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Abstract

We analyze collaborative experimentation across multiple independent do-
mains. Each domain contains infinitely many potential projects with asymmet-
ric benefits. In each period and domain, two players can idle, jointly explore
a new project, or jointly exploit a known one, with voluntary transfers. For
intermediate discount factors, treating domains as independent during exper-
imentation is suboptimal. The optimal experimentation policy exhibits com-
mon features of collaborative experimentation: lengthy exploration, temporary
project exploitation, recall of past projects, and initially or terminally limited
experimentation scope. We connect these findings to research on buyer-supplier

dynamics and persistent productivity differences.
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1 Introduction

In many settings, actors collaborate to experiment simultaneously across multiple
domains. In buyer-supplier relationships, companies co-innovate in various product
lines or geographies. In the pharmaceutical sector, an R&D alliance may combine re-
sources to pursue both vaccine development and protein targeting. Inside firms, con-
tinuous improvement methods involve managers and workers collaborating to identify
and implement improvements throughout dimensions of the production process.

The success of these collaborations relies on maintaining aligned interests, so that
each party finds ongoing value in maintaining the partnership. In multi-domain col-
laborations, the ongoing value of continued participation is determined by the ag-
gregate value across all domains of cooperation. This aggregate value—representing
what parties stand to lose by withdrawing their cooperation—creates interdependen-
cies across domains. For instance, a breakthrough in one domain will increase the
parties’ perceived value of the collaboration, mitigating opportunism in the other do-
mains. In innovation-intensive settings, parties must therefore approach their joint
experimentation in each domain of cooperation by balancing the domain-specific out-
comes with the broader implications for the overall collaboration.

This paper investigates how these cross-domain interdependencies influence the
dynamics and outcomes of collaborative experimentation in settings such as those
mentioned above. It then relates the main findings to the existing applied literature
on buyer-supplier relationships and persistent productivity differences across firms.

We develop a model of multi-domain collaborative experimentation. Time is dis-
crete with an infinite horizon, and the number of domains is exogenous. Each domain
contains infinitely many ex ante identical projects on which the players can cooperate,
and the domains are technologically independent. Cooperation on a project requires
both players’ participation; working individually on projects is not possible. In each
period and domain, players can choose to idle, explore a new project, or exploit a
known one. Project benefits are time-invariant but initially uncertain, and they may
be asymmetric across players. The benefits of a project are revealed in the first pe-
riod of cooperation on that project. Moreover, all projects entail a constant fixed
cost for the players, during both exploration and exploitation phases. As a result,
players might be reluctant to collaborate in exploring projects if they expect that

their individual benefit will not exceed this cost, and they may similarly be reluctant



to collaborate in exploiting a project if their realized individual benefit falls below the
cost. To align incentives, players can transfer money to each other. However, these
transfers are voluntary, so any experimentation policy—a rule determining whether to
exploit a known project or explore a new one for each domain—must be self-enforcing.

We focus on Subgame Perfect Equilibria (relational contracts) that maximize the
players’ discounted cumulative joint payoffs (their “surplus”). As a starting point,
Proposition 1 examines our first benchmark, the single-player scenario, providing a
straightforward solution. Given the infinite number of available projects, and follow-
ing Bergemann and Véliméki (2001), the players treat each domain independently
and explore projects until one exceeds a time-invariant threshold, after which perma-
nent exploitation of this project is optimal. We refer to this optimal policy for the
single-player scenario as the “first-best experimentation policy.” Notably, this first-
best policy would be optimal for two players if all projects benefited them equally.

In the main analysis, we introduce asymmetric benefits by assuming each project
benefits only one player. The beneficiary’s identity is revealed when players first co-
operate on a project and is independently and identically distributed across projects.
These asymmetric benefits create the key friction that may impede first-best ex-
perimentation, as implementing this policy requires credible promises of transfers
between players. Such promises may lack credibility when players making transfers
have insufficient continuation value in the collaboration. As mentioned above, since a
player’s continuation value equals the sum of continuation values across all domains
of cooperation, experimentation choices in one domain affect all others.

In the spirit of Levin (2002, 2003), we show in Proposition 2 that (i) any optimal
experimentation policy is governed solely by the value of the most valuable projects
identified in each domain to date, and (ii) a single implementability constraint, de-
pendent only on these values and the experimentation policy, fully captures all de-
viation temptations across players, domains, and transfers. These results imply that
any experimentation policy satisfying this constraint can be implemented through a
relational contract with appropriately designed transfers. As a result, the optimal
experimentation policy is characterized by an m-dimensional Bellman equation sub-
ject to the implementability constraint. However, unlike the single-player benchmark,
this constraint precludes an index characterization of the optimal policy.

Since the first-best experimentation policy treats each domain independently, we

can explicitly determine the conditions under which this policy is implementable



through a relational contract and, consequently, chosen by the players. Proposition
3 provides a necessary and sufficient condition: the joint value of the most valuable
projects identified in each domain must be sufficiently high to ensure that the col-
laboration’s continuation value supports the implementation of the first-best policy.
For low discount factors, this condition binds, implying that, in expectation, play-
ers transition to permanently exploiting the most valuable projects found in each
domain later than if they could implement the first-best from the start (Corollary
1). In some cases, this transition never occurs, as discussed below. Moreover, this
condition enables a complete characterization of optimal experimentation in our sec-
ond benchmark: the single-domain case. Here, exploration continues until a project’s
value exceeds a fixed threshold—higher than in the single-agent case—after which
permanent exploitation becomes optimal (Corollary 2).

Next, we analyze the second-best experimentation policy, which arises when the
first-best policy is not implementable in the current period. We first examine the play-
ers’ exploration and exploitation decisions, abstracting from the number of domains
they engage in. Due to cross-domain interdependencies, the player’s exploitation cri-
terion becomes dynamic and characterization is challenging. Nonetheless, Proposition
4 shows that, unlike the first-best policy where explored projects are either perma-
nently exploited or never used, the second-best policy is such that, with strictly
positive probability, players (i) exploit projects temporarily or (ii) exploit previously
unexplored projects rather than the most recently explored ones.

