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Abstract

In repeated principal-agent problems and games, more outcomes are implementable

when performance signals are privately observed by a principal or mediator with com-

mitment power than when the same signals are publicly observed and form the basis

of a recursive equilibrium. We investigate the gains from non-recursive equilibria (e.g.,

“review strategies”) based on privately observed signals. Under a pairwise identifiabil-

ity condition, we find that the gains from non-recursive equilibria are “small”: their

ineffi ciency is of the same 1 − δ power order as that of recursive equilibria. Thus,

while private strategies or monitoring can outperform public ones for a fixed discount

factor, they cannot accelerate the power rate of convergence to the effi cient payoff fron-

tier when the folk theorem holds. An implication is that the gains from withholding

performance feedback from agents are small when the parties are patient.
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1 Introduction

Most analysis of repeated moral hazard problems and games focuses on contracts and equi-

libria that are recursive in the players’continuation values. This approach is without loss

in single-agent problems with public performance signals (Spear and Srivastava, 1987). It

is also without loss in repeated games with imperfect public monitoring, if attention is re-

stricted to equilibria in pure strategies or in strategies that depend only on the public signals

(Abreu, Pearce, and Stacchetti, 1990; Fudenberg, Levine, and Maskin, 1994). In contrast,

in single-agent problems where the principal privately observes performance, or in repeated

games where signals are privately observed by a mediator, more payoffs are implementable

as compared to the case where the same signals are publicly observed, as concealing signals

reduces the players’ available deviations. Similarly, focusing on pure or public equilibria

in repeated games with public monitoring is not without loss (Kandori and Obara, 2006).

Yet, characterizing the equilibrium payoff set with private signals or strategies is intractable,

precisely because this set lacks a tractable recursive structure (Kandori, 2002). The extent

of the possible gains from non-recursive equilibria based on private signals or strategies over

recursive equilibria based on public signals is thus an open question, which forms the subject

of the current paper.

Specifically, we consider discounted repeated games where in each period players take

actions a and a signal y is drawn from a distribution p (y|a) with non-moving support. We

compare the equilibrium payoff sets in a version of the game with public monitoring, where

the signal y is publicly observed and attention is restricted to equilibria in public strategies,

and a version with private monitoring, where the signal y is observed only by a principal

or mediator with commitment power, who privately recommends actions to the players. We

call these two versions of the game the public game and the blind game. By the revelation

principle, for any discount factor δ, the equilibrium payoff set is weakly larger in the blind

game than the public game. Our question is, how much larger?

For any fixed discount factor δ < 1, this question is diffi cult to answer in any generality,

because characterizing equilibrium payoffs in the blind game is intractable. We instead adopt

a rate of convergence approach: under standard identification conditions that ensure that

1



effi ciency is attainable in the δ → 1 limit, how quickly does ineffi ciency vanish as δ → 1 in

the most effi cient equilibrium in the public game as compared to the blind game?

Our main result is that ineffi ciency is of the same power order of 1 − δ in both games.

Thus, while private strategies or monitoring can outperform public ones for a fixed discount

factor, they cannot accelerate the power rate of convergence to the effi cient payoff frontier

when the folk theorem holds. In this sense, the gains from non-recursive equilibria are small.

Our results have implications for the design of principal-agent relationships. An impor-

tant design variable in such relationships is the amount of performance feedback provided

to the agent. While providing feedback can have practical benefits that are not captured by

our model, a benefit of withholding feedback is that this facilitates non-recursive contracting

by making the game blind rather than public. However, our results show that this benefit

of withholding feedback is small when the parties are patient.

The high-level intuition for our results is that, as compared to a recursive contract where

the agents’ continuation values are revealed in every period, pooling information across

periods improves monitoring precision but also necessitates larger rewards and punishments,

which reduces the scope for providing incentives by transferring surplus over time rather

than destroying it. Our analysis shows that these two effects essentially cancel out, so that

little is gained by pooling information.

