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Abstract

Are policies that promote competition in static industries suitable for innova-
tive industries where dynamic competition for the market is key? If not, how
should policies differ? We build a model of the life-cycle of an oligopolistic in-
dustry: a version of Jovanovic and MacDonald (1994) with a finite number of
firms. The equilibrium features a period of intense entry, followed by a shake-
out and later industry concentration as some firms innovate and increase their
scale, and the majority exits. We analyze the second best problem of a govern-
ment that can subsidize the profits of small firms, capturing policy interven-
tions that promote competition. The relative scale of large firms determines
the nature of competition and optimal policy over the life-cycle. Firms mainly
compete for the market when innovation leads to large differences in scale.
In such innovative industries, the government can wait to intervene; commit-
ting to do whatever it takes to promote competition if and when the industry
concentrates excessively. Subsidies early in the life-cycle are unnecessary. The
optimal subsidies become more uniform over the life-cycle as scale differences
shrink (static competition gains importance) or when the government lacks
commitment. We apply these insights to study digital and AI industries in the
U.S.
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1 Introduction

Firms in cutting-edge industries often engage in dynamic competition for the mar-
ket. They innovate to discover a star product or to produce at scale. Static com-
petition in the market — through price or output — is less important. As a result,
many innovative industries have experienced a stark life-cycle: an initial phase
of intense firm entry, followed by a shakeout and later industry concentration.
Historical examples include automobiles, televisions, and penicillin (Klepper and
Simons, 2005). More recently, several digital industries have rapidly concentrated
as they matured.1

The fast concentration of digital industries, together with the rise of superstar
firms (Autor et al., 2020; De Loecker et al., 2020), have rekindled a debate about
appropriate policy interventions to promote competition (Khan, 2016; Philippon,
2019; Tirole, 2023). Public interest has surged further with the advent of artificial
intelligence (AI), making the matter even more pressing (Varian, 2018; Chevalier,
2018). Unfortunately, there is a dearth of results on optimal policy over the life-
cycle of an industry and how the nature of competition shapes it. Are policies
geared towards industries where competition is primarily static suitable for inno-
vative industries where dynamic competition for the market is key? If not, how
should policies to promote competition over the life-cycle differ?

The literatures studying optimal policy have overlooked life-cycle dynamics or
the nature of competition. At one end, a literature has analyzed optimum prod-
uct variety (Dixit and Stiglitz, 1977; Mankiw and Whinston, 1986) or quantified
markup distortions (Peters, 2020; Edmond et al., 2023; Grieco et al., 2024) abstract-
ing from innovation and dynamic competition altogether. At the other end, a liter-
ature has analyzed competition policies in models of Schumpeterian creative de-
struction (Aghion et al., 2005; Segal and Whinston, 2007) or patent races (Loury,
1979; Reinganum, 1989).2 The simple nature of competition and industry life-cycle

1 For example, personal computer operating systems (e.g., MS-DOS, Mac OS) arose in the early
1980s. Only a decade later Windows became the top system with about 90 percent market
share (https://www.thestreet.com/technology/history-of-microsoft-15073246). The mid 1990s
saw the rise of search engines (e.g., Yahoo!, AltaVista), with Google becoming the most popular
engine in the early 2000s (Evans, 2008). Thousands of online marketplaces spawned in the late
1990s, and the industry experienced a sharp shakeout shortly after (Day et al., 2003).

2 Schumpeterian models have also been used to analyze R&D subsidies and firm taxes (Acemoglu
et al., 2018). More generally, Bryan and Williams (2021) survey innovation policies to address
market failures.
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prevents analyzing their implications for optimal policy in these models.3 Only re-
cently have some papers began to study a particular competition policy — merger
reviews — in computational models with static and dynamic competition that fea-
ture a realistic industry life-cycle (Igami and Uetake, 2020; Mermelstein et al., 2020;
Cavenaile et al., 2021). These papers evaluate merger policy numerically; the mod-
els are far too complex for yielding theoretical insights.

In this paper, we build a model of the life-cycle of an oligopolistic industry: a
version of Jovanovic and MacDonald (1994) with a finite number of firms. The
model incorporates firms with market power, strategic behavior, and both static
and dynamic competition. These features allow us to analyze optimal policy over
the life-cycle and sharply characterize how the nature of competition shapes it. As
an application, we empirically study digital and AI industries in the U.S. using a
novel dataset from Venture Scanner.

In the model, a new technology gives birth to a new industry. Firms choose
whether to enter the industry and use the technology to produce a horizontally
differentiated product. This gives rise to static competition in the market. Over
time, firms receive random innovations which allow them to increase their scale
(or quality). This makes firms vertically differentiated too. Firms can choose to
exit at any point. Vertical differentiation and the possibility of exit give rise to
dynamic competition for the market.

We solve for a (unique) equilibrium in Poisson mixed-strategies where firms
choose an exit rate.4 The equilibrium life-cycle of an industry features an initial
growth in the number of small firms, followed by a shakeout as some of these firms
randomly succeed and increase their scale, and the majority exits. In the long-run,
an industry is characterized by a more concentrated market structure with only
large firms remaining. Two notable features of the life-cycle in our model con-
trast with the life-cycle implied by the perfectly competitive version of our model
(Jovanovic and MacDonald, 1994) or by patent race models (Reinganum, 1989).
First, the shakeout typically occurs gradually, with firms slowly exiting. Second,

3 An industry life-cycle is entirely absent in Schumpeterian models. There is typically one firm (the
leader) which lies ahead of its competitor (the follower) — a perpetual duopoly where only the
leader produces. Patent race models abstract from static competition in the market and feature a
bang-bang life-cycle. Firms enter the industry with the expectation of winning a patent; all firms
that do not exit right away.

4 A “War of Attrition” (Fudenberg and Tirole, 1986) leads to multiplicity of pure strategy equilibria.
Our mixed-strategy equilibrium is unique under the refinement that large firms never exit.
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the life-cycle can be non-monotonic: the number of firms can increase gradually
at first, with multiple periods of entry and exit.5 A non-monotonic life-cycle has
been observed in many traditional industries — like car manufacturing (Klepper
and Simons, 2005) — and digital industries more recently too.

Differences in scale between large and small firms crucially determine the na-
ture of competition, and the life-cycle of the industry in turn.6 At one extreme, con-
sider a special case of our model where innovation leads to arbitrarily large scale
differences: firms have infinitely large marginal cost at entry and can only become
productive after innovating. Firms enter the industry only because of the option
value of innovating and winning most of the market — dynamic competition for
the market is key, as in patent race models (Reinganum, 1989). The life-cycle is
bang-bang: it features an initial outburst of firm entry, followed by a sharp shake-
out and a few large firms remaining in the long-run. At the other extreme, sup-
pose that differences in marginal costs (and thus scale) are negligible. The model
is essentially static in this case. Firms only compete in the market as in models of
imperfect competition based on horizontal differentiation (Benassy, 1996; Atkeson
and Burstein, 2008). The initial and long-run industry concentration are similar.

We then turn to studying optimal policy. In principle, the government can im-
plement a first best with a sufficiently rich set of instruments, including subsidiz-
ing production to correct markup distortions. These are seldom used in practice,
which motivates us to study second best interventions to promote competition. In
particular, we analyze the constrained Ramsey problem of a government that can
only control the number of small firms in an industry. This is implemented via a
time-varying subsidy to the fixed cost of production of small firms. The second
best policy alters the profit flows of small firms in the industry, capturing inter-
ventions that promote competition and firm entry over the life-cycle in a reduced

5 Under perfect competition, the life-cycle is bang-bang: firms do not exit when the price is high
and then exit en masse once the price falls below a threshold. The same mass exit occurrs in
patent race models after the first firm innovates. In our oligopolistic model, firms’ incentives to
enter may be especially strong right before the shakeout, resulting in a non-monotonic life-cycle.
Such non-monotonicity can also arise from an exogenous industry-wide innovation opportunity
late in the life-cycle, as in Jovanovic and MacDonald (1994).

6 Economies of scale have been key in driving the recent rise of US concentration (Covarrubias
et al. 2020; Kwon et al. 2023) and superstar firms (Autor et al. 2020). Compared to traditional
industries, sale economies seem to be particularly strong in many digital industries because of
near-zero marginal costs (Goldfarb and Tucker, 2019) or intensive data use (Agrawal et al., 2019).

3



form way.7 In an extension, we also consider interventions that alter the profits
and collusive behavior of large firms (such as antitrust).

The relative scale of large firms — and thus the nature of competition — cru-
cially determines the optimal policy over the life-cycle. In industries where inno-
vation leads to arbitrary large differences in scale, the government can wait and
see before intervening: it commits to do whatever it takes to promote competi-
tion if and when the industry concentrates excessively. Interventions early in the
life-cycle are not needed. Specifically, a subsidy to small firms after the industry
has reached its long-run equilibrium suffices to implement the second best. The
reason is that, in this limit case, small firms dynamically compete for the market
only: their entry and exit choices are purely driven by the option value of becoming
larger and taking most of the market. Correcting profits late in the life-cycle thus
suffices to align private and social incentives earlier too. The Ramsey policy may
be time-inconsistent when the required subsidies are too large. If the government
cannot commit, the time-consistent policy must subsidize firms in a nascent indus-
try as well, but the policy still remains heavily tilted towards subsidizing later in
the life-cycle. Finally, the optimal policy becomes more complex as scale difference
shrink and static competition in the market becomes important too. The govern-
ment must subsidize more uniformly over the life-cycle. These results are robust to
a number of extensions to our baseline model; such as when small firms can choose
their rate of innovation (the intensive margin), there are innovation spillovers from
large firms, and large firms can collude, merge, or block competitors.

With our results in mind, the question of how to regulate an industry in practice
can be understood as follows. Are firm choices mostly driven by dynamic (option
value) considerations and competition for the market, or are static considerations
and competition in the market important too? Our model points to differences in
scale between large and small firms as a relevant moment for empirically diagnos-
ing how close an industry is to each case.

