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This appendix contains the proof of Proposition 1, calculations for all the figures

in the text, and proofs for all the extensions.

Proof of Proposition 1. Recall that after a deviation in period t, players set P t
i = ∅

and bti,−i = 0 if not already chosen. In subsequent periods, they revert to the static

equilibrium with zero transfers and no selected projects.

The proof proceeds in four steps: (i) we show that it is without loss of optimality

to restrict attention to relational contracts that are surplus-maximizing following

every on-path history ht; (ii) we provide a necessary and sufficient condition for the

existence of a relational contract that implements a given project selection rule P (·);
(iii) we show that this condition is independent of the division of surplus between the

players; and (iv) we show that, for any two histories that generate the same beliefs,

selecting the same continuation equilibrium is without loss of optimality.

Step 1 We show that it is without loss of optimality to restrict attention to rela-

tional contracts that are surplus-maximizing following every on-path history ht. To

see this, suppose that there exists an on-path history ht such that the continuation

equilibrium starting in period t, denoted by e1, has lower total surplus than an al-

ternative continuation equilibrium e2. Thus, if we define Ck
i to be the continuation

value to player i in equilibrium ek, then
∑

i C1
i <

∑
i C2

i . For the rest of Step 1, we

omit the superscript t − 1 in our notation, as we are solely concentrating on period

t− 1 objects.

Let us modify the players’ relational contract such that play in and after period

t is dictated by e2 and the period t − 1 bi,j(·) transfers associated with history ht
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(and, thus, corresponding to a specific realization of vt−1) are adjusted so that: (i)

player 2’s expected payoff following the realization of vt−1 is the same as under the

original equilibrium and (ii) player 1’s expected payoff following the realization of vt−1

increases by
∑

i C2
i −

∑
i C1

i . Specifically, take the vector of transfers b1 = (b11,2, b
1
2,1)

associated with the original equilibrium and create a new vector of transfers b2 =

(b21,2, b
2
2,1) such that:

C2
1 + b22,1 − b21,2 > C1

1 + b12,1 − b11,2, (1)

C2
2 + b21,2 − b22,1 = C1

2 + b11,2 − b12,1. (2)

Because
∑

i C2
i −

∑
i C1

i > 0, finding payments that satisfy b21,2 ≤ C2
1 and b22,1 ≤ C2

2

is always feasible.

Note that these changes have no impact on player 1’s choices of actions made in

any period t′ ≤ t−1 because all actions are observable, and hence choosing a different

action from the proposed equilibrium would be labeled a defection. If defections were

deterred in the original equilibrium, which had a strictly smaller continuation value for

player 1, then they are also deterred in the new equilibrium. The same logic applies

to player 2 since they obtain the same expected payoff in period t − 1 (compared

to the original equilibrium), and thus also have the same continuation values in all

periods t′ < t − 1. Finally, note that surplus from a date 0 perspective is strictly

higher under the new equilibrium.

Step 2 We show that there exists a relational contract that implements a project

selection rule P (·) if and only if the following inequality holds for all t and for all

histories ht ∈ Ht: ∑
p∈Pt

∑
i=1,2

max
(
0, c− E(vi,p|ht)

)
≤ C(ht), (3)

where C(ht) is the continuation value.

To show that (3) is a necessary and sufficient condition, consider a set of transfers

bi,−i(v
t) ≥ 0 to be paid on path given a vector of realized values vt.

Given an equilibrium project selection Pt, note that it is without loss of generality

to assume that P t
1 = P t

2 = Pt. Thus, for each player and for each p ∈ Pt, the player

must weakly prefer to include p in P t
i , rather than excluding it. Let αi(v

t) denote

player i’s share of C(ht ⊔ vt) as a function of vt. Hence, the condition for selecting
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Pt is:∑
p∈Pt

max
(
c− E(vi,p|ht), 0

)
≤ E

(
b−i,i(v

t)− bi,−i(v
t) + αi(v

t)C(ht ⊔ vt)
)
, ∀i, (4)

bi,−i(v
t) ≤ αi(v

t)C(ht ⊔ vt), ∀vt,∀i. (5)

Expectations are taken over the project valuations realizations vt and ht⊔vt denotes

the players’ updated beliefs after observing vt.1 The first expression states that the

promised transfers and the expected share of the total continuation value must be

enough to prevent a player from shirking on any subset of the projects. The second

expression states that the each player is willing to pay the other player the necessary

transfer.

