance

of black-box machine learning models against that of economic theories in domains, such as

choice under risk and strategic behavior in normal form games, measuring the “completeness”

of economic theories (Fudenberg et al., 2022). Andrews et al. (2022) develops conformal

inference procedures to measure the out-of-distribution predictive performance of economic

theories. When a supervised machine learning model predicts some outcome of interest

accurately out-of-sample, researchers often attempt to open the black-box prediction function

and investigate particular properties (Camerer, 2019). See, for example, Peysakhovich and

Naecker (2017) and Peterson et al. (2021) for choice under risk, Wright and Leyton-Brown

(2017); Hirasawa, Kandori and Matsushita (2022) for strategic behavior in normal-form

games, Mullainathan and Obermeyer (2021) for medical decision-making, and Kleinberg

et al. (2018); Sunstein (2022) for judicial decision-making. By contrast, we use supervised

machine learning algorithms as stepping stones to automatically generate anomalies for an

existing theory, rather than relying on researchers to directly inspect the black box prediction

function.

Fudenberg and Liang (2019) use supervised machine learning algorithms to predict on

which normal-form games observed play will differ from alternative theories of strategic

behavior and then generate new normal-form games where a particular theory will predict

poorly. This intuitive procedure can be formally reinterpreted as a heuristic solution to our

adversarial characterization of anomalies tailored to the models of strategic behavior they

study. Ludwig and Mullainathan (2023) develop a morphing procedure for images based on

generative adversarial networks in order to uncover implicit characteristics of defendant mug-

shots that affect pretrial release decisions. Our adversarial learning and dataset morphing

procedures are general-purpose procedures that enable researchers to search for anomalies

given any formal theory.

2 Theories and the Anomaly Generation Problem

Theories derive implications about the relationship between some features and modeled out-

comes by positing some underlying structure. Yet how theories mathematically model their

underlying structure varies greatly, and an econometric framework for anomaly generation

must somehow capture this diversity. In this section, we analyze theories as black box map-

pings that return correspondences between the features and modeled outcome from any finite

dataset. We establish two results on the properties of these black boxes that serve as the

foundation of our algorithmic procedures for anomaly generation.
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2.1 Setting and theories

Let x ∈ X be some vector of features, y∗ ∈ Y some modeled outcome, andD = {(x1, y
∗
1), . . . , (xn, y

∗
n)}

a finite modeled dataset in a scientific domain. We let D denote the collection of all mod-

eled datasets, F the collection of all mappings f(·) : X → Y∗, and C the collection of all

correspondences c(·) : X ⇒ Y∗.

Definition 1. A theory consists of the pair (T (·),M), where T (·) : D → C is a mapping

from modeled datasets to correspondences between the features and modeled outcome, and

M is some finite set with elements m ∈M.

Rather than focusing on any particular mathematical model, we define a theory as a reduced-

form mapping. Given any modeled dataset D ∈ D, a theory T (·) returns a correspondence

summarizing all implications it draws about the relationship between the features and mod-

eled outcome. We write T (·;D) ∈ C to be the theory’s correspondence when applied to

modeled dataset D ∈ D, and T (x;D) ⊆ Y∗ to be the theory’s implications about the mod-

eled outcome at feature x ∈ X . All else about the scientific domain is collapsed into modeled

contexts m ∈M. The theory refines its underlying structure within a modeled context and

does not extrapolate across modeled contexts. We take a theory’s modeled contextsM as a

primitive throughout the paper, and we focus on the behavior of its correspondence T (·).
Definition 1 is necessarily abstract in order to capture the diversity of theories in eco-

nomics. To make it concrete, we next illustrate how two popular domains in economic theory

map into this framework. In Appendix C, we provide additional examples such as choice

under risk over certainty equivalent or valuation tasks, asset pricing, and multi-attribute

discrete choice.

Example: choice under risk Consider individuals making choices from menus of two

lotteries over J > 1 monetary payoffs (e.g., Allais, 1953; Kahneman and Tversky, 1979;

Erev et al., 2010, 2017; Peysakhovich and Naecker, 2017; Peterson et al., 2021, among many

others). The features are a complete description of the menu of lotteries x = (z0, p0, z1, p1),

where z0, z1 ∈ RJ are the payoffs and p0, p1 ∈ ∆J−1 are the probabilities associated with

lottery 0 and lottery 1 respectively. The features may also, for example, include information

about how each lottery is presented (e.g., presented as a two-stage lottery), the ordering

of lotteries in the menu, or measures of the lottery’s complexity (e.g., Enke and Graeber,

2023). The modeled outcome is the choice probability y∗ ∈ [0, 1] for lottery 1, and the

modeled contexts m ∈M are each individual.

Given a modeled datasetD, expected utility theory searches for utility functions u(·) that
“rationalize” the lottery choice probabilities, meaning y∗ ∈ argmaxk∈{0,1}

∑J
j=1 pk(j)u(zk(j))
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for all (x, y∗) ∈ D. On any new menu of lotteries x, expected utility theory returns T (x;D),

where y∗ ∈ T (x;D) if and only if y∗ ∈ argmaxk∈{0,1}
∑J

j=1 pk(j)u(zk(j)) for some utility

function u(·) rationalizing D.

In our framework, incorporating noise yields an alternative theory T (·). For exam-

ple, Harless and Camerer (1994) consider expected utility theory with idiosyncratic errors,

which searches for utility functions u(·) and idiosyncratic error rate ϵ ∈ [0, 0.5] satisfy-

ing y∗ = (1 − ϵ)1{
∑J

j=1 p1(j)u(z1(j)) ≥
∑J

j=1 p0(j)u(z0(j))} + ϵ1{
∑J

j=1 p1(j)u(z1(j)) <∑J
j=1 p0(j)u(z0(j))} for all (x, y∗) ∈ D. Ballinger and Wilcox (1997); Loomes (2005); Hey

(2005) consider expected utility theory with i.i.d. additive utility noise, McGranaghan et al.

(Forthcoming) consider a more general model of noisy expected utility theory, and Enke and

Shubatt (2023) consider expected utility theory with complexity-dependent noise. ▲

Example: play in normal-form games Consider individuals playing J × J normal-

form games (e.g., Costa-Gomes, Crawford and Broseta, 2001; Wright and Leyton-Brown,

2010; Crawford, Costa-Gomes and Iriberri, 2013; Hartford, Wright and Leyton-Brown, 2016;

Wright and Leyton-Brown, 2017; Hirasawa, Kandori and Matsushita, 2022, among many

others). Let {1, . . . , J} denote the actions available to the row and column players, πrow(j, j
′),

πcol(j, j
′) denote the payoff to the row player and column player respectively from action

profile (j, j′). The features are a complete description of the normal-form payoff matrix with

x = (πrow(1, 1), πcol(1, 1), . . . , πrow(J, J), πcol(J, J)). The modeled outcome is the row player’s

strategy profile, which is a probability distribution over actions y∗ ∈ ∆J−1. The modeled

contexts m ∈M are again each individual.

Given a modeled datasetD, Nash equilibrium returns T (x;D) satisfying y∗ = T (x;D) for

all (x, y∗) ∈ D and y∗ ∈ T (x;D) for any x /∈ D if and only if there exists some y∗col ∈ ∆J−1

such that
∑J

j=1

∑J
j̃=1 y

∗(j)y∗col(j̃)πrow(j, j̃) ≥
∑J

j=1

∑J
j̃=1 ỹ

∗(j)y∗col(j̃)πrow(j, j̃) for all ỹ∗ ∈
∆J−1 and

∑J
j=1

∑J
j̃=1 y

∗(j)y∗col(j̃)πcol(j, j̃) ≥
∑J

j=1

∑J
j̃=1 y

∗(j)ỹ∗(j)πcol(j, j̃) for all ỹ
∗ ∈ ∆J−1.

Alternatively, for example, “level-0” behavior defined in Stahl and Wilson (1995) is a theory

T (·) satisfying y∗ = T (x;D) for all (x, y∗) ∈ D and T (x;D) = (1/J, . . . , 1/J) if and only

if y∗ = (1/J, . . . , 1/J) for all (x, y∗) ∈ D. Alternative theories of strategic behavior such

as level-k behavior, the Poisson cognitive hierarchy model (Camerer, Ho and Chong, 2004),

and level-k(α) behavior (Fudenberg and Liang, 2019) can also be similarly cast as particular

theories T (·). ▲

2.2 Incompatible datasets and logical anomalies

A modeled dataset is incompatible with a theory T (·) if its underlying structure cannot

accommodate the configuration of features and outcomes. Otherwise, a modeled dataset is
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compatible with theory T (·).

Definition 2. A modeled dataset D ∈ D is

i. compatible with theory T (·) if T (x;D) ̸= ∅ for all x ∈ X .

ii. incompatible with theory T (·) if T (x;D) = ∅ for all x ∈ X .

It may be difficult for researchers to understand what drives the failure of the theory’s

underlying structure on any particular incompatible dataset. Researchers like Allais are not

simply interested in characterizing all possible incompatible datasets of a theory. But rather

they construct logical anomalies, which are incompatible datasets that satisfy an additional

property and we define next.

Definition 3. A modeled dataset D ∈ D is a logical anomaly for theory T (·) if D is

incompatible with theory T (·) and D̃ is compatible with theory T (·) for all D̃ ⊂ D.

A logical anomaly is a “minimal” incompatible dataset in the sense that T (·) is compat-

ible with any of its subsets. Consider again the Allais Paradox for expected utility theory

in Table 1. We discuss logical anomalies for our other examples in Appendix C. The Allais

Paradox is a particular modeled dataset that consists of the two menus xA, xB and associ-

ated modeled outcomes y∗A = 0, y∗B = 1. The independence axiom of expected utility theory

implies that the choice on menu xA determines the choice on menu xB and vice versa – that

is, T (xA;D) = T (xB;D) for any D ∈ D. The Allais Paradox is therefore an incompatible

dataset for expected utility theory. Furthermore, any single choice (xA, y
∗
A) or (xB, y

∗
B) is

compatible with expected utility theory, and so the Allais Paradox further satisfies Definition

3.

Whether a particular modeled dataset is a logical anomaly depends on the researcher’s

exact specification of theory T (·). As a simple example, a single observation (x, y∗) with

choice probability y∗ ∈ (0, 1) is a logical anomaly for expected utility theory without id-

iosyncratic errors (ignoring possible indifferences). This need not be a logical anomaly if

we incorporate alternative models of noisy choices, such as Harless and Camerer (1994);

McGranaghan et al. (Forthcoming); Enke and Shubatt (2023).

2.3 Representation result and existence of logical anomalies

We next introduce four assumptions on the properties of theory’s correspondence T (·). These
assumptions place restrictions on T (·) such that it behaves as-if it has some underlying

structure, whatever that may be.

Assumption 1 (Compatibility). T (·) is either compatible or incompatible with any D ∈ D.
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Assumption 2 (Consistency). If T (·) is compatible with D ∈ D, then T (x;D) = y∗ for all

(x, y∗) ∈ D.

Assumption 3 (Refinement). For any D,D′ ∈ D with D ⊆ D′, T (x;D′) ⊆ T (x;D) for all

x ∈ X .

Assumption 4 (Non-trivial implications). There exists D ∈ D and x /∈ D such that

T (x;D) ⊂ Y∗.

Assumption 1 states T (·) is either compatible or incompatible with any modeled dataset.

Assumption 2 states that whenever T (·) is compatible with a modeled dataset, it is consistent

with all of its observations. Assumption 3 states that the theory can only refine its implica-

tions as more observations are collected. Finally, Assumption 4 states that there exists some

modeled dataset and unseen feature at which theory T (·) derives non-trivial implications.

All of our previous examples of economic theories satisfy these assumptions. Consider

expected utility theory. Appendix C discusses our other examples. First, expected utility

theory satisfies Assumption 1 and Assumption 2. For any modeled dataset D of menus

and choice probabilities, either (i) there exists no rationalizing utility function in which case

expected utility theory is incompatible with D, or (ii) there exists a rationalizing utility

function. Second, for any pair D,D′ satisfying D ⊆ D′, the rationalizing utility functions for

D′ must be a subset of the rationalizing utility functions for D. This implies expected utility

theory satisfies Assumption 3. Finally, consider any (x, y∗) ∈ D with x = (p1, z1, p0, z0) and

y∗ ∈ {0, 1}. The independence axiom implies the same choice would be made on all other

menus x′ = (αp1 + (1− α)p̃, αz1 + (1− α)z̃, αp0 + (1− α)p̃, αz0 + (1− α)z̃) for any lottery

(p̃, z̃) and α ∈ [0, 1).6 Expected utility theory therefore satisfies Assumption 4.

For any theory T (·) satisfying Assumptions 1-4, we establish that there exists logical

anomalies and it can be equivalently represented by an allowable function class. To state

this result, we say a mapping f(·) ∈ F is consistent with modeled dataset D ∈ D if f(x) = y∗

for all (x, y∗) ∈ D. Modeled dataset D is inconsistent with function class F̃ ⊆ F if there

exists no f(·) ∈ F̃ that is consistent with D.

Proposition 2.1.

i. Any theory T (·) satisfies Assumptions 1-4 if and only if there exists a function class

FT ⊂ F that is inconsistent with some modeled dataset and satisfies, for all x ∈ X
and D ∈ D,

T (x;D) =
{
f(x) : f(·) ∈ FT and f(·) is consistent with D

}
. (1)

6We write the compound lottery that yields lottery (p, z) with probability α ∈ [0, 1) and lottery (p′, z′)
with probability (1− α) as (αp+ (1− α)p′, αz + (1− α)z′).
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ii. There exists logical anomalies for any theory T (·) satisfying Assumptions 1-4.

We call FT the allowable function class of theory T (·). The allowable function class FT

summarizes all mappings from features to the modeled outcome that are consistent with

theory T (·)’s underlying structure, however that may be mathematically modeled. As a

result, theory T (·) can be analyzed as-if it simply searches for any allowable functions f(·) ∈
FT that are consistent with any given modeled dataset D ∈ D. At this level of abstraction,
however, the functions in the allowable function class need not have any relationship to one

another. Furthermore, the theory is not compatible with all possible datasets – in fact, there

exists logical anomalies for any theory T (·) satisfying Assumptions 1-4. By establishing

the existence of logical anomalies and placing theories into a tractable allowable function

representation irrespective of its scientific domain or mathematical structure, Proposition

2.1 serves as the launching point of our subsequent analysis.

We provide the complete proof in Appendix B but we briefly sketch our proof strategy

here. It is clear that the allowable function representation (1) satisfies Assumptions 1-3.

To show it also satisfies Assumption 4, consider the smallest dataset Dmin ∈ D that is

inconsistent with FT (i.e., the fewest number of observations). For any (x, y∗) ∈ Dmin,

Assumption 4 is satisfied for D = Dmin \ {(x, y∗)} and x. For this choice, T (x;D) ⊂ Y∗

must be satisfied since otherwise FT could not be inconsistent with Dmin. This establishes

necessity. To show sufficiency, we construct an allowable function representation FT ⊂ F for

any theory T (·) satisfying Assumptions 1-4. To do so, we define D¬T as the collection of all

incompatible datasets for T (·), which is non-empty by Assumption 4. We define F¬T to be

the collection of all mappings that are consistent with any incompatible dataset D ∈ D¬T .

We construct the allowable functions as FT = F \ F¬T , and the proof establishes that this

construction satisfies Equation (1) at all D ∈ D and x ∈ X . This proves part (i). To show

part (ii), we establish that there exists a smallest incompatible dataset for theory T (·) and
this must also be an anomaly by Definition 3.

Incompatible datasets and logical anomalies have a simple characterization in terms of

a theory T (·)’s allowable functions.

Proposition 2.2. Suppose theory T (·) satisfies Assumptions 1-4, and consider any loss

function ℓ : Y∗ × Y∗ → R+ satisfying ℓ(y, y′) = 0 if and only if y = y′. Then,

i. Modeled dataset D ∈ D is incompatible with T (·) if and only if

min
f(·)∈FT

|D|−1
∑

(x,y∗)∈D

ℓ (f(x), y∗) > 0. (2)

ii. If there exist no incompatible datasets of size strictly less than n > 1, then any incom-
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patible dataset of size n is also an anomaly.

If given access to theory T (·)’s allowable functions, searching for incompatible datasets is

equivalent to searching for modeled datasets that induce a strictly positive loss for the

theory’s allowable functions. Furthermore, we can search for logical anomalies by iteratively

searching for larger incompatible datasets. This characterization of incompatible datasets

(5) can be interpreted as an adversarial game between the theory (the min-player) and a

falsifier. The falsifier proposes modeled datasets D to the theory, and the theory attempts

to explain them by fitting its allowable functions. The theory’s payoffs are decreasing in

its average loss over the modeled dataset, and the falsifier wishes to search for incompatible

datasets that induce a positive loss for the theory’s best-responding allowable function. We

next build on this characterization of logical anomalies to develop our anomaly generation

procedures.

Before continuing, our model of theories builds on a classic literature on measuring

the predictive success and restrictiveness of economic theories, tracing back to Selten and

Krischker (1983) and Selten (1991). Selten (1991) measures the predictive success of a theory

as the comparison between the fraction of correct predictions it makes and the fraction of

outcomes it deems possible. Harless and Camerer (1994) measures the predictive success

of alternative theories for decision-making under uncertainty over three pairs of lotteries

and proposes methods for aggregating evidence of predictive success across experiments.

See also Beatty and Crawford (2011) for an application to consumer demand. Fudenberg,

Gao and Liang (2020) measure the “restrictiveness” of economic theories, which generalizes

Selten’s definition. Our existence result for anomalies establishes that any black-box theory

satisfying our axiomatization must be restrictive in the sense that there exist some minimal

hypothetical datasets that it cannot explain.

2.4 Observable data and empirical anomalies

To this point, we analyzed the behavior of theory T (·) on modeled datasets D ∈ D. Our

goal is to ultimately contrast theory T (·) with nature in order to generate hypotheses about

how it may be improved empirically.

We suppose each modeled context m ∈ M is associated with some joint distribution

over (Xi, Yi) ∼ Pm(·), where Yi ∈ Y is some observed outcome. Our main assumption is the

observed outcome is statistically related to the theory’s modeled outcome Yi. We define the

empirical modeled outcome of theory T (·) as

f ∗
m(x) := Em [g(Yi) | Xi = x] (3)
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for some researcher-specified function g(·), where Em[·] denotes the expectation under Pm(·).
The empirical modeled outcome of theory T (·) is some identified functional of each modeled

context’s underlying joint distribution.

At first glance, it may seem odd to label this an assumption since it is the starting point of

much theoretically-motivated empirical work. Indeed, researchers often first estimate choice

probabilities from data on discrete choices, strategy profiles in normal-form games from data

on actions, or expected returns from data on historical realized returns. Yet it implies that

any residual variation in the observed outcome Yi given the observed features Xi within a

modeled context is irrelevant for the structure that the theory purports to model. We view

this as a desirable attribute of our framework. The choice of how to map the observable

data onto the theory’s modeled datasets is an important input by the researcher.

For the rest of the paper, our goal will be to discover candidate empirical anomalies for

theory T (·) in modeled context m, if they exist. Given modeled context m ∈ M with true

function f ∗
m(·), we search for empirical modeled datasetsD = {(x1, f

∗
m(x1)), . . . , (xn, f

∗
m(xn))}

that are logical anomalies for theory T (·).
Our discussion in the main text focuses on searching for empirical anomalies in a sin-

gle modeled context. In Appendix D, we extend our algorithmic procedures to search for

“average” empirical anomalies across multiple modeled contexts.

3 An Adversarial Algorithm for Anomalies

In this section, we develop our first procedure to generate empirical anomalies when given

access to a theory’s allowable functions FT and data that the theory seeks to explain.