We then examine, under the second-best policy, the dynamics of the players’
scope of experimentation—defined as the number of domains with exploration or ex-
ploitation in any given period. We analyze both initial and terminal (asymptotic)
scope of experimentation. We show that starting with limited scope—such as one
domain instead of m—reduces players’ initial deviation temptation by a factor of m.
The potential for later scope expansions, if the continuation value increases, further
mitigates initial deviation temptations. However, the continuation value increases
only through exploration, and conducting one exploration (versus m) reduces these
increases by a factor on the order of m. Proposition 5 shows that, although these op-
posing forces cannot generally be ranked, for large m, an initially limited scope allows
implementation over a wider range of discount factors than immediate exploration in
all domains. Moreover, the continuation value of the collaboration need not increase

monotonically over time: for instance, a domain’s continuation value decreases when



players switch from exploration to exploitation. Thus, exploiting projects in some do-
mains may create inefficiencies in others, including being permanently idle. Building
on this observation, Proposition 6 shows that initially limited experimentation poli-
cies may never reach maximal—and thus efficient—scope asymptotically, and even
policies starting with maximal scope may become permanently limited.

In Section 5, we examine how the potential scope of experimentation impacts its
feasibility and profitability, drawing connections to the seminal work of Bernheim
and Whinston (1990) on multilateral interactions. Further, we discuss extensions of
the model included in the Online Appendix, in which the domains of cooperation are
asymmetric or exhibit technological interdependencies.

Section 6 connects our theoretical analysis with two distinct research areas: buyer-
supplier dynamics and persistent productivity differences across firms. The buyer-
supplier relationships literature stresses experimentation and credibility as critical
factors for successful collaborations, and corroborates the prevalence of gradualism
and strong path dependence. In addition, we argue that our framework provides novel
insights into how managerial practices can generate productivity differences among
seemingly similar firms.

The rest of the paper is structured as follows. Section 1.1 reviews the relevant
theoretical literature. Section 2 presents the model. Section 3 characterizes the first-
best experimentation policy. Section 4 provides the main analysis. Section 5 discusses
various model extensions. Section 6 examines the applied literature in light of our

theoretical findings. Section 7 concludes the paper.

1.1 Related Theoretical Literature

In this section, we review the theoretical literature related to our work. We
postpone the discussion of the applied literature to Section 6.

Firstly, our research connects to the literature on multi-armed bandit problems
(Robbins, 1952) and on optimal search (Lippman and McCall, 1976; Weitzman, 1979),

contributing to the strand within economics that examines strategic interactions.!

LOur setting resembles standard search problems by modeling many alternatives for players to
explore. However, unlike typical search problems where rewards come only at the end from the best
explored alternative, our model allows players to benefit each time they cooperate on a project,
without settling on one. For this reason, we use the broader term “experimentation” rather than
“search.” Moreover, existing models of strategic experimentation with bandits often limit options
to a few alternatives, like a risky and a safe project. We assume an infinite number of i.i.d. projects



Bolton and Harris (1999) and Keller et al. (2005) consider settings in which players
independently pull arms and free-ride on each others (see Horner et al., 2022, for more
recent work on this topic).? In our setting cooperation among players is essential for
both the exploration and exploitation of projects, as individual experimentation is
not feasible. In Strulovici (2010), players vote to choose between a safe arm and a
risky one, with its asymmetric benefits revealed over time through experimentation
(see also Anesi and Bowen, 2021, on this topic). Further, Albrecht et al. (2010)
examine a sequential search problem where a committee determines which project to
permanently exploit. Chan et al. (2018) and Reshidi et al. (2024) contrast group and
individual decision-making regarding experimentation, looking at the impact of static
versus sequential information acquisition and of voting rules. In contrast to these
papers, our setting allows for voluntary transfers and requires the combined efforts
of all players for experimentation. Most significantly, our framework enables players
to experiment simultaneously across multiple domains, a realistic yet understudied
feature. Even in single-player settings, such environments pose analytical challenges.
As noted in Bergemann and Véliméki (2008), “it is well known that [a Gittins] index
characterization is not possible when the decision maker must or can select more
than a single arm at each ¢,” due to the optimality of recalling past projects.®> When
infinitely many ex ante identical projects exist— as in Bergemann and Valimaki
(2001), a single-player analog to our first-best benchmark—past project recall does
not occur, and a Gittins index exists. In our setting, however, strategic considerations
lead not only to project recall but also to a dynamic exploration process where players
may pause exploration in a domain and later resume it, effectively recalling an entire
domain. These analytical challenges are further compounded by the requirement that
an experimentation policy must form an equilibrium.

Secondly, this work relates to the literature on relational contracts (see e.g., Bull,
1987; Macleod and Malcomson, 1989; Baker et al., 1994, 2002; Levin, 2002, 2003, for
early contributions).? Halac (2014) studies a setting in which the value of the players’

relationship increases exogenously with its duration, allowing for greater efficiency.

to eliminate aggregate uncertainty, making the dynamics driven purely by strategic factors.

2Liu and Wong (2023) consider an environment in which players compete to explore alternatives.

3Moreover, Bergemann and Véliméki (2008) note that even if such an index existed, “it is nor-
mally impossible to obtain analytical solutions for the problem.”

4Also at the intersection of the bandit and the relational contracting literatures, Urgun (2021)
examines a scenario where a principal interacts with multiple agents whose publicly-observable types
depend on the contracting history.



In our setting, players’ exploration and exploitation decisions endogenously shape the
continuation value of their relationship. While exploration in any domain increases
this value, exploitation reduces it, making sustained experimentation in other do-
mains more challenging. This trade-off is related to the analysis in Chassang (2010),
where increases in relationship value diminish the players’ ability to experiment. In
his model, the agent knows which arms are productive and which are not, while the
principal, at the outset, cannot differentiate between the two. Without monetary
incentives, incentivizing the agent to choose productive arms is accomplished by the
threat of firing the agent following failures. This dynamic makes motivating explo-
ration progressively expensive as more productive arms are identified. Should the
relationship endure, it ultimately enters an “exploitation” phase and its value stops
growing. In our model, the players are symmetrically informed about their environ-
ment, and the presence of transferable utility—apt for modeling firms-removes the
need for inefficient on-path punishments. Yet, it generates rich dynamics similar to
those observed in collaborations between and within firms (see Section 6.2).°
Finally, we contribute to the literature on gradualism in collaborations. Watson
(1999, 2002) examine a setting in which players are uncertain regarding their counter-
part’ intentions—to either collaborate genuinely or take advantage of the other. They
begin with low cooperation to mitigate the losses from defection. As the players be-
come more optimistic, the collaboration grows. Collaborations involving trustworthy
players achieve optimal cooperation, while those with untrustworthy players eventu-
ally fail. In our setting, the scope of players’ experimentation can expand or contract
over time due to the evolving continuation value of the relationship. Moreover, the
two settings make opposite predictions about how the discount factor affects players’
incentives to “start small.” In our setting, a higher discount factor reduces this need,
whereas in the frameworks analyzed by Watson (1999, 2002) and the broader dy-
namic screening literature (e.g., Ely and Valiméki, 2003; Acharya and Ortner, 2022),

a higher discount factor increases it, as separation becomes harder to achieve.