A subtlety in our results is that, while ineffi ciency is always of the same power order in

the public game and the blind game, this order depends on the curvature of the boundary of

the feasible payoff set. If the boundary is smooth with positive curvature (as in Green and

Porter, 1984, Spear and Srivastava, 1987, Sannikov, 2007, 2008, or Sadzik and Stacchetti,

2015), ineffi ciency is of order 1− δ.1 In this case, the first-order ineffi ciency associated with

small continuation payoff movements along the payoff boundary is zero. We show that this

implies that ineffi ciency in the public and blind games differs only by a constant factor: i.e.,

the rate of convergence is identical. Moreover, for a class of smooth principal-agent models

(similar to Spear and Srivastava, 1987, or Sannikov, 2008), ineffi ciency in the public and

blind games is identical up to a first-order approximation.

1For a class of continuous-time principal-agent problems with public monitoring, this was already observed
by Sannikov (2008).
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In contrast, if the boundary of the feasible payoffset is kinked (as in the case with discrete

actions), ineffi ciency is of power order (1− δ)1/2.2 In this case, the first-order ineffi ciency

associated with small continuation payoff movements is positive. We show that this greater

ineffi ciency leads to a greater value of withholding feedback: now, ineffi ciency in the public

and blind games can differ by a log factor in 1 − δ. Thus, while the value of withholding

feedback is always “small”(no improvement in the power rate of convergence), it is somewhat

less small in the kinked case (where there can be a log-factor improvement) than in the

smooth case (where there is at most a constant-factor improvement, with no first-order

improvement whatsoever in standard principal-agent models).

Methodologically, we develop a new technique for bounding equilibrium payoffs in re-

peated games with private monitoring. The starting point is that continuation payoff re-

wards or punishments incur an effi ciency loss related to the curvature of the boundary of

the feasible payoff set, while providing incentives that are proportional to a likelihood ratio

difference (p (y|a)− p (y|a′)) /p (y|a). Since the likelihood ratio difference is a martingale in-

crement (as the expected likelihood ratio difference under p (·|a) equals 0), large deviations

theory can be used to bound the cumulative likelihood ratio difference over any number

of periods. This bound connects the ineffi ciency and “incentive strength”of any strategy

profile, so that any equilibrium where players do not take myopic best responses must incur

a certain amount of ineffi ciency, regardless of whether signals are public or private.

Relation to the literature. Our finding that the gains from non-recursive equilibria

are small contrasts with two strands of prior literature that find large gains. These strands

share the feature that continuation value transfers are impossible with public strategies.

This feature reduces the effi ciency of public strategies and thereby generates large gains

from non-recursive private strategies.

First, Holmström and Milgrom (1987) study a dynamic principal-agent model where the

agent exerts effort over T periods and consumption occurs at the end of the game. The value

of withholding feedback is large: without feedback, first-best profit can be approximated as

2For public games, this was already observed by Hörner and Takahashi (2016). Hörner and Takahashi
observed that “It is certainly possible that regarding imperfect monitoring, allowing equilibria in private
strategies could accelerate the rate of convergence beyond the results that we have derived. . . This is left for
future research.”The current paper resolves this question.
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T → ∞ using a review strategy that resembles the “penalty contract”of Mirrlees (1975);

with feedback, optimal contracts are linear in the count of signal realizations, and profits

are bounded away from the first best for all T . The key difference from our setup is that

Holmström and Milgrom’s model is not a repeated game (as consumption only occurs once),

so effi ciency cannot be improved by transferring continuation payoffs over time.3

Second, several papers study principal-agent problems or games that, while repeated, do

not permit continuation value transfers. Abreu, Milgrom, and Pearce (1991) and Sannikov

and Skrzypacz (2007) consider settings without pairwise identifiability, while Matsushima

(2004) and Fuchs (2007) restrict attention to block belief-free equilibria. These settings

preclude continuation value transfers, and consequently these papers all find that effi ciency

is attained as δ → 1 only when feedback is withheld.4

In past work (Sugaya and Wolitzky, 2017, 2018), we showed that the value of withholding

feedback (“maintaining privacy”) is large in some specific repeated and dynamic games when

δ is small. For example, our 2018 paper examined how maintaining privacy can help sustain

multi-market collusion. In contrast, the current paper shows that the value of privacy in

repeated games is small when δ is close to 1.

We also relate to the broader literature on feedback in dynamic agency and games.