Consider modeled context m ∈M with true function f ∗
m(·). For x1:n = (x1, . . . , xn), let

ETm(x1:n) := min
f(·)∈FT

n−1

n∑
i=1

ℓ(f(xi), f
∗
m(xi)) (4)

be theory T (·)’s loss over its allowable functions on the empirical modeled dataset D =

{(x1, f
∗
m(x1)), . . . , (xn, f

∗
m(xn))}. Proposition 2.2 establishes D is incompatible with T (·) if

and only if ETm(x1:n) > 0. Furthermore, it is also an empirical anomaly in modeled context m

if there exists no smaller empirical dataset incompatible with T (·). If we had oracle access to

the true function f ∗
m(·), we could therefore search for empirical anomalies by: first, searching

for empirical modeled datasets that are incompatible with T (·), or equivalently feature vec-

tors x1:n satisfying ETm(x1:n) > 0; and second, iterating that search over successively larger

dataset sizes n.

For any empirical dataset of size n ≥ 1, we can directly optimize the falsifier’s adversarial
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problem in the following optimization program

max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ(f(xi), f
∗
m(xi)), (5)

which searches for empirical datasets that generate large positive loss for the theory’s best-

responding allowable function (if they exist). We propose an iterative search for empirical

anomalies based on this max-min program. For some maximal dataset size n ≥ 1, we

iterate over n = 1, . . . , n and solve the adversarial game (5), letting n∗ denote the smallest

dataset size for which the optimal value of the max-min program is strictly positive. Any

empirical dataset x1:n∗ with ETm(x1:n∗) > 0 is an empirical anomaly by Proposition 2.2. We

can then search for other empirical anomalies by searching for other feature vectors in the

set {x1:n∗ : ETm(x1:n∗) > 0}.
Of course, this iterative search procedure is not directly feasible. First, we do not observe

the true function f ∗
m(·), and it instead must be estimated from the observable data. Second,

solving the max-min program may be quite difficult as both the inner minimization over

the theory’s allowable functions and the outer maximization over feature vectors may be

intractable. We tackle both of these challenges and construct a feasible search procedure for

empirical anomalies.

3.1 Statistical analysis of plug-in max-min optimization

Recall the true function f ∗
m(·) is some identified functional of the joint distribution of the

observable data in modeled context m – that is, f ∗
m(x) = Em[g(Yi) | Xi = x] for some

researcher-specified function g(·). Suppose we observe a random sample (Xi, Yi) ∼ Pm(·)
i.i.d. for i = 1, . . . , Nm from modeled context m and construct an estimator f̂ ∗

m(·) ∈ F .
For example, this estimator may be constructed using any black box, supervised machine

learning algorithm that predicts g(Yi) based on the features Xi such as deep neural networks,

or classic nonparametric regression techniques (e.g., Chen, 2007).

We solve the falsifier’s plug-in max-min program

max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
. (6)

In order to analyze the plug-in program’s error for the infeasible program (5), we assume

the researcher has access to approximate optimization routines that can solve the inner

minimization and outer maximization problems up to some small errors.

Assumption 5 (Approximate optimization).
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i. For any x1:n and f̂ ∗
m(·) ∈ F , the approximate inner minimization routine returns an

allowable function f̃(·;x1:n) ∈ FT satisfying

n−1

n∑
i=1

ℓ
(
f̃(xi;x1:n), f̂

∗
m(xi)

)
≤ min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
+ δ (7)

for some δ ≥ 0.

ii. For any f(·;x1:n) and f̂ ∗
m(·) ∈ F , the approximate outer maximization routine returns

x̃1:n satisfying

n−1

n∑
i=1

ℓ
(
f(x̃i; x̃1:n), f̂

∗
m(x̃i)

)
≥ max

x1:n

n−1

n∑
i=1

ℓ
(
f(xi, x1:n), f̂

∗
m(xi)

)
− ν (8)

for some ν ≥ 0.

Our analysis provides a finite-sample bound on the plug-in program’s error that explicitly

depends on the optimization errors introduced by the approximate optimization routines.

Define f̃T (·;x1:n) to be the allowable function returned when the approximate inner

minimization routine solves minf(·)∈FT n−1
∑n

i=1 ℓ
(
f(xi), f̂

∗
m(xi)

)
at any feature values x1:n.

Analogously define x̃1:n to be the feature values returned when the approximate outer max-

imization routine solves maxx1:n n
−1
∑n

i=1 ℓ
(
f̃T (xi;x1:n), f̂

∗
m(xi)

)
. Define the optimal values

of the plug-in and population programs

ÊTm := n−1

n∑
i=1

ℓ
(
f̃T (x̃i, x̃1:n), f̂

∗
m(x̃i)

)
and ETm = max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ (f(xi), f
∗
m(xi)) (9)

respectively.

Proposition 3.1. Suppose the loss function ℓ(·, ·) is differentiable with gradients bounded

by some K <∞ and convex in its second argument. Then, for any n ≥ 1,∥∥∥ÊTm − ETm∥∥∥ ≤ (δ + ν) + 3K∥f̂ ∗
m(·)− f ∗

m(·)∥∞, (10)

where ∥f1(·)−f2(·)∥∞ = supx∈X |f1(x)−f2(x)| is the supremum norm between two functions

f1(·), f2(·) ∈ F .

The error of the plug-in max-min program for the infeasible max-min program is bounded in

finite samples by the optimization error introduced by the approximate optimization routines

and the estimation error of f̂ ∗
m(·) for the true function f ∗

m(·). The estimation error contributes

to the bound through the worst-case error of f̂ ∗
m(·) for f ∗

m(·) as measured by the supremum
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norm (“sup-norm”). Equivalently, if we could exactly optimize and set δ, ν = 0, the rate

at which the plug-in optimal value converges to the population optimal value is bounded

by the rate at which f̂ ∗
m(·) converges uniformly to the true function f ∗

m(·). While strong,

it is unsurprising that this strong form of convergence is sufficient to control the plug-in’s

error as the max-min optimization program explores the mapping x → f ∗
m(x) in searching

for incompatible datasets.

Importantly, the finite sample bound in Proposition 3.1 is agnostic, applying to any

choice of the researcher’s estimator f̂ ∗
m(·). By introducing additional regularity conditions

and for particular choices of the researcher’s estimator f̂ ∗
m(·), existing work provides high-

probability bounds on the worst-case error ∥f̂ ∗
m(·) − f ∗

m(·)∥∞ in terms of the sample size

Nm and other primitives of the problem, such as the dimensionality of the features x. For

example, see Belloni et al. (2015); Chen and Christensen (2015); Cattaneo, Farrell and Feng

(2020, among many others) for recent results on the supremum norm convergence for a large

class of series based estimators for f ∗
m(·), reproducing kernel Hilbert space methods (e.g.,

Yang, Bhattacharya and Pati, 2017; Fischer and Steinwart, 2020), and deep neural networks

(e.g., Imaizumi, 2023). Proposition 3.1 can therefore be combined with these existing results

to provide high-probability bounds on the error of the plug-in max-min program.

3.2 Gradient descent ascent optimization

While Proposition 3.1 analyzes its statistical properties, this still leaves open the question

of how to practically solve the inner minimization and outer maximization of the plug-in

max-min program.

To tackle this problem, we notice that the plug-in max-min program (6) has connec-

tions to a recent computer science literature on adversarial learning (e.g., Madry et al.,

2017; Akhtar and Mian, 2018; Kolter and Madry, 2018). It can be reinterpreted as a “data-

poisoning” attack on the theory’s allowable functions FT . Typical data-poisoning attacks fix

a prediction function (e.g., an estimated neural network for image classification) and evaluate

its worst-case empirical loss over a family of data perturbations that manipulate the features

but leave the outcome fixed (e.g., manipulations of particular pixel values). In the plug-in

max-min program (6), the theory moves after the falsifier, and so the falsifier must search for

empirical datasets that simultaneously “poison” the performance of all allowable functions

f(·) ∈ FT . The falsifier’s manipulation of the features therefore induces both variation in

the theory’s chosen allowable function and the true function f ∗
m(·), making the outer maxi-

mization program difficult. We nonetheless exploit this connection to adversarial learning,

using recent results on non-convex/concave max-min optimization (e.g., Jin, Netrapalli and

Jordan, 2019; Razaviyayn et al., 2020) to develop a feasible gradient descent ascent (GDA)
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optimization routine.

We first simplify the inner minimization over the theory’s allowable functions. We assume

the theory’s allowable functions can be flexibly parametrized, meaning FT = {fθ(·) : θ ∈ Θ}
for some (possibly high-dimensional) parameter vector θ and compact parameter space Θ.

In expected utility theory, for example, we may construct such a parameterization using a

flexible sieve basis or class of neural networks for the possible utility functions. The inner

minimization over the theory’s allowable functions then becomes

min
θ∈Θ

n−1

n∑
i=1

ℓ
(
fθ(xi), f̂

∗
m(xi)

)
. (11)

For particular parametrizations and loss functions, this may be convex and so it can be

solved accurately using convex optimization methods. Otherwise, we can apply standard

gradient descent procedures with random initializations since it is equivalent to an empirical

risk minimization problem. Therefore, we can implement an approximate inner minimization

routine using standard optimization methods and so we maintain our high-level Assumption

5(i).

By contrast, the outer maximization over features remains difficult as varying the feature

vector simultaneously induces variation in the estimated function f̂ ∗
m(·), the theory’s allow-

able function fθ(·) and the theory’s best-fitting parameter vector θ ∈ Θ. The outer maximiza-

tion problem will therefore typically be non-concave. We can nonetheless use a gradient-

based optimization procedure. As notation, let ÊTm(x1:n, θ) := n−1
∑n

i=1 ℓ
(
fθ(xi), f̂

∗
m(xi)

)
and we assume ÊTm(x1:n, θ) is differentiable in x1:n for all θ ∈ Θ. For a collection of initial

feature values x0
1:n, some chosen step size sequence ηt > 0 and maximum number of iterations

T > 0, we iterate over t = 0, . . . , T and calculate at each iteration

θt+1 = argmin
θ∈Θ
ÊTm(xt

1:n; θ) (12)

xt+1
1:n = xt

1:n + ηt∇ÊTm(xt
1:n; θ

t+1). (13)

At each step t, we construct an approximate solution to the inner minimization problem θt+1,

and we then take a gradient ascent step on the feature values plugging in θt+1. Algorithm 1

summarizes our practical implementation of the gradient descent ascent algorithm.

Recent results in non-convex/concave max-min optimization imply that such a gradient

descent ascent algorithm converges to an approximate stationary point of the outer maxi-

mization problem (Jin, Netrapalli and Jordan, 2019), loosely meaning that ∇ÊTm(x1:n, θ) ≈ 0

at the returned feature and parameter vectors. We state this result formally in Appendix E.
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Algorithm 1: Feasible gradient descent ascent for empirical anomalies.

Input: f̂ ∗
m(·), dataset size n, maximum iterations T , step size sequence ηt, initial
feature vector x0

1:n.
1 t← 0;
2 while t < T do

3 θt+1 ← argminθ∈Θ ÊTm(xt
1:n; θ);

4 xt+1
1:n ← xt

1:n + ηt∇ÊTm(xt
1:n; θ

t+1);
5 t← t+ 1;

6 return {(xT
1 , f̂

∗
m(x

T
1 )), . . . , (x

T
n , f̂

∗
m(x

T
n ))}.

4 Representational Anomalies and Dataset Morphing

Our adversarial algorithm for anomaly generation exploits no structure about theory T (·)
beyond its allowable functions. If a strengthened Assumption 4 (“non-trivial implications”)

is satisfied, then theory T (·) has a lower-dimensional representation of the features, meaning

T (·) behaves as-if it always pools together some distinct feature values. In this case, re-

searchers may be interested in uncovering what we call “representational anomalies,” which

highlight ways in which the theory fails to capture some relevant dimension along which mod-

eled outcomes systematically vary. We propose a dataset morphing algorithm to generate

such representational anomalies.

4.1 Representational equivalence and anomalies

To this point, we modeled theory T (·) as a reduced-form mapping that draws implications

about the relationship between the features and modeled outcomes from any hypothetical

dataset, placing no assumptions on how T (·) behaves across feature values. However, theories
often draw the same implications at distinct feature values x, x′, which we formalize in the

following definition.

Definition 4. Features x1, x2 ∈ X are representationally equivalent under theory T (·) if

T (x1;D) = T (x2;D) for all D ∈ D.

Proposition 4.1. Suppose theory T (·) satisfies Assumptions 1-4. Features x1, x2 are repre-

sentationally equivalent if and only if f(x1) = f(x2) for all f(·) ∈ FT .

Two features are representationally equivalent if theory T (·) always behaves as-if it derives
the same implications at their values. This has a simple interpretation of terms of a theory’s

allowable functions – all allowable functions assign the same modeled outcome value to the

two features.
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We next strengthen Assumption 4 (“non-trivial implications”), and then we establish

any theory T (·) has a non-trivial, lower-dimensional representation of the features.

Assumption 6 (Sharp implications). There exists x1, x2 ∈ X such that T (xk;D) = y∗j for

all D ∈ D compatible with theory T (·) and (xj, y
∗
j ) ∈ D for j ̸= k.

Proposition 4.2. Suppose theory T (·) satisfies Assumption 1, 2, 3 and 6. Then, there exists

some pair x1, x2 ∈ X that are representationally equivalent under theory T (·).

To prove the result, suppose that the pair x1, x2 ∈ X in Assumption 6 were not representa-

tionally equivalent under theory T (·) for sake of contradiction. There must then exist some

modeled dataset D ∈ D at which T (x1;D) ̸= T (x2;D), and we can construct D̃ satisfying

D ⊂ D̃ that is compatible with theory T (·) but violates Assumption 6.

Assumption 6 states that there exists some pair of feature values x1, x2 ∈ X such that if

theory T (·) is provided with either potential observation (x1, y
∗
1) or (x2, y

∗
2), then it sharply

generalizes to the other feature value in the pair. Proposition 4.2 establishes that Assumption

6 is sufficient for there to exist a non-trivial representation of the features under theory T (·).
To make this more concrete, we return to some of our earlier examples to illustrate that

Assumption 6 is often satisfied by leading economic theories.

Example: choice under risk Consider again individuals making choices from menus of

two lotteries over J > 1 monetary payoffs and expected utility theory. Any utility function

u(·) is associated with an allowable function f(·) ∈ FT under expected utility theory given

by f(x) = argmax
{∑J

j=1 p0ju(z0j),
∑J

j=1 p1ju(z1j)
}

for menu x1 = (p0, z0, p1, z1). For any

menu x2 that consists of the compound lotteries α(p0, z0) + (1 − α)(p̃, z̃) and α(p1, z1) +

(1 − α)(p̃, z̃), f(x1) = f(x2) due to the linearity in probabilities of expected utility theory.

Expected utility theory therefore satisfies Assumption 6. Proposition 4.2 implies that any

pair of menus x1, x2 of this form are representationally equivalent under expected utility

theory. ▲

If theory T (·) has a non-trivial representation of the features, then all logical anomalies

for theory T (·) can be classified into two categories.

Observation 4.1. Consider any theory T (·) satisfying Assumptions 1, 2, 3 and 6. Any

logical anomaly D for theory T (·) satisfies either

i. There exists (x1, y
∗
1), (x2, y

∗
2) ∈ D such that x1, x2 are representationally equivalent

under T (·) and y∗1 ̸= y∗2.

ii. There exists no pair (x1, y
∗
1), (x2, y

∗
2) ∈ D such that x1, x2 are representationally equiv-

alent.
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We refer to anomalies satisfying Observation 4.1(i) as representational anomalies. A

representational anomaly highlights that there exists some pair of features that are repre-

sentationally equivalent under theory T (·) but across which the modeled outcome varies.

In this sense, there is some variation in the modeled outcome across features that is not

captured by the theory’s allowable functions.

Researchers are typically most interested in uncovering representational anomalies for

theories as many classic examples of anomalies fall into this category. Consider once again

the Allais Paradox for expected utility theory (Table 1). Due to the independence axiom,

expected utility theory requires that T (xA;D) = T (xB;D) for all hypothetical datasets and

so the menus xA, xB are representationally equivalent. Yet, the Allais Paradox highlights

that choices may vary across these two menus, and it is therefore a representational anomaly.

Indeed, other famous examples in decision-making under risk such as the Certainty Effect

or Common Ratio Effect (e.g., Allais, 1953; Kahneman and Tversky, 1979) are also repre-

sentational anomalies.

4.2 Dataset morphing for representational anomalies

Given modeled contexts m ∈ M with true functions f ∗
m(·) = Em[g(Yi) | Xi = x] for some

researcher-specified g(·), we now search for empirical representational anomalies {(x1, f
∗
m(x1)), (x2, f

∗
m(x2))}

for theory T (·).
To motivate our procedure, we further assume that the true function and all of theory

T (·)’s allowable functions are differentiable, and that theory T (·)’s representation is local.

Assumption 7 (Differentiability and local representational equivalence).

1. f ∗
m(·) and all f(·) ∈ FT are everywhere differentiable.

2. If features x1, x2 ∈ X are representationally equivalent, then so are λx1+(1−λ)x2 for

any λ ∈ (0, 1).

That is, given that two features x1, x2 ∈ X are representationally equivalent, any feature

in their convex hull is also representationally equivalent. Under this assumption, repre-

sentations are local in the sense that there exists a small deviation from x1 or x2 that is

also representationally equivalent. Expected utility theory satisfies this assumption per our

earlier discussion.

Under Assumption 7, we might hope to uncover representational anomalies by taking

small gradient-based steps. Suppose we have oracle access to the true function f ∗
m(·). Given

an initial feature value x0, we search for directions v ∈ Rdim(x) along which no allowable

function f(·) ∈ FT changes but f ∗
m(·) changes substantially, and we then update or morph

x0 in the direction v.
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More precisely, let N T (x) = {v ∈ Rdim(x) : ∇f(x)′v = 0 for all f(·) ∈ FT} denote the

subspace of directions that are orthogonal to the gradient of each allowable function. Under

Assumption 7, N T (x) is non-empty at any x for which there exists some representationally

equivalent x′. For an initial feature value x0, step size sequence ηt, and maximum number

of iterations, we would iterate over t = 0, . . . , T and compute the update step

xt+1 = xt − ηtProj
(
∇f ∗

m(x
t) | N T (xt)

)
, (14)

where Proj (·) is the projection operator and Proj
(
∇f ∗

m(x) | N T (x)
)
is the projection of

the gradient of the true function f ∗
m(·) onto the null space of the allowable functions. We

therefore update in descent directions of the true function f ∗
m(·) that hold fixed the value

of any allowable function f(·) ∈ FT . We focus on descent directions, but we could instead

apply an ascent step as well.

This is, of course, not feasible since we do not directly observe the true function f ∗
m(·). As

a result, we again construct an estimator ∇f̂ ∗
m(·) based on a random sample (Xi, Yi) ∼ Pm(·)

i.i.d. for i = 1, . . . , n. We then plug-in this estimator into the morphing procedure and apply

the update step

xt+1 = xt − ηtProj
(
∇f̂ ∗

m(x
t) | N T (xt)

)
. (15)

Our next result establishes that Proj
(
∇f̂ ∗

m(x
t) | N T (xt)

)
remains a descent direction for

the true function f ∗
m(·), provided the error in estimating the gradient ∇f̂ ∗

m(x
t)−∇f ∗

m(x
t) is

sufficiently small.