We use this insight to empirically study modern digital and AI industries in

7 Some policies act on nascent industries before they become too concentrated (early in the life-
cycle), such as laxer regulations on data privacy in digital industries (Goldfarb and Tucker, 2012),
or tax credits and financing for small firms more generally (Bloom et al., 2019; Itskhoki and Moll,
2019). Other interventions come into play only after an industry has sufficiently concentrated
(late in the life-cycle). For example, forcing leader firms in digital industries to share their data
would lower barriers to entry (Abrahamson, 2014), as mandating access to essential infrastruc-
ture (Spulber and Yoo, 2007) or intellectual property (Tang, 2011) has achieved in the past.
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the U.S. using a novel dataset from Venture Scanner. The dataset collects infor-
mation on the universe of firms funded by venture capital — the primary funding
source in these industries — and categorizes firms according to the technologies
they produce or services they provide — such as “Deep and Machine Learning,”
“Consumer Payments,” or “Short Term Rentals and Vacation Search.” This is a
key feature of this dataset, as it allows us to define an industry as a product mar-
ket for a technology or service (a total of 155 industries). We find that digital and
AI industries are still early on in their life-cycle, with the total number of active
firms in almost all industries peaking in recent years. To benchmark digital and
AI industries, we also digitized The 100 Year Almanac which collects information
on automobile manufacturing firms in the U.S. We confirm the findings in Klepper
and Simons (2005) in this data: the industry saw two decades of intense firm entry,
followed by a shakeout and later concentration around WWII.

Regarding our moment of interest, we document that large firms (90th per-
centile of the size distribution) are roughly 40 times larger than small firms (10th
percentile) in the median digital and AI industry (e.g., “Deep and Machine Learn-
ing Applications”). However, the distribution of relative scale (90th-10th percentile
ratio) across industries is very skewed. More than 80 percent of industries have a
relative scale larger than 35, with some industries like “Video Consumption Plat-
forms” or “Short Term Rentals and Vacation Search” having large firms that are
120 times bigger than smaller ones. By comparison, the relative scale was 33 in the
automobile industry at the peak of its life-cycle. Through the lens of our model,
these findings suggest that most digital and AI industries have less of a need for
interventions that promote competition in the present (nascent) stage than the au-
tomobile industry did at a similar point in its life-cycle. Instead, compared to the
automobile industry, governments can intervene later in the life-cycle of these in-
dustries, waiting to see if they become too concentrated.

2 Model

The model is a continous time analogue of the model of a life-cycle of a competi-
tive industry in Jovanovic and MacDonald (1994), with one major difference. The
industry has a finite number of strategic firms — an oligopoly.

The environment is as follows. Time is continuous and indexed by t ≥ 0 . The
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arrival of a radical new technology spurs a new industry, such as car manufactur-
ing in the past or AI more recently. Within the industry, there are Nt small firms
producing with a high marginal cost technology and N̄t large firms producing with
a low marginal cost technology. The industry is characterized by state {N, N̄}.

2.1 Firms

Firms can freely enter and exit the industry at any point in time. Upon entry,
firms produce using a basic technology with marginal cost 1/z. Over time, firms
experience random Poisson innovations at rate λ. An innovation allows the firm
to produce with a lower marginal cost technology (1/z̄ < 1/z). We interpret λ as
the rate at which a firm discovers a new production process and learns to produce
at scale.8 We assume this innovation rate is exogenous for now (Section 5.3 relaxes
this assumption). In the following, we will refer to high marginal cost firms as
“small” and low marginal cost firms as “large.”

Definition 1 (Firms’ profits and values). The function π (N, N̄; z) is the flow profit
of a firm with marginal cost 1/z in an industry with N small firms and N̄ large
firms. Accordingly, the value function J (N, N̄; z) is the firm’s expected present
discounted value of profits.

For our theoretical results, we do not require specifying a particular microfoun-
dation for the profit function — i.e. the cost structure, demand functions, how
firms compete, whether collusion is allowed, etc.9 We will only require that this
function satisfies some natural regularity conditions in Assumption 1.

Assumption 1 (Profits). The profit function π (N, N̄; z) is:

(i) decreasing in both N and N̄ for any z,

(ii) increasing in z for any N and N̄,

(iii) converges to minus a fixed cost of production − f as z→ 0 and N̄ → ∞, and

(iv) it is profitable for at least one firm to enter, i.e., π (1, 0; z) + λπ (0, 1; z̄) /r > 0.

8 An alternative interpretation is that z̄ captures a higher quality product — for example, a star
product like Apple’s iPhone. In this case, λ is the rate at which the firm discovers the features
that consumers demand and learns how to produce a product that incorporates them.

9 That said, our analysis abstracts for endogenous states at the firm level, and corresponding dis-
tribution of these individual states, which would imply dynamic pricing decisions.
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The following special case provides a particular microfoundation as an exam-
ple. We will use this particular profit function in our numerical exercises.

Special case. Suppose that the cost of producing q units of a good is

Γ (q; z) =
1
z

q + f ,

where z is the marginal cost and f is the fixed cost of production; and the inverse
demand schedule to a firm i is

pi =
σ− 1

σ

[
Nt+N̄t

∑
j=1

(
qj
) ε−1

ε

] ε
ε−1

σ−1
σ −1

(qi)
− 1

ε ,

where ε is the own price elasticity and σ governs cross-price elasticities, and ε >

σ > 0. Moreover, suppose that firms compete in quantities a-la Cournot. In all,
profits are given by π (N, N̄; z) = p (N, N̄) q (N, N̄; z) − Γ (q (N, N̄; z) ; z), where
p (N, N̄) and q (N, N̄; z) are the Cournot equilibrium price and quantity functions.

A firm’s exit choice is a stopping time T. Large firms choose T̄ to maximize the
expected present discounted value of profits. Their value function is

J (Nt, N̄t; z̄) = Et

[
max

T̄

∫ T̄

t
e−r(s−t)π (Ns, N̄s; z̄) ds

]
, (2.1)

where the expectation is taken over the industry state {Ns, N̄s}, and r > 0 is the
discount rate. Similarly, small firms choose T to maximize the expected present
discounted value of profits. Their value function is

J (Nt, N̄t; z) = Et

[
max

T

∫ min{T,S}

t
e−r(s−t)π (Ns, N̄s; z) ds + 1S<Te−r(S−t) J (NS, N̄S; z̄)

]
,

(2.2)
where the expectation is now also taken over the arrival time S at which the small
firm becomes large (rate λ).
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2.2 Households

The infinitely lived representative household has indirect utility function U (N, N̄)

in an industry state {N, N̄}. Their present discounted utility is

V (Nt, N̄t) = Et

[∫ ∞

t
e−r(s−t)U (Ns, N̄s) ds

]
, (2.3)

where the expectation is taken over the industry state {Ns, N̄s}.
Again, for our theoretical results, we do not require a particular microfounda-

tion for the indirect utility function. Below we provide a special case that we will
use in our numerical examples.

Special case. The household has preferences

U = Qt + Xt

over quantity Qt of the good produced by the industry of interest and an outside
good Xt.10 The quantity Qt is given by the CES aggregator across firm varieties i

Qt =

[
Nt+N̄t

∑
i=1

(qit)
ε−1

ε

] ε
ε−1

σ−1
σ

with ε > σ > 0. Households maximize flow utility subject to the budget constraint

Nt+N̄t

∑
i=1

pitqit + Xt = M + Πt

given prices {pit}, the price (normalized to 1) and endowment M of the outside
good, and firm profits Πt.

3 Equilibrium Industry Life-Cycle

We now characterize the equilibrium life-cycle of an industry. Section 3.1 provides
a recursive characterization, starting from the long-run industry equilibrium (Sec-

10 The outside good can be interpreted as goods produced by the rest of the economy or as leisure.
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tion 3.1.1) and then moving backwards to characterize the full life-cycle (Sections
3.1.2 and 3.1.3). Lastly, Section 3.2 shows how differences in scale between firms
affect the life-cycle of the industry.

3.1 Recursive Characterization

We solve recursively for firms’ values, and exit and entry policies in equilibrium.
We will focus on equilibria where it is never optimal for large firms to exit. It is easy
to accomodate cases where large firms exit. We refine the equilibrium to abstract
from these cases, which add another source of inefficiency.

3.1.1 Long-run Equilibrium

Suppose that the industry has reached its long-run state (0, N̄∞) where there are
only N̄∞ large firms remaining. This state is absorbing and is always reached.11 In
what follows, we will refer to an industry in such state as a concentrated industry.

Free exit implies that the laissez-faire equilibrium number of large firms N̄LF
∞

must satisfy

J
(

0, N̄LF
∞ ; z̄

)
=

π
(
0, N̄LF

∞ ; z̄
)

r
≥ 0, (3.1)

as otherwise at least one large firm would choose to exit. Moreover, free entry of
small firms implies that N̄LF

∞ must satisfy

J
(

1, N̄LF
∞ ; z

)
=

π
(
1, N̄LF

∞ ; z
)
+ λ× J

(
0, N̄LF

∞ + 1; z̄
)

r + λ
< 0 (3.2)

J
(

1, N̄LF
∞ − 1; z

)
=

π
(
1, N̄LF

∞ − 1; z
)
+ λ× J

(
0, N̄LF

∞ ; z̄
)

r + λ
≥ 0. (3.3)

The firm’s values in conditions (3.2) and (3.3) correspond to a small firm that is
contemplating entering the industry when there are no other small firms. They
reflect both the flow of profits π (·; z) while small, as well as the chance that the
firm increases its scale, becoming a large firm with value J (·; z̄) at rate λ.

The equilibrium N̄LF
∞ must satisfy the two conditions because, otherwise, an

additional small firm would enter in the long-run if J (1, N̄∞; z) was positive, or the

11 The reason is that all small firms either exit or eventually become large at rate λ, and that we
refine the equilibrium so that large firms never exit.
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concentrated industry state could not be reached in equilibrium if J (1, N̄∞ − 1; z)
was negative, as no small firm would enter just before the industry concentrates.

Lastly, conditions (3.2) and (3.3) uniquely determine the equilibrium N̄LF
∞ under

Assumption 1, since it guarantees that J (1, N̄; z) is strictly decreasing in N̄ and
that condition (3.1) is implied by condition (3.3). Furthermore, the features of the
profit function (iii) and (iv) in Assumption 1 imply that there is a strictly positive
but finite number of large firms in equilibirum 1 ≤ N̄LF

∞ < ∞. In all, the above
characterization results in the following lemma.