We consider complete information repeated games without payoff-relevant state variables,

so feedback concerns only past performance, which is payoff-irrelevant in the continuation

game. In contrast, most of the literature on feedback in dynamic agency considers dynamic

games with additional state variables, such as an agent’s ability (Ederer, 2010; Smolin, 2021),

other agents’progress in a tournament (Gershkov and Perry, 2009; Aoyagi, 2010; Ely et al.,

2024), whether a project has been completed (Halac, Kartik, and Liu, 2017; Ely et al.,

2023), or the evolution of an exogenous state (Ely and Szydlowski, 2020; Orlov, Skrzypacz,

and Zryumov, 2020; Ball, 2023). An exception is Lizzeri, Meyer, and Persico (2002), who

3Relatedly, Frick, Iijima, and Ishii (2024) consider a one-shot principal-agent model and study the rate
at which profit converges to the first best as the number of signal observations grows. They find that this
rate is much faster for review strategies than for linear contracts.

4Matsushima considers two-player games where signals are conditionally independent, so each player does
not learn about the status of her review. This form of lack of feedback is essential for effi ciency in belief-free
equilibria. Sugaya (2022) shows how mixed strategies can be used to prevent learning with conditionally
dependent signals, yielding a general folk theorem under imperfect private monitoring. Rahman (2014) shows
that witholding feedback restores effi ciency in Sannikov and Skrzypacz’s model.
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examine optimal two-period agency contracts with and without a “midterm review.”

We also contribute to the literature on review strategies, introduced by Rubinstein (1979),

Rubinstein and Yaari (1983), and Radner (1985), and developed by Abreu, Milgrom, and

Pearce (1991) and Matsushima (2001, 2004). These papers all show that review strategies

can support effi cient outcomes when δ → 1 (or when there is no discounting at all). In

contrast, we identify limitations of review strategies when δ < 1 and show that review

strategies cannot greatly outperform recursive contracts when δ is close to 1.

Methodologically, the closest papers are Hörner and Takahashi (2016), who build on

Fudenberg, Levine, and Maskin’s recursive methods to show that ineffi ciency is of order

(1− δ)1/2 in repeated finite-action games with public monitoring; and Sugaya and Wolitzky

(2023), who obtain bounds on the strength of players’ equilibrium incentives in repeated

finite-action games with private monitoring.5 Rather than bounding incentives, the current

paper derives a tradeoff between incentives and effi ciency (e.g., program (4) below) and uses

it to characterize the rate of convergence. In addition, the arguments in our 2023 paper are

based on variance decomposition, while the current paper requires more precise estimates

from martingale large deviations theory.

Finally, our exact characterization of first-order ineffi ciency in repeated principal-agent

models relates to Sannikov (2008) and Sadzik and Stacchetti (2015), who derive similar re-

sults under public monitoring in continuous time or “frequent action”models. Here, our main

contribution is showing that withholding feedback leaves first-order ineffi ciency unchanged.

Outline. The paper is organized as follows. Section 2 describes the model. Section

3 gives an informal overview of our results. Section 4 establishes general upper bounds

on equilibrium effi ciency. Section 5 establishes that these bounds are attainable in public

equilibria (excepting a log factor in the finite-action case). Combining these results implies

that the gains from non-recursive equilibria are small. Section 6 gives a stronger result for

principal-agent problems. Section 7 discusses extensions.

5Hörner and Takahashi also consider the rate of convergence toward weakly individually rational payoff
vectors, which they show can be strictly slower. We focus on strictly individually rational payoffs.
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2 Preliminaries

This section introduces our model of repeated games with public monitoring and blind

repeated games.

A stage game G = (I, A, u) consists of a finite set of players I = {1, . . . , N}, a product

set of actions A = ×i∈IAi, and a payoff function ui : A→ R for each i ∈ I. We assume that

each Ai is a nonempty, compact metric space, and each ui is continuous.6 By the Debreu-

Fan-Glicksberg theorem, the stage game admits a Nash equilibrium in mixed actions.