Proposition 4.3. Under Assumption 7, −Proj
(
∇f ∗

m(x) | N T (x)
)
is a descent direction for

f ∗
m(·). Furthermore, −Proj

(
∇f̂ ∗

m(x) | N T (x)
)
is also a descent direction for f ∗

m(·) provided

∥∇f̂ ∗
m(x)−∇f ∗

m(x)∥2 ≤ ∥Proj
(
∇f ∗

m(x) | N T (x)
)
∥2 is satisfied.

While Proposition 4.3 analyzes the statistical properties of plugging in the estimated

gradient of the true function into the morphing procedure, it still leaves open the question

of how to practically implement the projection operator.

To do so, we will again assume that the theory’s allowable functions can be flexibly

parameterized, meaning FT = {fθ(·) : θ ∈ Θ} for some θ ∈ Θ as in Section 3.2. We then

suggest to implement the projection operator by sampling B > 0 parameter values θ ∈ Θ

at each update step and directly orthogonalizing the gradient ∇f̂ ∗
m(x) with respect to the

gradients ∇fθ(x). As B grows large, this better approximates the null space of the allowable

function N T (x). Algorithm 2 summarizes our practical implementation of the morphing

procedure, which can be run over many randomly initialized feature values x0.
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Algorithm 2: Feasible dataset morphing for representational anomalies.

Input: ∇f̂ ∗
m(·), B > 0, maximum iterations T , step size η, initial feature x0.

1 t← 0;
2 while t < T do
3 Sample θb ∈ Θ for b = 1, . . . , B;

4 Construct N T
Θ (x

t) = {v ∈ Rdim(x) s.t. ∇fθb(x0)
Tv = 0 for all b};

5 xt+1 ← xt − ηProj
(
∇f̂ ∗

m(x
t) | N T (xt)

)
;

6 t← t+ 1;

7 return {(x0, f̂ ∗
m(x

0)), (xT , f̂ ∗
m(x

T ))}.

5 Illustrative example: Generating Anomalies for Choice

under Risk

In this section, we illustrate our procedures by generating logical anomalies for expected util-

ity theory in simulated lottery choice data from individuals whose preferences are consistent

with cumulative prospect theory. That is, we imagine ourselves in the 1950s, having access

to the formal model of expected utility theory and wishing to generate candidate empirical

anomalies in a hypothesized world where individuals make choices according to cumula-

tive prospect theory. Since cumulative prospect theory has been well-studied by theorists,

we compare and contrast the logical anomalies generated by our procedures against known

anomalies for expected utility theory, such as those produced in Allais (1953), Kahneman

and Tversky (1979), and others.

Our anomaly generation procedures recover known logical anomalies for expected utility

theory based on the probability weighting function. Intriguingly, our procedures also uncover

novel logical anomalies for expected utility theory that either generalize or differ from those

that originally spurred the development of cumulative prospect theory. In an incentivized

online experiment, participants’ choices on our algorithmically generated, logical anomalies

violated expected utility theory at similar rates as found in recent analyses of the Allais

Paradox and Common Ratio Effect.

5.1 Simulation design

We simulate lottery choice data from an individual who evaluates lotteries over J > 1

monetary payoffs according to the parametric probability weighting function

πj(p; δ, γ) =
δpγj

δpγj +
∑

k ̸=j p
γ
k

for j = 1, . . . , J, (16)
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where p ∈ ∆J−1 and δ ≥ 0, γ ≥ 0 are the parameters governing the curvature and level of

the probability weighting function (Lattimore, Baker and Witte, 1992). We calibrate the

parameters (δ, γ) using the pooled estimates based on the large-scale choice experiments in

Bruhin, Fehr-Duda and Epper (2010) (reported in their Table V and Table IX), setting (δ, γ)

to be equal to one of (0.926, 0.377), (0.726, 0.309), or (1.063, 0.451).

For these parameter values of the probability weighting function (16), the individual

distorts objective probabilities by over-weighting probabilities close to zero, under-weighting

probabilities close to one, and compressing intermediate probabilities. Figure 1 plots the re-

sulting probability weighting functions associated with each choice of parameter values (δ, γ).

Such non-linearity in the probability weighting function can generate several known logical

anomalies for expected utility theory, such as the Allais Paradox (Table 1) or the Common

Ratio Effect. These parameter values also introduce “outcome pessimism” when δ < 1 as

the individual’s probability weights may sum to less than one (i.e.,
∑J

j=1 πj(p; δ, γ) < 1), or

“outcome optimism” when δ > 1 as the individual’s probability weights may sum to greater

than one (i.e.,
∑J

j=1 πj(p; δ, γ) > 1). Such properties in the probability weighting function

may lead the individual’s choices to violate first-order stochastic dominance, meaning the in-

dividual may select a lottery that is first-order stochastically dominated by another lottery in

the menu. Expected utility maximization over any utility function that is weakly increasing

in monetary payoffs cannot generate such first-order stochastic dominance violations.

We assume the individual has a linear utility function. For any payoff vector z ∈ RJ

and associated probabilities p ∈ ∆J−1, the individual therefore evaluates the lottery (p, z)

by CPT (p, z; δ, γ) :=
∑J

j=1 πj(p; δ, γ)zj. On a menu of two lotteries, x = (p0, z0, p1, z1),

we simulate the individual’s choice probability of selecting lottery 1 according to f ∗
m(x) =

P (CPT (p1, z1; δ, γ)− CPT (p0, z0; δ, γ) + ξ ≥ 0), where ξ is an i.i.d. logit shock. The indi-

vidual’s binary choice is given by the random variable Yi | Xi = x ∼ Bernoulli(f ∗
m(x)).

To apply our anomaly generation procedures, we flexibly parametrize the allowable func-

tions of expected utility theory and model the utility function as a linear combination of

non-linear basis functions with uθ(z) =
∑K

k=1 θkbk(z) for basis functions b1(·), . . . , bK(·) (e.g.,
polynomial bases or monotone I-splines), K finite, and parameter vector θ ∈ Θ. We then

consider the parametrized allowable functions of expected utility theory as the collection

{fθ(·) : θ ∈ Θ} for fθ(x) = P
(∑J

j=1 p1(j)uθ(z1(j))−
∑J

j=1 p0(j)uθ(z0(j)) + ξ ≥ 0
)
, where ξ

is also an i.i.d. logit shock. We generate logical anomalies for expected utility theory over

the space of menus of two lotteries on two monetary payoffs, applying our adversarial algo-

rithm (Algorithm 1) and our dataset morphing procedure (Algorithm 2) to the true choice

probability function f ∗
m(·). In Appendix F.4, we also generate logical anomalies based on

an estimated choice probability function f̂m(·) from a random sample of binary choices. In
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Appendix G, we also generate logical anomalies over the space of menus of two lotteries over

three monetary payoffs.

For each parameter value (δ, γ), we apply our adversarial algorithm to 25,000 randomly

initialized menus of two lotteries on two monetary payoffs x0 and our dataset morphing

algorithm to 15,000 randomly initialized menus. Appendix F.1 provides further details on

our practical implementation. Each returned menu of lotteries over two monetary payoffs

are logical anomalies for expected utility theory at our particular parametrization of the

utility function {uθ(·) : θ ∈ Θ}. Since these parametrized allowable functions are restrictive,

we numerically verify whether the returned menu is a logical anomaly for expected utility

theory at any increasing utility function and without noisy choices (see Appendix F.2). We

report all resulting, numerically verified logical anomalies for expected utility theory.

5.2 Logical anomalies generated by the probability weighting func-

tion

Table 2 summarizes the logical anomalies for expected utility theory that are produced by

our anomaly generation procedures at each calibrated parameter value (δ, γ). Our anomaly

generation procedures uncover several distinct categories of logical anomalies.

5.2.1 First order stochastic dominance violations

All logical anomalies in the first row of Table 2 are menus of lotteries in which the individual’s

choice violates first-order stochastic dominance. As we show in the examples in Table 3, the

individual selects lotteries that are first-order stochastically dominated by the other lottery

in the menu. Such first-order stochastic dominance violations are generally viewed as an

undesirable “bug” in particular specifications of the probability weighting function since we

may believe they are unlikely to hold in real choices.7 What is intriguing is that our anomaly

generation procedures uncover these first-order stochastic dominance violations on its own.

5.2.2 The dominated consequence effect

The logical anomalies in the second row of Table 2 highlight what we refer to as a “dominated

consequence effect.” These are logical anomalies for expected utility theory that arise due to

the non-linearity of the probability weighting function and are violations of the independence

axiom. In Table 4, we provide three representative examples of pairs of menus of lotteries that

7Indeed, Kahneman and Tversky (1979) include an “editing phase” prior to choice that eliminates such
first-order stochastic dominated lotteries prior. We refer the reader to Lattimore, Baker and Witte (1992);
Wu and Gonzalez (1996) for further discussion.
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were produced by our anomaly generation procedures and exhibit the dominated consequence

effect.

To make this more concrete, consider the pair of menus in Table 4(a) generated by our

dataset morphing algorithm for the individual with calibrated parameter values (δ, γ) =

(0.726, 0309). Each lottery in menu B can be expressed as a compound lottery over the

corresponding lottery in menu A and some degenerate lotteries that yield certain payoffs.

Lottery B0 can be expressed as a compound lottery over lottery A0 and a degenerate lottery

that yields the certain payoff 0.70; that is, B0 = α0A0 + (1 − α0)δ0.70 for some α0 ∈ (0, 1).

Analogously, lottery B1 can be written as the compound lottery B1 = α1A1 + (1− α1)δ0.23

for some α1 < α0. The individual’s choices therefore express that lottery A0 is preferred

to lottery A1 and α1A1 + (1 − α1)δ0.23 is preferred to α0A0 + (1 − α0)δ0.70. This, however,

contradicts the independence axiom of expected utility theory since it can be shown that A0

being preferred to A1 must imply that α0A0+(1−α0)δ0.70 is preferred to α1A1+(1−α1)δ0.23.

We provide a formal proof in Appendix F.3.

More generally, all of the logical anomalies for expected utility theory in the second row

of Table 2 have the following common structure. We define the appropriate pair of lotteries

as ℓ0 = (p0, z0), ℓ1 = (p1, z1) with z0 = (z0,1, z0,2), z1 = (z1,1, z1,2) and z0 := minj∈{1,2} z0j <

minj∈{1,2} z1j := z1. Each of these logical anomalies can then be summarized as: for some

α0 ≤ α1, one menu consists of the choice between lottery ℓ0 and lottery ℓ1, and the other menu

consists of the choice between the compound lotteries α0ℓ0+(1−α0)δz0 and α1ℓ1+(1−α1)δz1 .

Since the other menu mixes lotteries ℓ0 and ℓ1 with their minimal payoffs, selecting ℓ1 over

ℓ0 implies that the individual also prefers α1ℓ1 + (1 − α1)δz1 over α0ℓ0 + (1 − α0)δz0 . We

therefore say these logical anomalies exhibit a “dominated consequence effect” as the pair of

menus highlight a violation of the expected utility theory based on mixing each lottery with

dominated certain consequences.

Furthermore, the Common Ratio Effect (e.g., Allais, 1953) is a special case of the domi-

nated consequence effect (see, for example, Machina (1987) for further discussion). It can be

recovered from the dominated consequence effect by setting α0 = α1 and placing additional

restrictions on how the probabilities p0, p1 relate to on another. The Common Ratio Effect

is itself a generalization of the Certainty Effect (Kahneman and Tversky, 1979) and the

Bergen Paradox (Hagen, 1979). In this sense, the dominated consequence effect nests the

most well-known logical anomalies for expected utility theory that exist over pairs of menus

of two lotteries over two monetary payoffs. Our anomaly generation procedures uncovered

this category of logical anomalies on its own.
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5.2.3 The reverse dominated consequence effect and the strict dominance effect

In the third row of Table 2, all logical anomalies exhibit what we call a “reverse dominated

consequence effect.” We provide three illustrative examples in Table 5. Each of these logical

anomalies have a common structure. Again, we define the appropriate pair of lotteries as

ℓ0 = (p0, z0), ℓ1 = (p1, z1) with z0 = (z0,1, z0,2), z1 = (z1,1, z1,2) and z0 := minj∈{1,2} z0j <

minj∈{1,2} z1j := z1. Each of these logical anomalies can be summarized as: for some α1 ≤ α0,

one menu consists of the choice between lottery ℓ0 and lottery ℓ1, and the other menu consists

of the choice between the compound lotteries α0ℓ0+(1−α0)δz0 and α1ℓ1+(1−α1)δz1 . Since the

other menu mixes lotteries ℓ0 and ℓ1 with their maximal payoffs, selecting ℓ1 over ℓ0 implies

that the individual also prefers α1ℓ1 + (1−α1)δz1 over α0ℓ0 + (1−α0)δz0 if their preferences

are consistent with expected utility theory. In other words, the pair of menus highlight a

violation of expected utility theory based on mixing each lottery with dominating certain

consequences. We therefore refer to this category as a “reverse dominated consequence

effect” due to its close parallel to the dominated consequence effect discussed earlier.

Finally, all logical anomalies in the fourth row of Table 2 exhibit what we call a “strict

dominance effect,” and we provide three illustrative examples in Table 6. For an appropriate

choice of menu in these logical anomalies, menu A consists of the choice between lottery ℓ0 and

lottery ℓ1, and menu B consists of the choice between the compound lotteries α1ℓ1+(1−α1)δz1

and α0ℓ0 + (1 − α0)δz0 . Lottery B0 mixes lottery A0 with a certain lottery that yields its

smallest payoff, and lottery B1 mixes lottery A1 with a certain lottery that yields its maximal

payoff. If the individual selects lottery ℓ1 over lottery ℓ0, then the individual must also prefer

α1ℓ1 + (1 − α1)δz1 over α0ℓ0 + (1 − α0)δz0 if their preferences are consistent with expected

utility theory. Yet we observe the opposite choice for the considered parameterizations of

the probability weighting function. In this sense, the pair of menus highlight a violation of

expected utility theory based on mixing lottery A1 with a certain consequence that strictly

dominates the certain consequence that is mixed with lottery A0. Hence we refer to this

category as a “strict dominance effect.”

While sharing some similarities, these final two categories of logical anomalies for ex-

pected utility theory are importantly different than both the Common Consequence Effect

and Common Ratio Effect, which were important motivating logical anomalies for the de-

velopment of the probability weighting function in the first place. These categories highlight

violations of expected utility theory while using only two distinct payoffs in each lottery (like

the Common Ratio Effect), but involve mixing each lottery with particular certain conse-

quences. Our anomaly generation procedures uncovered categories of logical anomalies for

expected utility theory that are implied by particular properties of the probability weighting

function that to our knowledge have not been noticed before.
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5.3 Experimental test of algorithmically generated anomalies

Our anomaly generation procedures generate novel logical anomalies for expected utility

theory that are implied by the probability weighting function. While these are interesting

theoretically, a natural question nonetheless arises: are these logical anomalies also empirical

anomalies for expected utility theory? Answering this question is where the anomaly gen-

eration process ends, and careful experimental work begins. While fully investigating their

experimental robustness is beyond the scope of this paper, we next present experimental

evidence suggesting that our algorithmically generated, logical anomalies are also empirical

anomalies for expected utility theory.

5.3.1 Experimental design

We selected 36 of the algorithmically generated logical anomalies for expected utility theory

summarized in Table 2. These particular logical anomalies are chosen to span both the

categories (i.e., the dominated consequence effect, the reverse dominated consequence effect,

and the strict dominance effect) and the calibrated parameter values (δ, γ). We split these

chosen 36 logical anomalies into two separate surveys, each containing 18 logical anomalies,

which we deploy separately.

Each chosen logical anomaly consists of a pair of menus of two lotteries over two monetary

payoffs. As a result, we present each logical anomaly as two separate binary choices on

menus, and so each survey consists of 36 main questions. For a particular menu, we display

the written probabilities and payoffs for each lottery in the menu, and we additionally depict

each lottery as a color-coded pie chart. Each survey randomizes the order of questions and

the left-right positioning of lotteries in a menu across respondents. We pre-registered both

of our surveys on EGAP (see https://osf.io/2udca).

We recruited respondents for both surveys on Prolific. Each respondent received a base

payment of $4 for completing a survey. We screened out inattentive respondents through

comprehension questions and attention checks throughout the surveys. Respondents that

successfully completed a survey without failing comprehension and attention checks were el-

igible for a bonus payment based on a “random payment selection” mechanism (e.g., Azrieli,

Chambers and Healy, 2018, 2020). We determined the bonus by randomly selecting a lottery

that was chosen by a respondent on the survey. The respondent was paid the realization of

the randomly selected lottery. The average bonus payment was $7.49 and $5.59 on each sur-

vey respectively, and respondents completed each survey in roughly 15 minutes on average.

Respondents were therefore paid on average $45.96 and $38.36 per hour on survey respec-

tively. Our financial incentives were unusually high by Prolific standards, which recommend
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that respondents be paid $12 per hour. Altogether we recruited 258 and 255 respondents on

our two surveys respectively.

We include screenshots of the instructions, comprehension checks, attention checks, and

main survey questions in Appendix H.

5.3.2 Experimental results

We analyze the choices on our algorithmically generated, logical anomalies of all respondents

that completed the surveys without failing any attention and comprehension checks. In

Appendix A, we report the same results, dropping the top 10% of respondents who completed

the surveys the fastest and finding similar results.

Figure 2 reports the fraction of respondents whose choices violate expected utility theory

without noise on our algorithmically generated, logical anomalies. We organize the estimates

by the category of logical anomaly, and we report 95% confidence intervals with standard

errors clustered at the respondent level. Appendix Figure A1 and Appendix Table A1 report

the same estimates, organized by the calibrated parameter values (δ, γ) that we considered.

Table 7 provides summary statistics on the expected utility theory violation rates pooling

across logical anomalies within the same category. The pooled expected utility theory vi-

olation rate is 11.4% (p-value < 0.001) on dominated consequence effect anomalies, 8.5%

(p-value < 0.001) on reverse dominated consequence effect anomalies, and 12.7% (p-value

< 0.001) on strict dominance effect anomalies. We therefore find strong evidence that the

pooled respondents’ choices are inconsistent with expected utility theory across our discov-

ered categories of logical anomalies.

Furthermore, these pooled estimates mask heterogeneity in the fraction of respondents’

violating expected utility theory across logical anomalies. For example, we find that greater

than 15% of respondents’ choices violate expected utility theory on several dominated con-

sequence effect anomalies. Analyzing each logical anomaly separately and applying a con-

servative Bonferroni correction for multiple hypotheses across all logical anomalies in our

surveys, the expected utility theory violation rate is statistically different than zero at the

5% level for 35 out of 36. Respondents’ choices are therefore inconsistent with expected

utility theory on each algorithmically generated, logical anomaly included in our surveys.

Of course, if there exists enough idiosyncratic noise in respondents’ choices, we would ex-

pect to find non-zero expected utility theory violation rates on our algorithmically generated,

logical anomalies. We explore this possibility in two ways.

First, we estimate the probability of erroneous deviations from preferences consistent

with expected utility theory that would be required to explain the observed choices of respon-

dents on our algorithmically generated, logical anomalies. As an example, consider a logical
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anomaly that exhibits the dominated consequence effect such as the pair of menus depicted in

Table 4(a). On this pair of menus, the only choices that are consistent with expected utility

theory are (A0, B0), (A1, B1), and (A1, B0), and let π(A0, B0), π(A1, B1), π(A1, B0) ≥ 0 be

the fraction of respondents associated with those true preferences. On any choice, a respon-

dent may erroneously deviate from their true preference with probability ϵ ≥ 0. Following in

the spirit of Harless and Camerer (1994), we assume a single error rate for all choices since it

is a parsimonious way to summarize observed choice fractions.8 We may therefore search for

the fraction of true preferences π(A0, B0), π(A1, B1), π(A1, B0) and idiosyncratic error rate ϵ

that could have generated the true choice fractions P (A0, B0), P (A1, B1), P (A1, B0), P (B0, A1).9

Given estimated choice fractions P̂ (A0, B0), P̂ (A1, B0), P̂ (A0, B1), P̂ (A1, B1) from our sur-

veys, we estimate the idiosyncratic error rate ϵ̂ by a minimum distance estimator (Newey

and McFadden, 1994).

