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Abstract

In repeated agency problems and games, witholding feedback about past perfor-

mance from the agent/players relaxes incentive constraints and thereby expands the

set of implementable outcomes. We investigate the value of withholding feedback by

comparing equilibrium payoffs in repeated games with public signals and in games

where signals are drawn from the same distribution but are observed only by a princi-

pal/mediator. Under an identifiability condition, we find that the value of withholding

feedback is small, in that ineffi ciency is of the same 1 − δ power order in both cases.

Thus, while private strategies or monitoring (e.g., “review strategies”) can outperform

public ones for a fixed discount factor, they cannot accelerate the rate of convergence

to the effi cient payoff frontier.
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1 Introduction

The design of performance feedback rules is an important aspect of principal-agent relation-

ships. While providing feedback can have many practical benefits, a well-known reason not

to give feedback is that, by informing agents of their own and others’past performance,

feedback lets agents game incentive schemes. In other words, withholding feedback pools

agents’information sets, which relaxes incentive constraints and thereby expands the set of

implementable outcomes. The goal of this paper is to systematically measure this benefit

from withholding feedback in standard repeated agency problems and games.

To assess the value of withholding feedback, we consider a repeated game where, in each

period, players take actions a, and a signal y is drawn from a distribution p (y|a), which we

assume has non-moving support. We compare the equilibrium payoff sets in a version of the

game with full feedback (or public monitoring), where the signal y is publicly observed, and

a version with no feedback, where the signal y is observed only by a principal or mediator,

who recommends actions to the players. We call these two versions of the game the public

game and the blind game. By the revelation principle (Forges, 1986), for any discount factor

δ, the equilibrium payoff set is (weakly) larger in the blind game than in the public game.

Our question is, how much larger?

For any fixed discount factor δ < 1, this question is diffi cult to answer in any generality,

because we lack an explicit characterization of the equilibrium payoff set in public games,

and we know even less about the equilibrium payoff set in blind games.1 We instead adopt

a rate of convergence approach: under standard identification conditions that ensure that

effi ciency is attainable in the δ → 1 limit, how quickly does ineffi ciency vanish as δ → 1 in

the most effi cient equilibrium in the public game, as compared to that in the blind game?

Our main result is that ineffi ciency is of the same power order of 1− δ in both games. In

this sense, the value of withholding feedback is small.

This result requires some unpacking. A key subtlety is that the order of ineffi ciency de-

1In a public game, the set of perfect public equilibrium payoffs admits a fixed-point characterization due
to Spear and Srivastava (1987) (for agency problems) and Abreu, Pearce, and Stacchetti (1990) (for games).
However, once we allow private strategies in games with public monitoring or consider blind games, the
equilibrium payoff set at a fixed discount factor is intractable, as in repeated games with private monitoring
(Kandori, 2002).
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pends on the local geometry of the feasible payoff set. In a finite stage game, the boundary

of the feasible payoff set is kinked, which implies ineffi ciency of power order (1− δ)1/2.2 In

a smooth stage game where the boundary of the feasible payoff set has positive quadratic

curvature (as in, e.g., Green and Porter (1984), Sannikov (2007, 2008), or Sadzik and Stac-

chetti (2015)), ineffi ciency is of order 1 − δ.3 Nonetheless, we show that, regardless of the

local geometry of the feasible payoff set, ineffi ciency is of the same power order in the public

game and the blind game.

Another subtlety is that ineffi ciency in the public and blind games can differ by a factor

of (− log (1− δ))1/2 when the boundary of the feasible payoff set is kinked. In contrast,

ineffi ciency differs only by a constant factor (i.e., the rate of convergence is identical) when

the boundary is smooth. Thus, while the value of withholding feedback in always “small”

(i.e., no improvement in the power rate of convergence), it is somewhat less small in the

kinked case (where there can be a log-factor improvement) than in the smooth case (where

there is at most a constant-factor improvement).

Whether the rate of convergence in 1 − δ is a good guide to the impact of feedback in

practice must be assessed on a case-by-case basis, as the rate inevitably hides constant factors

that depend on details of the stage game and the monitoring structure, and these constants

might outweigh the rate when δ is not very close to 1. However, the fact that the rate does

depend on the curvature of the feasible payoff set and can differ between the public and

blind games (by a log factor) provides some reassurance that it is a reasonably discerning

measure, so our finding that it is unaffected by feedback has some economic significance.

The key force behind our results is that pooling information across periods– which is

facilitated by withholding feedback– improves monitoring precision, but also necessitates

larger rewards and punishments, which reduces the scope for providing incentives by trans-

ferring surplus over time rather than destroying it. As we show, these two effects essentially

cancel out. So, little is gained by withholding feedback.

To see the logic in more detail, consider first a finite stage game, where the boundary of the

feasible payoff is kinked. With public monitoring, Hörner and Takahashi (2016, henceforth

2For public games, this was already observed by Hörner and Takahashi (2016).
3For a class of continuous-time principal-agent problems with public monitoring, this was already observed

by Sannikov (2008).
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HT) established that the rate of convergence toward a strictly individually rational payoff

vector is (1− δ)1/2. This result builds on Fudenberg, Levine, and Maskin (1994, henceforth

FLM), and similarly relies on orthogonal enforcement, where in every period continuation

payoffs move along translated tangent hyperplanes. In contrast, in the blind game, one

could hope to exceed this rate by (for example) employing a review strategy (Radner, 1985;

Abreu, Milgrom, and Pearce, 1991; Matsushima, 2004), which aggregates signals over T

periods– without providing feedback– before adjusting the players’continuation payoffs.4

It is therefore instructive to consider the possible advantage of review strategies over

orthogonal enforcement. Heuristically, an effi cient review strategy pools information for

T = O
(
(1− δ)−1) periods– during which the players take constant actions– and then ap-

plies a penalty if the number of “good signals” over these periods falls short of a cutoff.

Call the number of standard deviations by which the number of good signals falls short

of its mean the score. Since the number of good signals, normalized by 1/
√
T , is approx-

imately normally distributed, for any cutoff score z the probability that a single signal is

pivotal is O
(
φ (z) /

√
T
)

= O
(
φ (z) (1− δ)1/2

)
.5 As stage game payoffs are O (1− δ), in-

centive compatibility requires that z is at most O
(

(− log (1− δ))1/2
)
. Thus, the cutoff score

can increase only slowly as δ increases, or else the pivot probability decreases very quickly,

which violates incentive compatibility. In particular, when z = O
(

(− log (1− δ))1/2
)
, the

review strategy’s “false positive rate” (and hence its minimum ineffi ciency) is Φ (−z) =

O
(

((1− δ) / (− log (1− δ)))1/2
)
.6 Review strategies thus yield only a log-factor improve-

ment over orthogonal enforcement when the boundary of the feasible payoff set is kinked.

Moreover, no other strategies further improve the rate of convergence.

Next consider the case where the boundary of the feasible payoff set is smooth. Orthogo-

nal enforcement is now more effi cient than in the kinked case, as small payoff transfers along

translated tangent hyperplanes are more effi cient with a smooth boundary. In particular,

we show that if the order of curvature of the boundary of the feasible payoff set at an ex-

posed point is β ∈ [1, 2], then ineffi ciency under orthogonal enforcement is O
(

(1− δ)β/2
)
.

4Indeed, HT observed that “It is certainly possible that regarding imperfect monitoring, allowing equilibria
in private strategies could accelerate the rate of convergence beyond the results that we have derived. . . This
is left for future research.”The current paper resolves this question.

5Here and throughout the paper, φ and Φ denote the standard normal pdf and cdf, respectively.
6This follows from the standard normal Mills ratio approximation Φ (−z) ≈ φ (z) /z for z � 0.
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For instance, in the positive quadratic curvature case (where β = 2), ineffi ciency under or-

thogonal enforcement is O (1− δ). However, since review strategies involve infrequent, large

continuation payoff movements, their effi ciency is the same whether the boundary is kinked

or smooth: i.e., ineffi ciency under review strategies remains of power order (1− δ)1/2. Thus,

for any β > 1 (i.e., whenever the boundary is smooth), orthogonal enforcement outperforms

review strategies, and in fact attains the fastest possible rate of convergence to effi ciency.

Methodologically, we develop a new technique for bounding equilibrium payoffs in re-

peated games with private monitoring. As in contract theory, the likelihood ratio difference

(p (y|a)− p (y|a′)) /p (y|a) is a key quantity for providing incentives to take actions a rather

than a′. We observe that the likelihood ratio difference is a martingale increment (i.e., the

expected likelihood ratio difference under p (·|a) equals 0), so we can apply results from the

large deviations theory for martingales to bound the probability that the cumulative likeli-

hood ratio difference over T period grows faster than O (T ). This in turn can be used to

bound the effi ciency of any strategy, regardless of whether signals are public or private.

Relation to the literature. Our finding that the value of withholding feedback is

small contrasts with two important strands of prior literature, which both find that this

value is large. These strands share the feature that orthogonal enforcement is impossible.

This feature reduces effi ciency under public monitoring, and thereby generates a large value

of withholding feedback.

First, Holmström and Milgrom (1987) study a dynamic principal-agent model where the

agent exerts effort over T periods, but consumption occurs only at the end of the game. The

value of withholding feedback is large: without feedback, first-best profits can be approxi-

mated as T →∞ using a review strategy that resembles the “penalty contract”of Mirrlees

(1975); with feedback, optimal contracts are linear in the count of signal realizations, and

profits are bounded away from the first best for all T . The key difference from our setup is

that Holmström and Milgrom’s model is not a repeated game (as consumption only occurs

once), so there is no way to improve effi ciency by transferring continuation payoffs over time.

That is, orthogonal enforcement is impossible.7

7Relatedly, a recent paper by Frick, Iijima, and Ishii (2023) considers a one-shot principal-agent model
and studies the rate at which profits converge to the first best as the number of signal observations increases.
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Second, several papers study principal-agent problems or games that, while repeated, do

not permit orthogonal enforcement. Abreu, Milgrom, and Pearce (1991) restrict attention to

strongly symmetric equilibria, while Matsushima (2004) and Fuchs (2007) restrict attention

to block belief-free equilibria. These classes of equilibria preclude orthogonal enforcement,

and, consequently, these papers all find that effi ciency is attainable as δ → 1 only when

feedback is withheld.8 Similarly, in Sannikov and Skrzypacz (2007), pairwise identifiability

is violated, so deviations cannot be attributed, and hence orthogonal enforcement is impos-

sible; while Rahman (2014) considers the same model with a mediator who can attribute

deviations by randomizing the players’private action recommendations, which restores or-

thogonal enforcement. In Sannikov and Skrzypacz, the equilibrium set collapses to static

Nash; in Rahman, the folk theorem holds.

In past work (Sugaya and Wolitzky, 2017, 2018), we showed that the value of withholding

feedback (or “maintaining privacy”) is large in some specific repeated and dynamic games

when δ is small. For example, our 2018 paper examined how maintaining privacy can help

sustain multi-market collusion. In contrast, the current paper shows that the value of privacy

in repeated games is small when δ is close to 1.

We also relate to the broader literature on feedback in dynamic agency and games. We

consider standard repeated games without payoff-relevant state variables, so feedback con-

cerns only past performance, which is payoff-irrelevant in the continuation game. In contrast,

most of the literature on feedback in dynamic agency involves dynamic (non-repeated) games

with additional state variables, such as an agent’s ability (Ederer, 2010; Smolin, 2021), other

agents’progress in a tournament (Gershkov and Perry, 2009; Aoyagi, 2010; Ely et al., 2022),

whether a project has been completed (Halac, Kartik, and Liu, 2017; Ely et al., 2023), or

the evolution of an exogenous state variable (Ely and Szydlowski, 2020; Orlov, Skrzypacz,

and Zryumov, 2020; Ball, 2023). An exception is Lizzeri, Meyer, and Persico (2002), who

examine optimal two-period agency contracts with and without a “midterm review.”

We also contribute to the literature on review strategies, introduced by Rubinstein (1979),

They find that this rate is much faster for review strategies than for linear contracts.
8More precisely, Matsushima considers two-player games where signals are conditionally independent, so

each player does not learn about the status of her review. This form of lack of feedback is essential for
supporting effi ciency in a belief-free equilibrium. Sugaya (2022) shows how mixed strategies can be used to
prevent learning with conditionally dependent signals.
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Rubinstein and Yaari (1983), and Radner (1985), and developed by Abreu, Milgrom, and

Pearce (1991) andMatsushima (2001, 2004). These papers all show that review strategies can

support effi cient outcomes in various settings when δ → 1 (or when there is no discounting

at all). In contrast, we identify limitations of review strategies when δ < 1, and show that

review strategies cannot greatly outperform orthogonal enforcement when δ is close to 1.

