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Abstract

We characterize when an agent’s initial forecast and one-step-ahead fore-

cast revisions are consistent with a conditionally i.i.d. (CIID) model, i.e.,

Bayesian learning about a stable but unknown i.i.d. data-generating process.

For two periods and binary outcomes, two simple conditions are necessary and

sufficient: Symmetry (pairwise exchangeability) and Reinforcement (realized

outcomes become weakly more likely). For two periods and arbitrary finite

outcome sets, we show that a forecast system admits a CIID representation if

and only if a forecast-derived matrix of joint probabilities is completely pos-

itive; with at most four outcomes, this reduces to positive semidefiniteness.

We prove that one-step-ahead forecasts can never identify beliefs in positively

autocorrelated outcomes, but some beliefs in negatively autocorrelated out-

comes can be detected. For multi-period forecasts with binary outcomes, we

derive an easily checked characterization of CIID representations by linking to

the truncated moment problem, and show how the identified set of minimal-

support rationalizations depends on the number of periods. Finally, we show

that complete positivity of the associated moment tensor provides a general

necessary and sufficient condition for multiple periods and multiple outcomes.
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1 Introduction

Economic models of learning typically assume that an agent learns about a fixed

but unknown state of the world, so that observations are conditionally independent

given that state. This conditional independence implies that the induced probabil-

ity measure over sequences of observations is exchangeable, in the sense that the

probability of a finite sequence is invariant under permutations. De Finetti [1937]

and subsequent work show that exchangeability is both necessary and sufficient for

a probability measure on infinite sequences of random variables to correspond to

learning about a fixed state: any exchangeable distribution admits a Bayesian rep-

resentation as a belief over a (possibly infinite) collection of i.i.d. data-generating

processes. Thus, when the agent believes their data is exchangeable, it is as if they

are learning about a fixed state of the world, whether or not they consciously think

of the problem that way.

Exchangeability is defined purely in terms of the ex-ante distribution over se-

quences. In contrast, work by Shmaya and Yariv [2016], Bohren and Hauser [2024],

and Molavi [2025] examine the consistency of beliefs across different periods, and pro-

vide necessary and sufficient conditions under which beliefs before and after receiving

information in two-period models can be rationalized as the result of Bayesian up-

dating. This paper lies at the intersection of these two approaches: As in the work

following de Finetti [1937], we characterize the existence of a conditionally i.i.d.

model in terms of beliefs over observable events. However, we follow the economic

literature in supposing that, in addition to eliciting the agent’s prior beliefs, the

analyst can elicit the agent’s beliefs after observing one or more realized outcomes.

In contrast to the papers cited in the previous paragraph, we do not allow the

analyst to elicit the agent’s beliefs about the data-generating process, but only their

predictions about the outcome in the next period, given the outcomes so far. In

contrast to the line of work started by de Finetti, which takes as given the decision

maker’s ex-ante specification of the complete probability distribution, we analyze

how one-period-ahead forecasts are updated in response to realized observations.

This is important because, although the agent may have initial beliefs that satisfy

exchangeability, biases in updating could lead them to beliefs that are not consistent

with a conditionally i.i.d. model. Our results show how to detect when this occurs.
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They can be interpreted as a sort of converse of de Finetti’s theorem: what prop-

erties of the forecasts do characterize finite sequences of random variables that are

conditionally i.i.d.?

When there are only two periods and only two possible outcomes, the existence

of a conditionally i.i.d. model consistent with the forecasts has a simple and intuitive

characterization: Such a model exists if and only if the forecasting system satisfies the

properties of Symmetry and Reinforcement. Symmetry requires that for every two

outcomes i, j the probability of j given i, multiplied by the ex-ante probability of i, is

equal to the probability of i given j, multiplied by the ex-ante probability of j, which

is exactly the content of exchangeability in the two-period setting. Reinforcement

requires that the conditional probability of outcome i weakly increases when outcome

i is observed.

When there are two periods and more than two outcomes per period, Symmetry

and Reinforcement are still necessary but are no longer sufficient. Instead, we show

that a key role is played by a square matrix M derived from the agent’s forecast,

whose pi, jq-th entry is the product of the ex-ante probability of the j-th outcome

and the probability of the i-th outcome given the j-th outcome. When there are

four or fewer outcomes, pp, qq has a conditionally i.i.d. representation if and only

if M is positive semidefinite. When there are more than four outcomes, the same

characterization holds, but with positive semidefiniteness replaced by the (typically

stronger) condition of complete positivity.1

We then develop an operational diagnostic that verifies consistency with a con-

ditionally i.i.d. model by searching for a positive diagonal scaling that renders the

rescaled forecast matrix diagonally dominant; success guarantees complete positivity.

We apply the general characterization to determine which departures from a belief

in an i.i.d. process can be detected with these data. We show that it is impossible

to detect a belief that the data generating process is persistent, i.e., the hot-hand

fallacy, because a conditionally i.i.d. model can rationalize any next-period belief

generated by such updating. In contrast, some cases of the opposite bias, in which

the agent believes that the first-period outcome is less likely to be realized in the

1Roughly speaking, a matrix is completely positive if it can be built from a finite collection of
nonnegative component vectors whose outer products add up to the matrix.
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next period (as in the gambler’s fallacy), can be detected, as can the beliefs of a

decision maker who (correctly or not) believes they have observed a garbled version

of the outcome.

For multi-period forecasts with binary outcomes, we derive an exact and easily

checked characterization of the CIID representation by combining generalizations of

the symmetry and reinforcement conditions with results for the truncated Hausdorff

moment problem, and show how the identified set of minimal-support rationalizations

depends on the number of periods. Finally, we show that complete positivity of the

associated moment tensor provides a general necessary and sufficient condition for

multiple periods and multiple outcomes.

Related work The seminal contributions on the characterizations of conditionally

i.i.d. models are de Finetti [1937] and Hewitt and Savage [1955] respectively for the

binary and general outcome case. Diaconis [1977] characterizes the implications of

exchangeability on finite sequences, and Aldous, Ibragimov, and Jacod [2006] surveys

subsequent results. In the case of binary outcomes, we also make use of Schoenberg

[1932]’s theorem for the truncated moment problem, and Szegő [1975]’s results about

orthogonal polynomials.

Molavi [2025] shows that beliefs about an unknown state are consistent with

Bayesian updating if and only if the mean posterior belief about the state is abso-

lutely continuous with respect to the prior. This finding generalizes the earlier work

of Shmaya and Yariv [2016] by allowing the state space to be infinite and the decision

maker’s subjective beliefs to have support that does not match that of the true data-

generating process. Bohren and Hauser [2024] characterizes the conditions under

which a departure from Bayesian updating (e.g., underinference from signals) can

be rationalized as a consequence of Bayesian updating within a misspecified model.

Sarnoff [2025] highlights that it is more common for forecasts to violate “posterior

statistical sufficiency”2 than exchangeability. Catonini and Lanzani [2025] charac-

terizes the only form of Dutch-book to which misspecified but Bayesian agents can

be exposed.

The form of elicited beliefs we consider - predictions of the next outcome - is

2I.e., belief at period t ` 1 depends only on belief at period t and the period-t outcome.
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elicited in the field in many settings, see, e.g., Weber, d’Acunto, Gorodnichenko,

and Coibion [2022] and Greenwood and Shleifer [2014] for surveys on beliefs about

inflation and stock returns, respectively.

Finally, this paper is related to decision-theoretic work on the dynamic consis-

tency of optimal plans and how they force Bayesianism (e.g., Epstein and Le Breton,

1993, Green and Park, 1996, and Ghirardato, 2002).

2 The Two-Period Model

Objects There is a finite set Y “ t1, ..., nu of possible outcomes. In each period

t P t1, 2u, an outcome is realized and observed.

The agent’s forecast of the period-1 outcome is p P ∆pY q, and their forecast of

the period-2 outcome conditional on observing outcome i is qpiq P ∆pY q. Together,

we call this pair a forecast. We aim to characterize when these probabilities are

consistent with a conditionally i.i.d. model. In our setting, an i.i.d. model is one

where outcomes are drawn independently from a fixed distribution θ P ∆pY q. A con-

ditionally i.i.d. model is then summarized by a probability measure µ P ∆p∆pY qq.3

Definition 1. A forecast pp, qq has a Bayes-rationalizing conditionally i.i.d. model

(has a CIID representation) if there exists a probability measure µ P ∆p∆pY qq such

that:

(i) For all i P Y :

pi “

ż

∆pY q

θi dµpθq. (1)

(ii) For all i, j P Y with pj ą 0, the posterior measure µp¨|jq is defined by Bayes’

rule: for any Borel set A Ď ∆pY q,

µpA|jq “

ş

θPA
θj dµpθq

pj
(2)

3For an arbitrary Borel-measurable set X in a Euclidean space, we let ∆pXq denote the prob-
ability distributions on X.
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and the conditional forecast satisfies

q
pjq

i “

ż

∆pY q

θi dµpθ|jq (3)

(iii) For j P Y with pj “ 0, the value of qpjq is unrestricted.

That is, in a CIID model, the initial probability pi is the expected value of the

latent parameter θi, and the period-2 probability of outcome i conditional on the

first outcome being j is the expected value of θi conditional on seeing outcome j.

Conditionally i.i.d. models generate exchangeable sequences of observations; this

implies that forecasts must be symmetric in the following sense.

Definition 2. Forecast pp, qq satisfies Symmetry if for all pi, jq P Y 2, piq
piq
j “ pjq

pjq

i .

This is a direct consequence of exchangeability; the unconditional probability of

seeing the sequence pi, jq must equal that of seeing pj, iq. The following condition

also holds in any conditionally i.i.d. model.

Definition 3. pp, qq satisfies Reinforcement if pi ď q
piq
i for all i P Y .

Reinforcement requires that the probability of observing an outcome in the next

period is not decreased by observing that outcome in the current period.4 This

distinguishes CIID models from other exchangeable models, such as the sampling

without replacement examples discussed in Diaconis [1977]. CIID models imply

reinforcement because the θ that assigns today’s observed outcome relatively more

probability will assign it relatively more probability tomorrow as well. Our formal

proof uses Jensen’s inequality.

Lemma 1. If pp, qq has a CIID representation, then pp, qq satisfies Symmetry and

Reinforcement.

4Note that CIID representations do not imply that seeing a particular outcome makes all other
outcomes less likely. For example, suppose there are three outcomes and that µ “ p.1θ1, .9θ2q, with

θ1 “ p.4, .4, .2q and θ2 “ p.1, .1, .8q. Then p1 “ .13 and q
p1q

2 “ 5{26 ą .13 “ p2.
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Proof. As noted above, Symmetry follows from the fact that conditionally i.i.d.

models are exchangeable. To see why Reinforcement holds, observe that

q
piq
i “

ş

∆pY q
θ2i dµ pθq

pi

ě

´

ş

∆pY q
θidµ pθq

¯2

pi
“ pi,

where the first equality follows from the fact that piq
piq
i is the probability that outcome

i occurs twice in a row, the inequality follows from Jensen’s inequality, and the last

equality follows from the definition of pi.

As we note in Section 7 below, Symmetry and Reinforcement remain necessary

conditions for conditionally i.i.d. models when forecasts are elicited over more than

two periods.

3 Binary outcomes

We begin by providing a simple characterization in the case where the outcome is

binary (i.e., for Bernoulli random variables), as in de Finetti [1937]. The following

result shows that in this case, Symmetry and Reinforcement are sufficient as well as

necessary for the existence of a CIID representation.

Theorem 1. When n “ 2, pp, qq has a CIID representation if and only if pp, qq

satisfies Symmetry and Reinforcement.

We establish the sufficiency of Symmetry and Reinforcement constructively. The

special cases p1 “ q
p2q

1 , q
p2q

1 “ 0, and p1 “ 1 correspond to degenerate priors. When

1 ą p1 ą q
p2q

1 ą 0, we show there is a CIID representation with a Beta prior with

parameters

α “
p1q

p2q

1

p1 ´ q
p2q

1

and β “
q

p2q

1 p1 ´ p1q

p1 ´ q
p2q

1

. (4)
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Remark. The proof uses a Beta prior for the non-degenerate cases, but this is not

the only possible rationalization. Indeed, as we show in Section 5, whenever q
p2q

1 ‰ p1,

there are infinitely many CIID representations, including many with finite support.

The Beta prior is convenient here because it is the conjugate prior for Bernoulli

outcomes, has two parameters, and the moment formulas are simple functions of

pα, βq. But, the key point here is that some CIID representation exists, not that it

must be Beta.

The theorem establishes that, in the Bernoulli case, Symmetry and Reinforce-

ment completely characterize the existence of a Bayes rationalizing conditionally

i.i.d. model. The proof also shows that whenever a non-trivial CIID rationalization

exists, a rationalization with a Beta distribution also exists.