Lemma 1 (Long-run equilibrium). The equilibrium number of large firms 1 ≤ N̄LF
∞ <

∞ in a concentrated industry state
(
0, N̄LF

∞
)

is uniquely determined by conditions (3.2)
and (3.3).

3.1.2 Equilibrium Life-Cycle

We now turn to industry states prior to long-run concentration, i.e., states (N, N̄)

with N̄ < N̄LF
∞ . For small firms, there is a strategic consideration: a firm could find

it optimal to stay in the industry if some other firms would exit first.12 We model a
possible “war of attrition” (Fudenberg and Tirole, 1986; Takahashi, 2015) between
firms as a mixed-strategy Poisson game.13 Formally, we let small firms choose an
exit rate η.14

The value of a small firm in state (N, N̄) is described by the Hamilton-Jacobi-
Bellman (HJB) equation

rJ (N, N̄; z) =π (N, N̄; z) + λ× (J (N − 1, N̄ + 1; z̄)− J (N, N̄; z))

+ λ× (N − 1)× (J (N − 1, N̄ + 1; z)− J (N, N̄; z))

+ η × (0− J (N, N̄; z))

+ η × (N − 1)× (J (N − 1, N̄; z)− J (N, N̄; z)) . (3.4)

12 There is no strategic consideration for large firms since we focus on equilibria where they never
find it optimal to exit (our equilibrium refinement). The coordination problem between small
firms is not necessary for our results on constrained inefficiency or optimal policy (Section 4).

13 As is well understood, mixed strategies can be interpreted as reflecting heterogeneity in player
preferences, beliefs, or information rather than true choice randomization.

14 Henry and Ponce (2011) study an entry game of imitators copying an innovation. Starting with
an arbitrary distribution function F (t) that is differentiable, they show that equilibrium strategies
are exponential with a constant hazard, i.e., a Poisson mixed-strategy.
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The first line shows the flow profits and the change in value when the firm inno-
vates and increases its scale — rate λ. The second line shows the change in value
when some other firm becomes large before the firm does — rate λ× (N − 1). The
third line shows the change in value when the firm exits — rate η. The last line
shows the change in value when some other firm exits before the firm does — rate
η × (N − 1) .

Consider the maximum number of small firms NLF (N̄) that an industry with
N̄ large firms can sustain in a laissez-faire equilibrium. That is, the maximum
number beyond which small firms would choose to exit. This maximum NLF (N̄)

must satisfy
J
(

NLF (N̄) , N̄; z
)
≤ 0 < J

(
NLF (N̄)− 1, N̄; z

)
. (3.5)

Suppose that the industry is in state (N, N̄) where there are more small firms than
is sustainable N ≥ NLF (N̄). A mixed-strategy Poisson equilibrium requires that
firms are indifferent between exiting or not. This implies the following exit poli-
cies. First, there are N − NLF (N̄) small firms which exit immediately (their exit
rate is η = +∞) and obtain a zero value. Second, the remaining NLF (N̄) stay in
the industry and exit at rate ηLF (N̄). This exit rate ηLF (N̄) ensures that stayers
have zero value as well15

J
(

NLF (N̄) , N̄; z
)
= 0. (3.6)

Alternatively, suppose that the industry is in state (N, N̄) where there are fewer
small firms than is sustainable N < NLF (N̄). Then, free entry implies that NLF (N̄)−
N small firms enter the industry immediately.

Finally, note that condition (3.5) uniquely determines NLF (N̄) under Assump-
tion 1, as it guarantees that J (N, N̄; z) is strictly decreasing in N̄. In all, this char-
acterization results in the following lemma.

Lemma 2 (Equilibrium life-cycle). In an industry with N̄ large firms, the equilibrium
number of small firms NLF (N̄) and the mixed-strategy Poisson exit rate ηLF (N̄) are
uniquely determined by conditions (3.5) and (3.6). The equilibrium features NLF (N̄)−N
firms entering immediately when there are few small firms in the industry N ≤ NLF (N̄).

15 The firms that exit immediately and those that stay are indifferent between choosing one option
or the other. As such, while their identities are not pinned down in equilibrium, the numbers
choosing each option are.
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Otherwise, a number N − NLF (N̄) of small firms exit immediately and the remaining
ones exit at rate ηLF (N̄).

For completeness, the equilibrium value of a large firm is described by the HJB

rJ (N, N̄; z̄) =π (N, N̄; z̄) + λ× N ×
(

J
(

NLF (N̄ + 1) , N̄ + 1; z̄
)
− J (N, N̄; z̄)

)
+ ηLF (N̄)× N ×

(
J
(

NLF (N̄) , N̄; z̄
)
− J (N, N̄; z̄)

)
,

(3.7)

and the household’s present discounted value utility in equation (2.3) is described
recursively by the HJB

rV (N, N̄) =U (N, N̄) + λ× N ×
(

V
(

NLF (N̄ + 1) , N̄ + 1
)
−V (N, N̄)

)
+ ηLF (N̄)× N ×

(
V
(

NLF (N̄) , N̄
)
−V (N, N̄)

)
. (3.8)

3.1.3 Entry, shakeout, and concentration: a numerical illustration

We now illustrate the results from the previous sections with a numerical example.
We use the special case of our model described in Section 2. The parameters of the
demand function are σ = 2 and ε = 8, the arrival rate of innovations is λ = 0.02,
the discount rate is r = 0.03, and the marginal cost parameters are z̄/z = 1.3 with
z̄ normalized to 1.

The left panel of Figure 1 illustrates the equilibrium number of small firms
NLF (N̄) as function of the number of large firms in the industry (Lemma 2). We
consider three parameterizations that differ in their fixed cost of production f . For
all parameterizations, the long-run number of firms N̄∞ is 3 in the concentrated in-
dustry; we thus express the fixed cost relative to long-run profits π(0, 3; z̄). When
the fixed cost is relatively large (dashed and dotted lines), the number of small
firms NLF (N̄) monotonically declines with the number of large firms N̄ in the in-
dustry. As the fixed costs becomes smaller (solid line), NLF (N̄) increases with N̄
in states associated with a nascent industry with less than 2 small firms.

The right panel shows a “typical” realization of the equilibrium total number
of firms Nt = NLF (N̄t) + N̄t over an industry’s life-cycle, where the time spent
in each state is given by the expected time until the arrival of the next Poisson

12



Figure 1: Equilibrium industry life-cycle

shock.16 The equilibrium life-cycle consists of three phases. First, a nascent indus-
try phase where small firms enter and begin producing. Second, a shakeout phase
where firms find it optimal to exit. During this phase, a firm exits because other
firms innovate and produce at scale before they do — rate λ×

(
NLF (N̄)− 1

)
— or

because the firm loses the war of attrition — rate ηLF (N̄). In particular, shakeouts
of multiple firms are triggered at times where a firm innovates. Finally, there is a
concentrated industry phase where all remaining small firms have exited and only
N̄∞ large firms remain.

Two features of the industry life-cycles shown in Figure 1 are worth noting.
First, the shakeout can happen gradually, with small firms exiting slowly. This
occurs because firms play the mixed-strategy Poisson game. Second, there is the
possibility of a gradual growth in the number of firms, with multiple periods of
entry and exit, culminating in a sudden shakeout. Such features are in sharp con-
trast to those implied by the perfectly competitive version of our model (Jovanovic
and MacDonald, 1994) or by patent race models (Reinganum, 1989). In a compet-
itive industry, the shakeout is unique and the life-cycle is bang-bang: firms enter
at once, no firms exit when quantities are low (price is high), and then a mass of
firms exit once quantities are beyond a threshold (price is low).17 The life-cycle is

16 For states N̄ < N̄LF
∞ , the length is given by

[(
ηLF (N̄) + λ

)
NLF (N̄)

]−1
when the war of attrition

is taken place and by
[
λ
(

NLF (N̄)− 1
)]−1

after that.
17 In Jovanovic and MacDonald (1994), non-monotonic entry dynamics are obtained by assuming
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also bang-bang in patent race models. Firms enter the industry expecting to win a
patent; firms that lose this race exit right away.

The non-monotonic life-cycle in an oligopolistic industry is explained by the
fact that the incentives to enter are particularly strong right before the industry
concentrates. For late entrants, the expected gain of scaling up right before the
shakeout occurs soon after entry. Instead, early entrants need to wait longer for
the shakeout to occur. The gradual entry and shakeout that can occur in our model
are consistent with the life-cycle of several industries in the 20th century, e.g., car
manufacturing (Klepper and Simons, 2005), and, more recently, digital industries
— spurred by computers, the Internet, and big data and AI. That said, we do not
argue that ours is the only reason for these observations. In practice, other slow
moving forces, like increases in demand or learning, have likely contributed as
well (Horvath et al., 2001; Agarwal and Bayus, 2002).

To see more clearly the forces driving non-monotonic life-cycles, consider an
example where the industry concentrates with two firms in the long-run N̄LF

∞ = 2.
The change in the value of delaying entry, from N̄ = 0→ N̄ = 1, when competing
with a common number of small firms N, is given by

J (N, 1; z)− J (N, 0; z) = π (N, 1; z)− π (N, 0; z)

+
λ

r + δ + λN
[π (N, 2; z̄)− π (N, 1; z̄)]

+
λ

r + δ + λN
[π (0, 2; z̄)− π (N, 2; z̄)]︸ ︷︷ ︸

benefits of entering closer to the shakeout>0

. (3.9)

The cost of delaying entry are straightforward. Late entrants face the competi-
tion of additional large firms, both when small and after scaling up. These are
given by the first two terms in the right hand side of equation (3.9), π (N, 1; z)−
π (N, 0; z) < 0 and π (N, 2; z̄)−π (N, 1; z̄), respectively. The benefit from delaying
entry is that the expected “business stealing” gains following the shakeout occur
closer to the time of entry. These gains are given by the third term in the right
hand side of equation (3.9), i.e., π (0, 2; z̄) − π (N, 2; z̄) > 0. When the business
stealing gains following the shakeout are relatively large, there will be a burst of

that, later in the life-cycle of an industry, an exogenous industry-wide innovation opportunity
arrives. This new opportunity spurs a protracted surge in entry.
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entry before the concentration of the industry, as illustrated by the solid lines in
Figure 1.

