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Abstract

We analyze collaborative experimentation across multiple independent do-

mains. Each domain contains infinitely many potential projects with asymmet-

ric benefits. In each period and domain, two players can idle, jointly explore

a new project, or jointly exploit a known one, with voluntary transfers. For

intermediate discount factors, treating domains as independent during exper-

imentation is suboptimal. The optimal experimentation policy for two do-

mains exhibits common features of collaborative experimentation: lengthy ex-

ploration, gradual scope expansion, permanently bounded scope, intermittent

domain exploration, and project revival. We connect these findings to research

on buyer-supplier dynamics and persistent productivity differences.
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1 Introduction

In buyer-supplier relationships, companies co-innovate across multiple product

lines or geographies. In the pharmaceutical sector, an R&D alliance may combine

resources across vaccine development and protein targeting. Inside firms, continuous

improvement methods involve managers and workers collaborating to identify and

implement improvements across various dimensions of the production process. In all

such contexts, actors innovate collaboratively across multiple domains at once.

The success of these collaborations relies on maintaining aligned interests, so that

each party finds ongoing value in maintaining the partnership. In multi-domain col-

laborations, the ongoing value of continued participation is determined by the ag-

gregate value across all domains of cooperation. This aggregate value—representing

what parties stand to lose by withdrawing their cooperation—creates interdepen-

dencies across domains. For instance, in a collaboration involving two domains, a

breakthrough in one domain will increase the parties’ perceived value of the collabo-

ration, mitigating opportunism in the other domain. In innovation-intensive settings,

parties must therefore approach their joint experimentation in each domain of coop-

eration by balancing the domain-specific outcomes with the broader implications for

the overall collaboration.

This paper investigates how these cross-domain interdependencies influence the

dynamics and outcomes of joint experimentation in settings such as those mentioned

above. It then relates the main findings to the existing applied literature on buyer-

supplier dynamics and persistent productivity differences across firms.

We develop a model of multi-domain collaborative innovation. Time is discrete

with an infinite horizon, and the number of domains is exogenous. Each domain

contains infinitely many ex ante identical projects on which the players can cooperate,

and the domains are technologically independent. Cooperation on a project requires

both players’ participation; working individually on projects is not possible. In each

period and domain, players can choose to idle, explore a new project, or exploit a

known one. Project benefits are time-invariant but initially uncertain, and they may

be asymmetric across players. The benefits of a project are revealed in the first

period of cooperation on that project. Moreover, all projects entail a constant fixed

cost for the players, during both exploration and exploitation phases. As a result,

players might be reluctant to collaborate in exploring projects if they expect that
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their individual benefit will not exceed this cost, and they may similarly be reluctant

to collaborate in exploiting a project if their realized individual benefit falls below the

cost. To align incentives, players can transfer money to each other. However, these

transfers are voluntary, so any experimentation policy—a rule determining whether to

exploit a known project or explore a new one for each domain—must be self-enforcing.

We focus on Subgame Perfect Equilibria (relational contracts) that maximize the

players’ discounted cumulative joint payoffs (their “surplus”). As a starting point,

Proposition 1 examines our first benchmark, the single-player scenario, providing

a straightforward solution in which the optimal experimentation policy treats each

domain independently: within each domain, exploration continues until a project’s

value exceeds a time-invariant threshold, after which permanent exploitation of this

project is optimal. We refer to this optimal policy for the single-player scenario as the

“first-best experimentation policy.” Notably, this first-best policy would be optimal

for two players if all projects benefited them equally.

In the main analysis, we introduce asymmetric project benefits by assuming each

project exclusively benefits one player. The beneficiary’s identity, initially unknown,

is revealed when players first cooperate on the project and is independently and iden-

tically distributed across projects. The presence of asymmetric project benefits is the

key friction potentially impeding the implementation of the first-best experimentation

policy, as this policy requires promises of transfers between players to ensure coopera-

tion. However, these promises may lack credibility if the players making the transfers

have insufficient continuation value in the collaboration. As mentioned above, since

any player’s continuation value from the collaboration corresponds to the sum of the

continuation values associated with each domain of cooperation, the players’ experi-

mentation choices in one domain will affect all domains. For example, the decision to

exploit a given project in one domain becomes directly linked to the progress made

or anticipated in other domains. These cross-domain dynamics make an analytical

characterization of the optimal experimentation policy challenging.

We make progress by combining standard dynamic programming tools with the

insight from Levin (2002, 2003) that, with transferable utility, a single constraint

can capture all deviation temptations across players, domains, and outcomes from

project explorations conducted in the current period (Proposition 2). This approach

simplifies equilibrium characterization, enabling us to identify key properties of the

optimal experimentation policy. Proposition 3 establishes a necessary and sufficient
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condition for implementing the first-best experimentation policy despite asymmetric

project benefits, based on the values of the most valuable projects identified to date

in each domain. This condition requires the joint value of these projects to be high

enough to ensure the collaboration’s continuation value supports implementing the

first-best policy. For low discount factors, this condition binds, implying that, in

expectation, players transition to permanently exploiting the most valuable projects

found in each domain later than if they could implement the first-best from the

relationship’s start (Corollary 1). In some cases, this transition may never occur,

as discussed below. Moreover, this condition enables us to fully characterize the

optimal experimentation policy in our second benchmark analysis: the single-domain

case. In this simplified setting, exploration continues until a project’s value exceeds a

time-invariant threshold, higher than that in the single-agent benchmark, after which

permanent exploitation of the project becomes optimal (Corollary 2).

Next, we analyze the properties of the players’ optimal experimentation policy

when they are unable to implement the first-best policy in the current period. For

tractability we focus on the case of two domains. Proposition 4 shows that the players

may find it optimal to gradually expand the scope of their collaboration by exploring

a new domain only after identifying a sufficiently valuable project in a first domain.

This approach is optimal when exploring all domains simultaneously from the outset

is not feasible, due to a low initial continuation value of the collaboration. A gradual

policy can be easier to implement because it helps the players to collaboratively

experiment in each of the two domains. The exploration of the first domain is easier

because it is motivated not only by its potential outcome within that domain but also

by the added prospect of exploring the second domain upon identifying a sufficiently

valuable project in the first. The exploration of the second domain is easier because its

exploration begins once a sufficiently valuable project in the first domain has increased

the players’ overall continuation value. Finally, while a gradual experimentation

policy requires a positive probability of exploring an additional domain to successfully

initiate the collaboration, Proposition 5 shows that this expansion may never take

place. When scope expansions are not guaranteed to occur, the long-term scope

of the collaborative relationship is determined by the outcomes of the early project

explorations.

Having examined the implications of cross-domain interdependencies on the dy-

namics of the scope of players’ collaboration, we conclude the main analysis by in-
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vestigating their consequences for the players’ exploration and exploitation decisions

within their active domains of cooperation. Unlike the first-best experimentation pol-

icy, which features a time-invariant exploitation threshold, the threshold for project

exploitation is dynamic when the players’ continuation value is initially low in multi-

domain experimentation. In Proposition 6, we show that this dynamic threshold can

give rise to two notable behaviors. First, the players may exploit a project temporar-

ily, meaning that they may choose to stop exploring a domain for an extended period

and later decide to resume exploration. Second, the players may choose to stop ex-

ploring a domain, but instead of exploiting the most recently explored project, they

may opt to exploit a project they had previously explored but not exploited. Both

behaviors are driven by the evolving aggregate value of the collaboration.

In Section 5, we discuss extensions of the model included in the Online Appendix,

in which the domains of cooperation are asymmetric or exhibit technological inter-

dependencies. We find that these features increase the importance of gradual ex-

perimentation policies. We also examine how the potential scope of a collaboration

influences its feasibility and profitability.

Section 6 connects our theoretical analysis with two distinct research areas: buyer-

supplier dynamics and persistent productivity differences across firms. The buyer-

supplier relationships literature stresses experimentation and credibility as critical

factors for successful collaborations, and corroborates the prevalence of gradualism

and strong path dependence. In addition, we argue that our framework provides novel

insights into how managerial practices can generate productivity differences among

seemingly similar firms.

The rest of the paper is structured as follows. Section 1.1 reviews the relevant

theoretical literature. Section 2 presents the model. Section 3 characterizes the first-

best experimentation policy. Section 4 provides the main analysis. Section 5 discusses

various model extensions. Section 6 examines the applied literature in light of our

theoretical findings. Section 7 concludes the paper.

1.1 Related Theoretical Literature

In this section, we review the theoretical literature related to our work. We

postpone the discussion of the applied literature to Section 6.

Firstly, our research connects to the literature on multi-armed bandit problems
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(Robbins, 1952) and on optimal search (Lippman and McCall, 1976; Weitzman,

1979).1 For a review of applications within economics, see Bergemann and Välimäki

(2008). Our work contributes to the subset of this literature that focuses on strategic

interactions among players. Bolton and Harris (1999) and Keller et al. (2005) con-

sider settings in which players independently pull arms and free-ride on each others’

experimentation (see also Hörner et al., 2022, for more recent work on this topic).

Bonatti and Hörner (2011) examine a scenario in which agents collaborate in an ex-

perimentation process involving private effort choices. Further, Liu and Wong (2023)

consider an environment in which players compete with each other to explore alter-

natives. Our focus is on a setting where cooperation among players is essential for

both the exploration and exploitation of projects, as individual experimentation is

not feasible. In Strulovici (2010), players vote to choose between a safe arm and a

risky one, with its asymmetric benefits revealed over time through experimentation.