4 General Characterization: Complete Positivity

4.1 Necessary conditions

Paralleling the development of the characterization of exchangeability provided by

Hewitt and Savage [1955], we now move beyond the case of binary outcomes. We

begin with the following necessary condition, which lets us demonstrate that Re-

inforcement and Symmetry are no longer sufficient when there are more than two

outcomes. Define the n ˆ n matrix Mpp, qq by

mijpp, qq “ pj q
pjq

i @i, j P Y.

By construction, Mijpp, qq is the joint probability of observing outcome j in period 1

and outcome i in period 2. The next lemma says that in a CIID model, this matrix

must coincide with the second-moment matrix
`

Eµrθiθjs
˘

i,j
of the latent parameter

θ.

Lemma 2. µ P ∆p∆pY qq is a CIID representation for pp, qq if and only if

mijpp, qq “

ż

∆pY q

θiθjdµpθq @i, j P Y. (5)
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In this case, Mpp, qq is positive semidefinite because it is a mixture of rank-one

positive semidefinite matrices.

The proof is based on the observation that if pp, qq has a CIID measure µ, Mpp, qq

is the matrix of that measure’s second moments. Now consider the following example.

Example 1. Suppose n “ 3, the initial forecast is p “ p1
3
, 1
3
, 1
3
q, and the second-period

forecasts are

qp1q
“ p0.4, 0.5, 0.1q, qp2q

“ p0.5, 0.4, 0.1q, qp3q
“ p0.1, 0.1, 0.8q.

Clearly pp, qq satisfies Symmetry and Reinforcement with

Mpp, qq “

»

—

–

4{30 5{30 1{30

5{30 4{30 1{30

1{30 1{30 8{30

fi

ffi

fl

.

Let e “ p1,´1, 0qJ. Because Mpp, qq ¨ e “ ´ 1
30
e, Mpp, qq is not positive semidefinite,

so pp, qq does not have a Bayes-rationalizing conditionally i.i.d. model.

This example reveals a failure of conditional independence that Symmetry and

Reinforcement alone cannot detect. Imagine a voter assessing a politician who can

produce one of three policy outcomes: Left, Center, and Right. The voter’s forecasts

in the example imply that observing a “Left” policy makes “Center” the most likely

policy next period, while observing a “Center” outcome makes “Left” the most likely

outcome, with “Right” having a symmetric effect on Left and Center. Although this

is consistent with Reinforcement for each outcome and the Symmetry condition,

the fact that “Center” and “Left” each boost the other the most makes the matrix

Mpp, qq not positive semidefinite, so the forecasts cannot be reconciled with a model

of learning about a politician with a stable ideological “type.”

4.2 General Characterization: Complete Positivity

The complete positivity of Mpp, qq will play a central role in our characterization.
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Definition 4. The matrix M is completely positive if M “ BBJ for some nˆ r non-

negative matrix B, or equivalently M “
řr

ℓ“1 bℓb
J
ℓ , bℓ P Rn

ě0. When M is completely

positive, its cp rank cprpMq is the smallest r for which such a B exists.

The decomposition of a completely positive matrix bears a resemblance to diag-

onalization, with the key difference that the b vectors are not orthogonal. It is a

stronger condition than being positive semi-definite, and thus a completely positive

Mpp, qq immediately implies Symmetry. We will momentarily see that it also im-

plies Reinforcement. There is an extensive literature characterizing the properties

of completely positive matrices see, e.g., Berman and Shaked-Monderer [2003]. In

particular we will make use of the easily-shown facts that diagonal matrices with

nonnegative diagonal entries are completely positive and that convex combinations

of completely positive matrices are completely positive (Theorem 2.2 in Berman and

Shaked-Monderer [2003]).

The next result shows that Mpp, qq encodes all the restrictions implied by CIID

representations in two-period models.

Theorem 2. The following are equivalent:

1. Mpp, qq is completely positive.

2. pp, qq has a Bayes-rationalizing conditionally i.i.d. model.

3. pp, qq has a Bayes-rationalizing conditionally i.i.d. model that has finite sup-

port.

To prove the result, we introduce a strengthening of complete positivity called

simplex complete positivity, and show that it is equivalent to positivity in our setting

because the entries of any Mpp, qq sum up to one. An n ˆ n matrix M is simplex

completely positive if it admits the decomposition

M “

r
ÿ

s“1

γs π
psqπpsqJ, γs ą 0,

r
ÿ

s“1

γs “ 1, πpsq
P ∆pY q (6)

for some integer r. It is immediate that a simplex completely positive matrix is

completely positive. When
řn

i“1

řn
j“1Mij “ 1, the converse is also true.
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Claim 1. If M is completely positive and
řn

i“1

řn
j“1Mij “ 1, then M is simplex

completely positive.

The proof of the theorem uses this claim to establish the cycle of implications

p2q ñ p1q ñ p3q ñ p2q. To show that (2) implies (1), we note that if µ is a

CIID representation for pp, qq, then by Lemma 2, Mpp, qq is a mixture of rank-one

matrices θθJ with θ P ∆pY q. From Carathéodory’s theorem, it can be written as

a finite convex combination of them, so it is completely positive. The proof that

(1) implies (3) uses Claim 1 to infer that M is simplex completely positive so that

Mpp, qq “
ř

s γsπ
psqπpsqJ

for some πp1q, . . . , πprq P ∆pY q and weights γs ą 0 with
ř

s γs “ 1. Define the discrete measure µ :“
ř

s γsδπpsq . By construction, this

measure has second moments
ş

θiθj dµ “ Mijpp, qq, so by Lemma 2 it is a CIID

representation with finite support. Finally, that (3) implies (2) is trivial. Note that

combining this theorem with Lemma 1 shows that if Mpp, qq is completely positive,

then pp, qq satisfies Reinforcement.

Corollary 1. Let p be strictly positive. If there is a Bayes-rationalizing conditionally

i.i.d. model for pp, qq with infinite support, then the Bayes-rationalizing model is not

unique. In particular, with binary outcomes if q
p2q

1 ‰ p1, any forecast that has a

Bayes-rationalizing conditionally i.i.d. model has at least two of them.

4.2.1 Small Number of Outcomes

A second corollary of the linear algebra characterization of CIID models is that for

a small number of outcomes (n ď 4), positive semidefiniteness of the matrix Mpp, qq

captures all of the empirical implications of conditionally i.i.d. models. This result

provides a computationally simple and definitive test.

Corollary 2. Let n ď 4. The following are equivalent:

1. pp, qq has a Bayes-rationalizing conditionally i.i.d. model.

2. Mpp, qq is positive semidefinite.

The next example shows that the equivalence of p1q and p2q does not extend to

n ą 4 even when pp, qq satisfies Reinforcement.

10



Example 2. Let n “ 5, p “
`

3
23
, 4
23
, 4
23
, 4
23
, 8
23

˘

, qp1q “
`

1
3
, 1
3
, 0, 0, 1

3

˘

, qp2q “
`

1
4
, 1
2
, 1
4
, 0, 0

˘

, qp3q “
`

0, 1
4
, 1
2
, 1
4
, 0

˘

, qp4q “
`

0, 0, 1
4
, 1
2
, 1
4

˘

, and qp5q “
`

1
8
, 0, 0, 1

8
, 3
4

˘

. It is immediate that pp, qq

satisfies Reinforcement and Symmetry and that

M pp, qq “

»

—

—

—

—

—

—

–

1{23 1{23 0 0 1{23

1{23 2{23 1{23 0 0

0 1{23 2{23 1{23 0

0 0 1{23 2{23 1{23

1{23 0 0 1{23 6{23

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Crucially, M pp, qq “ A
23
, where A is the matrix given in Example 2.4 of Berman and

Shaked-Monderer [2003]. Therefore, since the sets of positive semidefinite matrices

and completely positive matrices are both cones (see, e.g., Theorem 2.2 in Berman

and Shaked-Monderer, 2003) M pp, qq is positive semidefinite, but it is not completely

positive, so by Theorem 2 pp, qq does not admit a CIID representation.

4.3 Cycles

We can gain further insight into the CIID model by analyzing its implications for

cyclical patterns in belief updating. The direction of belief updates is determined by

the covariance structure of the latent variable θ, because

q
piq
j “

Eµrθjθis

Eµrθis
“ pj `

Covµpθj, θiq

pi
. (7)

Thus, observing outcome i makes outcome j strictly more likely if and only if

Covµpθj, θiq ą 0.

Definition 5. A forecast pp, qq exhibits a full cycle if, for a given ordering of out-

comes, q
piq
i`1 ą pi`1 for all i P Y , where indices are taken modulo n. This is equivalent

to Covµpθi`1, θiq ą 0 for all i.

The components of θ sum to 1, so

0 “ Var
´

n
ÿ

k“1

θk

¯

“

n
ÿ

i“1

Varpθiq ` 2
ÿ

1ďiăjďn

Covpθi, θjq. (8)
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This simple identity is sufficient to rule out full cycles for small n.

Proposition 1. Let n ď 4. If forecast pp, qq admits a CIID representation, then it

does not exhibit a full cycle.

The simplex constraint is less binding for larger n, as the necessary negative

covariances from equation (8) can be assigned to non-adjacent pairs, leaving the

cycle covariances free to be positive.5

Proposition 2. If n ě 5, there exists a forecast pp, qq that exhibits a full cycle and

has a CIID representation.

4.4 Scaled Diagonal Dominance

Complete positivity of M is both necessary and sufficient for a Bayes-rationalizing

conditionally i.i.d. representation, but may be difficult to verify. This motivates the

search for easier-to-verify sufficient conditions for complete positivity. Here is one.

Definition 6. Forecast pp, qq satisfies scaled diagonal dominance if there are weights

s P Rn
`` with

ř

i si “ 1 satisfying pi q
piq
i si ě

ř

j‰i pj q
pjq

i sj for each i P Y.

Scaled diagonal requires the existence of positive weights such that, after rescal-

ing each outcome i by si, the diagonal term dominates the total influence of all other

outcomes on i. If such a reweighting exists, then M can be written as a convex com-

bination of nonnegative rank-one outer products, and hence is completely positive.

This yields the following corollary of Theorem 2:

Corollary 3. If pp, qq satisfies scaled diagonal dominance, then it admits a CIID

representation.

From a practical perspective, checking scaled diagonal dominance reduces to com-

puting the spectral radius of the row-ratio matrix and verifying that it is less than

5It is not a coincidence that the same critical value of n appears here as in the relation between
complete positivity and PSD: In both cases the issue is that the geometry of Rn for n ě 5 is
qualitatively different (cf. Berman and Shaked-Monderer, 2003).
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1. To see this, let Mpp, qq satisfy miipp, qq ą 0 for all i P Y . Define the row–ratio

matrix Rpp, qq by

Rijpp, qq “

$

&

%

mij

mii

, i ‰ j,

0, i “ j.

Corollary 4. Let pp, qq be such that piq
piq
i ą 0 for all i P Y . If the spectral radius of

Rpp, qq is less than 1, then pp, qq admits a CIID representation.

Proof. The inequalities miipp, qqsi ě
ř

j‰i mijpp, qqsj are equivalent to s ě Rpp, qqs.

If ρpRq ă 1 then

s :“ pI ´ Rq
´11 “

8
ÿ

k“0

Rk1

is well defined and strictly positive. Moreover, pI ´Rqs “ 1 implies s´Rs “ 1 ě 0,

i.e. s ě Rs, which implies that pp, qq satisfies scaled diagonal dominance.

Remark. Row diagonal dominance of M requires
ř

j‰i Rij ď 1 for every row, i.e.

∥R∥8 ď 1. Since ρpRq ď ∥R∥8, the spectral condition ρpRq ă 1 is strictly weaker

and can hold even when some rows violate unscaled diagonal dominance.

5 Moments and Non-Uniqueness

When a two-period forecast has a CIID rationalization, it need not be unique. More-

over, uniqueness can fail in two ways: there may be CIID rationalizations with dif-

ferent support sizes, and there may be multiple CIID rationalizations with the same

support size. This follows from the fact that CIID forecasts are determined by the

first 2 moments of the latent variable θ, and many distributions can match the first

two moments while differing at higher levels. This section illustrates this point for

the case of binary outcomes and then discusses what can be said more generally.

5.1 Non-uniqueness with Binary Outcomes

Suppose there are two outcomes Y “ t1, 2u, and suppose forecast pp, qq has a CIID

representation µ where θ is unknown probability that y “ 1, and v “ Erθ2s ´
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pErθsq2 ą 0. Now consider a two-point prior:6

Prpθ “ θLq “ λ, Prpθ “ θHq “ 1 ´ λ, 0 ă λ ă 1, 0 ď θL ď θH ď 1.