Proceeding in this manner, Figure 3 reports the estimated idiosyncratic error rate ϵ̂

required to explain the observed choices of respondents on each algorithmically generated,

logical anomaly separately. We again organize the estimates by the category of logical

anomaly, and we report 95% confidence intervals based on bootstrapped standard errors.

Appendix Figure A2 reports the same estimates, organized by calibrated parameter values

(δ, γ) that we considered. The median estimated idiosyncratic error rate ϵ̂ across algorithmi-

cally generated, logical anomalies is 13.1% for dominated consequence effect anomalies, 8.5%

for reverse dominated consequence effect anomalies, and 14.7% for strict dominance effect

anomalies. There again exists heterogeneity in these estimates across logical anomalies. For

example, explaining the observed choice fractions on several specific logical anomalies across

categories would require that respondents erroneously deviate from their true preferences at

least 20% of the time.

Second, we compare the expected utility theory violation rates on our algorithmically

generated, logical anomalies against those of celebrated logical anomalies for expected utility

theory in the behavioral economics literature. Several recent papers provide meta-analyses of

past experiments and conduct comprehensive experimental designs to evaluate the empirical

robustness of celebrated logical anomalies such as the Allais Paradox and Common Ratio

8Recent work argues that it may be empirically relevant to allow for choice-specific error rates that depend
on the intensity of the individual’s preference (McGranaghan et al., Forthcoming) or the complexity of the
menu of lotteries (Enke and Shubatt, 2023). For our purposes, this simple model of noise serves to benchmark
how frequently respondents must deviate from their true preferences in order to generate the observed choice
fractions, whatever the source of those deviations may be.

9In this example, the true choice fractions must satisfy P (A0, B0) = (1−ϵ)2π(A0, B0)+ϵ(1−ϵ)π(A1, B0)+
ϵ2P (A1, B1), P (A1, B0) = ϵ(1 − ϵ)π(A0, B0) + (1 − ϵ)2π(A1, B0) + ϵ(1 − ϵ)P (A1, B1), P (B0, A1) = ϵ(1 −
ϵ)π(A0, B0) + ϵ2π(A1, B0) + ϵ(1− ϵ)P (A1, B1), and P (A1, B1) = (1− ϵ)2π(A0, B0) + ϵ(1− ϵ)π(A1, B0) +
(1− ϵ)2P (A1, B1).
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Effect. While the survey design and survey samples differ from our surveys, this work at least

offers a rough benchmark to evaluate the magnitudes of the expected utility theory violation

rates that we find on our algorithimcally generated, logical anomalies. In particular, we draw

on Blavatskyy, Ortmann and Panchenko (2022) and Blavatskyy, Panchenko and Ortmann

(2022), which conduct extensive meta-analyses of past experiments on the Allais Paradox

and the Common Ratio Effect respectively, as well as McGranaghan et al. (Forthcoming) and

Jain and Nielsen (2023) which reported many binary choice experiments that exhaustively

test the Common Experiments across different payoffs and probabilities.

Table 8 summarizes the average expected utility theory violation rate as well as the

median and interquartile range of the expected utility theory violation rate across experi-

ments reported in these recent papers. There exists much variation in the expected utility

theory violation rate on these celebrated logical anomalies across experiments. For example,

Blavatskyy, Ortmann and Panchenko (2022) find that 16% of respondents’ choices demon-

strate the Allais Paradox (“fanning out” choices) pooling together all experiments with real

financial incentives, and the median experiment with real financial incentives only finds that

13.7% of respondents’ choices do so. Similarly, in experiments conducted on Prolific with

real financial incentives, McGranaghan et al. (Forthcoming) find that 15.6% of respondents’

choices demonstrate the Common Ratio Effect and 12.9% demonstrate the Reverse Common

Ratio Effect.10

Based on these experimental findings, our algorithmically generated, logical anomalies

yield expected utility theory violation rates that are in line with those observed for celebrated

logical anomalies like the Allais Paradox and the Common Ratio Effect. Altogether, this

suggests that these new categories of anomalies may merit the same rigorous testing across

a wide variety of experimental designs that have been given to other known anomalies for

expected utility theory.

6 Conclusion

By now, it is clear that machine learning has the capacity to change the way nearly every

economic sector operates (e.g., Brynjolfsson and McAfee, 2014; Agarwal, Gans and Goldfarb,

2018). Why should economic research be any different? Of course, substantial progress has

already been made in incorporating machine learning into many of the tasks performed by

economic researchers, such as digitizing historical archives (e.g., Shen et al., 2021), process-

ing novel data such as text and images for econometric analysis (e.g., Glaeser et al., 2018;

10McGranaghan et al. (Forthcoming) argue that the prior work included in Blavatskyy, Panchenko and
Ortmann (2022)’s meta-analysis of the Common Ratio Effect select experimental designs that are more likely
to induce the Common Ratio Effect.
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Gentzkow, Kelly and Taddy, 2019; Adukia et al., 2021), uncovering treatment effect het-

erogeneity (Athey and Wager, 2018; Chernozhukov et al., 2018) and hypothesis generation

(Ludwig and Mullainathan, 2023).

In this paper, we ask whether machine learning can accelerate the development of new

theories through the automatic generation of anomalies. To tackle this problem, we devel-

oped an econometric framework for anomaly generation. We then proposed two algorithmic

procedures for anomaly generation, one based on adversarial learning and another based on

dataset morphing, that take as inputs any formal theory and data from a scientific domain,

summarize the empirical relationship between some features and modeled outcomes using

supervised learning, and then automatically generate anomalies, if they exist. While our il-

lustration is specific to expected utility theory, our procedures are general and can be applied

wherever there exists a formal theory and rich data that the theory seeks to explain.
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Figures

Figure 1: Probability weighting function for calibrated parameter values (δ, γ) in our illustration
to choice under risk.

Notes: This figure plots the probability weighting function (16) for the calibrated parameter values (δ, γ)
used in our illustration to choice under risk. We calibrate (δ, γ) to be equal to (0.726, 0.309), (0.926, 0.377),
and (1.063, 0.451) using the pooled estimates based on the large-scale choice experiments in Bruhin, Fehr-
Duda and Epper (2010) (reported in their Table V and Table IX). See Section 5.1 for further discussion.

40



Figure 2: Fraction of respondents whose choices violate expected utility theory on algorithmically
generated, logical anomalies.

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on
the logical anomalies of menus of two lotteries over two monetary payoffs (blue bars) and 95% confidence
intervals (black error bars; standard errors clustered at the respondent level). We organize the estimates by
category of logical anomaly (see Table 2). The orange dashed line reports the fraction of respondents whose
choices violate expected utility theory pooling across all logical anomalies within the same category. Within
each category, we sort the logical anomalies and assign each logical anomaly an arbitrary numeric identifier
in decreasing order based on the fraction of respondents whose choices violate expected utility theory. See
Section 5.3 for further discussion.
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Figure 3: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated, logical anomalies.

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed
choices of respondents on our algorithmically generated, logical anomalies of menus of two lotteries over two
monetary payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed by the
bootstrap). We organize the estimates by category of logical anomaly (see Table 2). The orange dashed line
reports the median estimated idiosyncratic error rate across all logical anomalies within the same category.
Within each category, we sort the logical anomalies and assign each logical anomaly an arbitrary numeric
identifier in decreasing order based on the fraction of respondents whose choices violate expected utility
theory. See Section 5.3 for further discussion.
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Tables

Prob. Weighting Function: (δ, γ)
(0.726, 0.309) (0.926, 0.377) (1.063, 0.451)

First Order Stochastic Dominance 81 0 2
Dominated Consequence Effect 85 34 10

Reverse Dominated Consequence Effect 17 15 14
Strict Dominance Effect 45 1 0

Other 3 1 1

# of Logical Anomalies 231 51 27

Table 2: Logical anomalies for expected utility theory over the space of menus of two lotteries on
two monetary payoffs.

Notes: This table summarizes all logical anomalies for expected utility theory over two lotteries on two
monetary payoffs produced by our adversarial algorithm and our dataset moprhing algorithm. The logical
anomalies are organized by calibrated parameter values (δ, γ) of the probability weighting function and
anomaly categories. See Section 5.2 for further discussion.

(a) Logical Anomaly #1

Lottery 0 5.72 6.19
19% 81%

Lottery 1 5.26
100%

(b) Logical Anomaly #2

Lottery 0 8.17
100%

Lottery 1 9.03 9.70
23% 77%

(c) Logical Anomaly #3

Lottery 0 7.97
100%

Lottery 1 8.85 9.88
59% 41%

Table 3: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate first-order stochastic dominance violations.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50
in green. Each generated first-order stochastic dominance violation presented here (x, y∗) is based on the
probability weighting function π(p; δ, γ) with (δ, γ) = (0.726, 0.309). Logical anomalies #1-2 are generated
by our dataset morphing algorithm. Logical anomaly #3 is generated by our adversarial algorithm. For ease
of interpretation, we round each payoff to the nearest cent and each probability to the nearest percentage
point. See Section 5.2 for further discussion.
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(a) Logical Anomaly #1

Menu A (xA, y
∗
A)

Lottery 0 0.70 5.96
5% 95%

Lottery 1 0.23 7.48
22% 78%

Menu B (xB, y
∗
B)

Lottery 0 0.70 5.96
24% 76%

Lottery 1 0.23 7.48
49% 51%

(b) Logical Anomaly #2

Menu A (xA, y
∗
A)

Lottery 0 1.10 7.48
15% 85%

Lottery 1 1.50 5.94
1% 99%

Menu B (xB, y
∗
B)

Lottery 0 1.10 7.48
45% 55%

Lottery 1 1.50 5.94
18% 82%

(c) Logical Anomaly #3

Menu A (xA, y
∗
A)

Lottery 0 0.08 9.26
34% 66%

Lottery 1 0.76 5.54
0% 100%

Menu B (xB, y
∗
B)

Lottery 0 0.08 9.26
63% 37%

Lottery 1 0.76 5.54
13% 87%

Table 4: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate the dominated consequence effect.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least
0.50 in green. Each logical anomaly exhibiting the dominated consequence effect consists of two menus
{(xA, y

∗
A), (xB , y

∗
B)}. Each algorithmically generated, logical anomalies depicted here is produced by our

dataset morphing algorithm. Logical anomaly #1 is based on the probability weighting function π(p; δ, γ)
for (δ, γ) = (0.726, 0.309), logical anomaly #2 on (δ, γ) = (0.926, 0.377), and logical anomaly #3 on (δ, γ) =
(1.063, 0.451). For ease of interpretation, we round each payoff to the nearest cent and each probability to
the nearest percentage. See Section 5.2 and Appendix F.3 for further discussion.
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(a) Logical Anomaly #1

Menu A (xA, y
∗
A)

Lottery 0 2.59 8.87
88% 12%

Lottery 1 3.51 8.65
99% 1%

Menu B (xB, y
∗
B)

Lottery 0 2.59 8.87
49% 51%

Lottery 1 3.51 8.65
65% 35%

(b) Logical Anomaly #2

Menu A (xA, y
∗
A)

Lottery 0 4.44 7.76
100% 0%

Lottery 1 3.65 7.83
95% 5%

Menu B (xB, y
∗
B)

Lottery 0 4.44 7.76
36% 64%

Lottery 1 3.65 7.83
23% 77%

(c) Logical Anomaly #3

Menu A (xA, y
∗
A)

Lottery 0 1.36 5.91
100% 0%

Lottery 1 0.05 6.05
0.93% 7%

Menu B (xB, y
∗
B)

Lottery 0 1.36 5.91
68% 32%

Lottery 1 0.05 6.05
56% 44%

Table 5: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate the reverse dominated consequence effect.

Notes: In each menu, we color the lottery in the menu that is selected by the individual with probability
at least 0.50 in green. Each logical anomaly exhibiting the reverse dominated consequence effect consists of
two menus {(xA, y

∗
A), (xB , y

∗
B)}. Each algorithmically generated, logical anomalies depicted here is produced

by our dataset morphing algorithm. Logical anomaly #1 is based on the probability weighting function
π(p; δ, γ) for (δ, γ) = (0.726, 0.309), logical anomaly #2 on (δ, γ) = (0.926, 0.377), and logical anomaly #3
on (δ, γ) = (1.063, 0.451). For ease of interpretation, we round each payoff to the nearest cent and each
probability to the nearest percentage. See Section 5.2 and Appendix F.3 for further discussion.
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(a) Logical Anomaly #1

Menu A (xA, y
∗
A)

Lottery 0 6.71 8.98
22% 78%

Lottery 1 7.17 8.04
100% 0%

Menu B (xB, y
∗
B)

Lottery 0 6.71 8.98
49% 51%

Lottery 1 7.17 8.04
45% 55%

(b) Logical Anomaly #2

Menu A (xA, y
∗
A)

Lottery 0 6.28 6.91
65% 35%

Lottery 1 5.94 7.77
53% 47%

Menu B (xB, y
∗
B)

Lottery 0 6.28 6.91
100% 0%

Lottery 1 5.94 7.77
24% 76%

(c) Logical Anomaly #3

Menu A (xA, y
∗
A)

Lottery 0 3.93 7.26
39% 61%

Lottery 1 5.02 5.71
100% 0%

Menu B (xB, y
∗
B)

Lottery 0 3.93 7.26
41% 59%

Lottery 1 5.02 5.71
98% 2%

Table 6: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate the strict dominance effect.

Notes: We color the lottery in the menu that is selected by the individual with probability at least 0.50
in green. Each generated strict dominance effect anomaly {(xA, y

∗
A), (xB , y

∗
B)} presented here is produced

by our dataset morphing algorithm. Logical anomaly #1 is based on the probability weighting function
π(p; δ, γ) for (δ, γ) = (0.726, 0.309), logical anomaly #2 on (δ, γ) = (0.926, 0.377), and logical anomaly #3
on (δ, γ) = (1.063, 0.451). For simplicity, we round each payoff to the nearest cent and each probability to
the nearest percentage. See Section 5.2 and Appendix F.3 for further discussion.
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Pooled
Average Median

First
Quartile

Third
Quartile

Dominated Consequence Effect
0.114
(0.006) 0.112 0.071 0.147

Reverse Dominated Consequence Effect
0.085
(0.007) 0.074 0.060 0.109

Strict Dominance Effect
0.127
(0.009) 0.121 0.111 0.131

Table 7: Summary statistics on the fraction of respondents whose choices violate expected utility
theory on algorithmically generated, logical anomalies.

Notes: This table reports summary statistics on the fraction of respondents whose choices violate expected
utility theory (“expected utility theory violation rate”) on algorithmically generated, logical anomalies of
menus of two lotteries over two monetary payoffs. We report summary statistics by category of logical
anomaly (see Table 2). The “pooled average” column reports the expected utility theory violation rate,
pooling together respondents’ choices on all logical anomalies within the same category. Standard errors
reported in parentheses are clustered at the respondent level. We also report the median, first quartile, and
third quartile of the distribution of expected utility theory violation rates across logical anomalies within
the same category. See Section 5.3 for further discussion.
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Pooled
Average Median

First
Quartile

Third
Quartile

Blavatskyy, Ortmann and Panchenko (2022)

Allais Paradox: Fan-Out 0.160 0.137 0.087 0.184
Allais Paradox: Fan-In 0.194 0.173 0.093 0.244

Blavatskyy, Panchenko and Ortmann (2022)

Common Ratio Effect 0.268 0.256 0.129 0.366
Reverse Common Ratio Effect 0.099 0.085 0.043 0.153

McGranaghan et al. (Forthcoming)

Common Ratio Effect 0.155 0.133 0.095 0.190
Reverse Common Ratio Effect 0.128 0.113 0.0782 0.179

Table 8: Summary statistics on the fraction of respondents whose choices violate expected utility
theory on the Allais Paradox and Common Ratio Effect in recent meta-analyses and comprehensive
experiments.

Notes: This table reports summary statistics on the fraction of respondents whose choices violate expected
utility theory on logical anomalies like the Allais Paradox and Common Ratio Effect in recent large-scale
meta-analyses and comprehensive experiments. The summary statistics for Blavatskyy, Ortmann and
Panchenko (2022) are based on the experiments included in their meta-analysis of the Allais Paradox as
reported in their Table 1. The summary statistics for Blavatskyy, Panchenko and Ortmann (2022) are based
on the experiments included in their meta-analysis of the Common Ratio Effect as reported in their Table 1.
The summary statistics for McGranaghan et al. (Forthcoming) are based on the choice experiments reported
in their Table D.11 and Table D.12.
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Figure A1: Fraction of respondents whose choices violate expected utility theory on logical anoma-
lies of menus of two lotteries over two monetary payoffs, organized by calibrated parameter values
(δ, γ).

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on
the logical anomalies of menus of two lotteries over two monetary payoffs (blue bars) and 95% confidence
intervals (black error bars; standard errors clustered at the respondent level). We organize the estimates
by the calibrated parameter values (δ, γ) of the probability weighting function (16). The orange dashed
line reports the fraction of respondents whose choices violate expected utility theory pooling across all
logical anomalies within the same parameter values. Within the same parameter values, we sort the logical
anomalies and assign each anomaly an arbitrary numeric identifier in decreasing order based on the fraction
of respondents whose choices violate expected utility theory. See Section 5.3 for further discussion.
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Figure A2: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated, logical anomalies,
organized by calibrated parameter values (δ, γ).

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed
choices of respondents on our algorithmically generated, logical anomalies of menus of two lotteries over
two monetary payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed
by the bootstrap). We organize the estimates by the calibrated parameter values (δ, γ) of the probability
weighting function (16). The orange dashed line reports the median estimated idiosyncratic error rate across
all logical anomalies within the same parameter values. Within the same parameter values, we sort the
logical anomalies and assign each logical anomaly an arbitrary numeric identifier in decreasing order based
on the fraction of respondents whose choices violate expected utility theory. See Section 5.3 for further
discussion.
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Figure A3: Fraction of respondents whose choices violate expected utility theory on logical anoma-
lies of menus of two lotteries over two monetary payoffs, dropping the top 10% of respondents who
completed the survey the fastest.

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on
the logical anomalies of menus of two lotteries over two monetary payoffs (blue bars) and 95% confidence
intervals (black error bars; standard errors clustered at the respondent level), dropping the top 10% of
respondents who completed the survey the fastest. We organize the estimates by category of logical anomaly
(see Table 2). The orange dashed line reports the fraction of respondents whose choices violate expected
utility theory pooling across all logical anomalies within the same category. Within each category, we sort the
logical anomalies and assign each anomaly an arbitrary numeric identifier in decreasing order based on the
fraction of respondents whose choices violate expected utility theory. See Section 5.3 for further discussion.
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Figure A4: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated, logical anomalies,
dropping the 10% of respondents that completed the survey the fastest.

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed
choices of respondents on our algorithmically generated, logical anomalies of menus of two lotteries over two
monetary payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed by
the bootstrap), dropping the top 10% of respondents who completed the survey the fastest. We organize the
estimates by category of logical anomaly (see Table 2). The orange dashed line reports the median estimated
idiosyncratic error rate across all logical anomalies within the same category. Within each category, we sort
the logical anomalies and assign each logical anomaly an arbitrary numeric identifier in decreasing order
based on the fraction of respondents whose choices violate expected utility theory. See Section 5.3 for
further discussion.
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Figure A5: Fraction of respondents whose choices violate expected utility theory on logical anoma-
lies of menus of two lotteries over two monetary payoffs, organized by the calibrated parameter
values (δ, γ) and dropping the top 10% of respondents who completed the survey the fastest.