Anesi and Bowen (2021) analyze a similar setting, allowing for some redistribution of

surplus among players. Further, Albrecht et al. (2010) examine a sequential search

problem where a committee determines which project to permanently exploit. Chan

et al. (2018) and Reshidi et al. (2024) contrast group and individual decision-making

regarding experimentation, looking at the impact of static versus sequential informa-

tion acquisition and of voting rules. In contrast to these papers, our setting allows

for voluntary transfers among players and requires the combined efforts of all players

for experimentation. Most significantly, the distinguishing feature of our framework

is that players can simultaneously experiment across multiple domains.

Secondly, this work is related to the literature on relational contracts (see e.g.,

Bull, 1987; Macleod and Malcomson, 1989; Baker et al., 1994, 2002; Levin, 2002, 2003,

for early contributions).2 Building upon the work of Levin (2002, 2003), we leverage

the key insight that, in the presence of monetary transfers, all constraints associated

1Our setting resembles standard search problems by modeling many alternatives for players to
explore. However, unlike typical search problems where rewards come only at the end from the best
explored alternative, our model allows players to benefit each time they cooperate on a project,
without the need to settle on a project. For this reason, we use the broader term “experimentation”
rather than “search.” Moreover, existing models of strategic experimentation with bandits often
limit options to a few alternatives, like a risky and a safe project. We assume an infinite number of
i.i.d. projects to eliminate aggregate uncertainty, making the dynamics in our model driven purely
by strategic factors.

2Also at the intersection of the bandit and the relational contracting literatures, Urgun (2021)
examines a scenario where a principal interacts with multiple agents whose publicly-observable types
depend on the contracting history.
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with players’ temptations to deviate can be aggregated into a single constraint. Halac

(2014) studies a repeated principal-agent setting in which the value of the players’

relationship increases with the duration of the relationship. The players initially

choose to cooperate on low-risk, low-return projects, and they switch to high-risk,

high-return projects once their relationship has grown sufficiently valuable. In our

setting, experimentation endogenously affects the value of the players’ relationship,

creating a feedback effect: as players engage in experimentation, their relationship

grows more valuable, which in turn facilitates more efficient experimentation. In

contrast, Chassang (2010) analyzes a setting where increases in relationship value

diminish the players’ ability to experiment. In his model, the agent knows which

arms are productive and which are not, while the principal, at the outset, cannot

differentiate between the two. Without monetary incentives, incentivizing the agent

to choose productive arms is accomplished by the threat of firing the agent following

failures. This dynamic makes motivating exploration progressively expensive as more

productive arms are identified. Should the relationship endure, it ultimately enters

an “exploitation” phase and its value stops growing. In our model, the players are

symmetrically informed about their environment, and the presence of transferable

utility removes the need for inefficient on-path punishments. These two features lead

to the positive feedback effect mentioned above.3

Finally, we add to the body of research on gradualism in collaborations. Watson

(1999, 2002) examine a setting in which players are uncertain regarding their coun-

terpart’ intentions—to either collaborate genuinely or take advantage of the other.

The players begin with low cooperation to mitigate the losses from defection. As

the players become more optimistic, the collaboration grows. Collaborations involv-

ing trustworthy players achieve optimal cooperation, while those with untrustworthy

players eventually fail. In our setting, the scope of the players’ experimentation may

increase incrementally, not due to screening intentions, but because building the con-

tinuation value needed for self-enforcing experimentation takes time. As a result, the

two settings make opposite predictions regarding the impact of the discount factor

on gradualism. In our setting, a higher discount factor reduces the need for gradual-

3Introducing transferable utility within Chassang (2010), where information asymmetry plays a
central role, would make the value of the players’ relationship constant on path. For a setting similar
to Chassang (2010) but with imperfect transfers and uncertainty about the value of the relationship,
see Venables (2013). For work on experimentation in principal-agent settings with commitment, see
Halac et al. (2016) and Ide (2024).
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ism, whereas in the frameworks analyzed by Watson (1999, 2002), and the dynamic

screening literature more broadly (e.g., Ely and Välimäki, 2003), a higher discount

factor increases gradualism because separation is harder to achieve.

2 The Setup

Two players, such as a buyer and a supplier or two firms in an R&D alliance, with

a discount factor δ < 1 and zero per-period outside options, have the opportunity to

interact over multiple time periods t = 1, 2, . . . . Their interaction spans m exoge-

nously fixed domains—such as distinct geographical markets or product categories in

a buyer-supplier relationship—where each domain j contains a countably infinite set

of projects Pj. The union of all these sets forms the total set of projects, denoted as

P = ∪jPj, where each project within P is indexed by p. In each period t, and for each

domain j, each player i = 1, 2 chooses up to one project from the set Pj. The finite

set of projects chosen by player i in period t is denoted by P t
i . The players cooperate

on the set of projects Pt = P t
1 ∩ P t

2, following a unanimity rule, and cannot work

individually on projects not included in Pt, as both players possess indispensable and

complementary assets or skills. The cardinality of this set, |Pt| ≤ m, is referred to as

the scope of the players’ experimentation in period t.

Each project in Pt costs c > 0 for each player and has initially unknown time-

invariant value vp ∈ R, which is publicly observed after the first cooperation. We

assume that for each project, a single player receives the entire value vp of the project.
4

The identity of any project’s beneficiary is, however, initially unknown and we denote

it by xp ∈ {1, 2}. Both vp and xp are each i.i.d. across projects and domains, making

all domains ex ante identical. We denote by α ∈
[
1
2
, 1
]
the probability that xp = 1,

implying that player 2 receives vp with probability 1− α.

We say that a project is being “explored” when cooperated on for the first time

and “exploited” when cooperated on in both the current period and at least one prior

period. There are no intertemporal restrictions on project availability.

We make the following assumptions on the distribution of project values. First, we

assume that the distribution of vp has a convex support. Second, we assume E(vp) ≥
4Our results hold for less skewed benefit distributions, provided one player’s valuation exceeds

the cost c while the other’s falls below it for each project.
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2c, which is a sufficient condition to ensure that exploration increases joint surplus.5

These assumptions simplify the proofs and statements of the results but are not

crucial. We further assume that with positive probability, vp ≥ ṽ(δ) := c (1 + δ) /δ.

As Proposition 2 will show, without project values exceeding this threshold, players

will never cooperate in exploiting projects.

Further, the players exchange money twice during each period. At the beginning of

each period t, the players make discretionary transfers to each other, where wt
i,−i ∈ R+

denotes such a transfer from player i to player −i. At the end of each period t, players

again make discretionary transfers to each other, where bti,−i ∈ R+ denotes such a

transfer from player i to player −i.6 Finally, player i’s period t payoff is equal to:

πt
i = wt

−i,i − wt
i,−i + bt−i,i − bti,−i +

∑
p∈Pt

(
vp1xp=i − c

)
, where i ∈ {1, 2} , (1)

and where 1xp=i = 1 if xp = i and otherwise is equal to zero.

We conclude the model’s description by stating the timing of the stage game.

Both players simultaneously choose their discretionary transfers wt
i,−i. Next, both

players simultaneously make their project choices P t
i . For each project p ∈ Pt, the

players incur c and observe its beneficiary xp and its value vp, and player xp pockets

vp. Finally, both players simultaneously choose their discretionary transfers bti,−i.

Relational Contracts. A relational contract is a complete plan for the relation-

ship. Let ht = (w1,P1,v1,x1,b1, . . . , . . . ,wt−1,Pt−1,vt−1,xt−1,bt−1) denote the his-

tory up to date t and Ht the set of possible date t histories, where boldface lowercase

letters indicate vectors. Then, for each date t and every history ht ∈ Ht, a relational

contract describes: (i) the wt transfers; (ii) the set of projects Pt (wt) as a function

of wt; and (iii) the bt (wt,Pt,vt,xt) transfers as a function of wt, Pt, and the re-

alizations of vt and xt. Such a relational contract is self-enforcing if it describes a

Subgame Perfect Equilibrium of the repeated game. Within the class of Subgame

5Relaxing this assumption could make no experimentation optimal in the first-best for low dis-
count factors, unnecessarily complicating our analysis of the second-best policy where the discount
factor is key.

6We incorporate the option of monetary transfers both before and after the players’ project
choices, although removing either would not qualitatively affect our results. Without transfers at
the beginning of each period, surplus might no longer be fully redistributed across the players without
affecting incentives. Without transfers at the end of each period, incentives for the current period
would rely on transfers from the subsequent period, complicating the proofs.
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Perfect Equilibria, we analyze pure-strategy equilibria which maximize the players’

joint surplus. Pure strategy equilibria are optimal because (i) mixing on transfers in-

creases the maximal transfers players promise each other and (ii) mixing on projects

leads to limited scope that can be replicated by being idle in some domains. In the

event of a deviation in some period t, the players respond (i) by choosing P t
i = ∅ and

bti,−i = 0 if these choices have not been made yet and (ii) by permanently breaking

off their relationship (i.e., reverting to the worst equilibrium of the stage game from

the next period onward). This punishment is without loss of optimality as it occurs

out-of-equilibrium (c.f. Abreu, 1986).7

3 First-Best Experimentation

We characterize the optimal experimentation policy for a benchmark where a sin-

gle decision-maker, “player 0,” maximizes the sum of both players’ payoffs. This

optimal experimentation policy is identical to the one we would obtain if we modi-

fied the model described in Section 2 such that projects always equally benefit both

players. The proofs for the following proposition, as well as those for all subsequent

statements not included in the main text, can be found in the Appendix.