Let d :“ θH ´ θL ą 0, then θL “ p1 ´ p1´ λqd, θH “ p1 ` λd. Substituting into the

second moment implies d2 “
v

λp1 ´ λq
, so the two-point priors that match pm1,m2q

are

θL “ m1 ´ p1 ´ λq

c

v

λp1 ´ λq
, θH “ m1 ` λ

c

v

λp1 ´ λq

for any λ P p0, 1q such that 0 ď θL ď θH ď 1.

Although there is an infinite continuum of two-point mixtures indexed by λ that

reproduce the same two-period implications of any given Beta prior, these mixtures

yield different third moments Erθ3s “ λθ3L ` p1´λqθ3H , and thus different predictions

once a third outcome is observed. We discuss this further in the section on more

than two periods.

5.2 Rank of M pp, qq and support of the CIID representation

This section relates the forecasts pp, qq that can be rationalized by a prior with

support of size r to the rank of the matrix Mpp, qq. A consequence of this relation is

that binary CIID models are characterized by the condition that rankMpp, qq “ 2.

Proposition 3. If forecast pp, qq admits a CIID representation where µ has r ě 2

point support then pp, qq satisfies Reinforcement and M pp, qq is completely positive

and rankM ď r.

Proposition 3 is proved by establishing that if pp, qq has a CIID representation

with support r, then the complete positive rank of cprpMpp, qqq ď r. The result then

follows from the general relation cpr ě rank. The next proposition uses the same

connection between the size of the support and cprpMpp, qqq, but now paired with

the general inequality cpr ď rankprank`1q{2 ´ 1.

6Then p1 “ Erθs, q
p1q

1 “ Erθθs{Erθs, q
p2q

1 “ Erθp1´ θqs{Er1´ θs and Erθs “ λθL ` p1´ λqθH “

p1,Erθ2s “ λθ2L ` p1 ´ λqθ2H .
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Proposition 4. If forecast pp, qq satisfies Reinforcement and M pp, qq is completely

positive and has rank l, then pp, qq admits a CIID representation where µ has at most

lpl ` 1q{2 ´ 1 point support.

Say that a forecast is dogmatic if p “ qpiq for every i P Y .

Corollary 5. For every nondogmatic forecast pp, qq the following statements are

equivalent:

1. pp, qq admits a CIID representation where µ has a binary support;

2. pp, qq satisfies Reinforcement and M pp, qq is completely positive and has rank

2.

Proof. It immediately follows Propositions 3 and 4 and the observation that rankMpp, qq “

1 for a dogmatic pp, qq.

Example 3 (A CIID model with support ą rank M). Let θ P r0, 1s denote the

Bernoulli success probability for outcome 1, and suppose the prior over θ has support

pθL, θM , θHq: Prpθ “ θLq “ 1
4
,Prpθ “ θMq “ 1

2
,Prpθ “ θHq “ 1

4
, with θL “ 1

3
, θM “

1
2
, θH “ 2

3
, and p1 “ Erθs “ 1

4
¨ 1
3

` 1
2

¨ 1
2

` 1
4

¨ 2
3

“ 1
2
. Then Erθ2s “ 1

4

`

1
9

˘

` 1
2

`

1
4

˘

`

1
4

`

4
9

˘

“ 19
72
, Erθp1 ´ θqs “ 17

72
,

q
p0q

1 “
Erθp1 ´ θqs

Er1 ´ θs
“

17{72

1{2
“

17

36
,

and q
p1q

1 “ 19
36
. Thus the implied second-period conditional forecasts satisfy Reinforce-

ment, and

Mpp, qq “

˜

p1q1|1 p1 ´ p1qq1|0

p1p1 ´ q1|1q p1 ´ p1qp1 ´ q1|0q

¸

“

¨

˝

19
72

17
72

17
72

19
72

˛

‚

is symmetric, entrywise nonnegative, and has rank 2 ă suppµ.

6 Belief in Persistence or Reversal

We next apply our linear algebra characterization of CIID models to show that in

the two-period setting, it is impossible to distinguish between an agent who has a
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CIID model of the world and one who instead perceives persistence of the outcome

process, a form of overreaction to the realized outcome.

Definition 7. pp, qq has a persistent Bayesian representation is there exists q̂ “

tq̂p1q, ..., q̂pNqu such that pp, q̂q has a CIID representation and there is an α P p0, 1q

such that

qpiq
“ αei ` p1 ´ αqq̂piq

@i P t1, ..., Nu, (9)

where ei is the unit vector corresponding to a point mass on the i-th outcome.

An agent whose forecasts have a persistent Bayesian representation, while in

reality facing an i.i.d. environment, displays what has been called the hot-hand

fallacy in the line of work pioneered by Gilovich, Vallone, and Tversky [1985].

Definition 8. pp, qq has a reversing Bayesian representation is there exists q̂ “

tq̂p1q, ..., q̂pNqu such that pp, q̂q has a CIID representation and there is an α P p0, 1q

such that

q̂piq
“ αei ` p1 ´ αqqpiq

@i P t1, ..., Nu. (10)

Having a reversing Bayesian representation when facing an i.i.d. environment

corresponds to the gambler’s fallacy, Tversky and Kahneman [1971].

Note that the only difference between these two definitions is that the roles of q

and q̂ are flipped, and that they both require that α is strictly between 0 and 1.7

Finally, note that equation (10) can be rewritten as

q̂piq

p1 ´ αq
´

α

p1 ´ αq
ei “ qpiq,

so that pp, qq has a reversing Bayesian representation if it can be derived from a CIID

model that is modified so that after each outcome i, all outcomes j ‰ i receive a

multiplicative boost of 1{p1´αq to their probability, with the probability of outcome

i decreasing accordingly.

7If we allowed α “ 0 in the definitions, every CIID representation would have both persistent
and reversing Bayesian representations. Allowing α “ 1 in the persistent Bayesian representation
would not change it, while allowing it in the reversing representation would make it trivially satisfied
by every forecast.
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Proposition 5. If pp, qq has a persistent Bayesian representation then pp, qq has a

CIID representation.

Proof. Denote as mij the arbitrary entry of M pp, qq and m̂ij as the arbitrary entry

of M pp, q̂q where q and q̂ are related as in equation (9). Then

mij “ pjq
pjq

i “ pj

´

αIi“j ` p1 ´ αq q̂
pjq

i

¯

“ αpjIi“j ` p1 ´ αq m̂ij

Therefore M pp, qq “ αD ` p1 ´ αqM pp, q̂q where D is the diagonal matrix with

dii “ pi. By Example 2.1 in Berman and Shaked-Monderer [2003] D is completely

positive. By our Theorem 2, M pp, q̂q is also completely positive. By Theorem 2.2 of

Berman and Shaked-Monderer [2003], M pp, qq is also completely positive. Therefore

pp, qq has a CIID representation by our Theorem 2.

Thus (in the two-period case of this section), a belief that outcomes are somewhat

persistent (i.e., positively correlated) is not distinguishable from a CIID model.

It is easy to see that the converse need not be true: If n “ 2 and p “ qp1q “

qp2q “ p1{2, 1{2q, then pp, qq admits a CIID representation with a dogmatic ratio-

nalizing belief µ “ δp1{2,1{2q. However, any persistent Bayesian representation (9)

would require the associated CIID representation to have q
p1q

1 ă p1, a violation of

Reinforcement, which is not possible by Lemma 1. For the same reason, unlike the

persistent Bayesian representation, some form of reversing Bayesian representation

can be spotted from the agent’s forecast.8

Proposition 6. Let pp, qq be a forecast such that q
piq
i ă 1 for all i. If pp, qq has a

CIID representation, then pp, qq has a reversing Bayesian representation.

Proof. Suppose first that q
piq
i ă 1 for all i P t1, ..., Nu. Define α “ 1´maxiPt1,...,Nu q

piq
i .

Let q̂piq “ αei ` p1 ´ αqqpiq. Then pp, q̂q satisfies Reinforcement. By Theorem 2,

M pp, qq is completely positive. Observe that M pp, q̂q “ αD ` p1´αqMpp, qq, where

D is the diagonal matrix with dii “ pi. Since D is completely positive by Exam-

ple 2.1 of Berman and Shaked-Monderer [2003], M pp, q̂q is a convex combination of

8This can also be shown directly: Let pp, q̂q be the CIID representation derived from the dog-
matic belief µ “ δp1{2,1{2q and set qpiq “ 1{2e´i ` 1{2q̂. Then pp, qq has a reversing Bayesian rep-
resentation, but it violates Reinforcement, so it does not admit a CIID representation by Lemma
1.
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completely positive matrices, so by Theorem 2.2 of Berman and Shaked-Monderer

[2003] it is also completely positive. Therefore, pp, q̂q has a CIID representation by

our Theorem 2, so pp, qq has a reversing Bayesian representation.

We conclude this section by discussing a different perturbation of the CIID model

that can be detected using outcome forecasts, namely, when the agent believes in

a CIID model, but also that the first period observation is a noisy (i.e., garbled)

version of the realized outcome. This departure from a belief in a CIID model can be

detected, even in the particular case of binary outcomes and belief in arbitrarily small

garblings. Indeed, forecasts obtained from these models will typically fail Symmetry

unless overall the environment is symmetric, as otherwise in general piq
p̃iq
j ‰ piq

pj̃q

j

where the tilde denotes the garbled realization of the outcome.9

7 CIID Models for More than Two periods

When the analyst has elicited one-period-ahead forecasts over a longer time horizon

T , the CIID representation imposes additional constraints. This means that fewer

forecasts will have CIID representations, and those that do will have fewer of them.

This section characterizes the additional implications that can be extracted when we

observe forecasts over more than two dates.

First, in the binary case, observing one-step-ahead forecasts up to horizon T

identifies the first T moments of the latent Bernoulli parameter θ. The forecasts

after histories with many ones correspond to higher-order moments of θ. We use

this to connect to the truncated Hausdorff moment problem, and thus show that the

existence of a CIID representation is equivalent to a finite collection of simple sign

conditions on forward differences of these moments. This yields an exact and easily

checked characterization of CIID models in terms of observable forecasts. At the

same time, the truncation point T determines how tightly the prior is pinned down:

with T odd, the minimal-support rationalization is unique, whereas with T even

there is a one-dimensional family of distinct minimal-support priors that generate

9For a concrete example, suppose that the agent believes that it is equally likely that the
outcome is 1 with probability 1{5 or 3{4. Moreover, they believe that the garbling changes each
outcome into the other with probability ε. Easy computations show that Symmetry fails.
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the same finite sequence of forecasts.

Similarly, in the multinomial case, forecasts over more than two periods deliver

information about higher-order joint probabilities of outcomes and thus about higher-

order moments of the latent θ. The relevant objects are the sequence of moment

tensors tM pkqukďT associated with the joint distributions of pY1, . . . , Ykq and with the

multinomial count moments. Theorem 4 shows that a forecast system up to horizon

T has a CIID representation if and only if these tensors are simplex completely

positive and satisfy the natural marginal consistency identities; the matrix test based

on complete positivity of Mpp, qq is the special case T “ 2.

Multiple periods allow us to discriminate between misspecified models that are

observationally indistinguishable in two-period data. For example, in the two-period

setting, we showed that an agent who believes in spurious persistence (a hot-hand

bias implemented by shifting probability weight toward the most recent outcome)

cannot be distinguished from a CIID learner: such a perturbation preserves complete

positivity of Mpp, qq. Once we observe forecasts over longer histories, this invariance

breaks down. The additional restrictions imposed by higher-order moments can rule

out persistent or reversing updating rules that would otherwise pass all two-period

tests.

Finally, the multi-period perspective clarifies the relationship between finite-

horizon CIID tests and the infinite-horizon exchangeability results of de Finetti [1937]

and Hewitt and Savage [1955]. For each fixed horizon T , our characterization identi-

fies the precise moment conditions on the latent θ that are implied by CIID models

and shows that they can be expressed as complete positivity of the associated mo-

ment tensors. As T grows, these conditions become tighter and, in the limit they

converge to the full set of exchangeability restrictions. Thus, additional periods buy

both sharper falsifiability of the CIID benchmark and sharper identification of the

underlying prior when the benchmark is not rejected.

7.1 Necessary Conditions for T ą 2

Fix an horizon T ě 2. For t ě 0, a history of length t is ht “ py1, . . . , ytq P Y t, with ∅
denoting the empty history (t “ 0). Define the count map ν by νiphq “

ř|h|

s“1 1tys “

iu, i P Y , write ei for the ith unit vector, and note that when outcome i is observed
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νpph, iqq “ νphq ` ei.

For any history h “ py1, . . . , ytq P Y t with t ă T , let qphq P ∆pY q denote the

elicited one–step–ahead forecast of the period-pt`1q outcome. A CIID representation

has three immediate, easily-tested implications,

First, it must depend only on the count; this was vacuously true in the two-period

setting.

