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Abstract

We analyze collaborative experimentation across multiple independent do-

mains. Each domain contains infinitely many potential projects with asymmet-

ric benefits. In each period and domain, two players can idle, jointly explore

a new project, or jointly exploit a known one, with voluntary transfers. For

intermediate discount factors, treating domains as independent during exper-

imentation is suboptimal. The optimal experimentation policy exhibits com-

mon features of collaborative experimentation: lengthy exploration, temporary

project exploitation, recall of past projects, and initially or terminally limited

experimentation scope. We connect these findings to research on buyer-supplier

dynamics and persistent productivity differences.
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Fréchette, George Giorgiadis, Robert Gibbons, Marina Halac, Johannes Horner, Matthias Lang,

Alessandro Lizzeri, Jin Li, Rocco Macchiavello, Chiara Margaria, Simone Meraglia, Stephen Morris,

Aroon Narayanan, Juan Ortner, Jacopo Perego, Hazhir Rahmandad, Daniel Rappaport, Patrick Rey,

Kareen Rozen, Klaus M. Schmidt, Steven Tadelis, Michael Ting, Jean Tirole, Marta Troya Martinez,

Jonathan Weinstein, Michael Whinston, and seminar audiences at the Oliver E. Williamson Seminar

at Berkeley Haas, LMU Munich, the MIT Organizational Economics and Theory groups, the 2023

Montreal IO Conference, the Fall 2023 NBER Organizational Economics Workshop, the Organisa-

tional Economics and Leadership Workshop at Exeter University, the Paris School of Economics,

the 2023 SIOE Conference, and the TSE Microeconomic Theory Workshop.

1



1 Introduction

In many settings, actors collaborate to experiment simultaneously across multiple

domains. In buyer-supplier relationships, companies co-innovate in various product

lines or geographies. In the pharmaceutical sector, an R&D alliance may combine re-

sources to pursue both vaccine development and protein targeting. Inside firms, con-

tinuous improvement methods involve managers and workers collaborating to identify

and implement improvements throughout dimensions of the production process.

The success of these collaborations relies on maintaining aligned interests, so that

each party finds ongoing value in maintaining the partnership. In multi-domain col-

laborations, the ongoing value of continued participation is determined by the ag-

gregate value across all domains of cooperation. This aggregate value—representing

what parties stand to lose by withdrawing their cooperation—creates interdependen-

cies across domains. For instance, a breakthrough in one domain will increase the

parties’ perceived value of the collaboration, mitigating opportunism in the other do-

mains. In innovation-intensive settings, parties must therefore approach their joint

experimentation in each domain of cooperation by balancing the domain-specific out-

comes with the broader implications for the overall collaboration.

This paper investigates how these cross-domain interdependencies influence the

dynamics and outcomes of collaborative experimentation in settings such as those

mentioned above. It then relates the main findings to the existing applied literature

on buyer-supplier relationships and persistent productivity differences across firms.

We develop a model of multi-domain collaborative experimentation. Time is dis-

crete with an infinite horizon, and the number of domains is exogenous. Each domain

contains infinitely many ex ante identical projects on which the players can cooperate,

and the domains are technologically independent. Cooperation on a project requires

both players’ participation; working individually on projects is not possible. In each

period and domain, players can choose to idle, explore a new project, or exploit a

known one. Project benefits are time-invariant but initially uncertain, and they may

be asymmetric across players. The benefits of a project are revealed in the first pe-

riod of cooperation on that project. Moreover, all projects entail a constant fixed

cost for the players, during both exploration and exploitation phases. As a result,

players might be reluctant to collaborate in exploring projects if they expect that

their individual benefit will not exceed this cost, and they may similarly be reluctant
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to collaborate in exploiting a project if their realized individual benefit falls below the

cost. To align incentives, players can transfer money to each other. However, these

transfers are voluntary, so any experimentation policy—a rule determining whether to

exploit a known project or explore a new one for each domain—must be self-enforcing.

We focus on Subgame Perfect Equilibria (relational contracts) that maximize the

players’ discounted cumulative joint payoffs (their “surplus”). As a starting point,

Proposition 1 examines our first benchmark, the single-player scenario, providing a

straightforward solution. Given the infinite number of available projects, and follow-

ing Bergemann and Välimäki (2001), the players treat each domain independently

and explore projects until one exceeds a time-invariant threshold, after which perma-

nent exploitation of this project is optimal. We refer to this optimal policy for the

single-player scenario as the “first-best experimentation policy.” Notably, this first-

best policy would be optimal for two players if all projects benefited them equally.

In the main analysis, we introduce asymmetric benefits by assuming each project

benefits only one player. The beneficiary’s identity is revealed when players first co-

operate on a project and is independently and identically distributed across projects.

These asymmetric benefits create the key friction that may impede first-best ex-

perimentation, as implementing this policy requires credible promises of transfers

between players. Such promises may lack credibility when players making transfers

have insufficient continuation value in the collaboration. As mentioned above, since a

player’s continuation value equals the sum of continuation values across all domains

of cooperation, experimentation choices in one domain affect all others.

In the spirit of Levin (2002, 2003), we show in Proposition 2 that (i) any optimal

experimentation policy is governed solely by the value of the most valuable projects

identified in each domain to date, and (ii) a single implementability constraint, de-

pendent only on these values and the experimentation policy, fully captures all de-

viation temptations across players, domains, and transfers. These results imply that

any experimentation policy satisfying this constraint can be implemented through a

relational contract with appropriately designed transfers. As a result, the optimal

experimentation policy is characterized by an m-dimensional Bellman equation sub-

ject to the implementability constraint. However, unlike the single-player benchmark,

this constraint precludes an index characterization of the optimal policy.

Since the first-best experimentation policy treats each domain independently, we

can explicitly determine the conditions under which this policy is implementable
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through a relational contract and, consequently, chosen by the players. Proposition

3 provides a necessary and sufficient condition: the joint value of the most valuable

projects identified in each domain must be sufficiently high to ensure that the col-

laboration’s continuation value supports the implementation of the first-best policy.

For low discount factors, this condition binds, implying that, in expectation, play-

ers transition to permanently exploiting the most valuable projects found in each

domain later than if they could implement the first-best from the start (Corollary

1). In some cases, this transition never occurs, as discussed below. Moreover, this

condition enables a complete characterization of optimal experimentation in our sec-

ond benchmark: the single-domain case. Here, exploration continues until a project’s

value exceeds a fixed threshold—higher than in the single-agent case—after which

permanent exploitation becomes optimal (Corollary 2).

Next, we analyze the second-best experimentation policy, which arises when the

first-best policy is not implementable in the current period. We first examine the play-

ers’ exploration and exploitation decisions, abstracting from the number of domains

they engage in. Due to cross-domain interdependencies, the player’s exploitation cri-

terion becomes dynamic and characterization is challenging. Nonetheless, Proposition

4 shows that, unlike the first-best policy where explored projects are either perma-

nently exploited or never used, the second-best policy is such that, with strictly

positive probability, players (i) exploit projects temporarily or (ii) exploit previously

unexplored projects rather than the most recently explored ones.

We then examine, under the second-best policy, the dynamics of the players’

scope of experimentation—defined as the number of domains with exploration or ex-

ploitation in any given period. We analyze both initial and terminal (asymptotic)

scope of experimentation. We show that starting with limited scope—such as one

domain instead of m—reduces players’ initial deviation temptation by a factor of m.

The potential for later scope expansions, if the continuation value increases, further

mitigates initial deviation temptations. However, the continuation value increases

only through exploration, and conducting one exploration (versus m) reduces these

increases by a factor on the order of m. Proposition 5 shows that, although these op-

posing forces cannot generally be ranked, for large m, an initially limited scope allows

implementation over a wider range of discount factors than immediate exploration in

all domains. Moreover, the continuation value of the collaboration need not increase

monotonically over time: for instance, a domain’s continuation value decreases when
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players switch from exploration to exploitation. Thus, exploiting projects in some do-

mains may create inefficiencies in others, including being permanently idle. Building

on this observation, Proposition 6 shows that initially limited experimentation poli-

cies may never reach maximal—and thus efficient—scope asymptotically, and even

policies starting with maximal scope may become permanently limited.

In Section 5, we examine how the potential scope of experimentation impacts its

feasibility and profitability, drawing connections to the seminal work of Bernheim

and Whinston (1990) on multilateral interactions. Further, we discuss extensions of

the model included in the Online Appendix, in which the domains of cooperation are

asymmetric or exhibit technological interdependencies.

Section 6 connects our theoretical analysis with two distinct research areas: buyer-

supplier dynamics and persistent productivity differences across firms. The buyer-

supplier relationships literature stresses experimentation and credibility as critical

factors for successful collaborations, and corroborates the prevalence of gradualism

and strong path dependence. In addition, we argue that our framework provides novel

insights into how managerial practices can generate productivity differences among

seemingly similar firms.

The rest of the paper is structured as follows. Section 1.1 reviews the relevant

theoretical literature. Section 2 presents the model. Section 3 characterizes the first-

best experimentation policy. Section 4 provides the main analysis. Section 5 discusses

various model extensions. Section 6 examines the applied literature in light of our

theoretical findings. Section 7 concludes the paper.

1.1 Related Theoretical Literature

In this section, we review the theoretical literature related to our work. We

postpone the discussion of the applied literature to Section 6.

Firstly, our research connects to the literature on multi-armed bandit problems

(Robbins, 1952) and on optimal search (Lippman and McCall, 1976; Weitzman, 1979),

contributing to the strand within economics that examines strategic interactions.1

1Our setting resembles standard search problems by modeling many alternatives for players to
explore. However, unlike typical search problems where rewards come only at the end from the best
explored alternative, our model allows players to benefit each time they cooperate on a project,
without settling on one. For this reason, we use the broader term “experimentation” rather than
“search.” Moreover, existing models of strategic experimentation with bandits often limit options
to a few alternatives, like a risky and a safe project. We assume an infinite number of i.i.d. projects
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Bolton and Harris (1999) and Keller et al. (2005) consider settings in which players

independently pull arms and free-ride on each others (see Hörner et al., 2022, for more

recent work on this topic).2 In our setting cooperation among players is essential for

both the exploration and exploitation of projects, as individual experimentation is

not feasible. In Strulovici (2010), players vote to choose between a safe arm and a

risky one, with its asymmetric benefits revealed over time through experimentation

(see also Anesi and Bowen, 2021, on this topic). Further, Albrecht et al. (2010)

examine a sequential search problem where a committee determines which project to

permanently exploit. Chan et al. (2018) and Reshidi et al. (2024) contrast group and

individual decision-making regarding experimentation, looking at the impact of static

versus sequential information acquisition and of voting rules. In contrast to these

papers, our setting allows for voluntary transfers and requires the combined efforts

of all players for experimentation. Most significantly, our framework enables players

to experiment simultaneously across multiple domains, a realistic yet understudied

feature. Even in single-player settings, such environments pose analytical challenges.

As noted in Bergemann and Välimäki (2008),“it is well known that [a Gittins] index

characterization is not possible when the decision maker must or can select more

than a single arm at each t,” due to the optimality of recalling past projects.3 When

infinitely many ex ante identical projects exist— as in Bergemann and Välimäki

(2001), a single-player analog to our first-best benchmark—past project recall does

not occur, and a Gittins index exists. In our setting, however, strategic considerations

lead not only to project recall but also to a dynamic exploration process where players

may pause exploration in a domain and later resume it, effectively recalling an entire

domain. These analytical challenges are further compounded by the requirement that

an experimentation policy must form an equilibrium.

