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Abstract

Machine learning algorithms can find predictive signals that researchers fail to notice; yet
they are notoriously hard-to-interpret. How can we extract theoretical insights from these
black boxes? History provides a clue. Facing a similar problem – how to extract theoretical
insights from their intuitions – researchers often turned to “anomalies:” constructed examples
that highlight flaws in an existing theory and spur the development of new ones. Canonical
examples include the Allais paradox and the Kahneman-Tversky choice experiments for
expected utility theory. We suggest anomalies can extract theoretical insights from black
box predictive algorithms. We develop procedures to automatically generate anomalies for
an existing theory when given a predictive algorithm. We cast anomaly generation as an
adversarial game between a theory and a falsifier, the solutions to which are anomalies:
instances where the black box algorithm predicts - were we to collect data - we would likely
observe violations of the theory. As an illustration, we generate anomalies for expected utility
theory using a large, publicly available dataset on real lottery choices. Based on an estimated
neural network that predicts lottery choices, our procedures recover known anomalies and
discover new ones for expected utility theory. In incentivized experiments, subjects violate
expected utility theory on these algorithmically generated anomalies; moreover, the violation
rates are similar to observed rates for the Allais paradox and Common ratio effect.
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1 Introduction

How do we improve economic theories? There is of course no single answer, but one common

pattern stands out across fields. Consider for example the celebrated “Allais paradox.” Allais

(1953) felt expected utility theory did not match his intuition about how people actually make

risky choices. To highlight that inconsistency, he crafted two hypothetical menus of lotteries (see

Table 1); his intuition suggested that people’s choices on this pair would be inconsistent with

expected utility theory. When data confirmed Allais’ intuition (e.g., Slovic and Tversky, 1974;

Kahneman and Tversky, 1979), it led to a fundamental reappraisal of expected utility theory.

More examples like the Allais paradox were constructed, eventually pointing the way to a new

theory of risky choice: cumulative prospect theory (Tversky and Kahneman, 1992).1

(a) Menu A

Lottery 0 $1 million
100%

Lottery 1 $1 million $0 $5 million
89% 1% 10%

(b) Menu B

Lottery 0 $0 $1 million
89% 11%

Lottery 1 $0 $5 million
90% 10%

Table 1: Menus of lotteries in the Allais paradox (Allais, 1953).

Notes: We highlight in green the hypothetical choices on these two menus. Allais (1953) originally denominated
the payoffs in French Francs, and we reproduce the version of the Allais paradox used in Slovic and Tversky (1974).

Despite its importance, the Allais paradox does not have a natural place in our empirical

toolkit. It is not a measurement breakthrough in collecting new kinds of data on risky choice, nor

is it an econometric breakthrough such as novel test statistic for whether expected utility theory

is misspecified.2 Rather it is a pair of menus, whose brilliance lay in its precise construction to

highlight where expected utility theory might fail and thereby to reveal how we might improve

it. The Allais paradox is a specific instance of what we call an “anomaly” in this paper.

Anomalies are neither anachronistic nor idiosyncratic. They remain relevant: even after

cumulative prospect theory, they continue to play a key role in advancing theories of risky choice.3

They are used across fields: decision-making under risk is not exceptional. They have played a

1For example, Allais (1953); Kahneman and Tversky (1979) produced the Certainty effect or Common ratio
effect, Slovic and Lichtenstein (1983); Tversky and Thaler (1990) produced anomalies to highlight framing effects
and preference reversals, and finally Kahneman and Tversky (1984); Tversky and Kahneman (1991) produced
anomalies to highlight loss aversion. Blavatskyy, Ortmann and Panchenko (2022) conduct a meta-analysis of 81
experiments in 29 papers that test variations of the Allais paradox.

2Constructing tests for model misspecification is a foundational literature in econometrics and economic theory.
See, for example, Sargan (1958); Afriat (1967, 1973); Hansen (1982); Varian (1982); Conlisk (1989); Choi et al.
(2014); Kitamura and Stoye (2018); Polisson, Quah and Renou (2020); Dembo et al. (2021) among many others.

3Recent examples include salience theory (Bordalo, Gennaioli and Shleifer, 2012, 2022), betweenness preferences
and certainty independence (Cerreia-Vioglio, Dillenberger and Ortoleva, 2015, 2020), simplicity preferences (Oprea,
2022), and cognitive uncertainty (Enke and Graeber, 2023; Enke and Shubatt, 2023).
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crucial role in the development of asset pricing, game theory, intertemporal choice, and many other

fields.4 This is one common pattern of how economic theories are improved over time. Researchers

construct anomalies that highlight inconsistencies between existing theories and their intuitions;

researchers invest great effort in robustly testing anomalies; and if they hold, new theories are

proposed to resolve them.

We are interested in anomalies because we believe they offer a familiar solution to a novel

problem: how can we use machine learning algorithms to improve economic theories? By uncover-

ing predictive signals that existing theories do not model and researchers may not notice, machine

learning algorithms could accelerate developments in economic theory.5 But there is a challenging

obstacle. Predictive algorithms are notoriously black boxes. Even when they predict better than

existing theories, it is hard to know what they have discovered. Their discoveries are buried in

the opacity of complex function classes.

In this paper, we develop procedures to automatically construct anomalies from predictive

algorithms. Our procedures output anomalies for an existing theory that researchers can examine,

like the Allais paradox. Researchers, however, produce anomalies through a creative process,

contrasting their empirical intuition with an existing theory and crafting examples where the

theory’s predictions differ from what they believe to be the likely empirical patterns. Instead, we

use supervised machine learning algorithms to build a black box predictive model, which serves as

our procedures’ empirical intuition. Our procedures then contrast the theory with the predictive

model, automatically searching for minimal examples on which the theory cannot explain the

black box’s predictions. The resulting generated anomalies are a natural place to collect data and

look for possible inconsistencies between our theory and nature.

Building such procedures and analyzing their properties requires that we first develop an

econometric framework for anomaly generation that simultaneously models theories, machine

learning algorithms, and anomalies. The first, somewhat surprising, challenge in building such

a framework is to model theories. Of course, any individual theory is already formal, but different

theories are formalized in quite different ways. Expected utility theory is a collection of axioms that

restrict preference relations over lotteries, Nash equilibrium is an equilibrium condition on choices

in normal-form games, and the capital asset pricing model is a model of homogeneous investors

4See for example Lamont and Thaler (2003) in asset pricing, Camerer and Thaler (1995) in game theory,
Froot and Thaler (1990) in international finance, Kahneman, Knetsch and Thaler (1991) in decision-making under
uncertainty, and Loewenstein and Prelec (1992); Loewenstein and Thaler (1989) for intertemporal choice among
many others.

5Mullainathan and Spiess (2017); Camerer (2019) provide broad overviews on the role of machine learning in
economics. See Peysakhovich and Naecker (2017); Peterson et al. (2021) for applications in choice under risk and
uncertainty, Hartford, Wright and Leyton-Brown (2016); Wright and Leyton-Brown (2017); Fudenberg and Liang
(2019); Hirasawa, Kandori and Matsushita (2022) in strategic behavior in normal-form games, and Gu, Kelly and
Xiu (2018); Kelly and Xiu (2023) in asset pricing.
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optimizing in a frictionless marketplace. We require a single framework that simultaneously

captures the essence of any economic theory, despite this diversity. To tackle this challenge,

we note that all theories share a common predictive functionality: they posit some restrictive

underlying structure that enables them to derive novel implications.

To capture this common functionality, we focus on settings summarized by input features

(x) and a modeled outcome (y∗); for example, x can be a menu of lotteries and y∗ can be a choice

probability. We model theories as mappings that take examples (collections of (x,y∗)-pairs) and

return correspondences. These correspondences summarize the logical implications of the theory:

for any given x, the returned correspondence specifies what y∗ are allowed. Expected utility theory,

for example, derives implications about an individual’s choice behavior in new menus of lotteries

based on the choices they have made on other menus. In this framework, we define anomalies

as minimal collections of examples that are incompatible with the theory.

We introduce four assumptions on such theory mappings and establish two results that serve

as the basis of our anomaly generation procedures. First, we provide a representation result:

a theory can be equivalently represented as an allowable function class, which summarizes all

mappings between the features and the theory’s modeled outcome that are consistent with its

underlying structure (whatever that may be). Second, we show that anomalies always exist;

because theories are not vacuous in our framework, there exist collections of examples they cannot

explain. These two results allow us operationalize any theory for purposes of anomaly generation.

A theory can be analyzed as if it searches for allowable functions that fit the examples they are

given, and an anomaly is a collection of examples precisely constructed to foil this search.

To generate anomalies given an estimated prediction function, we observe that searching for

anomalies can be viewed as an adversarial game between a falsifier and the theory. The falsifier

proposes collections of features and the estimated prediction function evaluated on those features,

and the theory attempts to explain them by fitting an allowable function. The falsifier’s payoff

is increasing in the theory’s average loss on the proposed collection, and the theory’s payoff is

decreasing in its average loss. An anomaly arises if the falsifier finds a collection of examples that

the theory cannot fit. In other words, anomalies are adversarial examples that induce a positive

loss for the theory in such a game.

Our first anomaly generation procedure directly optimizes the falsifier’s adversarial problem

as a max-min optimization program over a theory’s allowable functions. We analyze the statistical

properties of a feasible implementation of the falsifier’s max-min program, establishing finite sample

bounds on how well it approximates its population analog. Practically optimizing this max-min

program may be challenging; the falsifier’s maximization over collections of features will typically be

non-concave, and so standard optimization techniques may not apply (e.g., Rockafellar, 1970; Fre-

und and Schapire, 1996). We leverage recent results in adversarial learning and non-convex/concave
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min-max optimization to develop a gradient descent ascent procedure and analyze its properties

(Jin, Netrapalli and Jordan, 2019; Razaviyayn et al., 2020).6 The resulting gradient descent ascent

procedure generates anomalies by iteratively updating the falsifier’s proposed collection of examples

to maximize the average loss of the theory’s best-responding allowable function.

There may, however, exist additional structure in theories that this procedure does not exploit.

Theories often behave as if they have a lower-dimensional representation of the input. There may

exist some pair of feature values that all allowable functions assign the same modeled outcome value;

it is as if the theory collapses these features together. Some anomalies, like the Allais paradox, illus-

trate what this representation misses, revealing a dimension that is relevant for the theory’s modeled

outcome but which the theory’s lower dimensional representation fails to capture. Our second

procedure generates these representational anomalies for a theory. Given an initial feature value,

the procedure uses projected gradient descent to search for nearby feature values across which the

theory’s allowable functions do not vary but across which the estimated prediction function varies.

Our results so far are theoretical: they establish conditions under which our procedures will

produce anomalies. But do our anomaly generation procedures work in practice?

As a first step, we generate anomalies for expected utility theory that are implied by prospect

theory in simulated lottery choice data. While interesting in its own right, this exercise serves

an important purpose. Since prospect theory has been well studied by theorists for decades,

we can compare our algorithmically generated anomalies against known anomalies for expected

utility theory constructed by researchers, such as those produced in Allais (1953), Kahneman and

Tversky (1979), and many others. In this exercise, we therefore have a floor: do our procedures

reproduce known anomalies for expected utility theory implied by prospect theory? We show that

our procedures in fact reach this floor, recovering known anomalies for expected utility theory

over the specified search space of menus of two lotteries over two monetary payoffs.

Motivated by their performance in simulated lottery choice data, we next apply our anomaly

generation procedures to real lottery choice data. Using a large, publicly available dataset of

human decisions on nearly 10,000 lottery menus collected in Peterson et al. (2021), we train a

neural network to predict choice rates based on the payoffs and probabilities of the lotteries in

each menu. The resulting predictive algorithm meaningfully improves over the accuracy of known

theories of decision making under risk on a held out set of lottery menus. So what has this

black box predictive algorithm uncovered about real lottery choices? We apply our procedures

to generate anomalies for expected utility theory that are implied by this predictive algorithm.

Using only the predictive algorithm as its empirical intuition, our anomaly generation pro-

cedures again reconstruct known anomalies for expected utility theory, such as those produced in

6Further afield, recent work uses adversarial techniques to estimate parametric or semiparametric econometric
models (e.g., Dikkala et al., 2020; Kaji, Manresa and Pouliot, 2023; Chernozhukov et al., 2024, among others).
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Allais (1953) and Kahneman and Tversky (1979). In other words, the predictive signals uncovered

by the black box algorithm are sufficient to reconstruct these known anomalies. However, our

procedures go further and generate novel anomalies for expected utility theory that — to our

knowledge – are nowhere in the existing literature yet are implied by the black box algorithm. Even

in this well-trodden domain, our procedures reveal that the black box algorithm has uncovered

new systematic patterns in real lottery choices.

These novel anomalies have an intuitive interpretation. One of prospect theory’s original

insights is that our perceptions of probabilities exhibit diminishing sensitivity: a shift in probability

from 1% to 10% looms larger in our minds than a shift from 41% to 50% (Tversky and Kahneman,

1992). This is captured by the well-known “s-shaped” probability weighting function. Diminishing

sensitivity in our perceptions of probabilities means that there are ways to manipulate lottery proba-

bilities that would affect our choices, even though expected utility theory predicts our choices should

be unchanged. Indeed, well-known logical anomalies like the Allais paradox are exactly crafted to

illustrate such a choice reversal. Our algorithmically generated anomalies fall into several distinct

categories that illustrate new ways to produce choice reversals across pairs of lottery menus implied

by the predictive algorithm that are inconsistent with expected utility theory. Importantly, the novel

anomalies we discover cannot be cast as variations of the Common ratio or Common consequence ef-

fect; they highlight novel violations of expected utility theory that are implied by real lottery choices.

Automatically producing such anomalies is where our procedures end and is the primary

contribution of our work. Yet having generated these novel anomalies, one cannot help but

wonder: do they actually hold in new choice experiments? While robustly answering that question

is beyond the scope of the present paper, we take a first step. We recruit new participants to

make incentivized choices on a set of our algorithmically generated anomalies. We design our

survey to mirror work testing known anomalies like the Allais paradox and the Common ratio

effect (e.g., Harless and Camerer, 1994; Blavatskyy, Ortmann and Panchenko, 2022; Blavatskyy,

Panchenko and Ortmann, 2022; Jain and Nielsen, 2023), enabling us to provide a benchmark

for how “significant” these novel anomalies are. On our algorithmically generated anomalies,

participants exhibit behavior that is inconsistent with expected utility theory at rates similar to

the well-established anomalies of behavioral economics. These preliminary findings suggest our

algorithmically generated anomalies merit further experimental scrutiny.

Our ultimate goal was not simply to revisit choice under risk and expected utility theory. Rather,

this specific illustration demonstrates the broader potential for our anomaly generation procedures.

Their success in generating novel anomalies in a well-trodden domain suggests they could be

valuable in other areas. Our procedures exploit the fact that supervised machine learning algorithms

often uncover novel empirical patterns, ones that our existing theories may not capture. Rather

than leaving us with a black box predictive algorithm, however, our procedures return anomalies
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– small collections of examples that may help researchers evaluate and improve existing theories.

Related work: This paper sits in a rapidly growing literature that seeks to integrate machine

learning into the scientific process across various fields. Carleo et al. (2019); Pion-Tonachini et al.

(2021); Krenn et al. (2022); Wang et al. (2023) provide recent reviews on the use of machine

learning across the physical sciences, such as biology, chemistry, mathematics, and physics. Sub-

stantial progress has already been made in exploring how machine learning interacts with economic

theories. Recent work compares the out-of-sample predictive performance of black box machine

learning models against that of economic theories in choice under risk and strategic behavior in

normal form games, measuring the “completeness” of economic theories (Fudenberg et al., 2022).

Andrews et al. (2022) develops conformal inference procedures to measure the out-of-distribution

predictive performance of economic theories. When a supervised machine learning model predicts

some outcome of interest accurately out-of-sample, researchers often attempt to open the black

box prediction function and investigate particular hypotheses (Camerer, 2019). See, for example,

Peysakhovich and Naecker (2017) and Peterson et al. (2021) for choice under risk, Wright and

Leyton-Brown (2017); Hirasawa, Kandori and Matsushita (2022) for strategic behavior in normal-

form games, Mullainathan and Obermeyer (2021) for medical decision-making, and Kleinberg

et al. (2018); Rambachan (2022); Sunstein (2022) for judicial decision-making. We use supervised

machine learning algorithms as stepping stones to automatically generate anomalies for an existing

theory, rather than relying on researchers to directly inspect the black box prediction function.

Fudenberg and Liang (2019) use supervised machine learning algorithms to predict on which

normal-form games will observed play differ from alternative theories of strategic behavior. They

use the resulting prediction function to generate new normal-form games where a particular theory

will predict poorly. This intuitive procedure can be formally reinterpreted as a heuristic solution

to our adversarial characterization of anomalies tailored to the models of strategic behavior they

study. Ludwig and Mullainathan (2023) develop a morphing procedure for images based on

generative adversarial networks in order to uncover implicit characteristics of defendant mug-shots

that affect pretrial release decisions. Our procedures are general-purpose, enabling researchers to

search for anomalies given any formal theory that places restrictions on the relationship between

some features x and modeled outcome y∗.

2 Theories and the anomaly generation problem

Whatever their formalism, economic theories all share a common predictive functionality: they

model some underlying restrictive structure in order to derive novel implications about an economic

domain. In this section, we develop an econometric framework that analyzes theories as black

box mappings that return correspondences between some input features (x) and some modeled
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outcome (y∗), summarizing all implications drawn by the theory. We introduce four assumptions

on these theory mappings that capture this shared functionality of theories. We establish two

results that serve as the foundation for our algorithmic procedures for anomaly generation.

2.1 Setting and theories

Let x∈X be some vector of features and y∗ ∈Y∗ be some modeled outcome in an economic

domain. Any pair (x,y∗)∈X×Y∗ is an example, and D :={(x1,y∗1),...,(xn,y∗n)} is a finite collection

of examples. We let D denote all collections of examples, F the collection of all mappings

f(·): X→Y∗, and C the collection of all correspondences c(·): X⇒Y∗.

Rather than focusing on any particular mathematical model, we define a theory as a mapping

that returns correspondences between the features and modeled outcome given examples.

Definition 1. A theory consists of the pair (T(·),M), where T(·) : D→C is a mapping from

examples to correspondences between the features and modeled outcome, and M is some finite

set with elements m∈M.

Given examples D, a theory T(·) returns a correspondence summarizing all implications it draws

about the relationship between the features and modeled outcome. We write T(·;D)∈C to be

the theory’s correspondence when applied to examples D, and T(x;D)⊆Y∗ to be the theory’s

implications about the modeled outcome at feature x. All else about the economic domain is

collapsed into the theory’s modeled contexts m∈M. We take a theory’s modeled contexts M
as a primitive throughout the paper and focus on the behavior of its correspondence T(·).

To make Definition 1 concrete, we next illustrate how two popular economic domains map

into this framework. Appendix C provides additional examples such as choice under risk over

certainty equivalents, multi-attribute discrete choice, and asset pricing.

Example: choice under risk Consider individuals making choices from menus of two lotteries

over J >1 monetary payoffs.7 The features are a complete description of the menu of lotteries

x=(z0,p0,z1,p1), where z0,z1∈RJ are the payoffs and p0,p1∈∆J−1 are the probabilities associated

with lottery 0 and lottery 1 respectively. The features may also, for example, include information

about how each lottery is presented (e.g., presented as a two-stage lottery) or the ordering of

lotteries in the menu. The modeled outcome is the choice probability y∗∈ [0,1] for lottery 1, and

the modeled contexts m∈M are each individual.

Given examples D, expected utility theory (with strict preferences) searches for utility

functions u(·) that rationalize the lottery choice probabilities, meaning that u(·) satisfies y∗=
7Recent work such as Erev et al. (2010, 2017); Peysakhovich and Naecker (2017); Peterson et al. (2021) collect

large experimental datasets of individuals making choices from menus of risky lotteries and fit black box predictive
algorithms to flexibly model people’s risky choices.
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argmaxk∈{0,1}
∑J

j=1pk(j)u(zk(j)) for all (x,y
∗)∈D. On any new menu of lotteries x, expected utility

theory returns T(x;D), where y∗∈T(x;D) if and only if y∗∈argmaxk∈{0,1}
∑J

j=1pk(j)u(zk(j)) for

some utility function u(·) rationalizing D.