Definition 9 (Count sufficiency). Forecast tqpνqu|ν|ăT satisfies count sufficiency if

for any t and ht, h
1
t such that νphtq “ νph1

tq we have

qphtq
“ qph1

tq
“ qpνq. (11)

Next, there are two easily testable implications that generalize the necessary

Symmetry and Reinforcement conditions for T “ 2:

Definition 10 (Pairwise exchangeability). Forecast tqpνqu|ν|ăT satisfies pairwise ex-

changeability if for every node ν with |ν| ď T ´ 2 and all i ‰ j P Y ,

q
pνq

i q
pν`eiq
j “ q

pνq

j q
pν`ejq

i . (12)

Note that repeated applications of these pairwise conditions show that pairwise

exchangeability is equivalent to exchangeability.

Definition 11 (Reinforcement). Forecast tqpνqu|ν|ăT satisfies Reinforcement if for

every node ν with |ν| ď T ´ 2 and all i P Y ,

q
pν`eiq
i ě q

pνq

i . (13)

The final condition is the martingale property of beliefs. Like count sufficiency,

this condition only has bite when there are more than two periods.

Definition 12 (Martingale property). Forecast tqpνqu|ν|ăT satisfies the Martingale

property if for every node ν with |ν| ď T ´ 2,

qpνq
“

ÿ

jPY

q
pνq

j qpν`ejq. (14)
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Lemma 3. If tqpνqu|ν|ăT is induced by a CIID model, then (11), (12), (13), and (14)

all hold.

Example 4 (Martingale restriction in three periods). Consider the binary case Y “

t1, 2u and forecasts up to horizon T “ 3. Suppose the forecaster reports the following

one–step–ahead beliefs:

q
p0,0q

1 “ 1
2
, q

p1,1q

1 “ 4
5
, q

p0,1q

1 “ 1
5
,

and for histories of length two

q
p2,2q

1 “ 4
5
, q

p1,2q

1 “ 1
2
, q

p0,2q

1 “ 1
5
.

Up to horizon T “ 2, these forecasts are compatible with a CIID model. Indeed,

the period–1 forecasts coincide with those generated by a Beta prior with parameters

pα, βq “ p1
3
, 1
3
q:

q
p0,0q

1 “
α

α ` β
“ 1

2
, q

p1,1q

1 “
α ` 1

α ` β ` 1
“ 4

5
, q

p0,1q

1 “
α

α ` β ` 1
“ 1

5
,

so all two–period tests based on Mpp, qq are passed.

Once we elicit forecasts after two outcomes, the martingale condition (14) imposes

additional restrictions. For instance, at the node with one success and no failures,

ν “ p1, 0q, the martingale condition requires

q
p1,1q

1 “ q
p1,1q

1 q
p2,2q

1 ` q
p1,1q

2 q
p1,2q

1 ,

that is,
4
5

“ 4
5

¨ q
p2,2q

1 ` 1
5

¨ q
p1,2q

1 .

Under the reported forecasts,

4
5

vs 4
5

¨ 4
5

` 1
5

¨ 1
2

“ 16
25

` 1
10

“ 37
50
,

so the equality fails.

Intuitively, after seeing outcome 1 once, the forecaster assigns probability q
p1,1q

1 “
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4
5
to a further success. If the process were CIID, their current belief 4

5
would equal the

expected value of their belief after the second period, averaging over the two possible

second outcomes using her own current beliefs as weights. In this example, on average

the forecaster expects to end up with a different belief than they currently hold. This

violates the martingale property and therefore rules out any CIID representation on

horizon T “ 3, even though the forecasts up to T “ 2 admit a CIID rationalization.

This pattern can be interpreted as an overreaction to the first success or failure: the

forecaster uses a simple rule that maps the empirical frequency of outcome 1 into a

forecast, but this rule cannot arise from conditioning on a fixed latent θ, because it

breaks the martingale restriction.

7.2 Binary Outcomes and More than Two Periods

The problem is particularly tractable in the case of binary outcomes, so we will start

with that. Let Y “ t1, 2u. For t ă T and j P t0, . . . , tu, write qpj,tq :“ q
pνq

1 where

ν has j ones and t ´ j zeros. The multinomial conditions reduce to the following

simple, testable restrictions.

Lemma 4 (Binary necessary conditions for T ą 2). For every node pj, tq with 0 ď

j ď t ď T ´ 2:

qpj,tq
`

1 ´ qpj`1,t`1q
˘

“
`

1 ´ qpj,tq
˘

qpj,t`1q, (15)

qpj,tq
ď qpj`1,t`1q, (16)

Remark. There are only two equations here instead of four because notation here

imposes count sufficiency, and with binary outcomes the symmetry condition is equiv-

alent to the martingale condition.

7.2.1 Necessary and Sufficient Condition when |Y | “ 2

In the binary-outcome case, we can work with a one-dimensional latent state θ where

Eµpθq “ p1 The following lemma shows that the moments mr “ Erθrs are identified

by the forecasts after observing a history of only successes (outcome “1”).

Lemma 5 (Identification of Moments from Forecasts). Suppose |Y | “ 2 and that a

CIID representation exists for a sequence of one-step-ahead forecasts up to horizon
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T . For each k P t1, . . . , T ´ 1u, let q˚
k`1 be the one-step-ahead forecast for outcome 1

after observing k consecutive 1s:

p1 “ PpX1 “ 1q, q˚
k`1 “ PpXk`1 “ 1 | X1 “ ¨ ¨ ¨ “ Xk “ 1q.

These forecasts uniquely identify the moments tm1, . . . ,mT u of the latent variable

θ P r0, 1s via the recursive formula m1 “ p1,mk`1 “ mk ¨ q˚
k`1 for k P t1, . . . , T ´ 1u.

This result shows that, given the forecasts, we can construct a unique candidate

sequence of moments tmru
T
r“1. The remaining task, addressed by Lemma 6, is to

determine whether this sequence of numbers could have been generated by a valid

probability measure on r0, 1s. This is precisely the truncated Hausdorff moment

problem.

For integers a, b ě 0, define the mixed moments ma,b :“ E
“

θap1 ´ θqb
‰

. For any

history with j realizations of 1 and t ´ j realizations of 2, the condition for the

one–step forecasts to be consistent with the given mixed moments is

q
pj,tq
1 “

mj`1, t´j

mj, t´j

, @t P t1, ..., T ´ 1u, @j P t1, ..., tu, (17)

where the condition is deemed satisfied whenever the denominator is equal to 0. Also

define forward differences ∆mr :“ mr`1 ´ mr and ∆s`1mr :“ ∆p∆smrq.

Lemma 6 (Moment characterization of Binary CIID). Suppose |Y | “ 2, and let

m0, . . . ,mT P R be the moments implied by a forecast system pp, qq. The following

are equivalent.

(i) There exists a probability measure µ on r0, 1s and θ „ µ such that the forecasts

admit a CIID representation up to horizon T .

(ii) Equation (17) is satisfied and the Hausdorff truncated moment conditions

p´1q
s ∆ smr ě 0 for all integers r, s ě 0 with r ` s ď T (18)

hold.

The alternating sign pattern of the forward differences ∆smr in equation (18)

captures the requirement that mr can be written as
ş1

0
xrdµpxq for some probability
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measure µ on r0, 1s. Thus, in the binary setting, when forecasts satisfy equation (17),

checking for the existence of a CIID representation reduces to verifying these finite

collections of inequalities on forward differences.

Combining Lemmas 5 and 6 yields the following theorem.

Theorem 3. When |Y | “ 2, a sequence of one-period forecasts up to period T has a

CIID representation if and only if they satisfy equations (17) and (18).

7.2.2 Parity

A striking feature is a parity effect: when we observe an odd number of moments,

the minimal-support prior is unique; with an even number, there is a continuum of

minimal-support priors.

Proposition 7 (Parity effect for binary CIID representations). Suppose |Y | “ 2 and

that a sequence of one-step-ahead forecasts up to horizon T admits a CIID represen-

tation, with associated moment sequence tmru
T
r“0 that strictly satisfy the Hausdorff

moment inequalities.

1. If T “ 2k ´ 1 is odd, then there is a unique CIID representation whose prior µ

has support of size k, and no CIID representation exists with support strictly

smaller than k.

2. If T “ 2k is even, then there is no CIID representation whose prior has support

of size at most k. Moreover, the set of CIID representations with minimal

support k ` 1 is a one-dimensional family of distinct priors.

The proof of this result is in Appendix A.13. If T “ 2k´1 is odd and the Hausdorff

moment inequalities hold strictly, then there is a unique CIID representation whose

prior has support of size k, and no representation with smaller support exists. By

contrast, if T “ 2k is even, then (under the same nondegeneracy condition) there is no

CIID representation with support of size k, and the set of CIID representations with

minimal support k ` 1 is a one-dimensional family of distinct priors. For example,

when we observe three moments (T “ 3), the minimal–support CIID prior is unique

and has support on two points. By contrast, with four observed moments (T “ 4),
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under the same nondegeneracy conditions there is a one–dimensional continuum of

distinct three–point priors that all generate the same finite sequence of forecasts.

Intuitively, this “parity effect” comes from counting dimensions in the truncated

moment problem: a k–point prior on r0, 1s has 2k ´ 1 free parameters (support

locations and probabilities), so T “ 2k ´ 1 moments can pin it down uniquely, while

T “ 2k moments does not pin down the 2k ` 1 parameters of a pk ` 1q–point prior.

7.3 Many Outcomes and Many Periods

7.3.1 Necessary Conditions

When there are n ą 2 outcomes and horizon T ě 1, there are additional necessary

conditions beyond those in Section 7.1. For a count vector ν “ pν1, . . . , νnq P Nn

with |ν| :“
ř

i νi ď T , and a CIID model µ, write

θν :“
ź

iPY

θ νi
i , mν :“ Eµ

“

θν
‰

, @θ “ pθ1, . . . , θnq P ∆pY q.

In a CIID model µ, the forecasts depend only on ν, and

q
pνq

i “ Erθi | νs “
mν`ei

mν

, i P Y, |ν| ă T.

Moreover, the moment sequence tmνu must satisfy the linear consistency identities

that
ÿ

jPY

mν`ej “ mν for all |ν| ď T ´ 1.

This ensures that
ř

jPY q
pνq

j “ 1, for every count vector ν.10 Define coordinate forward

differences on the moment array by

p∆imqν :“ mν`ei ´ mν , ∆β :“
ź

iPY

∆βi

i pβ P Nn
q.

10Fix k ě 2 and any multi-index ν “ pνiqiPY with |ν| “ k ´ 1. By definition, mν “ E
“

ś

iPY θνi
i

‰

and mν`ej “ E
“

θj
ś

iPY θνi
i

‰

for each j P Y . Hence

ÿ

jPY

mν`ej “ E
”´

ÿ

jPY

θj

¯

ź

iPY

θνi
i

ı

“ E
“

ź

iPY

θνi
i

‰

“ mν .
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The forward-difference operators ∆βm and the identities in the next lemma capture

the two requirements that appeared in the binary case: (i) the existence of a non-

negative representing measure on the simplex, and (ii) the constraint that
ř

i θi “ 1

almost surely. The inequalities p´1q|β|p∆βmqν ě 0 ensure that all mixed monomials

θν
ś

ip1´θiq
βi have nonnegative expectation, while the consistency requirements en-

sure that the moments respect the simplex normalization. Together, these conditions

are necessary for a CIID representation.

Lemma 7 (Necessary conditions for multinomial CIID representation up to horizon

T ). If there exists a probability measure on ∆pY q with moments tmνu|ν|ďT (hence

forecasts q
pνq

i “ mν`ei{mν), then for all ν, β P Nn with |ν| ` |β| ď T the following

hold.

(a)

p´1q
|β|

p∆βmqν “ E

«

´

ź

iPY

θ νi
i

¯ ´

ź

iPY

p1 ´ θiq
βi

¯

ff

ě 0.

(b) Simplex normalization (linear consistency across degrees): for every b P

t1, . . . , T ´ |ν|u,
ÿ

|β|“b

ˆ

b

β

˙

m ν`β “ E
”

θν
´

ÿ

iPY

θi

¯bı

“ mν ,

in particular
ř

iPY m ν`ei “ mν.

(c) Zeroth-degree normalization: m0 “ Er1s “ 1 (equivalently,
ř

iPY mei “ 1).

Remarks. 1) For n “ 2 this reduces to the binary conditions: mj,b “ Erθjp1 ´ θqbs,

q
pj,bq

1 “ mj`1,b{mj,b, and p´1qb∆ b
1mpj,0q ě 0. 2) Unlike with binary outcomes, the

Hausdorff inequalities are not sufficient here. For example, the necessary conditions

above are satisfied by the forecast system in Example 1, which does not have a

CIID representation. As the number of periods T grows, the necessary conditions

in Proposition 7 become tighter, but (we conjecture that) they are only sufficient in

the limit T Ñ 8.