Secondly, this work relates to the literature on relational contracts (see e.g., Bull,

1987; Macleod and Malcomson, 1989; Baker et al., 1994, 2002; Levin, 2002, 2003, for

early contributions).4 Halac (2014) studies a setting in which the value of the players’

relationship increases exogenously with its duration, allowing for greater efficiency.

to eliminate aggregate uncertainty, making the dynamics driven purely by strategic factors.
2Liu and Wong (2023) consider an environment in which players compete to explore alternatives.
3Moreover, Bergemann and Välimäki (2008) note that even if such an index existed, “it is nor-

mally impossible to obtain analytical solutions for the problem.”
4Also at the intersection of the bandit and the relational contracting literatures, Urgun (2021)

examines a scenario where a principal interacts with multiple agents whose publicly-observable types
depend on the contracting history.
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In our setting, players’ exploration and exploitation decisions endogenously shape the

continuation value of their relationship. While exploration in any domain increases

this value, exploitation reduces it, making sustained experimentation in other do-

mains more challenging. This trade-off is related to the analysis in Chassang (2010),

where increases in relationship value diminish the players’ ability to experiment. In

his model, the agent knows which arms are productive and which are not, while the

principal, at the outset, cannot differentiate between the two. Without monetary

incentives, incentivizing the agent to choose productive arms is accomplished by the

threat of firing the agent following failures. This dynamic makes motivating explo-

ration progressively expensive as more productive arms are identified. Should the

relationship endure, it ultimately enters an “exploitation” phase and its value stops

growing. In our model, the players are symmetrically informed about their environ-

ment, and the presence of transferable utility–apt for modeling firms–removes the

need for inefficient on-path punishments. Yet, it generates rich dynamics similar to

those observed in collaborations between and within firms (see Section 6.2).5

Finally, we contribute to the literature on gradualism in collaborations. Watson

(1999, 2002) examine a setting in which players are uncertain regarding their counter-

part’ intentions—to either collaborate genuinely or take advantage of the other. They

begin with low cooperation to mitigate the losses from defection. As the players be-

come more optimistic, the collaboration grows. Collaborations involving trustworthy

players achieve optimal cooperation, while those with untrustworthy players eventu-

ally fail. In our setting, the scope of players’ experimentation can expand or contract

over time due to the evolving continuation value of the relationship. Moreover, the

two settings make opposite predictions about how the discount factor affects players’

incentives to “start small.’ In our setting, a higher discount factor reduces this need,

whereas in the frameworks analyzed by Watson (1999, 2002) and the broader dy-

namic screening literature (e.g., Ely and Välimäki, 2003; Acharya and Ortner, 2022),

a higher discount factor increases it, as separation becomes harder to achieve.

5Introducing transferable utility within Chassang (2010), where information asymmetry plays a
central role, would make the value of the players’ relationship constant on path. We further discuss
the connection to Chassang (2010) in Footnote 14 and Section 6.2. For a setting similar to Chassang
(2010) but with imperfect transfers and uncertainty about the value of the relationship, see Venables
(2013). For work on experimentation in principal-agent settings with commitment, see Halac et al.
(2016) and Ide (2024).
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2 The Setup

Two players, such as a buyer and a supplier or two firms in an R&D alliance, with

a discount factor δ < 1 and zero per-period outside options, have the opportunity to

interact over multiple time periods t = 1, 2, . . . . Their interaction spans m exoge-

nously fixed domains—such as distinct geographical markets or product categories in

a buyer-supplier relationship—where each domain j contains a countably infinite set

of projects Pj. The union of all these sets forms the total set of projects, denoted as

P = ∪jPj, where each project within P is indexed by p. In each period t, and for each

domain j, each player i = 1, 2 chooses up to one project from the set Pj. The finite

set of projects chosen by player i in period t is denoted by P t
i . The players cooperate

on the set of projects Pt = P t
1 ∩ P t

2, following a unanimity rule, and cannot work

individually on projects not included in Pt, as both players possess indispensable and

complementary assets or skills. The cardinality of this set, |Pt| ≤ m, is referred to as

the scope of the players’ experimentation in period t.

Each project in Pt costs c > 0 for each player and has initially unknown time-

invariant value vp ∈ R, which is publicly observed after the first cooperation. We

assume that for each project, a single player receives the entire value vp of the project.
6

The identity of any project’s beneficiary is, however, initially unknown and we denote

it by xp ∈ {1, 2}. Both vp and xp are each i.i.d. across projects and domains, making

all domains ex ante identical. We denote by α ∈
[
1
2
, 1
]
the probability that xp = 1,

implying that player 2 receives vp with probability 1− α.

We say that a project is being “explored” when cooperated on for the first time

and “exploited” when cooperated on in both the current period and at least one prior

period. There are no intertemporal restrictions on project availability.

We make two assumptions on the distribution of project values. First, we assume

that the distribution of vp admits a continuous density with a convex support equal

to R+. Next, we assume E(vp) ≥ 2c. These assumptions ensure that the first-best

experimentation policy will be unique and non-empty.7

Further, the players exchange money twice during each period. At the beginning of

6Our results hold for less skewed benefit distributions, provided one player’s valuation exceeds
the cost c while the other’s falls below it for each project.

7Assuming an unbounded support also simplifies some technical aspects of the proofs. Further,
E(vp) < 2c could make no experimentation optimal in the first-best for low discount factors, unnec-
essarily complicating our analysis of the second-best policy where the discount factor is key.
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each period t, the players make discretionary transfers to each other, where wt
i,−i ∈ R+

denotes such a transfer from player i to player −i. At the end of each period t, players

again make discretionary transfers to each other, where bti,−i ∈ R+ denotes such a

transfer from player i to player −i.8 Finally, player i’s period t payoff is equal to:

πt
i = wt

−i,i − wt
i,−i + bt−i,i − bti,−i +

∑
p∈Pt

(
vp1xp=i − c

)
, where i ∈ {1, 2} , (1)

and where 1xp=i = 1 if xp = i and otherwise is equal to zero.

We conclude the model’s description by stating the timing of the stage game.

Both players simultaneously choose their discretionary transfers wt
i,−i. Next, both

players simultaneously make their project choices P t
i . For each project p ∈ Pt, the

players incur c and observe its beneficiary xp and its value vp, and player xp pockets

vp. Finally, both players simultaneously choose their discretionary transfers bti,−i.

Relational Contracts. A relational contract is a complete plan for the relation-

ship. Let ht = (w1,P1,v1,x1,b1, . . . , . . . ,wt−1,Pt−1,vt−1,xt−1,bt−1) denote the his-

tory up to date t and Ht the set of possible date t histories, where boldface lowercase

letters indicate vectors. Then, for each date t and every history ht ∈ Ht, a relational

contract describes: (i) the wt transfers; (ii) the set of projects Pt (wt) as a function

of wt; and (iii) the bt (wt,Pt,vt,xt) transfers as a function of wt, Pt, and the re-

alizations of vt and xt. Such a relational contract is self-enforcing if it describes a

Subgame Perfect Equilibrium of the repeated game. Within the class of Subgame

Perfect Equilibria, we analyze equilibria which maximize the players’ joint surplus.

Restricting attention to pure strategy equilibria is without loss of optimality because

(i) mixing on transfers increases the maximal transfers players promise each other

and (ii) mixing on projects leads to limited scope that can be replicated by being idle

in some domains. In the event of a deviation in some period t, the players respond

(i) by choosing P t
i = ∅ and bti,−i = 0 if these choices have not been made yet and

(ii) by permanently breaking off their relationship (i.e., reverting to the worst equi-

librium of the stage game from the next period onward). This punishment is without

8We incorporate the option of monetary transfers both before and after the players’ project
choices, although removing either would not qualitatively affect our results. Without transfers at
the beginning of each period, surplus might no longer be fully redistributed across the players without
affecting incentives. Without transfers at the end of each period, incentives for the current period
would rely on transfers from the subsequent period, complicating the proofs.

9



loss of optimality as it occurs out-of-equilibrium (c.f. Abreu, 1986).9 Throughout, a

relational contract is defined as “non-empty” if Pr(
∑

t |Pt| > 0) > 0.

3 First-Best Experimentation

We characterize the optimal experimentation policy for a benchmark where a

single decision maker, “player 0,” maximizes the sum of the payoffs of both players.

This optimal experimentation policy is identical to the one we would obtain if we

modified the model described in Section 2 so that the projects always benefit both

players equally. The proof of the following proposition closely follows Bergemann

and Välimäki (2001) and is provided in the Appendix, along with proofs for all other

statements omitted from the main text.

Proposition 1 (First-Best Experimentation Policy)

For each domain j and period t, player 0 adopts the following experimentation policy:

if a previously-explored project p has the highest value and vp ≥ v0(δ), exploit it; If

no previously-explored project has a value exceeding v0(δ), explore a new project. The

threshold v0(δ) is increasing in δ.

Player 0 treats each domain separately and identically, given the additive separa-

bility of payoffs across projects and domains, as well as the ex ante identical nature

of domains. The threshold v0 arises from player 0’s decision in each domain to either

exploit the best project found thus far or explore a new project in search of a supe-

rior one. Furthermore, exploitation is permanent because player 0 does not acquire

new information when exploiting a project. Likewise, given the infinite supply of ex

ante identical projects in every domain, player 0 never chooses to exploit a project he

chose not to exploit in the past. Finally, as the discount factor increases, the value of

exploration increases, which explains the comparative statics result for v0.

In summary, the first-best policy maximizes the scope of experimentation, with

exploration/exploitation decisions in each domain dictated by an independent, iden-

tical, and time-invariant threshold. We now analyze the model from Section 2, char-

acterizing the conditions under which these features break down, and describing the

resulting dynamics that emerge.

9Alternatively, players could maintain the equilibrium but allocate all surplus to the non-deviator.
This provides identical incentives and, being Pareto optimal, is less prone to renegotiation.
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4 Main Analysis

This section analyzes the model described in Section 2. In Section 4.1, we char-

acterize the class of optimal relational contracts on which the analysis focuses and

establish a necessary and sufficient condition for an experimentation policy to be

implementable by an optimal relational contract. In Section 4.2, we provide the con-

ditions under which the players can implement the first-best policy stated in Proposi-

tion 1. In Section 4.3, we characterize key properties of the optimal experimentation

policy when they are unable to implement the first-best policy.

4.1 Optimal Experimentation Policies: Implementability

In our setting, surplus-maximizing relational contracts depend on the players’ be-

liefs about the projects. We denote these beliefs at the beginning of period t by

µt(ht) := {∆(vp, xp)|ht}p∈P . We show that there exist surplus-maximizing relational

contracts that condition on ht only through µt(ht). Moreover, restricting attention to

relational contracts specifying the same continuation equilibrium following any two

on-path histories ht
1 and ht′

2 leading to the same beliefs µ is without loss of optimality,

since the only history-dependent outcome that alters the set of continuation equilib-

ria are the players’ beliefs µt. Furthermore, the continuation equilibria prescribed

by such surplus-maximizing relational contracts are also surplus-maximizing; other-

wise, non-surplus-maximizing continuation equilibria could be replaced with surplus-

maximizing ones, with appropriate transfers to maintain incentives. We refer to such

relational contracts as optimal. The following proposition formalizes this characteri-

zation and provides a necessary and sufficient condition for an experimentation policy

P̂ : {∆(vp, xp)}p∈P → P to be implementable by an optimal relational contract.