Proposition 1 (First-Best Experimentation Policy)

For each domain j and period t, player 0 adopts the following experimentation policy:

if a previously-explored project p has the highest value and vp ≥ v0(δ), exploit it; If

no previously-explored project has a value exceeding v0(δ), explore a new project. The

threshold v0(δ) is increasing in δ.

Player 0 treats each domain separately and identically, given the additive separa-

bility of payoffs across projects and domains, as well as the ex ante identical nature

of domains. The threshold v0 arises from player 0’s decision in each domain to either

exploit the best project found thus far or explore a new project in search of a supe-

rior one. Furthermore, exploitation is permanent because player 0 does not acquire

new information when exploiting a project. Likewise, given the infinite supply of ex

ante identical projects in every domain, player 0 never chooses to exploit a project it

7Alternatively, post-deviation, players could maintain the equilibrium but allocate all surplus
to the non-deviator. This provides identical incentives and, being Pareto optimal, is less prone to
renegotiation.
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chose not to exploit in the past. Finally, as the discount factor increases, the value

of exploration rises because any superior project identified can be exploited across all

future periods, explaining the comparative static result for v0.

In summary, the first-best policy maximizes experimentation scope, with explo-

ration/exploitation decisions in each domain dictated by an independent, identical,

and time-invariant threshold. We now analyze the model from Section 2, where these

features may not always hold.

4 Main Analysis

This section analyzes the model described in Section 2. In Section 4.1, we char-

acterize the class of optimal relational contracts on which the analysis focuses and

establish a necessary and sufficient condition for an experimentation policy to be

implementable by an optimal relational contract. In Section 4.2, we provide the con-

ditions under which the players can implement the first-best experimentation policy

stated in Proposition 1. In Section 4.3, we characterize key properties of the players’

optimal experimentation policy when they are unable to implement the first-best pol-

icy. For tractability, Section 4.3 focuses on the case where m = 2. Finally, in Section

4.4, we analyze a concrete example to illustrate some of the key model dynamics.

4.1 Optimal Experimentation Policies: Implementability

In our setting, surplus-maximizing relational contracts depend on the players’

beliefs about the projects. We denote the beliefs at the beginning of period t by

µt(ht) := {∆(vp, xp)|ht}p∈P . We show that there exist surplus-maximizing relational

contracts that condition on ht only through µt(ht). Moreover, restricting attention to

relational contracts specifying the same continuation equilibrium following any two

on-path histories ht
1 and ht′

2 leading to the same beliefs µ is without loss of optimality,

since the only history-dependent outcome that alters the set of continuation equilib-

ria are the players’ beliefs µt. Furthermore, the continuation equilibria prescribed

by such surplus-maximizing relational contracts are also surplus-maximizing; other-

wise, non-surplus-maximizing continuation equilibria could be replaced with surplus-

maximizing ones, with appropriate transfers to maintain incentives. We refer to such

relational contracts as optimal. The following proposition formalizes this characteri-
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zation and provides a necessary and sufficient condition for an experimentation policy

P̂ : {∆(vp, xp)}p∈P → P to be implementable by an optimal relational contract.

Proposition 2 (Optimal Relational Contracts)

• For any surplus-maximizing relational contract, there exists an alternative surplus-

equivalent relational contract such that (i) for all t and for all on-path histories

ht ∈ Ht, the continuation equilibrium is surplus maximizing, and (ii) for any

two on-path histories ht
1 and ht′

2 , if µ
t (ht

1) = µt′
(
ht′
2

)
, then the relational con-

tract specifies the same continuation equilibrium following these histories.

• There exists an optimal relational contract that implements an experimentation

policy P̂(·) if and only if the following inequality holds for all on-path ht ∈ Ht:

∑
p∈P̂(µt)

2∑
i=1

max
(
0, c− E

(
vp1xp=i|µt

))
≤ C

(
µt
)
, (2)

where C (µt) (“the continuation value”) is the expected net present value of the

players’ joint surplus starting in t+ 1 given P̂(·) and µt.

The proof of this proposition, provided in the Online Appendix, extends the work

of Levin (2003). In our setting, despite the stochastic nature of the players’ continu-

ation value, we show that considering its expectation is sufficient to characterize the

experimentation policies that can be implemented by a relational contract.

The intuition for the first statement was provided above the proposition. Next,

Inequality (2) states that for an optimal relational contract to implement an exper-

imentation policy everywhere on path, the continuation value must exceed the total

reneging temptation across players and projects in all periods and histories. The to-

tal reneging temptation is the sum across players and projects of a project’s reneging

temptation to a player, which is either zero if the project generates a positive net

expected gain, or equal to the magnitude of the net expected loss. The sum is across

projects because, for any beliefs µ, each player can deviate by selecting any subset of

P̂ (µ). This condition is necessary for the relational contract to constitute an equilib-

rium. In the proof, we show that the presence of money also ensures sufficiency.

The proposition implies that characterizing the optimal relational contract reduces

to determining the players’ optimal experimentation policy, subject to Inequality (2)
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holding along the equilibrium path induced by the policy. This simplification arises

because all transfers cancel out in both the joint surplus expression and the right-

hand side of (2). Notably, Inequality (2) implies that players might not treat domains

independently, as its right-hand side aggregates continuation values across all domains

of cooperation. The consequences of this “relational” interdependence across domains

on the players’ optimal experimentation policy will be our focus hereafter.

4.2 Implementability of First-Best Experimentation

In this section, we provide necessary and sufficient conditions on the beliefs µt

under which the players can implement the first-best experimentation policy described

in Proposition 1 in all periods t′ ≥ t. We refer to this outcome as “implementing the

first-best experimentation policy.” As we will show, in equilibrium, it may happen

that there exists a period t′ > t such that the players can implement the first best in

period t′ and all subsequent periods, but not in the earlier period t.

Intuitively, the optimal relational contract in any given period depends solely

on the values of the most valuable projects identified in each of the m domains

of cooperation, which we denote as v̂1, . . . , v̂m.
8 Less valuable projects will never

be exploited. As a result, keeping track of v̂1, . . . , v̂m is sufficient to keep track of

the players’ beliefs about the projects. Moreover, Inequality (2) implies that the

threshold ṽ, defined in Section 2, represents the minimum project value required for a

project’s exploitation to be sustainable in equilibrium when there is only one domain

of cooperation (m = 1). Using this threshold ṽ, we now provide the conditions

on v̂1, . . . , v̂m under which the players can implement the first-best experimentation

policy, which entails exploiting a project if and only if its value is at least v0.

Proposition 3 (Nec. and Suff. Condition for First-Best Experimentation)

In any optimal relational contract and for any period t, the players implement the

first-best experimentation policy for all t′ ≥ t if and only if:

h(v̂1, . . . , v̂m) :=
1

m

m∑
j=1

max{v̂j, v0} ≥ ṽ := c
1 + δ

δ
. (3)

As a result, there exists a threshold δ0 < 1 such that the players implement the first-

best experimentation policy from period 1 onward if and only if δ ≥ δ0.

8Formally, if no projects have been explored in domain j, we set v̂j = 0.
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When Inequality (3) is satisfied, the continuation value of the relationship is suf-

ficiently high to enable the implementation of the first-best experimentation policy.

The condition requires that the average across domains of the maximum between the

value of the most valuable project found in each domain and the threshold v0 must

exceed the threshold ṽ. The function h(v̂1, . . . , v̂m) is not the arithmetic mean of the

values v̂1, . . . , v̂m for two reasons: (i) under the first-best policy, players explore rather

than exploit projects with values lower than v0, and (ii) exploration contributes to the

players’ continuation value. Furthermore, the condition v0 ≥ ṽ is both necessary and

sufficient for Inequality (3) to hold from period 1 onwards. The function v0(δ)− ṽ(δ)

exhibits a single-crossing property in δ, implying the existence of a threshold δ0.9

Players implement the first-best policy from period 1 if and only if δ ≥ δ0.

Next, Proposition 3 allows us to provide necessary and sufficient conditions under

which the players cease all exploration and transition to exploiting the most valuable

project discovered in each domain, given that they are already implementing the first-

best experimentation policy. We refer to this outcome as “permanent exploitation.”

Corollary 1 (Nec. and Suff. Condition for Permanent Exploitation)

In any optimal relational contract, the players permanently exploit projects with values

v̂1, . . . , v̂m if and only if v̂j ≥ v0 for all j and the average of v̂1, . . . , v̂m exceeds ṽ.

Proof of Corollary 1.

{v̂j ≥ v0 ∀j and

∑
j v̂j

m
≥ ṽ} ⇐⇒ {v̂j ≥ v0 ∀j and

∑
j max{v̂j, v0}

m
≥ ṽ}

The conditions stated in Corollary 1 imply that, in expectation, the players attain

the permanent exploitation outcome weakly later than if they could follow the first-

best experimentation policy from period 1 onward. This delay relative to the first-

best is strictly positive when δ < δ0. In fact, as shown below, permanent exploitation

across all domains of cooperation is not even guaranteed to occur.