We fix some basic notation: the sets of stage-game Nash and correlated equilibria are

ΣNE ⊆ ×i∈I∆ (Ai) and ΣCE ⊆ ∆ (A); the feasible payoff set is F = co
(
{u (a)}a∈A

)
⊆ RN ;

the sets of stage-game Nash and correlated equilibrium payoffs are V NE = {v : v = u (α) for

some α ∈ ΣNE} and V CE =
{
v : v = u (α) for some α ∈ ΣCE

}
; the Euclidean metric and

norm on RN are d (·, ·) and ‖·‖; the set of unit vectors (or directions) in RN is Λ = {λ ∈

RN : ‖λ‖ = 1}; the boundary of F is bnd(F ); the set of exposed points of F is exp(F ); and,

for any v ∈exp(F ), the set of exposing directions is Λv = {λ ∈ Λ : v = argmaxw∈F λ · w}.7

A monitoring structure (Y, p) consists of a set of possible signal realizations Y and a

family of conditional probability distributions p (y|a). We assume that either Y is finite and

y is drawn according to a probability mass function p (y|a), or Y is a subset of a measurable

space and y is drawn according to a density p (y|a): we use the same notation p (y|a) for both

cases. We assume p (y|a) > 0 for all y ∈ Y, a ∈ A. This non-moving support assumption is

crucial and, in particular, excludes perfect monitoring.

We also require that the monitoring structure satisfies the following key assumption:

Assumption 1 There exists a number K > 0 such that, for any a ∈ A, i ∈ I and a′i ∈ Ai,

we have

Ey∼p(·|a)

[
exp

(
θ
p (y|a)− p (y|a′i, a−i)

p (y|a)

)]
≤ exp

(
θ2K

2

)
for all θ ∈ R. (1)

6As is standard, we linearly extend the payoff functions ui to distributions α ∈ ∆ (A). Here and through-
out, for any compact metric space X, ∆ (X) denotes the set of Borel probability measures on X, endowed
with the weak* topology.

7Recall that, by definition, v ∈ exp (F ) iffΛv is non-empty. An example at the end of Section 4.1 clarifies
the necessity of considering payoff vectors that are not just extreme but exposed.
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Assumption 1 says that the likelihood ratio difference between p (·|a) and p (·|a′i, a−i) has

a sub-Gaussian distribution, where the number K is called a variance proxy.8 For example,

Assumption 1 holds if Y is finite, or if Y ⊆ Rn and y = g (a) + ε, where g : A → Y is a

deterministic function and ε has a multivariate normal distribution with covariance matrix

independent of a.9 As we will see, Assumption 1 lets us apply results from large deviation

theory to bound the power of tail tests that aggregate signals over many periods.

In a repeated game with public monitoring, in each period t ∈ N, each player i takes an

action ai, and then a signal y is drawn according to p (y| (ai)i) and is publicly observed. A

history for player i at the beginning of period t takes the form hti = (ai,t′ , yt′)
t−1
t′=1. A strategy

σi for player i maps histories hti to distributions over actions ai,t. A strategy for player i is

public if it depends on hti only through its public component y
t = (yt′)

t−1
t′=1. Players choose

strategies to maximize discounted expected payoffs, with common discount factor δ ∈ [0, 1).

A perfect public equilibrium (PPE) is a profile of public strategies that, beginning at any

period t and any public history yt, forms a Nash equilibrium from that period on. We denote

the repeated game with public monitoring with stage game G, monitoring structure (Y, p),

and discount factor δ by ΓP (δ), and we denote the corresponding set of PPE payoff vectors

by EP (δ) ⊆ RN . Thus, EP (δ) is the set of attainable payoffs in a (recursive) PPE where

signals are publicly observed.

In a blind repeated game, the players are assisted by a mediator with commitment power.10

In each period t ∈ N, (i) the mediator privately recommends an action ri ∈ Ai to each player

i, (ii) each player i takes an action ai, and (iii) a signal y is drawn according to p (y| (ai)i)

and is observed only by the mediator. A history for the mediator at the beginning of period

t takes the form ht0 =
(
(ri,t′)i , yt′

)t−1

t′=1
, while a history for player i just before she takes an

action in period t takes the form hti =
(
(ri,t′ , ai,t′)

t−1
t′=1 , ri,t

)
. A strategy σ0 for the mediator

maps histories ht0 to distributions over recommendation profiles (ri,t)i, while a strategy σi

for player i maps histories hti to distributions over actions ai,t. We denote the blind repeated

game with stage game G, monitoring structure (Y, p), and discount factor δ by ΓB (δ), and

