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Abstract

We characterize when an agent’s initial forecast and one-step-ahead fore-
cast revisions are consistent with a conditionally i.i.d. (CIID) model, i.e.,
Bayesian learning about a stable but unknown i.i.d. data-generating process.
For two periods and binary outcomes, two simple conditions are necessary and
sufficient: Symmetry (pairwise exchangeability) and Reinforcement (realized
outcomes become weakly more likely). For two periods and arbitrary finite
outcome sets, we show that a forecast system admits a CIID representation if
and only if a forecast-derived matrix of joint probabilities is completely pos-
itive; with at most four outcomes, this reduces to positive semidefiniteness.
We prove that one-step-ahead forecasts can never identify beliefs in positively
autocorrelated outcomes, but some beliefs in negatively autocorrelated out-
comes can be detected. For multi-period forecasts with binary outcomes, we
derive an easily checked characterization of CIID representations by linking to
the truncated moment problem, and show how the identified set of minimal-
support rationalizations depends on the number of periods. Finally, we show
that complete positivity of the associated moment tensor provides a general

necessary and sufficient condition for multiple periods and multiple outcomes.
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1 Introduction

Economic models of learning typically assume that an agent learns about a fixed
but unknown state of the world, so that observations are conditionally independent
given that state. This conditional independence implies that the induced probabil-
ity measure over sequences of observations is exchangeable, in the sense that the
probability of a finite sequence is invariant under permutations. De Finetti [1937]
and subsequent work show that exchangeability is both necessary and sufficient for
a probability measure on infinite sequences of random variables to correspond to
learning about a fixed state: any exchangeable distribution admits a Bayesian rep-
resentation as a belief over a (possibly infinite) collection of i.i.d. data-generating
processes. Thus, when the agent believes their data is exchangeable, it is as if they
are learning about a fixed state of the world, whether or not they consciously think
of the problem that way.

Exchangeability is defined purely in terms of the ex-ante distribution over se-
quences. In contrast, work by Shmaya and Yariv [2016], Bohren and Hauser [2024],
and Molavi [2025] examine the consistency of beliefs across different periods, and pro-
vide necessary and sufficient conditions under which beliefs before and after receiving
information in two-period models can be rationalized as the result of Bayesian up-
dating. This paper lies at the intersection of these two approaches: As in the work
following de Finetti [1937], we characterize the existence of a conditionally i.i.d.
model in terms of beliefs over observable events. However, we follow the economic
literature in supposing that, in addition to eliciting the agent’s prior beliefs, the
analyst can elicit the agent’s beliefs after observing one or more realized outcomes.

In contrast to the papers cited in the previous paragraph, we do not allow the
analyst to elicit the agent’s beliefs about the data-generating process, but only their
predictions about the outcome in the next period, given the outcomes so far. In
contrast to the line of work started by de Finetti, which takes as given the decision
maker’s ex-ante specification of the complete probability distribution, we analyze
how one-period-ahead forecasts are updated in response to realized observations.
This is important because, although the agent may have initial beliefs that satisfy
exchangeability, biases in updating could lead them to beliefs that are not consistent

with a conditionally i.i.d. model. Our results show how to detect when this occurs.



They can be interpreted as a sort of converse of de Finetti’s theorem: what prop-
erties of the forecasts do characterize finite sequences of random variables that are
conditionally i.i.d.?

When there are only two periods and only two possible outcomes, the existence
of a conditionally i.i.d. model consistent with the forecasts has a simple and intuitive
characterization: Such a model exists if and only if the forecasting system satisfies the
properties of Symmetry and Reinforcement. Symmetry requires that for every two
outcomes 7, j the probability of j given ¢, multiplied by the ex-ante probability of ¢, is
equal to the probability of 7 given j, multiplied by the ex-ante probability of j, which
is exactly the content of exchangeability in the two-period setting. Reinforcement
requires that the conditional probability of outcome ¢ weakly increases when outcome
1 is observed.

When there are two periods and more than two outcomes per period, Symmetry
and Reinforcement are still necessary but are no longer sufficient. Instead, we show
that a key role is played by a square matrix M derived from the agent’s forecast,
whose (7, j)-th entry is the product of the ex-ante probability of the j-th outcome
and the probability of the i-th outcome given the j-th outcome. When there are
four or fewer outcomes, (p,q) has a conditionally i.i.d. representation if and only
if M is positive semidefinite. When there are more than four outcomes, the same
characterization holds, but with positive semidefiniteness replaced by the (typically
stronger) condition of complete positivity.'

We then develop an operational diagnostic that verifies consistency with a con-
ditionally i.i.d. model by searching for a positive diagonal scaling that renders the
rescaled forecast matrix diagonally dominant; success guarantees complete positivity.

We apply the general characterization to determine which departures from a belief
in an i.i.d. process can be detected with these data. We show that it is impossible
to detect a belief that the data generating process is persistent, i.e., the hot-hand
fallacy, because a conditionally i.i.d. model can rationalize any next-period belief
generated by such updating. In contrast, some cases of the opposite bias, in which

the agent believes that the first-period outcome is less likely to be realized in the

'Roughly speaking, a matrix is completely positive if it can be built from a finite collection of
nonnegative component vectors whose outer products add up to the matrix.



next period (as in the gambler’s fallacy), can be detected, as can the beliefs of a
decision maker who (correctly or not) believes they have observed a garbled version
of the outcome.

For multi-period forecasts with binary outcomes, we derive an exact and easily
checked characterization of the CIID representation by combining generalizations of
the symmetry and reinforcement conditions with results for the truncated Hausdorff
moment problem, and show how the identified set of minimal-support rationalizations
depends on the number of periods. Finally, we show that complete positivity of the
associated moment tensor provides a general necessary and sufficient condition for

multiple periods and multiple outcomes.

Related work The seminal contributions on the characterizations of conditionally
i.i.d. models are de Finetti [1937] and Hewitt and Savage [1955] respectively for the
binary and general outcome case. Diaconis [1977] characterizes the implications of
exchangeability on finite sequences, and Aldous, Ibragimov, and Jacod [2006] surveys
subsequent results. In the case of binary outcomes, we also make use of Schoenberg
[1932)’s theorem for the truncated moment problem, and Szegd [1975]’s results about
orthogonal polynomials.

Molavi [2025] shows that beliefs about an unknown state are consistent with
Bayesian updating if and only if the mean posterior belief about the state is abso-
lutely continuous with respect to the prior. This finding generalizes the earlier work
of Shmaya and Yariv [2016] by allowing the state space to be infinite and the decision
maker’s subjective beliefs to have support that does not match that of the true data-
generating process. Bohren and Hauser [2024] characterizes the conditions under
which a departure from Bayesian updating (e.g., underinference from signals) can
be rationalized as a consequence of Bayesian updating within a misspecified model.
Sarnoff [2025] highlights that it is more common for forecasts to violate “posterior
statistical sufficiency”? than exchangeability. Catonini and Lanzani [2025] charac-
terizes the only form of Dutch-book to which misspecified but Bayesian agents can
be exposed.

The form of elicited beliefs we consider - predictions of the next outcome - is

2Ie., belief at period ¢ + 1 depends only on belief at period ¢ and the period-t outcome.



elicited in the field in many settings, see, e.g., Weber, d’Acunto, Gorodnichenko,
and Coibion [2022] and Greenwood and Shleifer [2014] for surveys on beliefs about
inflation and stock returns, respectively.

Finally, this paper is related to decision-theoretic work on the dynamic consis-
tency of optimal plans and how they force Bayesianism (e.g., Epstein and Le Breton,
1993, Green and Park, 1996, and Ghirardato, 2002).

2 The Two-Period Model

Objects There is a finite set Y = {1,...,n} of possible outcomes. In each period
t € {1,2}, an outcome is realized and observed.

The agent’s forecast of the period-1 outcome is p € A(Y'), and their forecast of
the period-2 outcome conditional on observing outcome i is ¢ € A(Y). Together,
we call this pair a forecast. We aim to characterize when these probabilities are
consistent with a conditionally i.i.d. model. In our setting, an i.i.d. model is one
where outcomes are drawn independently from a fixed distribution # € A(Y’). A con-

ditionally i.i.d. model is then summarized by a probability measure € A(A(Y)).3

Definition 1. A forecast (p,q) has a Bayes-rationalizing conditionally i.i.d. model
(has a CIID representation) if there exists a probability measure p € A(A(Y)) such
that:

(i) Forallie Y:
P = j 0, du(0). (1)
A(Y)

(ii) For all 4,5 € Y with p; > 0, the posterior measure p(-|j) is defined by Bayes’
rule: for any Borel set A < A(Y),

p(4)) = des

6, du(6) .

pj

3For an arbitrary Borel-measurable set X in a Euclidean space, we let A(X) denote the prob-
ability distributions on X.



and the conditional forecast satisfies

9 = f 6, dyu(6]) 3)
A(Y)

(iii) For j € Y with p; = 0, the value of ¢¥) is unrestricted.

That is, in a CIID model, the initial probability p; is the expected value of the

latent parameter 6;, and the period-2 probability of outcome ¢ conditional on the

first outcome being j is the expected value of 6; conditional on seeing outcome j.
Conditionally i.i.d. models generate exchangeable sequences of observations; this

implies that forecasts must be symmetric in the following sense.

Definition 2. Forecast (p, q) satisfies Symmetry if for all (i, 7) € Y2, piq](-i) = qui(j).

This is a direct consequence of exchangeability; the unconditional probability of
seeing the sequence (i,7) must equal that of seeing (j,7). The following condition

also holds in any conditionally i.i.d. model.
Definition 3. (p, q) satisfies Reinforcement if p; < qi(i) forallieY.

Reinforcement requires that the probability of observing an outcome in the next
period is not decreased by observing that outcome in the current period.* This
distinguishes CIID models from other exchangeable models, such as the sampling
without replacement examples discussed in Diaconis [1977]. CIID models imply
reinforcement because the 6 that assigns today’s observed outcome relatively more
probability will assign it relatively more probability tomorrow as well. Our formal

proof uses Jensen’s inequality.

Lemma 1. If (p,q) has a CIID representation, then (p,q) satisfies Symmetry and

Reinforcement.

4Note that CIID representations do not imply that seeing a particular outcome makes all other
outcomes less likely. For example, suppose there are three outcomes and that p = (.16’,.96”), with

0 = (4,.4,.2) and 6" = (.1,.1,.8). Then p; = .13 and ¢%") = 5/26 > .13 = p,.



Proof. As noted above, Symmetry follows from the fact that conditionally i.i.d.

models are exchangeable. To see why Reinforcement holds, observe that

q@ _ SA(y) 07dy (0)
' pi
SA(Y) Oidyu (6) 2
>
pi

= Di

where the first equality follows from the fact that piqi(i) is the probability that outcome
1 occurs twice in a row, the inequality follows from Jensen’s inequality, and the last

equality follows from the definition of p;. ]

As we note in Section 7 below, Symmetry and Reinforcement remain necessary
conditions for conditionally i.i.d. models when forecasts are elicited over more than

two periods.