We conclude by noting that the conditions listed in Corollary 1 fully characterize

the players’ optimal experimentation policy for the second natural benchmark case

in our analysis: a single-domain collaboration. When there is only one domain, the

players face a simple decision in each period: either to exploit the best project found

9Proposition 1 establishes that player 0’s threshold, v0(δ), monotonically increases in δ, while
the definition of ṽ implies that ṽ(δ) monotonically decreases in δ.
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thus far or to explore a new project. The exploitation threshold in this setting is

time-invariant, as the players’ continuation value depends solely on the value of the

best project in this single domain.

Corollary 2 (Single-Domain Experimentation Benchmark)

When m = 1, in any non-empty optimal relational contract, there exists a threshold

v∗(δ) = max{ṽ(δ), v0(δ)} such that the players explore projects until they find a project

p with an associated value vp ≥ v∗. Once they find such a project, the players exploit

it in all subsequent periods. Finally, there exists a threshold δ∗ ≥ 0 such that the

optimal relational contract is non-empty if and only if δ ≥ δ∗.

In this subsection, we have provided the conditions on the best projects found in

each domain under which the players implement the first-best experimentation policy.

We have also shown that, if δ is not sufficiently high, the players will initially be unable

to implement the first-best policy. We now proceed to characterize key properties of

the players’ experimentation policy in the periods that precede an eventual transition

to the first-best policy when collaboration spans multiple domains.

4.3 Second-Best Experimentation

We now analyze the players’ optimal experimentation policy when they cannot

implement the first-best policy in the current period, referring to this as their second-

best experimentation policy. In each domain, players either (i) explore a new project,

(ii) exploit the project with the highest known value v̂j, or (iii) remain idle. With

m domains, there are thus 3m possible action combinations each period. Since our

proofs rely on analytical solutions, for tractability we focus on the case where m = 2

in this subsection. While the parity of m may influence certain aspects of the optimal

experimentation policy (as discussed in Section 5.2), the core insights derived in this

section apply to cases with larger values of m.

The players’ exploration and exploitation decisions within their active domains

of collaboration are inherently intertwined with their choices of which domains to

engage in. However, to disentangle these dynamics and help intuition, we examine

both aspects of the players’ experimentation separately. In Section 4.3.1, we examine

the dynamics of the scope of the players’ experimentation, setting their exploration

and exploitation decisions aside. Subsequently, in Section 4.3.2, we reverse the focus,
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exploring the dynamics of their exploration and exploitation decisions while leaving

their scope decisions in the background.

4.3.1 The Dynamics of the Scope of Experimentation

Proposition 3 established a threshold δ0 on the discount factor such that, when

δ ≥ δ0, players implement the first-best policy from period 1, maintaining maximal

scope throughout. We now show that, when δ < δ0, players may instead expand the

scope of collective experimentation gradually over time.

Proposition 4 (Gradualism in the Scope of Experimentation)

Fix m = 2. There exist two additional thresholds δ∗ ≤ δ̄ ≤ δ0 on δ such that:

1. If δ ≥ δ̄, any optimal relational contract is such that the scope of experimentation

is always maximal on path (i.e., |Pt| = 2 for all t).

2. If δ ∈ [δ∗, δ̄), any optimal relational contract is such that the scope of experi-

mentation is initially limited on path (i.e., |P1| = 1), with scope increasing with

strictly positive probability along the equilibrium path.

3. If δ < δ∗, the scope of experimentation is equal to zero in all periods (i.e.,

|Pt| = 0 for all t).

There exist distinct open sets of parameter values such that the interval [δ∗, δ̄) is

non-empty for one set and empty for another set.

When δ ≥ δ̄, the scope of experimentation is maximal from the start, though the

first-best policy may be delayed. When δ < δ∗, no experimentation occurs at any time

(experimentation is “empty”). If δ∗ < δ̄, for δ ∈
[
δ∗, δ̄

)
, the scope of experimentation

gradually increases over time. These thresholds exist because (i) it is optimal for the

players to experiment in as many domains as possible, as soon as possible, within the

constraints of Inequality (2), and (ii) because a higher δ relaxes these constraints.

We now explore why players might find it optimal to gradually expand their

experimentation domains. This result seems counterintuitive for three reasons: (i)

Exploration is beneficial even in the current period (as E(vp) ≥ 2c by assumption);

(ii) Exploration provides valuable information, increasing the domain’s continuation

value; (iii) Due to (ii), exploration relaxes Inequality (2), potentially improving effi-

ciency in other domains’ decision-making. However, gradualism reduces the left-hand
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side of Inequality (2) early in the relationship, making this approach potentially op-

timal despite these considerations.

To better understand this trade-off, we compare three experimentation policies,

focusing on the most stringent constraint imposed by Inequality (2) for each. This

approach is sufficient because an experimentation policy is implementable if and only

if this inequality holds throughout the equilibrium path. Also, we set α = 1 for

simplicity, making the left-hand side of Inequality (2) equal to player 2’s total cost.

Under the first policy (“Independent”), players treat both domains independently and

identically. The most stringent constraint occurs in period 1, when players explore

their first project in each domain:

2c ≤ 2 C(exploration). (4)

Under the second policy (“Maximal”), players immediately explore both domains, but

the decision to exploit projects is interdependent across domains. The most stringent

constraint still applies in period 1:

2c ≤ C(two explorations). (5)

Under the third policy (“Gradual”), players start by exploring domain 1 and ex-

pand to domain 2 upon discovering a sufficiently valuable project. The most binding

constraint corresponds to either period 1 (6) or the period of expansion (7):

c ≤ C(exploration) + C(delayed exploration), (6)

2c ≤ C(exploitation) + C(exploration). (7)

Inequality (4) is the most stringent constraint of the the four, reflecting the advan-

tages players derive from pooling their two domains of experimentation.10 It is harder

to satisfy than Inequality (5) because, under the Maximal policy, players can use the

discovery of a valuable project in one domain to make more efficient exploration

and exploitation decisions in the other (e.g., by lowering the exploitation threshold).

Moreover, Inequality (6) is easier to satisfy than (4) due to the positive continuation

value stemming from the eventual exploration of the second domain. Finally, In-

10In fact, Inequality (4) corresponds to the implementation constraint when the number of domains
equals 1. See Section 5.2 for a discussion of how scope affects the players’ experimentation.
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equality (7) is also easier to satisfy than (4) because C(exploitation) > C(exploration)
when exploiting a domain 1 project that enables the exploration of domain 2.

We can now more readily examine the conditions determining whether the interval

[δ∗, δ̄) is empty or non-empty. Inequality (7) is always easier to satisfy than Inequality

(5), for reasons similar to why it is easier to satisfy than Inequality (4). Therefore, we

focus on comparing Inequalities (5) and (6). Intuitively, the Maximal policy is optimal

whenever feasible and it can be feasible for lower discount factors than the Gradual

policy. The drawback of the Gradual policy is that it shifts surplus into the future,

potentially reducing both profitability and feasibility. Examining Inequalities (5)-(6),

this occurs whenever C(delayed exploration) is low, such as when the discovery of a

valuable domain 1 project, which enables the exploration of domain 2, is expected to

take a long time. In these instances, the interval [δ∗, δ̄) is empty.

Conversely, the interval [δ∗, δ̄) is non-empty and gradual scope expansion is op-

timal for intermediate values of the discount factor if C(delayed exploration) is not

significantly lower than C(exploration), and/or if the benefit of simultaneous explo-

ration in two domains with interdependent exploration/exploitation decisions is not

substantially greater than making independent decisions (i.e., 1
2
C(two explorations) ≈

C(exploration)). This scenario may occur when the continuation value of the players’

collaboration approaches that needed for the implementation of the first-best exper-

imentation policy, such that discovering a valuable project in one domain minimally

affects the exploitation threshold in the other. This would happen, for example, if

the distribution of project valuations, vp, assigns little density to realizations between

2c and 2ṽ− v0 (the minimum value for v̂j under which (3) holds regardless of v̂−j).
11

As this intermediate range’s density approaches zero, the discovery of any project

worth exploiting enables first-best experimentation. Consequently, the benefit of in-

terdependent exploration/exploitation decisions across domains diminishes, making

Inequality (6) easier to satisfy than Inequality (5).

While we set α = 1 to simplify Inequality (2) and illustrate why gradualism

may be optimal, the same basic intuitions hold when α < 1. Gradualism can be

optimal for intermediate values of the discount factor because it reduces the present

cost of experimentation while only delaying the exploitation of valuable projects in

other domains. Although this logic requires a non-zero probability of future scope

expansion, we now show that an optimal gradual experimentation policy does not

11For this reason, the interval [δ∗(α), δ̄(α)) is always non-empty for binary distributions.
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necessarily imply expanding the scope of collaboration with certainty.

Proposition 5 (Bounded Scope) Fix m = 2. There exists an open set of param-

eter values such that any optimal relational contract is non-empty and the broadest

scope of the players’ experimentation achieved on the equilibrium path need not reach

its maximum with probability one.

Consider a discount factor such that the scope of experimentation increases grad-

ually. Players begin by exploring domain 1. They may find a project valuable enough

for exploitation and domain 2 exploration, or one supporting only permanent ex-

ploitation. In the latter case, players might choose limited scope if the chances of

finding a significantly better project are low. The seeming paradox—inability to

explore domain 2 after a valuable domain 1 discovery, despite initial domain 1 ex-

ploration—is resolved by recognizing that initial exploration was partly motivated by

potential scope expansion.