The gains from delaying entry are larger the higher the rents π
(
0, NLF

∞ ; z̄
)

/ f
are in the long-run, holding fixed the long-run state of the industry N̄LF

∞ . The
higher the long-run rents, the more entry will take place before concentration
NLF (N̄), and the higher will be the “business stealing” gains following the shake-
out, π̄ (0, 2)− π̄

(
NLF (NLF

∞ − 1
)

, 2
)

. This is again illustrated by Figure 1. The case
with lower fixed cost (solid lines) is associated with an increasing entry profile be-
fore concentration.

3.2 Scale Differences, Competition, and the Life-Cycle

We now show that the industry life-cycle is distinctly shaped by differences in
scale between large and small firms. We focus on such differences for two reasons.
First, the relative scale of large firms crucially determine the nature of competition
in the industry — the importance of static versus dynamic competition — and
optimal policy in turn (Section 4). Second, scale economies are a key driver of US
concentration and markups (Covarrubias et al. 2020; Kwon et al. 2023; Autor et al.
2020), and are especially important in digital industries with near-zero marginal
costs (Goldfarb and Tucker, 2019) or that use data intensively (Agrawal et al., 2019).

Proposition 1 compares the life-cycle of an industry in two limit cases: an econ-
omy where innovation leads to arbitrarily large differences in scale vis-a-vis an
economy where there are no differences. We assume throughout that profits are
negative when the industry has a maximum of Nmax potential entrants at any point
in time.18

Proposition 1 (Scale and equilibrium life-cycle). Let Nmax be potential entrants in
the industry. If the marginal cost of small firms relative to large firms is arbitrarily large

18 One interpretation is that these are the potential innovators or entrepreneurs that can create new
products, or potential managers of the firm. Another aggregate constraint is that the resources
used in production need to be feasible given the total resources available. This aggregate resource
constraint also imposes an upper bound on the number of small firms. For example, in the special

case of our model in Section 2, the constraint is N <
M−N̄×( f+ 1

z̄ q(0,N̄;z̄))
f when z → 0. For our

numerical exercises, we will assume that M is relatively large so that the binding constraint on
the number of small firms is the number of potential entrants Nmax and not the upper bound
imposed by the aggregate resource constraint.
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(z̄/z→ ∞ with z→ 0), then

NLF (N̄) =

Nmax for N̄ < N̄LF
∞

0 otherwise.

On the contrary, if there are no differences in marginal costs between firms (z̄/z = 1), then

NLF (N̄) = max
{

N̄LF
∞ − N̄, 0

}
.

Proof. See Appendix A.

At one end, the industry features a bang-bang life-cycle when there are large
differences in scale across firms (z̄/z → ∞ with z → 0). The maximum number
of small firms Nmax are present before the industry concentrates (i.e., when there
are N̄ < N̄LF

∞ large firms). The shakeout occurs all at once, with all small firms
exiting immediately as soon as N̄ = N̄LF

∞ . This limit case describes winner-take-
most industries where dynamic competition for the market is key. Firms enter the
industry only due to the option value of innovating and taking most of the market,
similar to patent race models (Reinganum, 1989). At the other end, there is no life-
cycle when there are no differences in scale (z̄/z = 1). The total number of firms
is equal to the long-run equilibrium N̄LF

∞ at all times. This limit case describes
industries where firms compete in the market statically, as in models emphasizing
horizontal differentiation (Benassy, 1996; Atkeson and Burstein, 2008).

Using the special case of our model in Section 2, Figure 2 illustrates the propo-
sition and shows how the industry life-cycle varies for intermediate values of z
(fixing z̄ = 1) away from the limit cases considered there. A difference in marginal
costs of z̄/z = 2 (black solid line) already results in the sharp life-cycle dynamics
associated with the limit case z̄/z → ∞ with z → 0. As this difference shrinks, the
life-cycle dynamics become more gradual; with the number of firms in a nascent
industry and in the long-run being more similar.19

To provide intuition, it is useful to return to the value of a small firm described

19 For intermediate values of the marginal cost of small firms, z̄/z, industries tend to feature non-
monotonic life-cycles. On one extreme, when the marginal cost is very high, the output of small
firm is inconsequential for the outcome in the product market and the gain from delaying entry
in (3.9) disappears, i.e., limz→0 π (0, 2; z̄)− π (N, 2; z̄) = 0. On the other extreme, the life-cycle is
flat, as there is no scale advantage.
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Figure 2: Scale and equilibrium life-cycle

by the HJB equation (2.2). In the limit case where z̄/z → ∞ with z → 0, the HJB
equation becomes

lim
z→0

J (N, N̄; z) =
1

r + λN

[
− f + λ× J

(
NLF (N̄ + 1) , N̄ + 1; z̄

)
+λ (N − 1)× lim

z→0
J
(

NLF (N̄ + 1) , N̄ + 1; z
)]

. (3.10)

The industry state {N, N̄} does not affect a small firm’s value through the flow
profits. A small firm does not produce in this limit case and has negative profits
due to fixed costs (Assumption 1). Thus, entry and exit decisions are purely driven
by the option value of becoming a large firm. This value is either always positive,
when there are few large firms N̄ in the industry, or becomes negative thereafter.
As such, the numerator in the expression above is either positive (for small N̄) or
negative: small firms either always find it profitable to enter or exit at all once.

On the contrary, if there are no differences in marginal costs between firms
(z̄/z = 1), then the model becomes static (as the Poisson innovations are irrelevant)
and

J (N, N̄; 1) =
π (N, N̄; 1)

r
=

π (N + N̄, 0; 1)
r

.

Firms either enter or not, and NLF (N̄) + N̄ = N̄LF
∞ at all times.

17



4 Optimal Policy

We now characterize the second best industry life-cycle and optimal policy. Section
4.1 states the Ramsey problem of a government that is constrained in its instru-
ments, and characterizes the second best. Section 4.2 shows that the laissez-faire
is generically constrained inefficient and discusses the sources of such inefficiency.
Section 4.3 characterizes how differences in scale (and so the nature of competi-
tion) affect the optimal policy over the life-cycle of an industry, both when the
government can commit or not.

4.1 Constrained Ramsey Problem

We consider a government that cannot directly tax or subsidize production. That
is, it cannot directly address quantity distortions due to imperfect competition.
Such interventions would implement a first best, but are seldom used in prac-
tice.20 Governments often prefer more straightforward interventions that promote
competition through firm entry or antitrust enforcement — these are the type of
policies being discussed for digital and AI industries (Khan, 2016; Philippon, 2019;
Tirole, 2023; Varian, 2018).

With this mind, we first analyze the constrained Ramsey problem of a govern-
ment that only controls the number of small firms in an industry.21 The second best
can be implemented with a time-varying subsidy to the fixed cost of production of
small firms. We assume for now that the government can commit to implementing
the optimal subsidies. Section 4.3.2 discusses issues of time-consistency. Section
5.1 relaxes the government’s problem and allows policies that affect the long-run
profits of large firms too — for instance, a weaker antitrust enforcement of collu-
sion.

The optimal subsidies alter the profit flows of small firms, capturing interven-
tions that promote competition and firm entry over the life-cycle in a reduced
form way. Subsidies early in the life-cycle of the industry capture policies that

20 These interventions require detailed information on firm-level pricing and production decisions.
Moreover, Edmond et al. (2023) show that implementing a first best in a model of monopolistic
competition requires subsidizing large firms, which might make them politically infeasable.

21 The goverment is subject to the same technological constraint than firms in equilibrium. That is,
new firms have a high marginal cost (they are small), so the government cannot directly control
the number of large, low marginal cost firms.
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act on nascent industries before they become too concentrated; like tax credits to
innovative startups and financing for small firms (Bloom et al., 2019; Itskhoki and
Moll, 2019), or laxer regulations on data privacy in digital industries (Goldfarb and
Tucker, 2012). Subsidies late in the life-cycle capture interventions that come into
play only after an industry has sufficiently concentrated. For example, mandating
access to essential infrastructure (Spulber and Yoo, 2007) or intellectual property
(Tang, 2011) have lowered barriers to entry in the past, as would forcing leader
firms to share their data in digital industries (Abrahamson, 2014).

The following lemma states the government’s HJB equation and characterizes
the second best industry life-cycle.

Lemma 3 (Second best life-cycle). Given indirect flow utility U (N, N̄), the govern-
ment’s HJB equation is

rV (N̄) = U
(

NSB (N̄) , N̄
)
+ λ× NSB (N̄)× (V (N̄ + 1)−V (N̄))

where the optimal number of small firms NSB (N̄) is such that the government scraps or
creates firms until

U
(

NSB (N̄) , N̄
)
−U

(
NSB (N̄)− 1, N̄

)
+ λ× (V (N̄ + 1)−V (N̄)) ≥ 0

U
(

NSB (N̄) + 1, N̄
)
−U

(
NSB (N̄) , N̄

)
+ λ× (V (N̄ + 1)−V (N̄)) < 0.

An additional small firm in the industry increases the expected present value
of utility, as there is a higher chance that at least one of them innovates (rate λ) and
increase their scale. However, the additional firm also affects the static flow utility
U (N, N̄), lowering it when the extra fixed cost of production does not compensate
the increase in consumer surplus. The optimal number of small firms NSB (N̄)

trades off these two forces.

4.1.1 Scale differences and second best life-cycle

The second best life-cycle has identical dynamics than the equilibrium life-cycle
in the limit cases, although the number of firms generically differs (Proposition
3 in the Appendix B). The second best features a sharp industry life-cycle when
innovation leads to large differences in scale across firms (z̄/z → ∞ with z →
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0). The maximum number of small firms Nmax are present before the industry
concentrates (i.e., for all N̄ < NSB

∞ ) and all small firms exit immediately when N̄ =

N̄SB
∞ ; where the long-run number of firms N̄SB

∞ might differ from the equilibrium
N̄LF

∞ . The second best features no life-cycle dynamics when there are no differences
in scale (z̄/z = 1). The total number of firms is equal to the long-run N̄SB

∞ , which
again can differ from the long-run equilibrium N̄LF

∞ .