To show necessity: Note that since Equation (4) must hold for a fixed i, the

inequality also holds summing over all i. Further, all transfers cancel out when

summing over i. Finally, by definition, E(C(ht⊔vt)) = C(ht). Hence, we are left with

Equation (3).

To show sufficiency: We will show this result in two substeps.

SubStep 1: We show it is necessary and sufficient to replace Equation (5) by its

expectation. This new expression is as follows:

E(bi,−i(v
t)) ≤ E

(
αi(v

t)C(ht ⊔ vt)
)

∀i. (6)

We first show that if there is a solution to Equations (6) and (4), then there exists a

solution to Equations (5) and (4).

Take a set of transfers bi,−i(v
t) that satisfy Equations (6) and (4). Define:

b′i,−i(v
t) = αi(v

t)C(ht ⊔ vt)−

(
E
(
αi(v

t)C(ht ⊔ vt)− bi,−i(v
t)
))

. (7)

Since Equation (6) holds, the term in the expectation of Equation (7) is positive and

thus Equation (5) holds for all realizations of vt under the set of transfers b′i,−i(v
t).

Finally, E(b′i,−i(v
t)) = E(bi,−i(v

t)) so Equation (6) continues to hold.

SubStep 2: Using substep 1, it suffices to show that Equation (3) implies a

1The history also includes the project selections, and both the upfront and end-of-period transfers.
However, for notational convenience we only include the realized valuations as every other object
can be inferred on path from the realized valuations.
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solution to Equations (4) and (6). To simplify all the notation with expectations,

Equation (4) can be re-expressed as:

βi − γi ≤ (b̃−i,i − b̃i,−i), (8)

where b̃i,−i is the expected transfer from i to −i, βi =
∑

p∈Pt max
(
0, c − E(vi,p|ht)

)
,

and γi = E(αi(v
t)C(ht ⊔ vt)). Equation (6) can thus be re-written as:

b̃i,−i ≤ γi. (9)

Rearranging Equation (3) implies
∑

i(βi − γi) ≤ 0. One can now show that

b̃i,−i = max(0, β−i − γ−i) satisfies Equation (9). Further, Equation (8) holds because:

βi − γi ≤ max(0, βi − γi)−max(0, β−i − γ−i) (10)

⇐⇒ max(0, β−i − γ−i)−min(0, γi − βi) ≤ 0 (11)

⇐=
∑
i

(βi − γi) ≤ 0, (12)

where the final step follows from noting that β1 − γ1 and β2 − γ2 cannot both be

positive and analyzing the remaining three cases based on the signs of βi − γi.

Finally, Equation (9) reduces to

max(0, β−i − γ−i) ≤ γi ⇐= β−i − γ−i ≤ γi (13)

⇐=
∑
i

(βi − γi) ≤ 0, (14)

where the final implication is due to βi being weakly positive.

Step 3: We show that any relational contract that implements a given project

selection rule can be replaced by an alternative relational contract that implements

the same project selection rule and yields no surplus to player 2.2 First, note that

the way the players share their continuation value does not affect Equation (2) from

the main text. Hence, for any period t where player 2’s expected payoff is positive,

w2,1 can be increased until player 2’s expected payoff is zero. Player 2 is willing to

make this transfer because not doing so would be seen as a deviation, resulting in a

2Of course, one could take the relational contract derived from Steps 3 and 4 and choose to
redistribute the surplus by an up-front payment every period from player one combined with reducing
the expected payment from player one at the end of each period.
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payoff of 0 for player 2.

Step 4: We now show that, for any two histories ht
1 and ht′

2 that generate the same

beliefs µ, selecting the same continuation equilibrium is without loss of optimality.

Take a relational contract r that is surplus-maximizing at all on-path histories and

has two histories ht
1 and ht′

2 prescribing different (surplus-maximizing) continuation

equilibria under the same beliefs µ. Recall from Step 3 that one can consider relational

contracts in which player 2 obtains an expected payoff equal to 0 in every period. In

this case, since the two continuation equilibria are both optimal and both give all

the surplus to player 1, switching from one continuation equilibrium to the other

does not change the players’ incentives as both prescribe the exact same payoffs

to the players. Hence, when focusing on relational contracts that specify the same

continuation equilibrium following histories that induce the same beliefs, one can

replace C(ht) with C(µt).