8See, e.g., Buldygin and Kozachenko (2000).
9In these cases, (1) holds with K equal to the variance of the likelihood ratio difference

(p (y|a)− p (y|a′i, a−i)) /p (y|a) (i.e., the χ2-divergence of p (|a′i, a−i) from p (y|a)).
10We previously introduced the notion of a blind repeated game in Sugaya and Wolitzky (2017, 2023).
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we denote the corresponding set of Nash equilibrium payoff vectors (taking the union over

all possible mediator strategies) by EB (δ) ⊆ RN . Thus, EB (δ) is the set of attainable

payoffs in a (possibly non-recursive) Nash equilibrium where signals are privately observed

by a mediator.11

By standard arguments (similar to Forges, 1986), any Nash equilibrium outcome µ ∈

∆ ((A× Y )∞) (i.e., any equilibrium distribution over infinite paths of action profiles and

signals) in ΓP (δ) can also be implemented by a Nash equilibrium in ΓB (δ) where the players

follow the mediator’s recommendations on path. Since PPE is a refinement of Nash equi-

librium, it follows that EP (δ) ⊆ EB (δ). Our goal is to evaluate the advantage of arbitrary

equilibria based on private signals over recursive equilibria based on public signals: that is,

to assess the size of the set EB (δ) \EP (δ).

Remark 1 The model is easily adapted to allow a player with commitment power (such

as the principal in a standard principal-agent model) or one or more players with perfectly

observed actions (such as a principal who offers contracts each period in a relational con-

tracting model). A player with commitment power is treated like any other player, except

that no incentive constraints are imposed on her strategy. For example, in a principal-agent

model, ΣNE is the set of mixed action profiles where the agent does not have a profitable

deviation. Moreover, it suffi ces to impose non-moving support (and sub-Gaussianity) only

for the agent, so that supp p (·|a) = supp p (·|a′) for all a, a′ that agree on the principal’s

action. Similarly, to extend our results to the case where some players’actions are perfectly

observed, let I∗ ⊆ I be the set of players with observable actions, and assume that deviations

by players i ∈ I\I∗ do not affect the support of p, so that supp p (·|a) = supp p (·|a′i, a−i) for

all a ∈ A, i ∈ I\I∗, and a′i ∈ Ai. Then our Theorem 1 applies for any v ∈ exp (F ) that

cannot be attained by an action profile distribution α such that gi (si, α) = 0 for each player

i ∈ I\I∗ and each manipulation si (where these objects are defined in Section 4.2), while our

Theorem 2 applies verbatim.

11Note that a player’s payoff in the blind game is not measurable with respect to her own information. The
blind game may thus withhold feedback from the players to an unrealistic extent– but this only strengthens
our finding that withholding feedback has limited value.
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3 Overview of Results

We first provide an informal overview of our results. We focus on two leading cases: finite

stage games and games where the boundary of the feasible payoff set has positive curvature.

3.1 Finite Games

Our results for finite games can be illustrated in the context of a one-sided prisoner’s dilemma,

where the payoff matrix is

L R

C 2, 2 0, 0

D 3, 0 1, 1

and the monitoring structure is given by Y = {0, 1}2 and p ((y1, y2) | (a1, a2)) = p1 (y1|a1) p2 (y2|a2),

where p1 (1|C) = p2 (1|L) = 1/2 and p1 (1|D) = p2 (1|R) = 1/4.12 We investigate the possi-

bility of attaining payoffs close to the effi cient payoff vector (2, 2).

First, consider PPE payoff vectors in the public game. Hörner and Takahashi (2016)

showed that the minimum distance between such a vector and the effi cient payoff vector

(2, 2) is of order (1− δ)1/2. This result relies on Fudenberg, Levine, and Maskin’s (1994)

recursive characterization of PPE and is generalized by our Theorem 2.