4.2 Constrained Inefficiency

Consider the value of an additional firm for the government

U
(

NSB (N̄) , N̄
)
−U

(
NSB (N̄)− 1, N̄

)
︸ ︷︷ ︸

Static utility gain

+ λ× (V (N̄ + 1)−V (N̄))︸ ︷︷ ︸
Dynamic gain in utility

and compare it to the value of staying in the industry for a firm in equilibrium

π
(

NLF (N̄) , N̄; z
)

︸ ︷︷ ︸
Static profits

+ λ× J
(

NLF (N̄ + 1) , N̄ + 1; z̄
)

︸ ︷︷ ︸
Dynamic gain in profits

+ ηLF (N̄)×
(

NLF (N̄)− 1
)
× J

(
NLF (N̄) , N̄; z

)
︸ ︷︷ ︸

War of attrition

.

There are three differences between the social and private incentives. Each is a
source of inefficiency at the laissez-faire. The first source is static and is well known
in the literature studying the optimal number of firms (or varieties) under imper-
fect competition (Dixit and Stiglitz, 1977; Mankiw and Whinston, 1986; Benassy,
1996). The government internalizes the static utility gained from an additional
firm. Firms only internalize the profits they gain by staying in the industry, not
the consumer surplus they generate. This pushes firms to exit excessively (or enter
insufficiently) compared to optimal.

The second source of inefficiency is dynamic. But in a sense similar to the first
and relates to forces present in Shumpeterian models of innovation (Aghion and
Howitt, 1990). The government internalizes that an additional small firm increases
the chances (by λ per unit of time) of at least one firm becoming a large firm, but
destroys some surplus from existing firms. The firms, on the other hand, only
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internalize their own increase in the (expected) present discounted value of profits
from becoming a large firm; not the surplus they destroy from other firms. This
pushes firms to exit insufficiently (or enter excessively) compared to optimal.

The last source of inefficiency is the war of attrition. The firms do not coordinate
their exit decisions in equilibrium, whereas the government does. As a result, they
stay in the market with the expectation that other firms will exit before they do.
This pushes firms to exit insufficiently compared to optimal.

4.3 Scale Differences, Competition, and Optimal Policy

We next return to our baseline model of an oligopolistic industry, and show how
the relative scale of large firms — and so the nature of competition — affects op-
timal policy over the life-cycle. We are not interested on whether subsidizing or
taxing small firms is optimal overall. This is generically ambiguous for the reasons
explained in Section 4.2. With this in mind, we assume throughout that the long-
run industry concentration is excessive at the laissez-faire (N̄LF

∞ < N̄SB
∞ ). This is

case of interest for policies aimed at promoting competition in practice.
Instead, our goal is to characterize how the nature of competition affects the

timing of optimal policy over the life-cycle. Are subsidies designed for promoting
competition in industries where competition is primarily static also appropriate for
innovative industries where dynamic competition is crucial? If not, how should
subsidies over the life-cycle differ?

Proposition 2 (Scale and optimal policy). Let s (N̄) be the subsidy to the fixed cost
of production of small firms in an industry with N̄ large firms. If the marginal cost of
small firms relative to large firms is arbitrarily large (z̄/z → ∞ with z → 0), then the
government can implement the second best by intervening only after the industry has
concentrated in equilibrium. That is, the subsidy below suffices

s (N̄) =

0 if N̄ < N̄LF
∞

> 0 if ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
.

In contrast, if there are no differences in marginal costs between firms (z̄/z = 1), then the
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government finds it optimal to intervene at all times:

s (N̄) > 0 ⇐⇒ N̄ < N̄SB
∞ .

Proof. See Appendix D.

The first part of the proposition shows that policies that promote competition
late in the life-cycle are sufficient when innovation leads to arbitrarily large differ-
ences in scale — that is, in the limit with only dynamic competition for the market.
A subsidy to small firms after the industry concentrates in the long-run in equi-
librium suffices. There is no need for the government to intervene earlier in the
life-cycle. In contrast, when there are arbitrary small differences in scale — that is,
in the limit with only competition in the market — the second part of the propo-
sition shows that the government must also subsidize firms in a nascent industry
before it becomes concentrated.

Using the special case of our model in Section 2, the left panel of Figure 3 il-
lustrates the proposition and extends it for intermediate values of z̄/z away from
the limit cases considered there. While there are many subsidies that implement
the second best life-cycle, we pick the lowest subsidies s (N̄) that make firms in-
different between staying or exiting; these minimize the fiscal cost of the interven-
tion.22 Finally, we consider values of z̄/z that result in 3 firms in the long-run at
the second-best and only 2 firms at the laissez-faire.

A relative marginal cost z̄/z of 24 (black line) or 2 (gray line) already results in
the sharp life-cycle at the second-best (and at the laissez-faire) associated with the
limit case z̄/z → ∞ with z → 0. Thus, the government can implement the second
best without subsidizing intially (s (0) = s (1) = 0) and only subsidizing once the
industry has concentrated in equilibrium with 2 firms in the long-run (s (2) > 0).
As z̄/z falls (blue lines), the subsidies begin to flatten out over the life-cycle and
even become frontloaded for z̄/z = 1.7. Figure 6 in Appendix E shows similar
patterns for even smaller values of z̄/z. The second best has more firms in the long-
run in these cases (up to 7), and the subsidies are eventually flat when z̄/z = 1.
In all, when scale differences are large, the optimal policy is heavily tilted towards
interventions late in the life-cycle after an industry has become concentrated. As
z̄/z falls and scale differences shrink, early and late subsidies become more similar

22 Section 4.3.2 discusses the question of time-consistency.

22



Figure 3: Scale and optimal policy

and eventually become identical. The optimal policy subsidizes firms much more
uniformly over the life-cycle.

The first part of proposition follows from the fact that, in the limit when z̄/z→
∞ with z → 0, the entry and exit decisions of small firms are purely driven by the
option value of becoming a large firm later on and taking over most of the market.
Thus, subsidies that affect profits later in the life-cycle of an industry suffice to
align private and social incentives to enter or exit the industry earlier in the life-
cycle too, implementing the second best.

To make the above intuition concrete, it helps to go over some of the steps of the
proof in an example. Suppose that the second best features just one more firm in
the long-run compared to the laissez faire, i.e., N̄SB

∞ = N̄LF
∞ + 1. Adapting equation

(3.10), the value of a small firm in the state with N̄ = N̄LF
∞ under the optimal

subsidies is

lim
z→0

JSB
(

Nmax, N̄LF
∞ ; z

)
=

s
(

N̄LF
∞
)
− f + λ× JSB (0, N̄SB; z̄

)
r + λNmax

in the limit case where z̄/z→ ∞ with z→ 0. A subsidy s
(

N̄LF
∞
)

large enough that
small firms find it optimal to enter — i.e., such that limz→0 JSB (Nmax, N̄LF

∞ ; z
)
≥

0 — implements the second best NSB (N̄LF
∞
)
= Nmax, whereas they would have

exited NLF (N̄LF
∞
)
= 0 at the laissez faire (Proposition 1).

For earlier states in the life-cycle with N̄ < N̄LF
∞ , remember that firms already

23



found it optimal to enter at the laissez-faire and the maximum number of small
firms was present (Proposition 1). However, subsidizing small firms in the state
N̄ = N̄LF

∞ affects firm values in earlier states N̄ < N̄LF
∞ too, potentially lowering

them as more firms are present later in the life-cyle. The optimal subsidy ensures
that firm values limz→0 JSB (Nmax, N̄; z) remain positive in these earlier states. In
particular, the subsidy may have to be larger than the lower bound subsidy which
is just as large to make firms indifferent limz→0 JSB (Nmax, N̄LF

∞ ; z
)
= 0, raising the

question of time-consistency (Section 4.3.2).
The intuition for the second part of the proposition is more straightforward.

The model becomes static when there are no differences in scale (z̄/z = 1). There
is no life-cycle and the number of firms is identical to the long-run at all times,
both at the laissez-faire and second best. Thus, the government finds it optimal
to subsidize at all times too when the number of firms is less than the second best
N̄ < N̄SB

∞ .

4.3.1 How do these results help inform competition policy debates?

An established belief in competition policy circles is that innovative industries are,
in some lose sense, “harder” to regulate. For digital and AI industries, many pol-
icymakers in the US and (especially) in Europe believe that governments should
intervene preemptively and early on, before concentration becomes irreversible.

Our optimal policy results cast doubts on these beliefs. Innovative industries
where firms primarily engage in dynamic competition for the market might, in
a precise sense, be actually easier to regulate. The government can wait and see
before intervening. It can simply commit to do whatever it takes to promote com-
petition if and when the industry concentrates excessively. Importantly, the exact
value of the subsidies need not be announced beforehand either, only that the op-
timal subsidies will be implemented when necessary. This has the advantage that
policymakers may have much uncertainty regarding firm profits and consumer de-
mand functions — necessary for implementing the optimal subsidies — early on
in the life-cycle when the industry is still nascent, but may learn over time about
these functions as the industry matures. As such, uncertainty makes it harder to
regulate industries where competition in the market is relatively important, since
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the optimal policy requires subsidzing early in the life-cycle too.23

4.3.2 Time-Consistency

In the limit with arbitrary large differences in scale (z̄/z → +∞ with z → 0),
the proof of Proposition 2 shows that the optimal subsidies after the industry has
concentrated in equilibrium — i.e., states with N̄ ∈

[
N̄LF

∞ , N̄SB
∞ − 1

]
— may be

larger than the lower bound s (N̄) at which firms are indifferent between staying
or exiting in such states. The reason is that subsidies at the lower bound may not
be large enough to ensure that firms enter in industry states prior to concentration
too — i.e., in states with N̄ < N̄LF

∞ .
However, the constrained Ramsey policy is not time consistent if the subsi-

dies need to be larger than the lower bound s (N̄). The government would find
it optimal to promise to subsidize above the lower bound after the industry had
concentrated in equilibrium, but would later “renege” on these promised subsi-
dies. Instead, the government would subsidize at the lower bound s (N̄) because
it implements the second best life-cycle for all N̄ ∈

[
N̄LF

∞ , N̄SB
∞ − 1

]
at a lower fiscal

cost.24

Suppose that the required subsidies are indeed larger than s (N̄) after the indus-
try has concentrated and the government cannot commit to such large subsidies.
To implement the second best life-cycle, a time-consistent policy now needs to
subsidize small firms both before and after the industry has concentrated in equilib-
rium. The subsidies are set at the lower bound after the industry has concentrated,
and they are positive for states prior to concentration with N̄ < N̄LF

∞ . The subsidies
in states prior to industry concentration need to be large enough to ensure that the
second best (maximum) number of firms Nmax enter the industry in these states.
The following corollary to Proposition 3 summarizes this discussion.