Proposition 2 (Optimal Relational Contracts)

• For any surplus-maximizing relational contract, there exists an alternative surplus-

equivalent relational contract such that (i) for all t and for all on-path histories

ht ∈ Ht, the continuation equilibrium is surplus maximizing, and (ii) for any

two on-path histories ht
1 and ht′

2 , if µ
t (ht

1) = µt′
(
ht′
2

)
, then the relational con-

tract specifies the same continuation equilibrium following these histories.

• There exists an optimal relational contract that implements an experimentation
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policy P̂(·) if and only if the following inequality holds for all on-path ht ∈ Ht:

∑
p∈P̂(µt)

2∑
i=1

max
(
0, c− E

(
vp1xp=i|µt

))
≤ C

(
µt
)
, (2)

where C (µt) (“the continuation value”) is the expected net present value of the

players’ joint surplus starting in t+ 1 given P̂(·) and µt.

The proof of this proposition extends the work of Levin (2003). In our setting,

despite the stochastic nature of the players’ continuation value, we show that con-

sidering its expectation is sufficient to characterize the experimentation policies that

can be implemented by a relational contract.

The intuition for the first statement was provided above the proposition. Next,

recall that the main tension faced by the players is that the experimentation policy

which maximizes their joint surplus involves the selection of projects that do not

benefit both players. Inequality (2) states that for an optimal relational contract

to implement an experimentation policy everywhere on path, the continuation value

induced by this policy must exceed the total reneging temptation across players and

projects in all periods and histories. In turn, the total reneging temptation is the

sum across players and projects of a project’s reneging temptation to a player, which

is either zero if the project generates a positive net expected gain, or equal to the

magnitude of the net expected loss. The sum is across projects because, for any

beliefs µ, each player can deviate by selecting any subset of P̂ (µ). This condition is

necessary for the relational contract to constitute an equilibrium. In the proof, we

show that the presence of money also ensures sufficiency.

The proposition implies that characterizing the optimal relational contract reduces

to determining the players’ optimal experimentation policy, subject to Inequality (2)

holding along the equilibrium path. This simplification arises because all transfers

cancel out in both the joint surplus expression and the right-hand side of (2). Building

on this observation, we now state the corresponding optimization problem.

The optimal experimentation policy in any given period depends only on the

values of the most valuable projects identified in each of the m domains, denoted by

v̂1, . . . , v̂m, where v̂j := 0 if no projects have been explored in domain j. Players never

exploit a project with a lower value than another, as doing so would reduce their joint

payoff and make Inequality (2) (weakly) tighter. Thus, tracking v̂ := (v̂1, . . . , v̂m) is
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sufficient to represent players’ beliefs about the projects. For each j, they choose one

of three actions: remain idle (aj = 0), explore a new project (aj = 1), or exploit

the highest-valued known project (aj = 2). The experimentation policy is then

determined by solving the following Bellman equation, where B(v̂) represents the

players’ joint surplus:

B(v̂) = max
a∈{0,1,2}m

{
m∑
j=1

[
1aj=1E(vp − 2c) + 1aj=2(v̂j − 2c)

]
+ C(a, v̂)

}
(3)

subject to:
m∑
j=1

[
1aj=1c+ 1aj=2 max{0, c− (1− α)E(vp)}

]
≤ C(a, v̂). (4)

Notably, Inequality (4) aggregates incentives across domains, introducing interde-

pendencies. The implications of these interdependencies for players’ experimentation

will be the focus of our analysis. Moreover, they prevent an analytical characteriza-

tion of the optimal policy, as we explain below.

Further, we caution against the following intuition. While the players’ joint sur-

plus, B(·), increases over time and the continuation value for a fixed policy, C(a, ·),
also grows, the equilibrium continuation value, C(a, ·), is not necessarily monotonic.

This non-monotonicity arises even under the first-best policy described in Proposi-

tion 1. For instance, C(a(v0+ϵ), v0+ϵ) < C(a(0), 0), because after identifying a project
with a value slightly above v0, player 0 becomes nearly indifferent between exploiting

the current project and continuing to explore. This implies that the continuation

value associated with exploration exceeds that of exploitation. The non-monotonic

nature of the continuation value further complicates the analysis, as Inequality (4)

does not necessarily relax over time.

4.1.1 Challenges in Characterizing Optimal Experimentation

As discussed in Section 1.1, our setting does not admit a Gittins Index characteri-

zation. More generally, any characterization of the optimal experimentation policy is

generally infeasible. First, the choice set is discrete, which precludes the use of con-

tinuous optimization methods. Second, due to Inequality (4), this multi-dimensional

optimization problem cannot be decomposed into m independent optimization prob-

lems. As a result, the curse of dimensionality arises for m > 1 due to two interrelated
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reasons. First, even for m = 2, the choice set in any given period t consists of 9

options (or 5, under symmetry), and this number grows exponentially with m. Sec-

ond, determining whether a given choice is feasible and optimal requires knowledge

of B(v̂′) for all v̂′ ≥ v̂, and subsequently, computing its respective integral over all

possible future values of v̂′ for each choice a to evaluate C(a, v̂). If the support of

vp were discrete with cardinality n, the problem could, in principle, be solved using

“backward induction” on the Bellman equation. However, this approach is analyt-

ically feasible only when both n and m are very small (in Online Appendix A we

provide a characterization for the n = m = 2 case).10

4.2 Implementability of First-Best Experimentation

We provide necessary and sufficient conditions on the values v̂1, . . . , v̂m under

which the players can implement the first-best experimentation policy described in

Proposition 1 in the current and in all subsequent periods. We refer to this outcome

as “implementing the first-best experimentation policy.” As we will show, there may

exist a period t′ > t such that the players can implement the first best in period t′

and all subsequent periods, but not in the earlier period t.

Inequality (2) implies that there exists a threshold ṽ, equal to c (1 + δ) /δ, which

corresponds to the minimum project value required for a project’s exploitation to be

sustainable in equilibrium when there is only one domain of cooperation (m = 1).

Using this threshold ṽ, we now provide the conditions on v̂1, . . . , v̂m under which the

players can implement the first-best experimentation policy, which entails exploiting

a project if and only if its value is at least v0.

Proposition 3 (Nec. and Suff. Condition for First-Best Experimentation)

In any optimal relational contract and for any period t, the players implement the

first-best experimentation policy for all t′ ≥ t if and only if:

h(v̂1, . . . , v̂m) :=
1

m

m∑
j=1

max{v̂j, v0} ≥ ṽ := c
1 + δ

δ
. (5)

10Note that meaningful exploration/exploitation decisions require the support of vp to have a
cardinality strictly greater than 2. For this reason, we assume a continuous support, which also
facilitates the presentation of some of our results. However, it follows from Lemma 1 in the Appendix
that none of our results rely on continuous supports.

14



As a result, there exists a threshold δ0 < 1 such that the players implement the first-

best experimentation policy from period 1 onward if and only if δ ≥ δ0.

When Inequality (5) is satisfied, the continuation value of the relationship is suf-

ficiently high to enable the implementation of the first-best experimentation policy.

Because the players can pool relational incentives across domains, the condition re-

quires that the average across domains of the maximum between the value of the

most valuable project found in each domain and the threshold v0 must exceed the

threshold ṽ. The function h(v̂1, . . . , v̂m) is not the arithmetic mean of the values

v̂1, . . . , v̂m for two reasons: (i) under the first-best policy, players explore rather than

exploit projects with values lower than v0, and (ii) exploration contributes to the

players’ continuation value. Furthermore, the condition v0 ≥ ṽ is both necessary and

sufficient for Inequality (5) to hold from period 1 onwards. The function v0(δ)− ṽ(δ)

exhibits a single-crossing property in δ, implying the existence of a threshold δ0.11

Proposition 3 allows us to give necessary and sufficient conditions under which the

players cease all exploration and transition to exploiting the most valuable project

discovered in each domain, provided that they are already implementing the first-best

experimentation policy. We refer to this outcome as “permanent exploitation.”

Corollary 1 (Nec. and Suff. Condition for Permanent Exploitation)

In any optimal relational contract, the players permanently exploit projects with values

v̂1, . . . , v̂m if and only if v̂j ≥ v0 for all j and the average of v̂1, . . . , v̂m exceeds ṽ.

Proof of Corollary 1. Proposition 3 establishes that these conditions are jointly suf-

ficient. Fixing v̂, the continuation value associated with permanent exploitation of v̂

is weakly lower than the continuation value under the first-best policy at v̂. Hence, if

the players are able to permanently exploit v̂, they can also implement the first-best

experimentation policy. This implies that these conditions are not only sufficient but

also jointly necessary.

The conditions stated in Corollary 1 imply that, in expectation, the players achieve

the permanent exploitation outcome weakly later than if they could follow the first-

best experimentation policy from period 1 onward. This delay relative to the first-best

is strictly positive when δ < δ0. In fact, as we will show in Proposition 6, permanent

exploitation in all domains of cooperation is not even guaranteed to occur.

11Proposition 1 establishes that player 0’s threshold, v0(δ), monotonically increases in δ, while
the definition of ṽ implies that ṽ(δ) monotonically decreases in δ.
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We conclude by noting that the conditions listed in Corollary 1 fully characterize

the players’ optimal experimentation policy for the second natural benchmark case in

our analysis: a single-domain collaboration. When there is only one domain (and the

optimal relational contract is non-empty), the players face a simple decision in each

period: either to exploit the best project found thus far or to explore a new project.

The exploitation threshold in this setting is time-invariant, as the players’ continua-

tion value depends solely on the value of the best project in this single domain.

Corollary 2 (Single-Domain Experimentation Benchmark)

When m = 1, there exists a threshold δ∗ < δ0 such that the optimal relational contract

is non-empty if and only if δ ≥ δ∗. Furthermore, in any non-empty optimal relational

contract, there exists a threshold v∗(δ) = max{ṽ(δ), v0(δ)} such that the players ex-

plore projects until they find a project p with an associated value vp ≥ v∗. Once they

find such a project, the players exploit it in all subsequent periods.

In this subsection, we have provided the conditions on the best projects found in

each domain under which the players implement the first-best experimentation policy.

We have also shown that, if δ is not sufficiently high, the players will initially be unable

to implement the first-best policy. We now proceed to characterize key properties of

the players’ experimentation policy in the periods that precede an eventual transition

to the first-best policy when collaboration spans multiple domains.

4.3 Second-Best Experimentation

We now analyze the players’ optimal experimentation policy when they cannot

implement the first-best policy in the current period. We refer to experimentation in

this region as “second-best experimentation.” A non-empty region where the second-

best policy is relevant (i.e., δ ≥ δ∗) but the first-best policy is not implementable

(i.e., δ < δ0) follows from Corollary 2 and is further examined in Section 5.1. This

analysis focuses on the case where the maximal potential scope of experimentation,

m, is strictly greater than 1 (for the case m = 1, see Corollary 2).