SIntroducing transferable utility within Chassang (2010), where information asymmetry plays a
central role, would make the value of the players’ relationship constant on path. We further discuss
the connection to Chassang (2010) in Footnote 14 and Section 6.2. For a setting similar to Chassang
(2010) but with imperfect transfers and uncertainty about the value of the relationship, see Venables
(2013). For work on experimentation in principal-agent settings with commitment, see Halac et al.
(2016) and Ide (2024).



2 The Setup

Two players, such as a buyer and a supplier or two firms in an R&D alliance, with
a discount factor d < 1 and zero per-period outside options, have the opportunity to
interact over multiple time periods t = 1,2,.... Their interaction spans m exoge-
nously fixed domains—such as distinct geographical markets or product categories in
a buyer-supplier relationship—where each domain j contains a countably infinite set
of projects P;. The union of all these sets forms the total set of projects, denoted as
P = U;P;, where each project within P is indexed by p. In each period ¢, and for each
domain j, each player ¢ = 1,2 chooses up to one project from the set P;. The finite
set of projects chosen by player ¢ in period ¢ is denoted by P!. The players cooperate
on the set of projects Pt = P} N P}, following a unanimity rule, and cannot work
individually on projects not included in P?, as both players possess indispensable and
complementary assets or skills. The cardinality of this set, |P?| < m, is referred to as
the scope of the players’ experimentation in period ¢.

Each project in P? costs ¢ > 0 for each player and has initially unknown time-
invariant value v, € R, which is publicly observed after the first cooperation. We
assume that for each project, a single player receives the entire value v, of the project.
The identity of any project’s beneficiary is, however, initially unknown and we denote
it by =, € {1,2}. Both v, and z, are each i.i.d. across projects and domains, making
all domains ex ante identical. We denote by a € [%, 1} the probability that x, = 1,
implying that player 2 receives v, with probability 1 — .

We say that a project is being “explored” when cooperated on for the first time
and “exploited” when cooperated on in both the current period and at least one prior
period. There are no intertemporal restrictions on project availability.

We make two assumptions on the distribution of project values. First, we assume
that the distribution of v, admits a continuous density with a convex support equal
to R*. Next, we assume E(v,) > 2¢. These assumptions ensure that the first-best
experimentation policy will be unique and non-empty.”

Further, the players exchange money twice during each period. At the beginning of

50ur results hold for less skewed benefit distributions, provided one player’s valuation exceeds
the cost ¢ while the other’s falls below it for each project.

7Assuming an unbounded support also simplifies some technical aspects of the proofs. Further,
E(vp) < 2¢ could make no experimentation optimal in the first-best for low discount factors, unnec-
essarily complicating our analysis of the second-best policy where the discount factor is key.



each period ¢, the players make discretionary transfers to each other, where w;_i eER"
denotes such a transfer from player ¢ to player —i. At the end of each period ¢, players
again make discretionary transfers to each other, where b;_i € R* denotes such a
transfer from player i to player —i.% Finally, player i’s period t payoff is equal to:

mo=w',; —wi_+ b — b+ Z (vply,—; — ), wherei € {1,2}, (1)

1,8 i,—1
peP?
and where 1,,—; = 1 if z, = 7 and otherwise is equal to zero.
We conclude the model’s description by stating the timing of the stage game.
Next, both

players simultaneously make their project choices P}. For each project p € P!, the

Both players simultaneously choose their discretionary transfers wf’_i.
players incur ¢ and observe its beneficiary x, and its value v,, and player x, pockets
vp. Finally, both players simultaneously choose their discretionary transfers b; ;.
Relational Contracts. A relational contract is a complete plan for the relation-
ship. Let bt = (w!, PL vl x! bl ... ... wi=l P vi=l x!=1 bi=1) denote the his-
tory up to date t and H! the set of possible date ¢ histories, where boldface lowercase
letters indicate vectors. Then, for each date t and every history ht € H!, a relational
contract describes: (i) the w' transfers; (ii) the set of projects P* (w') as a function
of w'; and (iii) the b’ (w', Pt v!,x") transfers as a function of w', P*, and the re-
alizations of v! and x'. Such a relational contract is self-enforcing if it describes a
Subgame Perfect Equilibrium of the repeated game. Within the class of Subgame
Perfect Equilibria, we analyze equilibria which maximize the players’ joint surplus.
Restricting attention to pure strategy equilibria is without loss of optimality because
(i) mixing on transfers increases the maximal transfers players promise each other
and (ii) mixing on projects leads to limited scope that can be replicated by being idle
in some domains. In the event of a deviation in some period t, the players respond

(i) by choosing P/ = () and b _;

, = 0 if these choices have not been made yet and

(ii) by permanently breaking off their relationship (i.e., reverting to the worst equi-

librium of the stage game from the next period onward). This punishment is without

8We incorporate the option of monetary transfers both before and after the players’ project
choices, although removing either would not qualitatively affect our results. Without transfers at
the beginning of each period, surplus might no longer be fully redistributed across the players without
affecting incentives. Without transfers at the end of each period, incentives for the current period
would rely on transfers from the subsequent period, complicating the proofs.



loss of optimality as it occurs out-of-equilibrium (c.f. Abreu, 1986).° Throughout, a
relational contract is defined as “non-empty” if Pr(>", |[P*| > 0) > 0.

3 First-Best Experimentation

We characterize the optimal experimentation policy for a benchmark where a
single decision maker, “player 0,” maximizes the sum of the payoffs of both players.
This optimal experimentation policy is identical to the one we would obtain if we
modified the model described in Section 2 so that the projects always benefit both
players equally. The proof of the following proposition closely follows Bergemann
and Valimaki (2001) and is provided in the Appendix, along with proofs for all other

statements omitted from the main text.