Corollary 1 (Time-consistency). Suppose that the subsidies s (N̄) that make firms indif-
ferent between staying or exiting in states with N̄ ∈

[
N̄LF

∞ , N̄SB
∞ − 1

]
are an optimal policy

23 A formal analysis of policymaker uncertainty and learning is beyond the scope of this paper. We
leave it to future research to study how these affect optimal policies to promote competition as
well as their simplicity.

24 This logic also implies that subsidies to large firms after an industry concentrates are never time-
consistent. This is one reason why we rule out such subsidies to large firms in our constrained
Ramsey problem (Section 4.1).
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in Proposition 3 in the limit case where z̄/z→ +∞ with z→ 0. Then, such optimal policy
is time-consistent. Otherwise, the time-consistent policy is such that

s (N̄) =

> 0 if N̄ < N̄LF
∞

s (N̄) if ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
.

The right panel of Figure 3 illustrates the corollary for the two cases where the
relative marginal cost z̄/z is 24 and 2. For such large differences in scale, the op-
timal subsidies under commitment (black and gray solid lines) are already those
associated with the limit case z̄/z → ∞ with z → 0. Given our parameteriza-
tion, the subsidies turn out to be time-inconsistent. The time-consistent policy
(dashed lines) requires that the government subsidizes not only once the indus-
try concentrates at the laissez-faire (s(2) > 0) but also earlier in the life-cycle
(s(1) > s(0) > 0). That said, the time-consistent policy retains qualitatively similar
features to the policy under commitment in this numerical example; both policies
are tilted towards subsidizing later in the life-cycle.

5 Extensions

We next discuss four extensions of our baseline model. First, we consider the case
in which the large firms collude and choose quantities to maximize their joint
surplus. Second, we consider anti-competitive behavior that allows large firms
to block small firms. These extensions highlight the role of antitrust policies, an
important set of policies that intervene after the industry has sufficiently concen-
trated. Third, we endogenize the arrival rate of innovations λ by letting small firms
invest by paying a convex cost. Finally, we allow for innovation spillovers where
the arrival rate of an innovation λ depends on the number of large firms. These
last two extensions emphasize the intensive margin of innovation, which has been
the focus of a large literature.

While each extension enriches the analysis of the life-cycle of concentrated in-
dustries, and affects optimal policy, the main lessons from Section 4.3 remain valid.
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5.1 Collusion and Antitrust

In the benchmark numerical examples, we consider cases in which the profit func-
tion π (N, N̄; z) is the outcome of a static Cournot Nash equilibrium. Instead, we
now explore examples where the profit function is the outcome of Nash equilibria
in which large firms form a cartel and collude. In particular, we assume that large
firms jointly choose the quantities they supply and products they operate to max-
imize their joint profits, taking as given the quantities supplied by small firms.25

Each large firm receives an equal share of the joint profits. As such, this extension
captures not only explicit collusion by industry leaders but also anti-competitive
horizontal mergers.

The resulting profit function πCartel (N, N̄; z) still satisfies Assumption 1. There-
fore, Propositions 1 and 2 are valid as well. But how are the equilibrium life-
cycle and the optimal policy affected? Naturally, for each value of the aggregate
state (N, N̄), the profits of large firms πCartel (N, N̄; z̄) are higher compared to our
benchmark, fueling the incentives of small firms to enter. This results in more large
firms in the long-run equilibrium than in our benchmark NCartel

∞ ≥ NLF
∞ , and more

entry through the life-cycle. For the parametrization we consider in Figure 1, the
cartel chooses to operate fewer products, although there are more firms that inno-
vate. Some of the products that can be produced with a low marginal cost z̄ are
not supplied. As a consequence, the constrained planner chooses to limit entry.
The constrained planner only values the innovation of the products that would be
active in the long-run.

An effective antitrust policy is the additional policy implication. This policy
consist in breaking up the cartel (or preventing collusion or a merger) and imple-
menting the static Nash equilibrium that was the feature of our benchmark anal-
ysis. Importantly, when innovation leads to arbitrarily large differences in scale
and firms mainly compete for the market, it is enough to implement the antitrust
policy after the industry has concentrated, which reinforces the conclusions of the
benchmark analysis.

25 To save on fixed costs, the N̄ large firms may choose to operate a number of products that is
strictly smaller than N̄.

27



5.2 Blocking Competitors and Antitrust

Suppose that large firms could commit to some costly behavior that lowers the
profits of small firms, making entry unprofitable or forcing them out of the indus-
try. This extension captures the type of anti-competitive behavior that antitrust
authorities have long been concerned with, such as predatory practices (Ordover
and Willig, 1981), defensive patenting (Bessen and Meurer, 2009), or cost raising
strategies (Salop and Scheffman, 1987).

To simplify the matter, suppose that the cost of anti-competitive behavior is
sufficiently low that the first large firm in the industry finds it optimal to block
all smaller firms. That is, the large firm lowers the profits of small firms enough
so that they find it optimal to exit (and none find it optimal enter either). The
life-cycle is extreme in this case: there is a period of entry and then a long-run
monopoly after the first firm innovates and becomes large. What is the effect on
the optimal subsidies if the government cannot enforce antitrust policies to prevent
this type of behavior?

The government now needs to subsidize small firms as soon as the first firm
innovates and becomes the monopolist; enough to undo the effect on small firms’
profits of the monopolist’s anti-competitive behavior. So even in the limit case
when z̄/z → +∞, the government must commit to subsidizing early in the life-
cycle if they cannot enforce antitrust policies. However, the government may not
need to intervene along the equilibrium path. The threat of the subsidies is enough.
The goverment commits to subsidizing small firms if a large firm ever engages
in anti-competitive behavior to block small firms. Expecting such policy, a large
firm understands that their costly anti-competitive behavior would just be wasting
resources and thus abstains from it.

5.3 Endogenous Rate of Innovation

In this extension, we allow small firms to choose the arrival rate of an innovation
λ. In particular, we assume that firms incur a cost c (λ) to innovate at the rate
λ, with c (0) = 0, c′ (λ) > 0 and c′′ (λ) > 0. This version of the model thus
features an intensive margin of innovation in addition to the extensive margin in
the benchmark model. The optimal policy results in Section 4.3 are largely robust
to allowing for innovation along the intensive margin, although there are some
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interesting interactions between the extensive and intensive margins over the life-
cycle of an industry.

The optimal innovation rate of small firms λ (N, N̄) in state (N, N̄) satisfies the
first order condition

J
(

NLF (N̄ + 1) , N̄ + 1; z̄
)
− J (N, N̄; z) = c′ (λ (N, N̄)) (5.1)

where the value J (N, N̄; z) is now calculated net of innovation costs.26As in Propo-
sition 1, the equilibrium features a sharp life-cycle when there are arbitrarily large
differences in scale between firms. The maximum number of small firms Nmax

are present before the industry concentrates (i.e., when there are N̄ < N̄LF
∞ large

firms). The shakeout occurrs all at once, with all small firms exiting immediately
as soon as N̄ = N̄LF

∞ . The intensive margin of innovation exhibits a more gradual
life-cycle. The endogenous rate of innovation λ (N, N̄) is largest early in the life-
cycle, as the marginal gains from a successful innovation are the largest. As the
industry is closer to the concentration in the long-run, the marginal gains from a
succesful innovation diminish, leading to a lower individual optimal arrival rate
of an innovation.

For intermediate cases, the equilibrium arrival rate of innovations could be in-
creasing or decreasing over the life-cycle. For the marginal entrant, equation (5.1)
simplifies to

J
(

NLF (N̄ + 1) , N̄ + 1; z̄
)
= c′

(
λ
(

NLF (N̄) , N̄
))

.

Thus, as long as the equilibrium value of a large firms decreases with the number
of competing large firms along the industry equilibrium life-cycle, the intensive
margin of innovation is decreasing for the marginal entrant. In contrast, for non-

26 In particular, the value of a small firm in state (N, N̄) is described by the Hamilton-Jacobi-
Bellman (HJB) equation

rJ (N, N̄; z) =max
λ
{π (N, N̄; z)− c (λ) + λ× (J (N − 1, N̄ + 1; z̄)− J (N, N̄; z))

+ λ−1 × (N − 1)× (J (N − 1, N̄ + 1; z)− J (N, N̄; z))
+ η × (0− J (N, N̄; z))
+ η × (N − 1)× (J (N − 1, N̄; z)− J (N, N̄; z))} . (5.2)

where λ−1 is the innovation rate of the N − 1 competing small firms.
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monotonic life-cycles in which entry is maximal before the concentration of the
industry, the value of a large firm can increase over the life-cycle.. In these cases,
the extensive and intensive margin of innovation can both increase over the life-
cycle. Figures 7 and 8 in Appendix E illustrate the life-cycle of these two margins
for alternative values of the scale parameter and the elasticity of the cost function
c (λ). Importantly, the implications discussed earlier for the life-cycle of entry and
optimal policy are largely robust to the inclusion of an intensive margin of innova-
tion.