7.3.2 Tensor characterization

For binary outcomes, the key objects were the power moments mr “ Erθrs. For gen-

eral outcomes, the observable counterparts are the order-k sequence tensors defined
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from joint probabilities of the data. Under a CIID representation, these coincide with

the k-th moment tensors of the latent θ. Our main multi-period result shows that

CIID rationalizability is equivalent to each of these tensors being simplex completely

positive, together with a natural consistency condition implied by the law of total

probability.

Definition 13 (Sequence and Count Tensors). For a given stochastic process pXtq
T
t“1

and k P t1, . . . , T u, the order-k sequence tensor T pkq is defined by its components:

T
pkq

i1¨¨¨ik
:“ PpX1 “ i1, . . . , Xk “ ikq for pi1, . . . , ikq P Y k.

If a CIID representation with latent variable θ P ∆pY q drawn from a measure µ

exists, these components are the moments of the outer product of θ:

T
pkq

i1¨¨¨ik
“ Eµ

“

k
ź

l“1

θil
‰

.

Under the CIID hypothesis, we will refer to T pkq “ Eµrθbks as the moment tensor

M pkq, with entries M
pkq

i1...ik
“ Er

śk
l“1 θils.

The forecasts provided by an agent are the one-step-ahead conditional probabil-

ities. If these forecasts depend only on the counts of past outcomes, as they must in

a CIID model, we can express them directly in terms of the count moments.

Definition 14 (Simplex Completely Positive Tensors). A symmetric order-k tensor

S with components Si1¨¨¨ik is simplex completely positive (SCP) if it can be written as

a convex combination of rank-one tensors generated by vectors in the simplex. That

is, there exist r P N, weights γℓ ě 0 with
řr

ℓ“1 γℓ “ 1, and points πpℓq P ∆pY q such

that

Si1¨¨¨ik “

r
ÿ

ℓ“1

γℓ

k
ź

j“1

π
pℓq
ij
.

Also, for each k P t1, . . . , T u, define the order-k count moment tensor M pkq by

M pkq
ν :“ mν for all ν with |ν| “ k.

This can be viewed as symmetric tensor on Y k with entries M
pkq

i1¨¨¨ik
:“ mνpi1,...,ikq,
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where νpi1, . . . , ikq is the count vector of the multi–index pi1, . . . , ikq. When expressed

using count moments tmνu|ν|“k corresponding to the symmetric tensor S, this is

equivalent to:

mν “

r
ÿ

ℓ“1

γℓ
`

πpℓq
˘ν

pfor all |ν| “ kq.

The main result of this section generalizes the CIID characterization of Theorem

2 to more than two periods.

Theorem 4. The forecast system pp, qq has a CIID representation if and only if the

associated count moment tensors tM pkquTk“1 are simplex completely positive.

A key step of the proof is Lemma B.1, which is another version of the truncated

moment problem on the simplex. The Lemma gives two properties of the moment

tensor that are necessary and sufficient for there to be a probability distribution

over θ P ∆pY q whose moments up to order T are pmνq. The hard direction is

showing these conditions are enough to reconstruct a measure µ. The proof builds

a linear functional L that “pretends” to be integration against µ: Lpθνq “ mν . The

consistency identities imply L treats the sum Spθq “
ř

j θj as if it were the constant

1, mimicking the fact that S “ 1 on the simplex. The simplex-complete-positivity

of the order-T tensor then forces Lppq ě 0 for any polynomial p that is nonnegative

on the simplex. With this positivity in hand, a separating-hyperplane/convex-hull

argument shows the vectorm “ pmνq must lie in the convex hull of “moment vectors”

pθνq coming from actual points θ P ∆pY q. That means m can be written as a finite

mixture of such pointwise moment vectors, which is exactly the same as saying there

exists a probability measure µ on ∆pY q with those moments.

8 Discussion

This paper characterizes when a sequence of one-step-ahead forecasts is consistent

with a CIID model. For the two-period, binary-outcome case, the conditions are

simple and intuitive: Symmetry and Reinforcement. For more outcomes, these con-

ditions are necessary but not sufficient; the key object becomes the second-moment

matrix Mpp, qq, which must be completely positive. For more periods, the entire
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hierarchy of moment tensors must be simplex completely positive and satisfy linear

consistency identities.

These results provide a clear, operational way to test whether observed forecast-

ing behavior can be explained by a classic model of learning about a stable, unknown

environment. For example, forecasts where outcome i is most reinforced after out-

come j and vice versa, as in Example 1, can be immediately flagged as non-Bayesian

in this sense. More generally, any failure of complete positivity (or, in the n ď 4

case, positive semidefiniteness) is a definitive sign that the agent’s updating rule is

inconsistent with any CIID representation.

Conversely, our results on persistence show the limits of what one-step-ahead

forecasts can reveal. An agent who believes in spurious positive autocorrelation

(persistence) will generate forecasts that are indistinguishable from CIID models.

This is because adding persistence to a CIID model preserves the complete positivity

of the moment structures. Detecting such biases would require richer data, such as

eliciting multi-step-ahead forecasts or beliefs about the underlying data-generating

process itself.

The connection to the truncated moment problem in the multi-period binary case

shows that observing an odd number of moments identifies a unique minimal-support

prior can be identified, while an even number of moments leaves some indeterminacy.

This has direct implications for applied work attempting to estimate belief structures

from observed forecasts.
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A Appendix

A.1 Proof of Theorem 1

Proof. Lemma 1 shows that Symmetry and Reinforcement are necessary. To show

they are sufficient, suppose forecast pp, qq satisfies Symmetry and Reinforcement.

Case a If 1 ą p1 ą q
p2q

1 ą 0, consider a Beta distribution with parameters given

by equation (4). The implied probability of outcome 1 in the first period is then is

p̃1pα, βq “
α

α ` β
“

p1q
p2q

1

p1´q
p2q

1

p1q
p2q

1

p1´q
p2q

1

`
q

p2q

1 p1´p1q

p1´q
p2q

1

“
p1q

p2q

1

p1q
p2q

1 ` q
p2q

1 p1 ´ p1q
“ p1,

as desired.

The period-2 forecast probabilities are

q̃
p1q

1 pα, βq “
α ` 1

α ` β ` 1
, q̃

p2q

1 “
α

α ` β ` 1
, and

q̃
p2q

1 pα, βq “
α

α ` β ` 1
“

p1q
p2q

1

p1´q
p2q

1

p1

p1´q
p2q

1

“ q
p2q

1 , as desired.

Note that q̃
p1q

1 pα, βq “ α`1
α

q̃
p2q

1 pα, βq, α ` 1 “
p1q

p2q

1

p1´q
p2q

1

` 1 “
p1q

p2q

1 `p1´q
p2q

1

p1´q
p2q

1

, and

α`1
α

“
p1q

p2q

1 `p1´q
p2q

1

p1q
p2q

1

. Thus

q̃
p1q

1 pα, βq “
p1q

p2q

1 ` p1 ´ q
p2q

1

p1
“ q

p2q

1 ` 1 ´ q
p2q

1 {p1.
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Symmetry implies that p1p1 ´ q
p1q

1 q “ p1 ´ p1qq
p2q

1 , so

q
p1q

1 “ q
p2q

1 ` 1 ´ q
p2q

1 {p1 “ q̃
p1q

1 pα, βq,

which completes the proof for case a).

Case b If p1 “ q
p2q

1 , Symmetry implies that p2 “ q
p1q

2 . So specifying that µ is a

point mass on θ “ pp1, p2q recovers the specified pp, qq.

Case c If p1 ‰ q
p2q

1 and q
p2q

1 “ 0, then by Symmetry q
p1q

2 “ 0. Then specifying

µ “ p1δ1 ` p1 ´ p1qδ2 recovers the specified pp, qq.

Case d If p1 “ 1, then by Reinforcement q
p1q

1 “ 1. Therefore, specifying that µ is

a point mass on θ “ p1, 0q recovers the specified pp, qq.

A.2 Proof of Lemma 2

Proof. Only if. Observe that by equations (1) and (3) if µ P ∆p∆pY qq is a CIID

representation for pp, qq then for all i, j P Y

mijpp, qq “

ż

∆pY q

θjdµpθq

ż

∆pY q

θidµpθ|jq

“

ż

∆pY q

θjdµpθq

ż

∆pY q

θiθj
ş

∆pY q
θjdµpθq

dµpθq “

ż

∆pY q

θiθjdµpθq

(19)

if pj ‰ 0 and mijpp, qq “ 0 “
ş

∆pY q
θiθjdµpθq if pj “ 0.

If. Suppose that there exists a µ P ∆p∆pY qq such that equation (5) is satisfied.

Then

pj “

n
ÿ

i“1

pj q
pjq

i “

n
ÿ

i“1

mijpp, qq “

n
ÿ

i“1

ż

∆pY q

θiθjdµpθq “

ż

∆pY q

n
ÿ

i“1

θiθjdµpθq “

ż

∆pY q

θjdµpθq.

Moreover, if pj ‰ 0

q
pjq

i “
mijpp, qq

pj
“

ş

∆pY q
θiθjdµpθq

ş

∆pY q
θjdµpθq

“

ż

∆pY q

θidµpθ|jq,

so µ is a CIID model for pp, qq with µp¨|jq defined as δq for those j such that pj “ 0.
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A.3 Proof of Claim 1

Proof. Suppose that M is completely positive, so there exist
`

π̄psq
˘k

s“1
P pRn

`qk such

that

Mij “

k
ÿ

s“1

π̄
psq

i π̄
psq

j @i, j P t1, . . . , nu.

For each s, let

Zs :“
n

ÿ

l“1

π̄
psq

l , π̂
psq

i :“
π̄

psq

i

Zs

, γs :“ Z2
s P R`.

Then π̂psq P ∆pY q and

Mij “

k
ÿ

s“1

π̄
psq

i π̄
psq

j “

k
ÿ

s“1

Z2
s π̂

psq

i π̂
psq

j “

k
ÿ

s“1

γsπ̂
psq

i π̂
psq

j .

Moreover,

n
ÿ

i“1

Mij “

k
ÿ

s“1

γs

n
ÿ

i“1

π̂
psq

i π̂
psq

j “

k
ÿ

s“1

γsπ̂
psq

j ,

so

n
ÿ

i“1

n
ÿ

j“1

Mij “

k
ÿ

s“1

γs

n
ÿ

j“1

π̂
psq

j “

k
ÿ

s“1

γs “ 1.

Thus
řk

s“1 γs “ 1 and Mij “
řk

s“1 γsπ̂
psq

i π̂
psq

j is a simplex completely positive repre-

sentation, which proves the claim.

A.4 Proof of Theorem 2

Proof. (2) ñ (1). By Lemma 2, there is µ P ∆p∆pY qq withmijpp, qq “
ş

∆pY q
θiθjdµpθq

for every i, j P Y . Since ∆pY q is compact and π ÞÑ π πJ is continuous,

Mpp, qq P convtπ πJ : π P ∆pY qu.
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By Carathéodory’s theorem (see Aliprantis and Border, 2013, Theorem 5.32 with

dimension r “ 1
2
npn ` 1q), we can write

Mpp, qq “

r`1
ÿ

s“1

γs π
psqπpsqJ, where all γs ą 0,

r`1
ÿ

s“1

γs “ 1, and all πpsq
P ∆pY q (20)

establishing complete positivity.

(1) ñ (3). By Claim 1, Mpp, qq is simplex completely positive. Given M “
r

ÿ

s“1

γs π
psqπpsqJ, define the discrete measure µpθq “

řr
s“1 γs δπpsqpθq. Then

ż

∆pY q

πi πj µpdπq “

r
ÿ

s“1

γs π
psq

i π
psq

j “ mij,

establishing that mijpp, qq “
ş

∆pY q
θiθjdµpθq for every i, j P t1, ..., nu.

(3) ñ (2). Trivial.

A.5 Proof of Corollary 1

Proof. The first part of the statement follows from Theorem 2, which shows pp, qq

has a Bayes-rationalizing conditionally i.i.d. model with finite support. For the

second part, suppose by contradiction that pp, qq has a unique CIID model. By the

first part, it must have finite support. By Lemma 1 pp, qq satisfies Symmetry and

Reinforcement, so the proof of Theorem 1 implies there is a CIID model with a Beta

distribution.

A.6 Proof of Corollary 2

Proof. Theorem 2 shows that p1q is equivalent to Mpp, qq being completely positive.

That p1q ñ p2q then follows from the immediate fact that a completely positive matrix

is positive semidefinite. That p2q implies a completely positive Mpp, qq follows from

the fact that when n ď 4, every positive semidefinite matrix with non-negative

entries is completely positive. (See Diananda [1962] or Theorem 2.4 in Berman and

Shaked-Monderer [2003].)
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A.7 Proof of Proposition 1

Proof. A full cycle requires Covµpθi`1, θiq ą 0 for all i along the cycle.

Case n=2: From Lemma 1, pp, qq satisfies Reinforcement, which in the binary

outcome case immediately rules out q
pjq

i ą i for i ‰ j.