Methodologically, the closest papers are HT, who show that ineffi ciency is O
(

(1− δ)1/2
)

in repeated finite games with public monitoring; and Sugaya and Wolitzky (2023, henceforth

SW), who obtain bounds on the strength of players’equilibrium incentives in repeated finite

games with arbitrary (e.g., private) monitoring. The arguments in SW are based on variance

decomposition and can easily be adapted to show that ineffi ciency is at least O (1− δ) when

β = 2 (i.e., the positive quadratic curvature case). For other values for β– in particular,

for finite stage games, where β = 1– SW’s bound does not tightly characterize the rate of

convergence, and new techniques (i.e., martingale large deviations theory) are required.

Outline. The paper is organized as follows. Section 2 describes the model. Section 3

establishes upper bounds on equilibrium effi ciency without feedback. Section 4 establishes

that, for any β ∈ [1, 2], these bounds are attainable with feedback (excepting a log factor

when β = 1). Combining these results implies that the gains from withholding feedback are

small. Section 5 concludes and discusses some extensions.

2 Preliminaries

A stage game G = (I, A, u) consists of a finite set of players I = {1, . . . , N}, a product

set of actions A = ×i∈IAi, and a payoff function ui : A → R for each i ∈ I. We assume

that each Ai is a nonempty, compact metric space, and each ui is continuous.9 By the

Debreu-Fan-Glicksberg theorem, this implies that the stage game admits a Nash equilib-

rium in mixed actions. We denote the sets of stage-game Nash and correlated equilibria

by ΣNE ⊆ ×i∈I∆ (Ai) and ΣCE ⊆ ∆ (A), respectively. In addition, we denote the feasi-

ble payoff set by F = co
(
{u (a)}a∈A

)
⊆ RN , and denote the sets of stage-game Nash and

9As is standard, we linearly extend the payoff functions ui to distributions α ∈ ∆ (A). Here and through-
out, for any compact metric space X, ∆ (X) denotes the set of Borel probability measures on X, endowed
with the weak* topology.
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correlated equilibrium payoffs by V NE =
{
v : v = u (α) for some α ∈ ΣNE

}
and V CE ={

v : v = u (α) for some α ∈ ΣCE
}
. We also let d (·, ·) and ‖·‖ denote the Euclidean metric

and norm on RN , and let Λ = {λ ∈ RN : ‖λ‖ = 1} denote the set of unit vectors (or direc-

tions) in RN . Finally, we denote the boundary of F by bnd(F ) and the set of exposed points

of F by exp(F ), and, for any v ∈exp(F ), denote Λv = {λ ∈ Λ : v = argmaxw∈F λ · w}.10

A monitoring structure (Y, p) consists of a finite set of possible signal realizations Y and

a family of conditional probability distributions p (y|a).11 We assume that the probability of

each signal realization is bounded away from zero: there exists ω > 0 such that p (y|a) > ω

for all y ∈ Y, a ∈ A. This non-moving support assumption is crucial: e.g., our analysis

excludes perfect monitoring.

In a repeated game with public monitoring (Abreu, Pearce, and Stacchetti, 1990, hence-

forth APS; FLM), in each period t ∈ N, each player i takes an action ai, and then a signal

y is drawn according to p (y| (ai)) and is publicly observed. A history for player i at the

beginning of period t takes the form hti = (ai,t′ , yt′)
t−1
t′=1. A strategy σi for player i maps

histories hti to distributions over actions ai,t. A strategy for player i is public if it depends on

hti only through its public component y
t = (yt′)

t
t′=1. Players choose strategies to maximize

discounted expected payoffs, with common discount factor δ ∈ [0, 1). A perfect public equi-

librium (PPE) is a profile of public strategies that, beginning at any period t and any public

history yt, forms a Nash equilibrium from that period on. We denote the repeated game

with public monitoring with stage game G, monitoring structure (Y, p), and discount factor

δ by ΓP (δ), and we denote the corresponding set of PPE payoff vectors by EP (δ) ⊆ RN .

In a blind repeated game (Sugaya and Wolitzky, 2017, 2023), the players are assisted by a

mediator. In each period t ∈ N, (i) the mediator privately recommends an action ri ∈ Ai to

each player i, (ii) each player i takes an action ai, and (iii) a signal y is drawn according to

p (y| (ai)) and is observed only by the mediator. A history for the mediator at the beginning

of period t takes the form ht0 =
(
(ri,t′)i , yt′

)t−1

t′=1
, while a history for player i just before

she takes an action in period t takes the form hti =
(
(ri,t′ , ai,t′)

t−1
t′=1 , ri,t

)
. A strategy σ0 for

the mediator maps histories ht0 to distributions over recommendation profiles (ri,t)i, while a

10Recall that Λv is non-empty iff v ∈exp(F ).
11Section 5.3 discusses the extension to the |Y | =∞ case.
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strategy σi for player i maps histories hti to distributions over actions ai,t. We denote the

blind repeated game with stage game G, monitoring structure (Y, p), and discount factor

δ by ΓB (δ), and we denote the corresponding set of Nash equilibrium payoff vectors by

EB (δ) ⊆ RN . Note that a player’s payoff in the blind game is not measurable with respect

to her own information. The blind game may thus withhold feedback from the players to

an unrealistic extent– but this only strengthens our finding that withholding feedback has

limited value.

By standard arguments (similar to Forges, 1986), any Nash equilibrium outcome µ ∈

∆ ((A× Y )∞) (i.e., any equilibrium distribution over infinite paths of action profiles and

signals) in ΓP (δ) can also be implemented by a Nash equilibrium in ΓB (δ) where the players

follow the mediator’s recommendations on path. In particular, EP (δ) ⊆ EB (δ).

The goal of this paper is assessing the value of withholding feedback from the players. The

maximum such value is described by the set of payoffs that are attainable with the smallest

possible amount of feedback– i.e., are attainable in ΓB (δ)– but are not attainable with the

largest possible amount of feedback– i.e., are not attainable in ΓP (δ). Since our main result

is that the value of withholding feedback is small when δ is close to 1, there is no harm in

“over-estimating” the value by restricting attention to PPE in ΓP (δ), while admitting all

Nash equilibria in ΓB (δ). That is, we estimate the value of withholding feedback by the size

of the set EB (δ) \EP (δ).

Remark 1 The model is easily adapted to allow a player with commitment power (such as

the principal in a standard principal-agent model) or players with perfectly observed actions

(such as a principal who offers contracts each period in a relational contracting model).

A player with commitment power is treated like any other player, except that no incentive

constraints are imposed on her strategy. For example, in a principal-agent model, ΣNE is

the set of (principal, agent) mixed action profiles where the agent does not have a profitable

deviation. Moreover, it suffi ces to impose non-moving support only for the agent, so that

supp p (·|a) = supp p (·|a′) for all a, a′ that agree on the principal’s action. We explain how

to accommodate players with observable actions (without commitment power) in Section 5.1.
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3 Maximum Effi ciency without Feedback

3.1 Main Result

Our first theorem gives an upper bound on the rate of convergence of EB (δ) toward an

exposed point v ∈ exp (F ) that is not attainable as a static correlated equilibrium. The

upper bound depends on the order of curvature of the boundary of F at v.

Definition 1 Fix an exposed point v ∈ exp (F ). For β ≥ 1, the boundary of F has max-

curvature of order at least β at v if, for all λ ∈ Λv, there exists η > 0 such that

λ · (v − w) ≥ ηd (v, w)β for all w ∈ bnd (F ) .

The boundary of F has max-curvature of order β at v if

β = inf
{
β̃ : bnd (F ) has max -curvature of order at least β̃ at v

}
.

This says that moving away from v in F entails an effi ciency loss of order at least β,

relative to Pareto weights λ. (Or, heuristically, bnd (F ) is approximated by a power function

of degree β at v.) To understand the definition, the key cases to consider are β = 1, β = 2,

and the limit case β =∞.

• The β = 1 case arises when the stage game G is finite, as in APS, FLM, or HT. Here,

F is the convex hull of a finite collection of points, so the boundary of F is kinked

at every extreme point. This implies a first-order loss from moving away from any

extreme point.

• The β = 2 case arises when the boundary of F has positive quadratic curvature. This

is the typical case in smooth games or agency models with continuous actions, such as

Green and Porter (1984), Sannikov (2007, 2008), or Sadzik and Stacchetti (2015).

• The β = ∞ case arises when the boundary of F is linear at v. This is the case

in repeated games with transferable utility, as in Athey and Bagwell (2001), Levin

(2003), or Goldlücke and Kranz (2012).
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• To appreciate the role of the max in the definition, suppose that N = 2, (0, 0) ∈ F ,

and the local boundary of F at (0, 0) is given by f (x) = −x if x < 0 and f (x) = x2 if

x ≥ 0. Then the max-curvature of bnd (F ) at (0, 0) is 2.

Most of our insights can be obtained when β ∈ {1, 2}. We cover the cases where β ∈ (1, 2)

and β > 2 for completeness.

Theorem 1 Fix an exposed point v ∈ exp (F ) \V CE and a direction λ ∈ Λv. If bnd (F ) has

max-curvature of order β at v, then there exists c > 0 such that

λ·(v − w) ≥ c×


(

1−δ
max{− log(1−δ),1}

)1/2

if β = 1,

(1− δ)β/2 if β ∈ (1, 2],

(1− δ)β−1 if β > 2,

for all δ ∈ [0, 1) and w ∈ EB (δ) .

(1)

The key implications of Theorem 1 are as follows:

• For Pareto weights where welfare is maximized at a point where bnd(F ) is kinked (i.e.,

β = 1), ineffi ciency is at least O
(

((1− δ) / (− log (1− δ)))1/2
)
.

• For Pareto weights where welfare is maximized at a point where bnd(F ) has positive

quadratic curvature (i.e., β = 2), ineffi ciency is at least O (1− δ).

We will see that both of these bounds– as well as the (1− δ)β/2 bound for β ∈ (1, 2)– are

tight. Moreover, with public monitoring, the bound in the kinked case remains tight up to

log-factor slack, while the bound in the β ∈ (1, 2] case remains tight up to constant-factor

slack. These results imply that the gains from withholding feedback are small.

In contrast, for Pareto weights where welfare is maximized at a point where bnd(F ) is

approximately linear, Theorem 1 allows ineffi ciency much smaller than 1 − δ. This bound

is tight in the β → ∞ limit, as in some games with linear Pareto frontiers effi ciency is

exactly achieved at some δ < 1 (e.g., Athey and Bagwell, 2001). We conjecture that the

(1− δ)β−1 bound given by Theorem 1 is in fact tight for any β > 2– in that there exists

some game and v ∈ ext (F ) \V CE with max-curvature of order β that can be approached at

rate (1− δ)β−1– but we have not proved this.
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Figure 1: Self-Generating a Ball. To maximize effi ciency, r and d must be chosen to minimize
d subject to the constraints that B ⊆ F and x is at least O (1− δ).

We can explain the intuition for Theorem 1 in two steps. First we explain why the

conclusion of Theorem 1 holds under public monitoring: that is, why (1) holds for all w ∈

EP (δ). Then we explain why the same conclusion holds in the blind game.

The logic for why (1) holds for all w ∈ EP (δ) builds on APS, FLM, and HT. Following

these authors, we ask how close a self-generating ball B ⊆ F can be to an exposed point v. To

answer this, fix λ ∈ Λv, let d = d (B, v) be the desired distance, and (without loss) let u = v−

dλ be the closest point to v in B. (See Figure 1.) Consider decomposing u into instantaneous

payoff v and continuation payoffs (w (y))y that lie on the translated tangent hyperplane H

with normal vector λ passing through the point E [w (y)] = v−((1− δ) /δ) dλ. The diameter

of H ∩B, which we denote by x, is then the largest available continuation payoffmovement,

which by incentive compatibility must be at least O (1− δ). At the same time, denoting the

radius of the ball B by r, the Pythagorean theorem gives (x/2)2 + (r − ((1− δ) /δ) d)2 = r2,

and hence x = O
(√

(1− δ) rd
)
. It follows that the product rd must be at least O (1− δ).

We are thus left with the following geometry question: for a point v where the (max-

)curvature of bnd (F ) equals β, what is the smallest distance d such that the ball B with
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radius r satisfying rd = O (1− δ) and center v− (r + d)λ lies below F (in the λ-direction)?