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on
the logical anomalies of menus of two lotteries over two monetary payoffs (blue bars) and 95% confidence
intervals (black error bars; standard errors clustered at the respondent level), dropping the top 10% of
respondents who completed the survey the fastest. We organize the estimates by the calibrated parameter
values (δ, γ) of the probability weighting function (16). The orange dashed line reports the fraction of
respondents whose choices violate expected utility theory pooling across all logical anomalies within the
same parameter values. Within the same parameter values, we sort the logical anomalies and assign each
anomaly an arbitrary numeric identifier in decreasing order based on the fraction of respondents whose
choices violate expected utility theory. See Section 5.3 for further discussion.
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Figure A6: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated, logical anomalies,
organized by calibrated parameter values (δ, γ) and dropping the 10% of respondents that completed
the survey the fastest.

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed
choices of respondents on our algorithmically generated, logical anomalies of menus of two lotteries over two
monetary payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed by
the bootstrap), dropping the top 10% of respondents who completed the survey the fastest. We organize the
estimates by the calibrated parameter values (δ, γ) of the probability weighting function (16). The orange
dashed line reports the median estimated idiosyncratic error rate across all logical anomalies within the
same parameter values. Within the same parameter values, we sort the logical anomalies and assign each
logical anomaly an arbitrary numeric identifier in decreasing order based on the fraction of respondents
whose choices violate expected utility theory. See Section 5.3 for further discussion.
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Prob. Weighting Function: (δ, γ)
Pooled
Average Median

First
Quartile

Third
Quartile

(0.726, 0.309)
0.117
(0.005) 0.109 0.093 0.148

(0.926, 0.377)
0.094
(0.006) 0.109 0.074 0.120

(1.063, 0.451)
0.095
(0.006) 0.068 0.059 0.131

Table A1: Summary statistics on the fraction of respondents whose choices violate expected utility
theory on algorithmically generated, logical anomalies, organized by calibrated parameter values
(δ, γ).

Notes: This table reports summary statistics on the fraction of respondents whose choices violate expected
utility theory (“expected utility theory violation rate”) on algorithmically generated, logical anomalies of
menus of two lotteries over two monetary payoffs. We report summary statistics by calibrated parameter
values of probability weighting function (δ, γ) (see Table 2). The “pooled average” column reports the
expected utility theory violation rate, pooling together respondents’ choices on all logical anomalies within
the same category. Standard errors reported in parentheses are clustered at the respondent level. We also
report the median, first quartile, and third quartile of the distribution of expected utility theory violation
rates across logical anomalies within the same category. See Section 5.3 for further discussion.
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B Omitted Proofs

B.1 Proof of Proposition 2.1

To prove part (i), we first note that the main text established that the allowable function
representation (1) satisfies Assumptions 1-4. This establishes necessity. We prove sufficiency
here. Consider any theory T (·) satisfying Assumptions 1-4. We construct an allowable
function representation FT satisfying (1).

Towards this, define D¬T to be the set of falsifying datasets for theory T (·). That is,
D ∈ D¬T if and only if T (x;D) = ∅ for all x ∈ X . By Assumption 4, there exists some
D ∈ D such that T (x;D) ⊂ Y∗ for some x /∈ D. We can therefore define D′ = D ∪ {(x, ỹ∗)}
for any ỹ∗ ∈ Y∗ \T (x;D). By construction, T (x;D′) = ∅ for all x ∈ D′ since otherwise T (·)
would violate Assumption 3. D¬T is therefore non-empty.

We next define F¬T to be the set of mappings f(·) ∈ F that are consistent with D¬T .
That is, f(·) ∈ F¬T if and only if f(·) is consistent with some D ∈ D¬T . Finally, we define
the allowable functions of T (·) as FT = F \ F¬T . We will next show that

T (x;D) = {f(x) : f(·) ∈ FT consistent with D} (17)

is satisfied for all D ∈ D and x ∈ X .
By Assumptions 1-2, there are only two cases to consider. First, consider D ∈ D such

that T (x;D) = ∅ for all x ∈ X . By construction, {f(·) ∈ FT consistent with D} = ∅ since
D is a falsifying dataset for T (·). We therefore focus on the second case in which D ∈ D
satisfies T (x;D) = y∗ for all (x, y∗) ∈ D and T (x;D) ̸= ∅ for all x /∈ D.

Observe that {f(·) ∈ FT consistent with D} ≠ ∅ by construction. It therefore follows
that {f(x) : f(·) ∈ FT consistent with D} = y∗ for all (x, y∗) ∈ D. All that remains to
show is that {f(x) : f(·) ∈ FT consistent with D} = T (x;D) for all x /∈ D. As notation, for
correspondence c(·) : X ⇒ Y∗ and mapping f(·) : X → Y∗, we write f(·) ∈ c(·) if and only if
f(x) ∈ c(x) for all x ∈ X .

Lemma 1. For any dataset D ∈ D such that T (x;D) ̸= ∅ for all x ∈ X , f(·) ∈ T (·;D)
implies that f(·) ∈ {f(x) : f(·) ∈ FT consistent with D}.

Proof. Suppose for sake of contradiction there exists some f(·) ∈ T (·;D) such that f(·) /∈
{f(x) : f(·) ∈ FT consistent with D}. Since D is not a falsifying dataset of T (·), D /∈ D¬T

and therefore f(·) /∈ F¬T by construction. But this then implies that f(·) ∈ FT , generating
the desired contradiction.

Lemma 2. For any dataset D ∈ D such that T (x;D) ̸= ∅ for all x ∈ X , f(·) ∈ {f(x) : f(·) ∈
FT consistent with D} implies f(·) ∈ T (·;D).

Proof. To prove this result, we will prove the contrapositive: f(·) /∈ T (·;D) implies f(·) /∈
{f(x) : f(·) ∈ FT consistent with D}.

Suppose for sake of contradiction there exists some f(·) /∈ T (·;D) with f(·) ∈ {f(x) : f(·) ∈
FT consistent with D}. Since any f(·) that is not consistent with D cannot be an element
of {f(x) : f(·) ∈ FT consistent with D} by construction, we focus on the case in f(x) = y∗

for all (x, y∗) ∈ D.
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Pick any x ∈ X with f(x) /∈ T (x;D). Since D is consistent with f(·), define D′ =
D∪{(x, f(x))} and consider T (·;D′). There are only two cases to consider by Assumption 2.
First, if T (·;D′) = ∅, then D′ is a falsifying dataset for T (·) and f(·) /∈ FT by construction.
This yields a contradiction. Second, if T (·;D′) ̸= ∅, then T (x;D′) = f(x) by Assumption
2. But this then contradicts Assumption 3 since T (x;D′) ̸⊆ T (x;D).

Lemma 1 implies T (x;D) ⊆ {f(x) : f(·) ∈ FT consistent with D} for all x ∈ X . Lemma
2 establishes that {f(x) : f(·) ∈ FT consistent with D} ⊆ T (x;D). It therefore follows that
T (x;D) = {f(x) : f(·) ∈ FT consistent with D}, and this proves the result. This proves
part (i). To prove part (ii), consider D ∈ D such that T (x;D) ⊂ Y∗ for some x /∈ D
which must exist by Assumption 4. Define D′ = D ∪ {(x, ỹ∗)} for any ỹ∗ ∈ Y∗ \ T (x;D).
By construction, this is an incompatible dataset for T (·). Since there exists incompatible
datasets, there must exist a smallest incompatible dataset D ∈ D for theory T (·). This must
be an anomaly. If |D| = 1, then the definitions of an incompatible dataset and anaomly
coincide. If |D| > 1 but |D| is not an anomaly, then there exists a smaller incompatible
dataset which is a contradiction. □.

B.2 Proof of Proposition 2.2

Part (i) is an immediate consequence of the allowable function representation in Proposi-
tion 2.1. First, suppose D is an incompatible dataset for theory T (·) and T (x;D) = ∅
for all x ∈ X . Proposition 2.1 implies that there exists no f(·) ∈ FT consistent with
D. It immediately follows that minf(·)∈FT |D|−1

∑
(x,y∗)∈D ℓ (f(x), y∗) > 0. Next, suppose

minf(·)∈FT |D|−1
∑

(x,y∗)∈D ℓ (f(x), y∗) > 0. This implies that there exists no f(·) ∈ FT

consistent with D, and so D must be an incompatible dataset by Proposition 2.1.
Part (ii) is an immediate consequence of Definition 3. If there exists no incompatible

dataset of size strictly less than n, any incompatible dataset of size nmust also be an anomaly
as it must be the case that D \ {(x, y∗)} is compatible with theory T (·) for all (x, y∗) ∈ D.
□

B.3 Proof of Proposition 3.1

As a first step, we establish that the Ên approximately solves the plug-in max-min op-
timization program up to the optimization errors associated with the approximate inner
minimization and outer maximization routines.

Lemma 3. Under the same conditions as Proposition 3.1,∥∥∥∥∥ÊTm −max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ ≤ δ + ν.

Proof. As notation, let f̂T (·;x1:n) denote the optimal solution to minf(·)∈FT n−1
∑n

i=1 ℓ
(
f(xi), f̂

∗
m(xi)

)
.

Observe that∥∥∥∥∥n−1

n∑
i=1

ℓ
(
f̃(x̃i; x̃1:n), f̂

∗
m(x̃i)

)
−max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ (1)

≤
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∥∥∥∥∥n−1

n∑
i=1

ℓ
(
f̃(x̃i; x̃1:n), f̂

∗
m(x̃i)

)
−max

x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)∥∥∥∥∥+∥∥∥∥∥max
x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)
−max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ (2)

≤

ν +

∥∥∥∥∥max
x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)
−max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ (3)

≤

ν +

∥∥∥∥∥max
x1:n

{
n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)}∥∥∥∥∥ (4)

≤ ν + δ

where (1) adds/subtracts maxx1:n minf(·)∈FT n−1
∑n

i=1 ℓ
(
f(xi), f̂

∗
m(xi)

)
and applies the tri-

angle inequality, (2) follows from properties of the approximate outer maximization routine,
(3) uses the sub-additivity of the maximum, and (4) follows from the properties of the
approximate inner minimization routine.

To analyze the convergence of the plug-in estimator, observe that

∥∥∥ÊTm − ETm∥∥∥ ≤
∥∥∥∥∥ÊTm −max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥+
∥∥∥∥∥max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− ETm

∥∥∥∥∥ .
Lemma 3 establishes that the first term is bounded by ν + δ. Therefore, we only need to
establish a bound on the second term. Towards this, we rewrite the second term as∥∥∥∥∥max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− ETm

∥∥∥∥∥ ≤∥∥∥∥∥max
x1:n

{
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ (f(xi), f
∗
m(xi))

}∥∥∥∥∥ .
Defining f̂T (·;x1:n) to be the minimizer for minf(·)∈FT n−1

∑n
i=1 ℓ

(
f(xi), f̂

∗
m(xi)

)
and fT (·;x1:n)

as the minimizer for minf(·)∈FT n−1
∑n

i=1 ℓ (f(xi), f
∗
m(xi)), we rewrite

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ (f(xi), f
∗
m(xi)) =

n−1

n∑
i=1

ℓ
(
f̂T (xi;x1:n), f̂

∗
m(xi)

)
− n−1

n∑
i=1

ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)
=

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f̂

∗
m(xi)

)
− ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)}
︸ ︷︷ ︸

(a)

+
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n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)}
︸ ︷︷ ︸

(b)

.

Consider (a). Since ℓ(·, ·) is convex in its second argument, (a) is bounded above by

n−1

n∑
i=1

{
∇2ℓ

(
f̂T (xi;x1:n), f̂

∗
m(xi)

)(
f̂ ∗
m(xi)− f ∗

m(xi)
)}
≤

n−1K∥f̂ ∗
m(x1:n)− f ∗

m(x1:n)∥1 ≤ K∥f̂ ∗
m(x1:n)− f ∗

m(x1:n)∥∞
where we defined the shorthand notation f(x1:n) = (f(x1), . . . , f(xn)), used that the loss
function has bounded gradients, and the inequality ∥f(x1:n)∥1 ≤ n∥f(x1:n)∥∞. Next, we can
rewrite (b) as being bounded by

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)}
=

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)}
−

n−1

n∑
i=1

{
ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f̂

∗
m(xi)

)} (1)

≤

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f̂

∗
m(xi)

)}
−

n−1

n∑
i=1

{
∇2ℓ

(
fT (xi;x1:n), f̂

∗
m(xi)

)
(f ∗

m(xi)− f̂ ∗
m(xi))

} (2)

≤

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
f̂T (xi;x1:n), f̂

∗
m(xi)

)}
−

n−1

n∑
i=1

{
∇2ℓ

(
fT (xi;x1:n), f̂

∗
m(xi)

)
(f ∗

m(xi)− f̂ ∗
m(xi))

} (3)

≤

n−1

n∑
i=1

{
∇2ℓ(f̂

T (xi;x1:n), f̂
∗
m(xi))

(
f̂ ∗
m(xi)− f ∗

m(xi)
)}
−

n−1

n∑
i=1

{
∇2ℓ

(
fT (xi;x1:n), f̂

∗
m(xi)

)
(f ∗

m(xi)− f̂ ∗
m(xi))

}
where (1) uses that the loss is convex in its second argument, (2) uses n−1

∑n
i=1 ℓ(f

T (xi;x1:n), f̂
∗
m(xi)) ≥

n−1
∑n

i=1 ℓ(f̂
T (xi;x1:n), f̂

∗
m(xi)), and (3) again uses that the loss is convex in it second argu-
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ment. By the same argument as before, it follows that this is bounded by

≤ 2K
∥∥∥f̂ ∗

m(x1:n)− f ∗
m(x1:n)

∥∥∥
∞
.

Combining the bound on (a), (b) yields the desired result. □

B.4 Proof of Proposition 4.1

To prove this result, we first observe that if f(x1) = f(x2) for all f(·) ∈ FT , then T (x1;D) =
T (x2;D) must be true for all D ∈ D by Proposition 2.1. Next suppose, for sake of contra-
diction, that there exist two features x1, x2 that are representationally equivalent but there
exists some allowable function f(·) ∈ FT such that f(x1) ̸= f(x2). Consider the modeled
dataset D = {(x1, f(x1)), (x2, f(x2))}. Since f(·) ∈ FT , T (·) must be consistent with this
modeled dataset. Furthermore, by Assumption 2 (”consistency”), T (·) must also satisfy that
T (x1;D) = f(x1) and T (x2;D) = f(x2), yielding the desired contradiction. □

B.5 Proof of Proposition 4.2

We first observe that Assumption 6 implies Assumption 4 and therefore there exists an
allowable function representation FT for theory T (·). Then, we will show that the pair
x1, x2 ∈ X in Assumption 6 are representationally equivalent. There are three cases to
consider. First, if D ∈ D is incompatible with T (·), then T (x1;D) = T (x2;D) = ∅. Second,
if D ∈ D is such that (xj, y

∗
j ) ∈ D for j ̸= k, the T (xk;D) = y∗j by Assumption 6. Finally,

suppose for sake of contradiction x1, x2 /∈ D but T (x1;D) ̸= T (x2;D). If there exists some

y∗1 ∈ T (x1;D) with y∗1 /∈ T (x2;D), construct the augemented dataset D̃ = D ∪ {(x1, y
∗
1)}.

By the allowable function representation (1), D̃ is a compatible dataset. But Assumption 3

implies that y∗1 /∈ T (x2; D̃), contradicting Assumption 6. □

B.6 Proof of Proposition 4.3

To prove the first result, let us define the shorthand notation g∗ = ∇f ∗
m(x), g = Proj

(
∇f ∗

m(x) | N T (x)
)
,

and g⊥ = g∗ − g. Observe that

⟨−Proj
(
∇f ∗

m(x) | N T (x)
)
,∇f ∗

m(x)⟩ = ⟨−g, g∗⟩ = ⟨−g, g⊥ + g⟩ = −∥g∥2 ≤ 0,

and so −Proj
(
∇f ∗

m(x) | N T (x)
)
is a descent direction for f ∗

m(·).
To prove the second result, let Ω to be the orthogonal projection matrix onto N T (x) and

define ĝ∗ = ∇f̂ ∗
m(x), ĝ = Proj

(
∇f̂ ∗

m(x) | N T (x)
)
and ĝ⊥ = ĝ∗ − ĝ. Observe that

⟨−Proj
(
∇f̂ ∗

m(x) | N T (x)
)
,∇f ∗

m(x)⟩ = ⟨−ĝ, g∗⟩ = ⟨−ĝ, g + g⊥⟩ = ⟨−ĝ, g⟩ =

⟨−ĝ + g − g, g⟩ = −∥g∥2 + ⟨g − ĝ, g⟩ ≤ −∥g∥2 + ∥g − ĝ∥∥g∥,

where the last inequality follows by the Cauchy-Schwarz inequality. The stated condition
implies that

∥g − ĝ∥ ≤ ∥g∥

since ∥g− ĝ∥ = ∥Ω(g∗− ĝ∗)∥ ≤ ∥Ω∥op∥g∗− ĝ∗∥ and ∥Ω∥op ≤ 1. But the previous display can
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be equivalently rewritten as
−∥g∥2 + ∥g − ĝ∥∥g∥ ≤ 0

thus proving the result. □

C Additional Examples for the Model of Theories
In this appendix section, we illustrate how additional examples map into our model of theories
described in Section 2 of the main text.

Example: choice under risk As in the main text, consider individuals evaluating a
lottery over J > 1 monetary payoffs. The features are a complete description of the lottery
x = (z, p), where z ∈ RJ is the lottery’s payoffs and p ∈ ∆J−1 is the lottery’s probabilities.
The modeled outcome is the certainty equivalent y∗ ∈ R for the lottery (e.g., Tversky
and Kahneman, 1992; Bruhin, Fehr-Duda and Epper, 2010; Bernheim and Sprenger, 2020;
Fudenberg et al., 2022; Andrews et al., 2022, among many others), and the modeled contexts
m ∈ M are each individual. Given a modeled dataset D, expected utility theory searches
for utility functions u(·) that rationalize the certainty equivalents of the lotteries, meaning

y∗ = u−1
(∑J

j=1 p(j)u(z(j))
)

for all (x, y∗) ∈ D. On any new lottery, expected utility

theory returns T (x;D), where y∗ ∈ T (x;D) if and only if y∗ = u−1
(∑J

j=1 p(j)u(z(j))
)
for

some utility function u(·) rationalizing D. Alternative behavioral models such as cumulative
prospect theory can be cast as particular theories T (·) of certainty equivalents. ▲

Example: asset pricing Consider the evolution of J ≥ 1 risky asset returns over time.
The features x enumerate the expected return for all assets, the full variance-covariance
matrix of asset returns, and possibly higher-order moments of asset returns over a particular
time period. The modeled outcome y∗ ∈ R is the expected return of some asset j in the
next period and each modeled context m ∈ M is an asset. Given a modeled dataset D,
the capital asset pricing model (CAPM) provides a procedure for calculating the expected
market return ȳmarket, the risk-free rate ȳrisk-free, and the asset’s covariance with the market
return β. On any new period x, CAPM returns T (x;D), where y∗ ∈ T (x;D) if and only if
y∗ = ȳrisk-free + β (ȳmarket − ȳrisk-free). ▲

Example: discrete choice Consider individuals making choices from menus of J items
(e.g., McFadden, 1984; Strzalecki, 2022). The features are a complete description of each
item in the menu x = (z1, p1, . . . , zJ , pJ), where zj are the attributes of item j and pj is
its price. The features may even include information about how items are presented in the
menu or their ordering. The modeled outcomes are menu choice probabilities y∗ ∈ ∆J−1,
and the modeled contexts m ∈M may either be interpreted as individuals or distinct groups
of individuals (e.g., see the discussion in Ch. 1 of Strzalecki, 2022).