3 Binary outcomes

We begin by providing a simple characterization in the case where the outcome is
binary (i.e., for Bernoulli random variables), as in de Finetti [1937]. The following
result shows that in this case, Symmetry and Reinforcement are sufficient as well as

necessary for the existence of a CIID representation.

Theorem 1. When n = 2, (p,q) has a CIID representation if and only if (p,q)

satisfies Symmetry and Reinforcement.

We establish the sufficiency of Symmetry and Reinforcement constructively. The

special cases p; = q1(2), q1(2) = 0, and p; = 1 correspond to degenerate priors. When

1>p > qf) > (0, we show there is a CIID representation with a Beta prior with
parameters

(2) (2)
1 _
S L S Gt 10 ()

p—q\” p— ¢\



Remark. The proof uses a Beta prior for the non-degenerate cases, but this is not
the only possible rationalization. Indeed, as we show in Section 5, whenever q?) # p1,
there are infinitely many CIID representations, including many with finite support.
The Beta prior is convenient here because it is the conjugate prior for Bernoulli
outcomes, has two parameters, and the moment formulas are simple functions of
(cv, B). But, the key point here is that some CIID representation exists, not that it

must be Beta.

The theorem establishes that, in the Bernoulli case, Symmetry and Reinforce-
ment completely characterize the existence of a Bayes rationalizing conditionally
i.i.d. model. The proof also shows that whenever a non-trivial CIID rationalization

exists, a rationalization with a Beta distribution also exists.

4 General Characterization: Complete Positivity

4.1 Necessary conditions

Paralleling the development of the characterization of exchangeability provided by
Hewitt and Savage [1955], we now move beyond the case of binary outcomes. We
begin with the following necessary condition, which lets us demonstrate that Re-
inforcement and Symmetry are no longer sufficient when there are more than two

outcomes. Define the n x n matrix M (p, q) by
mi;(p.q) =pja)  Vijey.

By construction, M;;(p, q) is the joint probability of observing outcome j in period 1
and outcome ¢ in period 2. The next lemma says that in a CIID model, this matrix

must coincide with the second-moment matrix (E,, [eiej])ij of the latent parameter

6.

Lemma 2. € A(A(Y)) is a CIID representation for (p,q) if and only if

mii (P, q) = f

A(Y)



In this case, M(p,q) is positive semidefinite because it is a mixzture of rank-one

positive semidefinite matrices.

The proof is based on the observation that if (p, ¢) has a CIID measure p, M(p, q)

is the matrix of that measure’s second moments. Now consider the following example.

Example 1. Supposen = 3, the initial forecast is p = (%, %, %), and the second-period

forecasts are
¢V =(04,05,0.1), ¢% =(0.5,04,0.1), ¢® =(0.1,0.1,0.8).
Clearly (p,q) satisfies Symmetry and Reinforcement with

4/30 5/30 1/30
M(p,q) = |5/30 4/30 1/30
1/30 1/30 8/30

Let e = (1,—1,0)". Because M(p,q) e = —%e, M (p, q) is not positive semidefinite,

so (p,q) does not have a Bayes-rationalizing conditionally i.i.d. model.

This example reveals a failure of conditional independence that Symmetry and
Reinforcement alone cannot detect. Imagine a voter assessing a politician who can
produce one of three policy outcomes: Left, Center, and Right. The voter’s forecasts
in the example imply that observing a “Left” policy makes “Center” the most likely
policy next period, while observing a “Center” outcome makes “Left” the most likely
outcome, with “Right” having a symmetric effect on Left and Center. Although this
is consistent with Reinforcement for each outcome and the Symmetry condition,
the fact that “Center” and “Left” each boost the other the most makes the matrix
M (p, q) not positive semidefinite, so the forecasts cannot be reconciled with a model

of learning about a politician with a stable ideological “type.”

4.2 General Characterization: Complete Positivity

The complete positivity of M (p,q) will play a central role in our characterization.



Definition 4. The matrix M is completely positive if M = BB' for some n x r non-
negative matrix B, or equivalently M = Y7,_ bbb, € RZ,. When M is completely

positive, its cp rank cpr(M) is the smallest r for which such a B exists.

The decomposition of a completely positive matrix bears a resemblance to diag-
onalization, with the key difference that the b vectors are not orthogonal. It is a
stronger condition than being positive semi-definite, and thus a completely positive
M (p,q) immediately implies Symmetry. We will momentarily see that it also im-
plies Reinforcement. There is an extensive literature characterizing the properties
of completely positive matrices see, e.g., Berman and Shaked-Monderer [2003]. In
particular we will make use of the easily-shown facts that diagonal matrices with
nonnegative diagonal entries are completely positive and that convex combinations
of completely positive matrices are completely positive (Theorem 2.2 in Berman and
Shaked-Monderer [2003]).

The next result shows that M(p,q) encodes all the restrictions implied by CIID

representations in two-period models.
Theorem 2. The following are equivalent:
1. M(p,q) is completely positive.
2. (p,q) has a Bayes-rationalizing conditionally i.i.d. model.

3. (p,q) has a Bayes-rationalizing conditionally i.i.d. model that has finite sup-
port.

To prove the result, we introduce a strengthening of complete positivity called
simplex complete positivity, and show that it is equivalent to positivity in our setting
because the entries of any M (p,q) sum up to one. An n x n matrix M is simplex

completely positive if it admits the decomposition
M =Yy m@r g 50, Ya =1, 7 e A(Y) (6)
s=1 s=1

for some integer r. It is immediate that a simplex completely positive matrix is

completely positive. When > 7", >} M;; = 1, the converse is also true.



Claim 1. If M is completely positive and 3, >.7 | Mij = 1, then M is simplex

completely positive.

The proof of the theorem uses this claim to establish the cycle of implications
(2) = (1) = (3) = (2). To show that (2) implies (1), we note that if u is a
CIID representation for (p,q), then by Lemma 2, M(p, q) is a mixture of rank-one
matrices 09T with § € A(Y). From Carathéodory’s theorem, it can be written as
a finite convex combination of them, so it is completely positive. The proof that
(1) implies (3) uses Claim 1 to infer that M is simplex completely positive so that
M(p,q) = 2., ’ySW(S)W(S)T for some 7, ... 70 e A(Y) and weights v, > 0 with
>..7s = 1. Define the discrete measure pu := >, 7s0.. By construction, this
measure has second moments SGZHJ- dp = M;;(p,q), so by Lemma 2 it is a CIID
representation with finite support. Finally, that (3) implies (2) is trivial. Note that
combining this theorem with Lemma 1 shows that if M(p, q) is completely positive,

then (p, q) satisfies Reinforcement.

Corollary 1. Let p be strictly positive. If there is a Bayes-rationalizing conditionally
i.i.d. model for (p,q) with infinite support, then the Bayes-rationalizing model is not
unique. In particular, with binary outcomes if qu) # p1, any forecast that has a
Bayes-rationalizing conditionally i.1.d. model has at least two of them.

4.2.1 Small Number of Outcomes

A second corollary of the linear algebra characterization of CIID models is that for
a small number of outcomes (n < 4), positive semidefiniteness of the matrix M (p, q)
captures all of the empirical implications of conditionally i.i.d. models. This result

provides a computationally simple and definitive test.
Corollary 2. Let n < 4. The following are equivalent:
1. (p,q) has a Bayes-rationalizing conditionally i.i.d. model.
2. M(p,q) is positive semidefinite.

The next example shows that the equivalence of (1) and (2) does not extend to

n > 4 even when (p, q) satisfies Reinforcement.

10



Example 2. Letn =5,p = (&, 55, 5535, 25). ¢ = (3,3,0,0,1), ¢@ = (3,4,1,0,0) ,¢® =

1
130
(O,i,%,}l,(]) qW = (O O,i,é,l), and q®) = (é,0,0,% %) It is immediate that (p, q)

satisfies Reinforcement and Symmetry and that

[ 1/23 1/23 0 0 1/23 |
1/23 2/23 1/23 0 0
M(p,q) =] 0 1/23 2/23 1/23 0

0 0 1/23 2/23 1/23
| 1/23 0 0 1/23 6/23 |

Crucially, M (p,q) = 23, where A is the matrix given in Example 2.4 of Berman and
Shaked-Monderer [2003]. Therefore, since the sets of positive semidefinite matrices
and completely positive matrices are both cones (see, e.g., Theorem 2.2 in Berman
and Shaked-Monderer, 2003) M (p, q) is positive semidefinite, but it is not completely

positive, so by Theorem 2 (p,q) does not admit a CIID representation.

4.3 Cycles

We can gain further insight into the CIID model by analyzing its implications for
cyclical patterns in belief updating. The direction of belief updates is determined by

the covariance structure of the latent variable 6, because

(1) EM[QJQZ] COVM(HJ‘, 91)
)= = p + —L 22 7

Thus, observing outcome i makes outcome j strictly more likely if and only if
COVM(QJ‘,HZ‘) > 0.

Definition 5. A forecast (p,q) exhibits a full cycle if, for a given ordering of out-
(4)

comes, ¢;/; > pi+1 for all i € Y, where indices are taken modulo n. This is equivalent
to Cov,,(0;11,6;) > 0 for all 4.
The components of # sum to 1, so

Oz\/ar(Zn]Gk) 2\/&1‘ )+ 2 Z Cov(0;,0;). (8)

1<i<g<n

11



This simple identity is sufficient to rule out full cycles for small n.

Proposition 1. Let n < 4. If forecast (p,q) admits a CIID representation, then it
does not exhibit a full cycle.

The simplex constraint is less binding for larger n, as the necessary negative
covariances from equation (8) can be assigned to non-adjacent pairs, leaving the

cycle covariances free to be positive.”®

Proposition 2. If n = 5, there exists a forecast (p,q) that exhibits a full cycle and
has a CIID representation.

4.4 Scaled Diagonal Dominance

Complete positivity of M is both necessary and sufficient for a Bayes-rationalizing
conditionally i.i.d. representation, but may be difficult to verify. This motivates the

search for easier-to-verify sufficient conditions for complete positivity. Here is one.

Definition 6. Forecast (p, q) satisfies scaled diagonal dominance if there are weights

se R, with > s; = 1 satisfying p; qfi) S; = Zj# Dj qz(j) s; for each i € Y.

Scaled diagonal requires the existence of positive weights such that, after rescal-
ing each outcome i by s;, the diagonal term dominates the total influence of all other
outcomes on 7. If such a reweighting exists, then M can be written as a convex com-
bination of nonnegative rank-one outer products, and hence is completely positive.

This yields the following corollary of Theorem 2:

Corollary 3. If (p,q) satisfies scaled diagonal dominance, then it admits a CIID

representation.

From a practical perspective, checking scaled diagonal dominance reduces to com-

puting the spectral radius of the row-ratio matrix and verifying that it is less than

5Tt is not a coincidence that the same critical value of n appears here as in the relation between
complete positivity and PSD: In both cases the issue is that the geometry of R™ for n > 5 is
qualitatively different (cf. Berman and Shaked-Monderer, 2003).