In this subsection, we have shown that, for intermediate values of the discount fac-

tor, the optimal second-best experimentation policy may involve a gradual increase

in the number of domains in which players collaboratively experiment. While the

possibility of scope expansion must have a positive probability for collective experi-

mentation to begin, it is not guaranteed, and players may ultimately remain perma-

nently idle in a domain. We now shift our focus to analyzing the dynamics governing

players’ exploration and exploitation decisions.

4.3.2 The Dynamics of Exploration-Exploitation Decisions

Proposition 1 described the single-player benchmark’s optimal experimentation

policy (the first-best policy). In this policy, each domain is treated independently

and identically, and the threshold for project exploitation is time-invariant. This

latter property implied that project exploitation and the decision to not exploit a

project were permanent.

In contrast, for collaborative experimentation, we have shown in previous sections

that players aggregate incentives across all their cooperative domains. This pooling

generates relational interdependencies, resulting in domains being treated neither

identically nor independently. In this section, we establish that this observation

implies that the criterion used to determine project exploitation is dynamic. In
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particular, we show that the players may exploit a project temporarily, and further,

that they may recall a project they previously chose not to exploit.

Proposition 6 (Temporary Exploitation and Recall of Projects)

The players’ optimal experimentation policy may involve temporary exploitation and

recall of projects. Specifically, for an open set of parameter values and with strictly

positive probability:

1. The players may choose to exploit a project in period t, but later decide not to

exploit the same project in some period t′ > t.

2. The players may choose not to exploit a project in period t, but later decide to

exploit the same project in some period t′ > t.

The behaviors described in the proposition do not occur for all parameter values.

They never occur if δ ≥ δ0 and the players implement the first-best experimentation

policy from the start. Even if δ < δ0, these behaviors are possible but not guaranteed.

For example, they will not occur if the players immediately identify two projects worth

permanent exploitation in the initial period, as there would be no incentive to deviate

from exploiting these projects in the future.

The intuition behind (1) can be understood by considering the following scenario.

Suppose the values of the best projects in domains 1 and 2 satisfy v̂1 ≥ v̂2. Further,

assume that both values are sufficiently large for the players’ relationship scope to

be maximal, but not large enough to enable them to implement the first-best policy.

If v̂1 is particularly high, the players will choose to exploit the project in domain 1

and explore in domain 2. Now, imagine that the exploration in domain 2 uncovers a

project with a value slightly higher than v̂1. In this case, the players find themselves in

a situation similar to the previous period, but with the roles of the domains reversed.

They will now choose to exploit the newly discovered project in domain 2 and explore

in domain 1.

To understand the intuition behind (2), consider a scenario where the discount

factor δ is sufficiently small, preventing the exploitation of projects with values only

slightly above the exploitation threshold v0. Suppose the players’ scope of experimen-

tation is maximal, which for instance occurs when α equals 1/2. If the explorations

in period 1 yield two projects with values marginally higher than v0, the players are

forced to explore two new projects in the next period. However, if one of these newly
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explored projects achieves a significantly high value, it can substantially increase the

continuation value of the players’ relationship. This increased continuation value may

enable the players to implement the first-best experimentation policy. In such a case,

the players may find it optimal to revert to exploiting one of the two projects from

period 1, even though they previously chose to explore new projects.

Behaviors such as the temporary exploitation of projects or the recall of past

projects are common in experimentation settings. These behaviors can arise due to

various factors, including the presence of a finite number of projects to explore or the

fact that project characteristics may not be fully revealed immediately. Our analysis

has shown that strategic interactions alone can also drive these behaviors.

4.4 Multi-Project Collaborations: A Graphical Illustration

We analyze an example with specific parameter values. We set c = 1 and δ = 1/3.

Furthermore, we consider a symmetric relationship by setting α = 1/2. The players

can cooperate in two domains (m = 2). Finally, the project values vp are drawn from a

shifted exponential distribution with a rate parameter λ = 1/2, i.e., vp ∼ 1+Exp(1/2).

Under this distribution, E(vp) = 3. The players’ scope of experimentation is always

maximal since αE(vp)− c = (1− α)E(vp)− c > 0, making exploration preferable to

inactivity. Further, the continuation value C(v̂1, v̂2) is weakly greater than 1 for all v̂1

and v̂2, as players can always explore two new projects per period, yielding a payoff

of E(vp) − 2c = 1 per project and a continuation value C(v̂1, v̂2) also equal to 1. As

a result, if Inequality (3) does not hold, players either: (i) exploit one project while

exploring another, or (ii) explore two projects simultaneously.

Figure 1a. The figure depicts the first-best policy stated in Proposition 1. The

vertical and horizontal black dotted lines represent the time-invariant threshold v0

for domains 1 and 2, respectively. In both domains, projects with values above this

threshold are permanently exploited, while those below are never exploited.

Further, the solid black line in the figure divides the project value space into two

distinct regions. This line represents the set of (v̂1, v̂2) values satisfying h(v̂1, v̂2) = ṽ,

a condition stated in Proposition 3. To the northeast of this line, in the region

labeled “First-Best,” the players can implement the first-best experimentation policy.

In contrast, to the southwest of the line, in the region labeled “Second-Best,” the

players can exploit at most one project at a time
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The horizontal segment represents where v̂1 < v0, so project 1 is never exploited

under the first-best policy, and implementation depends solely on v̂2. Symmetrically,

the vertical segment shows where v̂2 < v0, with implementation depending only on v̂1.

The downward-sloping segment captures instances where both v̂1 and v̂2 exceed v0.

Here, increasing one project’s value allows decreasing the other’s while maintaining

sufficient continuation value for first-best policy implementation.
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3 5 7

3

5

7

v0

v0

Exploit

ExploitExplore

Exploit

Exploit

Explore
Explore

Explore

•
• •

•

•

×∞

v̂1

v̂ 2

(b) Project Exploitation and Sample Path

Figure 1: Optimal Multi-Project Experimentation

In the figure, we assume c = 1, m = 2, δ = 1 / 3, and vp ∼ 1 + Exp(1 / 2). v̂1 and v̂2 denote the
values of the best projects discovered in domains 1 and 2, respectively. The left figure plots (i) the
threshold v0 for switching from exploration to exploitation in the first-best and (ii) the set of v̂1 and
v̂2 values satisfying h(v̂1, v̂2) = ṽ in solid black. The right figure divides the project value space into
four regions, determined by the exploitation or non-exploitation of each project. The top mention
indicates the decision for the project with value v̂1, while the bottom mention shows the decision
for the project with value v̂2. In Blue, we plot one realization of a sample path.

Figure 1b. The project value space is divided into four regions, determined by

the exploitation or non-exploitation (in favor of exploration) of each project. The

top mention indicates the decision for the project with value v̂1, while the bottom

mention shows the decision for the project with value v̂2. It follows from Figure 1a

that both projects are chosen for exploitation when in the “First-Best” region and

v̂1, v̂2 ≥ v0. Outside of this region, the players can choose one project for exploitation

at most. One can prove that there exists a threshold, v′, on the value of the best of

the two projects such that, below this threshold, the players choose to explore two

new projects rather than exploiting the best of the two projects. We observe that

the threshold v′ is lower than v0, indicating that players may opt to exploit a project
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even when they are certain to not permanently exploit it in the future.12

Figure 1b also presents a sample path illustrating the evolution of realized project

values over time, depicted in blue. In the early phase where the players are exploring

two projects simultaneously, both v̂1 and v̂2 weakly increase over time. In the phase

where the players exploit a project in domain j, v̂j remains constant, while v̂−j weakly

increases over time. Finally, in the phase of the relationship where the players exploit

both projects, v̂1, v̂2 stay constant because exploitation is permanent. Arrows are used

to signify changes in project values when a more valuable project is identified, while

self-loops indicate situations where more valuable projects are either not discovered

or not pursued. The path shown in the figure includes temporary exploitation in

domain 2 (of a project guaranteed to be not permanently exploited), as discussed in

Proposition 6.

5 Further Results

This section extends our analysis in two directions. First, we explore several simple

extensions in which the domains of cooperation are not identical or independent.

Subsequently, we examine how the potential scope of a collaboration influences its

feasibility and profitability.

5.1 Beyond Independent and Identical Domains

Our main analysis assumed identical and independent collaboration domains. In

practice, firms often collaborate across domains with diverse characteristics and tech-

nological interdependencies. This reality raises the question: Which domains, if any,

should be prioritized when initiating collaboration? The Online Appendix explores

three natural scenarios that address these questions and formulate predictions. We

briefly summarize these extensions here.

When to explore risky domains?

Our main analysis, by assuming an infinite number of independent and identically dis-

tributed projects, effectively eliminated risk considerations. However, collaborating

12The threshold v′ presented in the figure is computed using numerical integrals and approximate
solutions to the Bellman equation. The result that v′ can be lower than v0 can be proven analytically.
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parties often face uncertainty about their collaboration’s potential value, with vary-

ing degrees of uncertainty across cooperation domains. For instance, a buyer-supplier

collaboration might involve both incremental improvements to an existing product

and the development of a radically new—and thus potentially unprofitable—project.