A popular class of parametric additive random utility models, such as the multino-
mial logit, specify the indirect utility of item j as vj(x;α, β) = zjβ − αpj + ϵj, where
(α, β) are parameters and ϵj is a random taste shock with some known distribution. Given
a hypothetical dataset D of menus and choice probabilities, such a parametric additive
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random utility model searches for parameter values (α, β) that match the choice proba-

bilities, meaning y∗j = P
(
j ∈ argmaxĵ vĵ(x;α, β)

)
for all j = 1, . . . , J and (x, y∗) ∈ D.

On any new menu of items x, it returns T (x;D), where y∗ ∈ T (x;D) if and only if

y∗j = P
(
j ∈ argmaxĵ vĵ(x;α, β)

)
for some (α, β) that matches D. ▲

C.1 Logical anomalies for other examples

Example: initial play in normal-form games Consider the normal-form game in Table
A2. In our framework, such a normal form game is a particular feature x ∈ X . The iterated
elimination of strictly dominated strategies implies that (Top, Left) is the unique Nash
equilibrium of the game. Therefore, T (x;D) = ∅ or T (x;D) = (1, 0, 0) for any hypothetical
dataset D ∈ D. Suppose instead the individual m was a level-1 thinker. In this case, she

Left Center Right

Top (10, 4) (5,3) (3,2)
Middle (0,1) (4,6) (6,0)
Bottom (2,1) (3,5) (2,8)

Table A2: An example anomaly for Nash equilibrium based on Level-1 thinking.

would eliminate Bottom since it is strictly dominated but would fail to recognize the Right
is now strictly dominated for her opponent by the iterated elimination of strictly dominated
strategies. She would then play the game as-if her opponent randomizes across all of her
actions, and we may observe her strategy profile y∗ placing positive probability on both Top
and Middle. By construction, a modeled dataset that consisted of only this normal-form
game and such a strategy profile would be a logical anomaly for Nash equilibrium. ▲

Example: asset pricing As mentioned in the main text, CAPM models the expected
return of an asset as ȳrisk-free+β

(
ȳmarket − ȳrisk-free

)
based on the expected returns of all

assets and their covariance structure. Consider the modeled dataset D = {(x1, y
∗
1), (x2, y

∗
2)},

where x1, x2 are such that the risk-free rate, market return and covariance structure are
constant yet y∗1, y

∗
2 vary. By construction, such a hypothetical dataset would be a logical

anomaly for CAPM. For example, Barberis and Huang (2008) find that the skew (i.e., a
higher moment) of an asset’s returns influence asset returns in the cross-section. ▲

C.2 Assumptions for other examples

Example: initial play in normal-form games Nash equilibrium is the correspon-
dence T (·) satisfying: (i) if for all (x, y∗) ∈ D there exists some y∗col ∈ ∆J−1 such that∑J

j=1

∑J
j̃=1 y

∗(j)y∗col(j̃)πrow(j, j̃) ≥
∑J

j=1

∑J
j̃=1 ỹ

∗(j)y∗col(j̃)πrow(j, j̃) for all ỹ∗ ∈ ∆J−1, then
T (x;D) is defined as in the main text for all x ∈ X ; (ii) otherwise, T (x;D) = ∅ for all
x ∈ X . We immediately observe that Assumption 1, Assumption 2, and Assumption 4 are
satisfied by construction. Assumption 3 is also satisfied as T (x;D′) ⊆ T (x;D) for all D,D′

with D ⊆ D′. ▲
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Example: asset pricing We observe that CAPM as described in the main text immedi-
ately satisfies Assumption 1 and Assumption 2 on modeled datasets of moments of historical
asset prices. Second, consider any D,D′ satisfying D ⊆ D′. There are only three cases to
consider – either both D,D′ are inconsistent with CAPM, D is consistent with CAPM but
D′ is not, and both are consistent with CAPM in which case β(D) = β(D′). In all such
cases, Assumption 3 is satisfied. Finally, Assumption 4 is satisfied for any modeled dataset
D that either point or partially identifies the assets’ parameter βj.

More specifically, CAPM provides a procedure for calculating the expected market return
ȳmarket, risk-free rate ȳrisk-free, and the asset’s covariance with the market return β from any
feature x1 consisting of the expected returns of all assets and higher moments. As a result, the
allowable functions of CAPM can be written as f(x1) = ȳrisk-free+β(ȳmarket− ȳrisk-free). For
any other feature x2 that leads to the same expected market return, risk-free rate and asset’s
covariance with the market return, we have that f(x1) = f(x2). CAPM therefore satisfies
Assumption 6. Any pair of features x1, x2 of this form are representationally equivalent
under CAPM. ▲

D Average Anomalies across Modeled Contexts
In the main text, our anomaly generation procedures focused on searching for anomalies in
a single modeled context, whereas we may be empirically interested in generating anomalies
that hold across many modeled contextsm ∈M. Our algorithmic procedures can be directly
applied across modeled contexts.

D.1 Adversarial algorithm

Suppose we observe a random sample (Mi, Xi, Yi) ∼ P (·) for i = 1, . . . , N across modeled
contexts. Under this joint distribution, define f̄ ∗(x) := E[g(Yi) | Xi = x] as the average
relationship between features and the modeled outcome across all modeled contexts. Define
P (m | x) := P (Mi = m | Xi = x) and f ∗

m(x) := Em[g(Yi) | Xi = x] in each modeled context
m ∈M as before. An average incompatible dataset is a collection of features x1:n such that
D = {(x1, f̄

∗(xi)), . . . , (xn, f̄
∗(xn))} is incompatible with theory T (·). An average empirical

anomaly is defined analogously.
If {(x1, f̄

∗(xi)), . . . , (xn, f̄
∗(xn))} is an average incompatible dataset, then it is also an in-

compatible dataset in some modeled contextm. Furthermore, provided {(x1, f̄
∗(xi)), . . . , (xn, f̄

∗(xn))}
is a “systematically” incompatible dataset across modeled contexts, then it is also an average
incompatible dataset.

Proposition D.1. Suppose theory T (·) satisfies Assumptions 1-4. Then,

i. If {(x1, f̄
∗(xi)), . . . , (xn, f̄

∗(xn))} is an average incompatible dataset, then there exists
some modeled context m ∈M with true function f ∗

m(·) such that {(x1, f
∗
m(x1)), . . . , (xn, f

∗
m(xn))}

is an incompatible dataset.

ii. Provided {(x1, f̄
∗(xi)), . . . , (xn, f̄

∗(xn))} is incompatible in some modeled context and
satisfies

∑
m ̸=m̃

(
n−1

n∑
i=1

P (m | x)P (m̃ | x)
(
fT
m(xi)− f ∗

m(xi)
) (

fT
m̃(xi)− f ∗

m̃(xi)
))
≥ 0,
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for all fm(·), fm̃(·) ∈ FT , then x1:n is also an average incompatible dataset.

Proof. To prove this result, it suffices to focus on the squared loss function ℓ(y, y′) = (y − y′)2.
To show (i), we define f̄T (x;x1:n) :=

∑
m∈M P (m | x)fT

m(x;x1:n). We then observe that

n−1

n∑
i=1

(
f̄T (xi;x1:n)− f̄ ∗(xi)

)
= n−1

n∑
i=1

(∑
m∈M

P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
))2

≤ 2n−1

n∑
i=1

∑
m∈M

P (m | xi)
2
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2 ≤ 2

∑
m∈M

(
n−1

n∑
i=1

P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2)

.

Then, since x1:n is an average incompatible dataset, this implies

0 < min
f(·)∈FT

n−1

n∑
i=1

(f(xi)− f̄ ∗(xi))
2 ≤ 2

∑
m∈M

(
n−1

n∑
i=1

P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2)

,

which in turn implies that n−1
∑n

i=1 P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2

> 0 for some modeled
context m ∈M. To show (ii), observe that

min
f(·)∈FT

n−1

n∑
i=1

(
f(xi)− f̄ ∗(xi)

)2 ≥ min
fm(·)∈FT

n−1

n∑
i=1

(∑
m∈M

P (m | xi)(fm(xi)− f ∗
m(xi))

)2

,

where

n−1

n∑
i=1

(∑
m∈M

P (m | xi)(fm(xi)− f ∗
m(xi))

)2

=

n−1
∑
m∈M

n∑
i=1

P (m | xi)
2(fm(xi)− f ∗

m(xi))
2+

n−1
∑
m ̸=m̃

n∑
i=1

P (m | xi)P (m̃ | xi)(fm(xi)− f ∗
m(xi))(fm̃(xi)− fm̃(xi)).

Then, under the assumption that x1:n is systematically incompatible with theory T (·) across
modeled contexts, it follows that

min
f(·)∈FT

n−1

n∑
i=1

(
f(xi)− f̄ ∗(xi)

)2 ≥ ∑
m∈M

{
n∑

i=1

P (m | xi)
2(fm(xi)− f ∗

m(xi))
2

}
.

The result then follows as x1:n is also an incompatible dataset for some modeled context
m.

The condition in Proposition D.1(ii) requires that x1:n be “systematically” incompatible with
theory T (·) across modeled contexts in these sense that the errors of the theory’s best fitting
allowable functions across modeled contexts do not cancel out on average.

Proposition D.1 suggests that we can search for empirical anomalies across modeled
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contexts by plugging in an estimator ̂̄f ∗
(·) into our adversarial search procedure. Our same

theoretical analysis applies, except now the difference between the plug-in optimal value

and the population optimal value now depends on the estimation error ∥̂̄f ∗
(·) − f̄ ∗(·)∥∞.

By pooling data across modeled contexts, we may hope to obtain better control of this
estimation error in finite samples.

D.2 Average representational anomalies across modeled contexts

In Section 4, we developed a dataset morphing procedure to generate representational anom-
laies in a single modeled context. We may also be interested in generating representational
anomalies across many modeled contexts m ∈M.

Suppose we again observe a random sample (Mi, Xi, Yi) ∼ P (·) for i = 1, . . . , N across
modeled contexts, letting f̄ ∗(x) := E[g(Yi) | Xi = x] and P (m | x) = P (Mi = m | Xi = x) as
before. We define an empirical average representational anomaly as a pair of features x1, x2

such that f̄ ∗(x1) ̸= f̄ ∗(x2). If there are no compositional changes in modeled contexts across
these features, then x1, x2 is an empirical average representational anomaly if and only if it
is an empirical representational anomaly in some modeled context m.

Proposition D.2. Consider features x1, x2 ∈ X and suppose P (m | x1) = P (m | x2) for all
m ∈ M. Then,if {(x1, f̄

∗(x1)), (x2, f̄
∗(x2))} is an average representational anomaly, then

there exists some modeled context m ∈M with true function f ∗
m(·) such that {(x1, f

∗
m(x1), (x2, f

∗
m(x2))}

is a representational anomaly.

Proof. To prove this result, observe that

f̄ ∗(x1)− f̄ ∗(x2) =
∑
m∈M

P (m | x1)f
∗
m(x1)−

∑
m∈M

P (m | x2)f
∗
m(x2)

=
∑
m∈M

P (m | x1) (f
∗
m(x1)− f ∗

m(x2)) +
∑
m∈M

(P (m | x1)− P (m | x2)) fm(x2).

Assuming that P (m | x1) = P (m | x2) for all m ∈ M implies that the second term in the
previous display equals zero. The result is then immediate.

The condition in Proposition D.2 requires that there exists the same composition of modeled
context across features x1, x2. If not, there could exist variation in f̄ ∗(·) across these features
even though there exists no empirical representational anomaly in any modeled context.

Proposition D.2 suggests that we can search for empirical average representational anoma-

lies across modeled contexts by simply plugging in an estimator ̂̄f ∗
(·) into our morphing pro-

cedure. Our same theoretical analysis applies, except now the difference between the plug-in

gradient and the population gradient depends on the error ∥∇̂̄f ∗
(·)−∇f̄ ∗(·)∥2. By pooling

data across modeled contexts, we may hope to obtain better control of this estimation error.

E Analysis of Gradient Descent Ascent Optimization

over Allowable Functions
In Section 3.2 of the main text, we proposed a gradient descent ascent (GDA) procedure to
optimize the plug-in max-min program. Recall that for some parametrization of the theory’s
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allowable functions FT = {fθ(·) : θ ∈ Θ}, initial feature values x0
1:n, step size sequence ηt > 0

and maximum number of iterations T > 0, we iterate over t = 0, . . . , T and calculate

θt+1 = argmin
θ∈Θ
ÊTm(xt

1:n; θ)

xt+1
1:n = xt

1:n + ηt∇ÊTm(xt
1:n; θ

t+1)

at each iteration, where ÊTm(x1:n, θ) := n−1
∑n

i=1 ℓ
(
fθ(xi), f̂

∗
m(xi)

)
. We apply recent results

from Jin, Netrapalli and Jordan (2019) on non-convex/concave max-min optimization to
establish that this GDA procedure converges to an approximate stationary point of the
outer maximization problem

Define x̄1:n to be the random variable drawn uniformly over {x0
1:n, . . . , x

T
1:n} and define

ÊTm(x1:n) = minθ∈Θ ÊTm(x1:n, θ). To formally state the result, we define the Moreau envelope

of ÊTm(x1:n) as

ϕλ(x1:n) = min
x′
1:n

ÊTm(x′
1:n) +

1

2λ
∥x1:n − x′

1:n∥22

For non-convex functions, the Moreau envelope is a smooth, convex approximation that
is often used to analyze the properties of gradient descent algorithms (e.g, see Davis and
Drusvyatskiy, 2018). Our analysis of the GDA procedure provides a bound on the gradient of
the Moreau envelope ϕλ(·). Standard results in convex optimization establish that a bound

on the gradient of the Moreau envelope implies a bound on the subdifferentials of ÊTm(x1:n).

Lemma 4 (Lemma 30 in Jin, Netrapalli and Jordan (2019)). Suppose ÊTm(x1:n) is b-weakly

convex. For an λ < 1
b
and x̃1:n = argminx′

1:n
ÊTm(x′

1:n) +
1
2λ
∥x1:n − x′

1:n∥22, ∥∇ϕλ(x1:n)∥ ≤ ϵ
implies

∥x̃1:n − x1:n∥ = λϵ and min
g∈∂ÊT

m(x̃1:n)
∥g∥ ≤ ϵ,

where ∂ denotes the subdifferential of a weakly convex function.

Proposition E.1. Suppose ℓ(·, ·), f̂ ∗
m(·) and {fθ(·) : θ ∈ Θ} are k-times continuously dif-

ferentiable with K-bounded gradients. Then, the output x̄1:n of the gradient descent ascent
algorithm with step size ηt = η0/

√
T + 1 for some η0 > 0 satisfies

E
[
∥∇ϕ0.5b(x̄1:n)∥22

]
≤ 2

(
ϕ0.5b(x

0
1:n)−minx1:n ÊTm(x1:n)

)
+ bK2η20

η0
√
T + 1

+ 4bδ,

where δ ≥ 0 is the error associated with the approximate inner minimization oracle in As-
sumption 5(i).

Proof. This result is an immediate consequence of Theorem 31 in Jin, Netrapalli and Jordan
(2019).
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F Additional Implementation Details and Results for

Choice under Risk with Lotteries over Two Mone-

tary Payoffs

F.1 Implementation details of anomaly generation procedures

In this section, we describe the implementation details of our anomaly generation procedures
in the illustration to choice under risk in Section 5.1.

For both the adversarial procedure and dataset morphing procedure, we constructed ran-
domly initialized menus of two independent lotteries in the following manner. We simulated
each payoff in a lottery independently from a uniform distribution on [0, 10]. We simulated
the probabilities in a lottery by drawing each lottery probability uniformly from the unit
interval, and then normalizing the draws so they lie on the unit simplex.

F.1.1 Adversarial procedure

To implement the adversarial procedure based on gradient descent ascent described in Section
3.2, we must first specify a parametric basis for the allowable functions of expected utility
theory. We parametrize the utility function of the individual uθ(·) as a linear combination
of polynomials up to order K or I-splines with some number of knot points q and degree
K (see Ramsay, 1988). We experimented with both choice of basis functions, varying the
maximal degree of the polynomial bases as well as the number of knot points and degree
of the I-spline bases. Since we found qualitatively similar results, we focus on presenting
anomalies generated by a polynomial utility function basis with order K = 6. We set the
learning rate to be η = 0.01.

For any particular choice of utility function basis and learning rate, we ran the gradient
descent ascent procedure for 25,000 randomly initialized menus x0. We set the maximum
number of iterations to be T = 50. For a particular choice of utility basis functions, we
solve the inner minimization problem (12) by minimizing the cross-entropy loss between
the true choice probabilities on the menus f ∗

m(x
t) and the implied expected utility theory

choice probabilities fθ(x
t) = P

(∑J
j=1 p

t
1juθ(z1j)−

∑J
j=1 p0juθ(z0j) + ξ

)
for ξ an i.i.d. lo-

gistic shock. We then implement the outer gradient ascent step (13) directly. After each
gradient ascent step, we project the updated lottery probability vectors back into the unit
simplex.

A subtle numerical issue arises as the gradients of the cross-entropy loss Ê(xt; θt+1)
vanish whenever expected utility theory can exactly match the choice probabilities. To avoid
this vanishing gradients problem, we instead implement the outer gradient ascent step (13)

by following the gradient of log
(

f∗
m(xt)

1−f∗
m(xt)

)(∑J
j=1 p

t
1juθt+1(z1j)−

∑J
j=1 p0juθt+1(z0j)

)
. This

alternative loss function for the gradient ascent step applies the logit transformation to the

choice probabilities so that log
(

f∗
m(xt)

1−f∗
m(xt)

)
is positive whenever f ∗

m(x
t) > 0.5 and weakly

negative otherwise. The overall loss function is therefore positive whenever the expected
utility difference between the lotteries is positive but f ∗

m(x
t) < 0.5 and vice versa. We take

gradient ascent steps on only the probabilities of the lotteries in the menu, meaning that
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only the probabilities of the lotteries in the menu are modified over the gradient descent
ascent algorithm. We then collect together the anomalies produced across all runs of the
adversarial procedure.

F.1.2 Dataset morphing procedure

To implement the dataset morphing procedure described in Algorithm 2, we again must
specify a parametric basis for the allowable functions of expected utility theory. Like the
adversarial procedure, we experimented with both polynomial bases up to order K and I-
spline bases varying the number of knot points q and degree K. Since we found qualitatively
similar results, we focus on presenting anomalies generated by the I-spline basis with q = 10
knot points and degree K = 3. We set the learning rate to be η = 10.

For any particular utility function basis and learning rate, we ran the dataset morphing
procedure 15,000 randomly initialized menus x0. We set the maximum number of iterations
to be T = 50. At each iteration t, we solve for the best-fitting allowable function θt and
sample θb independent from a multivariate normal distribution with mean vector equal to
θ̄t = 1

t

∑t
s=1 θ

s and variance matrix equal to 1
t−1

∑t
s=1(θ

s− θ̄t)(θs− θ̄t)′ for b = 1, . . . , B. We
set B = 200, 000. We take gradient ascent steps on only the probabilities of the lotteries in
the menu, meaning that only the probabilities of the lotteries in the menu are modified by
the dataset morphing procedure. We then collect together the anomalies produced across
all runs of the dataset morphing procedure.