The players’ exploration and exploitation decisions within their active domains

of collaboration are inherently intertwined with their choices of which domains to

engage in. To disentangle these dynamics, we analyze them separately: Section 4.3.1

focuses on exploration and exploitation, keeping scope decisions in the background,

while Section 4.3.2 reverses the focus.
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4.3.1 The Dynamics of Exploration-Exploitation Decisions

Under the first-best policy, each domain is treated independently and identically,

with a time-invariant threshold for project exploitation. This time-invariance ensures

that once a project is exploited or deemed unworthy of exploitation, the decision is

permanent. For collaborative experimentation, players aggregate incentives across all

domains, with domains being treated neither identically nor independently. We show

that this observation implies that the criterion used to determine project exploitation

is dynamic. As a result, the players may exploit a project temporarily, and further,

they may recall a project they previously chose not to exploit.

Proposition 4 (Temporary Exploitation and Recall of Projects)

When the players cannot implement the first-best experimentation policy in period 1

and the optimal experimentation policy is non-empty (i.e., when δ ∈ [δ∗, δ0)), then

with strictly positive probability for any m > 1, at least one of the following occurs:

1. The players choose to exploit a project in period t, but later decide not to exploit

the same project in some period t′ > t.

2. The players choose not to exploit a project in period t, but later decide to exploit

the same project in some period t′ > t.

We provide intuition for why these two seemingly suboptimal behaviors are op-

timal by examining two specific examples with m = 2. The proof establishes that

these behaviors necessarily occur with strictly positive probability.

The first statement can be understood by considering the following scenario. Sup-

pose the values of the best projects in domains 1 and 2 satisfy v̂1 ≥ v̂2. Further,

assume that both values are sufficiently large for the players’ scope of experimenta-

tion to be maximal, but not large enough to enable them to implement the first-best

policy. If v̂1 is particularly high, the players will choose to exploit the project in

domain 1 and explore in domain 2. Now, imagine that the exploration in domain

2 uncovers a project with a value slightly higher than v̂1. In this case, the players

find themselves in a situation similar to the previous period, but with the roles of

the domains reversed. They will now choose to exploit the newly discovered project

in domain 2 and explore in domain 1. In Section 5.2, we simulate the optimal ex-

perimentation policy for a parameterized example to further illustrate and develop

intuition about the emergence of this behavior.
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To understand the intuition behind the second statement, consider a scenario

where the discount factor δ is small enough to prevent the exploitation of projects

with values only slightly above the threshold v0. Suppose the players’ scope of ex-

perimentation is maximal, which occurs, for instance, when α = 1/2.12 If period 1

explorations yield two projects with values just above v0, the players must explore

again in the next period. However, if a newly explored project has a sufficiently high

value, it can raise the continuation value of their relationship, potentially enabling

first-best experimentation. In this case, they may optimally revert to exploiting a

period 1 project despite initially choosing to explore further.

Temporary project exploitation or project recall are common in experimentation

settings, and can arise due to various factors, including the presence of a finite number

of projects or project characteristics that may not be fully revealed immediately. Our

analysis shows that strategic interactions alone can also drive these behaviors.

4.3.2 The Dynamics of the Scope of Experimentation

Proposition 3 established a threshold δ0, such that when δ ≥ δ0, players implement

the first-best policy starting in period 1, maintaining maximal scope. We now examine

the dynamics of the players’ scope of experimentation when δ ∈ [δ∗, δ0) and show that

scope is not always maximal along the equilibrium path. To focus on the relevant

case, we assume (1−α)E(vp) < c, requiring player 1 to incentivize player 2 to explore.

If instead (1 − α)E(vp) ≥ c, project exploration is a static equilibrium, and optimal

experimentation always maintains maximal scope.

We define a non-empty experimentation policy as “initially maximal” if |P1| = m,

“initially limited” if |P1| < m, “terminally maximal” if lim |Pt| = m, and “terminally

limited” if lim |Pt| < m. An initially maximal policy is always preferred over an

initially limited one whenever both are implementable, as exploring all domains pro-

vides immediate benefits (E(vp) ≥ 2c) and maximizes the continuation value of the

relationship. The key question, then, is whether an initially limited policy can be im-

plemented when an initially maximal one cannot. Intuitively, starting with a limited

number of domains and allowing for future expansion may be more sustainable, as

(i) it reduces early reneging temptation while maintaining a high continuation value

due to these potential future scope expansions, and (ii) finding valuable projects in

12When α = 1/2, exploration occurs in each domain in the static equilibrium, so any optimal
relational contract implements an experimentation policy with maximal scope throughout.
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early domains can enable both their exploitation and the exploration of additional

domains. We show that this intuition holds when the maximum potential scope of

experimentation m exceeds a threshold, but may fail below it.

To build intuition, we present the period-1 version of Inequality (2) for a specific

initially limited policy, where players explore projects in domain 1 during period 1,

and the corresponding inequality for the initially maximal policy, respectively:

c ≤ δ

∫
B(v̂1, 0, . . . , 0|δ)dv̂1, (6)

m · c ≤ δ

∫
B(v̂1, . . . , v̂m|δ)dv̂1, . . . , dv̂m, (7)

where B (·) was defined in Equation (3), and where we explicitly highlight the rela-

tionship between B (·) and δ, as this will play a key role in the intuition below. We

focus solely on period 1, remaining agnostic about the long-term dynamics of both

policies. We note that the right-hand side of (7) increases with δ, indicating the

existence of a cutoff δ̄(m) ∈ (0, 1) below which this constraint is violated. Therefore,

the question is whether (6) holds for δ < δ̄(m).

We proceed under the (incorrect) assumption that B(·|δ) is continuous with re-

spect to δ.13 Under this assumption, and using (6) and (7), the initially limited policy

outlined above is optimal when δ is just below δ̄ if and only if:∫
B
(
v̂1, 0, . . . , 0|δ̄(m)

)
dv̂1 >

1

m

∫
B
(
v̂1, . . . , v̂m|δ̄(m)

)
dv̂1, . . . , dv̂m. (8)

The right-hand side of this inequality represents the average surplus per domain

from period 2 onward under the initially maximal policy, and, intuitively, is bounded

above by that of a single domain under the first-best policy. Conversely, the left-

hand side represents the total surplus across domains from period 2 onward under

the initially limited policy. By monotonicity of the Bellman equation, the left-hand

side of Inequality (8) is bounded below by:

B
(
0|δ̄(m)

)
= mE (vp − 2c) + C (0) ≥ mE (vp − 2c) +m (c− (1− α)E (vp)) , (9)

where the last step follows from Inequality (2). Since this lower bound diverges with

m, Inequality (8) holds for sufficiently largem, implying that an initially limited policy

13B(· | δ) is not continuous with respect to δ because optimal experimentation is not.
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has a lower critical discount factor than the initially maximal one. We formalize this

argument in the Appendix, accounting for the potential discontinuity of B(·|δ) in δ.

In contrast, for small values of m, an initially limited experimentation policy

may or may not be easier to implement than an initially maximal one. As shown

in Proposition 4, exploration and exploitation decisions are optimally co-determined

across domains. Thus, delaying exploration in domain j not only reduces its associ-

ated surplus but may also lower the surplus in all other domains. In the Appendix, we

show that, when m is small, this advantage of initially maximal policies can outweigh

the benefits of initially limited policies discussed above. To demonstrate this, we con-

struct a distribution of project values that yields significant advantages of conducting

multiple explorations in parallel, making initially limited policies suboptimal for all

discount factors. These intuitions are consolidated in the following proposition.

Proposition 5 (Initial Scope of Experimentation)

Suppose (1− α)E(vp) < c and m > 1. Two thresholds δ∗ ≤ δ̄ < δ0 exist such that:

1. If δ ≥ δ̄, any optimal relational contract is such that the scope of experimentation

is initially maximal.

2. If δ ∈ [δ∗, δ̄), any optimal relational contract is such that the scope of experi-

mentation is initially limited.

3. If δ < δ∗, the scope of experimentation is equal to zero in all periods.

Further, denote m∗ := supm≥2{m : δ̄ = δ∗}. An initially limited experimentation

policy is optimal for intermediate discount factors for large m (i.e., m∗ < ∞), but

may never be optimal for small m (i.e., m∗ > 2 may occur).

The previous proposition established results on the players’ initial scope of exper-

imentation but did not address its long-term dynamics. We now present findings on

their terminal scope. Any non-empty experimentation policy—whether initially lim-

ited or initially maximal—has a strictly positive probability of becoming terminally

maximal, as players may always, by chance, identify a project valuable enough to sus-

tain the first-best policy indefinitely. Moreover, as discussed above, the optimality of

initially limited policies relies crucially on the prospect of sufficiently likely subsequent

scope expansions. These observations raise a broader question: is experimentation

scope guaranteed to be maximal—and therefore efficient— asymptotically?
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Proposition 6 (Terminal Scope of Experimentation)

The following statements hold:

1. There exist optimal experimentation policies that are both initially limited and,

with strictly positive probability, terminally limited.

2. There exist optimal experimentation policies that are both initially maximal and,

with strictly positive probability, terminally limited.

The reason why the players’ scope of experimentation may be terminally limited

on path can be understood by considering a vector of project values, v̂, and a subset

of domains s ⊂ {1, . . . ,m} for which:

a) players can only permanently exploit projects in s due to insufficient continua-

tion value;

b) exploring any domain j ∈ {1, . . . ,m} \ s requires foregoing exploitation in one

or more domains in s due to insufficient continuation value; and

c) players prefer exploiting all projects in s over delaying some exploitations to

explore additional domains.

To prove the first statement of the proposition (respectively, the second statement),

in the Appendix we show that a), b), and c) hold simultaneously under an initially

limited (respectively, initially maximal) policy. Intuitively, these dynamics arise only

when v̂ is high enough for a) and c) to hold but low enough for b) to be satisfied.14

In this subsection, we analyzed the dynamics of the players’ scope under second-

best experimentation. We showed that for intermediate discount factors and large

maximal potential scope m, the players find it optimal to begin with limited scope,

an approach made credible by the possibility of many subsequent scope expansions

14The fact that terminally limited scope may arise for intermediate values of v̂—and consequently
for intermediate values of the relationship—is reminiscent of Chassang (2010)’s result, where explo-
ration may cease when some but not all productive actions have been “revealed,” leaving the value
of the relationship in an intermediate range. Despite the differences in setting, the core intuition is
similar: conducting additional exploration requires halting the exploitation of an existing project.
In our setting, the newly explored project cannot be exploited in the current period due to b). In
Chassang’s setting, the absence of transferable utility means that exploring an additional action may
require terminating the relationship, thereby sacrificing some future exploitation. The difficulty in
computing the endogenous loss from these forgone exploitations in closed form is precisely what
hinders analytical characterizations in both settings.
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created by the discovery of valuable projects in the early domains of cooperation.

Because the discovery of such projects is path-dependent, the players may end with

a permanently limited and thus inefficient scope of experimentation.

5 Further Analysis and Extensions

This section extends our analysis in three directions. First, we examine how the

maximum potential scope of experimentation influences its feasibility and profitabil-

ity. Second, we analyze a concrete example to graphically illustrate some of the key

dynamics of the model. Finally, we explore several simple extensions in which the

domains of cooperation are not identical or independent.

5.1 Comparative Statics of Scope

The maximum potential scope of experimentation, m, can vary significantly de-

pending on the application. When firms pool resources, some pairings may yield

numerous cooperation opportunities, while others result in fewer viable collaborative

areas, depending on the complementarity of their assets. In this subsection, we ana-

lyze how variations in m affect the profitability and sustainability of experimentation.