To capture these features, we modify the two-domain version of our framework by

supposing that that the first domain is exactly as in the main model, while the other

contains a single project with either low or high value. We show that even when

immediate cooperation across both domains is feasible, players may choose to post-

pone exploring the risky domain 2 project. This delay continues until a sufficiently

valuable project is discovered in domain 1. Such a gradual approach safeguards the

collaboration against complete dissolution should the radical innovation fail.

Can “win-win” projects serve as stepping-stones?

In the main analysis, we made the assumption that each project’s benefits accrue

to only one player. However, the model can be extended to reflect more nuanced

real-world scenarios. Collaborating parties often engage in both “win-win” projects

yielding mutual benefits and projects that disproportionately advantage certain par-

ticipants. In modeling these scenarios, this extension assumes two domains with

distinct benefit structures. In one domain, projects yield equal benefits to both play-

ers.13 The other domain follows the main analysis, where project benefits accrue

exclusively to one player. We show that gradualism is always optimal for low values

of the discount factor and that the domain with symmetric projects is explored first.

How do technological interdependencies influence gradualism?

In the third extension, we introduce positive correlation between project values across

domains, such that discovering a valuable project in one domain immediately reveals a

project of equal value in the other. This assumption reflects how success in one area

can enhance opportunities in another (e.g., mRNA technology’s wide applicability

across medical conditions). Absent incentive issues, players would optimally explore

both domains concurrently to expedite valuable project discovery. With asymmet-

ric benefits, a gradual approach is strictly optimal for intermediate discount factors.

These findings suggest gradualism is more likely to be optimal in R&D environments

with stronger cross-domain knowledge spillovers.

13The Online Appendix includes another extension in which domains differ in the probability α,
with qualitatively similar results.
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5.2 The Benefits of Scope

The maximum potential scope of collaboration, denoted by m in our analysis, can

vary significantly depending on the specific application. When firms pool resources,

some pairings may yield numerous cooperation opportunities, while others result in

fewer viable collaborative areas, depending on the complementarity of their assets.

In this subsection, we examine how variations in m influence the profitability and

sustainability of collaborations.

Let π̃(m) := π(m) / m denote the average joint surplus per domain of the col-

laboration. Similarly, let δ∗(m) represent the minimum discount factor for which the

optimal relational contract is non-empty. For a scaling factor k ≥ 1, the following

weak inequalities hold: π̃(m · k) ≥ π̃(m) and δ∗(m · k) ≤ δ∗(m). The intuition behind

these inequalities is that players can always engage in k independent and concurrent

experimentation policies, each replicating the optimal collaboration with m domains.

Consequently, scaling up the maximum potential scope cannot decrease π̃ or increase

δ∗ (c.f., Bernheim and Whinston, 1990).14

We can provide necessary and sufficient conditions for these inequalities to hold

strictly. Specifically, 0 < δ∗(m · k) < δ∗(m) for k > 1 if (1 − α)E(vp) < c and

otherwise δ∗ (m · k) = 0 regardless of k. The condition (1− α)E(vp) < c implies that

exploration is not an equilibrium of the stage game, as it is not in player 2’s interest.

When exploration is not an equilibrium of the stage game, the optimal relational

contract will be empty for low discount factors. In these instances, scaling up m

will strictly decrease δ∗. To see why, note that if the players were to implement k

independent and concurrent collaborations, each with an identical experimentation

policy, the threshold δ∗ (m · k) would be independent of k. However, this approach

would be inefficient as it only leverages relational interdependencies within segmented

multi-domain experimentation policies. Instead, players could sustain a non-empty

relational contract for lower discount factors by leveraging interdependencies across

all m · k domains. By an identical reasoning, π̃(m · k) > π̃(m) whenever the first-best

experimentation policy is not implementable at date zero. If the first-best policy is

implementable, increasing the collaboration’s maximum scope does not increase the

14Also, while π(m) is monotonically increasing in m, π̃(m) may not be. To see this, suppose that
vp belongs to a three-point support (low, medium, and high). Suppose further that a high-valued
project and a single medium-valued project can be jointly exploited by the players, but that a high-
valued project and two medium-valued projects cannot, then π̃(m) would depend on the parity of
m and monotonicity would break.
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average joint surplus.

6 Applied Insights

This section connects our theoretical analysis to two key literatures: buyer-supplier

relationships and persistent productivity differences across firms.

6.1 Buyer-Supplier Collaborations

The economics literature on buyer-supplier relationships has predominantly exam-

ined issues such as vertical integration in the presence of relationship-specific invest-

ments (Williamson, 1975; Grossman and Hart, 1986; Hart and Moore, 1990), optimal

contracts under externalities or agency issues (see references in Tirole, 1988, Chapter

4), and, more recently, relational contracts for supplier allocation (Board, 2011; An-

drews and Barron, 2016). While these studies justifiably assume predetermined gains

from trade to address their specific objectives, our research explores a complementary

direction: scenarios requiring collaborative experimentation to determine the gains

from trade, often across multiple products or markets.

Our model formalizes the process of collaborative experimentation in buyer-supplier

relationships through several key elements. The parameter m represents the number

of product categories or market geographies, reflecting the multi-domain nature of

buyer-supplier interactions. Both firms make non-contractible investments of c for

experimentation. These investments are observable to both parties but not verifi-

able by third parties, hence not contractible. The innovation process involves both

firms, each possessing complementary and indispensable expertise or resources. Even

after the exploration phase, when parties agree on an input or service to exploit,

non-contractible investments (also c) remain essential. These include efforts such as

worker training and marketing. The distribution of benefits is asymmetric because

final product proceeds accrue to the buyer (high α), who compensates the supplier

through either the upfront transfer w or the bonus b.

Our theoretical analysis both draws from and contributes to an extensive body

of case-study literature on buyer-supplier dynamics. This literature emphasizes ex-

perimentation and trust as critical factors for successful collaborations, particularly

in contexts where benefits are asymmetrically distributed. A McKinsey report high-
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lights this asymmetry of benefits: “Some collaborations promise equal benefits for

both parties. [...] In other cases, however, the collaboration might create as much

value overall but the benefit could fall more to one partner than to the other” (Be-

navides et al., 2012). This asymmetry underscores the central role of trust, given

the inherent limitations of formal contracts. Doney and Cannon (1997) distinguish

between two types of trust: “benevolence” trust (belief in a partner’s genuine desire

to collaborate) and “credibility” trust (expectation that a partner will fulfill promises

due to self-interest). Our analysis primarily focuses on credibility trust, operating

under the assumption that both parties desire collaboration. Consequently, in this

section we emphasize work that similarly concentrates on credibility trust. The con-

cept of benevolence trust, while important, corresponds more directly to the analyses

by Watson (1999, 2002), which we discuss in Section 1.1.

Dwyer et al. (1987) offer insights into the dynamic nature of buyer-supplier re-

lationships, emphasizing the central role of relational contracts in these interactions.

They describe an initial “search and trial phase” that evolves into an “expansion

phase,” marked by increased risk-taking and deeper mutual dependence. As they

note, “The rudiments of trust and joint satisfactions established in the exploration

stage now lead to increased risk taking within the dyad. Consequently, the range and

depth of mutual dependence increase.” The pervasiveness of gradualism is in line

with our findings, particularly Proposition 4, which shows the potential optimality of

gradually expanding collaborative scope, and supports our extension in Section 5.1

examining the strategic delay of high-risk ventures in these relationships.

Building on Dwyer et al. (1987), Vanpoucke et al. (2014) corroborate both the

prevalence of gradualism and the occurrence of extended experimentation periods

in buyer-supplier relationships. These phenomena are driven by the parties’ need

to establish credibility in the context of relational contracts. As one CEO in their

study noted, “We use contracts, but not everything, certainly in the long run, can be

put in contracts.” Their case study of soybean product development, where partners

took a decade to initiate integration and build sufficient credibility, illustrates this

phenomenon. This evidence is consistent with our analysis, particularly Corollary

1, which predicts that collaborating firms must engage in prolonged experimentation

in order to identify joint projects of sufficient value to sustain the subsequent ex-

ploitation phase. Furthermore, Vanpoucke et al. (2014) emphasize the strong path

dependence of relationship dynamics, observing that “events, rather than time,” de-
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fine relationship development stages. Their case studies consistently reveal that suc-

cesses in initial cooperation domains typically drive further joint collaborations. This

observation supports our theoretical model, where increases in scope are driven by

discrete “events” that change the players’ continuation value from the collaboration,

rather than the mere passage of time.

Lastly, our analysis, particularly Proposition 5, showed that the long-term scope of

a collaboration is largely determined during the initial exploration phases, with early

outcomes significantly influencing the trajectory and ultimate extent of the partner-

ship. This finding is corroborated by the existing literature. Dwyer et al. (1987)

characterize the early exploration phase in buyer-supplier relationships as “very frag-

ile,” highlighting the critical nature of these initial interactions. Benavides et al.

(2012) provide a concrete example of this fragility, describing a case where an early

collaboration attempt between a retailer and manufacturer yielded somewhat disap-

pointing results. While their relationship did not terminate entirely, Benavides et al.

(2012) suggest that this initial setback was the primary reason their partnership did

not expand further.

6.2 Persistent Performance Differences

While much of our focus has been on interactions between firms, our model serves

as a valuable lens for examining employer-employee dynamics. One can conceptual-

ize one party in our model as the employer and the other as the employee, where,

for instance, benefits consistently accrue to the employer. Furthermore, the differ-

ent domains of collaboration can be seen as various dimensions of the production

improvement process.