Proposition 1 (First-Best Experimentation Policy)

For each domain j and period t, player 0 adopts the following experimentation policy:
if a previously-explored project p has the highest value and v, > v°(9), exploit it; If
no previously-explored project has a value exceeding v°(6), explore a new project. The

threshold v°(0) is increasing in §.

Player 0 treats each domain separately and identically, given the additive separa-
bility of payoffs across projects and domains, as well as the ex ante identical nature
of domains. The threshold v° arises from player 0’s decision in each domain to either
exploit the best project found thus far or explore a new project in search of a supe-
rior one. Furthermore, exploitation is permanent because player 0 does not acquire
new information when exploiting a project. Likewise, given the infinite supply of ex
ante identical projects in every domain, player 0 never chooses to exploit a project he
chose not to exploit in the past. Finally, as the discount factor increases, the value of
exploration increases, which explains the comparative statics result for v°.

In summary, the first-best policy maximizes the scope of experimentation, with
exploration/exploitation decisions in each domain dictated by an independent, iden-
tical, and time-invariant threshold. We now analyze the model from Section 2, char-
acterizing the conditions under which these features break down, and describing the

resulting dynamics that emerge.

9 Alternatively, players could maintain the equilibrium but allocate all surplus to the non-deviator.
This provides identical incentives and, being Pareto optimal, is less prone to renegotiation.

10



4 Main Analysis

This section analyzes the model described in Section 2. In Section 4.1, we char-
acterize the class of optimal relational contracts on which the analysis focuses and
establish a necessary and sufficient condition for an experimentation policy to be
implementable by an optimal relational contract. In Section 4.2, we provide the con-
ditions under which the players can implement the first-best policy stated in Proposi-
tion 1. In Section 4.3, we characterize key properties of the optimal experimentation

policy when they are unable to implement the first-best policy.

4.1 Optimal Experimentation Policies: Implementability

In our setting, surplus-maximizing relational contracts depend on the players’ be-
liefs about the projects. We denote these beliefs at the beginning of period ¢ by
pt(hY) == {A(vp, zp)|h'} cp. We show that there exist surplus-maximizing relational
contracts that condition on A* only through pf(h*). Moreover, restricting attention to
relational contracts specifying the same continuation equilibrium following any two
on-path histories h} and hg leading to the same beliefs p is without loss of optimality,
since the only history-dependent outcome that alters the set of continuation equilib-
ria are the players’ beliefs u‘. Furthermore, the continuation equilibria prescribed
by such surplus-maximizing relational contracts are also surplus-maximizing; other-
wise, non-surplus-maximizing continuation equilibria could be replaced with surplus-
maximizing ones, with appropriate transfers to maintain incentives. We refer to such
relational contracts as optimal. The following proposition formalizes this characteri-
zation and provides a necessary and sufficient condition for an experimentation policy

P: {A(vp, :cp)}pep — P to be implementable by an optimal relational contract.

Proposition 2 (Optimal Relational Contracts)

e For any surplus-maximizing relational contract, there exists an alternative surplus-
equivalent relational contract such that (i) for all t and for all on-path histories
ht € H!, the continuation equilibrium is surplus mazimizing, and (ii) for any
two on-path histories hY and hY, if p* (ht) = p (hY), then the relational con-

tract specifies the same continuation equilibrium following these histories.

o There exists an optimal relational contract that implements an experimentation

11



policy f’() if and only if the following inequality holds for all on-path ht € H!:

Z max (0,c — E (v,1,,—|n")) < C (1), (2)

peP(ut) =

where C (') (“the continuation value”) is the expected net present value of the

players’ joint surplus starting in t + 1 given f’() and pt.

The proof of this proposition extends the work of Levin (2003). In our setting,
despite the stochastic nature of the players’ continuation value, we show that con-
sidering its expectation is sufficient to characterize the experimentation policies that
can be implemented by a relational contract.

The intuition for the first statement was provided above the proposition. Next,
recall that the main tension faced by the players is that the experimentation policy
which maximizes their joint surplus involves the selection of projects that do not
benefit both players. Inequality (2) states that for an optimal relational contract
to implement an experimentation policy everywhere on path, the continuation value
induced by this policy must exceed the total reneging temptation across players and
projects in all periods and histories. In turn, the total reneging temptation is the
sum across players and projects of a project’s reneging temptation to a player, which
is either zero if the project generates a positive net expected gain, or equal to the
magnitude of the net expected loss. The sum is across projects because, for any
beliefs p, each player can deviate by selecting any subset of P (). This condition is
necessary for the relational contract to constitute an equilibrium. In the proof, we
show that the presence of money also ensures sufficiency.

The proposition implies that characterizing the optimal relational contract reduces
to determining the players’ optimal experimentation policy, subject to Inequality (2)
holding along the equilibrium path. This simplification arises because all transfers
cancel out in both the joint surplus expression and the right-hand side of (2). Building
on this observation, we now state the corresponding optimization problem.

The optimal experimentation policy in any given period depends only on the
values of the most valuable projects identified in each of the m domains, denoted by
01, ..., 0m, where 0; := 0 if no projects have been explored in domain j. Players never
exploit a project with a lower value than another, as doing so would reduce their joint

payoff and make Inequality (2) (weakly) tighter. Thus, tracking ¥ := (01,...,0,,) is

12



sufficient to represent players’ beliefs about the projects. For each j, they choose one
of three actions: remain idle (a; = 0), explore a new project (a; = 1), or exploit
the highest-valued known project (a; = 2). The experimentation policy is then
determined by solving the following Bellman equation, where B(¥) represents the

players’ joint surplus:

B(V) = max { Z [ﬂajzlE(vp —2¢) + T1o;—2(0; — 20)} +C(a, \7)} (3)

ac(012)m | ‘=
subject to: Z []lajzlc + Lg;—p max{0,c — (1 — a)E(vp)}] <C(a,v). (4)
j=1

Notably, Inequality (4) aggregates incentives across domains, introducing interde-
pendencies. The implications of these interdependencies for players’ experimentation
will be the focus of our analysis. Moreover, they prevent an analytical characteriza-
tion of the optimal policy, as we explain below.