Before proceeding, we revisit Bernheim andWhinston (1990)’s analysis of scope, in

stationary environments without learning dynamics. First, for a scaling factor k ≥ 1,

when scaling the scope of interaction by k, players can maintain the same average

payoffs by replicating the original equilibrium k times independently. Second, when

domains are identical, pooling incentives across domains cannot improve the players’

per-domain average payoffs. However, if domains are asymmetric, players may gain

from doing so and, hence, greater scope may be beneficial.

Let π̃(m) := π(m)/m denote the average joint surplus per domain of the collab-

oration. Recall that δ∗(m) represents the minimum discount factor for which the

optimal relational contract is non-empty. For a scaling factor k ≥ 1, the following

weak inequalities follow from Bernheim and Whinston (1990): π̃(mk) ≥ π̃(m) and

δ∗(mk) ≤ δ∗(m).15 In our setting, we can provide necessary and sufficient conditions

15We note that π̃(m) need not be monotone in m. For instance, π̃(m) may depend on m’s
parity—pooling incentives across two domains might enable a relatively efficient experimentation
policy, but with insufficient slack to improve a third domain’s efficiency (as in the distribution used
to prove Statement 2 of Proposition 6).
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for these inequalities to hold strictly, due to the dynamics stemming from the players’

exploration of projects. Specifically, 0 < δ∗(m·k) < δ∗(m) for k > 1 if (1−α)E(vp) < c

and otherwise δ∗ (m · k) = 0 regardless of k. When (1 − α)E(vp) < c, the optimal

relational contract will be empty for low discount factors. In these instances, scaling

up m will strictly decrease δ∗. To see why, note that if the players were to implement

k independent and concurrent collaborations, each with an identical experimentation

policy, the threshold δ∗ (m · k) would be independent of k. However, this approach

would be inefficient as it only leverages relational interdependencies within segmented

multi-domain experimentation policies. Therefore, the players could sustain a non-

empty relational contract for lower discount factors by leveraging interdependencies

across all m · k domains. By an identical reasoning, π̃(m · k) > π̃(m) whenever the

second-best experimentation policy is non-empty.

5.2 Multi-Project Collaborations: A Graphical Illustration

We analyze an example with specific parameter values. We set c = 1 and δ = 1/3.

Furthermore, we consider a symmetric relationship by setting α = 1/2. The players

can cooperate in two domains (m = 2). Finally, the project values vp are drawn from a

shifted exponential distribution with a rate parameter λ = 1/2, i.e., vp ∼ 1+Exp(1/2).

Under this distribution, E(vp) = 3. The players’ scope of experimentation is always

maximal since αE(vp)− c = (1− α)E(vp)− c > 0, making exploration preferable to

inactivity. Further, the continuation value C(v̂1, v̂2) is weakly greater than 1 for all v̂1

and v̂2, as players can always explore two new projects per period, yielding a payoff

of E(vp) − 2c = 1 per project and a continuation value C(v̂1, v̂2) also equal to 1. As

a result, if Inequality (5) does not hold, players either: (i) exploit one project while

exploring another, or (ii) explore two projects simultaneously.

Figure 1a. The figure depicts the first-best policy stated in Proposition 1. The

vertical and horizontal black dotted lines represent the time-invariant threshold v0

for domains 1 and 2, respectively. In both domains, projects with values above this

threshold are permanently exploited, while those below are never exploited.

Further, the solid black line in the figure divides the project value space into two

distinct regions. This line represents the set of (v̂1, v̂2) values satisfying h(v̂1, v̂2) = ṽ,

a condition stated in Proposition 3. To the northeast of this line, in the region

labeled “First-Best,” the players can implement the first-best experimentation policy.
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In contrast, to the southwest of the line, in the region labeled “Second-Best,” the

players can exploit at most one project at a time

The horizontal segment represents where v̂1 < v0, so project 1 is never exploited

under the first-best policy, and implementation depends solely on v̂2. Symmetrically,

the vertical segment shows where v̂2 < v0, with implementation depending only on v̂1.

The downward-sloping segment captures instances where both v̂1 and v̂2 exceed v0.

Here, increasing one project’s value allows decreasing the other’s while maintaining

sufficient continuation value for first-best policy implementation.
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Figure 1: Optimal Multi-Project Experimentation

In the figure, we assume c = 1, m = 2, δ = 1 / 3, and vp ∼ 1 + Exp(1 / 2). v̂1 and v̂2 denote the
values of the best projects discovered in domains 1 and 2, respectively. The left figure plots (i) the
threshold v0 for switching from exploration to exploitation in the first-best and (ii) the set of v̂1 and
v̂2 values satisfying h(v̂1, v̂2) = ṽ in solid black. The right figure divides the project value space into
four regions, determined by the exploitation or non-exploitation of each project. The top mention
indicates the decision for the project with value v̂1, while the bottom mention shows the decision
for the project with value v̂2. In Blue, we plot one realization of a sample path.

Figure 1b. The project value space is divided into four regions, determined by

the exploitation or non-exploitation (in favor of exploration) of each project. The

top mention indicates the decision for the project with value v̂1, while the bottom

mention shows the decision for the project with value v̂2. It follows from Figure 1a

that both projects are chosen for exploitation when in the “First-Best” region and

v̂1, v̂2 ≥ v0. Outside of this region, the players can choose one project for exploitation

at most. One can prove that there exists a threshold, v′, on the value of the best of

the two projects such that, below this threshold, the players choose to explore two
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new projects rather than exploiting the best of the two projects. We observe that

the threshold v′ is lower than v0, indicating that players may opt to exploit a project

even when they are certain to not permanently exploit it in the future.16

Figure 1b also presents a sample path illustrating the evolution of realized project

values over time, depicted in blue. In the early phase where the players are exploring

two projects simultaneously, both v̂1 and v̂2 weakly increase over time. In the phase

where the players exploit a project in domain j, v̂j remains constant, while v̂−j weakly

increases over time. Finally, in the phase of the relationship where the players exploit

both projects, v̂1, v̂2 stay constant because exploitation is permanent. Arrows are used

to signify changes in project values when a more valuable project is identified, while

self-loops indicate situations where more valuable projects are either not discovered

or not pursued. The path shown in the figure includes temporary exploitation in

domain 2 (of a project guaranteed to be not permanently exploited), as discussed in

Proposition 4.

5.3 Beyond Independent and Identical Domains

Our main analysis assumed identical and independent collaboration domains. In

practice, firms often collaborate across domains with diverse characteristics and tech-

nological interdependencies. This reality raises the question: Which domains, if any,

should be prioritized when initiating collaboration? The Online Appendix explores

three natural scenarios that address these questions and formulate predictions. We

briefly summarize these extensions here.

When to explore risky domains?

Our main analysis, by assuming an infinite number of independent and identically dis-

tributed projects, effectively eliminated risk considerations. However, collaborating

parties often face uncertainty about their collaboration’s potential value, with vary-

ing degrees of uncertainty across cooperation domains. For instance, a buyer-supplier

collaboration might involve both incremental improvements to an existing product

and the development of a radically new—and thus potentially unprofitable—project.

To capture these features, we modify a two-domain version of our framework by sup-

posing that that the first domain is exactly as in the main model, while the other

16The threshold v′ presented in the figure is computed using numerical integrals and approximate
solutions to the Bellman equation. The result that v′ can be lower than v0 can be proven analytically.
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contains a single project with either low or high value. We show that even when

immediate cooperation across both domains is feasible, players may choose to post-

pone exploring the risky domain 2 project. This delay continues until a sufficiently

valuable project is discovered in domain 1. Such a gradual approach safeguards the

collaboration against complete dissolution should the radical innovation fail.

Can “win-win” projects serve as stepping-stones?

In the main analysis, we made the assumption that each project’s benefits accrue

to only one player. However, the model can be extended to reflect more nuanced

real-world scenarios. Collaborating parties often engage in both “win-win” projects

yielding mutual benefits and projects that disproportionately advantage certain par-

ticipants. In modeling these scenarios, this extension assumes two domains with

distinct benefit structures. In one domain, projects yield equal benefits to both play-

ers.17 The other domain follows the main analysis, where project benefits accrue

exclusively to one player. We show that optimal experimentation is initially limited

for low values of the discount factor and that the domain with symmetric projects is

explored first.

How do technological interdependencies influence gradualism?

In the third extension, we introduce positive correlation between project values across

domains, such that discovering a valuable project in one domain immediately reveals a

project of equal value in the other. This assumption reflects how success in one area

can enhance opportunities in another (e.g., mRNA technology’s wide applicability

across medical conditions). Absent incentive issues, players would optimally explore

both domains concurrently to expedite valuable project discovery. With asymmetric

benefits, an initially limited approach is strictly optimal for intermediate discount fac-

tors. These findings suggest initially limited approaches are more likely to be optimal

in R&D environments with stronger cross-domain knowledge spillovers.

6 Applied Insights

This section connects our theoretical analysis to two key literatures: buyer-supplier

relationships and persistent productivity differences across firms.

17The Online Appendix includes another extension in which domains differ in the probability α,
with qualitatively similar results.
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6.1 Buyer-Supplier Collaborations

The economics literature on buyer-supplier relationships has predominantly exam-

ined issues such as vertical integration in the presence of relationship-specific invest-

ments (Williamson, 1975; Grossman and Hart, 1986; Hart and Moore, 1990), optimal

contracts under externalities or agency issues (see references in Tirole, 1988, Chapter

4), and, more recently, relational contracts for supplier allocation (Board, 2011; An-

drews and Barron, 2016). While these studies justifiably assume predetermined gains

from trade to address their specific objectives, our research explores a complementary

direction: scenarios requiring collaborative experimentation to determine the gains

from trade, often across multiple products or markets.

Our model formalizes the process of collaborative experimentation in buyer-supplier

relationships through several key elements. The parameter m represents the number

of product categories or market geographies, reflecting the multi-domain nature of

buyer-supplier interactions. Both firms make non-contractible investments of c for

experimentation. These investments are observable to both parties but not verifi-

able by third parties, hence not contractible. The innovation process involves both

firms, each possessing complementary and indispensable expertise or resources. Even

after the exploration phase, when parties agree on an input or service to exploit,

non-contractible investments (also c) remain essential. These include efforts such as

worker training and marketing. The distribution of benefits is asymmetric because

final product proceeds accrue to the buyer (high α), who compensates the supplier

through either the upfront transfer w or the bonus b.

Our theoretical analysis both draws from and contributes to an extensive body

of case-study literature on buyer-supplier dynamics. This literature emphasizes ex-

perimentation and trust as critical factors for successful collaborations, particularly

in contexts where benefits are asymmetrically distributed. A McKinsey report high-

lights this asymmetry of benefits: “Some collaborations promise equal benefits for

both parties. [...] In other cases, however, the collaboration might create as much

value overall but the benefit could fall more to one partner than to the other” (Be-

navides et al., 2012). This asymmetry underscores the central role of trust, given

the inherent limitations of formal contracts. Doney and Cannon (1997) distinguish

between two types of trust: “benevolence” trust (belief in a partner’s genuine desire

to collaborate) and “credibility” trust (expectation that a partner will fulfill promises

due to self-interest). Our analysis primarily focuses on credibility trust, operating
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under the assumption that both parties desire collaboration. Consequently, in this

section we emphasize work that similarly concentrates on credibility trust. The con-

cept of benevolence trust, while important, corresponds more directly to the analyses

by Watson (1999, 2002), which we discuss in Section 1.1.