With this interpretation in mind, our work also contributes to the literature on

persistent performance differences among seemingly similar enterprises (see Syverson,

2011; Gibbons and Henderson, 2013, and references therein). Numerous empirical

studies have documented enduring disparities in firm performance across a range of

industries, with these gaps proving surprisingly robust against plausible explanations

such as market competition or local geographical and demand conditions, while being

strongly associated with managerial practices (c.f. Bloom and Van Reenen, 2007).

According to Gibbons and Henderson (2013), and the body of evidence they review,

variations in managerial practices, because of their reliance on relational contracts,
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are key in creating productivity disparities across firms. We adapt for our purposes

their categorization of explanations: (i) managers might either be unaware of their

poor performance, or, even if aware, believe that the best practices from other firms

are not suitable for their context; (ii) managers are aware of their poor performance

and are able to seek superior managerial practices suitable to their context, but opt

not to; and (iii) managers are “striving mightily” to adopt superior practices but face

hurdles during the implementation phase.

The first explanation underscores information barriers, prompting questions about

why such information does not diffuse more readily (c.f. Bloom et al., 2013; Atkin et

al., 2017).15 The second explanation is consistent with the framework developed by

Chassang (2010) and discussed in Section 1.1, in which players are informed about

the existence of more efficient practices but choose not to pursue them to preserve

their relationship. Our analysis in Section 4.3 provides an alternative rationalization

of explanation (ii) by showing that collaborations may not reach their maximum

potential scope despite identical initial conditions. When starting with limited scope,

players might prefer to cease exploration in early cooperation domains and switch to

exploitation, rather than continue exploring for an extended period of time in hopes

of identifying superior practices valuable enough to enable scope expansion.

Unlike other models we know, our model also offers insight into explanation (iii)

presented by Gibbons and Henderson (2013). Consider two organizations with iden-

tical characteristics implementing ex-ante identical experimentation strategies, oper-

ating under a discount factor where a gradual approach is optimal and the maximum

potential scope of collaboration is guaranteed to be achieved. Their paths may diverge

if one organization discovers a highly valuable practice in the initial domain early on,

thus expanding its scope, while the other does not. The second organization, still

attempting to achieve success in the first domain, appears to be “striving mightily”

to match the first organization’s performance. However, identifying superior practices

is time-intensive. The second organization cannot increase its scope until it finds a

sufficiently valuable practice, potentially leading to a persistent performance gap.

15Our framework could be easily modified to rationalize the first explanation by introducing
correlation between project benefits within each domain. If by chance the first projects explored in
a domain are disappointing, the players increasingly believe no projects in the domain are profitable
and may stop exploring and terminate their relationship. In contrast, if the early projects are
valuable, the players may switch to exploitation and enjoy high long-run profits. Unsurprisingly,
these dynamics would also arise in a single-agent context.
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7 Concluding Remarks

This paper presents a framework for analyzing the dynamics of multi-domain

collaborative experimentation in scenarios where benefits are unevenly distributed

among participants and any experimentation policy must be self-enforcing. Our model

yields three key insights. First, when the initial relationship value is low, the collab-

orating parties do not treat each domain of experimentation independently and they

engage in extended exploration phases. Second, experimentation often progresses

gradually, with parties initially exploring some domains and potentially expanding

to others based on initial success, and exploration of all domains is not guaranteed.

Third, cross-domain relational interdependence in optimal experimentation leads to

seemingly counterintuitive exploration/exploitation decisions, including prolonged ex-

ploitation of ultimately discontinued projects or revival of previously abandoned ones.

Our analysis built upon a deliberately simple experimentation framework. This

choice ensured that the first-best experimentation policy remained straightforward,

making departures due to strategic considerations more striking. Future work could

extend the current framework in several directions. For example, relaxing the as-

sumption of identically and independently distributed project benefits within domains

could help address questions related to directed innovation strategies and differenti-

ate between radical and incremental innovation (c.f. Callander, 2011; Garfagnini and

Strulovici, 2016; Callander and Matouschek, 2019). Further, we assumed that both

players’ cooperation was necessary for exploration and exploitation, keeping their out-

side options independent of experimentation. Future research could explore scenarios

where players’ outside options evolve based on their experimentation history, exam-

ining how this additional interdependence affects joint experimentation dynamics.

Finally, introducing asymmetric roles in the collaboration presents another natural

extension. One could model a scenario where exploration requires only one player

(e.g., an R&D unit), while exploitation needs a different player (e.g., a Sales unit).

This approach would enable analysis of cooperation dynamics in contexts where ex-

ploration and exploitation efforts are disentangled (see Krieger et al., 2019; Lizzeri et

al., 2024, for qualitative and theoretical treatments, respectively).
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Appendix

Proof of Proposition 1. Without interdependencies across domains, player 0 treats

each domain independently and identically. Further, as |Pj| = ∞ ∀j, the optimal

policy conditions only on the project with the highest value amongst all previously

explored projects, whose value we denote v̂. The Bellman Equation for player 0 is:

B0(v̂) = max
explore, exploit v̂

{
E (v′)− 2c+ δE

(
B0 (max (v̂, v′))

)
, v̂ − 2c+ δB0 (v̂)

}
. (8)

The first term in the maximum operator corresponds to the player’s expected surplus

when exploring one more project and the second term is their surplus when exploiting

the project with value v̂. Next, there exists a threshold v0, wherein the players explore

if v̂ < v0 and exploit if v̂ ≥ v0. Further, Blackwell’s Sufficient Conditions imply that

there exists a unique solution to the Bellman Equation, and hence the threshold rule

dictated by v0 is a solution. This threshold is determined by:

1

1− δ
(v0 − 2c) = E(vp − 2c) +

δ

1− δ
E(max{v, v0} − 2c), (9)

where standard comparative statics arguments imply that v0 is increasing in δ.

Proof of Proposition 3. When the players have identified projects with values v̂1, . . . , v̂m

at history h, the condition for the players being able to replicate the first-best exper-
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imentation policy in all subsequent periods is that, for all histories h′ occurring after

h and with associated project values v̂′1, . . . , v̂
′
m, the players exploit v̂′j if and only if

v̂′j ≥ v0. This condition is as follows:

c
m∑
j=1

1v̂′j≥v0 +max{0, c− (1− α)E (vp)}
m∑
j=1

1v̂′j<v0 ≤
m∑
j=1

C(v̂′j), (10)

∀(v̂′1, . . . , v̂′m) ≥ (v̂1, . . . , v̂m), which corresponds to (2) when the players implement

the first-best policy and where C(v̂′j) denotes the continuation value associated with

domain j under the first-best policy. Note that C(v̂′j) (i) is constant below v0, (ii) is

such that limx↑v0 C(x) > limx↓v0 C(x) and (iii) is increasing above v0. Given such prop-

erties, setting v̂′j = max{v̂j, v0} both minimizes the right-hand side and maximizes

the left-hand side of (10). Thus, an equivalent condition is:

m · c ≤ δ
( m∑

j=1

1

1− δ
(max{v̂j, v0} − 2c)

)
. (11)

Finally, the existence of a threshold δ0 was proven in the text.

Proof of Proposition 4. We first prove the existence of δ∗. Suppose δ1 < δ2 and, by

contradiction, that the optimal experimentation policy is non-empty for δ1 but empty

for δ2. The optimal experimentation policy for δ1 yields strictly positive surplus and

yet cannot be implemented at δ2. However, holding fixed the policy, the left-hand

side of (2) is independent of δ and the right-hand side is increasing in δ, implying

that the experimentation policy is feasible under δ2, which is a contradiction. This

reasoning implies that a threshold exists. Finally, δ∗ < 1 since C(·) → ∞ as δ → 1.

We now prove the existence of δ̄. Scope is maximal starting in period 1 if and

only if 2 ·max {0, c− (1− α)E(vp)} ≤ C (µ1). However, by an identical argument as

that in the preceding paragraph, the right-hand side of (2) is increasing in δ and the

left-hand side of (2) is independent of δ. This implies the existence of a threshold on

δ. Further, when δ → 1, C(µ1) → ∞, implying maximal scope. As a result, δ̄ < 1.

As discussed in the text, δ∗ ≤ δ̄ because any maximal relational contract is non-

empty. We next show that this inequality need not be strict. In doing so, we set

α = 1, and by continuity these arguments will extend to an open set of parameters.