We leave it to the reader to verify that, when β ∈ [1, 2], the answer is O
(

(1− δ)β/2
)
. For

example, when β = 2 the closest self-generating ball has radius O (1) and distance O (1− δ)

from v, while when β = 1 the closest self-generating ball has radius O
(

(1− δ)1/2
)
and

distance O
(

(1− δ)1/2
)
from v.12 Intuitively, whenever β < 2, the self-generation condition

B ⊆ F implies that the closest self-generating ball B must shrink as it approaches v (in

particular, its radius r is (1− δ)1−β/2), and the distance d is then determined by the incentive

compatibility condition rd = O (1− δ), which gives d = O
(

(1− δ)β/2
)
.

In contrast, when β > 2, the self-generation condition B ⊆ F is slack in a neighborhood

of v: any ball B has finite quadratic curvature at v, while the quadratic curvature of F at

v is infinite. Of course, B cannot be infinitely large, because the constraint B ⊆ F binds

somewhere away from v. However, since only continuation payoffmovements of size O (1− δ)

are required for incentives, it suffi ces to take B such that rd = O (1− δ) and every point in

B at distance O (1− δ) from u is at distance at least d from bnd (F ). Another geometric

argument (the details of which we omit) shows that the smallest such d is O
(

(1− δ)β−1
)
.

The main insight of this paper is that nearly the same effi ciency bounds apply without

feedback. More precisely, in the smooth case (β ∈ (1, 2]), minimum ineffi ciency is exactly

the same for EB (δ) and EP (δ); while in the kinked case (β = 1), withholding feedback

can reduce ineffi ciency by a log factor. These results hold even though the set EB (δ) is

not self-generating– so the geometric arguments just given do not apply– and few general

bounds on equilibrium payoffs in repeated games with private monitoring or mediation are

known.

A simple intuition for these results relies on comparing orthogonal enforcement and review

strategies, as described in the introduction. That argument explains why review strategies

improve effi ciency by a log factor in the kinked case and otherwise yield no improvement.

Of course, the proof of Theorem 1 must account for arbitrary strategies. We outline the

proof in the next subsection. The basic logic is that if a repeated game Nash equilibrium

gives payoffs close to v ∈ exp (F ), then the stage game payoff must be close to v almost

all the time along the equilibrium path of play. Since signals have full support, this implies

12The latter fact was already observed by HT.
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that payoffs must still be close to v almost all the time even after low-probability (but still

on-path) signal realizations. This in turn implies that, on average, equilibrium continuation

play does not vary much with the signal realizations. But then, if v /∈ V CE, we can conclude

that δ must be so high that even small variations in continuation play can provide strong

incentives.13

We mention a couple technical aspects of the statement of Theorem 1. First, generically,

the condition v ∈ exp (F ) \V CE is equivalent to v ∈ exp (F ) \V NE: since v is extremal, the

distinction only matters in the non-generic case where v is attained at two different pure

action profiles. Second, the condition λ ∈ Λv (i.e., v = argmaxw∈F λ ·w) cannot be weakened

to v ∈ argmaxw∈F λ · w. To see this, consider the stage game

L R

C 1, 1 0, 1

D1 2, 0 −2, 0

D2 −2, 0 2, 0

The point v = (1, 1) is exposed and is not attainable as a static CE, bnd(F ) has curvature of

order 1 (i.e., a kink) at v, and v ∈ argmaxw∈F λ ·w for λ = (0, 1). But, the point w = (0.5, 1)

is attained by the static NE
(
C, 1

2
L+ 1

2
R
)
(so w ∈ EB (δ) for all δ ∈ [0, 1)) and satisfies

λ · w = λ · v, so the conclusion of Theorem 1 fails.

3.2 Proof Sketch

We sketch the proof of Theorem 1, deferring the details to the appendix. Fix some v ∈

exp (F ) \V CE and λ ∈ Λv, and consider any δ ∈ [0, 1) together with a Nash equilibrium σ in

ΓB (δ) with equilibrium payoff w. We wish to derive a lower bound for λ · (v − w).

We introduce some notation. Let µ ∈ ∆ ((A× Y )∞) be the repeated game outcome

induced by σ. The outcome µ defines, in particular, the marginal distribution over period-t

13This logic is the same as that of Theorem 6.5 of FLM (who credit Madrigale, 1986), which says that
an extremal non-static Nash payoff vector v cannot be exactly attained for any δ < 1 under full-support
monitoring. FLM state this result for PPE, but the same argument works for Nash. Theorem 1 is a
quantitative version of this result.
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action profiles, αt ∈ ∆ (A), as well as the occupation measure α ∈ ∆ (A), defined as

α = (1− δ)
∞∑
t=1

δt−1αt.

Note that the occupation measure is a suffi cient statistic for equilibrium payoffs, as, by

linearity of u,

w = (1− δ)
∞∑
t=1

δt−1u (αt) = u

(
(1− δ)

∞∑
t=1

δt−1αt

)
= u (α) .

Next, for each player i, let Si denote the set of functions si : Ai → Ai, which we call

manipulations. For any i ∈ I, α ∈ ∆ (A), and si ∈ Si, define the deviation gain

gi (si, α) =
∑
a∈A

α (a) (ui (si (ai) , a−i)− ui (a)) .

The interpretation is: if the recommended action profile a is drawn according to α and player

i takes si (ai) when recommended ai rather than obeying the recommendation, her expected

payoff gain is gi (si, α). Note that, since v ∈ exp (F ) \V CE, if w is close to v then there exist

i and si such that gi (si, α) is bounded away from 0. Fix such i and si.

Finally, for any complete history of play h = (at, yt)
∞
t=1, let

ui,t (h) = ui (at) and `t (h) =
p (yt|at)− p (yt|si (ai,t) , a−i,t)

p (yt|at)
.

That is, ui,t (h) is player i’s realized period-t payoff at history h, and `t (si, h) is the realized

likelihood ratio difference of the period-t signal yt at the period-t action profile at, as compared

to the action profile (si (ai,t) , a−i,t) that results when player i manipulates according to si.

Note that

Eµ
[
`t (h) | (at, yt)t−1

t′=1

]
= 0,

so LT =
∑T

t=1 `t (h) is a martingale. Intuitively, the martingale LT determines the infor-

mativeness of the first T signals for distinguishing equilibrium play by player i from actions

taken according to the manipulation si.
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A simple consequence of incentive compatibility (Lemma 4 in the appendix) is that, for

each period t, we have

gi (si, αt) ≤ Eµ
[
`t (h)

∞∑
t′=t+1

δt
′−tui,t′ (h)

]
.

This inequality holds because, if it were violated, player i could gain by obeying her rec-

ommendation in every period other than t, while manipulating according to si in period

t. Given this inequality, since bnd (F ) has max-curvature of order β at v, it follows that

λ · (v − w) is no less than the value of the convex program

inf
(ui,t(h))t,h

Eµ
[

(1− δ)
∞∑
t=1

δt−1η |ui,t (h)− vi|β
]

subject to

gi (si, αt) ≤ Eµ
[
`t (h) (1− δ)

∞∑
t′=t+1

δt
′−t (ui,t′ (h)− vi)

]
for all t, and

|ui,t (h)− vi| ≤ ū for all t, h, (2)

where ū is the range of ui. Intuitively, this program minimizes the βth moment of the

deviation of player i’s realized repeated game payoff from vi, subject to a relaxed version of

incentive compatibility, and feasibility.

To prove the theorem, it remains to bound the value of the convex program (2) as a

function of δ and β. This can be done by duality, using the fact that gi (si, α) is bounded

away from 0, and employing some martingale large deviations bounds for the moments of

LT . Intuitively, these bounds reflect the fact that sequences of signals with large cumulative

likelihood ratio differences– which are highly informative when they occur– also occur with

low equilibrium probability, and hence do not provide a large amount of information on aver-

age. Incentive compatibility thus requires that player i’s realized payoff varies substantially

on-path, which in turn implies the desired lower bound for ex ante ineffi ciency.
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3.3 Tightness of the Bound in the Kinked Case

We will see in the next section that ineffi ciency of order (1− δ)β/2 can be attained when β ∈

[1, 2] under public monitoring. Here we show that, when β = 1 (i.e., in the kinked case), the

ineffi ciency bound of ((1− δ) /− log (1− δ))1/2 cannot be improved in the blind game. Thus,

withholding feedback can accelerate the rate of convergence by at most (− log (1− δ))−1/2

when β = 1.

We consider a one-sided prisoners’dilemma, where the stage game is

L R

C 2, 2 0, 0

D 3, 0 1, 1

and the monitoring structure is given by Y = {0, 1} and

p (y = 1|a) =

 1/2 if a1 = C,

1/4 if a1 = D.

We investigate the possibility of attaining payoffs close to (2, 2). Note that signals do not

depend on player 2’s action, but this does not pose an obstacle to attaining payoffs close to

(2, 2), because at action profile (C,L) player 2 is taking a static best response.

Proposition 1 In the one-sided prisoner’s dilemma, there exist c > 0 and δ̄ < 1 such that,

for all δ > δ̄, there exists v ∈ EB (δ) satisfying

v1 = v2 > 2− c
(

1− δ
− log (1− δ)

)1/2

.

Proof. We sketch the proof, providing the details in the appendix. Consider a review

strategy where the game is divided into blocks of T consecutive periods. We take T =

bρ/(1− δ)c, where ρ > 0 is a small number to be determined: note that ρ ≈ 1 − δT when

δ ≈ 1. In the first block, the players are prescribed (C,L) in every period. At the end of the

first block– as well any subsequent block where (C,L) is prescribed– the mediator records

16



the summary statistic

E = 1

{
1√
T

T∑
t=1

(2yt − 1) ≤ −z
}
,

where z > 0 is a large number to be determined. (Here periods are numbered from the start of

the block.) If E = 0, the players “pass the review,”and (C,L) is prescribed in the next block.

If E = 1, then with some probability q ∈ [0, 1] (which also remains to be determined), the

players fail the review and (D,B) is prescribed forever. With the complementary probability

1− q, the players pass the review anyway, and (C,L) is prescribed in the next block.

We show that the parameters ρ, z, and q can be chosen so that this strategy profile is an

equilibrium that yields payoff v > 2− c
√

(1− δ) / (− log (1− δ)) for each player.14

Let p be the probability that E = 1 when player 1 takes C throughout a block, let p1 be

the probability that E = 1 when player 1 takes D once and takes C T − 1 times, and let pT

be the probability that E = 1 when player 1 takes D throughout. Observe that v is given

by

v =
(
1− δT

)
2 + δT (1− pq) v ⇐⇒ v = 2− δT

1− δT
pqv. (PK)

At the same time, the incentive conditions that player 1 prefers to take C throughout a block

where (C,L) is prescribed, rather than taking D in period 1 only, or always taking D, are

1− δ ≤ δT (p1 − p) qv and (IC1)

1− δT ≤ δT (pT − p) qv. (ICT )

Conditions (IC1) and (ICT ) are obviously necessary for the review strategy to be an equi-

librium; moreover, as shown by Matsushima (2004, p. 846), they are also suffi cient.15

It thus suffi ces to find ρ, z, and q that satisfy (PK), (IC1), and (ICT ) with v > 2 −

c
√

(1− δ) / (− log (1− δ)).

Since the random variable 2yt−1 has zero mean and unit variance when player 1 takes C,

when δ ≈ 1 the central limit theorem implies that the test statistic
(

1/
√
T
)∑T

t=1 (2yt − 1)

14We write v instead of vi here, since the players’payoffs are the same.
15Matsushima considered repeated games with two players who receive conditionally independent signals.

Conditional independence implies that a player does not learn about her opponents signals during a review
block, just as players do not learn about the mediator’s signals in ΓB . The same argument thus applies here.
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is approximately N (0, 1), so that p ≈ Φ (−z) and p1− p ≈
(

3
4
− 1

2

)
φ(−z)√

T
= φ(−z)

4
√
T
. Therefore,

the smallest value for q that satisfies (IC1) is approximately 1−δ
δT

4
√
T

φ(−z)v . For this value to be

less than 1 when v ≈ 2, we must have 1−δ
δT

2
√
T

φ(−z) ≤ 1. Since (1− δ)
√
T/δT ≈

√
1− δ and

φ (−z) = exp (−z2/2) /
√

2π, it follows that z ≤ c0

√
− log (1− δ) for some constant c0. At

the same time, by (PK) and (IC1), we have v ≈ 2 − δT

1−δT Φ (−z) qv and 1 − δ ≈ δT φ(−z)
4
√
T
qv,

and hence

v ≈ 2− 4
(1− δ)

√
T

1− δT
Φ (−z)

φ (−z)
≈ 2− 4

√
ρ

√
1− δ
z

,

where the second approximation follows because, when ρ is small and z is large,
√

(1−δ)T
1−δT ≈

√
ρ

ρ
= 1√

ρ
and Φ(−z)

φ(−z) ≈
1
z
. Taking the largest possible value for z for which q ≤ 1– i.e.,

z = c0

√
− log (1− δ)– now gives the desired bound for v. Finally, with this value for z we

have pT ≈ 1 and p ≈ 0, so when ρ ≈ 0, q ≈ 1, and v ≈ 2, (ICT ) holds, as the LHS is close to

0 and the RHS is close to 2. The constructed strategies therefore form an equilibrium.