12



1. To see this, let M (p,q) satisfy m;;(p,q) > 0 for all i € Y. Define the row-ratio
matrix R(p,q) by

i
Rij(p,q) = { M
0, i=j

Corollary 4. Let (p,q) be such that piq(i) >0 for alli e Y. If the spectral radius of

)

R(p, q) is less than 1, then (p,q) admits a CIID representation.

Proof. The inequalities m;;(p, q)si = >;; mi;(p, ¢)s; are equivalent to s = R(p, )s.
If p(R) < 1 then
Q0
si=(-R™ = Y R1
k=0
is well defined and strictly positive. Moreover, (I — R)s = 1 implies s — Rs =1 > 0,

i.e. s > Rs, which implies that (p, q) satisfies scaled diagonal dominance.

Remark. Row diagonal dominance of M requires )| e Rij <1 for every row, i.e.
|IR|lo < 1. Since p(R) < ||R||w, the spectral condition p(R) < 1 is strictly weaker

and can hold even when some rows violate unscaled diagonal dominance.

5 Moments and Non-Uniqueness

When a two-period forecast has a CIID rationalization, it need not be unique. More-
over, uniqueness can fail in two ways: there may be CIID rationalizations with dif-
ferent support sizes, and there may be multiple CIID rationalizations with the same
support size. This follows from the fact that CIID forecasts are determined by the
first 2 moments of the latent variable 6, and many distributions can match the first
two moments while differing at higher levels. This section illustrates this point for

the case of binary outcomes and then discusses what can be said more generally.

5.1 Non-uniqueness with Binary Outcomes

Suppose there are two outcomes Y = {1,2}, and suppose forecast (p, q) has a CIID
representation g where ¢ is unknown probability that y = 1, and v = E[6?] —

13



(E[6])? > 0. Now consider a two-point prior:®

PI‘(QZQL)Z)\, PI‘(@ZQH)Zl—)\, O0<A<1,0<60,<0y<1.

Let d := 0y — 01, > 0, then 0, = p; — (1 — \)d, 0y = p; + Ad. Substituting into the

second moment implies d? = , 8o the two-point priors that match (mq, ms)

v
A1 =N
are
v v

O, =m;—(1—2X) m, O =mi + A m
for any A € (0,1) such that 0 < 0, <0y < 1.

Although there is an infinite continuum of two-point mixtures indexed by A that
reproduce the same two-period implications of any given Beta prior, these mixtures
vield different third moments E[6?] = \0% + (1 — \)6%;, and thus different predictions
once a third outcome is observed. We discuss this further in the section on more

than two periods.

5.2 Rank of M (p,q) and support of the CIID representation

This section relates the forecasts (p,q) that can be rationalized by a prior with
support of size r to the rank of the matrix M (p, q). A consequence of this relation is
that binary CIID models are characterized by the condition that rank M (p, q) = 2.

Proposition 3. If forecast (p,q) admits a CIID representation where pu has r = 2
point support then (p,q) satisfies Reinforcement and M (p,q) is completely positive
and rank M < r.

Proposition 3 is proved by establishing that if (p,q) has a CIID representation
with support r, then the complete positive rank of cpr(M (p, q)) < r. The result then
follows from the general relation cpr > rank. The next proposition uses the same
connection between the size of the support and cpr(M(p,q)), but now paired with
the general inequality cpr < rank(rank +1)/2 — 1.

SThen py = E[0], ¢\" = E[06]/E[6], ¢\¥ = E[0(1 — 0)]/E[1 — 0] and E[6] = M. + (1 — \)0y =
p1,E[62] = M2 + (1 — \)6%,.

14



Proposition 4. If forecast (p,q) satisfies Reinforcement and M (p,q) is completely
positive and has rank [, then (p,q) admits a CIID representation where i has at most

[(I1+1)/2 =1 point support.
Say that a forecast is dogmatic if p = ¢ for every i € Y.

Corollary 5. For every nondogmatic forecast (p,q) the following statements are

equivalent:

1. (p,q) admits a CIID representation where u has a binary support;

2. (p,q) satisfies Reinforcement and M (p,q) is completely positive and has rank
2.

Proof. It immediately follows Propositions 3 and 4 and the observation that rank M (p, q) =
1 for a dogmatic (p, q). O

Example 3 (A CIID model with support > rank M). Let 6 € [0,1] denote the
Bernoulli success probability for outcome 1, and suppose the prior over 6 has support
(QL,QM,QH).' Pr(@ = 9L> = %,PI‘(Q = GM) = %,PI(Q = 9H> = %, with QL = %,QM =
$.0p=2% andp, = E[f] = ;-2 +3-3+1-2=13 ThenE[¢0?] = 1(3) +3(3) +
H(¢) =1 ml00 - 0) = 2

9 72° 72°

o _E[fQ1-60)] 17/72 17

TR -6 T 12 360
and q§1) = %. Thus the implied second-period conditional forecasts satisfy Reinforce-
ment, and
b1dipn (1 - pl)Q1|0 % %
M(p,q) = = v 1
pl(l - CI1|1) (1 - pl)(l - Q1|0) ]

15 symmetric, entrywise nonnegative, and has rank 2 < supp pu.

6 Belief in Persistence or Reversal

We next apply our linear algebra characterization of CIID models to show that in

the two-period setting, it is impossible to distinguish between an agent who has a

15



CIID model of the world and one who instead perceives persistence of the outcome

process, a form of overreaction to the realized outcome.

Definition 7. (p,q) has a persistent Bayesian representation is there exists ¢
{gM,...,g"™)} such that (p,q) has a CIID representation and there is an « € (0,1)
such that

¢ =ae; + (1 -a)§? Vie{l,.., N}, 9)

where e; is the unit vector corresponding to a point mass on the i-th outcome.

An agent whose forecasts have a persistent Bayesian representation, while in
reality facing an i.i.d. environment, displays what has been called the hot-hand

fallacy in the line of work pioneered by Gilovich, Vallone, and Tversky [1985].

Definition 8. (p,q) has a reversing Bayesian representation is there exists ¢ =
{gW, ...,¢™} such that (p,q) has a CIID representation and there is an a € (0,1)
such that

¢ =ae; +(1—a)g?  Vie{l,. N} (10)

Having a reversing Bayesian representation when facing an i.i.d. environment
corresponds to the gambler’s fallacy, Tversky and Kahneman [1971].

Note that the only difference between these two definitions is that the roles of ¢
and ¢ are flipped, and that they both require that « is strictly between 0 and 1.7

Finally, note that equation (10) can be rewritten as

¢ a ¢; = ¢
1-a) (1-a)" ’

so that (p, ¢) has a reversing Bayesian representation if it can be derived from a CIID
model that is modified so that after each outcome i, all outcomes j # i receive a
multiplicative boost of 1/(1—«) to their probability, with the probability of outcome

¢ decreasing accordingly.

"If we allowed o = 0 in the definitions, every CIID representation would have both persistent
and reversing Bayesian representations. Allowing a = 1 in the persistent Bayesian representation
would not change it, while allowing it in the reversing representation would make it trivially satisfied
by every forecast.
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Proposition 5. If (p,q) has a persistent Bayesian representation then (p,q) has a
CIID representation.

Proof. Denote as m;; the arbitrary entry of M (p,q) and m;; as the arbitrary entry
of M (p,q) where q and ¢ are related as in equation (9). Then
e dD o (Al (1—a) D) = anl 4+ (1 — o) s
mij = Pjd; pj(alio; + (1 —a)g; ap;li—j + (1 — a)
Therefore M (p,q) = aD + (1 —a) M (p,§) where D is the diagonal matrix with
d;; = p;. By Example 2.1 in Berman and Shaked-Monderer [2003] D is completely
positive. By our Theorem 2, M (p, §) is also completely positive. By Theorem 2.2 of

Berman and Shaked-Monderer [2003], M (p, q) is also completely positive. Therefore
(p, q) has a CIID representation by our Theorem 2. O

Thus (in the two-period case of this section), a belief that outcomes are somewhat
persistent (i.e., positively correlated) is not distinguishable from a CIID model.

It is easy to see that the converse need not be true: If n = 2 and p = ¢V =
q¢? = (1/2,1/2), then (p,q) admits a CIID representation with a dogmatic ratio-
nalizing belief j1 = 0(1/21/2). However, any persistent Bayesian representation (9)
would require the associated CIID representation to have qgl) < p1, a violation of
Reinforcement, which is not possible by Lemma 1. For the same reason, unlike the
persistent Bayesian representation, some form of reversing Bayesian representation

can be spotted from the agent’s forecast.®

Proposition 6. Let (p,q) be a forecast such that qZ@ <1 for alli. If (p,q) has a

CIID representation, then (p,q) has a reversing Bayesian representation.

(4)

i -

Proof. Suppose first that ql@ < lforallie {1,..,N}. Define « = 1-max;eq1,. N} ¢
Let ¢ = ae; + (1 — a)q®W. Then (p,q) satisfies Reinforcement. By Theorem 2,
M (p, q) is completely positive. Observe that M (p,§) = aD + (1 —a)M(p, q), where
D is the diagonal matrix with d; = p;. Since D is completely positive by Exam-
ple 2.1 of Berman and Shaked-Monderer [2003], M (p, ¢) is a convex combination of

8This can also be shown directly: Let (p,q) be the CIID representation derived from the dog-
matic belief © = §(1/2,1/2) and set ¢ = 1/2e_; +1/2G. Then (p,q) has a reversing Bayesian rep-
resentation, but it violates Reinforcement, so it does not admit a CIID representation by Lemma
1.

17



completely positive matrices, so by Theorem 2.2 of Berman and Shaked-Monderer
[2003] it is also completely positive. Therefore, (p,§) has a CIID representation by

our Theorem 2, so (p, ¢) has a reversing Bayesian representation. O

We conclude this section by discussing a different perturbation of the CIID model
that can be detected using outcome forecasts, namely, when the agent believes in
a CIID model, but also that the first period observation is a noisy (i.e., garbled)
version of the realized outcome. This departure from a belief in a CIID model can be
detected, even in the particular case of binary outcomes and belief in arbitrarily small
garblings. Indeed, forecasts obtained from these models will typically fail Symmetry

unless overall the environment is symmetric, as otherwise in general piq](-i) # piq§j )

where the tilde denotes the garbled realization of the outcome.’

7 CIID Models for More than Two periods

When the analyst has elicited one-period-ahead forecasts over a longer time horizon
T, the CIID representation imposes additional constraints. This means that fewer
forecasts will have CIID representations, and those that do will have fewer of them.
This section characterizes the additional implications that can be extracted when we
observe forecasts over more than two dates.

First, in the binary case, observing one-step-ahead forecasts up to horizon T
identifies the first 7" moments of the latent Bernoulli parameter . The forecasts
after histories with many ones correspond to higher-order moments of . We use
this to connect to the truncated Hausdorff moment problem, and thus show that the
existence of a CIID representation is equivalent to a finite collection of simple sign
conditions on forward differences of these moments. This yields an exact and easily
checked characterization of CIID models in terms of observable forecasts. At the
same time, the truncation point 7" determines how tightly the prior is pinned down:
with 7" odd, the minimal-support rationalization is unique, whereas with T' even

there is a one-dimensional family of distinct minimal-support priors that generate

9For a concrete example, suppose that the agent believes that it is equally likely that the
outcome is 1 with probability 1/5 or 3/4. Moreover, they believe that the garbling changes each
outcome into the other with probability €. Easy computations show that Symmetry fails.
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the same finite sequence of forecasts.