Dwyer et al. (1987) highlight the dynamic nature of buyer-supplier relationships,

emphasizing the central role of relational contracts. They describe an initial “search

and trial phase” that evolves into an “expansion phase,” characterized by increased

risk-taking and deeper mutual dependence. As they note, “The rudiments of trust

and joint satisfactions established in the exploration stage now lead to increased risk

taking within the dyad. Consequently, the range and depth of mutual dependence

increase.” A senior executive from a Toyota supplier similarly described their rela-

tionship with Toyota: “We started by making one component, and as we improved,

[Toyota] rewarded us with orders for more components” (Liker and Choi, 2004). The

common pattern of these relationships starting small before expanding is consistent

with our findings, particularly Proposition 5, which shows the potential optimality of

gradual expansion in collaborative scope. It also supports our extension in Section

5.1, which examines the strategic delay of high-risk ventures in these relationships.

Building on Dwyer et al. (1987), Vanpoucke et al. (2014) corroborate both the

prevalence of gradualism and the occurrence of extended experimentation periods

in buyer-supplier relationships. These phenomena are driven by the parties’ need

to establish credibility in the context of relational contracts. As one CEO in their

study noted, “We use contracts, but not everything, certainly in the long run, can be

put in contracts.” Their case study of soybean product development, where partners

took a decade to initiate integration and build sufficient credibility, illustrates this

phenomenon. This evidence is consistent with our analysis, particularly Corollary

1, which predicts that collaborating firms must engage in prolonged experimentation

in order to identify joint projects of sufficient value to sustain the subsequent ex-

ploitation phase. Furthermore, Vanpoucke et al. (2014) emphasize the strong path

dependence of relationship dynamics, observing that “events, rather than time,” de-

fine relationship development stages. Their case studies consistently reveal that suc-

cesses in initial cooperation domains typically drive further joint collaborations. This

observation supports our theoretical model, where increases in scope are driven by

discrete “events” that change the players’ continuation value from the collaboration,

rather than the mere passage of time.
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Lastly, our analysis, particularly Proposition 6, showed that the long-term scope

of a collaboration is determined during the initial phases, with early outcomes influ-

encing the trajectory and ultimate extent of the partnership. This finding is corrobo-

rated by the existing literature. Dwyer et al. (1987) characterize the early exploration

phase in buyer-supplier relationships as “very fragile,” highlighting the critical nature

of these initial interactions. Benavides et al. (2012) provide a concrete example of this

fragility, describing a case where an early collaboration attempt between a retailer

and manufacturer yielded somewhat disappointing results. While their relationship

did not terminate entirely, Benavides et al. (2012) suggest that this initial setback

was the primary reason their partnership did not expand further.

6.2 Persistent Performance Differences

While much of our focus has been on interactions between firms, our model serves

as a valuable lens for examining employer-employee dynamics. One can conceptual-

ize one party in our model as the employer and the other as the employee, where,

for instance, benefits consistently accrue to the employer. Furthermore, the differ-

ent domains of collaboration can be seen as various dimensions of the production

improvement process.

With this interpretation in mind, our work also contributes to the literature on

persistent performance differences among seemingly similar enterprises (see Syverson,

2011; Gibbons and Henderson, 2013, and references therein). Numerous empirical

studies have documented enduring disparities in firm performance across a range of

industries, with these gaps proving surprisingly robust against plausible explanations

such as market competition or local geographical and demand conditions, while being

strongly associated with managerial practices (c.f. Bloom and Van Reenen, 2007).

According to Gibbons and Henderson (2013), and the body of evidence they review,

variations in managerial practices, because of their reliance on relational contracts,

are key in creating productivity disparities across firms. We adapt for our purposes

their categorization of explanations: (i) managers might either be unaware of their

poor performance, or, even if aware, believe that the best practices from other firms

are not suitable for their context; (ii) managers are aware of their poor performance

and are able to seek superior managerial practices suitable to their context, but opt

not to; and (iii) managers are “striving mightily” to adopt superior practices but face
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hurdles during the implementation phase.

The first explanation underscores information barriers, prompting questions about

why such information does not diffuse more readily (c.f. Bloom et al., 2013; Atkin et

al., 2017).18 The second explanation is consistent with the framework developed by

Chassang (2010) and discussed in Section 1.1, in which players are informed about

the existence of more efficient practices but choose not to pursue them to preserve

their relationship. Our analysis in Section 4.3 provides a complementary rationaliza-

tion of explanation (ii) by showing that the long-run scope of collaboration may be

inefficiently limited. When players transition from exploration to exploitation in one

domain, they may lose the ability to cooperate in other domains, potentially resulting

in limited scope.

Unlike other models we know, our model also offers insight into explanation (iii)

presented by Gibbons and Henderson (2013). Consider two organizations with identi-

cal characteristics implementing ex-ante identical experimentation policies, operating

under a discount factor where the scope of experimentation is initially limited. Their

paths diverge if one organization discovers a highly valuable practice early on, thus

expanding its scope, while the other does not. The second organization, still at-

tempting to achieve any success, appears to be “striving mightily” to match the first

organization’s performance. However, identifying superior practices is time-intensive.

The second organization cannot increase its scope until it finds a sufficiently valuable

practice, potentially leading to a persistent performance gap.

7 Concluding Remarks

This paper presents a framework for analyzing the dynamics of multi-domain

collaborative experimentation in scenarios where benefits are unevenly distributed

among participants and any experimentation policy must be self-enforcing. Our

model yields three key insights. First, when the initial relationship value is low,

the collaborating parties do not treat each domain of experimentation independently

18Our framework could be easily modified to rationalize the first explanation by introducing
correlation between project benefits within each domain. If by chance the first projects explored in
a domain are disappointing, the players increasingly believe no projects in the domain are profitable
and may stop exploring and terminate their relationship. In contrast, if the early projects are
valuable, the players may switch to exploitation and enjoy high long-run profits. Unsurprisingly,
these dynamics would also arise in a single-agent context.
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and they engage in extended exploration phases. Second, cross-domain relational

interdependence in optimal experimentation leads to seemingly counterintuitive ex-

ploration/exploitation decisions, including prolonged exploitation of ultimately dis-

continued projects or revival of previously abandoned ones. Third, experimentation

often progresses gradually, with parties initially exploring some domains and poten-

tially expanding to others based on initial success, and exploration of all domains is

not guaranteed.

Future work could extend the current framework in several directions. For ex-

ample, relaxing the assumption of identically and independently distributed project

benefits within domains could help address questions related to directed innovation

strategies and differentiate between radical and incremental innovation (c.f. Callan-

der, 2011; Garfagnini and Strulovici, 2016; Callander and Matouschek, 2019). Fur-

ther, we assumed that both players’ cooperation was necessary for exploration and

exploitation, keeping their outside options independent of experimentation. Future

research could explore scenarios where players’ outside options evolve based on their

experimentation history, examining how this additional interdependence affects joint

experimentation dynamics. Finally, introducing asymmetric roles in the collaboration

presents another natural extension. One could model a scenario where exploration re-

quires only one player (e.g., an R&D unit), while exploitation needs a different player

(e.g., a Sales unit). This approach would enable analysis of cooperation dynamics in

contexts where exploration and exploitation efforts are disentangled (see Krieger et

al., 2019; Lizzeri et al., 2024, for qualitative and theoretical treatments, respectively).
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Appendix

Proof of Proposition 1. Following a reasoning almost identical to that in Bergemann

and Välimäki (2001), player 0 treats each domain independently and identically and

never recalls a project because |Pj| = ∞ ∀j. Therefore, the optimal policy conditions

only on the project with the highest value amongst all previously explored projects,

whose value we denote v̂. The Bellman Equation for player 0 is:

B0(v̂) = max
explore, exploit v̂

{
E (v′)− 2c+ δE

(
B0 (max (v̂, v′))

)
, v̂ − 2c+ δB0 (v̂)

}
. (10)

The first term in the maximum operator corresponds to the player’s expected surplus

when exploring one more project and the second term is their surplus when exploiting

the project with value v̂. Next, there exists a threshold v0, wherein the players explore

if v̂ < v0 and exploit if v̂ ≥ v0. Further, Blackwell’s Sufficient Conditions imply that

there exists a unique solution to the Bellman Equation, and hence the threshold rule

dictated by v0 is a solution. This threshold is determined by:

1

1− δ
(v0 − 2c) = E(vp − 2c) +

δ

1− δ
E(max{v, v0} − 2c), (11)

where standard comparative statics arguments imply that v0 is increasing in δ.

Proof of Proposition 2. Recall that after a deviation in period t, players set P t
i = ∅

and bti,−i = 0 if not already chosen. In subsequent periods, they revert to the static

equilibrium with zero transfers and no selected projects.

The proof proceeds in four steps: (i) we show that it is without loss of optimality to

restrict attention to relational contracts that are surplus-maximizing following every

on-path history ht; (ii) we provide a necessary and sufficient condition for the existence

of a relational contract that implements a given experimentation policy P̂ (·); (iii) we
show that this condition is independent of the division of surplus between the players;

36



and (iv) we show that, for any two histories that generate the same beliefs, selecting

the same continuation equilibrium is without loss of optimality.

Step 1 We show that it is without loss of optimality to restrict attention to rela-

tional contracts that are surplus-maximizing following every on-path history ht. To

see this, suppose that there exists an on-path history ht such that the continuation

equilibrium starting in period t, denoted by e1, has lower total surplus than an al-

ternative continuation equilibrium e2. Thus, if we define Ck
i to be the continuation

value to player i in equilibrium ek, then
∑

i C1
i <

∑
i C2

i . For the rest of Step 1, we

omit the superscript t − 1 in our notation, as we are solely concentrating on period

t− 1 objects.

Let us modify the players’ relational contract such that play in and after period t

is dictated by e2 and the period t− 1 bi,j(·) transfers associated with history ht (and,

thus, corresponding to a specific realizations of xt−1,vt−1) are adjusted so that: (i)

player 2’s expected payoff following the realizations of xt−1,vt−1 is the same as under

the original equilibrium and (ii) player 1’s expected payoff following the realizations

of xt−1,vt−1 increases by
∑

i C2
i −

∑
i C1

i . Specifically, take the vector of transfers

b1 = (b11,2, b
1
2,1) associated with the original equilibrium and create a new vector of

transfers b2 = (b21,2, b
2
2,1) such that:

C2
1 + b22,1 − b21,2 > C1

1 + b12,1 − b11,2, (12)

C2
2 + b21,2 − b22,1 = C1

2 + b11,2 − b12,1. (13)

Because
∑

i C2
i −

∑
i C1

i > 0, finding payments that satisfy b21,2 ≤ C2
1 and b22,1 ≤ C2

2

is always feasible.

Note that these changes have no impact on player 1’s choices of actions made in

any period t′ ≤ t−1 because all actions are observable, and hence choosing a different

action from the proposed equilibrium would be labeled a defection. If defections were

deterred in the original equilibrium, which had a strictly smaller continuation value for

player 1, then they are also deterred in the new equilibrium. The same logic applies

to player 2 since they obtain the same expected payoff in period t − 1 (compared

to the original equilibrium), and thus also have the same continuation values in all

periods t′ < t − 1. Finally, note that surplus from a date 0 perspective is strictly

higher under the new equilibrium.