4 Attainable Effi ciency with Feedback

We now ask whether the maximum effi ciency levels identified in Theorem 1 can be attained

under public monitoring. To this end, denote the set of feasible and strictly individually

rational payoffs by F ∗ =
{
v ∈ F : vi > vi := minα−i∈×j 6=i∆(Aj) maxai∈Ai ui (ai, α−i) ∀i

}
. For

v ∈ bnd (F ∗), define Λ∗v = {λ ∈ Λ : v ∈ argmaxw∈F ∗ λ · w}.

Definition 2 Fix a boundary point v ∈ bnd (F ∗). For β ≥ 1, the boundary of F ∗ has

min-curvature of order at most β at v if, for all λ ∈ Λ∗v, there exist k > 0 such that

λ · (v − w) < kd (v, w)β for all w ∈ bnd (F ∗) .

The boundary of F has min-curvature of order β at v if

β = sup
{
β̃ : bnd (F ) has min -curvature of order at most β̃ at v

}
.

Definition 2 is a converse of Definition 1. It says that moving away from v along the

boundary of F entails an effi ciency loss of order at most β, relative to Pareto weights λ. For
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example, if N = 2, (0, 0) ∈ F , and the local boundary of F at (0, 0) is given by f (x) = −x

if x < 0 and f (x) = x2 if x ≥ 0, then the min-curvature of bnd (F ) at (0, 0) is 1. Note

that, in general, the min-curvature of bnd (F ) at v is always at least 1 and at most the

max-curvature.

The following assumption generalizes standard identification conditions for the public-

monitoring folk theorem to the case where action sets can be infinite.

Assumption 1 There exists x̄ > 0 such that the following conditions hold:

i. For each i, there exists a minmax profile against i, αi ∈ ×j 6=i∆ (Aj) × Ai, and xj : Y →

[−x̄, x̄] for each j 6= i, such that

aj ∈ argmax
a′j

uj
(
a′j, α−j

)
+ E

[
xj (y) |a′j, α−j

]
for all j 6= i and aj ∈ supp (αj) . (3)

ii. For each a ∈ A, ν ∈ {−1,+1}, and (i, j) with i 6= j, there exists xi : Y → [−x̄, x̄] such

that

ai ∈ argmax
a′i

ui (a
′
i, α−i) + E [xi (y) |a′i, α−i] , (4)

aj ∈ argmax
a′j

E
[
νxi (y) |a′j, a−j

]
. (5)

Intuitively, when payoff transfers of magnitude at most x̄ are available, Assumption 1(i)

says that players −i can be incentivized to minmax player i, and Assumption 1(ii) says that

player i can be incentivized to take ai via transfers from player j without affecting player

j’s incentive to take aj. These conditions are similar to assumptions (A1)—(A3) of Kandori

and Matsushima (1998). The difference is that, since we allow |A| = ∞, Assumption 1 is

stated directly in terms of the existence of transfers x that satisfy (3)—(5), while Kandori

and Matsushima assume that |A| <∞ and hence can state their conditions in terms of the

convex hull of the set of vectors of signal probabilities generated by different actions, from

which the existence of transfers x satisfying (3)—(5) follows from the separating hyperplane

theorem.
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We mention a class of infinite games where Assumption 1(ii) holds. (If Assumption

1(ii) holds, then even if Assumption 1(i) fails a Nash-threat folk theorem still holds, i.e.,

Theorem 2 holds with F ∗ replaced by the set of feasible payoffs that Pareto dominate a convex

combination of static Nash payoffs.) Say that the game is linear-concave if (i) for each i, Ai is

a compact interval [ai, āi] ⊆ R, and ui (ai, a−i) is differentiable and concave in ai for every a−i
and satisfies the Inada conditions limai→ai

d
dai
ui (ai, a−i) = ∞ and limai→āi

d
dai
ui (ai, a−i) =

−∞; and (ii) the public signal is a D-dimensional real variable, Y = ×Dd=1Y
d ⊆ RD, and

µd (a) = E
[
yd|a

]
is a linear function of a for each dimension d. In a linear-concave game,

let M i (a) =
(

d
dai
µd (â)

∣∣∣
â=a

)
d
be a D-dimensional vector representing the sensitivity of the

mean public signal to player i’s action. Say that pairwise identifiability holds if for any a

and i 6= j, M i (a) 6= 0 and the spans of M i (a) and M j (a) intersect only at the origin.16

Proposition 2 In any linear-concave game satisfying pairwise identifiability, Assumption

1(ii) holds.

Under Assumption 1, we examine the rate of convergence of EP (δ) toward a strictly

individually rational payoff vector v ∈ bnd (F ∗). For finite games (where β = 1), HT show

that the rate of convergence of EP (δ) equals (1− δ)1/2. Thus, withholding feedback can

accelerate the rate of convergence by at most (− log (1− δ))−1/2 in the kinked case. We now

show that, for β ∈ [1, 2], the rate of convergence of EP (δ) toward a strictly individual payoff

vector v ∈ bnd (F ∗) equals (1− δ)β/2. (We discuss the β > 2 case below.) Thus, withholding

feedback cannot accelerate the rate of convergence for β ∈ (1, 2].

Our result requires the usual assumption that dimF ∗ = N and further excludes payoff

vectors where some player obtains her maximum feasible payoff.

Theorem 2 Assume that dimF ∗ = N , and fix any v ∈ bnd (F ∗) such that vi < maxa ui (a)

for all i. If bnd (F ∗) has min-curvature of order β ≥ 1 at v and Assumption 1 holds, then

there exist c > 0 and δ̄ < 1 such that d
(
v, EP (δ)

)
≤ c (1− δ)min{β,2}/2 for all δ > δ̄.

Theorem 2 builds on FLM, HT, and SW. The idea is that, under Assumption 1, contin-

uation payoff movements of magnitude O (1− δ) suffi ce for orthogonal enforcement, so the
16This condition is the same as Assumption 1 of Sannikov (2007).
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logic given following Theorem 1 implies that minimum ineffi ciency is O
(

(1− δ)β/2
)
when

β ∈ [1, 2], and is at most O (1− δ) when β > 2.

In light of Theorem 1, when β > 2 one might hope to find conditions under which

d
(
v, EP (δ)

)
= O

(
(1− δ)β−1

)
, or at least d

(
v, EP (δ)

)
= O ((1− δ)ρ) for some ρ > 1.

While this may be possible, we do not pursue such a result here. The diffi culty is that, as

explained following Theorem 1, the ball B that is closest to an exposed point v and satisfies

the self-generation condition B ⊆ F in a neighborhood of v has radius O (1− δ)1−β/2, and

thus expands as δ → 1 when β > 2. As δ → 1, this ball eventually violates self-generation at

some point far from v. Thus, conditions under which d
(
v, EP (δ)

)
can be less than O (1− δ)

must involve the global geometry of the feasible payoff set. Investigating such conditions is

left for future work.

5 Discussion

5.1 Players with Observable Actions

Our non-moving support assumption excludes perfect monitoring, but our results easily

extend to the case where some players’actions are perfectly observed. Let I∗ ⊆ I be the set

of players with observable actions, and assume that deviations by players i ∈ I\I∗ do not

affect the support of p, so that supp p (·|a) = supp p (·|a′i, a−i) for all a ∈ A, i ∈ I\I∗, and

a′i ∈ Ai. Theorem 1 then continues to apply for any v ∈ exp (F ) that cannot be attained

by an action profile distribution α such that gi (si, α) = 0 for each player i ∈ I\I∗ and each

manipulation si. Moreover, Theorem 2 does not rely on non-moving support and thus holds

verbatim when some players’actions are observed.17

17In fact, it suffi ces to impose Assumption 1(i) for j ∈ I\I∗ and Assumption 1(ii) for (i, j) ∈ (I\I∗)2. This
is because (3) holds automatically for j ∈ I∗; and Assumption 1(ii) is used to deter deviations from a pure
strategy profile without destroying surplus, and observable deviations can always be so deterred when δ is
suffi ciently high.
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5.2 Intrinsic Discounting and Frequent Actions

The current paper focuses on the rate at which ineffi ciency vanishes as δ → 1, for a fixed

monitoring structure. In SW, we showed that if one considers the double limit where δ → 1

at the same time as monitoring precision degrades, whether a folk or anti-folk theorem holds

depends on a ratio of discounting and monitoring precision, which can be viewed as a measure

of discounting relative to an intrinsic timescale. This double limit arises, for example, in the

“frequent action limit” considered by Abreu, Milgrom and Pearce (1991), Fudenberg and

Levine (2007), and Sannikov and Skrzypacz (2010), where signals are parameterized by an

underlying continuous-time process, actions and signal observations occur simultaneously

every ∆ units of time, and the analysis concerns the ∆→ 0 limit.

The results in the current paper can be extended to the low-discounting/low-monitoring

double limit. We sketch one such extension. Define the maximum detectability of any

manipulation by any player as

χ2 = max
a∈A,i∈I,si:A→A

∑
y

p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)2

.

The notation is explained by noting that this is the χ2-divergence of the signal distribution

under the manipulation from that under equilibrium play. Fix a finite stage game (so we are

in the kinked case where β = 1), and fix an exposed point v ∈ exp (F ) \V CE and a direction

λ ∈ Λv. It can be shown that there exists c > 0 such that

λ · (v − w) ≥ c

(
χ2

1− δ max

{
log

χ2

1− δ , 1
})1/2

for all δ ∈ [0, 1) and all monitoring structures with maximum detectability χ2.18 Thus,

when β = 1, Theorem 1 extends to the low-discounting/low-monitoring double limit by

simply replacing 1 − δ with the ratio (1− δ) /χ2. This result can be proved by replacing

the martingale large deviations bound used in the proof of Theorem 1 (Azuma’s inequality)

with a bound that also tracks the variance of the martingale increments (e.g., the inequality

18This result also requires that our full support assumption holds uniformly over monitoring structures:
i.e., for some ω > 0, attention is restricted to monitoring structures satisfying p (y|a) > ω for all y, a.
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of Freedman, 1975). Similar extensions may also be possible when β > 1.

5.3 Summary and Directions for Future Research

This paper has taken a rate-of-convergence approach to studying the value of withholding

feedback in standard repeated agency problems and games with patient players. The main

result is that this value is “small”: in finite-action settings where the feasible payoff set is

kinked, withholding feedback accelerates convergence to effi ciency by at most a log factor,

while in smooth settings, withholding feedback improves effi ciency by at most a constant

factor. The key economic force underlying this result is that, while pooling information

across many periods leads to more precise monitoring, it also entails larger rewards and

punishments, which reduces the scope for providing incentives by transferring continuation

surplus rather than destroying it.

A basic lesson is that the value of withholding feedback is very different in a one-off

production process that unfolds gradually over time (as in Holmström and Milgrom, 1987)

as compared to a genuinely repeated interaction. Since continuation payoff transfers are im-

possible in one-shot interactions, the monitoring benefit of withholding feedback dominates,

so withholding feedback can be very valuable. But in repeated interactions, this benefit is

offset by the cost of using larger rewards and punishments, which limit continuation payoff

transfers.

We mention some possible extensions of our results. First, as discussed in Section 4,

further analyzing rates of convergence toward exposed points with curvature of order β > 2

is a challenging open question, which involves non-local geometric properties of the feasible

payoff set. Second, it would be interesting to allow an infinite set of signal realizations with

unbounded likelihood ratios: for example, perhaps a player’s action is observed with normal

noise. Introducing infinite signals could increase the rate of convergence, because as δ → 1

it becomes possible to base incentives on rarer but more informative signal realizations

(e.g., “tail tests”), so there is a sense in which increasing δ now endogenously increases

monitoring precision. We conjecture that whether such an acceleration occurs depends on

the tail behavior of the signal distribution. Third, the rate of convergence when discounting

and monitoring vary simultaneously could be studied in detail. For example, it remains
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to analyze the rate of convergence in the frequent-action limit in the case where different

actions of player 1 generate signals of player 2’s action of very unequal precision.

We also believe that the rate of convergence to effi ciency can be a useful lens for analyzing

other questions about long-run economic relationships, besides the impact of feedback. This

may be particularly true in settings with private monitoring, where analyzing equilibrium

payoffs for a fixed discount factor is typically intractable.