Case n=3: From equation (8):

Varpθ1q ` Varpθ2q ` Varpθ3q ` 2 pCovpθ1, θ2q ` Covpθ2, θ3q ` Covpθ3, θ1qq “ 0.

Since variances are non-negative, if all three covariances were strictly positive, the

left-hand side would be strictly positive, a contradiction. So at least one of the cycle

covariances must be non-positive, and a full cycle cannot occur.

Case n=4: The sum of the four edge covariances is

Covpθ1, θ2q ` Covpθ2, θ3q ` Covpθ3, θ4q ` Covpθ4, θ1q

“ Covpθ1 ` θ3, θ2 ` θ4q “ Covpθ1 ` θ3, 1 ´ pθ1 ` θ3qq “ ´Varpθ1 ` θ3q ď 0.

A full 4-cycle is therefore impossible.

A.8 Proof of Proposition 2

Proof. Fix n ě 5. Choose numbers H,L with 0 ă L ă H ă 1 satisfying

2H ` pn ´ 2qL “ 1. (21)

For r P Y define θprq P ∆pY q by

θ
prq

k “

$

&

%

H, k P tr, r ` 1 mod nu,

L, otherwise.

Let µ be the uniform distribution on tθp1q, . . . , θpnqu. By equation (21),

pj “ Eµrθjs “
2H ` pn ´ 2qL

n
“

1

n
for all j P Y,

so the period-1 forecast is uniform.

Fix i P Y . Across the n support points, the pair pθi, θi`1q takes values pH,Hq
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once, pH,Lq and pL,Hq once each, and pL,Lq the remaining n ´ 3 times. Hence

Eµrθiθi`1s “
1

n

´

H2
` 2HL ` pn ´ 3qL2

¯

, Eµrθis “
1

n
.

Therefore, by equation (7),

q
piq
i`1 “

Eµrθiθi`1s

Eµrθis
“ H2

` 2HL ` pn ´ 3qL2.

We need q
piq
i`1 ą p i`1 “ 1{n. Define fnpLq :“ HpLq2 ` 2HpLqL ` pn ´ 3qL2, where

HpLq :“ 1´pn´2qL
2

. A direct calculation gives

fnpLq “
1

4
´

n ´ 4

2
L `

npn ´ 4q

4
L2, so fnp0q “

1

4
.

For n ě 5, we have fnp0q “ 1{4 ą 1{n. By continuity of fnpLq, there exists ε ą 0

such that fnpLq ą 1{n for all L P p0, εq. Picking such an L and setting H by equation

(21) yields q
piq
i`1 ą 1{n “ p i`1 for every i, which constitutes a full cycle.

A.9 Proof of Corollary 3

Proof. By assumption there is a positive diagonal matrix D “ diagps1, . . . , snq with

s P Rn
`` such that

pDMpp, qqDqii ě
ÿ

j‰i

pDMpp, qqDqij @i P t1, ..., nu.

Therefore A :“ DMpp, qqD is symmetric, nonnegative, and diagonally dominant,

hence it is completely positive by Theorem 2.5 in Berman and Shaked-Monderer

[2003]. As a consequence, it can be written as A “
řr

k“1 αku
pkqpupkqqJ for some

α P Rk, pupkqqrk“1 P pRnqk. Conjugating by D´1 yields

Mpp, qq “ D´1AD´1
“

ÿ

k

αk

`

D´1upkq
˘`

D´1upkq
˘J

,

which is a sum of nonnegative rank-one outer products. Hence Mpp, qq is completely

positive. With this, pp, qq admits a CIID representation by Theorem 2.
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A.10 Proof of Proposition 3

Proof. By Theorem 2, pp, qq satisfies Reinforcement and M pp, qq is completely

positive. Denote as pθ p1q , ..., θ prqq the elements of the support of µ, and define

ϕ piq “ µ pθ piqq. Define the vectors fi P Rr by

fi “

´

a

ϕ p1qθi p1q , ...,
a

ϕ prqθi prq

¯J

.

Let Mij “ xfi, fjy. By construction,

Mij “

r
ÿ

k“1

p
a

ϕ pkqθi pkqqp
a

ϕ pkqθj pkqq “

r
ÿ

k“1

ϕ pkq θi pkq θj pkq .

Also, Bayes rule in the CIID model with prior µ gives

q
piq
j “

r
ÿ

k“1

ϕ pkq θi pkq
řr

κ“1 ϕ pκq θi pκq
θj pkq (22)

and

M pp, qqij “ piq
piq
j “

r
ÿ

k“1

ϕ pkq θi pkq q
piq
j “

r
ÿ

k“1

ϕ pkq θi pkq θj pkq “ Mij,

where the third equality follows from equation (22).

Therefore, the CP-rank of M is no more than r and by Proposition 3.2 in Berman

and Plemmons [1994], rankM ď cprM .

A.11 Proof of Proposition 4

Proof. SinceM pp, qq is completely positive,Mij pp, qq “ xfi, fjy and fi “ px p1q , ..., x prqq

with xi pjq ě 0, for all i P t1, ..., nu. Moreover, by Theorem 3.5 in Berman and Plem-

mons [1994], we can pick these f such that r ď lpl ` 1q{2 ´ 1, and it is without loss

of generality to have
ř

i xi pkq ą 0 for all k P t1, ..., ru.11 Let

Sk “
ÿ

i

xi pkq .

11To see this, let f̃ be the r ´ 1 dimensional vector with entries equal to f except for not having
entry k. We have Mij pp, qq “ xfi, fjy0

řr
l“1 xiplqxjplq “

řr
l‰k xiplqxjplq “ xf̃i, f̃jy, showing that

the zero entry k could be directly omitted to begin with.
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We have
ř

i,j M pp, qqij “
ř

j pj “ 1. We also have
ř

i,j M pp, qqij “
ř

i,j

řr
k“1 xi pkqxj pkq “

řr
k“1p

ř

i xi pkqqp
ř

j xj pkqq “
řr

k“1 S
2
k . Thus

řr
k“1 S

2
k “ 1.

Define ϕ pkq “ S2
k . Since Sk ą 0 and

řr
k“1 S

2
k “ 1, we have ϕ pkq P p0, 1q. Define

θi pkq “
xi pkq

Sk

@k P t1, ..., ru .

Since
ř

i xi pkq “ Sk, both θ pkq are probability vectors in ∆n´1. Since the vectors

px p1q , ..., x prqq are linearly independent, pθ p1q , ..., θ prqq are distinct. We now check

that the CIID model with prior µ supported on pθ p1q , ..., θ prqq and with µ pθ pkqq “

ϕ pkq induces pp, qq.

We also have:

pj “
ÿ

i

Mij “
ÿ

i

r
ÿ

k“1

xi pkqxj pkq “

r
ÿ

k“1

xj pkq
ÿ

i

xi pkq “

r
ÿ

k“1

xj pkqSk

“

r
ÿ

k“1

xj pkq
a

ϕ pkq “

r
ÿ

k“1

θj pkq
a

ϕ pkq
a

ϕ pkq “

r
ÿ

k“1

θj pkqϕ pkq .

Identity (ii) holds by construction:

Mij pp, qq “

r
ÿ

k“1

xi pkqxj pkq “

r
ÿ

k“1

a

ϕ pkqθi pkq p
a

ϕ pkqθj pkqq “

r
ÿ

k“1

ϕ pkq θi pkq θj pkq .

Therefore,

q
piq
j “

Mij pp, qq

pi
“

řr
k“1 ϕ pkq θi pkq θj pkq
řr

k“1 θi pkqϕ pkq
“

r
ÿ

k“1

µ pθ pkq |iq θj pkq

proving that pp, qq is represented by the CIID model with prior µ.

A.12 Proof of Lemma 3

Proof. We will show that the four stated properties hold. Throughout the proof,

we consider an arbitrary count vector ν with |ν| ď T ´ 2 and let t “ |ν|.

(1) Count sufficiency

Let ht and h1
t be two histories of the same length t with the same count vector ν.

The likelihood of observing ht given θ is Lpht | θq “
śn

i“1 θ
νiphtq

i and the likelihood
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of h1
t is Lph1

t | θq “
śn

i“1 θ
νiph

1
tq

i . Since ht and h1
t have the same count vector, νphtq “

νph1
tq, and so Lpht | θq “ Lph1

t | θq for all θ Hence the posteriors coincide and this

implies the forecasts do too. This proves count sufficiency.

(2) Pairwise exchangeability.

Using count sufficiency, q
pν`eiq
j “ PrpYt`2 “ j | Yt`1 “ i, νq, where ei is the unit

vector with 1 in component i and 0 elsewhere. Therefore

q
pνq

i q
pν`eiq
j “ PrpYt`1 “ i | νq PrpYt`2 “ j | Yt`1 “ i, νq “ PrpYt`1 “ i, Yt`2 “ j | νq.

Similarly, q
pνq

j q
pν`ejq

i “ PrpYt`1 “ j, Yt`2 “ i | νq.

Given θ, the sequence after time t is i.i.d. with

PrpYt`1 “ i, Yt`2 “ j | θ, νq “ θiθj “ θjθi “ PrpYt`1 “ j, Yt`2 “ i | θ, νq.

Integrating with respect to the posterior yields

PrpYt`1 “ i, Yt`2 “ j | νq “ PrpYt`1 “ j, Yt`2 “ i | νq.

Combining with the expressions above gives q
pνq

i q
pν`eiq
j “ q

pνq

j q
pν`ejq

i , so pairwise

exchangeability holds.

(3) Reinforcement.

From count sufficiency

q
pν`eiq
i “ PrpYt`2 “ i | Yt`1 “ i, νq “

PrpYt`1 “ i, Yt`2 “ i | νq

PrpYt`1 “ i | νq
.

Conditional on θ and ν, Yt`1 and Yt`2 are independent and both have distribution

θ. Thus PrpYt`1 “ i, Yt`2 “ i | νq “ Erθ2i | νs and .PrpYt`1 “ i | νq “ Erθi | νs, so

q
pν`eiq
i “

Erθ2i |νs

Erθi|νs
.

We want to show that q
pν`eiq
i ě q

pνq

i , that is,

Erθ2i | νs

Erθi | νs
ě Erθi | νs.

Whenever Erθi | νs ą 0, this is equivalent to Erθ2i | νs ě pErθi | νsq2. And because

Varpθi | νq “ Erθ2i | νs ´ pErθi | νsq2 ě 0 this inequality holds. In the case

Erθi | νs “ 0, we have q
pνq

i “ 0, and Erθ2i | νs “ 0 as well, so q
pν`eiq
i “ 0 and the
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inequality still holds. This proves reinforcement.

(4) Martingale property. Conditional on θ and ν,Yt`2 is independent of the

past and has distribution θ, so PrpYt`2 “ i | νq “ Erθi | νs “ q
pνq

i .

By the law of total probability,

PrpYt`2 “ i | νq “

n
ÿ

j“1

PrpYt`2 “ i | Yt`1 “ j, νqPrpYt`1 “ j | νq.

Using count sufficiency and the definition of q, we get PrpYt`2 “ i | νq “
řn

j“1 q
pνq

j q
pν`ejq

i .

Thus q
pνq

i “
řn

j“1 q
pνq

j q
pν`ejq

i or equivalently

qpνq
“

n
ÿ

j“1

q
pνq

j qpν`ejq,

which is the martingale property.

We have shown that count sufficiency, pairwise exchangeability, reinforcement,

and the martingale property all follow from the assumption of a CIID representation.

This completes the proof of Lemma 3.

A.13 Uniqueness and Multiplicity

Definition 15 (Hankel Moment Matrix). Given moments tm0, . . . ,m2j´2u, the Han-

kel matrix Hj is the j ˆ j matrix with entries pHjqrc “ mr`c for r, c P t0, . . . , j ´ 1u.

A measure µ can generate these moments only if Hj is positive semidefinite (PSD).

Hj is positive definite (PD) if and only if the minimal support of µ contains at least

j points.

Theorem 5 (Uniqueness with Odd Moments). Let T “ 2j ´ 1 for an integer j ě 1.

If the associated j ˆ j Hankel matrix Hj is positive definite, then there exists a

unique discrete probability distribution with exactly j support points that generates

the moments tm0, . . . ,m2j´1u.

Theorem 6 (Non-Uniqueness with Even Moments). Let T “ 2k for an integer

k ě 1. If the moments tm0, . . . ,m2ku are such that the Hankel matrix Hk`1 is

positive definite, then there is no rationalizing prior with k or fewer support points.
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Furthermore, there exists a one-parameter family of distinct pk`1q-point distributions

that all generate these moments.

The proofs rely on the following theorems.

Theorem A (Orthogonal Polynomial Roots). (See Szegő, 1975, Theorem 3.3.1)

Let µ be a positive measure on ra, bs with at least j points in its support. Let

tPkpxqu be the sequence of monic orthogonal polynomials with respect to µ. Then

the roots of Pjpxq are all real, distinct, and lie in the interior pa, bq.