Lastly, we find that having an intensive margin of innovation can result in a
distribution of long-run industry states, in contrast with our benchmark model
where the long-run industry state was unique. In particular, for the case of a rel-
ative concentrated industry with few entrants, we can construct life-cycle equi-
libria that feature a (unique) distribution over two long-run industry states: (i) a
highly-concentrated long-run equilibrium with a single small firm which chooses
never to innovate, and (ii) a long-run equilibrium with two large firms. In this ex-
ample, there are initialy two firms entering the industry, investing in innovation,
λLF (2, 0) > 0, an exiting at a positive rate, ηLF (0) > 0. If exit occurs before the ar-
rival of a succesful innovation, the industry has a (small) monopolist who chooses
not to innovate, λLF (1, 0) = 0. On the contrary, if an innovation occurs first, the
industry eventually converges to a duopoly with two large firms.27

This example illustrates that there are subtle interactions between entry, exit
and the intensive margin. Current entry is complementary with the intensive mar-
gin of innovation, as λLF (2, 0) > λLF (1, 0) = 0, but future entry lowers the incen-
tives to innovate. In particular, the monopolist would choose to innovate if there
would be no entry in the second state, i.e., N (1) = 0.

5.4 Innovation Spillovers

In the benchmark analysis we abstracted from knowledge spillovers, an important
theme in the discussion of the development and diffusion of new technologies and

27 The example assumes that parameters of the demand function are σ = 2 and ε = 8, that the cost
function is quadratic c (λ) = 33 · λ2, the discount rate is r = 0.03, the marginal cost parameters
are z̄/z = 1.3 with z̄ normalized to 1, fixed cost f = 0.09, and that there is an additional fixed
cost of 0.04 for unproductive firms in state (2, 0) to guarantee that exactly two firms enters when
N̄ = 0, i.e., N(0) = 2.
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the growth of new industries. A simple way to incorporate these considerations is
to assume that the arrival rate of an innovation is a function of the number of firms
that have already innovated λ (N̄). This captures the idea that it is easier innovate
after others have “walked the path.”

Propositions 1 and 2 still go through. For each value of N̄, the entry decision
is still bang-bang and the intuition in equation (3.10) applies. When there are arbi-
trarily large differences in scale between firms, the government can implement the
second best by subsidizing small firms only after the industry has concentrated.
However, the time-consistent subsidies that implement the second best can be dif-
ferent in this case. For instance, if the arrival rate of innovations is particularly low
initially, λ (0) � λ (1), then the time-consistent subsidies would be larger in the
initial period than in subsequent ones.

6 An Application to Digital and AI Industries

Having shown our main results, the question of whether early or late interven-
tions to promote competition in an industry are optimal can now be understood
as follows. Are firm entry and exit choices mostly driven by the option value of
taking over the market after the industry shakeout and concentration, or is com-
petition in the market in nascent industries an important consideration too? From
a measurement perspective, our results show that the relative scale of large firms
is a key moment for empirically diagnosing how close an industry is to each case.

Next, we use this measurement insight to analyze digital and AI industries in
the U.S. We focus on these industries for two reasons. First, digital and AI indus-
tries have been the target of much scrutiny by policymakers, and new regulations
are already being passed (such as the Digital Markets Act in Europe). Second, it is
still early enough that our results can inform policymakers in practice: many dig-
ital and AI industries are nascent and are far from fully concentrating. Our goal
here is not to provide a full quantitative analysis, though. Our model is arguably
too stylized and we lack basic information on many important parameters for a
credible quantification exercise, such as demand elasticities or fixed costs of pro-
duction. Instead, our goal is to provide a sense of magnitudes and variation in the
key moment highlighted by our theory. How important are the differences in scale
between large and small firms? Is there much variation across industries in this
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moment or should all be regulated more or less similarly?
We use a novel dataset from Venture Scanner that collects information on the

universe of firms that have ever been funded by venture capital — the primary
funding source in digital and AI industries. Venture Scanner uses a propietary al-
gorithm to categorize firms according to the technologies they produce or services
they provide. This as an important feature of this dataset: it allows for defining
product markets for a technology or service. There are 17 broad technology or
service categories; such as “Artificial Intelligence,” “Financial,” “Real Estate,” or
“Security.” Each is divided into narrower subcategories; like “Deep and Machine
Learning,” “Consumer Payments,” “Short Term Rentals and Vacation Search,” or
“Threat Detection and Compliance.” We define an industry as a technology or
service subcategory, which results in a total of 155 industries. Finally, the dataset
includes information on a firm’s starting year, whether the firm is still active in a
given year, and which employment interval it belongs to: 1 to 10 employees, 11 to
50, 51 to 100, 101 to 250, and 251 to 10,000. We measure a firm’s size as the mean of
their employment interval.

To benchmark digital and AI industries, we compare them to the automobile
industry in the U.S — a traditional industry which has been studied at length and
has already experienced a full life-cycle (Klepper, 2002). The data comes from
digitizing The 100 Year Almanac which collects information on automobile manu-
facturing firms. Important for our purposes, the Almanac collects the number of
units sold for each firm and year. We count a firm as being active in any given year
when it sold at least one unit. We measure the size of the firm as the number of
units sold.

The left panel of Figure 4 shows the total number of active firms in selected
industries in the Venture Scanner dataset since 1990. We document that these in-
dustries are still early on in their life-cycle with the total number of firms peaking
in recent years. The same is true for almost all other digital and AI industries in
our dataset: they are nascent industries which are far from concentrating. The
right panel of the figure shows the total number of active firms in the automobile
industry from 1900 until 1941 (when the U.S. entered WWII). We confirm the find-
ings in Klepper and Simons (2005) in our data: the industry experienced about two
decades of intense entry, followed by a shakeout and later concentration.28

28 Klepper and Simons (2005) put together information from the several data sources; the main one
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Figure 4: The life-cycle across industries
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Next, we turn to documenting the differences in scale between “large” and

“small” firms in each industry. We associate large firms with those above the 90th
percentile in an industry’s size distribution, and small firms to those below the
10th percentile. The relative scale of large firms — our moment of interest — is
thus the 90th to 10th percentile ratio. We measure this ratio for each industry in the
Venture Scanner dataset, and then compute its empirical cumulative distribution
(CDF) across industries.

Figure 5 shows our findings. Some industries — like “Video Consumption
Platforms” or “Short Term Rental / Vacation Search” — have particularly large
differences in scale. Large firms in these industries are 120 times larger than small
firms. In other industries, scale differences are much smaller, such as in the “Threat
Detection and Mitigation” industry. Overall, the median digital and AI industry
(e.g., “Deep Learning and Machine Learning”) has a relative scale of about 40, but
the distribution is very skewed: more than 80 percent of industries have a rela-
tive scale larger than 35. As a comparison, we also compute the relative scale in
the automobile industry at the peak of the life-cycle in Figure 4.29 We find that

being Thomas’ Register of American Manufacturers. Despite the similarities in the life-cycle, the
peak number of firms in their data is larger than in ours (about 275 versus 55). This means that
The 100 Year Almanac is missing many relatively small firms. However, Thomas’ Register does not
have information on firms’ output, which is crucial for our purposes.

29 Size is measured in terms of employment in the Venture Scanner industries, whereas it is mea-
sured in terms of output in the automobile industry. Under constant returns to scale in produc-
tion, output and employment are proportional to each other, thus making the two relative scale
measures comparable.
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Figure 5: Relative scale across industries
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the relative scale was 33 at the time. Thus, most digital and AI industries have
larger differences in scale than the automobile industry did at a similar point in its
life-cycle.

Through the lens of our model, these findings imply that most digital and AI
industries have less of a need for interventions that promote competition in the
present (early) stage in their life-cycle than the automobile industry did at the same
stage. Instead, relative to the automobile industry, governments can wait and see
for longer before intervening; committing to promote competition later in the life-
cycle if and when these industries become too concentrated.
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A Proof of Proposition 1

Economy where z/z→ +∞ with z→ 0. The profits of smalls firms are π (N, N̄; z) =
− f when z/z → +∞ with z → 0. We first show that there are no Poisson mixed
strategies in this case. Small firms either always find it optimal to enter or exit. The
proof is by contradiction.

Suppose that a mixed strategy is optimal. This requires that, when other firms
are exiting at rate ηLF (N̄) in industry state π (N, N̄; z), a small firms is indifferent
between exiting or staying J (N, N̄; z) = 0. This is equivalent to

− f +λ× J
(

NLF (N̄ + 1) , N̄ + 1; z̄
)
+ ηLF (N̄)× (N − 1)× J

(
NLF (N̄) , N̄; z

)
= 0,

(A.1)
where

J
(

NLF (N̄) , N̄; z
)
= − f + λ× J

(
NLF (N̄ + 1) , N̄ + 1; z̄

)
> 0

and we have already used the fact that J
(

NLF (N̄ + 1) , N̄ + 1; z
)
= 0 in equilib-

rium. Combining the two conditions abovem, we can re-write (A.1) as(
1 + ηLF (N̄)× (N − 1)

)
×
(
− f + λ× J

(
NLF (N̄ + 1) , N̄ + 1; z̄

))
= 0.

But this condition cannot hold for any mixed-strategy ηLF (N̄) ≥ 0 generically —
i.e., except in a knife-edge case − f + λ × J

(
NLF (N̄ + 1) , N̄ + 1; z̄

)
= 0. So we

have arrived at the desired contradiction.
We next show that all potential entrants Nmax find it optimal to enter the indus-

try and never exit before the industry concentrates. We begin from the industry
state with N̄ = N̄LF

∞ − 1. The value of a small firm is given by the HJB equation

J
(

N, N̄LF
∞ − 1; z

)
=
− f + λ× J

(
0, N̄LF

∞ ; z̄
)

r + λN
.

Condition (3.3) determining the long-run N̄LF
∞ requires that J

(
1, N̄LF

∞ − 1, z
)
≥ 0,

which is true if and only if − f + λ× J
(
0, N̄LF

∞ ; z̄
)
≥ 0. This immediately implies

that J
(

N, N̄LF
∞ − 1; z

)
≥ 0 for any N ≥ 1. Therefore, firms always have incentives

to enter and NLF (N̄LF
∞ − 1

)
= Nmax in equilibrium.

Next, consider the industry state just prior with N̄ = N̄LF
∞ − 2. The HJB equa-
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tion is

J
(

N, N̄LF
∞ − 2; z

)
=
− f + λ× J

(
Nmax, N̄LF

∞ − 1; z̄
)
+ λ× (N − 1)× J

(
Nmax, N̄LF

∞ − 1; z
)

r + λN
.