Appendix: Omitted Proofs

A Proof of Theorem 1

We first bound the deviation gain at any α ∈ ∆ (A) that attains payoffs close to v.

Lemma 1 There exist ε > 0 and γ > 0 such that, for all α ∈ ∆ (A) satisfying λ ·

(v − u (α)) < ε, there exist i ∈ I and si ∈ Si such that gi (si, α) > γ.

Proof. Since v ∈ exp (F ) \V CE, for all α ∈ ∆ (A) such that v = u (α), there exist i and si

such that gi (si, α) > 0. Let

γ =
1

2
inf

α∈∆(A):v=u(α)
sup
i,si

gi (si, α) .

Note that γ > 0. To see this, note that gi (Id, α) = 0 for all i, α, so γ ≥ 0, and suppose

toward a contradiction that there exists a sequence αn such that v = u (αn) for all n and

supi,si gi (si, α
n) → 0. Since ∆ (A) is weak*-compact by Alaoglu’s theorem, taking a subse-

quence if necessary, αn → α ∈ ∆ (A). Moreover, since each ui is continuous, u (α) = v; and

since each Ai is compact, by the maximum theorem, supsi gi (si, α) = limn supsi gi (si, α
n) = 0

for all i, contradicting v /∈ V CE.

Now suppose that for all ε > 0 there exists αε ∈ ∆ (A) satisfying λ · (v − u (αε)) < ε and

gi (si, α
ε) < γ for all i, si. Taking a subsequence if necessary, αε → α ∈ ∆ (A). Moreover,

we have u (α) = limε u (αε) = v (since u (αε) ∈ F and v ∈ exp (F )), and supsi gi (si, α) =

limε supsi gi (si, α
ε) ≤ γ for all i (by the maximum theorem), so supi,si gi (si, α) ≤ γ, contra-

dicting the definition of γ.
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Fix such ε and γ. We now fix a suffi ciently small constant c > 0. First, for ψ ≥ 1, let

k1 (ψ) =
(
8 (ψ − 1) max

{
2ψ−3, 1

})ψ
, (6)

and let k2 (ψ) ≥ 1 satisfy

∞∑
t=1

δttψ ≤ k2 (ψ)

(1− δ)ψ+1
for all δ. (7)

(The existence of such k2 (ψ) follows from the standard fact that
∑∞

t=1 δ
ttψ = Γ (ψ + 1) (1− δ)−(ψ+1)+

O
(

(1− δ)−ψ
)
: see, e.g., Wood, 1992, eqn. (6.4).) Next, define

ζ (δ) =


√

1−δ
max{− log(1−δ),1} if β = 1,

(1− δ)β/2 if β ∈ (1, 2],

(1− δ)β−1 if β ∈ (2,∞),

T (δ) =

⌈
log 2

− log δ

⌉
, and

f (c, δ) =


4
√
πū

ηω2

√
cζ(δ)δ
1−δ exp

(
− η2ω2

2cζ(δ)2T (δ)

)
if β = 1,( √

c
ηωβ

ββ−1−1

ββ

) 1
β−1

k1

(
β
β−1

)
k2

(
β

2(β−1)

)
if β > 1.

Note that ζ (δ) ∈ [0, 1], ζ (δ) is decreasing, limδ→1 ζ (δ) = 0, T (δ) is increasing and f (c, δ) is

increasing in c for all δ. We fix c = min {ε/2, c0}, where c0 satisfies the following lemma.

Lemma 2 There exists c0 > 0 such that, for all c ≤ c0, we have

f (c, δ) +
√
c ≤ γ

2
for all δ ∈ [0, 1). (8)

Proof. If β > 1 then f (c, δ) is independent of δ and satisfies limc→0 f (c, δ) = 0, so this is

immediate.

If β = 1, let c1 = min
{

η2ω2

4 log 3
, γ

2

5

}
. Since

√
c1 < γ/2 and f (c, δ) is increasing in c and

satisfies limδ→0 f (c1, δ) = 0, there exists δ1 > 0 such that (8) holds for all c < c1 and all

δ < δ1. Moreover, there exists δ2 > 0 such that (8) holds for all c < c1 and all δ > δ2. To
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see this, for suffi ciently high δ, we have

T (δ) ≤ log 2

− log δ
+ 1 ≤ log 3

− log δ
≤ log 3

1− δ ,

and hence

f (c, δ) ≤ 4
√
πū

ηω2

√
c1ζ (δ) δ

1− δ exp

(
η2ω2 log (1− δ)

2c1 log 3

)
≤ 4
√
πū

ηω2

√
c1ζ (δ) δ.

Hence, since limδ→1 ζ (δ) = 0, limδ→1 f (c, δ) +
√
c =
√
c ≤ √c1 < γ/2, so δ2 is well-defined.

Finally, for all c > 0 and all δ ∈ [δ1, δ2], since ζ (δ) is decreasing and T (δ) is increasing, we

have

f (c, δ) ≤ 4
√
πū

ηω2

√
cζ (δ1) δ2

1− δ2

exp

(
− η2ω2

2cζ (δ1)2 T (δ2)

)
.

Since the RHS converges to zero as c → 0, there exists c2 > 0 such that (8) holds for all

c < c2 and all δ ∈ [δ1, δ2]. Taking c0 = min {c1, c2} completes the proof.

Now fix δ ∈ [0, 1) and fix a Nash equilibrium σ in ΓB (δ) with equilibrium payoff w.

Denote the induced repeated game outcome by µ ∈ ∆ ((A× Y )∞), the distribution over

period-t action profiles by αt ∈ ∆ (A), and the occupation measure over the first T periods

by

αT =
1− δ

1− δT
T∑
t=1

(1− δ) δt−1αt.

For any i and si, we also let

gi,t (si) = gi (si, αt) and gTi (si) =
1− δ

1− δT
T∑
t=1

δt−1gi,t = gi
(
si, α

T
)
,

and, for any complete history h = (at, yt)
∞
t=1, we let

ui,t (h) = ui (at) and `i,t (si, h) =
p (yt|at)− p (yt|si (ai,t) , a−i,t)

p (yt|at)
.

Finally, as c and δ are now fixed, we reduce notation by letting ζ = ζ (δ), T = T (δ), and

f = f (c, δ). To complete the proof, we show that λ · (v − w) ≥ cζ.

We first consider the case where supi,si g
T
i (si) ≤ γ.
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Lemma 3 If supi,si g
T
i (si) ≤ γ, then λ · (v − w) ≥ cζ.

Proof. Since δT ≤ 1/2 by construction, we have

λ · (v − w) = (1− δ)
∞∑
t=1

δt−1λ · (v − u (αt))

≥ (1− δ)
T∑
t=1

δt−1λ · (v − u (αt))

=
(
1− δT

)
λ ·
(
v − u

(
αT
))
≥ 1

2
λ ·
(
v − u

(
αT
))
.

By construction of (ε, γ), if λ·
(
v − u

(
αT
))
< ε then supi,si g

T
i (si) > γ. Hence, supi,si g

T
i (si) ≤

γ implies λ ·
(
v − u

(
αT
))
≥ ε ≥ 2cζ, and therefore λ · (v − w) ≥ cζ.

The rest of the proof considers the case where supi,si g
T
i (si) > γ. We fix i and si such that

gTi (si) ≥ γ, and reduce notation by letting gt = gi,t (si), gT = gTi (si), and `t (h) = `i,t (si, h).

We first use player i’s period-t incentive constraint to relate gt, ui,t, and `t.

Lemma 4 For every t ∈ N, we have gt ≤ Eµ
[
`t (h)

∑∞
t′=t+1 δ

t′−tui,t′ (h)
]
.

Proof. For any sequence of action profiles (at)
∞
t=1 and any period t, letwt =

∑∞
t′=t δ

t′−tui (at′).

Since µ is an equilibrium outcome, for every t ∈ N we have

gt ≤
∫
ht,at,yt

(p (yt|at)− p (yt|si (ai,t) , a−i,t)) δE
[
wt+1|ht, at, yt

]
dµ
(
ht, at

)
.

This holds because, if she follows her recommendation in every period t′ 6= t while ma-

nipulating according to si in period t, player i obtains an expected continuation payoff of∫
ht,at,yt

p (yt|si (ai,t) , a−i,t)E [wt+1|ht, at, yt] dµ (ht, at) in period t+ 1, and this deviation must

be unprofitable. The lemma follows as

∫
ht,at,yt

(p (yt|at)− p (yt|si (ai,t) , a−i,t)) δE
[
wt+1|ht, at, yt

]
dµ
(
ht, at

)
=

∫
ht,at,yt

p (yt|at) `t (h) δE
[
wt+1|ht, at, yt

]
dµ
(
ht, at

)
=

∫
h

`t (h)
∞∑

t′=t+1

δt
′−tui,t′ (h) dµ (h) ,

where the last line follows by iterated expectation.
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Since bnd (F ) has max-curvature of order β at v, Lemma 4 implies that λ · (v − w) is no

less than the value of program (2). By weak duality, letting xt (h) = ui,t (h) − vi, the value

of this program is no less than

sup
(ξt)t≥0

inf
(xt(h))t,h∈[−ū,ū]

(1− δ)Eµ
 ∑∞

t=1 δ
t−1η |xt (h)|β

−
∑∞

t=1 ξt`t (h)
∑∞

t′=t+1 δ
t′−1xt′ (h)

+ (1− δ)
∞∑
t=1

δt−1ξtgt.

To bound the value from below, let

ξt =


√
cζ if t ≤ T,

0 if t > T.

We then have

∞∑
t=1

ξt`t (h)
∞∑

t′=t+1

δt
′−1xt′ (h) =

√
cζ

T∑
t=1

`t (h)
∞∑

t′=t+1

δt
′−1xt′ (h) =

√
cζ
∞∑
t=2

δt−1

(
min{t−1,T}∑

t′=1

`t′ (h)

)
xt (h) ,

as well as

(1− δ)
∞∑
t=1

δt−1ξtgt =
√
cζ (1− δ)

T∑
t=1

δt−1gt =
√
cζ
(
1− δT

)
gT ≥

√
cζγ

2
.

In total, we have

λ · (v − w) (9)

≥
√
cζγ

2
+ inf

(xt(h))t≥2,h∈[−ū,ū]
(1− δ)

∞∑
t=2

δt−1Eµ
[
η |xt (h)|β −

√
cζ

(
min{t−1,T}∑

t′=1

`t′ (h)

)
xt (h)

]
.

It remains to bound the last term in (9).

Lemma 5 For any µ ∈ ∆ ((A× Y )∞), we have

inf
(xt(h))t≥2,h∈[−ū,ū]

(1− δ)
∞∑
t=2

δt−1Eµ
[
η |xt (h)|β −

√
cζ

(
min{t−1,T}∑

t′=1

`t′ (h)

)
xt (h)

]
≥ −
√
cζf.

(10)
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This will complete the proof, as (9), together with γ
2
− f ≥

√
c by (8), implies that

λ · (v − w) ≥
√
cζ
(γ

2
− f

)
≥
√
cζ
√
c = cζ.

We now prove Lemma 5. We consider separately the cases where β = 1 and β > 1.

Case 1: β = 1. When β = 1, the LHS of (10) is linear in xt (h) ∈ [−ū, ū], so its value is

no less than

(1− δ)
∞∑
t=2

δt−1

∫
h:
√
cζ
∣∣∣Σmin{t−1,T}
t′=1 `t′ (h)

∣∣∣≥η
(
η −
√
cζ

∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣
)
ūdµ (h) .

We prove that this value is no less than −
√
cζf .

Note that

E
[
`t| (at′ , yt′)t−1

t′=1 , at
]

=
∑
yt

p (yt|at)
p (yt|at)− p (yt|si (ai,t) , a−i,t)

p (yt|at)
= 0 and

|`t (h)| ≤ 1

ω
for all t, h.

Applying the Azuma-Hoeffding inequality to the martingale increments (`t)t, for any x ≥ 0,

we have

Pr

(
√
cζ

∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣ ≥ x

)
≤ 2

(
exp

(
− x2ω2

2cζ2 min {t− 1, T}

))
. (11)

We thus have

∫
h:
√
cζ
∣∣∣∑min{t−1,T}

t′=1 `t′ (h)
∣∣∣≥η
(
η −
√
cζ

∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣
)
dµ (h)

= Pr

(
√
cζ

∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣ ≥ η

)
η − E

[
1

{
√
cζ

∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣ ≥ η

}∣∣∣∣∣√cζ min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣
]

= −
∫
x≥η

Pr

(
√
cζ

∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣ ≥ x

)
dx ≥ −2

∫
x≥η

exp

(
− x2ω2

2cζ2 min {t− 1, T}

)
dx,
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where the second equality is by integration by parts. Now note that

∫
x≥η

exp

(
− x2ω2

2cζ2 min {t− 1, T}

)
dx =

√
2cζ
√

min {t− 1, T}
ω

∫
y≥ ηω√

2cζ
√
min{t−1,T}

exp
(
−y2

)
dy

≤ 2
√
πcζ2

ηω2
min {t− 1, T} exp

(
− η2ω2

2cζ2 min {t− 1, T}

)
≤ 2

√
πcζ2

ηω2
(t− 1) exp

(
− η2ω2

2cζ2T

)
,

where the first inequality uses the Mills ratio inequality φ (−x) /Φ (−x) ≥ x for x ≥ 0.