Further, we caution against the following intuition. While the players’ joint sur-
plus, B(-), increases over time and the continuation value for a fixed policy, C(a, ),
also grows, the equilibrium continuation value, C(a, -), is not necessarily monotonic.
This non-monotonicity arises even under the first-best policy described in Proposi-
tion 1. For instance, C(a(v°+¢),v%+¢) < C(a(0),0), because after identifying a project
with a value slightly above v, player 0 becomes nearly indifferent between exploiting
the current project and continuing to explore. This implies that the continuation
value associated with exploration exceeds that of exploitation. The non-monotonic
nature of the continuation value further complicates the analysis, as Inequality (4)

does not necessarily relax over time.

4.1.1 Challenges in Characterizing Optimal Experimentation

As discussed in Section 1.1, our setting does not admit a Gittins Index characteri-
zation. More generally, any characterization of the optimal experimentation policy is
generally infeasible. First, the choice set is discrete, which precludes the use of con-
tinuous optimization methods. Second, due to Inequality (4), this multi-dimensional
optimization problem cannot be decomposed into m independent optimization prob-

lems. As a result, the curse of dimensionality arises for m > 1 due to two interrelated

13



reasons. First, even for m = 2, the choice set in any given period ¢ consists of 9
options (or 5, under symmetry), and this number grows exponentially with m. Sec-
ond, determining whether a given choice is feasible and optimal requires knowledge
of B(¥') for all ¥/ > ¥, and subsequently, computing its respective integral over all
possible future values of ¥’ for each choice a to evaluate C(a, V). If the support of
v, were discrete with cardinality n, the problem could, in principle, be solved using
“backward induction” on the Bellman equation. However, this approach is analyt-
ically feasible only when both n and m are very small (in Online Appendix A we

provide a characterization for the n = m = 2 case).'”

4.2 Implementability of First-Best Experimentation

We provide necessary and sufficient conditions on the values v4,..., 7, under
which the players can implement the first-best experimentation policy described in
Proposition 1 in the current and in all subsequent periods. We refer to this outcome
as “implementing the first-best experimentation policy.” As we will show, there may
exist a period ' > t such that the players can implement the first best in period #’
and all subsequent periods, but not in the earlier period ¢.

Inequality (2) implies that there exists a threshold o, equal to ¢ (1 + §) /4, which
corresponds to the minimum project value required for a project’s exploitation to be
sustainable in equilibrium when there is only one domain of cooperation (m = 1).
Using this threshold v, we now provide the conditions on o1, ..., 0, under which the
players can implement the first-best experimentation policy, which entails exploiting

a project if and only if its value is at least v°.

Proposition 3 (Nec. and Suff. Condition for First-Best Experimentation)
In any optimal relational contract and for any period t, the players implement the

first-best experimentation policy for all t' > t if and only if:

1 « 146
h(01, ...y Op) = p” Zmax{ﬁj,vo} >v:i=c j; : (5)
j=1

1%Note that meaningful exploration/exploitation decisions require the support of v, to have a
cardinality strictly greater than 2. For this reason, we assume a continuous support, which also
facilitates the presentation of some of our results. However, it follows from Lemma 1 in the Appendix
that none of our results rely on continuous supports.
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As a result, there exists a threshold 5° < 1 such that the players implement the first-

best experimentation policy from period 1 onward if and only if 6 > §°.

When Inequality (5) is satisfied, the continuation value of the relationship is suf-
ficiently high to enable the implementation of the first-best experimentation policy.
Because the players can pool relational incentives across domains, the condition re-
quires that the average across domains of the maximum between the value of the
most valuable project found in each domain and the threshold v° must exceed the
threshold #. The function h(0y,...,70,) is not the arithmetic mean of the values
01, ..., 0, for two reasons: (i) under the first-best policy, players explore rather than
exploit projects with values lower than v°, and (ii) exploration contributes to the
players’ continuation value. Furthermore, the condition v > ¥ is both necessary and
sufficient for Inequality (5) to hold from period 1 onwards. The function v°(8) — o(4)
exhibits a single-crossing property in J, implying the existence of a threshold §°.1

Proposition 3 allows us to give necessary and sufficient conditions under which the
players cease all exploration and transition to exploiting the most valuable project
discovered in each domain, provided that they are already implementing the first-best

experimentation policy. We refer to this outcome as “permanent exploitation.”

Corollary 1 (Nec. and Suff. Condition for Permanent Exploitation)
In any optimal relational contract, the players permanently exploit projects with values

V1, .., O if and only if 0; > 00 for all j and the average of ¥y, ..., 0y, exceeds 0.

Proof of Corollary 1. Proposition 3 establishes that these conditions are jointly suf-
ficient. Fixing v, the continuation value associated with permanent exploitation of v
is weakly lower than the continuation value under the first-best policy at v. Hence, if
the players are able to permanently exploit ¥, they can also implement the first-best
experimentation policy. This implies that these conditions are not only sufficient but

also jointly necessary. O]

The conditions stated in Corollary 1 imply that, in expectation, the players achieve
the permanent exploitation outcome weakly later than if they could follow the first-
best experimentation policy from period 1 onward. This delay relative to the first-best
is strictly positive when § < §°. In fact, as we will show in Proposition 6, permanent

exploitation in all domains of cooperation is not even guaranteed to occur.

UProposition 1 establishes that player 0’s threshold, v%(§), monotonically increases in &, while
the definition of @ implies that ©(d) monotonically decreases in ¢.
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We conclude by noting that the conditions listed in Corollary 1 fully characterize
the players’ optimal experimentation policy for the second natural benchmark case in
our analysis: a single-domain collaboration. When there is only one domain (and the
optimal relational contract is non-empty), the players face a simple decision in each
period: either to exploit the best project found thus far or to explore a new project.
The exploitation threshold in this setting is time-invariant, as the players’ continua-

tion value depends solely on the value of the best project in this single domain.

Corollary 2 (Single-Domain Experimentation Benchmark)

When m = 1, there exists a threshold 6* < §° such that the optimal relational contract
1s non-empty if and only if 6 > 6*. Furthermore, in any non-empty optimal relational
contract, there exists a threshold v*(6) = max{v(5),v°(0)} such that the players ex-
plore projects until they find a project p with an associated value v, > v*. Once they

find such a project, the players exploit it in all subsequent periods.

In this subsection, we have provided the conditions on the best projects found in
each domain under which the players implement the first-best experimentation policy.
We have also shown that, if ¢ is not sufficiently high, the players will initially be unable
to implement the first-best policy. We now proceed to characterize key properties of
the players’ experimentation policy in the periods that precede an eventual transition

to the first-best policy when collaboration spans multiple domains.