Calculations for Figure 1. Throughout, the notation V (·), C(·) will denote the net-

present value and continuation value of a given project selection rule, respectively.

Further, recall that we set c = 1. One can solve for the optimal project selection

rule recursively starting from n = m = 3. When n = 3, the players exploit all three

projects because Assumption 1 implies that exploitation is an equilibrium. Recall

that Assumption 1 states:

1 ≤ δ

1− δ
(v − 2). (15)

By Proposition 3, f(2) ≥ 2. When the project selection rule is such that the

relationship scope is stochastically maximal, the players choose to exploit two projects

and explore zero projects (if the players could explore a third project, then they would

do so). It must thus be the case that:

3c > 2C(exploit) + C(explore), (16)

where C(explore) = q δ
1−δ

(v − 2) + (1− q)δ(qv − 2 + C(explore)). We can reduce this
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constraint to:

3 > 2
δ

1− δ
(v − 2) + C(explore)

=
δ

1− δ
(v − 2)

(
2 +

q

1− δ(1− q)

)
+

(1− q)δ(qv − 2)

1− δ(1− q)
. (17)

When this constraint does not hold, f(2) = 2. Since the players will never explore

projects in a domain where a suitable project has been identified, the players have two

choices: exploit two projects, or exploit one project and explore another. Choosing

f(n) = n is always feasible, and hence both project selection rules are feasible. Thus,

the players must prefer to exploit 2 projects as opposed to exploiting a single project

for the stochastically maximal project selection rule to be optimal. This condition

for such a preference is stated below:

2V (exploit) ≥ V (exploit) + V (delayed exploit) + V (explore)

⇐⇒ V (exploit) ≥ V (delayed exploit) + V (explore), (18)

where,

V (delayed exploit) = 0 + δ(qV (exploit) + (1− q)V (delayed exploit)) (19)

V (explore) = (qv − 2) + δ(qV (exploit) + (1− q)V (explore)). (20)

Hence, we can reduce Equation (18) to:

V (exploit) ≥ qv − 2 + δqV (exploit)

1− (1− q)δ
+ V (exploit)

δq

1− δ(1− q)

⇐⇒ V (exploit)(1− δ − δq) ≥ qv − 2

⇐⇒ v − 2

1− δ
(1− δ − δq) ≥ qv − 2 (21)

To complete the proof, we must additionally prove that, given the choices dictated by

the project selection rule when n = 2, 3, f(0) > 0 and hence the relational contract is

non-empty. To do so, we consider the project selection rule when n = 1, 0. Proposition

5 implies that the scope reaches its maximum of 3 with positive probability, and thus

the players must explore precisely two projects. Finally, f(1) ≤ f(2) = 2, implying

that when n = 1, the players exploit zero projects.
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Lastly, when n = 0, the players have no projects to exploit. In any non-empty

optimal relational contract, f(0) ≥ 1. Further, f(0) ≤ f(1) = 2. The players explore

either one or two projects when n = 0. It is sufficient to show that exploring one

project when n = 0 is feasible, given the project selection rule determined above when

n = 1, 2, 3. Below we show the constraints for feasibility at period 0.

Hence, if the stochastically maximal project selection rule is feasible for n = 0 and

n = 1 and it satisfies Equations (16), (18), and (21), then such a project selection

rule is optimal. To write down the feasibility constraints for n = 0 and n = 1, one

must compute the expected continuation value when n = 1, C(1):

C(1) = δ
(
q23

v − 2

1− δ
+ 2q(1− q)2

v − 2

1− δ
+ (1− q)2(2(qv − 2) + C(1))

)
=

δ
(
(4q − q2)v−2

1−δ
+ 2(1− q)2(qv − 2)

)
1− δ(1− q)2

. (22)

Thus, the constraint for feasibility when n = 1 is:

2 ≤
δ
(
(4q − q2)v−2

1−δ
+ 2(1− q)2(qv − 2)

)
1− δ(1− q)2

= C(1). (23)

Further, the expression for C(0) is:

C(0) = δ
(
q(2(qv − 2) + C(1)) + (1− q)((qv − 2) + C(0))

)
=

δq(2(qv − 2) + C(1)) + (1− q)δ(qv − 2)

1− δ(1− q)
.