Similarly, in the multinomial case, forecasts over more than two periods deliver
information about higher-order joint probabilities of outcomes and thus about higher-
order moments of the latent . The relevant objects are the sequence of moment
tensors { M ®)}, <1 associated with the joint distributions of (Y1, ...,Y%) and with the
multinomial count moments. Theorem 4 shows that a forecast system up to horizon
T has a CIID representation if and only if these tensors are simplex completely
positive and satisfy the natural marginal consistency identities; the matrix test based
on complete positivity of M(p,q) is the special case T' = 2.

Multiple periods allow us to discriminate between misspecified models that are
observationally indistinguishable in two-period data. For example, in the two-period
setting, we showed that an agent who believes in spurious persistence (a hot-hand
bias implemented by shifting probability weight toward the most recent outcome)
cannot be distinguished from a CIID learner: such a perturbation preserves complete
positivity of M (p, q). Once we observe forecasts over longer histories, this invariance
breaks down. The additional restrictions imposed by higher-order moments can rule
out persistent or reversing updating rules that would otherwise pass all two-period
tests.

Finally, the multi-period perspective clarifies the relationship between finite-
horizon CIID tests and the infinite-horizon exchangeability results of de Finetti [1937]
and Hewitt and Savage [1955]. For each fixed horizon T', our characterization identi-
fies the precise moment conditions on the latent 6 that are implied by CIID models
and shows that they can be expressed as complete positivity of the associated mo-
ment tensors. As T grows, these conditions become tighter and, in the limit they
converge to the full set of exchangeability restrictions. Thus, additional periods buy
both sharper falsifiability of the CIID benchmark and sharper identification of the

underlying prior when the benchmark is not rejected.

7.1 Necessary Conditions for 7" > 2

Fix an horizon T > 2. For t > 0, a history of length ¢ is hy = (y1,...,y;) € V', with @
denoting the empty history (¢t = 0). Define the count map v by v;(h) = Z"il 1y, =

S

i},1 €Y, write e; for the ith unit vector, and note that when outcome i is observed
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v((h,i)) =v(h) + e;.

For any history h = (y1,...,y) € Y* with t < T, let ¢") € A(Y) denote the
elicited one-step—ahead forecast of the period-(t+1) outcome. A CIID representation
has three immediate, easily-tested implications,

First, it must depend only on the count; this was vacuously true in the two-period

setting.

Definition 9 (Count sufficiency). Forecast {¢)}},|<r satisfies count sufficiency if
for any t and hy, b} such that v(h;) = v(h;) we have

") = g = ), (11)

Next, there are two easily testable implications that generalize the necessary

Symmetry and Reinforcement conditions for 7" = 2:

Definition 10 (Pairwise exchangeability). Forecast {¢\")}, <7 satisfies pairwise ex-

changeability if for every node v with |v| < T —2and alli # je Y,

qz(z/) q§u+ei) _ qj(z/) Q§V+e'j)- (12)

Note that repeated applications of these pairwise conditions show that pairwise

exchangeability is equivalent to exchangeability.

Definition 11 (Reinforcement). Forecast {¢")},|<r satisfies Reinforcement if for

every node v with [v| < T —2and allie Y,

qi(u-‘rei) > ql(l/) (13)

The final condition is the martingale property of beliefs. Like count sufficiency,

this condition only has bite when there are more than two periods.

Definition 12 (Martingale property). Forecast {¢")}, < satisfies the Martingale
property if for every node v with |v| < T — 2,

g = Y g g, (14)
JjeYy
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Lemma 3. If {¢")} <7 is induced by a CIID model, then (11), (12), (13), and (14)
all hold.

Example 4 (Martingale restriction in three periods). Consider the binary case Y =
{1,2} and forecasts up to horizon T = 3. Suppose the forecaster reports the following

one—step—ahead beliefs:

) 1,1 4 '),1
q(o 0) 1 , ( ) , q( ) ,
2,2 2 0,2

Up to horizon T = 2, these forecasts are compatible with a CIID model. Indeed,

the period—1 forecasts coincide with those generated by a Beta prior with parameters

(Oé,ﬁ) = (%’ %)

gOY = @ _1
’ ! a+p+1 %

q(o’o) _ « 1 q(l’l) _ a+1 _
! a+p ¥ ! a+pB+1

(SIS

so all two—period tests based on M (p,q) are passed.
Once we elicit forecasts after two outcomes, the martingale condition (14) imposes
additional restrictions. For instance, at the node with one success and no failures,

v = (1,0), the martingale condition requires

1,1 1,1 2,2 1,1 1,2
that is,
4 4 (272) 1 (172)
550 tTsa

Under the reported forecasts,

(SN

vSs

(SN
[P
+
ot
ol
|
Sl
_l_
=l
|
g
=)

so the equality fails.

Intuitively, after seeing outcome 1 once, the forecaster assigns probability qgl’l) =

21



% to a further success. If the process were CIID, their current belief% would equal the
expected value of their belief after the second period, averaging over the two possible
second outcomes using her own current beliefs as weights. In this example, on average
the forecaster expects to end up with a different belief than they currently hold. This
wolates the martingale property and therefore rules out any CIID representation on
horizon T = 3, even though the forecasts up to T' = 2 admit a CIID rationalization.
This pattern can be interpreted as an overreaction to the first success or failure: the
forecaster uses a simple rule that maps the empirical frequency of outcome 1 into a
forecast, but this rule cannot arise from conditioning on a fixed latent 0, because it

breaks the martingale restriction.

7.2 Binary Outcomes and More than Two Periods

The problem is particularly tractable in the case of binary outcomes, so we will start
with that. Let Y = {1,2}. Fort < T and j € {0,...,t}, write ¢U") := qY/) where
v has j ones and t — j zeros. The multinomial conditions reduce to the following

simple, testable restrictions.

Lemma 4 (Binary necessary conditions for T' > 2). For every node (j,t) with 0 <
j<t<T—2:
q(j,t) (1 _ q(j+1,t+1)) — (1 _ q(j,t)) q(jﬂ‘ﬂrl)’ (15)

gt < qUFLtD) (16)

Remark. There are only two equations here instead of four because notation here
imposes count sufficiency, and with binary outcomes the symmetry condition is equiv-

alent to the martingale condition.

7.2.1 Necessary and Sufficient Condition when |Y| = 2

In the binary-outcome case, we can work with a one-dimensional latent state 6 where
E,(0) = p1 The following lemma shows that the moments m, = E[#"] are identified

by the forecasts after observing a history of only successes (outcome “17).

Lemma 5 (Identification of Moments from Forecasts). Suppose |Y| = 2 and that a

CIID representation exists for a sequence of one-step-ahead forecasts up to horizon
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T. For each ke {l,...,T —1}, let g}, be the one-step-ahead forecast for outcome 1

after observing k consecutive 1s:

plz]P)(Xlzl), qz+1=P(Xk+1=1|X1==Xk=1)
These forecasts uniquely identify the moments {my,...,mr} of the latent variable
6 € [0, 1] via the recursive formula mqy = py, mps1 = mg - 5, for ke {l,...,T —1}.

This result shows that, given the forecasts, we can construct a unique candidate
sequence of moments {m,}?_,. The remaining task, addressed by Lemma 6, is to
determine whether this sequence of numbers could have been generated by a valid
probability measure on [0,1]. This is precisely the truncated Hausdorff moment
problem.

For integers a,b > 0, define the mixed moments m,y := ]E[@“(l — G)b]. For any
history with j realizations of 1 and ¢t — j realizations of 2, the condition for the

one—step forecasts to be consistent with the given mixed moments is

g0 = Tathtng ey T 1),V e {1, .8, (17)
My, t—j

where the condition is deemed satisfied whenever the denominator is equal to 0. Also

define forward differences Am,. := m, ;1 —m, and A5 im, := A(A%m,.).

Lemma 6 (Moment characterization of Binary CIID). Suppose |Y| = 2, and let
mo, ..., mr € R be the moments implied by a forecast system (p,q). The following

are equivalent.

(1) There exists a probability measure v on [0,1] and 0 ~ w such that the forecasts

admit a CIID representation up to horizon T.

(11) Equation (17) is satisfied and the Hausdor(f truncated moment conditions
(=1)°*A°m, = 0 for all integers r,s = 0 withr +s <T (18)

hold.

The alternating sign pattern of the forward differences A®*m, in equation (18)

captures the requirement that m, can be written as Sé x"dp(x) for some probability
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measure p on [0, 1]. Thus, in the binary setting, when forecasts satisfy equation (17),
checking for the existence of a CIID representation reduces to verifying these finite
collections of inequalities on forward differences.

Combining Lemmas 5 and 6 yields the following theorem.

Theorem 3. When |Y| = 2, a sequence of one-period forecasts up to period T' has a
CIID representation if and only if they satisfy equations (17) and (18).

7.2.2 Parity

A striking feature is a parity effect: when we observe an odd number of moments,
the minimal-support prior is unique; with an even number, there is a continuum of

minimal-support priors.

Proposition 7 (Parity effect for binary CIID representations). Suppose |Y| =2 and
that a sequence of one-step-ahead forecasts up to horizon T admits a CIID represen-
tation, with associated moment sequence {m,}I_, that strictly satisfy the Hausdorff

moment inequalities.

1. If T =2k —1 is odd, then there is a unique CIID representation whose prior j
has support of size k, and no CIID representation exists with support strictly

smaller than k.

2. If T = 2k is even, then there is no CIID representation whose prior has support
of size at most k. Moreover, the set of CIID representations with minimal

support k + 1 is a one-dimensional family of distinct priors.

The proof of this result is in Appendix A.13. If T = 2k—1 is odd and the Hausdorff
moment inequalities hold strictly, then there is a unique CIID representation whose
prior has support of size k, and no representation with smaller support exists. By
contrast, if T" = 2k is even, then (under the same nondegeneracy condition) there is no
CIID representation with support of size k, and the set of CIID representations with
minimal support k + 1 is a one-dimensional family of distinct priors. For example,
when we observe three moments (7" = 3), the minimal-support CIID prior is unique

and has support on two points. By contrast, with four observed moments (7' = 4),
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under the same nondegeneracy conditions there is a one—dimensional continuum of
distinct three—point priors that all generate the same finite sequence of forecasts.
Intuitively, this “parity effect” comes from counting dimensions in the truncated
moment problem: a k—point prior on [0,1] has 2k — 1 free parameters (support
locations and probabilities), so T' = 2k — 1 moments can pin it down uniquely, while

T = 2k moments does not pin down the 2k + 1 parameters of a (k + 1)—point prior.

7.3 Many Outcomes and Many Periods
7.3.1 Necessary Conditions

When there are n > 2 outcomes and horizon 7" > 1, there are additional necessary
conditions beyond those in Section 7.1. For a count vector v = (vy,...,1,) € N”
with |v] := Y. v; < T, and a CIID model p, write

0" = neiyi7 m, = EH[OV]v VO = (61,...,0,) € A(Y).