4.3 Second-Best Experimentation

We now analyze the players’ optimal experimentation policy when they cannot
implement the first-best policy in the current period. We refer to experimentation in
this region as “second-best experimentation.” A non-empty region where the second-
best policy is relevant (i.e., § > ¢*) but the first-best policy is not implementable
(ie., 6 < 4°) follows from Corollary 2 and is further examined in Section 5.1. This
analysis focuses on the case where the maximal potential scope of experimentation,
m, is strictly greater than 1 (for the case m = 1, see Corollary 2).

The players’ exploration and exploitation decisions within their active domains
of collaboration are inherently intertwined with their choices of which domains to
engage in. To disentangle these dynamics, we analyze them separately: Section 4.3.1
focuses on exploration and exploitation, keeping scope decisions in the background,

while Section 4.3.2 reverses the focus.
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4.3.1 The Dynamics of Exploration-Exploitation Decisions

Under the first-best policy, each domain is treated independently and identically,
with a time-invariant threshold for project exploitation. This time-invariance ensures
that once a project is exploited or deemed unworthy of exploitation, the decision is
permanent. For collaborative experimentation, players aggregate incentives across all
domains, with domains being treated neither identically nor independently. We show
that this observation implies that the criterion used to determine project exploitation
is dynamic. As a result, the players may exploit a project temporarily, and further,

they may recall a project they previously chose not to exploit.

Proposition 4 (Temporary Exploitation and Recall of Projects)
When the players cannot implement the first-best experimentation policy in period 1
and the optimal experimentation policy is non-empty (i.e., when § € [6*,0°)), then

with strictly positive probability for any m > 1, at least one of the following occurs:

1. The players choose to exploit a project in period t, but later decide not to exploit

the same project in some period t' > t.

2. The players choose not to exploit a project in period t, but later decide to exploit

the same project in some period t' > t.

We provide intuition for why these two seemingly suboptimal behaviors are op-
timal by examining two specific examples with m = 2. The proof establishes that
these behaviors necessarily occur with strictly positive probability.

The first statement can be understood by considering the following scenario. Sup-
pose the values of the best projects in domains 1 and 2 satisfy ©v; > 09. Further,
assume that both values are sufficiently large for the players’ scope of experimenta-
tion to be maximal, but not large enough to enable them to implement the first-best
policy. If ©; is particularly high, the players will choose to exploit the project in
domain 1 and explore in domain 2. Now, imagine that the exploration in domain
2 uncovers a project with a value slightly higher than ¢;. In this case, the players
find themselves in a situation similar to the previous period, but with the roles of
the domains reversed. They will now choose to exploit the newly discovered project
in domain 2 and explore in domain 1. In Section 5.2, we simulate the optimal ex-
perimentation policy for a parameterized example to further illustrate and develop

intuition about the emergence of this behavior.
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To understand the intuition behind the second statement, consider a scenario
where the discount factor ¢ is small enough to prevent the exploitation of projects
with values only slightly above the threshold v°. Suppose the players’ scope of ex-
perimentation is maximal, which occurs, for instance, when o = 1/2.1% If period 1
explorations yield two projects with values just above v°, the players must explore
again in the next period. However, if a newly explored project has a sufficiently high
value, it can raise the continuation value of their relationship, potentially enabling
first-best experimentation. In this case, they may optimally revert to exploiting a
period 1 project despite initially choosing to explore further.

Temporary project exploitation or project recall are common in experimentation
settings, and can arise due to various factors, including the presence of a finite number
of projects or project characteristics that may not be fully revealed immediately. Our

analysis shows that strategic interactions alone can also drive these behaviors.

4.3.2 The Dynamics of the Scope of Experimentation

Proposition 3 established a threshold §°, such that when § > 6°, players implement
the first-best policy starting in period 1, maintaining maximal scope. We now examine
the dynamics of the players’ scope of experimentation when § € [0*,6°) and show that
scope is not always maximal along the equilibrium path. To focus on the relevant
case, we assume (1 —a)E(v,) < ¢, requiring player 1 to incentivize player 2 to explore.
If instead (1 — a)E(v,) > ¢, project exploration is a static equilibrium, and optimal
experimentation always maintains maximal scope.

We define a non-empty experimentation policy as “initially maximal” if |P!| = m,
“initially limited” if [P!| < m, “terminally maximal” if lim [P!| = m, and “terminally
limited” if lim [P*| < m. An initially maximal policy is always preferred over an
initially limited one whenever both are implementable, as exploring all domains pro-
vides immediate benefits (E(v,) > 2¢) and maximizes the continuation value of the
relationship. The key question, then, is whether an initially limited policy can be im-
plemented when an initially maximal one cannot. Intuitively, starting with a limited
number of domains and allowing for future expansion may be more sustainable, as
(i) it reduces early reneging temptation while maintaining a high continuation value

due to these potential future scope expansions, and (ii) finding valuable projects in

12When o = 1/2, exploration occurs in each domain in the static equilibrium, so any optimal
relational contract implements an experimentation policy with maximal scope throughout.
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early domains can enable both their exploitation and the exploration of additional
domains. We show that this intuition holds when the maximum potential scope of
experimentation m exceeds a threshold, but may fail below it.

To build intuition, we present the period-1 version of Inequality (2) for a specific
initially limited policy, where players explore projects in domain 1 during period 1,

and the corresponding inequality for the initially maximal policy, respectively:

cSé/B@hQ”wmﬁﬁh (6)

m-c< 5/B(ﬁl,...,@m|6)d61,...,d@m, (7)

where B (-) was defined in Equation (3), and where we explicitly highlight the rela-
tionship between B (-) and ¢, as this will play a key role in the intuition below. We
focus solely on period 1, remaining agnostic about the long-term dynamics of both
policies. We note that the right-hand side of (7) increases with §, indicating the
existence of a cutoff §(m) € (0,1) below which this constraint is violated. Therefore,
the question is whether (6) holds for § < §(m).