In our framework, incorporating noise yields an alternative theory T(·). For instance, expected
utility theory with idiosyncratic errors allows the individual to mistakenly select the wrong lottery

with some probability ϵ∈ [0,0.5]. Given examplesD, expected utility theory with idiosyncratic errors

searches for utility functions u(·) and an error rate ϵ satisfying y∗=(1−ϵ)1{
∑J

j=1p1(j)u(z1(j))≥∑J
j=1 p0(j)u(z0(j))}+ ϵ1{

∑J
j=1 p1(j)u(z1(j)) <

∑J
j=1 p0(j)u(z0(j))} for all (x,y∗) ∈ D. More

complex models of noisy choices can of course be captured by our framework.8 ▲

Example: play in normal-form games Consider individuals playing J×J normal-form

games.9 Let {1,...,J} denote the actions available to the row and column players, and πrow(j,k),

πcol(j,k) denote the payoff to the row player and column player respectively from action pro-

file (j, k). The features are a complete description of the normal-form payoff matrix with

x=(πrow(1,1),πcol(1,1),...,πrow(J,J),πcol(J,J))
′. The modeled outcome is the row player’s strategy

profile, which is a probability distribution over actions y∗∈∆J−1. The modeled contexts m∈M
are again each individual.

Given examples D, Nash equilibrium returns T(x;D) satisfying T(x;D) = {y∗} for all

(x,y∗) ∈D and y∗ ∈ T(x;D) for any x /∈D if and only if there exists some y∗col ∈∆J−1 such

that
∑J

j=1

∑J
k=1y

∗(j)y∗col(k)πrow(j,k) ≥
∑J

j=1

∑J
k=1 ỹ

∗(j)y∗col(k)πrow(j,k) for all ỹ∗ ∈ ∆J−1 and∑J
j=1

∑J
k=1y

∗(j)y∗col(k)πcol(j,k)≥
∑J

j=1

∑J
k=1y

∗(j)ỹ∗(k)πcol(j,k) for all ỹ
∗∈∆J−1. Alternatively,

for instance, “level-0” strategic behavior is a theory T(·) satisfying T(x;D)={y∗} for all (x,y∗)∈D

and T(x;D)={(1/J,...,1/J)} for x /∈D if and only if y∗=(1/J,...,1/J) for all (x,y∗)∈D. ▲

2.2 Incompatible examples and logical anomalies

The examples D are incompatible with a theory T(·) if its underlying structure cannot accom-

modate the configuration of features and modeled outcomes. Otherwise, the examples D are

compatible with theory T(·).

Definition 2. A collection of examples D∈D is

i. compatible with theory T(·) if T(x;D)≠∅ for all x∈X .

8Harless and Camerer (1994) analyze expected utility theory with idiosyncratic errors. Ballinger and Wilcox
(1997); Loomes (2005); Hey (2005) consider expected utility theory with i.i.d. additive utility noise, McGranaghan
et al. (2024) consider a more general model of noisy expected utility theory, and Enke and Shubatt (2023) consider
expected utility theory with complexity-dependent noise.

9Recent work such as Wright and Leyton-Brown (2010); Hartford, Wright and Leyton-Brown (2016); Wright
and Leyton-Brown (2017); Fudenberg and Liang (2019); Hirasawa, Kandori and Matsushita (2022) collect large
experimental datasets of individuals selecting actions in normal-form games and fit black box predictive algorithms
to flexibly model people’s chosen strategy profiles.
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ii. incompatible with theory T(·) if T(x;D)=∅ for all x∈X .

It may be difficult for researchers to understand what drives the failure of the theory’s

underlying structure on any particular collection of examples. Researchers like Allais are therefore

not simply interested in characterizing all possible collections that are incompatible with a theory;

rather they construct minimally incompatible collections, which we refer to as logical anomalies.

Definition 3. A collection of examples D ∈ D is a logical anomaly for theory T(·) if D is

incompatible with theory T(·) and D̃ is compatible with theory T(·) for all D̃⊂D.

A logical anomaly is a minimally incompatible collection of examples in the sense that T(·) is
compatible with any of its subsets. To make this concrete, we illustrate how two famous logical

anomalies for expected utility theory map into Definition 3.

Example: the Allais paradox Consider the Allais paradox for expected utility theory in Table

1. The Allais paradox is a pair of examples consisting of the menus of lotteries xA,xB and the

associated modeled outcomes y∗A=0,y∗B=1. The independence axiom implies that the choice on

menu xA must be the same as the choice on menu xB; that is, for any D∈D, T(xA;D)=T(xB;D).

The Allais paradox is therefore an incompatible collection of examples for expected utility theory.

Since any single choice (xA,y
∗
A) or (xB,y

∗
B) is compatible with expected utility theory, the Allais

paradox further satisfies Definition 3. ▲

Example: the Certainty effect Consider the Certainty effect for expected utility theory

in Table 2 (Kahneman and Tversky, 1979). The Certainty effect is a pair of examples again

(a) Menu A

Lottery 0 $4000 $0
80% 20%

Lottery 1 $3000
100%

(b) Menu B

Lottery 0 $4000 $0
20% 80%

Lottery 1 $3000 $0
$25 75%

Table 2: Menus of lotteries in the Certainty effect (Kahneman and Tversky, 1979).

Notes: We highlight in green the conjectured choices on these two menus.

consisting of the menus of lotteries xA,xB and the associated modeled outcomes y∗A=0,y∗B=1.

The independence axiom implies that the choice on menu xA must be the same as the choice on

menu xB, like the Allais paradox. This pair of examples is therefore incompatible with expected

utility theory, yet any single choice (xA,y
∗
A) or (xB,y

∗
B) alone is compatible with expected utility

theory. The Certainty effect therefore satisfies Definition 3. ▲
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We discuss logical anomalies for our other examples of economic theories in Appendix C. For Nash

equilibrium, as an example, we provide a logical anomaly that consists of a single normal-form

game on which a level-0 or level-1 thinker would select a strategy profile that places positive

probability on dominated actions.

Finally, whether a particular collection of examples is a logical anomaly depends on the

researcher’s exact specification of theory T(·). For instance, in choice under risk, any (x,y∗) with

choice probability y∗∈(0,1) is a logical anomaly for expected utility theory without idiosyncratic

errors (ignoring possible indifferences). This need not be a logical anomaly if we incorporate

alternative models of noisy choices.

2.3 Representation result and existence of logical anomalies

We introduce four assumptions on the properties of theory’s correspondence T(·). These assump-

tions place restrictions on T(·) such that it behaves as if it has some underlying structure, whatever

that may be.

Assumption 1 (Compatibility). T(·) is either compatible or incompatible with any D∈D.

Assumption 2 (Consistency). If T(·) is compatible with D ∈D, then T(x;D) = {y∗} for all

(x,y∗)∈D.

Assumption 3 (Refinement). For any D,D′∈D with D⊆D′, T(x;D′)⊆T(x;D) for all x∈X .

Assumption 4 (Non-trivial implications). There exists D∈D and x /∈D such that T(x;D)⊂Y∗.

Assumption 1 states T(·) is either compatible or incompatible with any collection of examples.

Assumption 2 states that whenever T(·) is compatible with a particular collection of examples,

it is further consistent with all provided examples. Assumption 3 states that the theory refines its

implications as more examples are provided. Finally, Assumption 4 states that there exists some col-

lection of examples and an unseen feature value at which theory T(·) derives non-trivial implications.

Our previous examples of economic theories satisfy these assumptions. Consider first expected

utility theory. First, expected utility theory satisfies Assumption 1 and Assumption 2. For

any collection D of menus and choice probabilities, either (i) there exists no rationalizing utility

function in which case expected utility theory is incompatible with D, or (ii) there exists a

rationalizing utility function. Second, for any pair D,D′ satisfying D⊆D′, the rationalizing utility

functions for D′ must be a subset of the rationalizing utility functions for D. This implies expected

utility theory satisfies Assumption 3. Finally, consider any (x,y∗)∈D with x=(p1,z1,p0,z0) and

y∗∈{0,1}. The independence axiom implies the same choice would be made on all other menus

x′=(αp1+(1−α)p̃,αz1+(1−α)z̃,αp0+(1−α)p̃,αz0+(1−α)z̃) for any lottery (p̃,z̃) and α∈ [0,1).10

10We write the compound lottery that yields lottery (p,z) with probability α∈ [0,1) and lottery (p′,z′) with
probability (1−α) as (αp+(1−α)p′,αz+(1−α)z′).
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Expected utility theory therefore satisfies Assumption 4. Appendix C discusses our other examples.

For any theory T(·) satisfying Assumptions 1-4, we establish that there exist logical anomalies

and such a theory can be equivalently represented by an allowable function class. To state this result,

we say a mapping f(·)∈F is consistent with D∈D if f(x)=y∗ for all (x,y∗)∈D. A collection

D is inconsistent with function class F̃ ⊆F if there exists no f(·)∈F̃ that is consistent with D.

Proposition 2.1.

i. Any theory T(·) satisfies Assumptions 1-4 if and only if there exists a function class FT ⊂F
that is inconsistent with some collection of examples and satisfies, for all x∈X and D∈D,

T(x;D)=
{
f(x): f(·)∈FT and f(·) is consistent with D

}
. (1)

ii. There exist logical anomalies for any theory T(·) satisfying Assumptions 1-4.

We call FT the allowable function class of theory T(·). The allowable function class FT summarizes

all mappings from features to the modeled outcome that are consistent with theory T(·)’s underlying
structure, however that may be mathematically modeled. As a result, theory T(·) can be analyzed

as if it simply searches for any allowable functions f(·)∈FT that are consistent with the given

examples D ∈ D. Furthermore, the theory is not compatible with all possible collections of

examples. In fact, there exist logical anomalies for any theory T(·) satisfying Assumptions 1-4. By

establishing the existence of logical anomalies and placing theories into a tractable allowable function

representation, Proposition 2.1 serves as the launching point of our anomaly generation procedures.

We provide the complete proof in Appendix A, and we briefly sketch our proof strategy

here. It is clear that the allowable function representation (1) satisfies Assumptions 1-3. To

show it also satisfies Assumption 4, consider the smallest collection of examples Dmin∈D that is

inconsistent with FT . For any (x,y∗)∈Dmin, Assumption 4 is satisfied for D=Dmin\{(x,y∗)} and

x. For this choice, T(x;D)⊂Y∗ must be satisfied since otherwise FT could not be inconsistent

with Dmin. This establishes necessity. To show sufficiency, we construct an allowable function

representation FT ⊂F for any theory T(·) satisfying Assumptions 1-4. To do so, we define D¬T

as all incompatible collections of examples for T(·), which is non-empty by Assumption 4. We

define F¬T to be all mappings that are consistent with any D∈D¬T . We construct the allowable

functions as FT =F\F¬T , and the proof establishes that this construction satisfies Equation (1).

This proves part (i). To show part (ii), we establish that there exists a smallest, incompatible

collection of examples for theory T(·). This must be a logical anomaly by Definition 3.

Incompatible collections of examples and logical anomalies have a simple characterization in

terms of a theory’s allowable functions FT and a loss function.
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Proposition 2.2. Suppose theory T(·) satisfies Assumptions 1-4, and consider any loss function

ℓ : Y∗×Y∗→R+ satisfying ℓ(y,y′)=0 if and only if y=y′.

i. The collection of examples D∈D is incompatible with T(·) if and only if

min
f(·)∈FT

|D|−1
∑

(x,y∗)∈D

ℓ(f(x),y∗)>0. (2)

ii. If there exists no incompatible collection with fewer than n>1 examples, then any incompatible

collection with n examples is also a logical anomaly.

This is an immediate consequence of Definitions 2-3 and Proposition 2.1. Searching for incompat-

ible collections of examples is equivalent to searching for collections that induce a strictly positive

loss for the theory’s allowable functions. Furthermore, we can search for logical anomalies by

iteratively searching for larger incompatible collections.

Importantly, this characterization of incompatible collections of examples (2) can be reinter-

preted as an adversarial game between the theory (the min-player) and a falsifier. The falsifier

proposes examplesD to the theory, and the theory attempts to explain them by fitting its allowable

functions. The theory’s payoffs are decreasing in its average loss, and the falsifier wishes to search

for examples that induce a positive loss for the theory’s best-responding allowable function. We

build on this characterization of logical anomalies to develop our anomaly generation procedures.

Before continuing, our model of theories builds on a classic literature on measuring the predic-

tive success and restrictiveness of economic theories, tracing back to Selten and Krischker (1983) and

Selten (1991). Selten (1991) measures the predictive success of a theory as the comparison between

the fraction of correct predictions it makes and the fraction of outcomes it deems possible (see also

Harless and Camerer, 1994; Beatty and Crawford, 2011). Fudenberg, Gao and Liang (2020) measure

the “restrictiveness” of economic theories, generalizing Selten’s definition. Our existence result for

logical anomalies establishes that any black box theory satisfying our axiomatization must be restric-

tive in the sense that there exist some minimal collections of examples that it is incompatible with.

2.4 Observable data and empirical anomalies

To this point, we analyzed the behavior of theory T(·) on collections of examples D∈D. Our goal

is to ultimately contrast theory T(·) with nature in order to generate hypotheses about how it may

be improved. Yet observable data may suffer from a variety of typical econometric problems, such

as measurement error, endogeneity, or unobserved variables, which produce additional empirical

variation that is not modeled by the theory. Bridging from theory to data requires some assumption

on how data map onto the theory’s examples.

In this paper, we form this bridge by supposing each modeled context m∈M is associated
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with some joint distribution over (Xi,Yi)∼ Pm(·), where Yi ∈ Y is an observed outcome. We

assume Pm(Xi=x)>0 for all x∈X . The observed outcome is statistically related to the theory’s

modeled outcome. The empirical modeled outcome of theory T(·) is

f∗
m(x):=Em[g(Yi) |Xi=x] (3)

for some researcher-specified function g(·), where Em[·] denotes the expectation under Pm(·). The
empirical modeled outcome is some identified functional of each modeled context’s underlying

joint distribution. Indeed, researchers often first estimate choice probabilities from data on discrete

choices, strategy profiles in normal-form games from data on actions, or expected returns from

data on historical realized returns.

For the rest of the paper, our goal is to discover empirical anomalies for theory T(·) in

modeled context m, if they exist. Given modeled context m∈M with true function f∗
m(·), an

empirical example is now any pair (x,f∗
m(x)). We search for collections of empirical examples

D={(x1,f∗
m(x1)),...,(xn,f

∗
m(xn))} that are logical anomalies for theory T(·).11

This definition of the empirical modeled outcome is of course restrictive. It implies that any

residual variation in the observed outcome Yi given the observed features Xi within a modeled

context is irrelevant for the underlying structure that the theory purports to model. Nonetheless,

the researcher retains substantial flexibility to specify the function g(·) in order to capture whatever

aspects of the conditional distribution Yi |Xi they deem relevant.

3 An adversarial algorithm for anomalies

In this section, we develop our first procedure to generate empirical anomalies when given access

to a theory’s allowable functions FT and a black box predictive algorithm.

Consider modeled context m∈M with true function f∗
m(·). For x1:n :=(x1,...,xn), let

Em(x1:n):= min
f(·)∈FT

n−1

n∑
i=1

ℓ(f(xi),f
∗
m(xi)) (4)

be theory T(·)’s loss on the empirical examples D={(x1,f∗
m(x1)),...,(xn,f

∗
m(xn))}. Proposition 2.2

establishes that the collection D is incompatible with T(·) if and only if Em(x1:n)>0. Furthermore,

the collection is also an empirical anomaly in modeled contextm if there exists no smaller collection

of empirical examples that is incompatible with T(·). If we had oracle access to the true function

f∗
m(·), we could therefore search for empirical anomalies by: first, searching for collections of

empirical examples that are incompatible with T(·), or equivalently feature vectors x1:n satisfying

11Our discussion in the main text focuses on searching for empirical anomalies in a single modeled context.
Appendix D extends our procedures to search for empirical anomalies across multiple modeled contexts.
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Em(x1:n)>0; and second, iterating that search over successively larger collections.

For any collection of empirical examples with size n≥1, the falsifier’s adversarial problem

is given by the following optimization program

max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ(f(xi),f
∗
m(xi)), (5)

which searches for empirical examples that generate large positive loss for the theory’s best-

responding allowable function (if they exist). Our first procedure for generating empirical

anomalies is an iterative search procedure based on this max-min program. For some maximal size

n≥1, we iterate over n=1,...,n and solve the adversarial game (5), letting n∗ denote the smallest

collection size for which the optimal value of the max-min program is strictly positive. Any feature

vector x1:n∗ with Em(x1:n∗)>0 is an empirical anomaly by Proposition 2.2. We can then search for

other empirical anomalies by searching for other feature vectors in the set {x1:n∗ : Em(x1:n∗)>0}.
Of course, this iterative search procedure is not directly feasible. First, we do not observe the

true function f∗
m(·), and it instead must be estimated from the observable data. Second, solving

the max-min program may be quite difficult as both the inner minimization over the theory’s

allowable functions and the outer maximization over feature vectors may be intractable. We tackle

both of these challenges, constructing our first feasible search procedure for empirical anomalies.

3.1 Statistical analysis of plug-in max-min optimization

Recall the true function f∗
m(·) in modeled context m is given by f∗

m(x)=Em[g(Yi) |Xi=x] for

some researcher-specified function g(·). Suppose we observe a random sample (Xi,Yi)∼Pm(·) i.i.d.
for i=1,...,Nm from modeled context m, and we construct an estimator f̂∗

m(·)∈F for the true

function. For example, this estimator may be constructed using any black box, supervised machine

learning algorithm that predicts g(Yi) based on the features Xi such as deep neural networks, or

classic nonparametric regression techniques.

We solve the falsifier’s plug-in max-min program

max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)
. (6)

In order to analyze the plug-in program’s error for the infeasible program (5), we assume the

researcher has access to approximate optimization routines that solve the inner minimization and

outer maximization problems up to some errors.

Assumption 5 (Approximate optimization).

i. For any x1:n and f̂∗
m(·)∈F, the approximate inner minimization routine returns an allowable
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function f̃(·;x1:n)∈FT satisfying

n−1

n∑
i=1

ℓ
(
f̃(xi;x1:n),f̂

∗
m(xi)

)
≤ min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)
+δ (7)

for some δ≥0.

ii. For any f(·;x1:n)∈FT and f̂∗
m(·)∈F, the approximate outer maximization routine returns

x̃1:n satisfying

n−1

n∑
i=1

ℓ
(
f(x̃i;x̃1:n),f̂

∗
m(x̃i)

)
≥max

x1:n
n−1

n∑
i=1

ℓ
(
f(xi,x1:n),f̂

∗
m(xi)

)
−ν (8)

for some ν≥0.

We provide a finite sample bound on the plug-in program’s error that depends on the optimization

errors introduced by the approximate optimization routines.

Define f̃T (·;x1:n) to be the allowable function returned when the approximate inner minimiza-

tion routine solves minf(·)∈FT n−1
∑n

i=1ℓ
(
f(xi),f̂

∗
m(xi)

)
at any feature values x1:n. Analogously

define x̃1:n to be the feature values returned when the approximate outer maximization rou-

tine solves maxx1:nn
−1
∑n

i=1ℓ
(
f̃T (xi;x1:n),f̂

∗
m(xi)

)
. Define the optimal values of the plug-in and

population programs as

Êm :=n−1

n∑
i=1

ℓ
(
f̃T (x̃i,x̃1:n),f̂

∗
m(x̃i)

)
and Em=max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ(f(xi),f
∗
m(xi)) (9)

respectively.