€Y

In a CIID model p, the forecasts depend only on v, and

¢ = E[6;|v] = D ey, || <T
m

Moreover, the moment sequence {m,} must satisfy the linear consistency identities
that

Z My ye, = My forall v| < T —1.

JjeYy

This ensures that 3., q§”) = 1, for every count vector v.!? Define coordinate forward

differences on the moment array by

(Aym), = Myte, — My, AP = HAfi (B e N™).

€Y

OFix k > 2 and any multi-index v = (v;);ey with || = k — 1. By definition, m, = ]E{HieY 9;’1]
and my e, = F0; [],cy 07| for each j € Y. Hence

;/mmj IOXONGE E{gg;i] -

Jjey €Y
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The forward-difference operators A?m and the identities in the next lemma capture
the two requirements that appeared in the binary case: (i) the existence of a non-
negative representing measure on the simplex, and (ii) the constraint that >} 6, = 1
almost surely. The inequalities (—1)!%/(A%m), > 0 ensure that all mixed monomials
0" [1,(1 —6:)% have nonnegative expectation, while the consistency requirements en-
sure that the moments respect the simplex normalization. Together, these conditions

are necessary for a CIID representation.

Lemma 7 (Necessary conditions for multinomial CIID representation up to horizon
T). If there exists a probability measure on A(Y) with moments {m,},<r (hence
forecasts ql@ = Myye;/Mw), then for all v, € N™ with |v| + |B| < T the following
hold.

(a)
(—1)# (APm), = E[(H@) (Hu—e,-)ﬁf)] > 0.

€Y

(b) Simplex normalization (linear consistency across degrees): for every b €

{1,...,7 — |v|},
3 (5) mes = fr(Za)] =

|8|=b i€y

in particular Y,y Myte, = My
(¢c) Zeroth-degree normalization: mg = E[1] = 1 (equivalently, Y., me, = 1).

Remarks. 1) For n = 2 this reduces to the binary conditions: m;, = E[67(1 — 6)°],
¢ = mj.14/mj,, and (=1)*APmyj) = 0. 2) Unlike with binary outcomes, the
Hausdorff inequalities are not sufficient here. For example, the necessary conditions
above are satisfied by the forecast system in Example 1, which does not have a
CIID representation. As the number of periods T' grows, the necessary conditions
in Proposition 7 become tighter, but (we conjecture that) they are only sufficient in

the limit 7' — 0.

7.3.2 Tensor characterization

For binary outcomes, the key objects were the power moments m, = E[0"]. For gen-

eral outcomes, the observable counterparts are the order-k sequence tensors defined
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from joint probabilities of the data. Under a CIID representation, these coincide with
the k-th moment tensors of the latent #. Our main multi-period result shows that
CIID rationalizability is equivalent to each of these tensors being simplex completely
positive, together with a natural consistency condition implied by the law of total

probability.

Definition 13 (Sequence and Count Tensors). For a given stochastic process (X;)_,
and k € {1,...,T}, the order-k sequence tensor T™*) is defined by its components:
T, = P(Xi=i1,..., Xp = i) for (ir,...,0x) € V"

If a CIID representation with latent variable 8 € A(Y) drawn from a measure pu

exists, these components are the moments of the outer product of 6:

k
™. = B[] ]0]
=1
Under the CIID hypothesis, we will refer to T®) = E,[0%*] as the moment tensor
M®) | with entries M( = E[[]r, 6]
The forecasts prov1ded by an agent are the one-step-ahead conditional probabil-
ities. If these forecasts depend only on the counts of past outcomes, as they must in

a CIID model, we can express them directly in terms of the count moments.

Definition 14 (Simplex Completely Positive Tensors). A symmetric order-k tensor

S with components S; is simplex completely positive (SCP) if it can be written as

1Tk
a convex combination of rank-one tensors generated by vectors in the simplex. That

is, there exist r € N, weights v, > 0 with Y.;_, v, = 1, and points 7() € A(Y) such

that
Z1 g Z Ve H 7sz
Also, for each k € {1,...,T}, define the order-k count moment tensor M®) by
M® = m, for all v with |v| = k.

This can be viewed as symmetric tensor on Y* with entries Mz(1 )zk = My(iy,in)s

27



where v(iq, . .., 1) is the count vector of the multi-index (i1, . .., ;). When expressed
using count moments {1, }},|— corresponding to the symmetric tensor S, this is

equivalent to:

m, = Z")/g (7)" (for all |v| = k).
=1

The main result of this section generalizes the CIID characterization of Theorem

2 to more than two periods.

Theorem 4. The forecast system (p,q) has a CIID representation if and only if the

associated count moment tensors {M¥)}I_ are simplex completely positive.

A key step of the proof is Lemma B.1, which is another version of the truncated
moment problem on the simplex. The Lemma gives two properties of the moment
tensor that are necessary and sufficient for there to be a probability distribution
over # € A(Y) whose moments up to order T are (m,). The hard direction is
showing these conditions are enough to reconstruct a measure y. The proof builds
a linear functional L that “pretends” to be integration against p: L(6") = m,. The
consistency identities imply L treats the sum S(6) = >, 0; as if it were the constant
1, mimicking the fact that S = 1 on the simplex. The simplex-complete-positivity
of the order-T" tensor then forces L(p) = 0 for any polynomial p that is nonnegative
on the simplex. With this positivity in hand, a separating-hyperplane/convex-hull
argument shows the vector m = (m,,) must lie in the convex hull of “moment vectors”
(0) coming from actual points # € A(Y). That means m can be written as a finite
mixture of such pointwise moment vectors, which is exactly the same as saying there

exists a probability measure g on A(Y) with those moments.

8 Discussion

This paper characterizes when a sequence of one-step-ahead forecasts is consistent
with a CIID model. For the two-period, binary-outcome case, the conditions are
simple and intuitive: Symmetry and Reinforcement. For more outcomes, these con-
ditions are necessary but not sufficient; the key object becomes the second-moment

matrix M (p,q), which must be completely positive. For more periods, the entire
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hierarchy of moment tensors must be simplex completely positive and satisfy linear
consistency identities.

These results provide a clear, operational way to test whether observed forecast-
ing behavior can be explained by a classic model of learning about a stable, unknown
environment. For example, forecasts where outcome 7 is most reinforced after out-
come j and vice versa, as in Example 1, can be immediately flagged as non-Bayesian
in this sense. More generally, any failure of complete positivity (or, in the n < 4
case, positive semidefiniteness) is a definitive sign that the agent’s updating rule is
inconsistent with any CIID representation.

Conversely, our results on persistence show the limits of what one-step-ahead
forecasts can reveal. An agent who believes in spurious positive autocorrelation
(persistence) will generate forecasts that are indistinguishable from CIID models.
This is because adding persistence to a CIID model preserves the complete positivity
of the moment structures. Detecting such biases would require richer data, such as
eliciting multi-step-ahead forecasts or beliefs about the underlying data-generating
process itself.

The connection to the truncated moment problem in the multi-period binary case
shows that observing an odd number of moments identifies a unique minimal-support
prior can be identified, while an even number of moments leaves some indeterminacy.
This has direct implications for applied work attempting to estimate belief structures

from observed forecasts.
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A Appendix

A.1 Proof of Theorem 1

Proof. Lemma 1 shows that Symmetry and Reinforcement are necessary. To show

they are sufficient, suppose forecast (p, q) satisfies Symmetry and Reinforcement.

Casea Ifl1>p > q§2) > (), consider a Beta distribution with parameters given

by equation (4). The implied probability of outcome 1 in the first period is then is

(2)
P1q
- ( 5) a p11—;§2) ple)
P, p) = =T @ = 2 2 =P
atf o mad a0 g 4 g (1 py)
pP1—qy pP1—qy
as desired.
The period-2 forecast probabilities are
~(1) a+1 ~(2) (0%
a, )= ——, = ——— and
G (o, B) e R M
p1q§?))
~(2 o —q; 2 :
q§ )(04,6) = ot Bl = plp;h = q§ ), as desired.
1—¢%)
(2) (2) e))
Note that q~§1)(a,ﬁ) = O‘Tlgﬁ?)(aﬁ% SR N R U SR R A T
@), 2 pra P
atl _ i TR=h - Thus
P14y
(2) (2
~(1 P1q;” +p1—q 2 2
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Symmetry implies that p;(1 — q%l)) =(1- pl)qf), SO

0’ =" + 1= 4" /p1 = " (0, 8),

which completes the proof for case a).

Case b If p; = q£2), Symmetry implies that py = qél). So specifying that u is a
point mass on 6 = (py, p2) recovers the specified (p, q).

Case ¢ If p; # q§2) and qf) = 0, then by Symmetry qél) = 0. Then specifying
p = p101 + (1 — p1)ds recovers the specified (p, q).

Case d If p; = 1, then by Reinforcement qgl) = 1. Therefore, specifying that p is
a point mass on 6 = (1,0) recovers the specified (p, q). ]

A.2 Proof of Lemma 2

Proof. Only if. Observe that by equations (1) and (3) if u € A(A(Y)) is a CIID
representation for (p,q) then for all 7,j € Y

mij(ps q) = J

A(Y

0,0,
N N J 0 e - J 0,0:dpu(0)
L(Y) ! A(Y) SA(Y) 0;dp(0) A(Y) ’
if p; # 0 and m;j(p,q) =0 = SA(Y) 6;0;dp(8) if p; = 0.
If. Suppose that there exists a € A(A(Y)) such that equation (5) is satisfied.
Then

N, DN ~ ”J ~ - B
) Z Z i(p.q) ;M) dpu(6) M); du0) = | Bidu(6)

()

0su6) | 0idu(ol)
) A(Y) (19)

Moreover, if p; # 0

o mi(pa)  Sapy 0i0idu(0) 0-du(6)i
Dj SA(Y) dp(0) A(Y)

so p is a CIID model for (p,q) with p(-|j) defined as ¢, for those j such that p; = 0.
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A.3 Proof of Claim 1

Proof. Suppose that M is completely positive, so there exist (7‘?(5))521 e (R™)* such
that

For each s, let

s=1 s=1 s=1
Moreover,
n k k
Z M;; = Z s Z 7%1‘(5) A](S) = Z ’757738);
i=1 s=1 i=1 s=1
SO

Thus le“:l vs = 1 and M;; = Zle fysfrfs)ﬁf) is a simplex completely positive repre-

sentation, which proves the claim. O

A.4 Proof of Theorem 2

Proof. (2) = (1). By Lemma 2, there is p € A(A(Y")) with m;;(p, q) = SA(Y) 6;0;dp(6)

T

for every i,7 € Y. Since A(Y) is compact and 7 — w7 ' is continuous,

M(p,q) € convi{rn' :me AY)}.
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By Carathéodory’s theorem (see Aliprantis and Border, 2013, Theorem 5.32 with

dimension 7 = in(n + 1)), we can write

r+1 r+1
M(p,q) = 2 Vs W(S)W(S)T, where all v, > 0, Z v, =1, and all 7 € A(Y)  (20)
s=1 s=1

establishing complete positivity.