We proceed under the (incorrect) assumption that B(-|d) is continuous with re-
spect to 6.1 Under this assumption, and using (6) and (7), the initially limited policy

outlined above is optimal when ¢ is just below § if and only if:

/B(f;l,o,...,0\5(771))@1 > %/B(@h...,'&mlé(m)) doy, ..., dopy,. (8)

The right-hand side of this inequality represents the average surplus per domain
from period 2 onward under the initially maximal policy, and, intuitively, is bounded
above by that of a single domain under the first-best policy. Conversely, the left-
hand side represents the total surplus across domains from period 2 onward under
the initially limited policy. By monotonicity of the Bellman equation, the left-hand
side of Inequality (8) is bounded below by:

B (0|6(m)) = mE (v, — 2¢) + C (0) > mE (v, — 2¢) + m(c — (1 — )E (v,)), (9)

where the last step follows from Inequality (2). Since this lower bound diverges with

m, Inequality (8) holds for sufficiently large m, implying that an initially limited policy

13B(-] 4) is not continuous with respect to § because optimal experimentation is not.
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has a lower critical discount factor than the initially maximal one. We formalize this
argument in the Appendix, accounting for the potential discontinuity of B(:|d) in .

In contrast, for small values of m, an initially limited experimentation policy
may or may not be easier to implement than an initially maximal one. As shown
in Proposition 4, exploration and exploitation decisions are optimally co-determined
across domains. Thus, delaying exploration in domain j not only reduces its associ-
ated surplus but may also lower the surplus in all other domains. In the Appendix, we
show that, when m is small, this advantage of initially maximal policies can outweigh
the benefits of initially limited policies discussed above. To demonstrate this, we con-
struct a distribution of project values that yields significant advantages of conducting
multiple explorations in parallel, making initially limited policies suboptimal for all

discount factors. These intuitions are consolidated in the following proposition.

Proposition 5 (Initial Scope of Experimentation)
Suppose (1 — a)E(v,) < ¢ and m > 1. Two thresholds 6* < § < §° exist such that:

1. If§ > 6, any optimal relational contract is such that the scope of experimentation

1s 1natially mazimal.

2. If § € [6%,9), any optimal relational contract is such that the scope of experi-

mentation is initially limited.
3. If 6 < 0%, the scope of experimentation is equal to zero in all periods.

Further, denote m* := sup,,s,{m : § = 0*}. An idnitially limited experimentation
policy is optimal for intermediate discount factors for large m (i.e., m* < o00), but

may never be optimal for small m (i.e., m* > 2 may occur).

The previous proposition established results on the players’ initial scope of exper-
imentation but did not address its long-term dynamics. We now present findings on
their terminal scope. Any non-empty experimentation policy—whether initially lim-
ited or initially maximal—has a strictly positive probability of becoming terminally
maximal, as players may always, by chance, identify a project valuable enough to sus-
tain the first-best policy indefinitely. Moreover, as discussed above, the optimality of
initially limited policies relies crucially on the prospect of sufficiently likely subsequent
scope expansions. These observations raise a broader question: is experimentation

scope guaranteed to be maximal—and therefore efficient— asymptotically?
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Proposition 6 (Terminal Scope of Experimentation)

The following statements hold:

1. There exist optimal experimentation policies that are both initially limited and,

with strictly positive probability, terminally limited.

2. There exist optimal experimentation policies that are both initially mazimal and,

with strictly positive probability, terminally limited.

The reason why the players’ scope of experimentation may be terminally limited
on path can be understood by considering a vector of project values, ¥, and a subset

of domains s C {1,...,m} for which:

a) players can only permanently exploit projects in s due to insufficient continua-

tion value;

b) exploring any domain j € {1,...,m} \ s requires foregoing exploitation in one

or more domains in s due to insufficient continuation value; and

c) players prefer exploiting all projects in s over delaying some exploitations to

explore additional domains.

To prove the first statement of the proposition (respectively, the second statement),
in the Appendix we show that a), b), and c¢) hold simultaneously under an initially
limited (respectively, initially maximal) policy. Intuitively, these dynamics arise only

when ¥ is high enough for a) and c) to hold but low enough for b) to be satisfied.'*

In this subsection, we analyzed the dynamics of the players’ scope under second-
best experimentation. We showed that for intermediate discount factors and large
maximal potential scope m, the players find it optimal to begin with limited scope,

an approach made credible by the possibility of many subsequent scope expansions

14The fact that terminally limited scope may arise for intermediate values of ¥—and consequently
for intermediate values of the relationship—is reminiscent of Chassang (2010)’s result, where explo-
ration may cease when some but not all productive actions have been “revealed,” leaving the value
of the relationship in an intermediate range. Despite the differences in setting, the core intuition is
similar: conducting additional exploration requires halting the exploitation of an existing project.
In our setting, the newly explored project cannot be exploited in the current period due to b). In
Chassang’s setting, the absence of transferable utility means that exploring an additional action may
require terminating the relationship, thereby sacrificing some future exploitation. The difficulty in
computing the endogenous loss from these forgone exploitations in closed form is precisely what
hinders analytical characterizations in both settings.

21



created by the discovery of valuable projects in the early domains of cooperation.
Because the discovery of such projects is path-dependent, the players may end with

a permanently limited and thus inefficient scope of experimentation.

5 Further Analysis and Extensions

This section extends our analysis in three directions. First, we examine how the
maximum potential scope of experimentation influences its feasibility and profitabil-
ity. Second, we analyze a concrete example to graphically illustrate some of the key
dynamics of the model. Finally, we explore several simple extensions in which the

domains of cooperation are not identical or independent.

5.1 Comparative Statics of Scope

The maximum potential scope of experimentation, m, can vary significantly de-
pending on the application. When firms pool resources, some pairings may yield
numerous cooperation opportunities, while others result in fewer viable collaborative
areas, depending on the complementarity of their assets. In this subsection, we ana-
lyze how variations in m affect the profitability and sustainability of experimentation.

Before proceeding, we revisit Bernheim and Whinston (1990)’s analysis of scope, in
stationary environments without learning dynamics. First, for a scaling factor k£ > 1,
when scaling the scope of interaction by k, players can maintain the same average
payoffs by replicating the original equilibrium k& times independently. Second, when
domains are identical, pooling incentives across domains cannot improve the players’
per-domain average payoffs. However, if domains are asymmetric, players may gain
from doing so and, hence, greater scope may be beneficial.