Theorem B (Gaussian Quadrature). (See Szegő, 1975 Theorem 3.4.1)

Let the nodes tp1, . . . , pju be the roots of the j-th orthogonal polynomial Pjpxq.

Then there exist unique positive weights tλ1, . . . , λju such that for any polynomial

fpxq of degree at most 2j ´ 1:

ż

fpxqdµpxq “

j
ÿ

k“1

λkfppkq

Theorem C (Range of Next Moment). Kreuin, Nudel, et al., 1977 Given a moment

sequence tm0, . . . ,m2ku for which Hk`1 is positive definite, the set of all possible

values for the next moment, m2k`1, consistent with a positive measure on r0, 1s,

forms a non-degenerate closed interval rm´
2k`1,m

`
2k`1s.

A.13.1 Proof of Uniqueness with Odd Moments

Let T “ 2j ´ 1, giving moments tm0, . . . ,m2j´1u. Assume Hj is PD.

The PD condition on Hj ensures a well-defined inner product xf, gy “
ş

fg dµ.

This allows the construction of a unique sequence of monic orthogonal polynomials

tPkpxqu, where each Pjpxq is uniquely determined by moments m0, . . . ,m2j´1.

By Theorem A, Pjpxq has j distinct real roots tp1, . . . , pju in p0, 1q. These are

our candidate support points.

By Theorem B, there exist unique positive weights tλku corresponding to these

nodes such that the integration rule is exact for all polynomials of degree up to

2j ´ 1. By choosing the polynomial fpxq “ xr for each r P t0, . . . , 2j ´ 1u, we get

mr “
ş

xrdµpxq “
řj

k“1 λkp
r
k. This confirms the existence of a j-point distribution

matching all 2j moments (m0 to m2j´1).
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Uniqueness of the j-point Representation The proof is by contradiction.

Assume there exists a second, different j-point distribution with support tqku and

weights twku that also generates the moments m0, . . . ,m2j´1.

Construct a monic polynomial Qpxq “
ś

px ´ qkq. Since the support set is

different, Qpxq ‰ Pjpxq. For any polynomial Rpxq of degree less than j, the inner

product is xQ,Ry “
ş

QRdµ. We can compute this using the alternative distribution:

xQ,Ry “

j
ÿ

k“1

wkQpqkqRpqkq “

j
ÿ

k“1

wk ¨ 0 ¨ Rpqkq “ 0

This shows that Qpxq is also a monic orthogonal polynomial of degree j.

The sequence of monic orthogonal polynomials is unique. Therefore, we must

have Qpxq “ Pjpxq. This implies their roots are identical, so tqku “ tpku, which

contradicts the assumption that the distributions were different. The support points

are thus unique. The uniqueness of the weights follows from the unique solution to

the invertible Vandermonde system defined by these points.

A.13.2 Proof of Non-Uniqueness with Even Moments

Let T “ 2k, giving moments tm0, . . . ,m2ku. Assume Hk`1 is PD. This implies the

minimal support size must be at least k ` 1. The proof shows that the rationalizing

pk ` 1q-point prior is not unique by leveraging the uniqueness result of Theorem 5.

By Theorem C, there is a non-degenerate closed interval rm´
2k`1,m

`
2k`1s of pos-

sible values for the next moment. Choose any two distinct values from the interior

of this interval for the next moment:

• Let m1
2k`1 P pm´

2k`1,m
`
2k`1q.

• Let m2
2k`1 P pm´

2k`1,m
`
2k`1q, with m1

2k`1 ‰ m2
2k`1.

This allows us to form two different, valid moment sequences of odd length 2k ` 1:

• Sequence A: tm0, . . . ,m2k,m
1
2k`1u

• Sequence B: tm0, . . . ,m2k,m
2
2k`1u

Let j “ k ` 1. We now have two distinct moment sequences of length 2j. We

can now apply Theorem 5 to each sequence:

• For Sequence A, there exists a unique pk ` 1q-point distribution, µA, that

generates its moments.
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• For Sequence B, there exists a unique pk ` 1q-point distribution, µB, that

generates its moments.

Since Sequence A and Sequence B disagree on the final moment, their unique

minimal representations, µA and µB, must also be different. However, by construc-

tion, both µA and µB generate the same first 2k ` 1 moments tm0, . . . ,m2ku, which

are the moments corresponding to the original observed data. Since there is a con-

tinuum of choices for the next moment, there is a continuum of corresponding unique

pk ` 1q-point priors, so the rationalizing prior is not unique.

A.14 Proof of Lemma 6

Proof. (i) ñ (ii) Assume there exists a probability measure µ on r0, 1s such that

mr “ Eµrθrs. For any r, s ě 0 with r ` s ď T , the function fpθq “ θrp1 ´ θqs is

non-negative on r0, 1s. Therefore, its expectation must be non-negative. A stan-

dard identity for the forward difference operator connects the expectation of such a

polynomial to the moments tmku:

Eµrθrp1 ´ θq
s
s “

s
ÿ

k“0

p´1q
k

ˆ

s

k

˙

Eµrθr`k
s “

s
ÿ

k“0

p´1q
k

ˆ

s

k

˙

mr`k “ p´1q
s∆smr.

The expectation is non-negative, so p´1qs∆smr ě 0. And Lemma 5 implies that the

forecasts satisfy equation 17. This proves statement (ii).

(ii) ñ (i) This direction is a direct application of Schoenberg [1932]’s solution

to the truncated Hausdorff moment problem. Assume the conditions in (ii) hold.

Define a linear functional L on the space of polynomials of degree at most T by

setting Lpxkq “ mk for k “ 0, . . . , T and extending by linearity. The conditions in

(ii) are precisely the requirement that this functional is non-negative on the cone

of polynomials that are non-negative on r0, 1s. A necessary and sufficient condition

for the existence of a positive measure µ on r0, 1s such that mk “
ş1

0
xkdµpxq for

k “ 0, . . . , T is that the finite sequence of moments satisfies the conditions in (ii).

Since Lp1q “ m0 “ 1, the measure µ must be a probability measure. Moreover,

since the mixed moments ma,b :“ E
“

θap1 ´ θqb
‰

, a ` b ď T are the expected values

of polynomials of degree at most T , their value is completely determined by the

moments pmiq
T
i“0. Finally, since the forecast ratios were assumed to satisfy equation

17, Bayes’ rule applied to this candidate µ reproduces the given conditional forecasts.
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Thus µ has a CIID rationalization of pp, qq up to horizon T .

A.15 Proof of Theorem 4

Proof. We prove the equivalence in two steps.

pñq Assume pp, qq has a CIID representation. Thus there exists a random θ P ∆pY q

with law µ such that, conditional on θ, the process pYtqtďT is i.i.d. with distribution

θ, and the one–step–ahead forecasts induced by this process coincide with pp, qq.

Let

m˚
ν :“

ż

∆pY q

θν dµpθq “

ż

∆pY q

ź

iPY

θνii dµpθq, |ν| ď T.

Under the CIID model, Bayes’ rule implies that after any history with count vector

ν, the posterior on θ has density proportional to θν with respect to µ, so the forecast

of Yt`1 “ i is

qipνq “ Eµrθi | νs “

ş

θiθ
ν dµpθq

ş

θν dµpθq
“

m˚
ν`ei

m˚
ν

, whenever m˚
ν ą 0.

Now compare the recursively defined sequence pmνq with pm˚
νq. Both satisfy

m0 “ m˚
0 “ 1, mν`ei “ qipνqmν “

m˚
ν`ei

m˚
ν

mν ,

for all |ν| ď T ´ 1 and i P Y (interpreting the recursion trivially on nodes with

m˚
ν “ 0, where also m˚

ν`ei
“ 0 and qipνq is irrelevant). By induction on |ν| this

implies mν “ m˚
ν for every |ν| ď T , that is,

mν “

ż

∆pY q

θν dµpθq for all |ν| ď T.

By Lemma B.1, the existence of such a measure µ with mν “
ş

θνdµ for all

|ν| ď T implies that, for each k ď T , the tensor M pkq is simplex completely positive:

there exist an integer r ě 1, weights γ1, . . . , γr ą 0 with
ř

s γs “ 1, and points

πp1q, . . . , πprq P ∆pY q such that M
pkq

i1¨¨¨ik
“ mνpi1,...,ikq “

řr
s“1 γs π

psq

i1
¨ ¨ ¨ π

psq

ik
. Equiva-

lently, mν “
řr

s“1 γs pπpsqqν for all |ν| ď T, so tM pkquTk“1 is SCP.

pðq Now assume that the count moment tensors tM pkquTk“1 built from pp, qq as above
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are simplex completely positive. By construction of mν we have m0 “ 1, mν ě 0,

and, for every |ν| ď T ´ 1,
ř

iPY mν`ei “
ř

iPY qipνqmν “ mν

ř

iPY qipνq “ mν , so

the linear consistency identities hold. Thus the truncated array tmνu|ν|ďT satisfies:

mν ě 0,m0 “ 1,
ř

iPY mν`ei “ mν for all |ν| ď T ´ 1, and each order-k tensor M pkq

is SCP in the sense of the definition.

By Lemma B.1, these conditions are sufficient for the existence of a probability

measure µ on ∆pY q such that mν “
ş

∆pY q
θν dµpθq for all |ν| ď T. Define a process

by first drawing θ „ µ and then, conditional on θ, drawing Y1, . . . , YT i.i.d. with

distribution θ. Let p̃, q̃ denote the corresponding one–step–ahead forecasts. As in the

first part of the proof, Bayes’ rule and the moment representation yield p̃i “ PrpY1 “

iq “
ş

θi dµpθq “ mei , and, whenever mν ą 0, q̃ipνq “ Eµrθi | νs “

ş

θiθ
ν dµpθq

ş

θν dµpθq
“

mν`ei

mν
.

But by the way we definedmν from the original forecast system pp, qq we also have,

for all |ν| ď T ´ 1 with mν ą 0, qipνq “
mν`ei

mν
. Therefore p̃i “ pi and q̃ipνq “ qipνq at

every node with mν ą 0, and on nodes with mν “ 0 the values of qpνq are irrelevant

for the induced law. Hence the CIID process constructed from µ rationalizes the

original forecast system pp, qq up to horizon T .

This shows that pp, qq has a CIID representation if and only if the associated

count moment tensors tM pkquTk“1 are simplex completely positive, and establishes

the stated identities between pp, qq and the moments.
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B For Online Publication

B.1 Proof of Lemma 5

Proof. Let mr “ Erθrs for r ě 1.

Base Case (k=1): The initial forecast for outcome 1 is the prior expectation

of θ:

p1 “ PpX1 “ 1q “ ErPpX1 “ 1 | θqs “ Erθs “ m1.

Thus, m1 is directly identified by the initial forecast.

Inductive Step: Assume that the moments tm1, . . . ,mku are uniquely identified

for some k ă T . We will show that mk`1 is also uniquely identified.

The observable forecast q˚
k`1 is the conditional probability of a success at time

k ` 1 given k prior successes. By the law of total expectation and the definition of

a CIID model:

q˚
k`1 “ PpXk`1 “ 1 | X1 “ ¨ ¨ ¨ “ Xk “ 1q “

PpX1 “ 1, . . . , Xk “ 1, Xk`1 “ 1q

PpX1 “ 1, . . . , Xk “ 1q
.

The numerator is the unconditional probability of k ` 1 successes. In a CIID model,

this is:

PpX1 “ ¨ ¨ ¨ “ Xk`1 “ 1q “ ErPpX1 “ ¨ ¨ ¨ “ Xk`1 “ 1 | θqs “ Erθk`1
s “ mk`1.

Similarly, the denominator is the unconditional probability of k successes:

PpX1 “ ¨ ¨ ¨ “ Xk “ 1q “ ErPpX1 “ ¨ ¨ ¨ “ Xk “ 1 | θqs “ Erθks “ mk.

Substituting these into the expression for the forecast gives:

q˚
k`1 “

mk`1

mk

.

By the inductive hypothesis, mk is known and identified. Since q˚
k`1 is an ob-

servable forecast, we can uniquely identify mk`1 as mk`1 “ mkq
˚
k`1. By induc-

tion, the moments tm1, . . . ,mT u are uniquely identified by the sequence of forecasts

tp1, q
˚
2 , . . . , q

˚
T u.
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B.2 Proof of Lemma 7

Proof. The proof shows each direction of the equivalence.

(1) ñ (2) Assume there exists a probability measure µ on ∆pY q such that mν “

Eµrθνs for all |ν| ď T . We must show that the consistency identities hold and that

each tensor M pkq is simplex completely positive.

a) Consistency Identities: Let ν be a count vector with |ν| ď T ´ 1. We

examine the sum
ř

jPY mν`ej . Using the assumption and the linearity of expectation:

n
ÿ

j“1

mν`ej “

n
ÿ

j“1

Eµrθν`ej s “ Eµ

«

n
ÿ

j“1

θν`ej

ff

“ Eµ

«

θν
n

ÿ

j“1

θj

ff

.