Hence, we have

(1− δ)
∞∑
t=2

δt−1

∫
h:
√
cζ
∣∣∣Σmin{t−1,T}
t′=1 `t′ (h)

∣∣∣≥η
(
η −
√
cζ

∣∣∣∣ t−1∑
t′=1

`t′ (h)

∣∣∣∣) ūdµ (h)

≥ −4
√
πū

ηω2
cζ2 (1− δ)

∞∑
t=2

δt−1 (t− 1) exp

(
− η2ω2

2cζ2T

)
= −4

√
πū

ηω2

cζ2δ

1− δ exp

(
− η2ω2

2cζ2T

)
= −
√
cζf (c, δ) ,

where the first equality uses (1− δ)
∑∞

t=2 δ
t−1 (t− 1) = δ (1− δ)−1.

Case 2: β > 1. When β > 1, the LHS of (10) is convex in xt (h). Relaxing the constraint

xt (h) ∈ [−ū, ū] and minimizing over xt (h) ∈ R gives

xt (h) =

(√
cζ

ηβ

) 1
β−1

sign

(
min{t−1,T}∑

t′=1

`t′ (h)

)∣∣∣∣∣min{t−1,T}∑
t′=1

`t′ (h)

∣∣∣∣∣
1

β−1

for all t ≥ 2.

Hence, the LHS of (10) is no less than

−
√
cζ

(√
cζ

η

ββ−1 − 1

ββ

) 1
β−1

(1− δ)
∞∑
t=2

δt−1E

[∣∣∣∣t−1∑
s=1

`s (h)

∣∣∣∣
β
β−1
]
.

In turn, this expression is no less than −
√
cζf iff

(1− δ)
∞∑
t=2

δt−1E

[∣∣∣∣t−1∑
s=1

`s (h)

∣∣∣∣
β
β−1
]
≤
k1

(
β
β−1

)
k2

(
β

2(β−1)

)
ω

β
β−1 ζ

1
β−1

. (12)
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It thus suffi ces to establish (12). We consider separately the cases where β ∈ (1, 2] and

β > 2.

Case 2(a): β ∈ (1, 2]. When β ∈ (1, 2], recalling the definition of k1 (ψ) , (6), by

Dharmadhikari, Fabian, and Jogdeo (1968, eqn. (1.1)),

Eµ
[∣∣∣∣t−1∑
s=1

`s (h)

∣∣∣∣
β
β−1
]
≤
k1

(
β
β−1

)
(t− 1)

β
2(β−1)

ω
β
β−1

.

Hence, by (7),

(1− δ)
∞∑
t=2

δt−1Eµ
[∣∣∣∣t−1∑
s=1

`s (h)

∣∣∣∣
β
β−1
]
≤

k1

(
β
β−1

)
ω

β
β−1

(1− δ)
∞∑
t=2

δt−1 (t− 1)
β

2(β−1)

≤
k1

(
β
β−1

)
k2

(
β

2(β−1)

)
ω

β
β−1 (1− δ)

β
2(β−1)

=
k1

(
β
β−1

)
k2

(
β

2(β−1)

)
ω

β
β−1 ζ

1
β−1

.

Case 2(b): β > 2. When β > 2, by Pinelis (2015, eqn. (1.11)),

Eµ
[∣∣∣∣t−1∑
s=1

`s (h)

∣∣∣∣
β
β−1
]
≤ 2 (t− 1)

ω
β
β−1

.

In addition, k1 (β/ (β − 1)) ≥ 2 and k2 (β/ (β − 1)) ≥ 1. Hence,

(1− δ)
∞∑
t=2

δt−1Eµ
[∣∣∣∣t−1∑
s=1

`s (h)

∣∣∣∣
β
β−1
]
≤ 2

ω
β
β−1

(1− δ)
∞∑
t=2

δt−1 (t− 1)

=
2

ω
β
β−1

δ

1− δ ≤
k1

(
β
β−1

)
k2

(
β

2(β−1)

)
ω

β
β−1 ζ

1
β−1

.

B Proof of Proposition 1

Consider the strategies described in the text, with z =
√
− log (1− δ) (i.e., c0 = 1). Define

v = 2− 1− δ
1− δT

p

p1 − p
and q =

(
2δT

1− δ (p1 − p)−
δT

1− δT
p

)−1

. (13)
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With v and q so defined, (PK) and (IC1) hold with equality. We show that

lim
δ→1

1−δ
1−δT

p
p1−p√

1−δ
− log(1−δ)

<
5
√
ρeρ

eρ − 1
for all ρ > 0, (14)

lim
ρ→0

lim
δ→1

δT

1− δ (p1 − p) > 1, and (15)

lim
ρ→0

lim
δ→1

δT

1− δT
q (pT − p) > 1. (16)

Given these results, the proof is completed by first taking ρ > 0 and δ̄1 > 0 such that the

inequalities in (15) and (16) hold for ρ and all δ > δ̄1, then taking δ̄2 > 0 such that the

inequality in (14) holds for ρ for all δ > δ̄2, and finally taking c = 5
√
ρeρ/ (eρ − 1) and

δ̄ = max
{
δ̄1, δ̄2

}
.

We now establish (14)—(16). Let k ∈ N be the unique integer satisfying k ∈ [
√
T

2

(√
T − z

)
−

1,
√
T

2

(√
T − z

)
). Note that

p = Pr

(
T∑
t=2

yt < k

)
+

1

2
Pr

(
T∑
t=2

yt = k

)
< Pr

(
T∑
t=2

yt ≤ k

)
, and

p1 − p =
1

4
Pr

(
T∑
t=2

yt = k

)
=

(T − 1)!

k! (T − 1− k)!

(
1

2

)T+1

≥ (T )!

k! (T − k)!

(
1

2

)T+2

, (17)

where the last inequality holds because k ≤ T/2.

We first establish (14). Recall that the yt are independent Bernoulli random variables.

As shown by Zhu, Li, and Hayashi (2022, Theorem 2.1),

Pr
(∑T

t=2 yt ≤ k
)

Pr
(∑T

t=2 yt = k
) ≤ k + 1− T

2
+

√(
k − 1− T

2

)2

+ 2k.

Since

p

p1 − p
< 4

Pr
(∑T

t=2 yt ≤ k
)

Pr
(∑T

t=2 yt = k
) and lim

δ→1

1−δ
1−δT

(
k + 1− T

2
+
√(

k − 1− T
2

)2
+ 2k

)
√

1−δ
− log(1−δ)

=

√
ρeρ

eρ − 1
,
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where the second line follows by l’Hopital’s rule, we have

lim
δ→1

1−δ
1−δT

p
p1−p√

1−δ
− log(1−δ)

≤ lim
δ→1

1−δ
1−δT 4

Pr(
∑T
t=2 yt≤k)

Pr(
∑T
t=2 yt=k)√

1−δ
− log(1−δ)

=
4
√
ρeρ

eρ − 1
<

5
√
ρeρ

eρ − 1
,

which establishes (14).

We next establish (15). Applying Stirling’s formula to (17), we have

p1 − p ≥
√

2π (T − 1)

4e2
√
k (T − 1− k)

(
T − 1

2k

)k (
T − 1

2 (T − 1− k)

)T−1−k

. (18)

Therefore,

lim
ρ→0

lim
δ→1

δT

1− δ (p1 − p) ≥ lim
ρ→0

lim
δ→1

δT

1− δ

√
2π (T − 1)

4e2
√
k (T − 1− k)

(
T − 1

2k

)k (
T − 1

2 (T − 1− k)

)T−1−k

=∞,

which establishes (15).

Finally, we establish (16). We will show that limδ→1 p = 0 and limδ→1 pT = 1. Hence, for

suffi ciently large δ, pT − p ≥ 1/2. This implies (16), as we have

lim
ρ→0

lim
δ→1

δT

1− δT
q (pT − p)

= lim
ρ→0

lim
δ→1

δT

1− δT
1

δT
pT − p

2p1−p
1−δ −

p

1−δT
by (13)

≥ lim
ρ→0

lim
δ→1

1

1− δT
1
2

2p1−p
1−δ

≥ lim
ρ→0

lim
δ→1

1− δ
1− δT

( √
2π (T − 1)

e2
√
k (T − 1− k)

( 1
2

(T − 1)

k

)k ( 1
2

(T − 1)

T − 1− k

)T−1−k)−1

by (18)

= ∞.

It remains to show that limδ→1 p = 0 and limδ→1 pT = 1. Recall that 2yt − 1 has zero

mean and unit variance when player 1 takes C. Thus, by the Berry—Esseen theorem, there
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exists an absolute constant C0 such that

p = Prplayer 1 takes C
(

1√
T

T∑
t=1

(2yt − 1) ≤ −
√
− log (1− δ)

)
≤ Φ

(
−
√
− log (1− δ)

)
+ C0

(
Eplayer 1 takes C

[
|2yt − 1|3

]
√
T

)
δ→1−→ 0.

On the other hand, (4yt − 1) /
√

3 has zero mean and unit variance when player 1 takes D.

Thus, again by Berry—Esseen,

pT = Prplayer 1 takes D
(

1√
T

T∑
t=1

(2yt − 1) ≤ −
√
− log (1− δ)

)
= Prplayer 1 takes D

(
1√
T

T∑
t=1

4yt − 1√
3
≤
√
T − 2

√
− log (1− δ)√

3

)

≥ Φ

(√
T − 2

√
− log (1− δ)√

3

)
+ C0

Eplayer 1 takes D
[∣∣(4yt − 1) /

√
3
∣∣3]

√
T

 δ→1−→ 1,

completing the proof.

C Proof of Theorem 2

Throughout the proof, we let β∗ = min {β, 2}.

The following definition and lemma are due to APS.

Definition 3 A bounded set W ⊆ RN is self-generating if for all v̂ ∈ W , there exist α ∈

×i∆ (Ai) and w : Y → RN satisfying

1. Promise keeping (PK): v̂ = (1− δ)u (α) + δ
∑

y p (y|α)w (y).

2. Incentive compatibility (IC): supp (αi) ⊆ argmaxai (1− δ)ui (ai, α−i)+δ
∑

y p (y|ai, α−i)wi (y)

for all i.

3. Self-generation (SG): w (y) ∈ W for all y.

When (PK), (IC), and (SG) hold, we say that the pair (α,w) decomposes v̂ on W .
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Lemma 6 Any bounded, self-generating set W is contained in EP (δ).

It thus suffi ces to find a bounded, self-generating setW such that d (v,W ) = O
(

(1− δ)β
∗/2
)
.

We first state a suffi cient condition for a ball B to be self-generating.19 We then prove that

there exists B with d (v,B) = O
(

(1− δ)β
∗/2
)
that satisfies this condition.

Let ū = maxu,u′∈F ‖u− u′‖ > 0.20

Definition 4 The maximum score in direction λ ∈ Λ with reward bound x̄ > 0 is

k (λ, x̄) := sup
α∈×i∆(Ai),x:Y→RN

λ ·
(
u (α) +

∑
y

p (y|α)x (y)

)

subject to

1. Incentive compatibility (IC): supp (αi) ⊆ argmaxai ui (ai, α−i) +
∑

y p (y|ai, α−i)xi (y)

for all i.

2. Half-space decomposability with reward bound x̄ (HSx̄): λ · x (y) ≤ 0 and ‖x (y)‖ ≤ x̄

for all y.

Lemma 7 For any x̄ > ū and ε > 0, if a ball B of radius r satisfies

k (λ, x̄) ≥ max
v′∈B

λ · v′ + ε for all λ ∈ Λ, and (19)

x̄2 ≤ δ

1− δ
εr

16
, (20)

then B is self-generating.

We finally show that, for high enough x̄ and δ, there exists a ball B satisfying (19) and

(20) as well as d (v,B) = O
(

(1− δ)β
∗/2
)
.