Thus, the constraint for feasibility when n = 1 boils down to:

1 ≤ δq(2(qv − 2) + C(1)) + δ(1− q)(qv − 2)

1− δ(1− q)
. (24)

One can plot these constraints to check whether they can jointly be satisfied. If

there exists a set of parameter values where all the constraints hold with a strict

inequality, then there exists an open set of parameter values where the inequalities

hold strictly. Finally, any value in the interior of the region of Figure 1 in which

the stochastically maximal project selection rule is reported as optimal satisfies the
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inequalities strictly.3

Proof of Figure 2. When sp ∼ Exp(λ) and benefits are symmetric, we can compute

the threshold s0 such that the players are indifferent between exploitation and explo-

ration:

s0

1− δ
= E(sp) +

δ

1− δ
E
(
max{sp, s0}

)
(25)

⇐⇒ s0

1− δ
=

1

λ
+

δ

1− δ

(
e−λs0

(
s0 +

1

λ

)
+
(
1− e−λs0

)
s0
)
. (26)

The left-hand side corresponds to the exploitation surplus. The right-hand side cor-

responds to the expected surplus when exploring one more time and subsequently

exploiting the best project found until then. The second step utilizes the expected

value of the exponential and computes the expected value of the maximum operator

conditional on whether s0 < sp or sp < s0, respectively.

Solving this expression for s0 when λ = 1 / 3 yields the equation for s0 provided

in the text. Finally, solving for s̃ was done in the text.

For the extension considered in Section 5.3, we assume that sp ∼ F . However,

we also suppose that: with probability 1 − q, both players have valuations vp,1 =

vp,2 = sp / 2; with probability q / 2, player 1 values the project at vp,1 = sp and player

2 at vp,2 = 0; and with the same probability q / 2, player 2 values the project at

vp,2 = sp and player 1 at vp,1 = 0. We assume that the distribution of benefits is

i.i.d. across projects. Our assumptions regarding the distribution of project values

imply that project exploration is an equilibrium of the stage game, as in Section 4.2.

For simplicity, we also suppose that m = 1. Setting q = 1 thus corresponds to the

analysis in Section 4.2. By contrast, setting q = 0 corresponds to a special case of

the benchmark model with symmetric benefits analyzed in Section 3.2.

Proposition A1 (Symmetric and Asymmetric Benefits)

In any optimal relational contract, there exist two thresholds, denoted as s∗s and s∗a,

such that the project selection rule is as follows: the players explore a project if both

(i) the highest-valued symmetric-benefits project found so far has a value less than s∗s,

and (ii) the highest-valued asymmetric-benefits project found so far has a value less

3The Mathematica code needed to plot these inequalities is available upon request.

8



than s∗a. Furthermore, they permanently exploit the first symmetric- or asymmetric-

benefits project with a valuation greater than s∗s or s∗a, respectively.

Proof of Proposition A1. Note first that the optimal relational contract conditions

only on the highest-valued symmetric- and asymmetric-benefits projects found to

date. By Proposition 1, these are the only projects that may ever be exploited.

Denote the values associated with the highest-valued symmetric- and asymmetric-

benefits projects by ŝs and ŝa, respectively. In any optimal relational contract, the

project selection rule of the players can then be summarized as a function mapping

ŝs, ŝa into one of three choices: (1) exploiting the symmetric-benefits project, (ii)

exploiting the asymmetric-benefits project, and (iii) exploration.

Next, note that after exploiting a project, the players’ beliefs about the projects

do not change, and, hence, if the players exploit a project once, they will permanently

exploit that project. Therefore, the continuation value of the players’ relationship as-

sociated with the permanent exploitation of a project with value s (if the exploitation

of a project with value s is feasible) is equal to δ
1−δ

(s − 2c). More specifically, for

symmetric-benefits projects, exploitation is an equilibrium of the stage game, and

thus the continuation value from exploiting a symmetric-benefits project with value

s is always equal to δ
1−δ

(s − 2c). In contrast, the continuation value from exploiting

an asymmetric-benefits project with value s is δ
1−δ

(s−2c)1c≤ δ
1−δ

(s−2c), where the con-

dition in the indicator function corresponds to the condition under which the players

are able to cooperate in exploiting the project.