Step 2 We show that there exists a relational contract that implements an ex-
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perimentation policy P̂ (·) if and only if the following inequality holds for all t and

for all histories ht ∈ Ht:∑
p∈P̂t

∑
i=1,2

max
(
0, c− E(xp · vp|ht)

)
≤ C(ht), (14)

where C(ht) is the continuation value.

To show that (14) is a necessary and sufficient condition, consider a set of transfers

bi,−i(x
t,vt) ≥ 0 to be paid on path given a vector of realized values xt,vt.

Given an equilibrium experimentation policy Pt, note that it is without loss of

generality to assume that P t
1 = P t

2 = Pt. Thus, for each player and for each p ∈ Pt,

the player must weakly prefer to include p in P t
i , rather than excluding it. Let

σi(x
t,vt) denote player i’s share of C(ht ⊔ xt ⊔ vt) as a function of xt,vt. Hence, the

condition for selecting Pt is:

∑
p∈Pt

max
(
c− E(xpvp|ht), 0

)
≤ E

(
b−i,i(x

t,vt)− bi,−i(x
t,vt)

+ σi(x
t,vt)C(ht ⊔ xt ⊔ vt)

)
, ∀i,

(15)

bi,−i(x
t,vt) ≤ σi(x

t,vt)C(htxt,⊔vt), ∀vt,∀i. (16)

Expectations are taken over the project valuations realizations xt,vt and ht ⊔ xt ⊔ vt

denotes the players’ updated beliefs after observing xt,vt.19 The first expression

states that the promised transfers and the expected share of the total continuation

value must be enough to prevent a player from shirking on any subset of the projects.

The second expression states that the each player is willing to pay the other player

the necessary transfer.

To show necessity: Note that since Equation (15) must hold for a fixed i, the

inequality also holds summing over all i. Further, all transfers cancel out when

summing over i. Finally, by definition, E(C(ht ⊔ xt ⊔ vt)) = C(ht). Hence, we are left

with Equation (14).

To show sufficiency: We will show this result in two substeps.

19The history also includes the project selections, and both the upfront and end-of-period transfers.
However, for notational convenience we only include the realized valuations as every other object
can be inferred on path from the realized valuations.
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SubStep 1: We show it is necessary and sufficient to replace Equation (16) by

its expectation. This new expression is as follows:

E(bi,−i(x
t,vt)) ≤ E

(
σi(x

t,vt)C(ht ⊔ xt ⊔ vt)
)

∀i. (17)

We first show that if there is a solution to Equations (17) and (15), then there exists

a solution to Equations (16) and (15).

Take a set of transfers bi,−i(x
t,vt) that satisfy Equations (17) and (15). Define:

b′i,−i(x
t,vt) =σi(x

t,vt)C(ht ⊔ xt ⊔ vt) (18)

−

(
E
(
σi(x

t,vt)C(ht ⊔ xt ⊔ vt)− bi,−i(x
t,vt)

))
.

Since Equation (17) holds, the term in the expectation of Equation (18) is positive

and thus Equation (16) holds for all realizations of xt,vt under the set of transfers

b′i,−i(x
t,vt). Finally, E(b′i,−i(x

t,vt)) = E(bi,−i(x
t,vt)) so Equation (17) continues to

hold.

SubStep 2: Using substep 1, it suffices to show that Equation (14) implies a

solution to Equations (15) and (17). To simplify all the notation with expectations,

Equation (15) can be re-expressed as:

βi − γi ≤ (b̃−i,i − b̃i,−i), (19)

where b̃i,−i is the expected transfer from i to −i, βi =
∑

p∈Pt max
(
0, c−E(xpvp|ht)

)
,

and γi = E(σi(x
t,vt)C(ht ⊔ xt ⊔ vt)). Equation (17) can thus be re-written as:

b̃i,−i ≤ γi. (20)

Rearranging Equation (14) implies
∑

i(βi − γi) ≤ 0. One can now show that

b̃i,−i = max(0, β−i−γ−i) satisfies Equation (20). Further, Equation (19) holds because:

βi − γi ≤ max(0, βi − γi)−max(0, β−i − γ−i) (21)

⇐⇒ max(0, β−i − γ−i)−min(0, γi − βi) ≤ 0 (22)

⇐=
∑
i

(βi − γi) ≤ 0, (23)
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where the final step follows from noting that β1 − γ1 and β2 − γ2 cannot both be

positive and analyzing the remaining three cases based on the signs of βi − γi.

Finally, Equation (20) reduces to

max(0, β−i − γ−i) ≤ γi ⇐= β−i − γ−i ≤ γi (24)

⇐=
∑
i

(βi − γi) ≤ 0, (25)

where the final implication is due to βi being weakly positive.

Step 3: We show that any relational contract that implements a given experimen-

tation policy can be replaced by an alternative relational contract that implements

the same experimentation policy and yields no surplus to player 2.First, note that

the way the players share their continuation value does not affect Equation (2) from

the main text. Hence, for any period t where player 2’s expected payoff is positive,

w2,1 can be increased until player 2’s expected payoff is zero. Player 2 is willing to

make this transfer because not doing so would be seen as a deviation, resulting in a

payoff of 0 for player 2.

Step 4: We now show that, for any two histories ht
1 and ht′

2 that generate the same

beliefs µ, selecting the same continuation equilibrium is without loss of optimality.

Take a relational contract r that is surplus-maximizing at all on-path histories and

has two histories ht
1 and ht′

2 prescribing different (surplus-maximizing) continuation

equilibria under the same beliefs µ. Recall from Step 3 that one can consider relational

contracts in which player 2 obtains an expected payoff equal to 0 in every period. In

this case, since the two continuation equilibria are both optimal and both give all

the surplus to player 1, switching from one continuation equilibrium to the other

does not change the players’ incentives as both prescribe the exact same payoffs

to the players. Hence, when focusing on relational contracts that specify the same

continuation equilibrium following histories that induce the same beliefs, one can

replace C(ht) with C(µt).

Proof of Proposition 3. When the players have identified projects with values v̂1, . . . , v̂m

at history h, the condition for the players being able to replicate the first-best exper-

imentation policy in all subsequent periods is that, for all histories h′ occurring after

h and with associated project values v̂′1, . . . , v̂
′
m, the players exploit v̂′j if and only if
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v̂′j ≥ v0. This condition is as follows:

c
m∑
j=1

1v̂′j≥v0 +max{0, c− (1− α)E (vp)}
m∑
j=1

1v̂′j<v0 ≤
m∑
j=1

C0(v̂′j), (26)

∀(v̂′1, . . . , v̂′m) ≥ (v̂1, . . . , v̂m), which corresponds to (2) when the players implement

the first-best policy and where C0(v̂′j) denotes the continuation value associated with

domain j under the first-best policy. Note that C0(v̂′j) (i) is constant below v0, (ii)

is such that limx↑v0 C0(x) > limx↓v0 C0(x) and (iii) is increasing above v0. Given

such properties, setting v̂′j = max{v̂j, v0} both minimizes the right-hand side and

maximizes the left-hand side of (26). Thus, an equivalent condition is:

m · c ≤ δ
( m∑

j=1

1

1− δ
(max{v̂j, v0} − 2c)

)
. (27)

Finally, the existence of a threshold δ0 was proven in the text.

Proof of Corollary 2. The characterization of v∗(δ) follows from Corollary 1. The

existence of δ∗ follows an identical argument to that made in Proposition 5. Suppose

δ < δ0 and consider the policy described in the corollary. By definition of ṽ, it suffices

to check that the policy is implementable in period 1 (i.e., satisfies Inequality (4)),

which is most binding when α = 1 (henceforth assumed). At δ = δ0, this constraint

is as follows: c ≤ C0(explore), where C0(explore) is defined by:

v0 − 2c

1− δ
= E(vp − 2c) + C0(explore) =⇒ C0(explore) >

δ

1− δ
(v0 − 2c). (28)

δ0 is defined by: c = δ
1−δ

(v0 − 2c). Therefore, for δ slightly below δ0, the policy in

period 1 satisfies Inequality (4) if and only if the continuation value is continuous at

δ0, which holds since ṽ is continuous with respect to δ.

Proof of Proposition 4. Denote t(p) = inft{t : p ∈ Pt}. By contradiction, ∀p ∈ P ,

either (i) p ∈ Pt ∀ t > t(p) or (ii) p /∈ Pt ∀ t > t(p). Further, by monotonicity, for

each domain j, there exists a threshold v∗j (v̂−j) such that the players exploit a project

with value v̂j if and only if v̂j ≥ v∗j (v̂−j), where v̂−j denotes the values of the best

projects found in the remaining domains.

Note that v∗j (·) is weakly increasing in each of its arguments; otherwise, with pos-
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itive probability, statement 2 of the proposition would be satisfied. Further, for a

sufficiently large v̂−j, the first-best experimentation policy is implementable (Propo-

sition 3), implying that v∗j (v̂−j) ≤ v0. Therefore, with positive probability, the players

permanently exploit only projects with value weakly less than v0, which would imply

(i) v0 ≥ ṽ and, thus, (ii) that δ ≥ δ0.

The following lemma will aid in proving the next two propositions. Let F denote

a distribution of vp with finite support. Consider a sequence of continuous approxi-

mations Fn such that Fn ≤F.O.S.D Fn−1, Fn ≥F.O.S.D F ∀n, and Fn → F . Define the

optimal experimentation policy a(·) as strict if the following conditions hold for all

v̂: (i) a(v̂) satisfies Inequality (4) strictly, (ii) if a′(v̂) is preferred to a(v̂), then a′(v̂)

fails Inequality (4) strictly, and (iii) if a′(v̂) satisfies Inequality (4), the players strictly

prefer a(v̂) over a′(v̂). Let Bn(·) denote the associated Bellman equation with F n,

and an(·) the corresponding optimal experimentation policy.

Lemma 1 (Discretization)

For any v̂ ∈ suppFm, if the optimal experimentation policy is strict, then (i) Bn(v̂) →
B(v̂) and (ii) for all v̂ ∈ suppFm, an(v̂) → a(v̂).

Proof of Lemma 1. First note that (i) =⇒ (ii). By contradiction, suppose Bn(v̂) →
B(v̂) for all v̂ but there exists a v̂∗ such that an(v̂∗) ̸→ a(v̂∗). As Bn(v̂) → B(v̂) for

all v̂, then Cn(v̂∗, a) → C(v̂∗, a) uniformly with respect to a (as a belongs to a finite

set). However, given that the preference at v̂∗ is strict, we must have an(v̂) → a(v̂),

a contradiction.

Let us now prove (i) by contradiction. Note that v̂ has a lattice structure. If (i)

fails, there exists a v̂∗ such that Bn(v̂∗) ̸→ B(v̂∗) but Bn(v̂) → B(v̂) for any v̂ > v̂∗.

Claim 1: Denote by v̄ = sup Support{vp}, then v̂∗ cannot correspond to v̄, . . . , v̄.

Note that v̄ > v0. Therefore, there exists an n∗ for which, if n > n∗, the players

permanently exploit in all domains when v̂ = v̄, . . . , v̄. Claim 1 follows by noting

that the net-present value of this policy is identical under Bn(·) and B(·).
Let us now consider v̂∗ ̸= v̄, . . . , v̄. By assumption, ∀v̂ > v̂∗ Bn(v̂) → B(v̂).