19This condition, given in Definition 4 and Lemma 7 below, is similar to Definition 2 and Lemma 6 of
SW, but is simpler because the monitoring structure varies together with δ in SW while it is is fixed in the
current paper, so less control over the relationship between δ and the reward bound x̄ is required.
20This is a slight abuse of notation, as in the proof of Theorem 1 we took ū to be the range of ui for a

particular player i.
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Lemma 8 There exist x̄ > ū, c > 0 and δ̄ < 1 such that, for all δ > δ̄, there exist ε > 0 and

a ball B of radius r satisfying

k (λ, x̄) ≥ max
v′∈B

λ′ · v′ + ε for all λ′ ∈ Λ,

x̄2 ≤ δ

1− δ
εr

16
, and

d (v,B) ≤ c (1− δ)β
∗/2 .

Taking x̄, c, and δ̄ as in Lemma 8 completes the proof of Theorem 2.

C.1 Proof of Lemma 7

The proof is similar to (but simpler than) the proof of Lemma 6 of SW. To show that B is

self-generating, it suffi ces to show that the extreme points of any ball B′ ⊆ B of radius r/2

are decomposable on B′.

Lemma 9 (SW, Lemma 10) Suppose that for any ball B′ ⊆ B with radius r/2 and any

direction λ ∈ Λ, the point v̂ = argmaxv′∈B′ λ · v′ is decomposable on B′. Then B is self-

generating.

We thus fix a ball B′ ⊆ B of radius r/2 and a direction λ ∈ Λ, and let v̂ = argmaxv′∈B′ λ ·

v′. We construct (α,w) that decompose v̂ on B′.

Since k (λ, x̄) ≥ maxv′∈B λ · v′+ ε by hypothesis, there exist α and x : Y → RN satisfying

(IC), (HSx̄), and

λ ·
(
u (α) +

∑
y

p (y|α)x (y)

)
≥ max

v′∈B
λ · v′ + ε/2 ≥ max

v′∈B′
λ · v′ + ε/2. (21)

To construct w, for each y, let

w (y) = v̂ +
1− δ
δ

(
v̂ − u (α) + x (y)−

∑
y′
p (y′|α)x (y′)

)
.

We show that (α,w) decomposes v̂ on B′ by verifying (PK), (IC), and (SG).
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(PK): This holds by construction: we have
∑

y p (y|α)w (y) = (1/δ) (v̂ − (1− δ)u (α)),

and hence (1− δ)u (α) + δ
∑

y p (y|α)w (y) = v̂.

(IC): Setting aside the constant terms in w (y), we see that an action ai maximizes

(1− δ)ui (ai, α−i)+δ
∑

y p (y|ai, α−i)wi (y) iff it maximizes ui (ai, α−i)+
∑

y p (y|ai, α−i)xi (y),

which follows from (IC).

(SG): We start with a simple geometric observation.

Lemma 10 (SW, Lemma 11) For each w ∈ RN , we have w ∈ B′ if λ · (v̂ − w) ≥ 0 and

d (v̂, w) ≤
√

(r/2)λ · (v̂ − w). (22)

We thus show that, for each y, w (y) satisfies λ · (v̂ − w (y)) ≥ 0 and (22). Note that

v̂ − w (y) =
1− δ
δ

(
u (α) +

∑
y′
p (y′|α)x (y′)− v̂ − x (y)

)
.

By (HSx̄) and (21), we have λ · (v̂ − w (y)) ≥ (δ/ (1− δ)) ε/2, and therefore

√
(r/2)λ · (v̂ − w (y)) ≥ 1− δ

δ

√
δ

1− δ
εr

4
. (23)

Similarly, we have

d (v̂, w) ≤ 1− δ
δ

(
d (v̂, u (α)) + d

(∑
y′
p (y′|α)x (y′) , x (y)

))
≤ 1− δ

δ
(ū+ x̄) ≤ 1− δ

δ
2x̄.

(24)

Comparing (23) and (24), we see that w (y) satisfies (22) whenever 2x̄ ≤
√

(δ/ (1− δ)) εr/4,

which holds by (20).

C.2 Proof of Lemma 8

Fix any η̄ > 0 and F̄ ⊆ F ∗ such that {w ∈ F ∗ : d (v, w) ≤ η̄} ⊆ F̄ , dim F̄ = N , and

wi < maxa ui (a) for all i and w ∈ F̄ .

Lemma 11 There exists x̄ > ū such that k (λ, x̄) ≥ maxv′∈F̄ λ · v′.
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Proof. This is the same as Lemma 5 of HT. The only difference is that we allow |A| = ∞

and impose Assumption 1, while HT instead assume |A| <∞ together with individual and

pairwise full rank, which imply Assumption 1.

Now fix any k > 16x̄2. By Lemma 11, it suffi ces to find c > 0 and δ̄ < 1 such that, for

all δ > δ̄, there exist ε > 0 and a ball B with radius r > 0 such that

max
v′∈F̄

λ′ · v′ ≥ max
v′∈B

λ′ · v′ + ε for all λ′ ∈ Λ, (25)

rε ≥ k (1− δ) , and (26)

d (v,B) ≤ c (1− δ)β
∗/2 . (27)

If β∗ = 1 then, as in Lemma 3 of HT, it suffi ces to take any o ∈ int
(
F̄
)
and any ` > 0

suffi ciently large compared to k, let r = (1− δ)1/2, and let B be the ball of radius r with

center (1− `r) v + `ro.

For the rest of the proof, we assume that β∗ > 1. We first derive a geometric condition

for w ∈ F ∗, similar to Lemma 10.

Lemma 12 There exist λ ∈ Λ∗v, ρ > 0, and κ > 0 such that, if d (v, w) < ρ and κd (v, w)β
∗
<

λ · (v − w), then w ∈ int (F ∗).

Proof. Since F ∗ is full-dimensional and hasmin-curvature of order at most β at v, there exist

ε̄ > 0 and k <∞ such that, for all w ∈ bnd (F ∗) satisfying d (v, w) < ε̄, we have λ·(v − w) <

kd (v, w)β ≤ kd (v, w)β
∗
for all λ ∈ Λ∗v. Let Bε′ (v) =

{
w ∈ RN : d (v, w) = ε′

}
. Since F ∗ is

full-dimensional, there exists λ ∈ Λ∗v, ε
′ > 0, and t > 0 such that C := Bε′ (v) − tλ ⊆ F ∗.

Fix such λ, ε′, and t, and let ε = min {ε̄, ε′, t}.

Now fix any κ > k, ρ < min{ε, (t/κ)1/β∗}, and d < ρ, and letG =
{
w ∈ Bd (v) : λ · (v − w) ≥ κdβ

∗}
.

We wish to show that G ⊆ F ∗ (and in particular G ⊆ int (F ∗), since G ∩ bnd (F ∗) = ∅).

To see this, letW = Bd (v)∩bnd (F ∗),H =
{
w : λ · (v − w) = kdβ

∗}
,H ′ = {w : λ · (v − w) = t},

and D = C ∩H ′. Since κ > k and d < ρ < min{ε, (t/κ)1/β∗}, G lies in between H and H ′.

In addition, the projection of G onto H is a subset of the projection of W onto H, and the

projection of G onto H ′ is a subset of D. Hence, we have G ⊆ co (W ∪D). Finally, since

W ⊆ F ∗ and D ⊆ C ⊆ F ∗, and F ∗ is convex, we have co (W ∪D) ⊆ F ∗, so G ⊆ F ∗.
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Lemma 13 There exist c̄ > 0, η > 0, and δ̄ < 1 such that, for all δ > δ̄, there exists a ball

B ⊆ F̄ of radius r = η (1− δ)1−β∗/2 satisfying d (v,B) = c̄ (1− δ)β
∗/2.

Proof. Fix λ ∈ Λ∗v, ρ > 0, and κ > 0 as in Lemma 12. Given c̄ and η to be determined,

let B be the ball with radius r = η (1− δ)1−β∗/2 and center o = v − (r + d)λ, where d =

c̄ (1− δ)β
∗/2, and take any ŵ ∈ ∂B. Let x = λ · (ŵ − o), so that xλ is the projection of ŵ− o

on λ. Then,

‖v − ŵ‖2 = ‖v − o− xλ‖2 + ‖ŵ − o− xλ‖2 = (r + d− x)2 + r2 − x2, and

λ · (v − ŵ) = r + d− x.

Recall that, by construction, {w ∈ F ∗ : d (v, w) ≤ η̄} ⊆ F̄ . Since d (v, w) ≤ d (v, o) +

d (o, w) ≤ 2r + d for all w ∈ B, it suffi ces to show that 2r + d ≤ η̄ and B ⊆ F ∗. By Lemma

12, if d (v, w) < ρ and κd (v, w)β
∗
≤ λ · (v − w) then w ∈ F ∗. Since x ∈ [−r, r], it suffi ces to

find c̄, η, and δ̄ such that, for all δ > δ̄, we have

2r + d ≤ η̄, (28)

((r + d)− x)2 + r2 − x2 ≤ ρ2 for all x ∈ [−r, r] , and (29)

max
x∈[−r,r]

f (x, δ, β∗) ≤ 0, (30)

where

f (x, δ, β∗) := κ
(
(r + d− x)2 + r2 − x2

)β∗/2 − (r + d− x) .

We consider separately the cases where β∗ = 2 and β∗ ∈ (1, 2). First consider β∗ =

2. Let η̂ > 0 be such that (29) holds whenever max {r, d} ≤ η̂, and let any c̄ = 1 and

η = min {η̂, η̄/4, κ/4}, so that r = η and d = 1 − δ. For suffi ciently large δ, we have

2r + d ≤ η̄ and d ≤ η̂, and hence (28) and (29) hold. In addition, since f (x, δ, 2) is linear

in x when β∗ = 2, (30) holds whenever f (r, δ, 2) ≤ 0 and f (−r, δ, 2) ≤ 0. In turn, these

inequalities hold for suffi ciently large δ, since f (r, δ, 2) = d (κd− 1) and limδ→1 κd− 1 < 0,

and f (−r, δ, β∗) = (2r + d) (κ (2r + d)− 1) and limδ→1 κ (2r + d)− 1 = 2κη − 1 < 0.
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Next, consider β∗ ∈ (1, 2). Let c̄ = 4κ2/(2−β∗)β∗β
∗/(2−β∗) and η = 1, so that r =

(1− δ)1−β∗/2 and d = c̄ (1− δ)β
∗/2. Since max {r, d} → 0 as δ → 1, (28) and (29) hold for

suffi ciently large δ. In addition, f (x, δ, β∗) is concave in x and is maximized over x ∈ [−r, r]

at

x∗ =
2r2 + 2dr + d2 − (κ (r + d) β∗)

2
2−β∗

2 (r + d)
.

It thus suffi ces to show that f (x∗, δ, β∗) ≤ 0 for suffi ciently large δ. By algebra,

f (x∗, δ, β∗) = −2r + d

r + d

d

2
+

(
β∗

β∗
2−β∗ − 1

2
β∗

2
2−β∗

)
κ

2
2−β∗ (r + d)

β∗
2−β∗ .

Finally, since r = (1− δ)1−β∗/2 ≥ c̄ (1− δ)β
∗/2 = d for suffi ciently large δ, we have

f (x∗, δ, β∗) ≤ −d
2

+ 2κ
2

2−β∗ β∗
β∗

2−β∗ r
β∗

2−β∗

= − c̄ (1− δ)
β∗
2

2
+ 2κ

2
2−β∗ β∗

β∗
2−β∗ (1− δ)

(
1−β

∗
2

)
β∗

2−β∗

= (1− δ)
β∗
2

(
− c̄

2
+ 2κ

2
2−β∗ β∗

β∗
2−β∗

)
= 0.

We now complete the proof of Lemma 8. Take c̄, η, δ̄, B, and r as in Lemma 13.

Let B′ be the radial contraction of B by a factor of 1 − 2k (1− δ)β
∗/2 / (ηr), and define

ε = 2k (1− δ)β
∗/2 /η and c = c̄ + 2k/η. Since d (v,B) = c̄ (1− δ)β

∗/2, we have d (v,B′) =

(c̄+ 2k/η) (1− δ)β
∗/2 = c (1− δ)β

∗/2, so (27) holds. Moreover, denoting the radius of B′ by

r′, we have

r′ε =

(
1− 2k (1− δ)β

∗/2

η2 (1− δ)1−β∗/2

)
η (1− δ)1−β∗/2×2k (1− δ)β

∗/2

η
=

(
1− 2k (1− δ)β

∗−1

η2

)
2k (1− δ) .