(1) = (3). By Claim 1, M(p,q) is simplex completely positive. Given M =
Z Vs W(S)W(S)T, define the discrete measure p(0) = > _| v 0.+ (0). Then
s=1

O (s ()
Wiﬂj/l(dﬂ) = Vs T T = My,
L(Y) Zi !

establishing that m;;(p, ¢) = SA(Y) 0,0;dp(0) for every i, j € {1,...,n}.
(3) = (2). Trivial. O

A.5 Proof of Corollary 1

Proof. The first part of the statement follows from Theorem 2, which shows (p, q)
has a Bayes-rationalizing conditionally i.i.d. model with finite support. For the
second part, suppose by contradiction that (p, q) has a unique CIID model. By the
first part, it must have finite support. By Lemma 1 (p,q) satisfies Symmetry and
Reinforcement, so the proof of Theorem 1 implies there is a CIID model with a Beta
distribution. ]

A.6 Proof of Corollary 2

Proof. Theorem 2 shows that (1) is equivalent to M (p, ¢) being completely positive.
That (1) = (2) then follows from the immediate fact that a completely positive matrix
is positive semidefinite. That (2) implies a completely positive M(p, q) follows from
the fact that when n < 4, every positive semidefinite matrix with non-negative
entries is completely positive. (See Diananda [1962] or Theorem 2.4 in Berman and
Shaked-Monderer [2003].) O
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A.7 Proof of Proposition 1

Proof. A full cycle requires Cov,(6;41,6;) > 0 for all i along the cycle.

Case n=2: From Lemma 1, (p,q) satisfies Reinforcement, which in the binary
()

outcome case immediately rules out ¢;”’ > ¢ for ¢ # j.

Case n=3: From equation (8):
Var(60;) + Var(6,) + Var(03) + 2 (Cov(6y,02) + Cov(fs,05) + Cov(#3,6;)) = 0.

Since variances are non-negative, if all three covariances were strictly positive, the
left-hand side would be strictly positive, a contradiction. So at least one of the cycle
covariances must be non-positive, and a full cycle cannot occur.

Case n=4: The sum of the four edge covariances is

COV(Ql7 02) + COV(GQ, 03) + COV(eg, 04) + COV(84, 91)
= COV(t91 + 63,0, + 04) = Cov(81 + 05,1 — (91 + 93)) = —Var(91 + 93) < 0.

A full 4-cycle is therefore impossible. ]

A.8 Proof of Proposition 2

Proof. Fix n > 5. Choose numbers H, L with 0 < L < H < 1 satisfying
2H+ (n—2)L = 1. (21)
For r € Y define ™ e A(Y) by

H, ke{r, r+1mod n},

L, otherwise.

Let z be the uniform distribution on {#(), ... (™}, By equation (21),

:2H—|—(n—2)L:1 for all j €Y,

p; = Eu[0;] " -

so the period-1 forecast is uniform.
Fix i € Y. Across the n support points, the pair (0;,60;,1) takes values (H, H)
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once, (H, L) and (L, H) once each, and (L, L) the remaining n — 3 times. Hence
1

E,[0:0::1] = —<H2 VY 2HL + (n— 3)L2), E.[0:] = .
n
Therefore, by equation (7),

@ Eu[0:0;41] 72 2
= T o 2HL —3)L".
qiv1 E#[QZ] + + (n )
We need ¢\, > piy1 = 1/n. Define f,(L) := H(L)2 + 2H(L)L + (n — 3)L2, where
H(L):= % A direct calculation gives
1 n—4 n(n —4)

fn(L>:Z_ 92 L+ 4

For n = 5, we have f,(0) = 1/4 > 1/n. By continuity of f,,(L), there exists ¢ > 0
such that f,,(L) > 1/n for all L € (0,¢). Picking such an L and setting H by equation
(21) yields q(;)rl > 1/n = p,;41 for every i, which constitutes a full cycle. O

L2 so fn(0) = —.

A.9 Proof of Corollary 3

Proof. By assumption there is a positive diagonal matrix D = diag(sy, ..., s,) with

s € R%, such that

(DM(p,q)D)ii = Y (DM(p,q)D);;  Vie{l,..,n}.
Jj#i

Therefore A := DM (p,q)D is symmetric, nonnegative, and diagonally dominant,
hence it is completely positive by Theorem 2.5 in Berman and Shaked-Monderer
[2003]. As a consequence, it can be written as A = Y, _, apu® (u®)T for some
aeRE (u)r_ e (R")F. Conjugating by D! yields

M(p.g) = DTMAD™ = D (D7) (D7)
k

which is a sum of nonnegative rank-one outer products. Hence M(p, ¢) is completely

positive. With this, (p, ¢) admits a CIID representation by Theorem 2. ]
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A.10 Proof of Proposition 3

Proof. By Theorem 2, (p,q) satisfies Reinforcement and M (p,q) is completely
positive. Denote as (0 (1),...,0 (r)) the elements of the support of p, and define
¢ (1) = (0 (3)). Define the vectors f; € R™ by

o= (VO(1), Vo 10 (1)

Let M;; = {fi, f;). By construction,

= SR (k) (G R () = 3 6 (k) 65 (k) 0 ().
k=1 k=1

Also, Bayes rule in the CIID model with prior p gives

22 1¢> )< 70 (8) (22)

and
M (p.q); = pigy” = D, 6 (k)6 (k) g = 36 (k) 6: (k) 6; () = My,

where the third equality follows from equation (22).
Therefore, the CP-rank of M is no more than r and by Proposition 3.2 in Berman
and Plemmons [1994], rank M < cprM. O

A.11 Proof of Proposition 4

Proof. Since M (p, q) is completely positive, M;; (p,q) = {fi, f;yand f; = (z (1), ...,2 (1))
with z; (j) = 0, for all i € {1, ...,n}. Moreover, by Theorem 3.5 in Berman and Plem-
mons [1994], we can pick these f such that r <I(l +1)/2 — 1, and it is without loss

of generality to have >, z; (k) > 0 for all k € {1,...,r}.!! Let

&:Z@w

1 To see this, let f be the r — 1 dimensional vector with entries equal to f except for not having

entry k. We have M;; (p,q) = {fi, [;)02_; zi(Da;(l) = Zl;k zi(l)z;(l) = <ﬂ,fj>, showing that
the zero entry k could be directly omitted to begin With.
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Wehave >3, - M (p,q);; = >3;p; = 1. Wealsohave 3}, . M (p,q);; = 25 ; >y i (k)
(27 ( N, %’J( )) = 2=y SE- Thus 35, 5;3 =1
Define ¢ (k) = SZ. Since Sy > 0 and >, _, S7 = 1, we have ¢ (k) € (0,1). Define

0 (k) = = Vke{l,..,r}.

Since Y., x; (k) = Sk, both 0 (k) are probability vectors in A"~!. Since the vectors
(x(1),...,x(r)) are linearly independent, (6 (1),...,0 (1)) are distinct. We now check
that the CIID model with prior y supported on (0 (1), ...,0 (r)) and with p (0 (k)) =

¢ (k) induces (p, q).
We also have:

pj = Z M;; = Z;x (k) z; (k) = k;xj (k:)zi:xi (k) = k;xj (k) Sk
- Z (1) /3 TF) - ,ggj () /BTG TF) = éej ()6 ().
Identity (ii) holds by construction:
My (prg Z zm@ () (/8 10 (1)) = gm 0, (k)6 (k).
Therefore, 7 7 7
q](i):Mij(paq)_221 (k) 0; Z“ )

Di a Zkl()

proving that (p, q) is represented by the CIID model with prior u.

A.12 Proof of Lemma 3

Proof. We will show that the four stated properties hold. Throughout the proof,

we consider an arbitrary count vector v with |v| < T —2 and let t = |v|.

(1) Count sufficiency
Let h; and h} be two histories of the same length t with the same count vector v.
The likelihood of observing h; given 6 is L(h; | 6) = [ [} 6"'") and the likelihood

i=1"1
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of hy is L(h, | 0) = T1.—, 67" Since h, and ] have the same count vector, v(h;) =
v(h}), and so L(h; | ) = L(h} | §) for all # Hence the posteriors coincide and this
implies the forecasts do too. This proves count sufficiency.

(2) Pairwise exchangeability.

Using count sufficiency, qj(-wrei) = Pr(Y,o = j | Y41 = i,v), where ¢; is the unit

vector with 1 in component i and 0 elsewhere. Therefore
0\ ") = Pr(Yiey = i | v) Pr(Yiwa = j | Yoo = i,v) = Pr(Yigy = i, Yiso = j | 1),

) = Pr(Yipr = 4, Y = i | v).

Similarly, qj(y) q

Given 6, the sequence after time t is i.i.d. with
Pr(Yip1 =14,Yipo =7 | 0,v) = 0i0; = 0,0; = Pr(Yi1 = j, Yiea =i | 0,v).
Integrating with respect to the posterior yields

PF(YZH =1,Y 0= | V) = PT(YtH =J, Y2 =1 | V)~

Combining with the expressions above gives ¢\ qj(-wrei) = j(”) qi(wrej ) 5o pairwise

exchangeability holds.

(3) Reinforcement.

From count sufficiency

PT(Yt-H =1,Y40 =1 | V)

-(VJrei):PY —ilY _ _
qz r( t+2 1 ’ t+1 Z?”) Pr(n+1 _ Z | I/)

Conditional on 8 and v, Y;;1 and Y5 are independent and both have distribution

0. Thus Pr(Yiy, = 4,0 =i | v) = E[0? | v] and .Pr(Ys,y =i | v) = E[6; | v], so
(vtes) _ ELO2Iv]
% Boil]

We want to show that ¢ > ¢, that is,
E[6? | V]
——— > Fl0; .

Whenever E[f; | v] > 0, this is equivalent to E[6? | v] = (E[6; | v])?. And because
Var(; | v) = E[6? | v] — (E[0; | v])* = 0 this inequality holds. In the case
E[6; | v] = 0, we have ¢ = 0, and E[62 | v] = 0 as well, so ¢""" = 0 and the

) 7
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inequality still holds. This proves reinforcement.

(4) Martingale property. Conditional on 6 and v,Y;,5 is independent of the
past and has distribution 0, so Pr(Y;12 =i | v) = E[0; | v] = qi(”),

By the law of total probability,
Pr(Yio=i|v)= ZPY(Y;H =i| Y =4v)Pr(Yin=j|v).
j=1

ST ) e,

Using count sufficiency and the definition of ¢, we get Pr(Yy2 =i | v) = 200_, ¢;” g,

Thus ql(”) =D q(,”) qi(”Jrej ) or equivalently

q(V) _ Z qj") q(V+€j)’
j=1

which is the martingale property.

We have shown that count sufficiency, pairwise exchangeability, reinforcement,
and the martingale property all follow from the assumption of a CIID representation.
This completes the proof of Lemma 3. O]

A.13 Uniqueness and Multiplicity

Definition 15 (Hankel Moment Matrix). Given moments {my, ..., mq;_o}, the Han-
kel matriz H; is the j x j matrix with entries (H;),. = m,4. for r,ce€ {0,...,j —1}.
A measure p can generate these moments only if H; is positive semidefinite (PSD).
H; is positive definite (PD) if and only if the minimal support of y contains at least
J points.