Since θ P ∆pY q, its components sum to one:
řn

j“1 θj “ 1, so
řn

j“1mν`ej “ Eµrθν ¨1s “

Eµrθνs “ mν . This verifies the consistency identities.

b) Simplex Complete Positivity: Fix an integer k P t1, . . . , T u. Let M pkq

be the symmetric order-k tensor whose components in the count basis are tmνu|ν|“k.

By assumption, for any such ν: mν “
ş

∆pY q
θν dµpθq. Let Ck be the set of all rank-

one tensors formed by outer products of vectors from the simplex: Ck “ tπbk | π P

∆pY qu. In the count basis, a tensor in Ck has components pπbkqν “ πν for |ν| “ k.

The set of simplex completely positive (SCP) tensors of order k is, by defini-

tion, the convex hull of Ck, denoted convpCkq. The integral representation mν “
ş

∆pY q
θνdµpθq implies that the tensor M pkq lies in the closed convex hull of Ck, de-

noted convpCkq.

However, the set Ck is the image of the compact set ∆pY q under the continuous

map π ÞÑ πbk. Therefore, Ck is a compact set in the finite-dimensional space of

order-k tensors. In a finite-dimensional vector space, the convex hull of a compact

set is also compact (a consequence of Carathéodory’s theorem). A compact set is

always closed, which means convpCkq is a closed set.

Since convpCkq is closed, its closed convex hull is simply itself: convpCkq “

convpCkq. Thus, M pkq must lie in convpCkq. By definition, this means M pkq is sim-

plex completely positive. This holds for each k P t1, . . . , T u, completing the proof of

(1) ñ (2).
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(2) ñ (1) Assume the consistency identities hold and that for each k P t1, . . . , T u,

the tensor M pkq with count moments tmνu|ν|“k is simplex completely positive. We

must construct a single probability measure µ that represents all moments tmνu|ν|ďT .

a) Representation at Horizon T: Consider the tensor for the highest hori-

zon, M pT q. By assumption (2), M pT q is simplex completely positive. By definition of

SCP, this means there exists a finite set of points tπpℓqurℓ“1 Ă ∆pY q and non-negative

weights tγℓu
r
ℓ“1 with

řr
ℓ“1 γℓ “ 1 such that for all count vectors ν with |ν| “ T :

mν “

r
ÿ

ℓ“1

γℓpπ
pℓq

q
ν .

This is an expectation with respect to a discrete probability measure µ on ∆pY q

defined by µ “
řr

ℓ“1 γℓδπpℓq , where δπpℓq is the Dirac measure at point πpℓq. Thus, we

have found a measure µ such that mν “ Eµrθνs for all |ν| “ T .

b) Extending the Representation to Lower Orders: We now show that

this same measure µ correctly represents the moments for all lower orders, i.e., for

all |ν| ă T . Define a new set of moments, tm1
νu|ν|ďT , generated by µ:

m1
ν :“ Eµrθνs “

r
ÿ

ℓ“1

γℓpπ
pℓq

q
ν for all |ν| ď T.

By construction, we know that m1
ν “ mν for all ν with |ν| “ T . Our goal is to show

that m1
ν “ mν for all |ν| ă T .

c) Using the Consistency Identities: FPick an arbitrary count vector ν

with |ν| “ k ă T . By repeatedly applying the consistency identity
ř

j mη`ej “ mη,
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we can express mν in terms of moments of order T :

mν “
ÿ

j1PY

mν`ej1

“
ÿ

j1PY

˜

ÿ

j2PY

mν`ej1`ej2

¸

“
ÿ

j1,j2PY

mν`ej1`ej2

...

“
ÿ

j1,...,jT´kPY

mν`ej1`¨¨¨`ejT´k
.

Let η “ ν ` ej1 ` ¨ ¨ ¨ ` ejT´k
. The size of this count vector is |η| “ |ν| ` pT ´ kq “

k ` T ´ k “ T .

Now do the same for the moments tm1
νu. As shown in the (1) ñ (2) part of

the proof, any set of moments generated by a measure on the simplex automatically

satisfies the consistency identities. Therefore:

m1
ν “

ÿ

j1,...,jT´kPY

m1
ν`ej1`¨¨¨`ejT´k

.

Let’s compare the two expressions. For any multi-index pj1, . . . , jT´kq, let η “

ν ` ej1 ` ¨ ¨ ¨ ` ejT´k
. Since |η| “ T , we know from step (a) that mη “ m1

η. This

means that the sums are equal term-by-term:

mν “
ÿ

j1,...,jT´kPY

mν`ej1`¨¨¨`ejT´k
“

ÿ

j1,...,jT´kPY

m1
ν`ej1`¨¨¨`ejT´k

“ m1
ν .

The equality holds for any ν with |ν| “ k. Since we chose k to be any integer less

than T (including k “ 0), this shows that mν “ m1
ν “ Eµrθνs for all |ν| ď T .

We have constructed a single probability measure µ on ∆pY q that represents all

the moments tmνu|ν|ďT , which completes the proof of (2) ñ (1).

Lemma B.1 (Tensor Characterization up to T ). Let tmνu|ν|ďT be a collection of

non-negative numbers with m0 “ 1. The following are equivalent:

(1) There exists a probability measure µ on the simplex ∆pY q such that the moments
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are given by the expectation

mν “ Eµrθνs “

ż

∆pY q

θν dµpθq for all |ν| ď T.

(2) The numbers tmνu satisfy the linear consistency identities

ÿ

jPY

mν`ej “ mν for all |ν| ď T ´ 1,

and for each k P t1, . . . , T u, the symmetric order-k tensor M pkq defined by the

count moments tmνu|ν|“k is simplex completely positive.

Proof. (1) ñ (2). Assume there exists a probability measure µ on ∆pY q such that

mν “

ż

∆pY q

θν dµpθq for all |ν| ď T.

Linear consistency. Fix ν with |ν| ď T ´ 1. Then

ÿ

jPY

mν`ej “
ÿ

jPY

ż

∆pY q

θν`ej dµpθq “

ż

∆pY q

θν
´

ÿ

jPY

θj

¯

dµpθq.

Since θ P ∆pY q, we have
ř

jPY θj “ 1, so

ÿ

jPY

mν`ej “

ż

∆pY q

θν dµpθq “ mν ,

establishing the linear consistency identities.

Simplex complete positivity of M pkq. For each k P t1, . . . , T u, define the order–k

tensor M pkq by

M
pkq

i1¨¨¨ik
:“ mei1`¨¨¨`eik

“

ż

∆pY q

θi1 ¨ ¨ ¨ θik dµpθq pi1, . . . , ik P Y q.

Equivalently,

M pkq
“

ż

∆pY q

θbk dµpθq.

tθbk : θ P ∆pY qu.
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The map θ ÞÑ θbk is continuous and ∆pY q is compact, so

M pkq
P convtθbk : θ P ∆pY qu.

By Carathéodory’s theorem there exist points πp1q, . . . , πprq P ∆pY q and weights

γ1, . . . , γr ą 0 with
řr

s“1 γs “ 1 such that

M pkq
“

r
ÿ

s“1

γs π
psqbk.

This is exactly the definition of simplex complete positivity of M pkq, so (2) holds.

(2) ñ (1). Assume now that:

• mν ě 0 for all |ν| ď T and m0 “ 1;

• for every |ν| ď T ´ 1,
ř

jPY mν`ej “ mν ;

• for each k P t1, . . . , T u, the order–k tensorM pkq with entriesM
pkq

i1¨¨¨ik
“ mei1`¨¨¨`eik

is simplex completely positive.

We will show there exists a probability measure µ on ∆pY q such that mν “
ş

θν dµpθq for all |ν| ď T .

Step 1: A linear functional on polynomials. Let AT be the real vector space of

all polynomials in pθ1, . . . , θnq of total degree at most T . Define a linear functional

L : AT Ñ R by

Lpθνq :“ mν for all ν with |ν| ď T,

and extend linearly to arbitrary polynomials ppθq “
ř

|ν|ďT aνθ
ν by Lppq :“

ř

|ν|ďT aνmν .

Let

Spθq :“
ÿ

iPY

θi.

Step 2: L treats S as 1. We claim that for every polynomial p P AT with

deg p ď T ´ 1,

LpS pq “ Lppq. (23)

It suffices to check this on monomials and extend by linearity.
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Fix ν with |ν| ď T ´ 1. Then

Spθq θν “

´

ÿ

jPY

θj

¯

θν “
ÿ

jPY

θν`ej ,

so

LpS θνq “
ÿ

jPY

Lpθν`ejq “
ÿ

jPY

mν`ej .

By the linear consistency identities,
ř

jPY mν`ej “ mν “ Lpθνq, so LpS θνq “ Lpθνq.

By linearity, (23) holds for all p with deg p ď T ´ 1.

Iterating this identity, we obtain

LpSkpq “ Lppq whenever deg p ` k ď T. (24)

Step 3: L is nonnegative on polynomials nonnegative on the simplex. Let K :“

∆pY q and let p P AT satisfy ppθq ě 0 for all θ P K. Let d “ deg p ď T and set

k :“ T ´ d ě 0. Define the homogeneous polynomial

qpθq :“ Spθq
k ppθq.

Then deg q “ d ` k “ T , and for every θ P K we have Spθq “ 1, so

qpθq “ ppθq ě 0 @ θ P K.

Write q as

qpθq “
ÿ

|ν|“T

aν θ
ν ,

so that

Lpqq “
ÿ

|ν|“T

aν mν .

Let M pT q denote the order–T tensor with entries M
pT q

i1¨¨¨iT
“ mei1`¨¨¨`eiT

. By simplex

complete positivity, there exist r P N, weights γ1, . . . , γr ě 0 with
řr

s“1 γs “ 1, and
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points πp1q, . . . , πprq P ∆pY q such that

M pT q
“

r
ÿ

s“1

γs π
psqbT ,

i.e.,

M
pT q

i1¨¨¨iT
“

r
ÿ

s“1

γs π
psq

i1
¨ ¨ ¨ π

psq

iT
.

For each multi–index ν with |ν| “ T , we have

mν “ M
pT q

i1¨¨¨iT
whenever ν “ ei1 ` ¨ ¨ ¨ ` eiT .

Thus

Lpqq “
ÿ

|ν|“T

aνmν “
ÿ

|ν|“T

aν

r
ÿ

s“1

γspπ
psq

q
ν

“

r
ÿ

s“1

γs
ÿ

|ν|“T

aνpπpsq
q
ν

“

r
ÿ

s“1

γs q
`

πpsq
˘

.

Each πpsq lies in ∆pY q, so qpπpsqq “ ppπpsqq ě 0, and hence Lpqq ě 0.

Using (24) with this p and k “ T ´ d, we have

Lppq “ LpSkpq “ Lpqq ě 0.

Therefore

Lppq ě 0 whenever p P AT and ppθq ě 0 @ θ P ∆pY q. (25)

Step 4: m lies in the convex hull of truncated moment vectors. Let I :“ tν P

Nn : |ν| ď T u, and let m :“ pmνqνPI P RI . For each θ P ∆pY q, define the truncated

moment vector

ϕpθq :“ pθνqνPI P RI .

Let

C :“ convtϕpθq : θ P ∆pY qu

be the convex hull of all such vectors. We claim m P C.

Suppose, to the contrary, that m R C. Since C is a compact convex subset of the
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finite–dimensional space RI , the separating hyperplane theorem implies that there

exist a nonzero vector a “ paνqνPI and a scalar α such that

ÿ

νPI
aνmν ă α and

ÿ

νPI
aνϕpθqν ě α @ θ P ∆pY q.

Define the polynomial

ppθq :“
ÿ

νPI
aν θ

ν
´ α.

Then ppθq ě 0 for all θ P ∆pY q by construction, while

Lppq “
ÿ

ν

aνmν ´ α ă 0.

This contradicts (25). Hence m P C.

Step 5: Constructing a representing measure. Sincem P C, there exist θp1q, . . . , θprq P

∆pY q and weights λ1, . . . , λr ě 0 with
řr

s“1 λs “ 1 such that

mν “

r
ÿ

s“1

λs pθpsq
q
ν

@ ν P I.

Define a probability measure µ on ∆pY q by

µ :“
r

ÿ

s“1

λs δθpsq ,

where δθpsq is the Dirac measure at θpsq. Then, for all |ν| ď T ,

ż

∆pY q

θν dµpθq “

r
ÿ

s“1

λs pθpsq
q
ν

“ mν .

Thus µ is a probability measure on ∆pY q with the required moments, establishing

(1).

This completes the proof of the equivalence of (1) and (2).
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