For suffi ciently large δ, this is greater than k (1− δ), so (26) holds. Finally, since B ⊆ F̄ ,

for all λ′ ∈ Λ we have maxv′∈F̄ λ
′ · v′ ≥ maxv′∈B λ

′ · v′ = maxv′∈B′ λ
′ · v′ + 2k (1− δ)β

∗/2 /η =

maxv′∈B′ λ
′ · v′ + ε, so (25) holds.
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D Proof of Proposition 2

To define x̄, we first observe that for each pair of players i 6= j and each action profile a, we

can take
(
xji (d; a)

)
d
such that (i)

∑
d x

j
i (d; a) yd has mean 0 and bounded Euclidean norm;

(ii) rewards
∑

d x
j
i (d; a) yd induce player i to take ai when her opponents take a−i; and (iii)

E
[∑

d x
j
i (d; a) yd|a

]
is independent of player j’s action.

Lemma 14 There exists x̂ such that, for each pair of players i 6= j and action profile

a ∈ A, there exist
(
xji (d; a)

)
d
such that E

[∑
d x

j
i (d; a) yd|a

]
= 0, d

dai
E
[∑

d x
j
i (d; a) yd|a

]
= 1,

d
daj
E
[∑

d x
j
i (d; a) yd|a

]
= 0, and

∣∣∑
d x

j
i (d; a) yd

∣∣ ≤ x̂ for all y.

Proof. For each a and (i, j), let f ij (a) be the value of the program

inf
β∈RD

|β| subject to

∑
d

βd
d

dai
µ (ai, a−i) = 1, or equivalently βMi (a) = 1,

∑
d

βd
d

daj
µ (ai, a−i) = 0, or equivalently βMj (a) = 0.

(Here β is a row vector while Mi (a) and Mj (a) are column vectors.)

Since A 3 a is compact and N is finite, it suffi ces to prove that, for each (i, j), (i)

f ij (a) <∞ for all a, and (ii) f ij (a) is upper-semicontinuous.

We first prove (i). As in Lemma 1 of Sannikov (2007), Assumption 1 implies that

the columns of [M i (a) ;M j (a)] are linearly independent, so there exists L (a) such that

[M i (a) ;M j (a) ;L (a)] is a D-dimensional invertible matrix. For

Q (a) = [Mi (a) ; 0; 0]
[
M i (a) ;M j (a) ;L (a)

]−1
,

we have Q (a)M i (a) = M i (a) and Q (a)M j (a) = 0. Moreover, since M i (a) is non-

degenerate, there exists β̄ such that β̄M i (a) = 1. Since β = β̄Q (a) satisfies the constraints,

we have f ij (a) <∞.

We next prove (ii). Fix any a and η0. There exists β such that |β| ≤ f ij (a) + η0
2
.

Take L (a) as in the proof of (i). Taking η1 suffi ciently small, we can guarantee that
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[M i (a′) ;M j (a′) ;L (a)] is a D-dimensional invertible matrix for each a′ with |a− a′| ≤ η1.

Define a D-dimensional vector ∆a′ by

∆a′ = [β (Mi (a
′)−Mi (a)) , β (Mj (a′)−Mj (a)) , 0]

[
M i (a′) ;M j (a′) ;L (a)

]−1
.

By definition,

(β + ∆a′)Mi (a
′) = βMi (a

′)− β (Mi (a
′)−Mi (a)) = βMi (a) = 1,

(β + ∆a′)Mj (a′) = βMj (a′)− β (Mj (a′)−Mj (a)) = βMj (a) = 0.

Thus, β − ∆a′ satisfies the constraint for a′, and hence f ij (a′) ≤ |β| + |∆a′|. Since

lim supη1→0 supa′:|a−a′|≤η1 |∆a′ | = 0, for suffi ciently small η1 > 0, we have f ij (a′) ≤ |β| +

|∆a′| ≤ |β|+ 1
2
η0 ≤ f ij (a)+η0 for all a

′ with |a− a′| ≤ η1, establishing upper-semicontinuity.

Given Lemma 14, Assumption 1(ii) holds with x̄ = ūx̂. To see why, for any i and a, let

∂ui = ∂
∂a′i
ui (a

′
i, a−i)

∣∣∣
a′i=ai

and xi (y) = −∂uλi
∑

d x
j
i

(
d; aλ

)
yd. Then,

∂

∂a′i
(ui (a

′
i, a−i) + E [xi (y) |a′i, a−i])

∣∣∣∣
a′i=ai

= 0 and

∂

∂a′j
E
[
xj (y) |a′j, a−i

]∣∣∣∣
a′j=aj

= 0 for all j 6= i.

Since ui is concave in ai and satisfies the Inada conditions, E [xi (y) |a′i, a−i] is linear in a′i,

and E
[
xj (y) |a′j, a−j

]
is linear in a′j, we have (4) and (5).

References

[1] Abreu, Dilip, David Pearce, and Ennio Stacchetti. “Toward a Theory of Discounted
Repeated Games with Imperfect Monitoring.”Econometrica 58.5 (1990): 1041-1063.

[2] Abreu, Dilip, Paul Milgrom, and David Pearce. “Information and Timing in Repeated
Partnerships.”Econometrica 59.6 (1991): 1713-1733.

[3] Aoyagi, Masaki. “Information Feedback in a Dynamic Tournament.”Games and Eco-
nomic Behavior 70.2 (2010): 242-260.

42



[4] Athey, Susan, and Kyle Bagwell. “Optimal Collusion with Private Information.”RAND
Journal of Economics 32.3 (2001): 428-465.

[5] Ball, Ian. “Dynamic Information Provision: Rewarding the Past and Guiding the Fu-
ture.”Econometrica, Forthcoming (2023).

[6] Dharmadhikari, S. W., V. Fabian, and K. Jogdeo. “Bounds on the Moments of Martin-
gales.”Annals of Mathematical Statistics 39.5 (1968): 1719-1723.

[7] Ederer, Florian. “Feedback and Motivation in Dynamic Tournaments.”Journal of Eco-
nomics & Management Strategy 19.3 (2010): 733-769.

[8] Ely, Jeffrey, George Georgiadis, and Luis Rayo, “Feedback Design in Dynamic Moral
Hazard,”Working Paper (2023).

[9] Ely, Jeffrey, George Georgiadis, Sina Khorasani, and Luis Rayo, “Optimal Feedback in
Contests.”Review of Economic Studies, Forthcoming (2023).

[10] Ely, Jeffrey C., and Martin Szydlowski. “Moving the Goalposts.” Journal of Political
Economy 128.2 (2020): 468-506.

[11] Forges, Francoise. “An Approach to Communication Equilibria.” Econometrica 54.6
(1986): 1375-1385.

[12] Freedman, David A. “On Tail Probabilities for Martingales.”Annals of Probability 3.1
(1975): 100-118.

[13] Frick, Mira, Ryota Iijma, and Yuhta Ishii. “Monitoring with Rich Data.”Working Paper
(2023).

[14] Fuchs, William. “Contracting with Repeated Moral Hazard and Private Evaluations.”
American Economic Review 97.4 (2007): 1432-1448.

[15] Fudenberg, Drew, and David K. Levine. “Continuous Time Limits of Repeated Games
with Imperfect Public Monitoring.”Review of Economic Dynamics 10.2 (2007): 173-
192.

[16] Fudenberg, Drew, David Levine, and Eric Maskin. “The Folk Theorem with Imperfect
Public Information.”Econometrica 62.5 (1994): 997-1039.

[17] Gershkov, Alex, and Motty Perry. “Tournaments with Midterm Reviews.”Games and
Economic Behavior 66.1 (2009): 162-190.

[18] Goldlücke, Susanne, and Sebastian Kranz. “Infinitely Repeated Games with Public
Monitoring and Monetary Transfers.”Journal of Economic Theory 147.3 (2012): 1191-
1221.

[19] Green, Edward J., and Robert H. Porter. “Noncooperative Collusion under Imperfect
Price Information.”Econometrica 52.1 (1984): 87-100.

43



[20] Halac, Marina, Navin Kartik, and Qingmin Liu. “Contests for Experimentation.”Jour-
nal of Political Economy 125.5 (2017): 1523-1569.

[21] Holmström, Bengt, and Paul Milgrom. “Aggregation and Linearity in the Provision of
Intertemporal Incentives,”Econometrica 55.2 (1987): 303-328.

[22] Hörner, Johannes, and Satoru Takahashi. “How Fast do Equilibrium Payoff Sets Con-
verge in Repeated Games?”Journal of Economic Theory 165 (2016): 332-359.

[23] Kandori, Michihiro. “Introduction to Repeated Games with Private Monitoring.”Jour-
nal of Economic Theory 102.1 (2002): 1-15.

[24] Kandori, Michihiro, and Hitoshi Matsushima. “Private Observation, Communication
and Collusion.”Econometrica 66.3 (1998): 627-652.

[25] Levin, Jonathan. “Relational Incentive Contracts.”American Economic Review 93.3
(2003): 835-857.

[26] Lizzeri, Alessandro, Margaret Meyer, and Nicola Persico. “The Incentive Effects of
Interim Performance Evaluations.”Working Paper (2002).

[27] Madrigal, Vicente. “On the Non-existence of Effi cient Equilibria of Repeated Principal
Agent Games with Discounting.”Working Paper (1986).

[28] Matsushima, Hitoshi. “Multimarket Contact, Imperfect Monitoring, and Implicit Col-
lusion.”Journal of Economic Theory 98.1 (2001): 158-178.

[29] Matsushima, Hitoshi. “Repeated Games with Private Monitoring: Two Players.”Econo-
metrica 72.3 (2004): 823-852.

[30] Mirrlees, James A. “The Theory of Moral Hazard and Unobservable Behaviour: Part
I.”Working Paper (1975) (published in Review of Economic Studies 66.1 (1999): 3-21).

[31] Orlov, Dmitry, Andrzej Skrzypacz, and Pavel Zryumov. “Persuading the Principal to
Wait.”Journal of Political Economy 128.7 (2020): 2542-2578.

[32] Pinelis, Iosif, “Best Possible Bounds of the Von Bahr-Esseen Type.”Annals of Func-
tional Analysis 6.4 (2015): 1-29.

[33] Radner, Roy. “Repeated Principal-Agent Games with Discounting,”Econometrica 53.5
(1985): 1173-1198.

[34] Rahman, David. “The Power of Communication.”American Economic Review 104.11
(2014): 3737-3751.

[35] Rubinstein, Ariel, and Menahem E. Yaari. “Repeated Insurance Contracts and Moral
Jazard.”Journal of Economic Theory 30.1 (1983): 74-97.

[36] Rubinstein, Ariel, “An Optimal Conviction Policy for offenses that May have been Com-
mitted by Accident,” in Applied Game Theory, ed. by Brams, Schotter, and Schwodi-
auer, (1979) 406—413, Physical-Verlag: Heidleberg.

44



[37] Sadzik, Tomasz, and Ennio Stacchetti. “Agency Models with Frequent Actions.”Econo-
metrica 83.1 (2015): 193-237.

[38] Sannikov, Yuliy. “Games with Imperfectly Observable Actions in Continuous Time.”
Econometrica 75.5 (2007): 1285-1329.

[39] Sannikov, Yuliy. “A Continuous-Time Version of the Principal-Agent Problem.”Review
of Economic Studies 75.3 (2008): 957-984.

[40] Sannikov, Yuliy, and Andrzej Skrzypacz. “Impossibility of Collusion under Imperfect
Monitoring with Flexible Production.”American Economic Review 97.5 (2007): 1794-
1823.

[41] Sannikov, Yuliy, and Andrzej Skrzypacz. “The Role of Information in Repeated Games
with Frequent Actions.”Econometrica 78.3 (2010): 847-882.

[42] Smolin, Alex. “Dynamic Evaluation Design.”American Economic Journal: Microeco-
nomics 13.4 (2021): 300-331.

[43] Spear, Stephen E., and Sanjay Srivastava. “On Repeated Moral Hazard with Discount-
ing.”Review of Economic Studies 54.4 (1987): 599-617.

[44] Sugaya, Takuo. “Folk Theorem in Repeated Games with Private Monitoring.”Review
of Economic Studies 89.4 (2022): 2201-2256.

[45] Sugaya, Takuo, and Alexander Wolitzky. “Bounding Equilibrium Payoffs in Repeated
Games with Private Monitoring.”Theoretical Economics 12 (2017): 691-729.

[46] Sugaya, Takuo, and Alexander Wolitzky. “Maintaining Privacy in Cartels.”Journal of
Political Economy 126.6 (2018): 2569-2607.

[47] Sugaya, Takuo, and Alexander Wolitzky. “Monitoring vs. Discounting in Repeated
Games.”Econometrica, Forthcoming (2023).

[48] Wood, David C. “The Computation of Polylogarithms.”Working Paper (1992).

[49] Zhu, Huangjun, Zihao Li, and Masahito Hayashi. “Nearly Tight Universal Bounds for
the Binomial Tail Probabilities.”Working Paper (2022).

45