Proposition 3.1. Suppose the loss function ℓ(·,·) is differentiable with gradients bounded by some

K<∞ and convex in its second argument. Then, for any n≥1,∥∥∥Êm−Em
∥∥∥≤(δ+ν)+3K∥f̂∗

m(·)−f∗
m(·)∥∞, (10)

where ∥f1(·)− f2(·)∥∞ = supx∈X |f1(x)− f2(x)| is the supremum norm between two functions

f1(·),f2(·)∈F.

The error of the plug-in max-min program for the infeasible max-min program is bounded by the

optimization error introduced by the approximate optimization routines and the estimation error

of f̂∗
m(·) for the true function f∗

m(·). The estimation error contributes to the bound through the

worst-case (supremum norm) error of f̂∗
m(·) for f∗

m(·). Equivalently, if we could exactly optimize

and set δ,ν=0, the rate at which the plug-in optimal value converges to the population optimal
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value is bounded by the rate at which f̂∗
m(·) converges uniformly to the true function f∗

m(·).
While strong, it is unsurprising that this strong form of convergence is sufficient to control the

plug-in’s error as the max-min optimization program explores the mapping x→f∗
m(x) and possibly

extrapolates in searching for incompatible collections.

Importantly, the finite sample bound in Proposition 3.1 is agnostic, applying to any choice of

the researcher’s estimator f̂∗
m(·). By introducing additional regularity conditions and for particular

choices of the researcher’s estimator f̂∗
m(·), existing work provides high-probability bounds on

the worst-case error ∥f̂∗
m(·)−f∗

m(·)∥∞ in terms of the sample size Nm and other primitives of the

problem, such as the dimensionality of the features x. For example, see Belloni et al. (2015); Chen

and Christensen (2015); Cattaneo, Farrell and Feng (2020) for recent results on the supremum

norm convergence for a large class of series based estimators, reproducing kernel Hilbert space

methods (e.g., Yang, Bhattacharya and Pati, 2017; Fischer and Steinwart, 2020), and deep neural

networks (e.g., Imaizumi, 2023). Proposition 3.1 can therefore be combined with existing results

to provide high-probability bounds on the error of the plug-in max-min program.

3.2 Gradient descent ascent optimization

Proposition 3.1 still leaves open the question of how to practically solve the inner minimization

and outer maximization of the plug-in max-min program. The falsifier’s manipulation of the

features induces both variation in the theory’s chosen allowable function and the true function

f∗
m(·), making the outer maximization program difficult.

To tackle this problem, we notice that the plug-in max-min program (6) has connections

to a recent computer science literature on adversarial learning (e.g., Madry et al., 2017; Akhtar

and Mian, 2018; Kolter and Madry, 2018). In adversarial learning, “data-poisoning attacks” are

studied to understand the robustness of black box predictive algorithms. Given an estimated

neural network for image classification, for example, we search for small perturbations to particular

pixel values that would lead the neural network to (humorously) classify a picture of a pig as

an airliner or (more dangerously) fail to notice a stop sign in a self-driving car. The resulting

perturbed images are referred to as “adversarial examples.”

The plug-in max-min program’s search for logical anomalies can be reinterpreted as a type of

data-poisoning attack on the theory’s allowable functionsFT . The falsifier searches for collections of

empirical examples that simultaneously poison the performance of all allowable functions f(·)∈FT .

The resulting logical anomalies are adversarial examples for the theory. We can exploit the

connection to data-poisoning attacks in order to develop a feasible gradient descent ascent (GDA)

optimization routine. Recent results on non-convex/concave max-min optimization (e.g., Jin, Netra-

palli and Jordan, 2019; Razaviyayn et al., 2020) provide optimization guarantees on its performance.

We first simplify the inner minimization over the theory’s allowable functions. We assume the
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theory’s allowable functions can be flexibly parametrized, meaning FT ={fθ(·): θ∈Θ} for some

(possibly high-dimensional) parameter vector θ and compact parameter space Θ. In expected

utility theory, for example, such a parametrization may involve a flexible sieve basis or a class

of neural networks for the possible utility functions. The inner minimization over the theory’s

allowable functions then becomes

min
θ∈Θ

n−1

n∑
i=1

ℓ
(
fθ(xi),f̂

∗
m(xi)

)
. (11)

For particular parametrizations and loss functions, this may be convex and so it can be solved

accurately using convex optimization methods. Otherwise, we can apply standard gradient descent

procedures with random initializations since it is equivalent to an empirical risk minimization

problem. We can therefore implement an approximate inner minimization routine using standard

optimization methods, and so we maintain our high-level Assumption 5(i).

By contrast, the outer maximization over features remains difficult as varying the feature vector

simultaneously induces variation in the estimated function f̂∗
m(·), the theory’s allowable function

fθ(·) and the theory’s best-fitting parameter vector θ ∈Θ. The outer maximization problem

will therefore typically be non-concave. We can nonetheless use a gradient-based optimization

procedure. As notation, let Êm(x1:n,θ):=n−1
∑n

i=1ℓ
(
fθ(xi),f̂

∗
m(xi)

)
and we assume Êm(x1:n,θ) is

differentiable in x1:n for all θ∈Θ. For a collection of initial feature values x01:n, maximum number

of iterations S>0, and some chosen step size sequence {ηs}Ss=0>0, we iterate over s=0,...,S and

calculate at each iteration

θs+1=argmin
θ∈Θ

Êm(xs1:n;θ) (12)

xs+1
1:n =xs1:n+ηs∇Êm(xs1:n;θs+1). (13)

At each iteration s, we construct an approximate solution to the inner minimization problem θs+1,

and we then take a gradient ascent step on the feature values plugging in θs+1.

Recent results in non-convex/concave max-min optimization imply that such a gradient descent

ascent algorithm converges to an approximate stationary point of the outer maximization problem

(Jin, Netrapalli and Jordan, 2019), loosely meaning that ∇Êm(x1:n,θ)≈0 at the returned feature

and parameter vectors. We state this result formally in Appendix E.

4 Representational anomalies and example morphing

Our adversarial algorithm exploits no structure about theory T(·) beyond its allowable functions.

If a strengthened Assumption 4 is satisfied, then theory T(·) has a lower-dimensional represen-

tation of the features, meaning T(·) behaves as if it always pools together some distinct feature
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values. In this case, researchers may be interested in uncovering what we call “representational

anomalies,” which highlight ways in which the theory fails to capture some relevant dimension

along which modeled outcomes vary. We propose an example morphing algorithm to generate

such representational anomalies.

4.1 Representational equivalence and logical anomalies

To this point, we modeled theory T(·) as a mapping that draws implications about the relation-

ship between the features and modeled outcomes from any collection of examples, placing no

assumptions on how T(·) behaves across feature values. However, theories often draw the same

implications at distinct feature values x,x′, which we formalize in the following definition.

Definition 4. Features x1,x2∈X are representationally equivalent under theory T(·) if T(x1;D)=

T(x2;D) for all D∈D.

Proposition 4.1. Suppose theory T(·) satisfies Assumptions 1-4. Features x1,x2 are represen-

tationally equivalent if and only if f(x1)=f(x2) for all f(·)∈FT .

Two features are representationally equivalent if theory T(·) always behaves as if it derives the
same implications at their values. This has a simple interpretation in terms of a theory’s allowable

functions — all allowable functions assign the same modeled outcome value to the two features.

To build intuition, a theory T(·) has representationally equivalent features whenever it ignores

any particular feature in an economic domain. Consider choice under risk and suppose we include

as a feature whether or not a lottery in the menu is presented as a compound lottery. Expected

utility theory is silent on whether this presentational choice would influence an individual’s decision.

Any pairs of menus x1,x2 whose constituent lotteries have the same final payoffs and probabilities

over those final payoffs yet differ in their presentation are representationally equivalent under

expected utility theory.

While ignoring a particular feature is sufficient for a theory T(·) to have representationally

equivalent features, it is perhaps surprisingly not necessary. Consider again choice under risk,

and suppose we define the feature vector to only consist of the final payoffs and probabilities

associated with the constituent lotteries in the menu. Expected utility theory of course does

not ignore any of these features in modeling risky choices. Any utility function u(·) is associated
with an allowable function f(·)∈FT given by f(x1)= argmax

{∑J
j=1p0ju(z0j),

∑J
j=1p1ju(z1j)

}
for menu x1=(p0,z0,p1,z1), and all payoffs and probabilities of the lotteries may influence choice.

Yet there exists a representationally equivalent menu x2 that consists of the compound lotteries

α(p0,z0)+(1−α)(p̃,̃z) and α(p1,z1)+(1−α)(p̃,̃z). The pair of menus satisfies f(x1)=f(x2) due

to the independence axiom and the linearity of expected utility in probabilities.

We next strengthen Assumption 4 (“non-trivial implications”), and then we establish that

any theory T(·) has a non-trivial, lower-dimensional representation of the features.
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Assumption 6 (Sharp implications). There exist x1,x2∈X such that T(xk;D)=y∗j for all D∈D
compatible with theory T(·) and (xj,y

∗
j )∈D for j ≠k.

Proposition 4.2. Suppose theory T(·) satisfies Assumption 1, 2, 3 and 6. Then, there exists

some pair x1,x2∈X that are representationally equivalent under theory T(·).

To prove the result, suppose that the pair x1,x2∈X in Assumption 6 were not representationally

equivalent under theory T(·) for sake of contradiction. There must then exist some D∈D at

which T(x1;D) ≠ T(x2;D), and we can construct D̃ satisfying D⊂ D̃ that is compatible with

theory T(·) but violates Assumption 6. Assumption 6 states that there exists some pair of feature

values x1,x2∈X such that if theory T(·) is provided with either (x1,y
∗
1) or (x2,y

∗
2), then it sharply

generalizes to the other feature value in the pair. Proposition 4.2 establishes that Assumption

6 is sufficient for there to exist a non-trivial representation of the features under theory T(·).
Representationally equivalent features, if they exist, provide more structure that can be

exploited for anomaly generation. If theory T(·) has a non-trivial representation of the features,

then particular logical anomalies highlight failures in the theory’s representation.

Definition 5. Consider any theory T(·) satisfying Assumptions 1, 2, 3 and 6. A logical anomaly

D for theory T(·) is a representational anomaly if there exists (x1,y
∗
1),(x2,y

∗
2)∈D such that x1,x2

are representationally equivalent under T(·) but y∗1 ≠y∗2.

We refer to logical anomalies further satisfying Definition 5 as representational anomalies. A rep-

resentational anomaly highlights that there exists some pair of features that are representationally

equivalent under theory T(·) but across which the modeled outcome varies. In this sense, there

is some variation in the modeled outcome across features that is not captured by the theory’s

allowable functions. Researchers are often most interested in uncovering representational anomalies

for theories. Indeed, many classic examples of logical anomalies for expected utility theory are,

in fact, representational anomalies.

Examples: the Allais paradox and Certainty effect Consider once again the Allais paradox

for expected utility theory (Table 1). Due to the independence axiom, expected utility theory

requires that T(xA;D)=T(xB;D) for all collections and so the menus xA,xB are representationally

equivalent. Yet the Allais paradox highlights that choices may vary across these two menus, and

it is therefore a representational anomaly. Analogously, the Certainty effect for expected utility

theory (Table 2) is also a representational anomaly by the same reasoning. ▲

Furthermore, Tversky and Kahneman (1981) also construct other representational anomalies for

expected utility theory that highlight whether lotteries are presented as two-stage lotteries versus

simple lotteries may affect individuals’ risky choices.
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4.2 An example morphing algorithm

Given modeled context m ∈ M with true function f∗
m(·) = Em[g(Yi) | Xi = x] for some

researcher-specified g(·), our goal is to search for empirical representational anomalies {(x1,f∗
m(x1)),(x2,f

∗
m(x2))}

for theory T(·).
To motivate our procedure, we further assume the true function and all of theory T(·)’s

allowable functions are differentiable and that theory T(·)’s representation is local.

Assumption 7 (Differentiability and local representational equivalence).

1. f∗
m(·) and all f(·)∈FT are everywhere differentiable.

2. If features x1,x2∈X are representationally equivalent, then so are λx1+(1−λ)x2 for any

λ∈(0,1).

Under this assumption, representations are local in the sense that there exists a small deviation

from x1 or x2 that is also representationally equivalent. Expected utility theory satisfies this

assumption per our earlier discussion.

Under Assumption 7, we might hope to uncover representational anomalies by taking small

gradient-based steps. Suppose we have oracle access to the true function f∗
m(·). Given an initial

feature value x0, we search for directions v∈Rdim(x) along which no allowable function f(·)∈FT

changes but f∗
m(·) changes substantially, and we then update or morph x0 in the direction v.

More precisely, let N (x)={v∈Rdim(x) : ∇f(x)′v=0 for all f(·)∈FT} denote the subspace

of directions that are orthogonal to the gradient of each allowable function. Under Assumption

7, N (x) is non-empty at any x for which there exists some representationally equivalent x′. For

an initial feature value x0, maximum number of iterations S, and step size sequence {ηs}Ss=0, we

would iterate over s=0,...,S and compute the update step

xs+1=xs−ηsProj(∇f∗
m(x

s) |N (xs)), (14)

where Proj(·) is the projection operator and Proj(∇f∗
m(x) |N (x)) is the projection of the gradient

of the true function f∗
m(·) onto the null space of the allowable functions. We therefore move in

descent directions of the true function f∗
m(·) that hold fixed the value of any allowable function

f(·)∈FT . We focus on descent directions, but we could instead apply an ascent step as well.

Finally, if there are known directions vs along which no allowable functions vary (e.g., the theory

ignores some feature), then we could directly define the update direction as Proj(∇f∗
m(x

s) |vs).
This is, of course, not feasible since we do not observe the true function f∗

m(·). As a result, we

again construct an estimator ∇f̂∗
m(·) based on a random sample (Xi,Yi)∼Pm(·) i.i.d. for i=1,...,n.
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We then plug this estimator into the morphing procedure and apply the update step

xs+1=xs−ηsProj
(
∇f̂∗

m(x
s) |N (xs)

)
(15)

at each iteration s=0,...,S. Our next result establishes Proj
(
∇f̂∗

m(x) |N (x)
)
remains a descent

direction for the true function f∗
m(·), provided the error in estimating the gradient ∇f̂∗

m(·)−∇f∗
m(·)

is sufficiently small.

Proposition 4.3. Under Assumption 7, −Proj(∇f∗
m(x) |N (x)) is a descent direction for f∗

m(·).
Furthermore, −Proj

(
∇f̂∗

m(x) |N (x)
)
is also a descent direction for f∗

m(·) provided ∥∇f̂∗
m(x)−

∇f∗
m(x)∥2≤∥Proj(∇f∗

m(x) |N (x))∥2 is satisfied.

While Proposition 4.3 analyzes the properties of plugging the estimated gradient of the true

function into the morphing procedure, it still leaves open the question of how to practically imple-

ment the projection operator. To do so, we will again assume that the theory’s allowable functions

can be flexibly parametrized, meaningFT ={fθ(·): θ∈Θ} for some θ∈Θ as in Section 3.2. We prac-

tically implement the projection operator by sampling B>0 parameter values θ∈Θ at each update

step and directly orthogonalizing the gradient∇f̂∗
m(x) with respect to each of the sampled gradients

∇fθ(x). AsB grows large, this better approximates the null space of the allowable functionN (x).12

5 Revisiting prospect theory through the lens of anomaly

generation

To this point, our analysis has been theoretical, establishing properties of our anomaly generation

procedures. But do they work in practice? We first apply our procedures to algorithmically

generate logical anomalies for expected utility theory based on simulated lottery choice data

consistent with prospect theory. We compare the logical anomalies generated by our algorithmic

procedures against known logical anomalies for expected utility theory that are implied by prospect

theory, such as those produced in Allais (1953), Kahneman and Tversky (1979), and many others,

exploring whether our algorithmic procedures reproduce these known logical anomalies.

5.1 Data generating process

We simulate lottery choice data from an individual who evaluates lotteries over J>1 monetary

payoffs according to the parametric probability weighting function

πj(p;δ,γ)=
δpγj

δpγj+
∑

k≠jp
γ
k

for j=1,...,J, (16)

12If there are known directions vs along which no allowable functions vary, then this gradient sampling step is
not needed and we can directly orthogonalize the gradient ∇f̂∗

m(x) with respect to the known directions.
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where p ∈∆J−1 and δ ≥ 0,γ ≥ 0 are the parameters governing the level and curvature of the

probability weighting function (Lattimore, Baker and Witte, 1992). We calibrate the parameters

(δ,γ) using estimates based on the large-scale choice experiments in Bruhin, Fehr-Duda and Epper

(2010) (reported in their Table V and Table IX), setting (δ,γ) to be equal to one of (0.926,0.377),

(0.726,0.309), or (1.063,0.451).

Figure 1: Probability weighting function for calibrated parameter values (δ,γ) in our illustration to
choice under risk.

Notes: This figure plots the probability weighting function (16) for the calibrated parameter values (δ,γ) used in
our illustration to choice under risk. We calibrate (δ,γ) to be equal to (0.726,0.309),(0.926,0.377), and (1.063,0.451)
using the pooled estimates based on the large-scale choice experiments in Bruhin, Fehr-Duda and Epper (2010)
(reported in their Table V and Table IX). See Section 5.1 for further discussion.

For these parameter values of the probability weighting function (16), the individual distorts

objective probabilities by over-weighting probabilities close to zero, under-weighting probabilities

close to one, and compressing intermediate probabilities. Figure 1 plots the resulting probability

weighting functions associated with each choice (δ,γ), depicting the canonical “s-shapes.” Such

non-linearities in the probability weighting function can generate several known logical anomalies

for expected utility theory, such as the Allais paradox (Table 1), the Certainty effect (Table 2),

and several others. These parameter values also introduce “outcome pessimism” when δ<1 as the

individual’s probability weights may sum to less than one (i.e.,
∑J

j=1πj(p;δ,γ)<1), or “outcome

optimism” when δ>1 as the individual’s probability weights may sum to greater than one (i.e.,∑J
j=1πj(p;δ,γ)>1). These properties may lead the individual to select a lottery that is first-order

stochastically dominated by another lottery in the menu. Expected utility maximization over

any utility function that is weakly increasing in monetary payoffs cannot generate such first-order

stochastic dominance violations.

The individual has a linear utility function. For any payoff vector z∈RJ and associated proba-

bilities p∈∆J−1, the individual evaluates the lottery (p,z) by CPT(p,z;δ,γ):=
∑J

j=1πj(p;δ,γ)zj. On

a menu of two lotteries, x=(p0,z0,p1,z1), we simulate the individual’s probability of selecting lottery
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1 according to f∗
m(x)=P(CPT(p1,z1;δ,γ)−CPT(p0,z0;δ,γ)+ξ≥0), where ξ is an i.i.d. logit shock.

The individual’s binary choice is given by the random variable Yi |Xi=x∼Bernoulli(f∗
m(x)).

5.2 Generating logical anomalies for expected utility theory

To apply our anomaly generation procedures, we flexibly parametrize the allowable functions

of expected utility theory. We model the utility function as a linear combination of non-linear

basis functions with uθ(z) =
∑K

k=1 θkbk(z) for basis functions b1(·), ... ,bK(·) (e.g., polynomial

bases or monotone I-splines), K finite, and parameter vector θ ∈ Θ. We then consider the

parametrized allowable functions of expected utility theory as the collection {fθ(·) : θ∈Θ} for

fθ(x)=P
(∑J

j=1p1(j)uθ(z1(j))−
∑J

j=1p0(j)uθ(z0(j))+ξ≥0
)
, where ξ is also an i.i.d. logit shock.

We generate logical anomalies for expected utility theory over the space of menus of two lotteries

on two monetary payoffs, applying our adversarial procedure and our example morphing procedure

to the true choice probability function f∗
m(·). In Appendix G.2, we generate logical anomalies

based on an estimated choice probability function f̂m(·) from a random sample of binary choices.