F.2 Numerical verification of logical anomalies for expected utility
theory

As discussed in Section 5.1 of the main text, each returned menu of lotteries over two mone-
tary payoffs by our anomaly generation procedures are logical anomalies for expected utility
theory at our particular parametrization of the utility function {uθ(·) : θ ∈ Θ}. Given any
such returned menus of lotteries over two monetary payoffs, we numerically verify whether
the dataset of returned menus is a logical anomaly for expected utility theory at any in-
creasing utility function and without noisy choices. In the main text, we report all resulting
numerically verified logical anomalies for expected utility theory at any increasing utility
function.

Concretely, consider a modeled dataset {(x0, f
∗
m(x0)), (x1, f

∗
m(x1))} returned by our anomaly

generation procedures, where x0 = (z0,0, p0,0, z0,1, p0,1) and x1 = (z0,0, p1,0, z0,1, p1,1). For ease
of exposition, we assume the monetary payoffs are the same across the two menus. Define
y∗0 = 1{f ∗

m(x0) ≥ 0.50} and y∗1 = 1{f ∗
m(x1) ≥ 0.50}, and the ordered monetary payoffs as

z(1) < z(2) < z(3) < z(4).

We check whether there exists any increasing utility function u(z) satisfying u(z(1)) <
u(z(2)) < u(z(3)) < u(z(4)) that could rationalize the given configuration of binary choices
(y∗0, y

∗
1). Abusing notation, let us redefine p0,0 ∈ ∆4 as the vector of probabilities associated

with the ordered monetary payoffs, and p0,1, p1,0, p1,1 analogously. Let u = (u1, u2, u3, u4) de-
note the vector of utility values assigned to the ordered monetary payoffs. Checking whether
there exists any increasing utility function that could rationalize the given configuration of
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binary choices is equivalent to checking whether there exists a solution to a system of linear
inequalities. In particular, if (i) y∗0 = y∗1 = 0, we check whether there exists any vector u
satisfying (p0,0 − p0,1)

Tu > 0 and (p1,0 − p1,1)
Tu > 0; (ii) y∗0 = 1, y∗1 = 0, we check whether

there exists any vector u satisfying (p0,0 − p0,1)
Tu < 0 and (p1,0 − p1,1)

Tu > 0; and so on.

F.3 Proofs of logical anomalies for expected utility theory

In this section, we prove that pairs of menus of two lotteries over two monetary payoffs
exhibiting the dominated consequence effect, reverse dominated consequence effect, and strict
dominance effect are logical anomalies for expected utility theory.

F.3.1 Dominated consequence effect anomalies

Consider the first menu defined over the pair of lotteries ℓ0 = (p0, z0), ℓ1 = (p1, z1) and the
second menu defined over the lotteries ℓ′0 = (p′0, z0), ℓ

′
1 = (p′1, z1). Let z0 = minj z0(j) and

z1 = minj z1(j).
Suppose that the lotteries in the second menu can be written as

ℓ′0 = α0ℓ0 + (1− α0)δz0

ℓ′1 = α1ℓ1 + (1− α1)δz1

for some α0, α1 ∈ [0, 1]. Further assume (i) z0 < z1, (ii) ℓ1 is preferred to ℓ0 – that is, ℓ1 ≻ ℓ0,
(iii) ℓ′0 is preferred to ℓ′1 – that is, ℓ′0 ≻ ℓ′1, and (iv) α1 ≥ α0. To see why this is a logical
anomaly for expected utility theory, observe

ℓ1 ≻ ℓ0
(1)
=⇒ α1ℓ1 + (1− α1)δz1 ≻ α1ℓ0 + (1− α1)δz1 ,

α1ℓ0 + (1− α1)δz1
(2)
≻ α1ℓ0 + (1− α1)δz0

α1ℓ0 + (1− α1)δz0
(3)
≻ α0ℓ0 + (1− α0)δz0

where (1) follows by the independence axiom, (2) follows by utility must be increasing in
monetary payoffs and the independence axiom, and (3) follows by preservation of first-order
stochastic dominance. An application of the transitivity axiom then yields that ℓ1 being
preferred to ℓ0 must imply ℓ′1 is preferred to ℓ′0. The modeled dataset {((ℓ0, ℓ1), 1), ((ℓ′0, ℓ′1), 0)}
is therefore a logical anomaly for expected utility theory.

In Table 4, we provide three examples of dominated consequence effect anomalies for
expected utility theory. We now discuss how each example can be mapped into the dominated
consequence effect. First, consider the logical anomaly presented in Table 4(a). This is a
dominated consequence effect anomaly defining ℓ1 as lottery A0, ℓ0 as lottery A1, ℓ′1 as B0,
and ℓ′0 as B1. Second, consider the logical anomaly in Table 4(b). This is a dominated
consequence effect anomaly defining ℓ1 as lottery A1, ℓ0 as lottery A0, ℓ′1 as lottery B1, and
ℓ′0 as lottery B0. Finally, consider the logical anomaly in Table 4(c). This is a dominated
consequence effect anomaly defining ℓ1 as lottery A1, ℓ0 as lottery A0, ℓ′1 as lottery B1, and
ℓ′0 as lottery B0.
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F.3.2 Reverse dominated consequence effect anomalies

Consider the first menu defined over the pair of lotteries ℓ0 = (p0, z0), ℓ1 = (p1, z1) and the
second menu defined over the pair of lotteries ℓ′0 = (p′0, z0), ℓ

′
1 = (p′1, z1). Let z0 = maxj z0(j)

and z1 = maxj z1(j).
Suppose that the lotteries in the second menu can be written as

ℓ′0 = α0ℓ0 + (1− α0)δz0
ℓ′1 = α1ℓ1 + (1− α1)δz1

for some α0, α1 ∈ [0, 1]. Further assume (i) z1 > z0, (ii) ℓ1 is preferred to ℓ0 – that is, ℓ1 ≻ ℓ0,
(iii) ℓ′0 is preferred to ℓ′1 – that is, ℓ′0 ≻ ℓ′1, and (iv) α0 ≥ α1. To see why this is a logical
anomaly for expected utility theory, observe

ℓ1 ≻ ℓ0
(1)
=⇒ α1ℓ1 + (1− α1)δz1 ≻ α1ℓ0 + (1− α1)δz1 ,

α1ℓ0 + (1− α1)δz1
(2)
≻ α1ℓ0 + (1− α1)δz0

α1ℓ0 + (1− α1)δz0
(3)
≻ α0ℓ0 + (1− α0)δz0

where (1) follows by the independence axiom, (2) follows by utility must be increasing in
monetary payoffs and the independence axiom, and (3) follows by preservation of first-
order stochastic dominance. An application of the transitivity axiom then yields that ℓ1
being preferred to ℓ0 must imply that ℓ′1 is preferred to ℓ′0. Therefore, the modeled dataset
{((ℓ0, ℓ1), 1), ((ℓ′0, ℓ′1), 0)} is a logical anomaly for expected utility theory.

In Table 5, we provide three examples of reverse dominated consequence effect anomalies
for expected utility theory. We now discuss how each example can be mapped into the reverse
dominated consequence effect. First, consider the logical anomaly presented in Table 5(a).
This is a reverse dominated consequence effect anomaly defining ℓ1 as lottery A0, ℓ0 as lottery
A1, ℓ′1 as lottery B0, and ℓ′0 as lottery B1. Second, consider the logical anomaly in Table
5(b). This is a reverse dominated consequence effect anomaly defining ℓ1 as lottery A1, ℓ0
as lottery A0, ℓ′1 as lottery B0, and ℓ′0 as lottery B1. Finally, consider the logical anomaly
in Table 5(c). This is a reverse dominated consequence effect anomaly defining ℓ1 as lottery
A1, ℓ0 as lottery A0, ℓ′1 as lottery B1, and ℓ′0 as lottery B0.

F.3.3 Strict dominance effect anomalies

Consider the first menu defined over the pair of lotteries ℓ0 = (p0, z0), ℓ1 = (p1, z1) and the
second menu defined over the pair of lotteries ℓ′0 = (p′0, z0), ℓ

′
1 = (p′1, z1). Let z0 = maxj z0(j)

and z1 = maxj z1(j).
Suppose that the lotteries in the second menu can be written as

ℓ′0 = α0ℓ0 + (1− α0)δz0

ℓ′1 = α1ℓ1 + (1− α1)δz1

for some α0, α1 ∈ [0, 1]. Further assume that (i) ℓ1 is preferred to ℓ0 – that is, ℓ1 ≻ ℓ0, and
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(ii) ℓ′0 is preferred to ℓ′1 – that is, ℓ′0 ≻ ℓ′1. To see why this is a logical anomaly for expected
utility theory, observe that

ℓ′1
(1)
≻ ℓ1

ℓ0
(2)
≻ ℓ′0,

where (1) and (2) follow by preservation of first-order stochastic dominance. An application
of the transitivity axiom therefore means that the ℓ1 being preferred to ℓ0 must imply that
ℓ′1 is preferred to ℓ′0. Therefore, the modeled dataset {((ℓ0, ℓ1), 1), ((ℓ′0, ℓ′1), 0)} is a logical
anomaly for expected utility theory.

In Table 6, we provide three examples of dominated consequence effect anomalies for
expected utility theory. Each logical anomaly in Table 6 are strict dominance effect anomalies
defining ℓ1 as lottery A1, ℓ0 as lottery A0, ℓ′1 as lottery B1, and ℓ′0 as lottery B0.

F.4 Anomaly generation from an estimated choice probability func-
tion

In this section, we generate logical anomalies based on an estimated choice probability func-
tion f̂m(·) using a random sample of binary choices.

Concretely, for each calibrated parameter value (δ, γ), we simulate a dataset of menus of
two lotteries over two monetary payoffs and the individual’s binary choice on each menu. For
i = 1, . . . , n, we simulate menus of two lotteries over two monetary payoffsXi by drawing each
payoff in the lotteries independently from a uniform distribution on [0, 10], and simulating the
probabilities in each lottery by drawing uniformly from the unit interval [0, 1] and normalizing
the draws so they lie on the unit simplex. For a particular choice of parameter values (δ, γ),
we draw the individual’s binary choice according to Yi | Xi ∼ Bernoulli(f ∗

m(Xi)). This
yields the simulated dataset {(Xi, Yi)}ni=1.

Using this simulated dataset, we then approximate the individual’s true choice proba-
bility function f ∗

m(x) = P (CPT (p1, z1; δ, γ)− CPT (p0, z0; δ, γ) + ξ ≥ 0) in two ways. First,
we consider the class of correctly-specified choice probability functions, and estimate the pa-
rameter values (δ̂, γ̂) that minimize the average cross-entropy loss between the individual’s
observed choices Yi and the implied choice probabilities

(δ̂, γ̂) = argmin
δ̃,γ̃

n−1

n∑
i=1

−Yi log(f(δ̃,γ̃)(Xi))− (1− Yi) log(1− f(δ̃,γ̃)(Xi)) (18)

for f(δ̃,γ̃)(x) =
eCPT (p1,z1;δ̃,γ̃)−CPT (p0,z0;δ̃,γ̃)

1+eCPT (p1,z1;δ̃,γ̃)−CPT (p0,z0;δ̃,γ̃)
. This yields the estimated choice probability func-

tion f̂m(·) = f(δ̂,γ̂)(·). Second, we consider the class of choice probability functions that can
be characterized by deep neural networks. We specifically consider over-parametrized deep
neural networks with four hidden layers and 500 hidden nodes each with rectified linear
unit (ReLU) activation functions. We minimize the average cross-entropy loss between the
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individual’s observed choices Yi and the implied choice probabilities

fDNN
m (·) = arg min

f̃∈FDNN
n−1

n∑
i=1

−Yi log(f̃(Xi))− (1− Yi) log(1− f̃(Xi)) (19)

using mini-batch gradient descent with a batch size of 256 observations over 2,000 epochs.
For both the estimated probability weighting parameters and the deep neural network, the
resulting estimated choice probability function f̂m(·) is differentiable in the payoffs and prob-
abilities of the lotteries in the menu. We can therefore directly apply our anomaly generation
procedures.

For each calibrated parameter value (δ, γ), we simulate one dataset {(Xi, Yi)}ni=1, and
approximate the individual’s true choice probability function f ∗

m(·) using both the estimated
probability weighting parameters (18) and the deep neural network (19). We apply our

anomaly generation procedures on the estimated choice probability function f̂ ∗
m(·). As de-

scribed in Section 5.1 of the main text and Appendix F.1, we flexibly parametrize the utility
function as a linear combination of non-linear basis functions, and we apply our adversarial
algorithm to 25,000 randomly initialized menus of two lotteries on two monetary payoffs and
our dataset morphing algorithm to 15,000 randomly initialized menus. Each returned menu
of lotteries over two monetary payoffs and the implied choices based on f̂ ∗

m(·) is a logical
anomaly for expected utility theory at our particular parameterization of the utility function.
We therefore again numerically verify whether the returned menu and implied choices based
on f̂ ∗

m(·) is a logical anomaly for expected utility theory at any increasing utility function
and without noisy choices, as discussed in Appendix F.2.

Appendix Table A3 and Appendix Table A4 summarize the logical anomalies for expected
utility theory that are produced by our anomaly generation procedures at each calibrated
parameter value (δ, γ) by approximating the individual’s true choice probability function
using the estimated probability weighting parameters and the deep neural network respec-
tively. We vary the size of the simulated dataset over n = 1, 000, 5, 000, 10, 000 and 25, 000.
Using estimated choice probability functions, our anomaly generation procedures uncover
the same categories of logical anomalies for expected utility theory as we found in Section
5.2 of the main text.
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(a) (δ, γ) = (0.726, 0.309)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

First Order Stochastic Dominance 1 66 16 74 81
Dominated Consequence Effect 7 25 2 17 85

Reverse Dominated Consequence Effect 1 4 0 3 17
Strict Dominance Effect 10 77 9 57 45

Other 1 4 0 3 3

# of Logical Anomalies 20 176 27 154 231

(b) (δ, γ) = (0.926, 0.377)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

First Order Stochastic Dominance 2 3 5 0 0
Dominated Consequence Effect 2 3 9 5 34

Reverse Dominated Consequence Effect 9 2 4 5 15
Strict Dominance Effect 17 5 1 1 1

Other 2 2 0 0 1

# of Logical Anomalies 32 15 19 11 51

(c) (δ, γ) = (1.063, 0.451)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

First Order Stochastic Dominance 33 0 0 1 2
Dominated Consequence Effect 5 7 2 0 10

Reverse Dominated Consequence Effect 13 4 3 5 14
Strict Dominance Effect 39 0 0 1 0

Other 7 0 0 0 1

# of Logical Anomalies 97 11 5 7 27

Table A3: Logical anomalies for expected utility theory over two lotteries on two monetary payoffs,
generated using an estimated choice probability function f̂∗

m(·) = f
(δ̂,γ̂)

(·).

Notes: This table summarizes all logical anomalies for expected utility theory over the space of two lotteries
on two monetary payoffs produced by applying our adversarial algorithm and our dataset morphing algorithm
on an estimated choice probability function f̂∗

m(·). For each calibrated parameter values (δ, γ), we estimate
the choice probability function by simulating a dataset {(Xi, Yi)}ni=1 of menus of lotteries and binary choices
and estimating the parameter values (δ, γ) that minimize average cross-entropy loss (18). We vary the size
of the simulated dataset over n = 1, 000, 5, 000, 10, 000 and 25, 000. For reference, the column “True Choice
Prob.” reproduces Table 2, which generated logical anomalies using the true choice probability function
f∗
m(·). See Appendix F.4 for further discussion.
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(a) (δ, γ) = (0.726, 0.309)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

First Order Stochastic Dominance 45 16 27 13 81
Dominated Consequence Effect 21 18 17 13 85

Reverse Dominated Consequence Effect 14 3 3 0 17
Strict Dominance Effect 35 7 2 1 45

Other 3 0 1 3 3

# of Logical Anomalies 118 44 50 30 231

(b) (δ, γ) = (0.926, 0.377)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

First Order Stochastic Dominance 25 18 17 10 0
Dominated Consequence Effect 16 17 22 15 34

Reverse Dominated Consequence Effect 17 6 4 5 15
Strict Dominance Effect 33 5 1 0 1

Other 1 2 2 3 1

# of Logical Anomalies 92 48 46 33 51

(c) (δ, γ) = (1.063, 0.451)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

First Order Stochastic Dominance 16 17 18 11 2
Dominated Consequence Effect 19 15 22 23 10

Reverse Dominated Consequence Effect 8 7 6 4 14
Strict Dominance Effect 26 2 3 0 0

Other 3 0 3 4 1

# of Logical Anomalies 72 41 52 42 27

Table A4: Logical anomalies for expected utility theory over two lotteries on two monetary payoffs,
generated using an estimated choice probability function f̂∗

m(·) = fDNN (·).

Notes: This table summarizes all logical anomalies for expected utility theory over the space of two lotteries
on two monetary payoffs produced by applying our adversarial algorithm and our dataset morphing algorithm
on an estimated choice probability function f̂m(·). For each calibrated parameter values (δ, γ), we estimate
the choice probability function by simulating a dataset {(Xi, Yi)}ni=1 of menus of lotteries and binary choices
and fitting a deep neural network to minimize average cross-entropy loss (19). We vary the size of the
simulated dataset over n = 1, 000, 5, 000, 10, 000 and 25, 000. For reference, the column “True Choice Prob.”
reproduces Table 2, which generated logical anomalies using the true choice probability function f∗

m(·). See
Appendix F.4 for further discussion.
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G Additional Results for Choice under Risk with Lot-

teries over Three Payoffs
In this Appendix, we extend our illustrative application to generate logical anomalies for
expected utility theory over the space of menus of two lotteries over three monetary payoffs.
We follow the same set-up as in Section 5.2 of the main text, applying our adversarial
algorithm and dataset morphing algorithm to the true choice probability functions f ∗

m(·)
and setting the parameters (δ, γ) of the probability weighting function to be equal to the
same calibrated parameter values (0.726, 0.309), (0.926, 0.377), (1.063, 0.451).

For each calibrated parameter value (δ, γ), we apply our adversarial algorithm to 25,000
randomly initialized menus of three lotteries over three monetary payoffs x0 and our dataset
morphing algorithm to 15, 000 randomly initialized menus. We take gradient steps only
updating the probabilities of the lotteries in the menu. We numerically verify whether the
returned menus are logical anomalies for expected utility theory at any increasing utility
function without noisy choices using the same procedure as described in Appendix F.2. We
report all resulting, numerically verified logical anomalies for expected utility theory.

G.1 Logical anomalies generated by the probability weighting func-
tion

Appendix Table A5 summarizes the logical anomalies for expected utility theory that are
produced by our anomaly generation procedures at each calibrated parameter values (δ, γ).
Our anomaly generation procedures uncover analogous categories of logical anomalies as we
found in the Section 5.2 of the main text over menus of lotteries over two monetary payoffs.
We briefly discuss each category in turn.

Prob. Weighting Function: (δ, γ)
(0.726, 0.309) (0.926, 0.377) (1.063, 0.451)

First Order Stochastic Dominance 16 5 11
Dominated Consequence Effect 12 4 1

Reverse Dominated Consequence Effect 12 2 3
Strict Dominance Effect 20 6 11

Other 0 0 0

# of Logical Anomalies 60 26 18

Table A5: Logical anomalies for expected utility theory over the menus of two lotteries on three
monetary payoffs.

Notes: This table summarizes all logical anomalies for expected utility theory over the space of menus of
two lotteries on three monetary payoffs produced by our adversarial algorithm and our dataset moprhing
algorithm, organized by calibrated parameter values (δ, γ) of the probability weighting function and anomaly
categories. See Appendix G.1 for further discussion.