Theorem 5 (Uniqueness with Odd Moments). Let T = 25 — 1 for an integer j > 1.
If the associated j x j Hankel matriz H; is positive definite, then there exists a
unique discrete probability distribution with exactly 7 support points that generates

the moments {my, ..., maj_1}.

Theorem 6 (Non-Uniqueness with Even Moments). Let T = 2k for an integer
k = 1. If the moments {my,...,ma} are such that the Hankel matrix Hy, 1 is

positive definite, then there is no rationalizing prior with k or fewer support points.
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Furthermore, there exists a one-parameter family of distinct (k+1)-point distributions

that all generate these moments.
The proofs rely on the following theorems.

Theorem A (Orthogonal Polynomial Roots). (See Szegé, 1975, Theorem 3.3.1)
Let 1 be a positive measure on [a,b] with at least j points in its support. Let
{P(x)} be the sequence of monic orthogonal polynomials with respect to . Then

the roots of P;(z) are all real, distinct, and lie in the interior (a, b).

Theorem B (Gaussian Quadrature). (See Szegd, 1975 Theorem 3.4.1)

Let the nodes {pi,...,p;} be the roots of the j-th orthogonal polynomial P;(z).
Then there exist unique positive weights {\1,...,A;} such that for any polynomial
f(z) of degree at most 2j — 1:

ff Jdp(z =zjj

Theorem C (Range of Next Moment). Kreuin, Nudel, et al., 1977 Given a moment
sequence {mq, ..., mox} for which Hjy,; is positive definite, the set of all possible
values for the next moment, mgy, 1, consistent with a positive measure on [0, 1],

: — +
forms a non-degenerate closed interval [my; . |, Mg, 4].

A.13.1 Proof of Uniqueness with Odd Moments

Let T'= 2j — 1, giving moments {my, ..., mg;j_1}. Assume H, is PD.

The PD condition on H; ensures a well-defined inner product {f,g) = § fgdpu.
This allows the construction of a unique sequence of monic orthogonal polynomials
{Py(x)}, where each Pj(x) is uniquely determined by moments my, ..., ma;_;.

By Theorem A, P;(x) has j distinct real roots {pi,...,p;} in (0,1). These are
our candidate support points.

By Theorem B, there exist unique positive weights {\;} corresponding to these
nodes such that the integration rule is exact for all polynomials of degree up to
2j — 1. By choosing the polynomial f(z) = 2" for each r € {0,...,25 — 1}, we get
m, = {z"du(z) = {;:1 Aipr. This confirms the existence of a j-point distribution

matching all 25 moments (mg to maj_1).
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Uniqueness of the j-point Representation The proof is by contradiction.
Assume there exists a second, different j-point distribution with support {gz} and
weights {w;} that also generates the moments my, ..., ma;_1.

Construct a monic polynomial Q(z) = [](x — qx). Since the support set is
different, Q(x) # P;(z). For any polynomial R(z) of degree less than j, the inner
product is (@, R) = { QR dp. We can compute this using the alternative distribution:

j J
(Q, Ry = > wiQ(q)R(qr) = D wi -0+ R(gr) = 0
k=1 k=1
This shows that Q(z) is also a monic orthogonal polynomial of degree j.

The sequence of monic orthogonal polynomials is unique. Therefore, we must
have Q(z) = Pj(z). This implies their roots are identical, so {¢z} = {px}, which
contradicts the assumption that the distributions were different. The support points
are thus unique. The uniqueness of the weights follows from the unique solution to

the invertible Vandermonde system defined by these points.

A.13.2 Proof of Non-Uniqueness with Even Moments

Let T' = 2k, giving moments {my, ..., ma;}. Assume Hj, is PD. This implies the
minimal support size must be at least k + 1. The proof shows that the rationalizing
(k + 1)-point prior is not unique by leveraging the uniqueness result of Theorem 5.

By Theorem C, there is a non-degenerate closed interval [mg;_,,my,_ ] of pos-
sible values for the next moment. Choose any two distinct values from the interior
of this interval for the next moment:

o Let miy € (Mo, q,Mypys)-

o Let miy .y € (Mypyy, My ), With miy ) # mi .
This allows us to form two different, valid moment sequences of odd length 2k + 1:

e Sequence A: {my,..., Moy, Mhy_ 1}

e Sequence B: {my,...,mo, mf_ 1}

Let j = k+ 1. We now have two distinct moment sequences of length 25. We
can now apply Theorem 5 to each sequence:

e For Sequence A, there exists a unique (k + 1)-point distribution, g4, that

generates its moments.
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e For Sequence B, there exists a unique (k + 1)-point distribution, pp, that

generates its moments.

Since Sequence A and Sequence B disagree on the final moment, their unique
minimal representations, u4 and ppg, must also be different. However, by construc-
tion, both p4 and pp generate the same first 2k + 1 moments {my, ..., mox}, which
are the moments corresponding to the original observed data. Since there is a con-
tinuum of choices for the next moment, there is a continuum of corresponding unique

(k + 1)-point priors, so the rationalizing prior is not unique.

A.14 Proof of Lemma 6

Proof. (i) = (ii) Assume there exists a probability measure p on [0, 1] such that
m, = E,[0"]. For any r,s > 0 with » + s < T, the function f(f) = 6"(1 — 6)° is
non-negative on [0,1]. Therefore, its expectation must be non-negative. A stan-
dard identity for the forward difference operator connects the expectation of such a

polynomial to the moments {my}:

B0 (1 - 0 = S0F () Bulor 1 = S0 (e = (17 a%m
k=0 k=0

The expectation is non-negative, so (—1)*A*m, > 0. And Lemma 5 implies that the

forecasts satisfy equation 17. This proves statement (ii).

(ii) = (i) This direction is a direct application of Schoenberg [1932]’s solution
to the truncated Hausdorff moment problem. Assume the conditions in (ii) hold.
Define a linear functional L on the space of polynomials of degree at most T by
setting L(z*) = my, for k = 0,...,T and extending by linearity. The conditions in
(ii) are precisely the requirement that this functional is non-negative on the cone
of polynomials that are non-negative on [0, 1]. A necessary and sufficient condition
for the existence of a positive measure p on [0, 1] such that my = Sé xhdp(x) for
k = 0,...,T is that the finite sequence of moments satisfies the conditions in (ii).
Since L(1) = my = 1, the measure p must be a probability measure. Moreover,
since the mixed moments m, := E{@“(l — Q)b], a+ b < T are the expected values
of polynomials of degree at most T', their value is completely determined by the
moments (m;)’_,. Finally, since the forecast ratios were assumed to satisfy equation

17, Bayes’ rule applied to this candidate u reproduces the given conditional forecasts.
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Thus p has a CIID rationalization of (p, ) up to horizon 7. ]

A.15 Proof of Theorem 4

Proof. We prove the equivalence in two steps.

(=) Assume (p, q) has a CIID representation. Thus there exists a random 6 € A(Y')

with law g such that, conditional on 6, the process (Y;);<r is i.i.d. with distribution

0, and the one-step—ahead forecasts induced by this process coincide with (p, q).
Let

mh o= 0" du(0 J 07" du(6 v|<T
JA(Y) A H ]

() zeY

Under the CIID model, Bayes’ rule implies that after any history with count vector
v, the posterior on 0 has density proportional to 8” with respect to p, so the forecast

of Y, ;1 =1iis

§6,6” dp(9) _ My,

ailv) = Bults |v] = S o =

,  whenever m}, > 0.

Now compare the recursively defined sequence (m,,) with (m}). Both satisfy

*

mll+ei

*
v

mo =mg = 1, Myye, = ¢(V) M, =

for all || < T'—1 and i € Y (interpreting the recursion trivially on nodes with

m} = 0, where also m},, = 0 and ¢;(v) is irrelevant). By induction on |v| this

implies m,, = m? for every |v| < T, that is,
m, = f 0" du(9) forall |v| <T
A(Y)

By Lemma B.1, the existence of such a measure p with m, = {6”du for all
lv| < T implies that, for each k < T, the tensor M®*) is simplex completely positive:
there exist an integer r > 1, weights 71,...,7 > 0 with >, 7, = 1, and points

r k r s s .
M, . 7 e A(Y) such that M® = = Mu(ir,ip) = Disey Vs 7ri(1) . -7ri(k). Equiva-

i1l

lently, m, = Y.0_, v, (7)) for all |v| < T, so {M®}T_, is SCP.

(<) Now assume that the count moment tensors {M®}7_, built from (p, q) as above
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are simplex completely positive. By construction of m, we have mg = 1, m, > 0,
and, for every |v| < T — 1, Xy Mute;, = Diey Gi(V) My = My Yy Gi(V) = My, S0
the linear consistency identities hold. Thus the truncated array {ml,}‘,,KT satisfies:
my, = 0,mo = 1,3,y Myye, = m, for all [v| < T — 1, and each order-k tensor M®*
is SCP in the sense of the definition.

By Lemma B.1, these conditions are sufficient for the existence of a probability
measure g on A(Y) such that m, = SA(Y) 0" du(9) for all |v| < T. Define a process
by first drawing # ~ u and then, conditional on 6, drawing Yi,..., Yy i.i.d. with
distribution #. Let p, ¢ denote the corresponding one—step—ahead forecasts. As in the
first part of the proof, Bayes’ rule and the moment representation yield p; = Pr(Y; =
i) = {6;du(d) = m.,, and, whenever m, > 0, ¢;(v) = E,[0; | v] = Sgegzydi’zg) = T

But by the way we defined m,, from the original forecast system (p, ¢) we also have,
for all |v| < T —1 with m, >0, ¢;(v) =

every node with m, > 0, and on nodes with m, = 0 the values of ¢(v) are irrelevant

My+e;

—t. Therefore p; = p; and ¢;(v) = ¢;(v) at
for the induced law. Hence the CIID process constructed from p rationalizes the
original forecast system (p, q) up to horizon 7'

This shows that (p,q) has a CIID representation if and only if the associated
count moment tensors {M (k’)};{:l are simplex completely positive, and establishes

the stated identities between (p,q) and the moments. O
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B For Online Publication

B.1 Proof of Lemma 5

Proof. Let m, = E[0"] for r > 1.
Base Case (k=1): The initial forecast for outcome 1 is the prior expectation
of 6:

p=P(X; =1)=E[P(X; =1]0)] =E[0] = m;.

Thus, m; is directly identified by the initial forecast.

Inductive Step: Assume that the moments {m, ..., m;} are uniquely identified
for some k < T. We will show that my, is also uniquely identified.

The observable forecast gj,, is the conditional probability of a success at time

k + 1 given k prior successes. By the law of total expectation and the definition of

a CIID model:

P(Xl = 17"'7Xk = 17Xk+1 = 1)
P(X;=1,...,Xx=1)

Go1 =PXpp =1 X1 = =X =1) =

The numerator is the unconditional probability of k + 1 successes. In a CIID model,

this is:
PX,=  =Xpp=1)=E[P(X, = = Xpy1 =1|0)] =E[0"] = myp1.
Similarly, the denominator is the unconditional probability of k successes:
PX,= =X, =1)=E[P(X, ==X =1]0)] = E[0*] = ma.