For each parameter value (δ,γ), we apply our adversarial algorithm to 25,000 randomly

initialized menus of two lotteries on two monetary payoffs x0 and our example morphing algorithm

to 15,000 randomly initialized menus. Appendix F provides further details on our practical

implementation. Each returned menu of lotteries over two monetary payoffs are logical anomalies

for expected utility theory at our particular parametrization of the utility function {uθ(·): θ∈Θ}.
Since these parametrized allowable functions are restrictive, we numerically verify whether the

returned menu is a logical anomaly for expected utility theory at any increasing utility function

and without noisy choices (see Appendix F.3 for details). We report all resulting numerically

verified logical anomalies for expected utility theory.

5.3 What logical anomalies do the algorithms generate?

Altogether our procedures generate 309 logical anomalies for expected utility theory across cal-

ibrated parameter values (δ,γ) for the probability weighting function. In order to better interpret

these logical anomalies, we categorize them ourselves based on the particular violation of expected

utility theory they highlight. Our anomaly generation procedures uncover several distinct categories

of logical anomalies for expected utility theory that are implied by the probability weighting

function.

One of prospect theory’s key insights is the role of reference points in decision making. In

assessing probabilities, there are two natural reference points: zero (when an event is certain to

not occur) and one (when an event is certain to occur). These reference points influence how we

perceive probabilities, and we exhibit diminishing sensitivity to changes in probabilities as they

move away from either zero or one (Tversky and Kahneman, 1992). Shifting a probability from
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Prob. Weighting Function: (δ,γ)
(0.726,0.309) (0.926,0.377) (1.063,0.451)

Dominated Consequence Effect 85 34 10
Reverse Dominated Consequence Effect 17 15 14

Strict Dominance Effect 45 1 0
First Order Stochastic Dominance 81 0 2

Other 3 1 1

# of Logical Anomalies 231 51 27

Table 3: Logical anomalies for expected utility theory over the space of menus of two lotteries on two
monetary payoffs.

Notes: This table summarizes all logical anomalies for expected utility theory over two lotteries on two monetary
payoffs produced by our adversarial algorithm and our example morphing algorithm. The logical anomalies are
organized by calibrated parameter values (δ,γ) of the probability weighting function and anomaly categories. See
Section 5.3 for further discussion.

either 1% to 10% or from 99% to 90% looms larger in our minds than shifting a probability from

41% to 50%. Diminishing sensitivity in our perceptions of probabilities suggests that individuals do

not treat probabilities linearly as modeled by expected utility theory, and the resulting probability

distortions are captured by the probability weighting function (see Figure 1).

Importantly, diminishing sensitivity in our perceptions of probabilities can produce apparent

reversals in our choices across menus of lotteries, even when expected utility theory sharply

predicts our choices should be unchanged. Several well-known logical anomalies for expected utility

theory, such as the Allais paradox (Table 1), the Certainty effect (Table 2), and even the the

Pseudo-certainty effect (Tversky and Kahneman, 1981) involving compound lotteries, highlight

exactly such choice reversals.

Our algorithmic procedures generate three categories of logical anomalies for expected utility

theory that illustrate choice reversals over menus of two lotteries on two monetary payoffs due

to the probability weighting function. We discuss each category next, focusing on particular

illustrative examples produced by our algorithmic procedures.

5.3.1 The dominated consequence effect

The logical anomalies in the first row of Table 3 highlight what we refer to as a “dominated

consequence effect.” As an illustration, consider the algorithmically generated pair of menus

in Table 4. Appendix Table A1 provides six additional illustrative examples of the dominated

consequence effect that were produced by our algorithmic procedures.

In Table 4, the individual selects lottery A0. Since lottery A0 has a lower expected value than

lottery A1, expected utility theory could rationalize this choice with an appropriate degree of risk

aversion. Since the payoffs in the lotteries across menu A and menu B are the same, under expected
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utility theory the individual’s risk attitudes should be fixed across these menus. Yet the individual

also selects the lottery B1, which has a higher expected value than lottery B0. It appears as if the

individual’s risk attitudes have reversed on menu B. Put in another way, even though lottery B0

and lottery B1 both raise the probability of their lowest payoffs, the movement from a 0% to 11%

change of the lowest payoff across lottery A0 to lottery B0 looms larger in the individual’s mind

than the change from a 13% to 34% chance of the lowest payoff across lottery A1 to lottery B1.

Menu A (xA,y
∗
A)

Lottery 0 $6.44 $6.71
0% 100%

Lottery 1 $5.72 $8.64
13% 87%

Menu B (xB,y
∗
B)

Lottery 0 $6.44 $6.71
11% 89%

Lottery 1 $5.72 $8.64
34% 66%

Table 4: An illustrative example of an algorithmically generated logical anomaly for expected utility
theory that illustrates the dominated consequence effect.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50 in green.
This logical anomaly exhibiting the dominated consequence effect consists of two menus {(xA,y∗A),(xB,y∗B)}, and
it was produced by our example morphing algorithm applied to the choice probability function based on the
probability weighting function π(p;δ,γ) for (δ,γ)=(0.726,0.309). For ease of interpretation, we round each payoff to
the nearest cent and each probability to the nearest percentage. See Section 5.3 and Appendix G.1 for further
discussion.

Importantly, the change in probabilities across menu A and menu B is crafted exactly so

that the choice predictions of expected utility theory are constant across these menus. Formally,

each lottery in menu B can be expressed as a compound lottery over the corresponding lottery

in menu A and some degenerate lotteries that yield certain payoffs. Lottery B0 can be expressed

as a compound lottery over lottery A0 and a degenerate lottery that yields the certain payoff

6.44; that is, B0 = α0A0+(1−α0)δ6.44 for some α0 ∈ (0,1). Analogously, lottery B1 can be

written as the compound lottery B1=α1A1+(1−α1)δ5.72 for some α1<α0. The individual’s

choices therefore express that lottery A0 is preferred to lottery A1 and α1A1+(1−α1)δ5.72 is

preferred to α0A0+(1−α0)δ6.44. This contradicts the axioms of expected utility theory since it

can be shown that A0 being preferred to A1 must imply that α0A0+(1−α0)δ6.44 is preferred to

α1A1+(1−α1)δ5.72. We provide a formal proof in Appendix G.1.

All logical anomalies in the first row of Table 3 have the following common structure. We define

the appropriate pair of lotteries as ℓ0=(p0,z0), ℓ1=(p1,z1) with z0=(z0,1,z0,2), z1=(z1,1,z1,2) and

z0 :=minj∈{1,2}z0j<minj∈{1,2}z1j :=z1. Each of these logical anomalies can then be summarized as:

for some α0≤α1, one menu consists of the choice between lottery ℓ0 and lottery ℓ1, and the other

menu consists of the choice between the compound lotteries α0ℓ0+(1−α0)δz0 and α1ℓ1+(1−α1)δz1.

Since the other menu mixes lotteries ℓ0 and ℓ1 with their minimal payoffs, selecting ℓ1 over ℓ0 implies

that the individual also prefers α1ℓ1+(1−α1)δz1 over α0ℓ0+(1−α0)δz0. We therefore say these
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logical anomalies exhibit a “dominated consequence effect” as the pair of menus highlight a violation

of the expected utility theory based on mixing each lottery with dominated certain consequences.

The Common ratio effect (e.g., Allais, 1953; Kahneman and Tversky, 1979) is a special case

of the dominated consequence effect (see, for example, Machina (1987) for further discussion). It

can be recovered from the dominated consequence effect by setting α0=α1 and placing additional

restrictions on how the probabilities p0,p1 relate to one another. The Common ratio effect is itself

a generalization of the Certainty effect (Kahneman and Tversky, 1979) and the Bergen Paradox

(Hagen, 1979). In this sense, the dominated consequence effect nests the most well-known logical

anomalies for expected utility theory over pairs of menus of two lotteries over two monetary payoffs.

Our anomaly generation procedures uncovered this category of logical anomalies on its own.

5.3.2 The reverse dominated consequence effect and the strict dominance effect

In the second row of Table 3, all logical anomalies exhibit a “reverse dominated consequence effect.”

Consider again the algorithmically generated reverse dominated consequence effect anomaly in

Table 5 (see Appendix Table A2 for additional examples).

To build intuition, the individual selects lottery A0 in Table 5. The lotteries in menu B again

have the same payoffs as those in menu A, and the probabilities associated with the highest payoffs

increase in both lotteries across these menus. Due to diminishing sensitivity of probabilities, the

change from 12% to 51% of the highest payoff across lottery A0 to lottery B0 is less enticing than

the change from 1% to 35% of the highest payoff across lottery A1 to lottery B1. This produces

an apparent choice reversal as the individual now selects lottery B1. Once again, the change in

probabilities across these menus is crafted such that the choice predictions of expected utility

theory do not change across these menus.

Menu A (xA,y
∗
A)

Lottery 0 $2.59 $8.87
88% 12%

Lottery 1 $3.51 $8.65
99% 1%

Menu B (xB,y
∗
B)

Lottery 0 $2.59 $8.87
49% 51%

Lottery 1 $3.51 $8.65
65% 35%

Table 5: An illustrative example of an algorithmically generated logical anomaly for expected utility
theory that illustrates the reverse dominated consequence effect.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50 in green.
This logical anomaly exhibiting the reverse dominated consequence effect consists of two menus {(xA,y∗A),(xB,y∗B)},
and it was produced by our example morphing algorithm applied to the choice probability function based on the
probability weighting function π(p;δ,γ) for (δ,γ)=(0.726,0.309). For ease of interpretation, we round each payoff to
the nearest cent and each probability to the nearest percentage. See Section 5.3 and Appendix G.1 for further
discussion.

Each logical anomaly illustrating the reverse dominated consequence effect has a common
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structure. Again, we define the appropriate pair of lotteries as ℓ0 = (p0,z0), ℓ1 = (p1,z1) with

z0=(z0,1,z0,2), z1=(z1,1,z1,2) and z0 :=maxj∈{1,2}z0j <maxj∈{1,2}z1j := z1. Each of these logical

anomalies can be summarized as: for some α1 ≤α0, one menu consists of the choice between

lottery ℓ0 and lottery ℓ1, and the other menu consists of the choice between the compound lotteries

α0ℓ0+(1−α0)δz0 and α1ℓ1+(1−α1)δz1. Since the other menu mixes lotteries ℓ0 and ℓ1 with their

maximal payoffs, selecting ℓ1 over ℓ0 implies that the individual also prefers α1ℓ1+(1−α1)δz1 over

α0ℓ0+(1−α0)δz0 if their preferences are consistent with expected utility theory. In other words,

the pair of menus highlights a violation of expected utility theory based on mixing each lottery

with dominating certain consequences. We therefore refer to this category as a “reverse dominated

consequence effect” due to its close parallel to the dominated consequence effect discussed earlier.

Next, all logical anomalies in the third row of Table 3 exhibit what we call a “strict dominance

effect.” We again provide an illustrative example in Table 6 (see Appendix Table A3 for additional

examples). In this case, the algorithmically generated logical anomaly shares a similar intuition as

the original Allais paradox. The individual selects lottery A1 despite it having the lower expected

payoff in the menu, demonstrating a degree of risk aversion. Since the payoffs are fixed across the

menus, the individual’s risk attitudes must be unchanged under expected utility theory. However,

the individual selects lottery B0 in menu B which is the higher expected payoff, and it appears

that the individuals’ risk attitudes have reversed. This choice reversal is particularly transparent

across this pair of menus. Lottery B0 raises the probability of the lowest payoff in lottery A0,

whereas lottery B1 raises the probability of the highest payoff in lottery A1. Yet despite selecting

lottery A1 over lottery A0, the individual now selects lottery B0 over lottery B1. In this sense,

the pair of menus highlights a violation of expected utility theory based on mixing lottery A1

with a certain consequence that strictly dominates the certain consequence that is mixed with

lottery A0. Hence we refer to this category as a “strict dominance effect.”13

While sharing some intuitive similarities, these final two categories of logical anomalies for

expected utility theory are formally different than both the Common consequence effect and

Common ratio effect, which were important motivating logical anomalies for the development of

the probability weighting function. These categories highlight violations of expected utility theory

while using only two distinct payoffs in each lottery and mixing each lottery with particular certain

consequences. Our anomaly generation procedures uncovered categories of logical anomalies for

expected utility theory that are implied by particular properties of the probability weighting

function, but to our knowledge have not been noticed before.

13Formally, logical anomalies exhibiting the strict dominance effect can be written as follows. For an appropriate
choice of menu in these logical anomalies, menu A consists of the choice between lottery ℓ0 and lottery ℓ1, and
menu B consists of the choice between the compound lotteries α1ℓ1+(1−α1)δz1 and α0ℓ0+(1−α0)δz0.
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Menu A (xA,y
∗
A)

Lottery 0 $6.71 $8.98
22% 78%

Lottery 1 $7.17 $8.04
100% 0%

Menu B (xB,y
∗
B)

Lottery 0 $6.71 $8.98
49% 51%

Lottery 1 $7.17 $8.04
45% 55%

Table 6: An illustrative example of an algorithmically generated logical anomaly for expected utility
theory that illustrates the strict dominance effect.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50 in green.
This logical anomaly exhibiting the strict dominance effect consists of two menus {(xA,y∗A),(xB,y∗B)}, and it was
produced by our example morphing algorithm applied to the choice probability function based on the probability
weighting function π(p;δ,γ) for (δ,γ)=(0.726,0.309). For ease of interpretation, we round each payoff to the nearest
cent and each probability to the nearest percentage. See Section 5.3 and Appendix G.1 for further discussion.

5.3.3 First-order stochastic dominance violations

Finally, all logical anomalies in the last row of Table 3 are menus of lotteries in which the indi-

vidual’s choice violates first-order stochastic dominance. As we show in the examples in Appendix

Table A4, these logical anomalies are all examples in which the individual selects lotteries that are

first-order stochastically dominated by the other lottery in the menu. Such first-order stochastic

dominance violations were generally viewed as an undesirable “bug” in particular specifications

of the probability weighting function, and so Kahneman and Tversky (1979) include an “editing

phase” prior to choice that eliminates such first-order stochastic dominated lotteries. What is

intriguing is that our anomaly generation procedures uncover these first-order stochastic dominance

violations on their own.

6 Generating empirical anomalies for choice under risk

Motivated by their performance in simulated lottery choice data, we next apply our anomaly

generation procedures to a large, publicly available dataset on real lottery choices. We construct

a predictive algorithm that accurately predicts choice rates based on the payoffs and probabilities

of the lotteries in a menu. We then apply our anomaly generation procedures to generate logical

anomalies for expected utility theory that are implied by this estimated predictive algorithm,

producing over 800 logical anomalies over menus of two-payoff lotteries and nearly 2,000 logical

anomalies over menus of three-payoff lotteries.

6.1 Constructing the predictive algorithm in real lottery choice data

We revisit the Choices13K dataset of human decisions on menus of risky lotteries originally

collected in Peterson et al. (2021). Choices13K consists of 13,006 randomly generated menus of

lotteries, which were sampled in order to expansively cover the space of possible risky lotteries.
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The menus were presented to 14,711 workers on Amazon Mechanical Turk (MTurk), where each

worker made incentivized decisions on 20 menus of lotteries (5 times each). Choices13K comprises

over 1 million decisions, and it is far richer than any past dataset used to study choice under risk

(e.g., Erev, Ert and Roth, 2010; Erev et al., 2017).

We focus on all lottery menus in Choices13K that do not involve ambiguity nor correlation in

the payoff structure between lotteries in a menu. This leaves us with 9,831 lottery menus. For each

menu i, we observe the fraction of all choices that selected Lottery 1 over all assigned MTurk workers

Yi∈ [0,1], as well as the payoffs and probabilities of the lotteries in the menu Xi=(pi,0,zi,0,pi,1,zi,1).

To construct our black box predictive algorithm, we train a shallow neural network (2 hidden layers

with 32 nodes per layer for a total of 2,273 parameters) to predict aggregate choice rates Yi based on

the payoffs and probabilities of the lotteriesXi. We randomly select 8,831 lottery menus for training

the neural network, and evaluate the resulting predictive algorithm f̂(·) on the remaining 1,000 held

out lottery menus. On the held out lottery menus, our constructed predictive algorithm f̂(·) achieves
a mean square error of approximately 0.014, which meaningfully improves over expected utility

theory and is competitive with the best architecture in Peterson et al. (2021) (see their Figure 3A).

What has our predictive algorithm f̂(·) uncovered about lottery choice behavior? To answer

this question, we generate logical anomalies for expected utility theory that are implied by f̂(·),
following the same steps as in Section 5.2. We again parametrize the allowable functions of expected

utility theory by modelling the utility function as a linear combination of non-linear basis functions

and we account for noise with an i.i.d. logit shock. We generate logical anomalies for expected

utility theory over the space of menus of two-payoff lotteries and menus of three-payoff lotteries,

applying our adversarial procedure and example morphing procedure to the constructed black

box predictive algorithm f̂(·) and randomly initialized menus of either two-payoff or three-payoff

lotteries. We numerically verify whether each returned menu is a logical anomaly for expected

utility theory at any increasing utility function and without noisy choices. We report all resulting

numerically verified logical anomalies for expected utility theory.

6.2 Anomalies for expected utility theory over two-payoff lotteries

We first generate logical anomalies for expected utility theory over menus of two-payoff lotteries

based on our constructed predictive algorithm f̂(·). Our procedures generate 881 logical anomalies

for expected utility theory in this space. In order to better interpret these logical anomalies, we apply

the same categorization that we developed in Section 5.3 and the results are summarized in Table 7.

Intriguingly, all generated logical anomalies for expected utility theory over menus of two-payoff

lotteries based on our constructed predictive algorithm f̂(·) fall into our same categorization as

earlier. There are two findings here worth highlighting.

First, based on the constructed predictive algorithm, our procedures generate a large number
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Predictive algorithm f̂(·)
Dominated Consequence Effect 36

Reverse Dominated Consequence Effect 20
Strict Dominance Effect 72

First Order Stochastic Dominance 753

# of Logical Anomalies 881

Table 7: Logical anomalies for expected utility theory over menus of two-payoff lotteries implied by the
predictive algorithm f̂(·).

Notes: This summarizes all logical anomalies for expected utility theory over menus of two-payoff lotteries that
generated by our anomaly generation procedures applied to the predictive algorithm f̂(·). The predictive algorithm
is a neural network constructed on the Choices13K dataset of lottery choice problems (Peterson et al., 2021). The
logical anomalies are organized by anomaly categories. See Section 6.2 for further discussion.

of first order stochastic dominance violations. This is unsurprising; first order stochastic dominance

violations are exceedingly common in Choices13K and occur on 14% of all lottery menus (Peterson

et al., 2021; Thomas et al., 2024). The predictive algorithm appears to automatically discover

the frequency of first order stochastic dominance violations in the dataset.

Second, all other generated logical anomalies based on our constructed predictive algorithm

illustrate choice reversals across menus of two-payoff lotteries. As discussed in Section 5.3, the

dominated consequence effect is a generalization of the Common ratio effect. The predictive

algorithm and our procedures uncovered this known category of logical anomalies on their own.

Additionally, they uncover the new categories of logical anomalies (i.e., the reverse dominated

consequence effect and the strict dominance effect) on their own. Using a publicly available dataset

on real lottery choices, the constructed predictive algorithm and our anomaly generation procedures

therefore successfully recover known anomalies and generate novel anomalies for expected utility

theory over two-payoff lotteries.

6.3 Anomalies for expected utility theory over three-payoff lotteries

We next generate logical anomalies for expected utility theory over menus of three-payoff lotteries

based on our constructed predictive algorithm f̂(·). Our procedures now generate 1,982 logical

anomalies for expected utility theory. Since the space of three-payoff lotteries is far richer than

that of two-payoff lotteries, we cannot directly apply our earlier categorization. We therefore

instead focus on highlighting two particular categories.