Finally, the players never choose to exploit a project p they previously chose not

to exploit. To see this, note that the players cannot exploit p in the future even if p is

the highest-valued project (since, by assumption, they have chosen not to exploit it

in the past). However, by Proposition 1, the players cannot exploit p when it is not

the highest-valued project either. Hence, the continuation value from exploration is

some constant, which we denote B.

Finally, suppose the highest-valued project found to date has value ŝ. If this

project is a symmetric-benefits project, the players exploit it if and only if (ŝ− 2c) /

(1 − δ) ≥ B. If this project is an asymmetric-benefits project, the players exploit it

if and only if (ŝ− 2c) / (1− δ) ≥ B and δ(ŝ− 2c) / (1− δ) ≥ c. It follows from these

expressions that the thresholds s∗s and s∗a stated in the proposition exist.

Recall that s̃ = c(1 + δ) / δ. We now characterize the thresholds s∗a and s∗s.
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Proposition A2 (Optimal Thresholds’ Properties)

1. s∗a = max
(
s0, s̃

)
≥ s0 ≥ s∗s.

2. s∗s is monotone increasing in δ and monotone decreasing in q.

3. s∗a is independent of q and U-shaped in δ.

To prove Proposition A2, we first prove the following lemma.

Lemma A1 (Continuation Value Comparative Statics)

Define by C(δ, q) the continuation value of the players’ relationship following explo-

ration. Then, C(δ, q) is decreasing in q and C(δ, q)(1− δ) is increasing in δ.

Proof of Lemma A1. First, recall from the proof of Proposition A1 that the contin-

uation value following exploration in the current period is independent of the values

of the projects explored by the players up until and including the previous period.

To prove that C(δ, q) is decreasing in q, note that, as q decreases, the players are

strictly more likely to encounter a symmetric-benefits project. Because the players

are always able to exploit symmetric-benefits projects, the continuation value of their

relationship weakly increases as q decreases.

Next, consider any two values δ1 < δ2. Note that any project selection rule

implementable by an optimal relational contract when the players have discount factor

δ1 must also be implementable in equilibrium when the players have discount factor

δ2, because Equation (2) in the main text is relaxed as δ increases. Thus, given

an optimal project selection rule for discount factor δ1, P, the players’ expected

continuation value is simply:

C(δ1, q) = δ1π(t+ 1,P) + δ21π(t+ 2,P) + . . . , (27)

where π(·) denotes the expected joint surplus in a given period under the project

selection rule. Further, because this project selection rule is also feasible with δ2,

C(δ2, q) ≥ δ2π(t+ 1,P) + δ22π(t+ 2,P) + . . . (28)

Combining these observations implies that C(δ, q)(1− δ) is increasing in δ.
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Proof of Proposition A2. Statement 1: We first show that s∗a = max
(
s0, s̃

)
. This

result was shown in Corollary 1 in the text for the case when q = 1. By Lemma A1,

for any q < 1, the continuation value following exploration weakly increases compared

to the case when q = 1. Because s∗a is defined by the players’ indifference between

exploration and exploitation, the increased continuation value following exploration

implies that s∗a ≥ max
(
s0, s̃

)
. Finally, s∗a is not necessarily strictly greater than

max
(
s0, s̃

)
, because (i) s∗a ≥ s0 implies that, when benefits are symmetric, the players

would exploit such a project and (ii) s∗a ≥ s̃ implies that the players are able to

replicate the project selection rule of the symmetric-benefits case.

What is left to show is s0 ≥ s∗s. Note that the continuation value following

exploitation is the same in this case and the case of symmetric benefits. However,

the surplus following exploration is weakly higher under symmetric benefits. Thus,

for any value s where exploitation is preferred in the symmetric-benefits benchmark,

exploitation is also preferred with asymmetric benefits. Thus, the threshold must be

weakly higher compared to the symmetric-benefits benchmark.

Statement 2: Note that the joint surplus associated with the exploitation of a

symmetric-benefits project with value s is equal to (s − 2c) / (1 − δ). Further, s∗s

represents the value a project must achieve for the players to be indifferent between

exploiting the project and exploring. Thus:

s∗s − 2c

1− δ
= C(δ, q) ⇐⇒ s∗s − 2c = (1− δ)C (δ, q) . (29)

The statement now follows given the results stated in Lemma A1.

Statement 3: This is immediate from the definition of s∗a.
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