Further, as Bn(·) is decreasing and bounded below by B(·), Bn(v̂∗) ̸→ B(v̂∗) =⇒
B(v̂∗) < limBn(v̂∗). Next, as Bn(v̂) → B(v̂) ∀v̂ > v̂∗, then Cn(v̂∗, a) → C(v̂∗, a).

As B(v̂∗) < limBn(v̂∗), then lim an(v̂∗) ̸= a(v̂∗). Given that the continuation value

converges, an(v̂∗) must converge, implying a(v̂∗) ̸= a′(v̂∗) := lim an(v̂). Therefore,

a′(v̂∗) must be strictly preferred to a(v̂∗). Given our definition of “strict,” a′(v̂∗)
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must strictly fail Inequality (3) for B(v̂∗). However, this leads to a contradiction

because the continuation value has been proven to converge, implying that a′(v̂∗)

cannot satisfy Inequality (3) as n → ∞.

Proof of Proposition 5. We first prove the existence of δ∗. Suppose δ1 < δ2 and, by

contradiction, that the optimal experimentation policy is non-empty for δ1 but empty

for δ2. The optimal experimentation policy for δ1 yields strictly positive surplus and

yet cannot be implemented at δ2. However, holding fixed the policy, the left-hand

side of (2) is independent of δ and the right-hand side is increasing in δ, implying

that the experimentation policy is feasible under δ2, which is a contradiction. This

reasoning implies that a threshold exists. Finally, δ∗ < 1 since C(·) → ∞ as δ → 1.

We now prove the existence of δ̄. Scope is initially maximal if and only if m ·
max {0, c− (1−α)E(vp)} ≤ C (µ1). However, by an identical argument as that in the

preceding paragraph, the right-hand side of (2) is increasing in δ and the left-hand

side of (2) is independent of δ. This implies the existence of a threshold on δ. Further,

when δ → 1, C(µ1) → ∞, implying maximal scope. As a result, δ̄ < 1.

δ∗ ≤ δ̄ because any initially maximal relational contract is non-empty. We now

show that this inequality is strict when m is sufficiently large. Inequality (2) implies

m(c− (1− α)E(vp)) ≤ B
(
0|δ̄(m)

)
−mE (vp − 2c) . (29)

Next, note that limδ↑δ̄(m) B (ṽ, 0, . . . , 0|δ) ≥ B
(
0|δ̄(m)

)
. We construct a subopti-

mal, initially limited policy in which, during period 1, players explore a single domain

in search of a project with value exceeding ṽ. If they find such a project, they expand

their scope; otherwise, they terminate their relationship. δ∗(m) = δ̄(m) implies that

this policy cannot be implemented for δ < δ̄(m). Therefore:

c− (1− α)E(vp) ≥ δ̄(m)Pr(vp > ṽ)B(0|δ̄(m)). (30)

Combining (29) and (30) implies:

δ̄(m)Pr(vp > ṽ)B(0|δ̄(m)) ≤ B(0|δ̄(m))

m
− E(vp − 2c)

⇐⇒ B(0|δ̄(m))
(
δ̄(m)Pr(vp > ṽ)− 1

m

)
≤ −E(vp − 2c). (31)

However, as shown in the text B(0|δ̄(m)) diverges to infinity. Hence, δ̄(m)Pr(vp >
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ṽ) − 1
m

converges to zero. However (i) δ̄(m) remains bounded away from zero when

E(vp)(1 − α) < c, which has been assumed, and (ii) if δ̄(m) remains bounded away

from zero, then ṽ remains bounded above, implying Pr(vp > ṽ) remains bounded

away from zero, proving that δ̄∗(m) < δ̄(m) when m is large.

Finally, we consider a discrete support distribution and leverage Lemma 1 to

show that δ∗ = δ̄. We consider a three-point support of benefits: {0, v, v̄}. Further,

the experimentation policy described below will be shown to satisfy the definition of

“strict” employed in Lemma 1. We also assume E(vp) = 2c, α = 1, and m = 2 when

listing sufficient inequalities for δ∗ = δ̄ to hold. The following inequalities ensure that

there exists a δ such that |P1| = 1 is not feasible but |P1| = 2 is:

v − 2c

1− δ
>

δPr(v̄)

1− δ(1− Pr(v̄))
(v̄ − 2c)

1

1− δ
(32)

2c <
δ

1− δ
(v̄ − 2c) (33)

c >
δ

1− δ
(v − 2c) (34)

2c >
δ

1− δ
(v − 2c) +

δPr(v̄)

1− δ(1− Pr(v̄))
(v̄ − 2c)

1

1− δ
(35)

c >
δPr(v̄)

1− δ(1− Pr(v̄))
(v̄ − 2c)

1

1− δ
+

δPr(v̄)

1− δ(1− Pr(v̄))
npv0 (36)

2c <
2Pr(v̄)(1− Pr(v̄))

1− δ
(
1− 2Pr(v̄)(1− Pr(v̄))

)((v̄ − 2c)
δ

1− δ
+ npv0

)
+

Pr(v̄)2

1− δ
(
1− Pr(v̄)2

) δ

1− δ
2(v̄ − 2c) (37)

npv0 =
δ

1− δ

(
Pr(v̄) + Pr(v)

)(
Pr(v̄)v̄

Pr(v̄)+Pr(v)
+ Pr(v)v

Pr(v̄)+Pr(v)
− 2c

)
1− δ(1− Pr(v̄)− Pr(v))

(38)

Inequality (32) ensures that v0 ≤ v. Inequality (33) ensures that v̄, 0 satisfies Inequal-

ity (5). Inequality (34) ensures that the players are unable to exploit a project worth

v in isolation and, by extension, cannot jointly exploit two such projects. Inequality

(35) implies that the players cannot exploit a project worth v while exploring in the

additional domain. Inequality (36) implies that the players would be unable to begin

exploring if the players began their exploration on one domain and, upon finding a

project worth v̄, started exploring the additional domain.20 The continuation value

20Further, it will never be optimal to explore the additional domain upon finding v, since such a
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under this experimentation policy is bounded above by npv0: the net-present value

of a single domain under the first-best experimentation policy, the value of which

is stated in (38). Finally, Inequality (37) is a necessary condition for the initially

maximal policy to be feasible at date 1. This condition is necessary, but not suffi-

cient, as the continuation value is computed assuming that if the players discover one

project worth v̄ before doing so on the other domain, the highest-valued project on

the other domain is zero. We use Mathematica to show that these constraints jointly

hold strictly.21

Proof of Proposition 6. We first show that the definition of terminal scope is well

defined. If there exists a period t for which the players conduct no explorations, then

Pt′ = Pt for all t′ ≥ t. By contradiction, if there exists an equilibrium path where

lim inf |Pt| < lim sup |Pt|, the players must explore at least one project in each period

t. However, for each exploration, with positive probability the players discover a

project with value exceeding mṽ, implying that the first-best policy is implementable

in all subsequent periods. As a result, lim inf |Pt| = lim sup |Pt|. This argument also

shows that terminal scope equals m with positive probability.

Statement 1: We consider vp ∈ {0, v, v̄}, m = 2, and α = 1. Further, the experi-

mentation policy outlined below will satisfy the definition of “strictness” employed in

Lemma 1, implying these results will hold true for continuous approximations. These

inequalities ensure the existence of a feasible experimentation policy where the scope

of experimentation reaches its maximum of 2 with interior probability, while ensuring

no other feasible policy yields a higher joint surplus. We list all the inequalities and

comment on each one separately below.

2c <
δ

1− δ
(v̄ − 2c) + C0(explore) (39)

c <
δ

1− δ
(v − 2c) (40)

2c >
δ

1− δ
(v − 2c) + C0(explore) (41)

2c > C0(explore) +
δ

1− δ

(
Pr(v̄)v̄ + (1− Pr(v̄))v − 2c

)
(42)

v − 2c

1− δ
> v := E(vp − 2c) +

δ

1− δ

(
Pr(v̄)(v̄ − 2c) + Pr(v)(v − 2c)

)
(43)

project cannot be exploited.
21Code available upon request.
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+
(
Pr(v̄) + Pr(v)

) δ

1− δ
(v − 2c) +

(
1− Pr(v̄) + Pr(v)

)
δv

c ≤ C0(explore) +
δPr(v̄)C0(explore)

1− δ(1− Pr(v̄))
(44)

Inequality (39) implies that {v̄, 0} satisfy Equation (5), where C0(explore) was defined

in Equation (28). Inequality (40) ensures that the players are able to exploit a project

worth v in isolation. Inequality (41) ensures that |Pt| < 2 while exploiting the

project worth v (when the best project found so far on the other domain has value

0). This inequality uses C0(explore) as an upper-bound. These statements imply

that if the players ever reach a point with a project worth v, they either exploit the

project, explore a project on the other domain while maintaining a scope of 1, or

conduct 2 explorations. Inequality (42) ensures that conducting two explorations is

not feasible because the upper-bounds associated with the continuation value for the

new domain and the domain with a project with value v is provided by the first-best

policy. Next, Inequality (43) ensures that the players prefer to exploit the project

worth v as opposed to exploring the domain where the best project is worth 0 until

Equation (5) holds and then subsequently implementing the first-best policy. These

constraints imply that |Pt| = 1 if the best projects are worth v, 0. Finally, Inequality

(44) ensures that this experimentation policy is feasible. One can check that these

constraints, along with (i) E (vp) ≥ 2c and (ii) v0 ≤ v, hold jointly.22

Statement 2: We prove the result for a discrete support distribution, as Lemma 1

can be used to extend the result to a convex support distribution. We consider m = 3

and a trinary support distribution, vp ∈ {0, v, v̄}, where 0 < v < v̄.23 Throughout,

let c̃ := c − (1 − α)E(vp) > 0. Let p̄, p correspond to the probability that vp = v̄,

v, respectively. For the subsequent argument, consider p̄ to be arbitrarily small, in a

sense we will make precise below. Suppose

2c =
δ

1− δ
(v̄ + v − 4c), (45)

implying that the players can jointly exploit projects worth v̄ and v, but could not

permanently exploit a project worth v̄ and two projects worth v. As a result, for any

c̃ > 0, when v̂ = v̄, v, 0, the players either (i) permanently exploit the two projects and

22The code can be provided upon request.
23Unlike Proposition 5, considering a trinary support distribution and m = 2 fails.
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conduct no additional explorations or (ii) implement a policy involving exploration

whose associated surplus is bounded below that of exploiting the project with value

v̄ and exploring in the other two domains until finding a project with value v̄ and

subsequently implementing the first best. As the payoff bound of (ii) tends to zero

as p̄ goes to zero, there exists p̄∗ > 0 such that for p̄ < p̄∗, the players choose (i).

Hence, it suffices to show that Equation (45), p̄ < p̄∗, and |P 1| = m may jointly

hold. Because the first two of these three conditions are independent of α, they are

also independent of c̃. Therefore, holding fixed all remaining parameter values, the

continuation value at date one of conducting three explorations is bounded below by

Pr(vp = v̄) δ
1−δ

(v̄ − 2c). As a result, if c̃ is sufficiently small, the players’ initial scope

will be maximal, thereby completing the proof.
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