Substituting these into the expression for the forecast gives:

q* o M1
k+1 my '

By the inductive hypothesis, my is known and identified. Since ¢j,, is an ob-

servable forecast, we can uniquely identify my41 as myp1 = mupql,,. By induc-
tion, the moments {my, ..., mr} are uniquely identified by the sequence of forecasts
{pIJQS7"'7q;:}‘ O
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B.2 Proof of Lemma 7

Proof. The proof shows each direction of the equivalence.

(1) = (2) Assume there exists a probability measure 1 on A(Y) such that m, =
E,[6"] for all |[v| < T. We must show that the consistency identities hold and that

each tensor M®* is simplex completely positive.

a) Consistency Identities: Let v be a count vector with |v| < T — 1. We

examine the sum >’ ey Mute,;- Using the assumption and the linearity of expectation:

n

T R S
=1 =1 =1 =
Since § € A(Y'), its components sum to one: 77, 0; = 1,80 377 My e, = B, [07-1] =

E,[6"] = m,. This verifies the consistency identities.

b) Simplex Complete Positivity: Fix an integer k € {1,...,T}. Let M®
be the symmetric order-% tensor whose components in the count basis are {m,},|.
By assumption, for any such v: m, = SA(Y) 0" du(6). Let Cy be the set of all rank-
one tensors formed by outer products of vectors from the simplex: Cy = {7®* | 1 €
A(Y)}. In the count basis, a tensor in Cy has components (7®%), = 7 for |v| = k.

The set of simplex completely positive (SCP) tensors of order k is, by defini-
tion, the convex hull of C}, denoted conv(Cy). The integral representation m, =
SA(Y) 0du(6) implies that the tensor M® lies in the closed convex hull of Cj, de-
noted conv(Cy).

However, the set Cj, is the image of the compact set A(Y') under the continuous
map 7 +— 7% Therefore, C} is a compact set in the finite-dimensional space of
order-k tensors. In a finite-dimensional vector space, the convex hull of a compact
set is also compact (a consequence of Carathéodory’s theorem). A compact set is
always closed, which means conv(C}) is a closed set.

Since conv(Cy) is closed, its closed convex hull is simply itself: conv(Cy) =
conv(Cy). Thus, M® must lie in conv(C}). By definition, this means M®) is sim-
plex completely positive. This holds for each k € {1,...,T}, completing the proof of

(1) = (2).
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(2) = (1) Assume the consistency identities hold and that for each k € {1,...,T},
the tensor M® with count moments {my, }|y|=k is simplex completely positive. We

must construct a single probability measure u that represents all moments {m, }, <z

a) Representation at Horizon T: Consider the tensor for the highest hori-
zon, M), By assumption (2), M) is simplex completely positive. By definition of
SCP, this means there exists a finite set of points {7(¥};_, = A(Y) and non-negative

weights {y,};_; with >};_, 7, = 1 such that for all count vectors v with |v| = T"
my, = Z’YK(W(Z)>V'
=1

This is an expectation with respect to a discrete probability measure p on A(Y)
defined by p1 = >7_, ¥, where 0 is the Dirac measure at point 7. Thus, we

have found a measure p such that m, = E,[6"] for all |[v| = T
b) Extending the Representation to Lower Orders: We now show that

this same measure p correctly represents the moments for all lower orders, i.e., for
all |v| < T. Define a new set of moments, {m,,},|<r, generated by
12

m,, :=E,[0"] = 274(7#))” for all |v| < T.
=1

By construction, we know that m/, = m,, for all v with |v| = T". Our goal is to show
that m!, = m,, for all [v| <T.

c) Using the Consistency Identities: FPick an arbitrary count vector v

with |v| = k < T. By repeatedly applying the consistency identity > i Mote; = Moy,
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we can express m,, in terms of moments of order 7"

My = Z Mo tej,

J1€eY
= Z (Z m'/+€j1+612> = Z My tejy +ej,
j1€Y \Jj26Y J1.52€Y

Y
1y dTKEY
Let n = v +e€j + -+ €j,_,. The size of this count vector is |n| = |v| + (T'— k) =
k+T—k="T.
Now do the same for the moments {m)}. As shown in the (1) = (2) part of
the proof, any set of moments generated by a measure on the simplex automatically

satisfies the consistency identities. Therefore:

/ /
m, = Z mu+ej1+~--+ejT_k'
J1yensJr—KEY
Let’s compare the two expressions. For any multi-index (j1,...,jr—x), let n =
v+ej + - +ej . Since |n| = T, we know from step (a) that m, = m;. This

means that the sums are equal term-by-term:

. N / Y,
my = Z my+ej1+“'+ejT—k B Z mV+5j1+"'+ejT_k = My
J1yeensJT—KEY JlsensJT—KEY

The equality holds for any v with |v| = k. Since we chose k to be any integer less
than T (including & = 0), this shows that m, = m/, = E,[0"] for all |v| < T.
We have constructed a single probability measure p on A(Y') that represents all

the moments {m, },|<r, which completes the proof of (2) = (1). O

Lemma B.1 (Tensor Characterization up to T'). Let {m,},<r be a collection of

non-negative numbers with mg = 1. The following are equivalent:

(1) There exists a probability measure i on the simplex A(Y') such that the moments
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are given by the expectation

m, = E,[0"] = J 0" du(0) forall|v|<T
A(Y)

(2) The numbers {m,} satisfy the linear consistency identities

Z Myse; =M, forall [V <T —1,

JjeY

and for each k € {1,...,T}, the symmetric order-k tensor M*) defined by the

count moments {m,,}h,‘:k 15 simplex completely positive.

Proof. (1) = (2). Assume there exists a probability measure p on A(Y') such that
m, = J 6" du(6) for all |v| < T
A(Y)

Linear consistency. Fix v with |v| < T — 1. Then

> e, - ZJ o) = [ o (30)due)

Jjey jey

Since 0 € A(Y'), we have >,y 0; = 1, so

va+ej = J 0" d,u(‘g) = My,
A(Y)

JjeYy

establishing the linear consistency identities.
Simplex complete positivity of M®). For each k e {1,..., T}, define the order—k
tensor M*) by

Mz(lk)zk = mei1+...+eik = J 91'1 s 9% du(@) (il, Ce ,’ik S Y)
A(Y)
Equivalently,
M® = f 0%F dp(0).
A(Y)

{0%F . 0 e A(Y)}.
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The map 6 — 6% is continuous and A(Y') is compact, so
M® e conv{#® : 0 € A(Y)}.

By Carathéodory’s theorem there exist points 7, ... 7 e A(Y) and weights
Yy Yr > 0 with Y77, 45 = 1 such that

MO = 3, ek,
s=1

This is exactly the definition of simplex complete positivity of M®*) so (2) holds.
(2) = (1). Assume now that:
e m, >0 for all [v| <T and mo = 1;
o forevery V| <T —1, > iy Myse; = Myj
e foreach k € {1,..., T}, the order—k tensor M*) with entries Mz(lk)% = M, +te;,
is simplex completely positive.
We will show there exists a probability measure p on A(Y) such that m, =
§60” du(0) for all |v| < T.

Step 1: A linear functional on polynomials. Let A be the real vector space of
all polynomials in (61, ...,0,) of total degree at most 7. Define a linear functional
L:Ar - Rby

L(6") :=m, for all v with |v| < T,

and extend linearly to arbitrary polynomials p(6) = 2\u|<T a,0” by L(p) := ZIVKT a,m,.
Let

S(0) == > 6:.

€Y
Step 2: L treats S as 1. We claim that for every polynomial p € Ap with
degp <T —1,

L(Sp) = L(p). (23)

It suffices to check this on monomials and extend by linearity.

OA-6



Fix v with |v| < T — 1. Then
S(6) 6" = (2 ej)ev Nt
jey jey
SO
L(S0) = Y L(0"9) = > e,
Jjey Jjey
By the linear consistency identities, > .y myie; = m,, = L(0”), so L(S60”) = L(6").
By linearity, (23) holds for all p with degp < T — 1.
Iterating this identity, we obtain

L(S*p) = L(p) whenever degp + k < T. (24)

Step 3: L is nonnegative on polynomials nonnegative on the simplex. Let K :=
A(Y) and let p € Ar satisfy p(#) = 0 for all 0 € K. Let d = degp < T and set
k :=T —d > 0. Define the homogeneous polynomial

Write g as
Q(H) = Z Qy 0V7
lv|=T
so that
L(g) = > a,m,.
lv|=T
Let M) denote the order-T tensor with entries MZ(IT)ZT = Me, 1..te, . By simplex
i1 i

complete positivity, there exist r € N, weights ~,...,7, = 0 with >/ _ v, = 1, and
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points 7M. ..., 7 e A(Y) such that

M® = 3 o, 78T,
s=1

ie.,

M N 6
Mil“‘iT - Z Vs Ty 0 T
s=1
For each multi-index v with |v| = T, we have

Ve —
m, = M; . whenever v =e; + -+ €.

Thus

U= X wme= 3 a S = Y a ) a0y = N
| s=1

y|=T |]/‘=T s=1 s=1 ‘y':T

Each 7() lies in A(Y), so ¢(7®) = p(7(®)) = 0, and hence L(q) = 0.
Using (24) with this p and k = T — d, we have

L(p) = L(S*p) = L(q) = 0.
Therefore
L(p) = 0 whenever pe Az and p(f) > 0V6e A(Y). (25)

Step 4: m lies in the convexr hull of truncated moment vectors. Let I := {v €
N": |v| < T}, and let m := (m,),er € RE. For each 6 € A(Y), define the truncated
moment vector

B(0) := (6"),er € RE.
Let
C = conv{p(0): 0 e A(Y)}

be the convex hull of all such vectors. We claim m € C.

Suppose, to the contrary, that m ¢ C'. Since C' is a compact convex subset of the
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finite-dimensional space RZ, the separating hyperplane theorem implies that there

exist a nonzero vector a = (a,),e7 and a scalar o such that

Za,,m,, < « and Za,,gb(@)l, > a Ve A(Y).

vel vel

Define the polynomial

p(0) = Z a, 0" — a.
vel

Then p(#) = 0 for all § € A(Y') by construction, while

L(p) =Zaym,,—oz < 0.

v

This contradicts (25). Hence m € C.
Step 5: Constructing a representing measure. Since m € C, there exist 0V, ... 0 e
A(Y) and weights Aj,..., A, = 0 with >7._| A\; = 1 such that
m, = YA (0W) Vvel
s=1

Define a probability measure p on A(Y') by
o= Z As Og(s) s
s=1
where dy) is the Dirac measure at ). Then, for all |v| < T,
0" du(0) = > A, (09)) =m,,.
JA(Y) ;1
Thus p is a probability measure on A(Y') with the required moments, establishing

(1).

This completes the proof of the equivalence of (1) and (2). O
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