To show that δ∗ = δ̄, we consider a three-point support of benefits: {0, v, v̄}.
To simplify the continuation values, we also assume E(vp) = 2c when listing suffi-
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cient inequalities for δ∗ = δ̄ to hold. These inequalities ensure that there exists a

δ such that |P1| = 1 is not feasible but |P1| = 2 is. Because all these inequalities

hold strictly, upon increasing the expected project value slightly or considering a

continuous-distribution approximation, all the inequalities presented will continue to

hold. Throughout, Pr(·) denotes the probability of a given realization. The inequali-

ties are:

v − 2c

1− δ
>

δPr(v̄)

1− δ(1− Pr(v̄))
(v̄ − 2c)

1

1− δ
(12)

2c <
δ

1− δ
(v̄ − 2c) (13)

c >
δ

1− δ
(v − 2c) (14)

2c >
δ

1− δ
(v − 2c) +

δPr(v̄)

1− δ(1− Pr(v̄))
(v̄ − 2c)

1

1− δ
(15)

c >
δPr(v̄)

1− δ(1− Pr(v̄))
(v̄ − 2c)

1

1− δ
+

δPr(v̄)

1− δ(1− Pr(v̄))
npv0 (16)

2c <
2Pr(v̄)(1− Pr(v̄))

1− δ
(
1− 2Pr(v̄)(1− Pr(v̄))

)((v̄ − 2c)
δ

1− δ
+ npv0

)
+

Pr(v̄)2

1− δ
(
1− Pr(v̄)2

) δ

1− δ
2(v̄ − 2c) (17)

npv0 =
δ

1− δ

(
Pr(v̄) + Pr(v)

)(
Pr(v̄)v̄

Pr(v̄)+Pr(v)
+ Pr(v)v

Pr(v̄)+Pr(v)
− 2c

)
1− δ(1− Pr(v̄)− Pr(v))

(18)

Inequality (12) ensures that v0 ≤ v. Inequality (13) ensures that v̄, 0 satisfies Equation

(3). Inequality (14) ensures that the players are unable to exploit a project worth v in

isolation and, by extension, cannot jointly exploit two such projects. Inequality (15)

implies that the players cannot exploit a project worth v while exploring along the

additional domain. Inequality (16) implies that the players would be unable to begin

exploring if the players began their exploration on one domain and, upon finding a

project worth v̄, started exploring the additional domain.16 The continuation value

under this experimentation policy is bounded above by npv0: the net-present value

of a single domain under the first-best experimentation policy, the value of which

is stated in (18). Finally, Inequality (17) is a necessary condition for the maximal

16Further, it will never be optimal to explore the additional domain upon finding v, since such a
project cannot be exploited.
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policy to be feasible at date 1. This condition is necessary, but not sufficient, as

the continuation value is computed assuming that if the players discover one project

worth v̄ before doing so on the other domain, the highest-valued project on the other

domain is zero. We use Mathematica to show that these constraints jointly hold

strictly.17

We now show that δ∗ < δ̄ may also occur. Consider a binary support for vp. If the

conditions hold strictly with this distribution of valuations, the conditions will hold

with a continuous approximation. With a binary distribution, Equations (4) and (5)

are identical, implying δ∗ < δ̄.

Finally, if, by contradiction, |P1| ̸= 0 and |Pt| never equals 2, |Pt| = 1 ∀t. In

this case, the players might as well collaborate in the same domain across all periods.

However, the players can replicate this single-domain experimentation policy on the

other domain, thereby doubling their expected payoff.

The following lemma is useful in proving the remaining propositions.

Lemma 1 (Properties of the Second-Best Experimentation Policy)

Consider m = 2 and suppose that non-empty optimal relational contracts exist. Let t

be a period in which v̂1 ≥ v̂2 and Inequality (3) does not hold. Then, in any optimal

relational contract, |Pt| ≥ 1. Furthermore, without loss of optimality, the players’

actions in period t satisfy one of the following:

1. If |Pt| = 2, the players either (i) explore both domains or (ii) explore domain 2

and exploit in domain 1.

2. If |Pt| = 1, the players either (i) exploit in domain 1 or (ii) explore domain 2.

Proof of Lemma 1. In each domain j, the players can either (i) explore a project, (ii)

exploit the project with value v̂j, or (iii) be idle. Consequently, there are nine possible

combinations of actions across the two domains.

We prove that |Pt| ≥ 1. Given a non-empty optimal relational contract, there

exists an earliest date t′ ≥ 1 where |Pt′ | ̸= 0. t′ > 1 is impossible, as implementing

the same experimentation policy P̂ (·) starting at date t = 1, which would be strictly

better due to discounting. If |P1| ≠ 0, then |Pt| ≠ 0 for all subsequent t, as players

17Code available upon request.
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can replicate date 1 payoffs and continuation value. Thus, |Pt| ≥ 1 in period t,

eliminating one of the nine possible combinations of actions.

Next, since (3) does not hold under the first-best experimentation policy, it follows

from Corollary 1 that the players can exploit at most one project in the current period.

Furthermore, conditional on exploiting only one project, they will exploit the project

with the highest value, v̂1. This observation eliminates an additional three of the nine

possible combinations of actions.

Finally, if the players explore only one domain without exploiting a project in

the other, they prioritize domain 2. While exploration yields identical current-period

payoffs across domains, a higher-valued project in domain 2 generates a weakly higher

continuation value since v̂1 ≥ v̂2. This eliminates one more action combination,

leaving the four listed in the lemma.

Proof of Statement (ii) in Proposition 5. The proof of result (i) is proven in the text.

We consider vp ∈ {0, v, v̄} and α = 1. As all the inequalities sufficient for statement

(ii) to hold and stated below hold strictly, the arguments carry over when considering

either a continuous approximation for this distribution of benefits and/or α < 1.

These inequalities ensure the existence of a feasible experimentation policy where

the scope of experimentation reaches its maximum of 2 with interior probability,

while ensuring no other feasible policy yields a higher joint surplus. We list all the

inequalities and comment on each one separately below.

2c <
δ

1− δ
(v̄ − 2c) + C0(explore) (19)

c <
δ

1− δ
(v − 2c) (20)

2c >
δ

1− δ
(v − 2c) + C0(explore) (21)

2c > C0(explore) +
δ

1− δ

(
Pr(v̄)v̄ + (1− Pr(v̄))v − 2c

)
(22)

v − 2c

1− δ
> v := E(vp − 2c) +

δ

1− δ

(
Pr(v̄)(v̄ − 2c) + Pr(v)(v − 2c)

)
(23)

+
(
Pr(v̄) + Pr(v)

) δ

1− δ
(v − 2c) +

(
1− Pr(v̄) + Pr(v)

)
δv

c ≤ C0(explore) +
δPr(v̄)C0(explore)

1− δ(1− Pr(v̄))
(24)

Inequality (19) implies that {v̄, 0} satisfy Equation (3), where C0(explore) denotes the
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continuation value of exploration under the first-best policy. Inequality (20) ensures

that the players are able to exploit a project worth v in isolation. Inequality (21)

ensures that |Pt| < 2 while exploiting the project worth v (when the best project

found so far on the other domain has value 0). This inequality uses C0(explore) as an

upper-bound. These statements imply that if the players ever reach a point with a

project worth v, they either exploit the project, explore a project on the other domain

while maintaining a scope of 1, or conduct 2 explorations. Inequality (22) ensures

that conducting two explorations is not feasible because the upper-bounds associated

with the continuation value for the new domain and the domain with a project with

value v is provided by the first-best policy. Next, Inequality (23) ensures that the

players prefer to exploit the project worth v as opposed to exploring the domain

where the best project is worth 0 until Equation (3) holds and then subsequently

implementing the first-best policy. These constraints imply that Pt = 1 if the best

projects are worth v, 0. Finally, Inequality (24) ensures that this experimentation

policy is feasible. One can check that these constraints, along with (i) E (vp) ≥ 2c

and (ii) v0 ≤ v, hold jointly. For instance, upon setting c = 1 and Pr(v) = .1, we use

Mathematica to show that these inequalities hold strictly.18

Proof of Proposition 6. Consider α = 1/2 and a value of δ < δ0.

Statement 1: As discussed in the text, it is sufficient to show that there exists

an ϵ > 0 such that if ṽ − ϵ ≤ v̂1 ≤ v̂2 ≤ ṽ, the players exploit the domain 2 project

and explore in domain 1.

By Lemma 1 and the fact that exploration is an equilibrium of the stage game

when α = 1/2, the players either (i) exploit the highest-valued project in one domain

and explore in the other domain or (ii) explore projects in both domains. There exists

a sufficiently small ϵ1 for which the former policy is implementable. To see why, note

that, by definition of ṽ, the players can exploit both projects if both projects’ values

exceed ṽ. If the project values fall slightly below ṽ and the players exploit the better

of the two projects while exploring the other domain in all periods, the left-hand side

of (2) is equal to c while the right-hand side is strictly greater than c. Thus, the

question becomes whether the players opt to exploit the higher-valued project.

If the probability of finding a project with value exceeding ṽ − ϵ is arbitrarily

small, the net-present value from exploring projects on both domains approaches

18The code can be provided upon request.
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2E(vp−2c)/(1−δ). However, the net-present value from exploiting the better project

and exploring another approaches E(vp − 2c)/(1 − δ) + (ṽ − ϵ − 2c)/(1 − δ). As

ṽ − ϵ > v0 > E(vp), the players would find it in their interest to exploit the better

project, completing the argument.19

Statement 2: Because exploration is an equilibrium of the stage game, the

players conduct two explorations in period 1 and, with positive probability in period

2, v0+ ϵ ≥ v̂1 ≥ v̂2 ≥ v0 occurs for any ϵ. There exists a δ sufficiently small such that

neither project can be exploited. The players are unable to exploit either project in

period 2 and, thus, must explore two new projects. Further, with positive probability,

the players discover both (i) a project with value less than v̂1 in domain 1 and (ii)

a project with value vp large enough such that h(v̂1, vp) > ṽ. As a result, from

period 3 onwards the players follow the first-best experimentation policy, involving

exploiting the period 1 domain 1 project. Therefore, with positive probability, the

players exploit a project they have previously chosen not to exploit.

19As seen in Figure 1b, these dynamics can be shown to happen without the limit arguments
provided in this proof.
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