First, it is simple to check whether any particular logical anomaly over menus of three-payoff

lotteries illustrates a first order stochastic dominance violation; after doing so, we find that 1,634

of our generated logical anomalies are first order stochastic dominance violations. Given the

frequency of first order stochastic dominance violations in Choices13K mentioned earlier, it is

unsurprising that our procedures automatically generate a large number of them.
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Second, we pull out an instructive category of logical anomalies that illustrates an apparent

choice reversal across menus of three-payoff lotteries. Table 8 illustrates a particular pair of

algorithmically generated menus. The predictive algorithm f̂(·) predicts that individuals would be

likely to select lottery A1. This choice could be plausibly driven by risk aversion, since lottery A1

appears to be the “safer” option relative to lottery A0. Yet the predictive algorithm f̂(·) predicts
that individuals would also be likely to select lottery B0, which appears to be the riskier (higher

variance) lottery in Menu B. It would appear as-if risk preferences have flipped.

Menu A (xA,y
∗
A)

Lottery 0 $4.30 $6.17 $8.51
15% 61% 24%

Lottery 1 $4.63
100%

Menu B (xB,y
∗
B)

Lottery 0 $4.30 $6.17 $8.51
36% 36% 28%

Lottery 1 $4.63 $5.04 $5.81
30% 67% 3%

Table 8: Illustrative example of an algorithmically generated logical anomaly for expected utility theory
over lotteries on three monetary payoffs based on predictive algorithm f̂(·).

Notes: In each menu, we color the lottery that is predicted to be selected with probability at least 0.50 in green.
This logical anomaly consists of two menus {(xA,y∗A),(xB,y∗B)}, and it was produced by our example morphing

algorithm applied to the predictive algorithm f̂(·) For ease of interpretation, we round each payoff to the nearest
cent and each probability to the nearest percentage. See Section 6.3 for further discussion.

To better understand this logical anomaly, the lotteries in menu A and menu B can be

re-written as compound lotteries over the same simple, two-payoff lotteries. Figure 2 illustrates the

decomposition, where lotteries A0 and B0 are compound lotteries over the same two-payoff lotteries

(with mixing probabilities αA0>αB0), and similarly lotteries A1 and B1 are compound lotteries

over the same two-payoff lotteries (with mixing probabilities αA1<αB1). The oddity is now clear:

Lottery B1 raises the mixing probability on the dominating two-payoff lottery relative to lottery

A1, yet lottery B0 raises the mixing probability on the two-payoff lottery with a lower expected

value relative to lottery A0. The change in the mixing probabilities from menu A to menu B would

appear to have made lottery 1 better and lottery 0 worse, yet choices flip. One intuitive explanation

of this pattern could be that menu A versus menu B moves the resulting probabilities over final

payoffs closer to versus further away from certainty, resulting in distortions in choice behavior.

The structure of this logical anomaly is also a more general pattern that we can search for.

In particular, we can check whether the lotteries in menu A and menu B can be rewritten as

compound lotteries over the same two-payoff lotteries, where one of those two-payoff lotteries

strictly dominates another. Across the menus, we can then examine whether the predicted choice

changes in the opposite direction relative to the change in the mixing probability placed on the

dominating lottery.14 Appendix Table A5 provides additional examples and Appendix Figures

14More formally, we check whether, for some two-payoff lotteries ℓ′0,ℓ
′′
0 and ℓ′1,ℓ

′′
1, we can write the lotteries
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Lottery 0

•

$6.17

79%

$8.51

21%

αA0>αB0

•

$4.30

66%

$8.51

34%

Lottery 1

•

$5.04

96%

$5.81

4%

αA1<αB1

•

$4.63

100%

Figure 2: Decomposition of the algorithmically generated logical anomaly in Table 8 into compound
lotteries.

Notes: This figure decomposes the algorithmically generated logical anomaly over lotteries on three monetary
payoffs in Table 8 into compound lotteries. We depict each compound lottery in extensive form, where the mixing
probability α gives the probability of receiving the simple lottery over two payoffs on the left hand side. The mixing
probabilities are αA0=0.45,αB0=0.77 and αA1=0, αB1=0.70. For ease of interpretation, we round each payoff to
the nearest cent and each probability to the nearest percentage. See Section 6.3 for further discussion.

A1-A2 decompose these logical anomalies as compound lotteries. Altogether we generate 128

logical anomalies with this particular structure.

6.4 Experimental test of algorithmically generated anomalies

When applied to an estimated predictive model of individuals’ choice rates, our procedures

generate novel logical anomalies for expected utility theory over menus of two-payoff lotteries

and three-payoff lotteries. While these are interesting theoretically, a natural question arises: are

these also empirical anomalies for expected utility theory? Answering this question is where our

anomaly generation procedures end, and careful experimental work begins. We next present some

experimental evidence suggesting that our algorithmically generated logical anomalies are also

empirical anomalies for expected utility theory.

6.4.1 Experimental design

We selected 30 algorithmically generated logical anomalies for expected utility theory summarized

in Table 7 over lotteries with two monetary payoffs. These logical anomalies were chosen to span

the categories (i.e., the dominated consequence effect, the reverse dominated consequence effect,

and the strict dominance effect). We additionally selected 30 algorithmically generated logical

anomalies over lotteries with three-payoffs sharing the structure we identified in Section 6.3. We

split these logical anomalies into four surveys, each containing 15 logical anomalies.

Each chosen logical anomaly consists of a pair of menus of two lotteries. We present each logical

anomaly as two separate choices of menus, and so each survey consists of 30 questions altogether.

in menu A as αA0ℓ
′
0+(1−αA0)ℓ

′′
0 and αA1ℓ

′
1+(1−αA1)ℓ

′′
1 and the lotteries in menu B as αB0ℓ

′
0+(1−αB0)ℓ

′′
0

and αB1ℓ
′
1+(1−αB1)ℓ

′′
1. If, for example, ℓ′0 first order stochastically dominates ℓ′′0, we can then check whether

αA0>αB0 yet individuals are predicted to select lottery A1 and lottery B0.
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For a particular menu, we display the written probabilities and payoffs for each lottery in the

menu, and we additionally depict each lottery as a color-coded pie chart. Each survey randomizes

the order of questions and the left-right positioning of lotteries in a menu across respondents.

We recruited respondents for all surveys on Prolific. Each respondent received a base payment

of $4 for completing a survey. We screened out inattentive respondents through comprehension

questions and attention checks throughout the surveys. We include screenshots of the instructions,

comprehension checks, attention checks, and main survey questions in Appendix H. Respondents

that successfully completed a survey without failing comprehension and attention checks were eligi-

ble for a bonus payment based on a “random payment selection” mechanism (e.g., Azrieli, Chambers

and Healy, 2018, 2020). We determined the bonus by randomly selecting a lottery that was chosen

by a respondent on the survey. The respondent was paid the realization of the randomly selected

lottery.15 We recruited 258 and 266 respondents on our two surveys of lotteries with two monetary

payoffs, and 260 and 263 respondents on our two surveys of lotteries with three monetary payoffs.

6.4.2 Experimental results for algorithmically generated anomalies

Figure 3 reports the fraction of respondents whose choices violate expected utility theory on our

algorithmically generated logical anomalies over two-payoff lotteries. Figure 4 reports the expected

utility theory violation rates on our algorithmically generated logical anomalies over three-payoff

lotteries.

Appendix Table A6 provides summary statistics on the expected utility theory violation rates,

pooling across our algorithmically generated anomalies. On our logical anomalies over two-payoff

lotteries, the pooled expected utility theory violation rate is 11.4% (p-value <0.001) on dominated

consequence effect anomalies, 8.5% (p-value <0.001) on reverse dominated consequence effect

anomalies, and 12.7% (p-value <0.001) on strict dominance effect anomalies. Analogously, on

our logical anomalies over three-payoff lotteries, the pooled expected utility theory violation rate

is 7.2% (p-value <0.001). We therefore find strong evidence that the pooled respondents’ choices

are inconsistent with expected utility theory across our discovered categories of logical anomalies.

These pooled estimates mask heterogeneity in the fraction of respondents violating expected

utility theory across logical anomalies. For example, more than 15% of respondents’ choices violate

expected utility theory on several strict dominance effect anomalies over two-payoff lotteries as

well as several of our logical anomalies over three-payoff lotteries. Analyzing each logical anomaly

separately and applying a conservative Bonferroni correction for multiple hypotheses across all

logical anomalies over two-payoff lotteries in our surveys, the expected utility theory violation

15On our surveys of lotteries with two monetary payoffs, the average bonus payments were $4.82 and $4.81
respectively. On our surveys of lotteries with three monetary payoffs, the average bonus payments $4.98 and $3.81
respectively. Since respondents completed a survey in roughly 15 minutes on average, the implied hourly wage was
quite generous relative to Prolific standards.
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Figure 3: Fraction of respondents whose choices violate expected utility theory on algorithmically
generated logical anomalies over menus of two-payoff lotteries.

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on the
logical anomalies of menus of two-payoff lotteries (blue bars) and 95% confidence intervals (black error bars;
standard errors clustered at the respondent level). The orange dashed line reports the fraction of respondents
whose choices violate expected utility theory pooling across all logical anomalies within the same category. The
logical anomalies are sorted within each category in decreasing order based on the fraction of respondents whose
choices violate expected utility theory. We assign each logical anomaly an arbitrary numeric identifier after sorting.
See Section 6.4.2 for further discussion.

rate is statistically different than zero at the 5% level for 26 out of 30. Analogously, on our logical

anomalies over three monetary payoffs, the expected utility theory violation rate is statistically

different than zero at the 5% level for 22 out of 30 (after Bonferroni correction).

We can further compare the expected utility theory violation rates on our generated logical

anomalies against those of celebrated logical anomalies for expected utility theory in the behavioral

economics literature. Several recent papers provide meta-analyses of past experiments and conduct

comprehensive experimental designs to evaluate the empirical robustness of the Allais paradox, the

Common ratio effect, and the Certainty effect. There exists much variation in the expected utility

theory violation rate on these celebrated logical anomalies across experiments. For example, in a

meta-analysis of experiments with real financial incentives, Blavatskyy, Ortmann and Panchenko

(2022) find that 16% of respondents’ choices demonstrate the Allais paradox (“fanning out” choices),

and the median experiment with real financial incentives only finds that 13.7% of respondents’

choices do so. In experiments conducted on Prolific with real financial incentives, McGranaghan

et al. (2024) find that 15.6% of respondents’ choices demonstrate the Common ratio effect and

12.9% demonstrate the Reverse Common ratio effect. Finally, Jain and Nielsen (2023) find that

8.3% of subjects display the Certainty effect with financial incentives.

Cast in this light, our algorithmically generated logical anomalies yield expected utility theory
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Figure 4: Fraction of respondents whose choices violate expected utility theory on algorithmically
generated logical anomalies over menus of three-payoff lotteries.

Notes: This figure summarizes the fraction of respondents whose choices violate expected utility theory on the
logical anomalies of menus of two three-payoff lotteries (blue bars) and 95% confidence intervals (black error bars;
standard errors clustered at the respondent level). The orange dashed line reports the fraction of respondents
whose choices violate expected utility theory pooling across all logical anomalies. The logical anomalies are sorted
in decreasing order based on the fraction of respondents whose choices violate expected utility theory. We assign
each logical anomaly an arbitrary numeric identifier after sorting. See Section 6.4.2 for further discussion.

violation rates that are in line with these experimental findings on celebrated logical anomalies

like the Allais paradox and the Common ratio effect. These experimental results suggest that our

algorithmically generated logical anomalies merit the same rigorous testing across a wide variety

of experimental designs that have been given to other known anomalies for expected utility theory.

Could the algorithmically generated anomalies be explained by noisy choices? Recent

experimental work has suggested one simple extension to expected utility theory that could resolve

many anomalies: specifically, incorporating a small amount of noise in individuals’ choices (e.g.,

McGranaghan et al., 2024; Enke and Graeber, 2023).

We therefore examine whether small amounts of noise in individuals’ choices could explain

the empirical findings on our algorithmically generated logical anomalies. Following Harless and

Camerer (1994), we consider expected utility theory with idiosyncratic errors, in which individuals

mistakenly select the wrong lottery with some probability ϵ∈ [0,0.5]. We estimate the idiosyncratic

error rate ϵ from preferences consistent with expected utility theory that would be required

to explain the observed choices of respondents on each of our algorithmically generated logical

anomalies via minimum distance (Newey and McFadden, 1994).

Appendix Figure A3 reports the estimated idiosyncratic error rate ϵ̂ required to explain the

observed choices of respondents on each algorithmically generated logical anomaly over two-payoff
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lotteries separately. Appendix Figure A4 reports the same quantity on each algorithmically

generated logical anomaly over three-payoff lotteries. On logical anomalies over two-payoff lotteries,

the median estimated idiosyncratic error rate ϵ̂ across algorithmically generated logical anomalies

is 8.1% for dominated consequence effect anomalies, 4.5% for reverse dominated consequence effect

anomalies, and 13.7% for strict dominance effect anomalies. On three-payoff lotteries, the median

estimated idiosyncratic error rate is 6.1%. There again exists heterogeneity in these estimates

across logical anomalies. For example, explaining the observed choice fractions on several specific

logical anomalies across categories would require that respondents erroneously deviate from their

true preferences nearly 20% of the time.

7 Conclusion

By now, it is clear that machine learning has the capacity to change the way nearly every economic

sector operates (e.g., Brynjolfsson and McAfee, 2014; Agarwal, Gans and Goldfarb, 2018). Why

should economic research be any different? Of course, substantial progress has already been made

in incorporating machine learning into many of the tasks performed by economic researchers, such

as processing novel data like text and images for econometric analysis (e.g., Glaeser et al., 2018;

Gentzkow, Kelly and Taddy, 2019; Adukia et al., 2021), uncovering treatment effect heterogeneity

(Athey and Wager, 2018; Chernozhukov et al., 2018) and empirical hypothesis generation (Ludwig

and Mullainathan, 2023).

While machine learning algorithms can find predictive signals that researchers may fail to notice

themselves, they are notoriously opaque black-boxes. In this paper, we argue that anomalies provide

a familiar solution to this novel problem. We develop two procedures to automatically generate

anomalies for an existing theory from predictive algorithms. The resulting anomalies are minimal

examples on which the theory cannot explain the black box’s predictions. These algorithmically

generated anomalies are natural places to search for possible inconsistencies between our theory

and nature. Researchers can then collect further data on these anomalies and in turn suggest

improvements to existing theories based on them. While our illustration is specific to expected

utility theory, our procedures are general and may be valuable in many other areas of economics.
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Sendhil Mullainathan & Ashesh Rambachan

A Omitted proofs

A.1 Proof of Proposition 2.1

To prove part (i), we first note that the main text established that the allowable function represen-
tation (1) satisfies Assumptions 1-4. This establishes necessity. We prove sufficiency here. Consider
any theory T(·) satisfying Assumptions 1-4. We construct an allowable function representation
FT satisfying (1).

Towards this, define D¬T to be the set of incompatible collections of examples for theory T(·).
That is, D∈D¬T if and only if T(x;D)=∅ for all x∈X . By Assumption 4, there exists some
D∈D such that T(x;D)⊂Y∗ for some x /∈D. We can therefore define D′=D∪{(x,ỹ∗)} for any
ỹ∗∈Y∗\T(x;D). By construction, T(x;D′)=∅ for all x∈D′ since otherwise T(·) would violate
Assumption 3. D¬T is therefore non-empty.

We next define F¬T to be the set of mappings f(·)∈F that are consistent with D¬T . That
is, f(·)∈F¬T if and only if f(·) is consistent with some D∈D¬T . Finally, we define the allowable
functions of T(·) as FT =F\F¬T . We will next show that

T(x;D)={f(x): f(·)∈FT consistent with D} (17)

is satisfied for all D∈D and x∈X .
By Assumptions 1-2, there are only two cases to consider. First, consider D∈D such that

T(x;D)=∅ for all x∈X . By construction, {f(·)∈FT consistent with D}=∅ since D is incom-
patible with T(·). We therefore focus on the second case in which D∈D satisfies T(x;D)=y∗

for all (x,y∗)∈D and T(x;D)≠∅ for all x /∈D.
Observe that {f(·)∈FT consistent with D} ≠∅ by construction. It therefore follows that

{f(x) : f(·)∈FT consistent with D}= y∗ for all (x,y∗)∈D. All that remains to show is that
{f(x) : f(·)∈FT consistent with D}= T(x;D) for all x /∈D. As notation, for correspondence
c(·): X⇒Y∗ and mapping f(·): X→Y∗, we write f(·)∈c(·) if and only if f(x)∈c(x) for all x∈X .

Lemma 1. For any D ∈ D such that T(x;D) ≠ ∅ for all x ∈ X , f(·) ∈ T(·;D) implies that
f(·)∈{f(x): f(·)∈FT consistent with D}.

Proof. Suppose for sake of contradiction there exists some f(·) ∈ T(·;D) such that f(·) /∈
{f(x) : f(·) ∈ FT consistent with D}. Since D is not incompatible with T(·), D /∈ D¬T and
therefore f(·) /∈F¬T by construction. But this then implies that f(·)∈FT , generating the desired
contradiction.

Lemma 2. For any D ∈ D such that T(x;D) ≠ ∅ for all x ∈ X , f(·) ∈ {f(x) : f(·) ∈
FT consistent with D} implies f(·)∈T(·;D).
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Proof. To prove this result, we will prove the contrapositive: f(·) /∈ T(·;D) implies f(·) /∈
{f(x): f(·)∈FT consistent with D}.

Suppose for sake of contradiction there exists some f(·) /∈T(·;D) with f(·)∈{f(x) : f(·)∈
FT consistent with D}. Since any f(·) that is not consistent with D cannot be an element of
{f(x) : f(·)∈FT consistent with D} by construction, we focus on the case in f(x)= y∗ for all
(x,y∗)∈D.

Pick any x∈X with f(x) /∈T(x;D). Since D is consistent with f(·), define D′=D∪{(x,f(x))}
and consider T(·;D′). There are only two cases to consider by Assumption 2. First, if T(·;D′)=∅,
then D′ is incompatible with T(·) and f(·) /∈FT by construction. This yields a contradiction. Sec-
ond, if T(·;D′)≠∅, then T(x;D′)=f(x) by Assumption 2. But this then contradicts Assumption
3 since T(x;D′)⊈T(x;D).

Lemma 1 implies T(x;D) ⊆ {f(x) : f(·) ∈ FT consistent with D} for all x ∈ X . Lemma
2 establishes that {f(x) : f(·) ∈ FT consistent with D} ⊆ T(x;D). It therefore follows that
T(x;D)={f(x) : f(·)∈FT consistent with D}, and this proves the result. This proves part (i).
To prove part (ii), consider D∈D such that T(x;D)⊂Y∗ for some x /∈D which must exist by
Assumption 4. Define D′=D∪{(x,ỹ∗)} for any ỹ∗ ∈Y∗\T(x;D). By construction, this is an
incompatible with T(·). Since there exists incompatible collections, there must exist a smallest
incompatible collection D∈D for theory T(·). This must be a logical anomaly. If |D|=1, then the
definitions of an incompatible collection and a logical anomaly coincide. If |D|>1 but |D| is not
a logical anomaly, then there exists a smaller incompatible collection which is a contradiction. □.

A.2 Proof of Proposition 2.2

Part (i) is an immediate consequence of the allowable function representation in Proposition
2.1. First, suppose D is incompatible with theory T(·) and T(x;D)=∅ for all x∈X . Proposi-
tion 2.1 implies that there exists no f(·)∈FT consistent with D. It immediately follows that
minf(·)∈FT |D|−1

∑
(x,y∗)∈Dℓ(f(x),y

∗)>0. Next, suppose minf(·)∈FT |D|−1
∑

(x,y∗)∈Dℓ(f(x),y
∗)>0.

This implies that there exists no f(·)∈FT consistent with D, and so D must be incompatible
by Proposition 2.1.

Part (ii) is an immediate consequence of Definition 3. If there exists no incompatible collection
of size strictly less than n, any incompatible collection of size n must also be a logical anomaly
as it must be the case that D\{(x,y∗)} is compatible with theory T(·) for all (x,y∗)∈D. □

A.3 Proof of Proposition 3.1

As a first step, we establish that the Ên approximately solves the plug-in max-min optimization
program up to the optimization errors associated with the approximate inner minimization and
outer maximization routines.