First, our anomaly generation procedures again uncover first-order stochastic dominance
violations, in which the individual selects lotteries that are first-order stochastically domi-
anted by the other lottery in the menu. We provide two representative examples in Table
A6.
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Second, our anomaly generation procedures uncover logical anomalies that exhibit (a
generalization of) the dominated consequence effect. All of the logical anomalies in the
second row of Table A5 have two possible, related structures. First, for an appropriate
choice of menu, menu A consists of the choice between lottery ℓ0 = (p0, z0) and ℓ1 = (p1, z1)
each with support over three monetary payoffs. Furthermore, we can express the other pair
of lotteries in menu B as

ℓ′0 = α0ℓ0 + (1− α0)ℓ
′′
0 (20)

ℓ′1 = α1ℓ1 + (1− α1)ℓ
′′
1, (21)

where ℓ′′0 is first order stochastically dominated by ℓ0, ℓ
′′
1 first order stochastically dominates

ℓ′′0, and α1 ≥ α0 Second, for an appropriate choice of menu, menu A consists of the choice
between

ℓ0 = α0,Aℓ
′
0 + (1− α0,A)ℓ

′′
0 and ℓ1 = α1,Aℓ

′
1 + (1− α1,A)ℓ

′′
1, (22)

where ℓ′0, ℓ
′′
0 and ℓ′1, ℓ

′′
1 have support over two or fewer monetary payoffs. We can analogously

express menu B as

ℓ′0 = α0,Bℓ
′
0 + (1− α0,B)ℓ

′′
0 and ℓ′1 = α1,Bℓ

′
1 + (1− α1,B)ℓ

′′
1 (23)

where ℓ′′0 is first order stochastically dominated by ℓ′0 and ℓ′′1, and further α0,A > α0,B,
α1,A > α1,B. In both cases, we observe (i) ℓ1 is chosen over ℓ0, and (ii) ℓ′0 is chosen over
ℓ′1. These logical anomalies exhibit a “dominated consequence effect” as the pair of menus
highlight a violation of expected utility theory based on mixing each lottery with dominated
lottery. We provide two illustrative examples in Table A7.

Third, our anomaly generation procedures uncover logical anomalies that exhibit the
reverse dominated consequence effect. All of the logical anomalies in the third row of Table
A5 have two possible, related structures. First, for an appropriate choice of menu, menu A
consists of the choice between lottery ℓ0 = (p0, z0) and ℓ1 = (p1, z1). We can express the
other pair of lotteries in menu B as ℓ′0, ℓ

′
1 as (20) and (21) respectively, where now ℓ′′1 first

order stochastically dominates ℓ1, ℓ
′′
1 first order stochastically dominates ℓ′′0, and α1 ≤ α0.

Second, for an appropriate choice of menu, the lotteries in menu A can be written as (22),
where ℓ′0, ℓ

′′
0 and ℓ′1, ℓ

′′
1 have support over two or fewer monetary payoffs. Menu B can be

analogously expressed as (23), where now ℓ′′1 first order stochastically dominates ℓ′1 and ℓ′′0
as well as α1,B < α1,A, α0,B < α0,A. In both cases, we observe (i) ℓ1 is chosen over ℓ0; and
(ii) ℓ′0 is chosen over ℓ′1. These logical anomalies exhibit a “reverse dominated consequence
effect” as the pair of menus highlight a violation of expected utility theory based on mixing
each lottery with another dominating lottery. We provide two representative examples in
Table A8.

Finally, our anomaly generate procedures uncover logical anomalies that exhibit the
strict dominance effect. All of the logical anomalies in the fourth row of Table A5 have two
possible, related structures. First, for an appropriate choice of menu, menu A consists of
the choice between lottery ℓ0 = (p0, z0) and ℓ1 = (p1, z1). We can express the other pair
of lotteries in menu B as ℓ′0, ℓ

′
1 as (20) and (21) respectively, where now ℓ′′1 dominates ℓ1

and ℓ0 first order stochastically dominates ℓ′′0. Second, for an appropriate choice of menu,
the lotteries in menu A can be written as (22), where ℓ′0, ℓ

′′
0 and ℓ′1, ℓ

′′
1 have support over

two or fewer monetary payoffs. Menu B can be analogously expressed as (23), where now
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ℓ′′1 first order stochastically dominates ℓ′′0 as well as α1,B < α1,A, α0,B < α0,A. These logical
anomalies exhbit a “strict dominance effect” as the pair of menus highlight a violation of
expected utility theory based on mixing lottery ℓ1 with a lottery that strictly dominates the
lottery that is mixed with lottery ℓ0. We provide two representative examples in Table A9.

(a) Logical anomaly #1

Lottery 0 5.86
100%

Lottery 1 6.07 6.93 7.14
5.1% 20.%8 74.1%

(b) Logical anomaly #2

Lottery 0 3.70 3.99 9.47
38.2% 38.6% 23.2%

Lottery 1 2.74 9.45
81.3% 18.7%

Table A6: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate first-order stochastic dominance violations over menus of lotteries on
three monetary payoffs.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50
in green. Each generated first-order stochastic dominance violation presented here (x, y∗) is based on the
probability weighting function π(p; δ, γ) for (δ, γ) = (0.726, 0.309). Logical anomaly #1 are generated by
our dataset morphing algorithm. Logical anomaly #2 is generated by our adversarial algorithm. For ease of
interpretation, we round each payoff to the nearest cent and each probability to the nearest percentage. See
Appendix G.1 for further discussion.

(a) Logical Anomaly #1

Menu A (xA, y
∗
A)

Lottery 0 6.56 6.92 7.40
36% 27% 37%

Lottery 1 5.75 5.95 9.44
39% 33% 28%

Menu B (xB, y
∗
B)

Lottery 0 6.56 6.92 7.40
100% 0% 0%

Lottery 1 5.75 5.95 9.44
13% 16% 71%

(b) Logical Anomaly #2

Menu A (xA, y
∗
A)

Lottery 0 1.03 4.90 6.64
0% 96% 4%

Lottery 1 0.71 5.46 7.48
13% 1% 86%

Menu B (xB, y
∗
B)

Lottery 0 1.03 4.90 6.64
37% 40% 23%

Lottery 1 0.71 5.46 7.48
50% 27% 23%

Table A7: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate the dominated consequence effect over menus of lotteries on three
monetary payoffs.

Notes: In the menu, we color the lottery that is selected by the individual with probability at least 0.50
in green. Each algorithmically generated, logical anomaly exhibiting the dominated consequence effect
consists of two menus {(xA, y

∗
A), (xB , y

∗
B)}. Each algorithmically generated, logical anomaly presented here

is produced by our dataset morphing algorithm. Logical anomaly #1 is based on the probability weighting
function π(p; δ, γ) for (δ, γ) = (0.726, 0.309) and logical anomaly #2 on (δ, γ) = (0.926, 0.377). For ease of
interpretation, we round each payoff to the nearest cent and each probability to the nearest percentage. See
Appendix G.1 for further discussion.
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(a) Logical Anomaly #1

Menu A (xA, y
∗
A)

Lottery 0 6.050 6.560 6.880
0.000* 1.000* 0.000*

Lottery 1 4.620 7.360 9.360
0.054 0.116 0.829

Menu B (xB, y
∗
B)

Lottery 0 6.050 6.560 6.880
0.060 0.465 0.475

Lottery 1 4.620 7.360 9.360
0.369 0.426 0.205

(b) Logical Anomaly #2

Menu A (xA, y
∗
A)

Lottery 0 2.150 5.370 8.950
0.864 0.021 0.115

Lottery 1 3.770 4.450 8.930
0.093 0.907 0.000*

Menu B (xB, y
∗
B)

Lottery 0 2.150 5.370 8.950
0.414 0.145 0.440

Lottery 1 3.770 4.450 8.930
0.182 0.589 0.229

Table A8: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate the reverse dominated effect over menus of lotteries on three monetary
payoffs.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50
in green. Each logical anomaly exhibiting the revese dominated consequence effect consists of two menus
{(xA, y

∗
A), (xB , y

∗
B)}. Each algorithmically generated, logical anomaly depicted here is produced by our

dataset morphing algorithm. Logical anomaly #1 is based on the probability weighting function π(p; δ, γ)
for (δ, γ) = (0.726, 0.309) and logical anomaly #2 on (δ, γ) = (0.926, 0.377). For ease of interpretation, we
round each payoff to the nearest cent and each probability to the nearest percentage. See Appendix G.1 for
further discussion.

(a) Logical Anomaly #1

Menu A (xA, y
∗
A)

Lottery 0 4.41 7.28 7.98
7% 11% 82%

Lottery 1 5.89 6.53 7.41
100% 0% 0%

Menu B (xB, y
∗
B)

Lottery 0 4.41 7.28 7.98
27% 24% 49%

Lottery 1 5.89 6.53 7.41
69% 29% 2%

(b) Logical Anomaly #2

Menu A (xA, y
∗
A)

Lottery 0 1.37 1.67 6.44
93% 2% 5%

Lottery 1 1.87 2.30 5.56
14% 85% 1%

Menu B (xB, y
∗
B)

Lottery 0 1.37 1.67 6.44
48% 27% 25%

Lottery 1 1.87 2.30 5.56
10% 75% 15%

Table A9: Representative examples of algorithmically generated, logical anomalies for expected
utility theory that illustrate the strict dominance effect over menus of lotteries on three monetary
payoffs.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50 in
green. Each logical anomaly exhibiting the strict dominance effect consists of two menus {(xA, y

∗
A), (xB , y

∗
B)}.

Each algorithmically generated, logical anomaly depicted here is produced by our dataset morphing algo-
rithm. Logical anomaly #1 is based on the probability weighting function π(p; δ, γ) for (δ, γ) = (0.726, 0.309),
and logical anomaly #2 on (δ, γ) = (0.926, 0.377). For ease of interpretation, we round each payoff to the
nearest cent and each probability to the nearest percentage. See Appendix G.1 for further discussion.
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G.2 Experimental test of algorithmically generated anomalies

As in Section 5.3 of the main text, we empirically test our algorithmically generated, log-
ical anomalies over menus of lotteries over three monetary payoffs in incentivized online
experiments.

G.2.1 Experimental design

We selected 35 logical anomalies for expected utility theory over menus of two lotteries over
three monetary payoffs in Table A5 that span both the categories (dominated consequence,
reverse dominated consequence, and strict dominance effect) as well as the calibrated param-
eter values (δ, γ) that we analyzed. We then split these 35 logical anomalies into two separate
surveys, one containing 18 logical anomalies and another containing 17 logical anomalies.

Each chosen logical anomaly consists of a pair of menus of two lotteries over three mon-
etary payoffs. We therefore present each logical anomaly as two separate binary choices on
menus, and so the surveys consists of 36 main questions and 34 main questions respectively.
For a particular menu, we display the written probabilities and payoffs for each lottery in
the menu, and we additionally depict each lottery as a color-coded pie chart. Each survey
randomizes the order of questions and the left-right positioning of lotteries in a menu across
respondents. We pre-registered both our surveys on EGAP (see https://osf.io/tjg2p).

We recruited respondents for both surveys on Prolific. Each respondent received a base
payment of $4 for completing a survey. As in the main text, we screened out inattentive
respondents through comprehension questions and attention checks throughout the surveys.
Respondents that successfully completed a survey without failing any of the comprehension
questions and attention checks were eligible for a randomized bonus payment based on a
“random payment selection” mechanism (Azrieli, Chambers and Healy, 2018, 2020). The
average bonus payment was $8.37 and $6.63 on each survey respectively, and respondents
completed each survey in roughly 15 minutes on average. Respondents were therefore paid
on average $49.48 and $42.52 per hour on survey respectively. Altogether, we recruited 257
and 255 respondents on our two surveys respectively.

We include screenshots of the instructions, comprehension checks, attention checks, and
main survey questions in Appendix H.

G.2.2 Experimental results

We analyze the choices on our algorithmically generated, logical anomalies of all respondents
that completed the surveys without failing any attention and comprehension checks.

Appendix Figure A7(a) reports the fraction of respondents whose choices violate expected
utility theory without noise on our algorithmically generated, logical anomalies (“expected
utility theory violation rates”), organized by logical anomaly category. Appendix Figure
A7(b) reports the same quantities organized by the calibrated parameter values (δ, γ) that
we considered. We report 95% confidence intervals with standard errors clustered at the
respondent level. Appendix Table A10 and Appendix Table A11 provide summary statistics
on the expected utility theory violation rates pooling across logical anomalies within the
same category and same calibrated parameter values respectively. We find that the pooled
expected utility theory violation rate is 10.3% (p-value < 0.001) on dominated consequence
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effect anomalies, 9.0% (p-value < 0.001) on reverse dominated consequence effect anomalies,
and 11.7% (p-value < 0.001) on strict dominance effect anomalies. Analyzing each logical
anomaly separately and applying a conservative Bonferroni correction for multiple hypothe-
ses across all logical anomalies in our surveys, the expected utility theory violation rate is
statistically different than zero at the 5% level for 33 out of 35. We therefore find strong
evidence that the pooled respondents’ choices are inconsistent with expected utility theory
across our discovered categories of logical anomalies over lotteries on three monetary payoffs.

Of course, if there exists enough idiosyncratic noise in respondents’ choices, we would ex-
pect to find non-zero expected utility theory violation rates on our algorithmically generated,
logical anomalies. As in Section 5.3 of the main text, we therefore estimate the probability
of erroneous deviations from preferences consistent with expected utility theory that would
be required to explain the observed choices of respondents on our algorithmically generated,
logical anomalies. Appendix Figure A8(a) reports the estimated idiosyncratic error rate ϵ̂
required to explain the observed choices of respondents on each algorithmically generated,
logical anomaly separately and organized by logical anomaly category. Appendix Figure
A7(b) reports the same quantities organized by the calibrated parameter values (δ, γ) that
we considered. We report 95% confidence intervals based on bootstrapped standard errors.
Appendix Figure A8 reports the same estimates, organized by calibrated parameter values
(δ, γ) that we considered. The median estimated idiosyncratic error rate ϵ̂ across algorith-
mically generated, logical anomalies is 12.0% for dominated consequence effect anomalies,
10.5% for reverse dominated consequence effect anomalies, and 12.0% for strict dominance
effect anomalies. We again find substantial heterogeneity in these estimates across logical
anomalies. For example, explaining the observed choice fractions on several specific logical
anomalies across categories would require that respondents erroneously deviate from their
true preferences at least 20% of the time.
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((A)) Estimates by logical anomaly category

((B)) Estimates organized by calibrated parameter values (δ, γ)

Figure A7: Fraction of respondents whose choices violate expected utility theory on algorithmi-
cally generated, logical anomalies over menus of lotteries on three monetary payoffs.

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on
the logical anomalies of menus of two lotteries over two monetary payoffs (blue bars) and 95% confidence
intervals (black error bars; standard errors clustered at the respondent level). We organize the estimates by
category of logical anomaly (see Table A5) and by the calibrated parameter values (δ, γ) of the probability
weighting function (16). The orange dashed line reports the fraction of respondents whose choices violate
expected utility theory pooling across all logical anomalies within the same grouping. Within each grouping,
we sort the logical anomalies and assign each logical anomaly an arbitrary numeric identifier in decreasing
order based on the fraction of respondents whose choices violate expected utility theory. See Appendix G.2
for further discussion.
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((A)) Estimates by logical anomaly category

((B)) Estimates organized by calibrated parameter values (δ, γ)

Figure A8: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated, logical anomalies
over menus of lotteries on three monetary payoffs.

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed
choices of respondents on our algorithmically generated, logical anomalies of menus of lotteries over three
monetary payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed
by the bootstrap). We organize the estimates by category of logical anomaly (see Table A5) and by the
calibrated parameter values (δ, γ) of the probability weighting function (16). The orange dashed line reports
the median estimated idiosyncratic error rate across all logical anomalies within the same grouping. Within
each grouping, we sort the logical anomalies and assign each logical anomaly an arbitrary numeric identifier
in decreasing order based on the fraction of respondents whose choices violate expected utility theory. See
Appendix G.2 for further discussion.
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Pooled
Average Median

First
Quartile

Third
Quartile

Dominated Consequence Effect
0.103
(0.006) 0.099 0.065 0.131

Reverse Dominated Consequence Effect
0.090
(0.006) 0.087 0.065 0.119

Strict Dominance Effect
0.117
(0.006) 0.098 0.062 0.170

Table A10: Summary statistics on the fraction of respondents whose choices violate expected
utility theory on algorithmically generated, logical anomalies over menus of lotteries on three mon-
etary payoffs.

Notes: This table reports summary statistics on the fraction of respondents whose choices violate expected
utility theory (“expected utility theory violation rate”) on algorithmically generated, logical anomalies of
menus of two lotteries over three monetary payoffs. We report summary statistics by category of logical
anomaly (see Table A5). The “pooled average” column reports the expected utility theory violation rate,
pooling together respondents’ choices on all logical anomalies within the same category. Standard errors
reported in parentheses are clustered at the respondent level. We also report the median, first quartile, and
third quartile of the distribution of expected utility theory violation rates across logical anomalies within
the same category. See Appendix G.2 for further discussion.

Prob. Weighting Function: (δ, γ)
Pooled
Average Median

First
Quartile

Third
Quartile

(0.726, 0.309)
0.110
(0.006) 0.113 0.084 0.130

(0.926, 0.377)
0.072
(0.006) 0.066 0.047 0.074

(1.063, 0.451)
0.126
(0.007) 0.098 0.079 0.169

Table A11: Summary statistics for anomalous fractions on logical anomalies over menus of two
lotteries over menus of lotteries on three monetary payoffs, organized by calibrated parameter values
of probability weighting function (δ, γ).

Notes: This table reports summary statistics on the fraction of respondents whose choices violate expected
utility theory (“expected utility theory violation rate”) on algorithmically generated, logical anomalies of
menus of two lotteries over three monetary payoffs. We report summary statistics by calibrated parameter
values of probability weighting function (δ, γ) (see Table 2). The “pooled average” column reports the
expected utility theory violation rate, pooling together respondents’ choices on all logical anomalies within
the same category. Standard errors reported in parentheses are clustered at the respondent level. We also
report the median, first quartile, and third quartile of the distribution of expected utility theory violation
rates across logical anomalies within the same category. See Appendix G.2 for further discussion.
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H Experimental Instructions and Control Questions

for Online Surveys
In this section, we provide screenshots of the instructions, attention and comprehension
checks, and survey questions of the online surveys of our algorithmically generated logical
anomalies for expected utility theory over menus of two lotteries on two monetary payoffs
and menus of two lotteries on three monetary payoffs.

Figure H1: Screenshots of directions for the online surveys on choices from menus of two lotteries
over two monetary payoffs. See Section 5.3 for further discussion.
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Figure H2: Screenshots of comprehension checks for the online surveys on choices from menus of
two lotteries over two monetary payoffs. See Section 5.3 for further discussion.

Figure H3: Screenshot of an attention check included in the online surveys on choices from menus
of two lotteries over two monetary payoffs. See Section 5.3 for further discussion.
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Figure H4: Screenshots of two main survey questions for the online surveys on choices from menus
of two lotteries over two monetary payoffs. See Section 5.3 for further discussion.

Figure H5: Screenshots of directions for the online surveys on choices from menus of two lotteries
over three monetary payoffs. See Appendix Section G for further discussion.
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Figure H6: Screenshots of comprehension checks for the online surveys on choices from menus of
two lotteries over three monetary payoffs. See Appendix Section G for further discussion.

Figure H7: Screenshot of an attention check included in the online surveys on choices from menus
of two lotteries over three monetary payoffs. See Appendix Section G for further discussion.
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Figure H8: Screenshots of two main survey questions for the online surveys on choices from menus
of two lotteries over three monetary payoffs. See Appendix Section G for further discussion.
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