Again, we have that J
(

N, N̄LF
∞ − 2; z

)
≥ 0 for any N and so NLF (N̄LF

∞ − 2
)
=

Nmax in equilibrium. The reason is that J
(

Nmax, N̄LF
∞ − 1; z

)
≥ 0 and − f + λ ×

J
(

Nmax, N̄LF
∞ − 1; z̄

)
is

= − f + λ×
π
(

Nmax, N̄LF
∞ − 1; z̄

)
+ λNmax × J

(
0, N̄LF

∞ ; z̄
)

r + λNmax

= − f + λ× J
(

0, N̄LF
∞ ; z̄

)
+ λ×

π
(

Nmax, N̄LF
∞ − 1; z̄

)
− r× J

(
0, N̄LF

∞ ; z̄
)

r + λNmax

= − f + λ× J
(

0, N̄LF
∞ ; z̄

)
︸ ︷︷ ︸

≥0

+λ×
π
(

Nmax, N̄LF
∞ − 1; z̄

)
− π

(
0, N̄LF

∞ ; z̄
)

r + λNmax︸ ︷︷ ︸
≥0

≥ 0,

where the last inequality follows from the fact (i) that we have shown above that
− f + λ × J

(
0, N̄LF

∞ ; z̄
)
≥ 0, and (ii) that π

(
Nmax, N̄LF

∞ − 1; z̄
)
− π

(
0, N̄LF

∞ ; z̄
)
≥ 0

due to Assumption 1 and that the profits of large firms are independent of the
number of small firms in this limit case when z/z → +∞ with z → 0 (since small
firms do not produce).

The recursion above can be repeated n times for each N̄ = N̄LF
∞ − n until reach-

ing the initial industry state N̄ = 0. This shows that NLF (N̄) = Nmax in equilib-
rium for any N < N̄LF

∞ , which completes the first part of the proof.

Economy where z̄/z = 1. The profits are all firms are identical and only the to-
tal number of firms matters in this case. That is, π (N, N̄; z̄) = π (N, N̄; z) =

π (0, N + N̄; z). Without loss of generality, we can assume that λ = 0 in this case
too, since all firms are identical. This immediately implies that the industry is
always at its long-run equilibrium. The total number of firms is N + N̄ = N̄LF

∞

determined by the free exit and entry conditions (3.1) and (3.2).
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B Scale and Second Best Industry Life-Cycle

The following proposition characterizes the second best life-cycle in the same two
limit cases from Proposition 1.

Proposition 3 (Scale and second best life-cycle). Suppose that the marginal cost of
small firms relative to large firms is arbitrarily large (z̄/z→ +∞ with z→ 0).

1. The second best number of large firms in the long-run N̄SB
∞ typically differs from the

laissez-faire N̄LF
∞ .

2. As in the laissez-faire, the second best industry life-cycle also features the maximum
number of small firms Nmax present before the industry concentrates (i.e., for all N̄ <

NSB
∞ ), and all small firms exiting immediately when N̄ = N̄SB

∞ .
On the contrary, suppose that there are no differences in marginal cost between firms

(z̄/z = 1). The industry features no life-cycle at the second best. The total number of
firms is equal to the long-run N̄SB

∞ that maximizes flow household utility U (·) at all times,
which typically differs from the long-run equilibrium N̄LF

∞ .

The proof is similar to that of Proposition 1 in Appendix A.

Economy where z/z → +∞ with z → 0. The flow utility satisfies U (N, N̄) =

U (0, N̄)− f N in this case. The long-run number of firms satisfies

V
(

1, N̄SB
∞ − 1

)
−V

(
0, N̄SB

∞ − 1
)
≥ 0 ⇐⇒ − f +λ×

U
(
0, N̄SB

∞
)
−U

(
0, N̄SB

∞ − 1
)

r
≥ 0

(B.1)
Next, consider the industry state with N̄ = N̄SB

∞ − 1. Condition (B.1) immedi-
ately implies that

V
(

N, N̄SB
∞ − 1

)
−V

(
N − 1, N̄SB

∞ − 1
)

∝ − f +λ×
U
(
0, N̄SB

∞
)
−U

(
0, N̄SB

∞ − 1
)

r
≥ 0

for any N. Therefore, the second best number of small firms is the maximum
NSB (N̄SB

∞ − 1
)
= Nmax.

Consider now the industry state just prior with N̄ = N̄SB
∞ − 2. We have that
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V
(

N, N̄SB
∞ − 2

)
−V

(
N − 1, N̄SB

∞ − 2
)

is

∝ λ×
(

V
(

Nmax, N̄SB
∞ − 1

)
−

U
(
0, N̄SB

∞ − 2
)

r

)
− f

= − f + λ×
U
(
0, N̄SB

∞ − 1
)
−U

(
0, N̄SB

∞ − 2
)

r︸ ︷︷ ︸
≥0

+
λNmax

r + λNmax ×

− f + λ×
U
(
0, N̄SB

∞
)
−U

(
0, N̄SB

∞ − 1
)

r︸ ︷︷ ︸
≥0

 ≥ 0,

where both terms are positive by Condition (B.1). Therefore, the second best is
again NSB (N̄SB

∞ − 2
)
= Nmax.

The recursion above can be repeated n times for each N̄ = N̄SB
∞ − n until reach-

ing the initial industry state N̄ = 0. This shows that NSB (N̄) = Nmax in equilib-
rium for any N < N̄SB

∞ , which completes the first part of the proof.

Economy where z̄/z = 1. The flow utility from any firm is identical and only the total
number of firms matters in this case. That is, U (N, N̄) = U (0, N + N̄). Without
loss of generality, we can assume that λ = 0 in this case too, since all firms are
identical. This immediately implies that the total number of firms is constant at
the second best, and given by N̄SB

∞ .

C Proof of Proposition ??

D Proof of Proposition 2

Economy where z/z → +∞ with z → 0. Suppose that the industry has reached the
long-run equilibrium with N̄LF

∞ large firms. Without government intervention, all
small firms would exit then. But now the government can subsidize the fixed cost
f for small firms to implement the second best. Trivially, the optimal subsidies are
zero for all N̄ ≥ N̄SB

∞ , since there are no small firms at the second best (Proposition
3).

We want to show that subsidies sSB (N̄) that lower the fixed cost of small firms

4



to f − sSB (N̄) for all N̄ ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
and are zero otherwise suffice to imple-

ment the second best. That is, the subsidies need to guarantee that the maximum
number of small firms Nmax enter the industry for all N̄ < N̄SB

∞ .
Starting from states N̄ ∈

[
N̄LF

∞ , N̄SB
∞ − 1

]
, this requires subsidies large enough

that

lim
z→0

JSB (Nmax, N̄; z) =
1

r + λNmax

[
sSB (N̄)− f + λNmax × JSB (Nmax, N̄ + 1; z̄)

+λ (Nmax − 1)× lim
z→0

JSB (Nmax, N̄ + 1; z)
]
≥ 0,

(D.1)

where JSB (·) refers to firm values under the optimal subsidies. When the condition
(D.1) holds with equality, this defines a lower bound s (N̄) for the optimal subsidy
in an industry with N̄ large firms.

Next, consider industry states with N̄ < N̄LF
∞ . Remember that, at the laissez-

faire, the value of small firms J (Nmax, N; z) is positive for N̄ < N̄LF
∞ and the maxi-

mum number of small firms is present (Proposition 1). However, these firm values
change once the government subsidizes small firms at later industry states with
N̄ ∈

[
N̄LF

∞ , N̄SB
∞ − 1

]
. The are two possible cases. Suppose first that limz→0 JSB (Nmax, N̄; z)

remains positive for all N̄ < N̄LF
∞ when the government sets subsidies equal to their

lower bound s (N̄) for all N̄ ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
and sets zero subsidies otherwise.30

In this case, the lower bound subsidies for states with N̄ ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
not only

make the maximum number Nmax of small firms enter in these states, but also in
all states with N̄ < N̄LF

∞ . Therefore, the second best life-cycle in Proposition 3 is
implemented with subsidies sSB (N̄) = s (N̄) for all N̄ ∈

[
N̄LF

∞ , N̄SB
∞ − 1

]
and zero

otherwise.
On the contrary, suppose that limz→0 JSB (Nmax, N̄; z) turns negative for some

N̄ < N̄LF
∞ under the lower bound subsidies. The government now needs to subsi-

dize above the lower bound for industry states with N̄ ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
in order

to make the maximum number Nmax of small firms enter in states with N̄ < N̄LF
∞ .

Therefore, the second best life-cycle in Proposition 3 is implemented with subsi-

30 This is the case when the lower bound subsidies are large enough to compensate firms for the
fact that future profits are lower for N̄ ≥ N̄LF

∞ — as there are more large firms in the industry —
or when future profits do not fall so much that firms are discouraged to enter until reaching the
maximum Nmax.
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dies sSB (N̄) > s (N̄) for all N̄ ∈
[
N̄LF

∞ , N̄SB
∞ − 1

]
and zero otherwise; where the

lowest required subsidies sSB (N̄) are such that limz→0 JSB (Nmax, N̄; z) ≥ 0 for all
N̄ < N̄LF

∞ , with equality for at least some N̄.

Economy where z̄/z = 1. The proof is straightfoward. Let the subsidy sSB (N̄) be
such that π (0, N̄; z̄)+ sSB (N̄) = U (0, N̄) for any N̄. This subsidy aligns the private
and social incentives to enter the industry, and implements the second best number
of total firms N̄SB

∞ at all times.

E Additional Figures

Figure 6: Scale and optimal policy
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Figure 7: Life-Cycle with Intensive Margin of Innovation, Inelastic Case

Note: The simulations were done with the parameter values used in Figure 2 and a
quadratic innovation cost function, c (λ) = c0λ2, where the constant term c0 was
calibrated so that λLF (0) = 0.02. In addition, the fixed cost for small firms z was adjusted
downwards so that the profits net of the innovation costs were the same in the initial state
to those of the model with exogenous λ, i.e., f − c00.022.
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Figure 8: Life-Cycle with Intensive Margin of Innovation, Elastic Case

Note: The simulations were done with the parameter values used in Figure 7 and a higher
elasticity of the cost function, c (λ) = c0λ1.1. Again, the constant term c0 was calibrated so
that λLF (0) = 0.02.
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