Lemma 3. Under the same conditions as Proposition 3.1,∥∥∥∥∥Êm−max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)∥∥∥∥∥≤δ+ν.

Proof. As notation, let f̂T (·;x1:n) denote the optimal solution tominf(·)∈FTn−1
∑n

i=1ℓ
(
f(xi),f̂

∗
m(xi)

)
.
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Observe that ∥∥∥∥∥n−1

n∑
i=1

ℓ
(
f̃(x̃i;x̃1:n),f̂

∗
m(x̃i)

)
−max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)∥∥∥∥∥ (1)

≤

∥∥∥∥∥n−1

n∑
i=1

ℓ
(
f̃(x̃i;x̃1:n),f̂

∗
m(x̃i)

)
−max

x1:n
n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n),f̂∗

m(xi)
)∥∥∥∥∥+∥∥∥∥∥max

x1:n
n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n),f̂∗

m(xi)
)
−max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)∥∥∥∥∥ (2)

≤

ν+

∥∥∥∥∥max
x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n),f̂∗

m(xi)
)
−max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)∥∥∥∥∥ (3)

≤

ν+

∥∥∥∥∥max
x1:n

{
n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n),f̂∗

m(xi)
)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)}∥∥∥∥∥ (4)

≤ν+δ

where (1) adds/subtracts maxx1:nminf(·)∈FT n−1
∑n

i=1ℓ
(
f(xi),f̂

∗
m(xi)

)
and applies the triangle

inequality, (2) follows from properties of the approximate outer maximization routine, (3) uses
sub-additivity of the maximum, and (4) follows from the properties of the approximate inner
minimization routine.

To analyze the convergence of the plug-in estimator, observe that

∥∥∥Êm−Em
∥∥∥≤∥∥∥∥∥Êm−max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)∥∥∥∥∥+
∥∥∥∥∥max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)
−Em

∥∥∥∥∥.
Lemma 3 establishes that the first term is bounded by ν+δ. Therefore, we only need to establish
a bound on the second term. Towards this, we rewrite the second term as∥∥∥∥∥max

x1:n
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)
−Em

∥∥∥∥∥≤∥∥∥∥∥max
x1:n

{
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ(f(xi),f
∗
m(xi))

}∥∥∥∥∥.
Defining f̂T (·;x1:n) to be the minimizer for minf(·)∈FTn−1

∑n
i=1ℓ
(
f(xi),f̂

∗
m(xi)

)
and fT (·;x1:n) as

the minimizer for minf(·)∈FTn−1
∑n

i=1ℓ(f(xi),f
∗
m(xi)), we rewrite

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi),f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ(f(xi),f
∗
m(xi))=

n−1

n∑
i=1

ℓ
(
f̂T (xi;x1:n),f̂

∗
m(xi)

)
−n−1

n∑
i=1

ℓ
(
fT (xi;x1:n),f

∗
m(xi)

)
=
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n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n),f̂

∗
m(xi)

)
−ℓ
(
f̂T (xi;x1:n),f

∗
m(xi)

)}
︸ ︷︷ ︸

(a)

+

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n),f

∗
m(xi)

)
−ℓ
(
fT (xi;x1:n),f

∗
m(xi)

)}
︸ ︷︷ ︸

(b)

.

Consider (a). Since ℓ(·,·) is convex in its second argument, (a) is bounded above by

n−1

n∑
i=1

{
∇2ℓ
(
f̂T (xi;x1:n),f̂

∗
m(xi)

)(
f̂∗
m(xi)−f∗

m(xi)
)}

≤

n−1K∥f̂∗
m(x1:n)−f∗

m(x1:n)∥1≤K∥f̂∗
m(x1:n)−f∗

m(x1:n)∥∞
where we defined the shorthand notation f(x1:n)=(f(x1),...,f(xn)), used that the loss function
has bounded gradients, and the inequality ∥f(x1:n)∥1≤n∥f(x1:n)∥∞. Next, we can rewrite (b) as
being bounded by

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n),f

∗
m(xi)

)
−ℓ
(
fT (xi;x1:n),f

∗
m(xi)

)}
=

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n),f

∗
m(xi)

)
−ℓ
(
fT (xi;x1:n),f

∗
m(xi)

)}
−

n−1

n∑
i=1

{
ℓ
(
fT (xi;x1:n),f

∗
m(xi)

)
−ℓ
(
fT (xi;x1:n),f̂

∗
m(xi)

)} (1)

≤

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n),f

∗
m(xi)

)
−ℓ
(
fT (xi;x1:n),f̂

∗
m(xi)

)}
−

n−1

n∑
i=1

{
∇2ℓ
(
fT (xi;x1:n),f̂

∗
m(xi)

)
(f∗

m(xi)−f̂∗
m(xi))

} (2)

≤

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n),f

∗
m(xi)

)
−ℓ
(
f̂T (xi;x1:n),f̂

∗
m(xi)

)}
−

n−1

n∑
i=1

{
∇2ℓ
(
fT (xi;x1:n),f̂

∗
m(xi)

)
(f∗

m(xi)−f̂∗
m(xi))

} (3)

≤

n−1

n∑
i=1

{
∇2ℓ(f̂

T (xi;x1:n),f̂
∗
m(xi))

(
f̂∗
m(xi)−f∗

m(xi)
)}

−

n−1

n∑
i=1

{
∇2ℓ
(
fT (xi;x1:n),f̂

∗
m(xi)

)
(f∗

m(xi)−f̂∗
m(xi))

}
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where (1) uses that the loss is convex in its second argument, (2) uses n−1
∑n

i=1ℓ(f
T (xi;x1:n),f̂

∗
m(xi))≥

n−1
∑n

i=1ℓ(f̂
T (xi;x1:n),f̂

∗
m(xi)), and (3) again uses that the loss is convex in it second argument.

By the same argument as before, it follows that this is bounded by 2K
∥∥∥f̂∗

m(x1:n)−f∗
m(x1:n)

∥∥∥
∞
.

Combining the bound on (a), (b) yields the desired result. □

A.4 Proof of Proposition 4.1

To prove this result, we first observe that if f(x1)=f(x2) for all f(·)∈FT , then T(x1;D)=T(x2;D)
must be true for all D∈D by Proposition 2.1. Next suppose, for sake of contradiction, that there
exist two features x1,x2 that are representationally equivalent but there exists some allowable
function f(·)∈FT such that f(x1)≠f(x2). Consider D={(x1,f(x1)),(x2,f(x2))}. Since f(·)∈FT ,
T(·) must be consistent with D. Furthermore, by Assumption 2 (”consistency”), T(·) must also
satisfy that T(x1;D)=f(x1) and T(x2;D)=f(x2), yielding the desired contradiction. □

A.5 Proof of Proposition 4.2

We first observe that Assumption 6 implies Assumption 4 and therefore there exists an allowable
function representation FT for theory T(·). Then, we will show that the pair x1,x2 ∈ X in
Assumption 6 are representationally equivalent. There are three cases to consider. First, if D∈D
is incompatible with T(·), then T(x1;D)=T(x2;D)=∅. Second, if D∈D is such that (xj,y

∗
j )∈D

for j ≠k, the T(xk;D)=y∗j by Assumption 6. Finally, suppose for sake of contradiction x1,x2 /∈D
but T(x1;D) ≠ T(x2;D). If there exists some y∗1 ∈ T(x1;D) with y∗1 /∈ T(x2;D), construct the

collection D̃=D∪{(x1,y∗1)}. By the allowable function representation (1), D̃ is a compatible

collection. But Assumption 3 implies that y∗1 /∈T(x2;D̃), contradicting Assumption 6. □

A.6 Proof of Proposition 4.3

To prove the first result, let us define the shorthand notation g∗=∇f∗
m(x), g=Proj(∇f∗

m(x) |N (x)),
and g⊥=g∗−g. Observe that

⟨−Proj(∇f∗
m(x) |N (x)),∇f∗

m(x)⟩=⟨−g,g∗⟩=⟨−g,g⊥+g⟩=−∥g∥2≤0,

and so −Proj(∇f∗
m(x) |N (x)) is a descent direction for f∗

m(·).
To prove the second result, let Ω to be the orthogonal projection matrix onto N (x) and define

ĝ∗=∇f̂∗
m(x), ĝ=Proj

(
∇f̂∗

m(x) |N (x)
)
and ĝ⊥= ĝ∗−ĝ. Observe that

⟨−Proj
(
∇f̂∗

m(x) |N (x)
)
,∇f∗

m(x)⟩=⟨−ĝ,g∗⟩=⟨−ĝ,g+g⊥⟩=⟨−ĝ,g⟩=

⟨−ĝ+g−g,g⟩=−∥g∥2+⟨g−ĝ,g⟩≤−∥g∥2+∥g−ĝ∥∥g∥,

where the last inequality follows by the Cauchy-Schwarz inequality. The stated condition implies
that

∥g−ĝ∥≤∥g∥

since ∥g− ĝ∥= ∥Ω(g∗− ĝ∗)∥≤∥Ω∥op∥g∗− ĝ∗∥ and ∥Ω∥op ≤ 1. But the previous display can be
equivalently rewritten as

−∥g∥2+∥g−ĝ∥∥g∥≤0
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thus proving the result. □

B Appendix figures and tables

Lottery 0

•

$4.31

55%

$9.15

45%

αA0<αB0

•

$4.23

73%

$9.15

27%

Lottery 1

•

$6.22

4%

$7.17

96%

αA1>αB1

•

$6.22

57%

$8.51

43%

Figure A1: Decomposition of an algorithmically generated over three-payoff lotteries (logical anomaly
#1 in Appendix Table A5) into compound lotteries.

Notes: This figure decomposes logical anomaly #1 in Appendix Table A5 into compound lotteries. We depict each
compound lottery in extensive form, where the mixing probability α gives the probability of receiving the simple
lottery over two payoffs on the left hand side. The mixing probabilities are αA0=0.04,αB0=0.58 and αA1=0.1,
αB1=0.05. For ease of interpretation, we round each payoff to the nearest cent and each probability to the nearest
percentage. See Section 6.3 for further discussion.

Lottery 0

•

$4.35

89%

$9.98

11%

αA0>αB0

•

$2.82

81%

$9.98

19%

Lottery 1

•

$4.01

52%

$5.36

48%

αA1<αB1

•

$3.34

92%

$5.36

8%

Figure A2: Decomposition of an algorithmically generated over three-payoff lotteries (logical anomaly
#2 in Appendix Table A5) into compound lotteries.

Notes: This figure decomposes logical anomaly #2 in Appendix Table A5 into compound lotteries. We depict each
compound lottery in extensive form, where the mixing probability α gives the probability of receiving the simple
lottery over two payoffs on the left hand side. The mixing probabilities are αA0=0.90,αB0=0.36 and αA1=0.03,
αB1=0.71. For ease of interpretation, we round each payoff to the nearest cent and each probability to the nearest
percentage. See Section 6.3 for further discussion.
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(a) Logical Anomaly #1

Menu A (xA,y
∗
A)

Lottery 0 1.10 7.48
15% 85%

Lottery 1 1.50 5.94
1% 99%

Menu B (xB,y
∗
B)

Lottery 0 1.10 7.48
45% 55%

Lottery 1 1.50 5.94
18% 82%

(b) Logical Anomaly #2

Menu A (xA,y
∗
A)

Lottery 0 0.08 9.26
34% 66%

Lottery 1 0.76 5.54
0% 100%

Menu B (xB,y
∗
B)

Lottery 0 0.08 9.26
63% 37%

Lottery 1 0.76 5.54
13% 87%

(c) Logical Anomaly #3

Menu A (xA,y
∗
A)

Lottery 0 2.52 7.64
39% 61%

Lottery 1 3.10 5.78
21% 79%

Menu B (xB,y
∗
B)

Lottery 0 2.52 7.64
7% 93%

Lottery 1 3.10 5.78
0% 100%

(d) Logical Anomaly #4

Menu A (xA,y
∗
A)

Lottery 0 6.17 7.60
9% 91%

Lottery 1 5.72 8.61
27% 73

Menu B (xB,y
∗
B)

Lottery 0 6.17 7.60
0% 100%

Lottery 1 5.72 8.61
0% 92%

(e) Logical Anomaly #5

Menu A (xA,y
∗
A)

Lottery 0 1.74 5.21
10% 90%

Lottery 1 1.83 4.71
7% 93%

Menu B (xB,y
∗
B)

Lottery 0 0.70 5.96
2% 98%

Lottery 1 0.23 7.48
0% 100%

(f) Logical Anomaly #6

Menu A (xA,y
∗
A)

Lottery 0 1.98 9.21
48% 52%

Lottery 1 2.49 7.69
34% 66%

Menu B (xB,y
∗
B)

Lottery 0 1.98 9.21
5% 95%

Lottery 1 2.49 7.69
0% 100%

Table A1: Representative examples of algorithmically generated logical anomalies for expected utility
theory that illustrate the dominated consequence effect.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50 in green.
Each logical anomaly exhibiting the dominated consequence effect consists of two menus {(xA,y∗A),(xB,y∗B)}. All
payoffs are denominated in dollars. For ease of interpretation, we round each payoff to the nearest cent and each
probability to the nearest percentage. See Section 5.3 and Appendix G.1 for further discussion.
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(a) Logical Anomaly #1

Menu A (xA,y
∗
A)

Lottery 0 4.44 7.76
100% 0%

Lottery 1 3.65 7.83
95% 5%

Menu B (xB,y
∗
B)

Lottery 0 4.44 7.76
36% 64%

Lottery 1 3.65 7.83
23% 77%

(b) Logical Anomaly #2

Menu A (xA,y
∗
A)

Lottery 0 1.36 5.91
100% 0%

Lottery 1 0.05 6.05
0.93% 7%

Menu B (xB,y
∗
B)

Lottery 0 1.36 5.91
68% 32%

Lottery 1 0.05 6.05
56% 44%

(c) Logical Anomaly #3

Menu A (xA,y
∗
A)

Lottery 0 2.23 7.69
62% 38%

Lottery 1 0.75 7.77
38% 62%

Menu B (xB,y
∗
B)

Lottery 0 2.23 7.69
99% 1%

Lottery 1 0.75 7.77
83% 17%

(d) Logical Anomaly #4

Menu A (xA,y
∗
A)

Lottery 0 3.02 8.12
80% 20%

Lottery 1 0.29 9.43
49% 51%

Menu B (xB,y
∗
B)

Lottery 0 3.02 8.12
100% 0%

Lottery 1 0.29 9.43
79% 21%

(e) Logical Anomaly #5

Menu A (xA,y
∗
A)

Lottery 0 0.84 9.88
51% 49%

Lottery 1 3.32 9.25
76% 24%

Menu B (xB,y
∗
B)

Lottery 0 0.84 9.88
85% 15%

Lottery 1 3.32 9.25
100% 0%

(f) Logical Anomaly #6

Menu A (xA,y
∗
A)

Lottery 0 0.93 6.82
18% 82%

Lottery 1 2.02 6.78
28% 72%

Menu B (xB,y
∗
B)

Lottery 0 0.93 6.82
95% 5%

Lottery 1 2.02 6.78
100% 0%

Table A2: Representative examples of algorithmically generated logical anomalies for expected utility
theory that illustrate the reverse dominated consequence effect.

Notes: In each menu, we color the lottery in the menu that is selected by the individual with probability at least
0.50 in green. Each logical anomaly exhibiting the reverse dominated consequence effect consists of two menus
{(xA,y∗A),(xB,y∗B)}. All payoffs are denominated in dollars. For ease of interpretation, we round each payoff to
the nearest cent and each probability to the nearest percentage. See Section 5.3 and Appendix G.1 for further
discussion.
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(a) Logical Anomaly #1

Menu A (xA,y
∗
A)

Lottery 0 6.28 6.91
65% 35%

Lottery 1 5.94 7.77
53% 47%

Menu B (xB,y
∗
B)

Lottery 0 6.28 6.91
100% 0%

Lottery 1 5.94 7.77
24% 76%

(b) Logical Anomaly #2

Menu A (xA,y
∗
A)

Lottery 0 3.93 7.26
39% 61%

Lottery 1 5.02 5.71
100% 0%

Menu B (xB,y
∗
B)

Lottery 0 3.93 7.26
41% 59%

Lottery 1 5.02 5.71
98% 2%

(c) Logical Anomaly #3

Menu A (xA,y
∗
A)

Lottery 0 3.63 4.32
61% 39%

Lottery 1 3.72 4.21
51% 49%

Menu B (xB,y
∗
B)

Lottery 0 3.63 4.32
100% 0%

Lottery 1 3.72 4.21
13% 87%

(d) Logical Anomaly #4

Menu A (xA,y
∗
A)

Lottery 0 6.89 8.24
64% 36%

Lottery 1 7.01 7.18
46% 54%

Menu B (xB,y
∗
B)

Lottery 0 6.89 8.24
34% 66%

Lottery 1 7.01 7.18
100% 0%

(e) Logical Anomaly #5

Menu A (xA,y
∗
A)

Lottery 0 6.03 6.31
41% 59%

Lottery 1 3.49 8.99
35% 65%

Menu B (xB,y
∗
B)

Lottery 0 6.03 6.31
100% 00%

Lottery 1 3.49 8.99
34% 66%

(f) Logical Anomaly #6

Menu A (xA,y
∗
A)

Lottery 0 6.33 6.51
42% 58%

Lottery 1 6.31 6.61
52% 48%

Menu B (xB,y
∗
B)

Lottery 0 6.33 6.51
100% 00%

Lottery 1 6.31 6.61
24% 76%

Table A3: Representative examples of algorithmically generated logical anomalies for expected utility
theory that illustrate the strict dominance effect.

Notes: We color the lottery in the menu that is selected by the individual with probability at least 0.50 in green.
Each logical anomaly exhibiting the strict dominance effect consists of two menus {(xA,y∗A),(xB,y∗B)}. All payoffs
are denominated in dollars. For simplicity, we round each payoff to the nearest cent and each probability to the
nearest percentage. See Section 5.3 and Appendix G.1 for further discussion.
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Figure A3: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated logical anomalies over
menus of two-payoff lotteries.

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed choices
of respondents on our algorithmically generated logical anomalies of menus of two lotteries over two monetary
payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed by the bootstrap).
The orange dashed line reports the median estimated idiosyncratic error rate across all logical anomalies within the
same category. Within each category, we sort the logical anomalies and assign each logical anomaly an arbitrary
numeric identifier in decreasing order based on the fraction of respondents whose choices violate expected utility
theory. See Section 6.4.2 for further discussion.

Figure A4: Estimated idiosyncratic error rate ϵ̂ on algorithmically generated logical anomalies over
menus of three-payoff lotteries.

Notes: This figure summarizes the estimated idiosyncratic error rate ϵ̂ required to explain the observed choices
of respondents on our algorithmically generated logical anomalies of menus of two lotteries over three monetary
payoffs (blue bars) and 95% confidence intervals (black error bars; standard errors computed by the bootstrap).
The orange dashed line reports the median estimated idiosyncratic error rate across all logical anomalies. We sort
the logical anomalies and assign each logical anomaly an arbitrary numeric identifier in decreasing order based on
the fraction of respondents whose choices violate expected utility theory. See Section 6.4.2 for further discussion.
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(a) Logical Anomaly #1

Lottery 0 5.72 6.19
19% 81%

Lottery 1 5.26
100%

(b) Logical Anomaly #2

Lottery 0 8.17
100%

Lottery 1 9.03 9.70
23% 77%

(c) Logical Anomaly #3

Lottery 0 7.97
100%

Lottery 1 8.85 9.88
59% 41%

(d) Logical Anomaly #4

Lottery 0 7.20 7.61
33% 67%

Lottery 1 6.99 7.50
98% 2%

(e) Logical Anomaly #5

Lottery 0 8.07 9.05
21% 79%

Lottery 1 7.84
100%

(f) Logical Anomaly #6

Lottery 0 6.89 8.88
46% 54%

Lottery 1 6.87
100%

(g) Logical Anomaly #7

Lottery 0 6.30 6.85
18% 82%

Lottery 1 6.09
100%

(h) Logical Anomaly #8

Lottery 0 4.90
100%

Lottery 1 5.04 5.27
31% 69%

(i) Logical Anomaly #9

Lottery 0 7.67
100%

Lottery 1 8.31 8.57
43% 57%

Table A4: Representative examples of algorithmically generated logical anomalies for expected utility
theory that illustrate first-order stochastic dominance violations.