Let 7(m) := m(m)/m denote the average joint surplus per domain of the collab-
oration. Recall that §*(m) represents the minimum discount factor for which the
optimal relational contract is non-empty. For a scaling factor £ > 1, the following
weak inequalities follow from Bernheim and Whinston (1990): 7(mk) > 7(m) and

§*(mk) < 6*(m)."® In our setting, we can provide necessary and sufficient conditions

15We note that 7(m) need not be monotone in m. For instance, 7(m) may depend on m’s
parity—pooling incentives across two domains might enable a relatively efficient experimentation
policy, but with insufficient slack to improve a third domain’s efficiency (as in the distribution used
to prove Statement 2 of Proposition 6).
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for these inequalities to hold strictly, due to the dynamics stemming from the players’
exploration of projects. Specifically, 0 < 0*(m-k) < §*(m) for k > 1if (1—a)E(v,) < ¢
and otherwise §* (m - k) = 0 regardless of k. When (1 — «)E(v,) < ¢, the optimal
relational contract will be empty for low discount factors. In these instances, scaling
up m will strictly decrease 6*. To see why, note that if the players were to implement
k independent and concurrent collaborations, each with an identical experimentation
policy, the threshold 6* (m - k) would be independent of k. However, this approach
would be inefficient as it only leverages relational interdependencies within segmented
multi-domain experimentation policies. Therefore, the players could sustain a non-
empty relational contract for lower discount factors by leveraging interdependencies
across all m - k domains. By an identical reasoning, 7(m - k) > 7(m) whenever the

second-best experimentation policy is non-empty.

5.2 Multi-Project Collaborations: A Graphical Illustration

We analyze an example with specific parameter values. We set ¢ =1 and 6 = 1/3.
Furthermore, we consider a symmetric relationship by setting o = 1/2. The players
can cooperate in two domains (m = 2). Finally, the project values v, are drawn from a
shifted exponential distribution with a rate parameter A = 1/2, i.e., v, ~ 1+Exp(1/2).
Under this distribution, E(v,) = 3. The players’ scope of experimentation is always
maximal since alE(v,) — ¢ = (1 — a) E(v,) — ¢ > 0, making exploration preferable to
inactivity. Further, the continuation value C(01, 02) is weakly greater than 1 for all 0,
and 0y, as players can always explore two new projects per period, yielding a payoff
of E(v,) — 2c = 1 per project and a continuation value C(0y,02) also equal to 1. As
a result, if Inequality (5) does not hold, players either: (i) exploit one project while

exploring another, or (ii) explore two projects simultaneously.

Figure la. The figure depicts the first-best policy stated in Proposition 1. The
vertical and horizontal black dotted lines represent the time-invariant threshold °
for domains 1 and 2, respectively. In both domains, projects with values above this
threshold are permanently exploited, while those below are never exploited.

Further, the solid black line in the figure divides the project value space into two
distinct regions. This line represents the set of (91, 02) values satisfying h(0y, 09) = 0,
a condition stated in Proposition 3. To the northeast of this line, in the region

labeled “First-Best,” the players can implement the first-best experimentation policy.
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In contrast, to the southwest of the line, in the region labeled “Second-Best,” the
players can exploit at most one project at a time

The horizontal segment represents where 9; < v°, so project 1 is never exploited
under the first-best policy, and implementation depends solely on ©5. Symmetrically,
the vertical segment shows where 6, < v°, with implementation depending only on ;.
The downward-sloping segment captures instances where both ©; and 9, exceed v°.
Here, increasing one project’s value allows decreasing the other’s while maintaining

sufficient continuation value for first-best policy implementation.
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Figure 1: Optimal Multi-Project Experimentation

In the figure, we assume c =1, m =2, =1/3, and v, ~ 1+ Exp(1 /2). 0; and 92 denote the
values of the best projects discovered in domains 1 and 2, respectively. The left figure plots (i) the
threshold v for switching from exploration to exploitation in the first-best and (ii) the set of ©; and
09 values satisfying h(?1,02) = 0 in solid black. The right figure divides the project value space into
four regions, determined by the exploitation or non-exploitation of each project. The top mention
indicates the decision for the project with value ¥, while the bottom mention shows the decision
for the project with value ©5. In Blue, we plot one realization of a sample path.

Figure 1b. The project value space is divided into four regions, determined by
the exploitation or non-exploitation (in favor of exploration) of each project. The
top mention indicates the decision for the project with value v, while the bottom
mention shows the decision for the project with value 5. It follows from Figure la
that both projects are chosen for exploitation when in the “First-Best” region and
01, D2 > v°. Outside of this region, the players can choose one project for exploitation
at most. One can prove that there exists a threshold, v’, on the value of the best of

the two projects such that, below this threshold, the players choose to explore two
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new projects rather than exploiting the best of the two projects. We observe that
the threshold v’ is lower than v°, indicating that players may opt to exploit a project
even when they are certain to not permanently exploit it in the future.'¢

Figure 1b also presents a sample path illustrating the evolution of realized project
values over time, depicted in blue. In the early phase where the players are exploring
two projects simultaneously, both ¥, and 0, weakly increase over time. In the phase
where the players exploit a project in domain j, 9; remains constant, while 9_; weakly
increases over time. Finally, in the phase of the relationship where the players exploit
both projects, 01, 09 stay constant because exploitation is permanent. Arrows are used
to signify changes in project values when a more valuable project is identified, while
self-loops indicate situations where more valuable projects are either not discovered
or not pursued. The path shown in the figure includes temporary exploitation in
domain 2 (of a project guaranteed to be not permanently exploited), as discussed in

Proposition 4.

5.3 Beyond Independent and Identical Domains

Our main analysis assumed identical and independent collaboration domains. In
practice, firms often collaborate across domains with diverse characteristics and tech-
nological interdependencies. This reality raises the question: Which domains, if any,
should be prioritized when initiating collaboration? The Online Appendix explores
three natural scenarios that address these questions and formulate predictions. We

briefly summarize these extensions here.

When to explore risky domains?

Our main analysis, by assuming an infinite number of independent and identically dis-
tributed projects, effectively eliminated risk considerations. However, collaborating
parties often face uncertainty about their collaboration’s potential value, with vary-
ing degrees of uncertainty across cooperation domains. For instance, a buyer-supplier
collaboration might involve both incremental improvements to an existing product
and the development of a radically new—and thus potentially unprofitable—project.
To capture these features, we modify a two-domain version of our framework by sup-

posing that that the first domain is exactly as in the main model, while the other

16The threshold v’ presented in the figure is computed using numerical integrals and approximate
solutions to the Bellman equation. The result that v’ can be lower than v° can be proven