Notes: In each menu, we color the lottery that is selected by the individual with probability at least 0.50 in green.
Each generated first-order stochastic dominance violation presented here (x,y∗) is based on the probability weighting
function π(p;δ,γ) with (δ,γ)=(0.726,0.309). All payoffs are denominated in dollars. For ease of interpretation, we
round each payoff to the nearest cent and each probability to the nearest percentage point. See Section 5.3 for
further discussion.

(a) Logical Anomaly #1

Menu A (xA,y
∗
A)

Lottery 0 4.23 4.31 9.15
70% 2% 28%

Lottery 1 6.22 7.17 8.51
52% 9% 39%

Menu B (xB,y
∗
B)

Lottery 0 4.23 4.31 9.15
31% 32% 37%

Lottery 1 6.22 7.17 8.51
54% 5% 41%

(b) Logical Anomaly #2

Menu A (xA,y
∗
A)

Lottery 0 2.82 4.35 9.98
8% 80% 12%

Lottery 1 3.34 4.01 5.36
89% 2% 9%

Menu B (xB,y
∗
B)

Lottery 0 2.82 4.35 9.98
51% 33% 16%

Lottery 1 3.34 4.01 5.36
27% 37% 36%

Table A5: Additional examples of algorithmically generated logical anomalies for expected utility theory
over menus of lotteries on three monetary payoffs based on predictive algorithm f̂(·).

Notes: In the menu, we color the lottery that is predicted to be selected with probability at least 0.50 in green.
Each algorithmically generated, logical anomaly presented here is produced by our example morphing algorithm.
For ease of interpretation, we round each payoff to the nearest cent and each probability to the nearest percentage.
Appendix Figure A1-A2 decompose these examples into compound lotteries. See Section 6.3 for further discussion.
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Pooled
Average Median

First
Quartile

Third
Quartile

Two-Payoff Lotteries

Dominated Consequence Effect
0.084
(0.006) 0.087 0.060 0.110

Reverse Dominated Consequence Effect
0.063
(0.005) 0.041 0.033 0.070

Strict Dominance Effect
0.145
(0.007) 0.137 0.073 0.196

Three-Payoff Lotteries
0.071
(0.003) 0.064 0.032 0.090

Table A6: Summary statistics on the fraction of respondents whose choices violate expected utility
theory on algorithmically generated logical anomalies.

Notes: This table reports summary statistics on the fraction of respondents whose choices violate expected utility
theory (“expected utility theory violation rate”) on algorithmically generated logical anomalies. We report summary
statistics by category of logical anomaly (see Table 3). The “pooled average” column reports the expected utility
theory violation rate, pooling together respondents’ choices on all logical anomalies within the same category.
Standard errors reported in parentheses are clustered at the respondent level. See Section 6.4.2 for further discussion.
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C Additional Examples of Theories
In this appendix section, we illustrate how additional examples map into our framework described
in Section 2 of the main text.

Example: choice under risk As in the main text, consider individuals evaluating a lottery
over J>1 monetary payoffs. The features are a complete description of the lottery x=(z,p), where
z∈RJ is the lottery’s payoffs and p∈∆J−1 is the lottery’s probabilities. The modeled outcome
is now the certainty equivalent y∗∈R for the lottery, and the modeled contexts m∈M are each
individual. Given D, expected utility theory searches for utility functions u(·) that rationalize
the certainty equivalents of the lotteries, meaning y∗=u−1

(∑J
j=1p(j)u(z(j))

)
for all (x,y∗)∈D.

On any new lottery, expected utility theory returns T(x;D), where y∗∈T(x;D) if and only if y∗=

u−1
(∑J

j=1p(j)u(z(j))
)
for some utility function u(·) rationalizingD. Alternative behavioral models

such as cumulative prospect theory can be cast as particular theories T(·) of certainty equivalents. ▲

Example: multi-attribute discrete choice Consider individuals making choices from menus
of J items. The features are a complete description of each item in the menu x=(z1,p1,...,zJ ,pJ),
where zj are the attributes of item j and pj is its price. The features may even include information
about how items are presented in the menu or their ordering. The modeled outcomes are menu
choice probabilities y∗∈∆J−1, and the modeled contexts m∈M may either be interpreted as
individuals or distinct groups of individuals.

A popular class of parametric additive random utility models, such as the multinomial logit,
specify the indirect utility of item j as vj(x;α,β)= zjβ−αpj+ϵj, where (α,β) are parameters
and ϵj is a random taste shock with some known distribution. Given D of menus and choice
probabilities, such a parametric additive random utility model searches for parameter values (α,β)

that match the choice probabilities, meaning y∗j =P
(
j∈argmaxĵvĵ(x;α,β)

)
for all j=1,...,J and

(x,y∗)∈D. On any new menu of items x, it returns T(x;D), where y∗∈T(x;D) if and only if

y∗j =P
(
j∈argmaxĵvĵ(x;α,β)

)
for some (α,β) that matches D. ▲

Example: asset pricing Consider the evolution of J≥1 risky asset returns over time. The
features x enumerate the expected return for all assets, the full variance-covariance matrix of
asset returns, and possibly higher-order moments of asset returns over a particular time period.
The modeled outcome y∗ ∈R is the expected return of some asset j in the next period, and
each modeled context m∈M is an asset. Given examples D, the capital asset pricing model
(CAPM) provides a procedure for calculating the expected market return ȳmarket, the risk-free
rate ȳrisk-free, and the asset’s covariance with the market return β. On any new period x, CAPM
returns T(x;D), where y∗∈T(x;D) if and only if y∗= ȳrisk-free+β(ȳmarket−ȳrisk-free). ▲

C.1 Logical anomalies for other examples

Example: play in normal-form games Consider the normal-form game in Table A7. In our
framework, such a normal-form game is a particular feature x∈X . The iterated elimination of
strictly dominated strategies implies that (Top,Left) is the unique Nash equilibrium of the game.
Therefore, T(x;D)=∅ or T(x;D)=(1,0,0) for any D∈D. Suppose instead the individual m was
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Left Center Right

Top (10, 4) (5,3) (3,2)
Middle (0,1) (4,6) (6,0)
Bottom (2,1) (3,5) (2,8)

Table A7: An example anomaly for Nash equilibrium based on Level-1 thinking.

a level-1 thinker. In this case, she would eliminate Bottom since it is strictly dominated but would
fail to recognize the Right is now strictly dominated for her opponent by the iterated elimination of
strictly dominated strategies. She would then play the game as if her opponent randomizes across
all of her actions, and we may observe her strategy profile y∗ placing positive probability on both
Top and Middle. By construction, a collection of examples that consisted of only this normal-form
game and such a strategy profile would be a logical anomaly for Nash equilibrium (Definition 3). ▲

Example: asset pricing As mentioned in the main text, CAPM models the expected return
of an asset as ȳrisk-free+β

(
ȳmarket−ȳrisk-free

)
based on the expected returns of all assets and

their covariance structure. Consider the example {(x,y∗)}, where there exists some asset that
does not satisfy the asset pricing equation. By construction, this is a logical anomaly for CAPM
(Definition 3). For example, Barberis and Huang (2008) find that skew (i.e., a higher moment)
affects asset returns in the cross-section. ▲

C.2 Assumptions for other examples

Example: play in normal-form games Nash equilibrium is the correspondence T(·) satisfying:
(i) if for all (x,y∗)∈D there exists some y∗col∈∆J−1 such that

∑J
j=1

∑J
j̃=1y

∗(j)y∗col(j̃)πrow(j,j̃)≥∑J
j=1

∑J
j̃=1ỹ

∗(j)y∗col(j̃)πrow(j,j̃) for all ỹ
∗∈∆J−1, then T(x;D) is defined as in the main text for

all x∈X ; (ii) otherwise, T(x;D)=∅ for all x∈X . We immediately observe that Assumption 1,
Assumption 2, and Assumption 4 are satisfied by construction. Assumption 3 is also satisfied as
T(x;D′)⊆T(x;D) for all D,D′ with D⊆D′. ▲

Example: asset pricing We observe that CAPM as described in the main text immediately sat-
isfies Assumption 1 and Assumption 2 on examples consisting of moments of historical asset prices.
Second, consider any D,D′ satisfying D⊆D′. There are only three cases to consider – either both
D,D′ are incompatible with CAPM, D is compatible with CAPM but D′ is not, and both are com-
patible with CAPM in which case β(D)=β(D′). In all such cases, Assumption 3 is satisfied. Finally,
Assumption 4 is satisfied for any D that either point or partially identifies the assets’ parameter βj.

More specifically, CAPM provides a procedure for calculating the expected market return
ȳmarket, risk-free rate ȳrisk-free, and the asset’s covariance with the market return β from any
feature x1 consisting of the expected returns of all assets and higher moments. As a result, the
allowable functions of CAPM can be written as f(x1)= ȳrisk-free+β(ȳmarket−ȳrisk-free). For any
other feature x2 that leads to the same expected market return, risk-free rate and asset’s covariance
with the market return, we have that f(x1)=f(x2). CAPM therefore satisfies Assumption 6. Any
pair of features x1,x2 of this form are representationally equivalent under CAPM. ▲
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D Average Anomalies across Modeled Contexts
In the main text, our anomaly generation procedures focused on searching for anomalies in a
single modeled context, whereas we may be empirically interested in generating anomalies that
hold across many modeled contexts m∈M. Our algorithmic procedures can be directly applied
across modeled contexts.

D.1 Adversarial algorithm

Suppose we observe a random sample (Mi,Xi,Yi)∼P(·) for i=1,...,N across modeled contexts.
Under this joint distribution, define f̄∗(x):=E[g(Yi) |Xi=x] as the average relationship between fea-
tures and the modeled outcome across all modeled contexts. Define P(m |x):=P(Mi=m |Xi=x)
and f∗

m(x):=Em[g(Yi) |Xi=x] in each modeled contextm∈M as before. An average incompatible
collection of examples is a collection of features x1:n such that D={(x1,f̄∗(xi)),...,(xn,f̄

∗(xn))}
is incompatible with theory T(·). An average empirical anomaly is defined analogously.

If {(x1,f̄∗(xi)),...,(xn,f̄
∗(xn))} is an average incompatible collection, then it is also an in-

compatible collection in some modeled context m. Provided {(x1, f̄∗(xi)), ... ,(xn, f̄
∗(xn))} is

a “systematically” incompatible collection across modeled contexts, then it is also an average
incompatible collection.

Proposition D.1. Suppose theory T(·) satisfies Assumptions 1-4. Then,

i. If {(x1,f̄∗(xi)),...,(xn,f̄
∗(xn))} is an average incompatible collection, then there exists some

modeled context m∈M with true function f∗
m(·) such that {(x1,f∗

m(x1)),...,(xn,f
∗
m(xn))} is

an incompatible collection.

ii. Provided {(x1,f̄∗(xi)),...,(xn,f̄
∗(xn))} is incompatible in some modeled context and satisfies

∑
m̸=m̃

(
n−1

n∑
i=1

P(m |x)P(m̃ |x)
(
fT
m(xi)−f∗

m(xi)
)(
fT
m̃(xi)−f∗

m̃(xi)
))

≥0,

for all fm(·),fm̃(·)∈FT , then x1:n is also an average incompatible collection.

Proof. To prove this result, it suffices to focus on the squared loss function ℓ(y,y′)=(y−y′)2. To
show (i), we define f̄T (x;x1:n):=

∑
m∈MP(m |x)fT

m(x;x1:n). We then observe that

n−1

n∑
i=1

(
f̄T (xi;x1:n)−f̄∗(xi)

)
=n−1

n∑
i=1

(∑
m∈M

P(m |xi)
(
fT
m(xi;x1:n)−f∗

m(xi)
))2

≤2n−1

n∑
i=1

∑
m∈M

P(m |xi)2
(
fT
m(xi;x1:n)−f∗

m(xi)
)2≤2

∑
m∈M

(
n−1

n∑
i=1

P(m |xi)
(
fT
m(xi;x1:n)−f∗

m(xi)
)2)

.

Then, since x1:n is an average incompatible collection, this implies

0< min
f(·)∈FT

n−1

n∑
i=1

(f(xi)−f̄∗(xi))
2≤2

∑
m∈M

(
n−1

n∑
i=1

P(m |xi)
(
fT
m(xi;x1:n)−f∗

m(xi)
)2)

,
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which in turn implies that n−1
∑n

i=1P(m |xi)
(
fT
m(xi;x1:n)−f∗

m(xi)
)2
>0 for some modeled context

m∈M. To show (ii), observe that

min
f(·)∈FT

n−1

n∑
i=1

(
f(xi)−f̄∗(xi)

)2≥ min
fm(·)∈FT

n−1

n∑
i=1

(∑
m∈M

P(m |xi)(fm(xi)−f∗
m(xi))

)2

,

where

n−1

n∑
i=1

(∑
m∈M

P(m |xi)(fm(xi)−f∗
m(xi))

)2

=

n−1
∑
m∈M

n∑
i=1

P(m |xi)2(fm(xi)−f∗
m(xi))

2+

n−1
∑
m̸=m̃

n∑
i=1

P(m |xi)P(m̃ |xi)(fm(xi)−f∗
m(xi))(fm̃(xi)−fm̃(xi)).

Then, under the assumption that x1:n is systematically incompatible with theory T(·) across
modeled contexts, it follows that

min
f(·)∈FT

n−1

n∑
i=1

(
f(xi)−f̄∗(xi)

)2≥∑
m∈M

{
n∑

i=1

P(m |xi)2(fm(xi)−f∗
m(xi))

2

}
.

The result then follows as x1:n is also an incompatible collection for some modeled context m.

The condition in Proposition D.1(ii) requires that x1:n be “systematically” incompatible with
theory T(·) across modeled contexts in the sense that the errors of the theory’s best fitting
allowable functions across modeled contexts do not cancel out on average.

Proposition D.1 suggests that we can search for empirical anomalies across modeled contexts

by plugging an estimator ̂̄f∗
(·) into our adversarial search procedure. Our same theoretical analysis

applies, except now the difference between the plug-in optimal value and the population optimal

value now depends on the estimation error ∥̂̄f∗
(·)− f̄∗(·)∥∞. By pooling data across modeled

contexts, we may hope to obtain better control of this estimation error in finite samples.

D.2 Average representational anomalies across modeled contexts

In Section 4, we developed an example morphing procedure to generate representational anomlaies
in a single modeled context. We may also be interested in generating representational anomalies
across many modeled contexts m∈M.

Suppose we again observe a random sample (Mi,Xi,Yi)∼P(·) for i=1,...,N across modeled
contexts, letting f̄∗(x):=E[g(Yi) |Xi=x] and P(m |x)=P(Mi=m |Xi=x) as before. We define
an empirical average representational anomaly as a pair of features x1,x2 such that f̄∗(x1)≠ f̄∗(x2).
If there are no compositional changes in modeled contexts across these features, then x1,x2 is
an empirical average representational anomaly if and only if it is an empirical representational
anomaly in some modeled context m.
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Proposition D.2. Consider features x1,x2 ∈ X and suppose P(m | x1) = P(m | x2) for all
m∈M. Then,if {(x1,f̄∗(x1)),(x2,f̄

∗(x2))} is an average representational anomaly, then there
exists some modeled context m∈M with true function f∗

m(·) such that {(x1,f∗
m(x1),(x2,f

∗
m(x2))}

is a representational anomaly.

Proof. To prove this result, observe that

f̄∗(x1)−f̄∗(x2)=
∑
m∈M

P(m |x1)f∗
m(x1)−

∑
m∈M

P(m |x2)f∗
m(x2)

=
∑
m∈M

P(m |x1)(f∗
m(x1)−f∗

m(x2))+
∑
m∈M

(P(m |x1)−P(m |x2))fm(x2).

Assuming that P(m |x1)=P(m |x2) for all m∈M implies that the second term in the previous
display equals zero. The result is then immediate.

The condition in Proposition D.2 requires that there exists the same composition of modeled
context across features x1,x2. If not, there could exist variation in f̄∗(·) across these features even
though there exists no empirical representational anomaly in any modeled context.

Proposition D.2 suggests that we can search for empirical average representational anomalies

across modeled contexts by simply plugging an estimator ̂̄f∗
(·) into our morphing procedure. Our

same theoretical analysis applies, except now the difference between the plug-in gradient and the

population gradient depends on the error ∥∇̂̄f∗
(x)−∇f̄∗(x)∥2. By pooling data across modeled

contexts, we may hope to obtain better control of this estimation error.

E Analysis of Gradient Descent Ascent Optimization over

Allowable Functions
In Section 3.2 of the main text, we proposed a gradient descent ascent (GDA) procedure to
optimize the plug-in max-min program (6). Recall that for some parametrization of the theory’s
allowable functions FT ={fθ(·): θ∈Θ}, initial feature values x01:n, maximum number of iterations
S>0, and step size sequence {ηs}Ss=0>0, we iterate over s=0,...,S and calculate

θs+1=argmin
θ∈Θ

Êm(xs1:n;θ)

xs+1
1:n =xt1:n+ηt∇Êm(xs1:n;θs+1)

at each iteration, where Êm(x1:n,θ):=n−1
∑n

i=1ℓ
(
fθ(xi),f̂

∗
m(xi)

)
. We apply recent results from Jin,

Netrapalli and Jordan (2019) on non-convex/concave max-min optimization to establish that this
GDA procedure converges to an approximate stationary point of the outer maximization problem

Define x̄1:n to be the random variable drawn uniformly over {x01:n,...,xS1:n} and define Êm(x1:n)=
minθ∈ΘÊm(x1:n,θ). To formally state the result, we define the Moreau envelope of Êm(x1:n) as

ϕλ(x1:n)=min
x′1:n

Êm(x′1:n)+
1

2λ
∥x1:n−x′1:n∥22

For non-convex functions, the Moreau envelope is a smooth, convex approximation that is often
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used to analyze the properties of gradient descent algorithms (e.g, see Davis and Drusvyatskiy,
2018). Our analysis of the GDA procedure provides a bound on the gradient of the Moreau
envelope ϕλ(·). Standard results in convex optimization establish that a bound on the gradient

of the Moreau envelope implies a bound on the subdifferentials of Êm(x1:n).

Lemma 4 (Lemma 30 in Jin, Netrapalli and Jordan (2019)). Suppose Êm(x1:n) is b-weakly convex.

For an λ< 1
b
and x̃1:n=argminx′1:nÊm(x

′
1:n)+

1
2λ
∥x1:n−x′1:n∥22, ∥∇ϕλ(x1:n)∥≤ϵ implies

∥x̃1:n−x1:n∥=λϵ and min
g∈∂Êm(x̃1:n)

∥g∥≤ϵ,

where ∂ denotes the subdifferential of a weakly convex function.

Proposition E.1. Suppose ℓ(·,·),f̂∗
m(·) and {fθ(·): θ∈Θ} are k-times continuously differentiable

with K-bounded gradients. Then, the output x̄1:n of the gradient descent ascent algorithm with
step size sequence given by ηs=η0/

√
S+1 for some η0>0 satisfies

E
[
∥∇ϕ0.5b(x̄1:n)∥22

]
≤2

(
ϕ0.5b(x

0
1:n)−minx1:nÊm(x1:n)

)
+bK2η20

η0
√
S+1

+4bδ,

where δ≥0 is the error associated with the approximate inner minimization oracle in Assumption
5(i).

Proof. This result is an immediate consequence of Theorem 31 in Jin, Netrapalli and Jordan
(2019).

F Implementation details of anomaly generation proce-

dures
In this section, we describe the implementation details of our anomaly generation procedures in
the illustration to choice under risk in Section 5.1.

For both the adversarial procedure and example morphing procedure, we constructed randomly
initialized menus of two independent lotteries in the following manner. We simulated each payoff in
a lottery independently from a uniform distribution on [0,10]. We simulated the probabilities in a
lottery by drawing each lottery probability uniformly from the unit interval, and then normalizing
the draws so they lie on the unit simplex.

F.1 Adversarial procedure

To implement the adversarial procedure based on gradient descent ascent described in Section 3.2,
we must first specify a parametric basis for the allowable functions of expected utility theory. We
parametrize the utility function of the individual uθ(·) as a linear combination of polynomials up
to order K or I-splines with some number of knot points q and degree K (see Ramsay, 1988). We
experimented with both choices of basis functions, varying the maximal degree of the polynomial
bases as well as the number of knot points and degree of the I-spline bases. Since we found
qualitatively similar results, we focus on presenting anomalies generated by a polynomial utility
function basis with order K=6. We set the learning rate to be η=0.01.
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For any particular choice of utility function basis and learning rate, we ran the gradient
descent ascent procedure for 25,000 randomly initialized menus x0. We set the maximum num-
ber of iterations to be S = 50. For a particular choice of utility basis functions, we solve the
inner minimization problem (12) by minimizing the cross-entropy loss between the true choice
probabilities on the menus f∗

m(x
s) and the implied expected utility theory choice probabilities

fθ(x
s)=P

(∑J
j=1p

s
1juθ(z1j)−

∑J
j=1p

s
0juθ(z0j)+ξ

)
for ξ an i.i.d. logistic shock. We then implement

the outer gradient ascent step (13) directly. After each gradient ascent step, we project the
updated lottery probability vectors back into the unit simplex.

A subtle numerical issue arises as the gradients of the cross-entropy loss Ê(xs;θs+1) vanish
whenever expected utility theory can exactly match the choice probabilities. To avoid this vanishing
gradients problem, we instead implement the outer gradient ascent step (13) by following the

gradient of log
(

f∗
m(xs)

1−f∗
m(xs)

)(∑J
j=1p

s
1juθs+1(z1j)−

∑J
j=1p0juθs+1(z0j)

)
. This alternative loss function

for the gradient ascent step applies the logit transformation to the choice probabilities so that

log
(

f∗
m(xs)

1−f∗
m(xs)

)
is positive whenever f∗

m(x
s)>0.5 and weakly negative otherwise. The overall loss

function is therefore positive whenever the expected utility difference between the lotteries is
positive but f∗

m(x
s)<0.5 and vice versa. We take gradient ascent steps on only the probabilities

of the lotteries in the menu, meaning that only the probabilities of the lotteries in the menu are
modified over the gradient descent ascent algorithm. We then collect together the anomalies
produced across all runs of the adversarial procedure.

F.2 Example morphing procedure

To implement the example morphing procedure in Section 4, we again must specify a parametric
basis for the allowable functions of expected utility theory. Like the adversarial procedure, we
experimented with both polynomial bases up to order K and I-spline bases varying the number of
knot points q and degree K. Since we found qualitatively similar results, we focus on presenting
anomalies generated by the I-spline basis with q=10 knot points and degree K=3. We set the
learning rate to be η=10.

For any particular utility function basis and learning rate, we ran the example morphing
procedure 15,000 randomly initialized menus x0. We set the maximum number of iterations to
be S=50. At each iteration s, we solve for the best-fitting allowable function θs and sample θb
independent from a multivariate normal distribution with mean vector equal to θ̄s= 1

s

∑s
s′=1θ

s′

and variance matrix equal to 1
s−1

∑s
s′=1(θ

s′−θ̄s)(θs
′−θ̄s)′ for b=1,...,B. We set B=200,000. We

take gradient ascent steps on only the probabilities of the lotteries in the menu, meaning that only
the probabilities of the lotteries in the menu are modified by the dataset morphing procedure. We
then collect together the anomalies produced across all runs of the dataset morphing procedure.

F.3 Numerical verification of logical anomalies for expected utility
theory

As discussed in Section 5.1 of the main text, each returned menu of lotteries over two monetary
payoffs by our anomaly generation procedures are logical anomalies for expected utility theory
at our particular parametrization of the utility function {uθ(·): θ∈Θ}. Given any such returned
menus of lotteries over two monetary payoffs, we numerically verify whether the dataset of returned
menus is a logical anomaly for expected utility theory at any increasing utility function and without
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noisy choices. In the main text, we report all resulting numerically verified logical anomalies for
expected utility theory at any increasing utility function.

Concretely, consider a modeled dataset {(x0,f∗
m(x0)),(x1,f

∗
m(x1))} returned by our anomaly gen-

eration procedures, where x0=(z0,0,p0,0,z0,1,p0,1) and x1=(z0,0,p1,0,z0,1,p1,1). For ease of exposition,
we assume the monetary payoffs are the same across the two menus. Define y∗0=1{f∗

m(x0)≥0.50}
and y∗1=1{f∗

m(x1)≥0.50}, and the ordered monetary payoffs as z(1)<z(2)<z(3)<z(4). We check
whether there exists any increasing utility function u(z) satisfying u(z(1))<u(z(2))<u(z(3))<u(z(4))
that could rationalize the given configuration of binary choices (y∗0,y

∗
1). Abusing notation, let us

redefine p0,0∈∆4 as the vector of probabilities associated with the ordered monetary payoffs, and
p0,1,p1,0,p1,1 analogously. Let u=(u1,u2,u3,u4) denote the vector of utility values assigned to the
ordered monetary payoffs. Checking whether there exists any increasing utility function that could
rationalize the given configuration of binary choices is equivalent to checking whether there exists
a solution to a system of linear inequalities. In particular, if (i) y∗0=y∗1=0, we check whether there
exists any vector u satisfying (p0,0−p0,1)

′u>0 and (p1,0−p1,1)
′u>0; (ii) y∗0=1,y∗1=0, we check

whether there exists any vector u satisfying (p0,0−p0,1)
′u<0 and (p1,0−p1,1)

′u>0; and so on.

G Additional Results for Numerical Illustration based on

Prospect Theory

G.1 Proofs of logical anomalies for expected utility theory

In this section, we prove that pairs of menus of two lotteries over two monetary payoffs exhibiting
the dominated consequence effect, reverse dominated consequence effect, and strict dominance
effect are logical anomalies for expected utility theory.

G.1.1 Dominated consequence effect anomalies

Consider the first menu defined over the pair of lotteries ℓ0=(p0,z0), ℓ1=(p1,z1) and the second
menu defined over the lotteries ℓ′0=(p′0,z0), ℓ

′
1=(p′1,z1). Let z0=minjz0(j) and z1=minjz1(j).

Suppose that the lotteries in the second menu can be written as ℓ′0=α0ℓ0+(1−α0)δz0 and
ℓ′1=α1ℓ1+(1−α1)δz1 for some α0,α1∈ [0,1]. Further assume (i) z0<z1, (ii) ℓ1 is preferred to ℓ0
– that is, ℓ1≻ℓ0, (iii) ℓ

′
0 is preferred to ℓ′1 – that is, ℓ′0≻ℓ′1, and (iv) α1≥α0. To see why this is

a logical anomaly for expected utility theory, observe

ℓ1≻ℓ0
(1)
=⇒ α1ℓ1+(1−α1)δz1≻α1ℓ0+(1−α1)δz1,

α1ℓ0+(1−α1)δz1
(2)
≻α1ℓ0+(1−α1)δz0

α1ℓ0+(1−α1)δz0
(3)
≻α0ℓ0+(1−α0)δz0

where (1) follows by the independence axiom, (2) follows by utility must be increasing in monetary
payoffs and the independence axiom, and (3) follows by preservation of first-order stochastic
dominance. An application of the transitivity axiom then yields that ℓ1 being preferred to ℓ0 must
imply ℓ′1 is preferred to ℓ′0. The collection {((ℓ0,ℓ1),1),((ℓ′0,ℓ′1),0)} is therefore a logical anomaly
for expected utility theory.

In Appendix Table A1, we provide eight examples of dominated consequence effect anomalies
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for expected utility theory. Each of these examples can be mapped into the dominated consequence
effect through an appropriate choice of ℓ0,ℓ1 and ℓ′0,ℓ

′
1 in the algorithmically generated menus of

lotteries.

G.1.2 Reverse dominated consequence effect anomalies

Consider the first menu defined over the pair of lotteries ℓ0 = (p0,z0), ℓ1 = (p1,z1) and the
second menu defined over the pair of lotteries ℓ′0=(p′0,z0), ℓ

′
1=(p′1,z1). Let z0=maxjz0(j) and

z1=maxjz1(j).
Suppose that the lotteries in the second menu can be written as ℓ′0=α0ℓ0+(1−α0)δz0 and

ℓ′1=α1ℓ1+(1−α1)δz1 for some α0,α1∈ [0,1]. Further assume (i) z1>z0, (ii) ℓ1 is preferred to ℓ0
– that is, ℓ1≻ℓ0, (iii) ℓ

′
0 is preferred to ℓ′1 – that is, ℓ′0≻ℓ′1, and (iv) α0≥α1. To see why this is

a logical anomaly for expected utility theory, observe

ℓ1≻ℓ0
(1)
=⇒ α1ℓ1+(1−α1)δz1≻α1ℓ0+(1−α1)δz1,

α1ℓ0+(1−α1)δz1
(2)
≻α1ℓ0+(1−α1)δz0

α1ℓ0+(1−α1)δz0
(3)
≻α0ℓ0+(1−α0)δz0

where (1) follows by the independence axiom, (2) follows by utility must be increasing in monetary
payoffs and the independence axiom, and (3) follows by preservation of first-order stochastic
dominance. An application of the transitivity axiom then yields that ℓ1 being preferred to ℓ0
must imply that ℓ′1 is preferred to ℓ′0. Therefore, the collection {((ℓ0,ℓ1),1),((ℓ′0,ℓ′1),0)} is a logical
anomaly for expected utility theory.

In Table A2, we provide eight examples of reverse dominated consequence effect anomalies
for expected utility theory. Each of these examples can be mapped into the reverse dominated
consequence effect through an appropriate choice of ℓ0,ℓ1 and ℓ′0,ℓ

′
1 in the algorithmically generated

menus of lotteries.

G.1.3 Strict dominance effect anomalies

Consider the first menu defined over the pair of lotteries ℓ0 = (p0,z0), ℓ1 = (p1,z1) and the
second menu defined over the pair of lotteries ℓ′0=(p′0,z0), ℓ

′
1=(p′1,z1). Let z0=maxjz0(j) and

z1=maxjz1(j).
Suppose that the lotteries in the second menu can be written as ℓ′0=α0ℓ0+(1−α0)δz0 and

ℓ′1=α1ℓ1+(1−α1)δz1 for some α0,α1∈ [0,1]. Further assume that (i) ℓ1 is preferred to ℓ0 – that
is, ℓ1≻ℓ0, and (ii) ℓ′0 is preferred to ℓ′1 – that is, ℓ′0≻ℓ′1. To see why this is a logical anomaly for

expected utility theory, observe that ℓ′1
(1)
≻ ℓ1 and ℓ0

(2)
≻ ℓ′0, where (1) and (2) follow by preservation

of first-order stochastic dominance. An application of the transitivity axiom therefore means
that the ℓ1 being preferred to ℓ0 must imply that ℓ′1 is preferred to ℓ′0. Therefore, the collection
{((ℓ0,ℓ1),1),((ℓ′0,ℓ′1),0)} is a logical anomaly for expected utility theory.

In Table A3, we provide eight examples of dominated consequence effect anomalies for expected
utility theory. Each of these examples can be mapped into the strict dominance effect through
an appropriate choice of ℓ0,ℓ1 and ℓ′0,ℓ

′
1 in the algorithmically generated menus of lotteries.
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G.2 Anomaly generation from an estimated choice probability function

In this section, we generate logical anomalies based on an estimated choice probability function
f̂m(·) using a random sample of binary choices.

For each calibrated parameter value (δ,γ), we simulate a dataset of menus of two lotteries over
two monetary payoffs and the individual’s binary choice on each menu. For i=1,...,n, we simulate
menus of two lotteries over two monetary payoffs Xi by drawing each payoff in the lotteries
independently from a uniform distribution on [0,10], and simulating the probabilities in each lottery
by drawing uniformly from the unit interval [0,1] and normalizing the draws so they lie on the unit
simplex. For a particular choice of parameter values (δ,γ), we draw the individual’s binary choice
according to Yi |Xi∼Bernoulli(f∗

m(Xi)). This yields the binary choice dataset {(Xi,Yi)}ni=1.
We estimate the individual’s true choice probability function f∗

m(x)=P(CPT(p1,z1;δ,γ)−
CPT(p0,z0;δ,γ)+ξ≥0) in two ways. First, we consider the class of correctly specified choice prob-

ability functions, and estimate the parameter values (̂δ,γ̂) that minimize the average cross-entropy
loss between the individual’s observed choices Yi and the implied choice probabilities

(̂δ,γ̂)=argmin
δ̃,γ̃

n−1

n∑
i=1

−Yilog(f(δ̃,γ̃)(Xi))−(1−Yi)log(1−f(δ̃,γ̃)(Xi)) (18)

for f(δ̃,γ̃)(x) =
eCPT(p1,z1;δ̃,γ̃)−CPT(p0,z0;δ̃,γ̃)

1+eCPT(p1,z1;δ̃,γ̃)−CPT(p0,z0;δ̃,γ̃)
. This yields the estimated choice probability function

f̂m(·)=f(̂δ,γ̂)(·).
Second, we consider the class of choice probability functions that can be characterized by

deep neural networks. We specifically consider over-parametrized deep neural networks with four
hidden layers and 500 hidden nodes each with rectified linear unit (ReLU) activation functions.
We minimize the average cross-entropy loss between the individual’s observed choices Yi and the
implied choice probabilities

fDNN
m (·)=arg min

f̃∈FDNN
n−1

n∑
i=1

−Yilog(f̃(Xi))−(1−Yi)log(1−f̃(Xi)) (19)

using mini-batch gradient descent with a batch size of 256 observations over 2,000 epochs. We apply
our anomaly generation procedures to both estimates of the individual’s choice probability function.

For each calibrated parameter value (δ,γ), we simulate one binary choice dataset {(Xi,Yi)}ni=1,
and approximate the individual’s true choice probability function f∗

m(·) using both the estimated
probability weighting parameters (18) and the deep neural network (19). We apply our anomaly

generation procedures on the estimated choice probability function f̂∗
m(·). As described in Section

5.1 of the main text and Appendix F, we flexibly parametrize the utility function as a linear
combination of non-linear basis functions, and we apply our adversarial algorithm to 25,000
randomly initialized menus of two lotteries on two monetary payoffs and our example morphing
algorithm to 15,000 randomly initialized menus. Each returned menu of lotteries over two monetary
payoffs and the implied choices based on f̂∗

m(·) is a logical anomaly for expected utility theory at our
particular parameterization of the utility function. We therefore again numerically verify whether
the returned menu and implied choices based on f̂∗

m(·) is a logical anomaly for expected utility
theory at any increasing utility function and without noisy choices, as discussed in Appendix F.3.
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Appendix Table A8 and Appendix Table A9 summarize the logical anomalies for expected
utility theory that are produced by our anomaly generation procedures at each calibrated parameter
value (δ,γ) by approximating the individual’s true choice probability function using the estimated
probability weighting parameters and the deep neural network respectively. We vary the size of
the simulated dataset over n=1,000, 5,000, 10,000 and 25,000.

(a) (δ,γ)=(0.726,0.309)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

Dominated Consequence Effect 7 25 2 17 85
Reverse Dominated Consequence Effect 1 4 0 3 17

Strict Dominance Effect 10 77 9 57 45
First Order Stochastic Dominance 1 66 16 74 81

Other 1 4 0 3 3

# of Logical Anomalies 20 176 27 154 231

(b) (δ,γ)=(0.926,0.377)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

Dominated Consequence Effect 2 3 9 5 34
Reverse Dominated Consequence Effect 9 2 4 5 15

Strict Dominance Effect 17 5 1 1 1
First Order Stochastic Dominance 2 3 5 0 0

Other 2 2 0 0 1

# of Logical Anomalies 32 15 19 11 51

(c) (δ,γ)=(1.063,0.451)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

Dominated Consequence Effect 5 7 2 0 10
Reverse Dominated Consequence Effect 13 4 3 5 14

Strict Dominance Effect 39 0 0 1 0
First Order Stochastic Dominance 33 0 0 1 2

Other 7 0 0 0 1

# of Logical Anomalies 97 11 5 7 27

Table A8: Logical anomalies for expected utility theory over two lotteries on two monetary payoffs,
generated using an estimated choice probability function f̂∗m(·)=f

(̂δ,γ̂)
(·).

Notes: This table summarizes all logical anomalies for expected utility theory over the space of two lotteries
on two monetary payoffs produced by applying our adversarial algorithm and our example morphing algorithm
on an estimated choice probability function f̂∗

m(·). For each calibrated parameter values (δ,γ), we estimate the
parameter values (δ,γ) that minimize average cross-entropy loss (18), varying the size of the binary choice dataset
over n=1,000,5,000,10,000 and 25,000. For reference, the column “True Choice Prob.” reproduces Table 3,
which generated logical anomalies using the true choice probability function f∗

m(·). See Appendix G.2 for further
discussion.
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(a) (δ,γ)=(0.726,0.309)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

Dominated Consequence Effect 21 18 17 13 85
Reverse Dominated Consequence Effect 14 3 3 0 17

Strict Dominance Effect 35 7 2 1 45
First Order Stochastic Dominance 45 16 27 13 81

Other 3 0 1 3 3

# of Logical Anomalies 118 44 50 30 231

(b) (δ,γ)=(0.926,0.377)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

Dominated Consequence Effect 16 17 22 15 34
Reverse Dominated Consequence Effect 17 6 4 5 15

Strict Dominance Effect 33 5 1 0 1
First Order Stochastic Dominance 25 18 17 10 0

Other 1 2 2 3 1

# of Logical Anomalies 92 48 46 33 51

(c) (δ,γ)=(1.063,0.451)

Sample Size: n True Choice Prob.
1,000 5,000 10,000 25,000

Dominated Consequence Effect 19 15 22 23 10
Reverse Dominated Consequence Effect 8 7 6 4 14

Strict Dominance Effect 26 2 3 0 0
First Order Stochastic Dominance 16 17 18 11 2

Other 3 0 3 4 1

# of Logical Anomalies 72 41 52 42 27

Table A9: Logical anomalies for expected utility theory over two lotteries on two monetary payoffs,
generated using an estimated choice probability function f̂∗m(·)=fDNN(·).

Notes: This table summarizes all logical anomalies for expected utility theory over the space of two lotteries
on two monetary payoffs produced by applying our adversarial algorithm and our example morphing algorithm
on an estimated choice probability function f̂m(·). For each calibrated parameter values (δ,γ), we fit a deep
neural network to minimize average cross-entropy loss (19), varying the size of the simulated binary choice dataset
over n=1,000,5,000,10,000 and 25,000. For reference, the column “True Choice Prob.” reproduces Table 3,
which generated logical anomalies using the true choice probability function f∗

m(·). See Appendix G.2 for further
discussion.

67



H Experimental Instructions and Control Questions for

Online Surveys

Figure H1: Screenshots of directions for the online surveys on choices from menus of lotteries. See
Section 6.4.1 for further discussion.

Figure H2: Screenshots of comprehension and attention checks for the online surveys on choices from
menus of lotteries. See Section 6.4.1 for further discussion.
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Figure H3: Screenshots of two main survey questions for the online surveys on choices from menus of
two lotteries with two monetary payoffs. See Section 6.4.1 for further discussion.

Figure H4: Screenshots of two main survey questions for the online surveys on choices from menus of
two lotteries over three monetary payoffs. See Appendix Section 6.4.1 for further discussion.
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