Next, consider arbitrary Nash equilibrium payoff vectors in the blind game. There is a

wide range of non-recursive equilibria in the blind game. A leading example of these equilibria

is review strategies (Radner, 1985; Abreu, Milgrom, and Pearce, 1991; Matsushima, 2004),

which aggregate signals over T periods– during which the players take constant actions–

before adjusting the players’actions. Heuristically, an optimal review strategy pools infor-

mation for T = O
(
(1− δ)−1) periods and then applies a penalty if the number of “good

signals”(e.g., y1 = 1 for motivating cooperation in the one-sided prisoner’s dilemma) over

these periods falls short of a cutoff. Call the number of standard deviations by which the

number of good signals falls short of its mean the score. Since the number of good signals,

normalized by T−1/2, is approximately normally distributed, for any cutoff score z the proba-

12The exact numbers are just for concreteness. We refer to them only in Proposition 1 and its proof.
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bility that a single signal is pivotal is O
(
T−1/2φ (z)

)
= O

(
(1− δ)1/2 φ (z)

)
.13 As stage game

payoffs areO (1− δ), incentive compatibility requires that z is at mostO
(

(− log (1− δ))1/2
)
,

which in turn implies that the review strategy’s “false positive rate” (and hence its mini-

mum ineffi ciency) is Φ (−z) = O
(

((1− δ) / (− log (1− δ)))1/2
)
,14. Thus, review strategies

improve on PPE by at most a factor of (− log (1− δ))1/2. Our Theorem 1 implies that

this factor is un-improvable for any finite stage game. Thus, combining Theorems 1 and 2

shows that withholding feedback accelerates convergence to effi ciency by at most a factor of

(− log (1− δ))1/2. Moreover, our Proposition 1 constructs an equilibrium that attains this

factor in the one-sided prisoner’s dilemma, which shows that this result is tight.

3.2 Positive Curvature

Now consider infinite games where the boundary of the feasible payoff set has positive cur-

vature. In this case, Theorem 2 shows that PPE in the public game can attain ineffi ciency of

order 1−δ. As we explain following the statement of Theorem 2, this reduction in ineffi ciency

relative to finite games results because a smooth set of equilibrium payoffs can approximate

a smooth set of feasible payoffs more closely than a kinked set of feasible payoffs. Conversely,

Theorem 1 shows that arbitrary Nash equilibria in the blind game cannot attain ineffi ciency

of order less than 1− δ. Thus, in the positive curvature case, withholding feedback does not

accelerate convergence to effi ciency. Moreover, our Theorem 3 shows that, in principal-agent

problems, withholding feedback does not reduce first-order ineffi ciency.

4 Maximum Effi ciency with Arbitrary Strategies

4.1 Main Result

We now turn to our formal results. Our first theorem gives an upper bound for the rate of

convergence of EB (δ) toward an exposed point v ∈ exp (F ) that is not attainable as a static

correlated equilibrium. As indicated above, the bound depends on the order of curvature of

13Here and throughout the paper, φ and Φ denote the standard normal pdf and cdf, respectively.
14This follows from the standard normal Mills ratio approximation: Φ (−z) ≈ φ (z) /z for z � 0.
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the boundary of F at v.

Definition 1 Fix an exposed point v ∈ exp (F ). For any β ≥ 1, the boundary of F has

max-curvature of order at least β at v if, for all λ ∈ Λv, there exists η > 0 such that

λ · (v − w) ≥ ηd (v, w)β for all w ∈ bnd (F ) .

The boundary of F has max-curvature of order β at v if

β = inf
{
β̃ : bnd (F ) has max -curvature of order at least β̃ at v

}
.

This definition says that moving away from v in F entails an effi ciency loss of order at

least β, relative to Pareto weights λ. Heuristically, bnd (F ) is approximated by a power

function of degree β at v. To understand the definition, the key cases to consider are β = 1,

β = 2, and the limit case β =∞.15

• The β = 1 case arises when the stage game G is finite. This implies a first-order

effi ciency loss from moving away from any extreme point. This case is studied by

Abreu, Pearce, and Stacchetti (1990), Fudenberg, Levine, and Maskin (1994), Hörner

and Takahashi (2016), and Sugaya and Wolitzky (2023).

• The β = 2 case arises when the boundary of F has positive curvature. This case is

studied by Green and Porter (1984), Spear and Srivastava (1987), Sannikov (2007,

2008), and Sadzik and Stacchetti (2015). More generally, if β ≤ 2 then the boundary

of F has non-zero curvature: its curvature is positive but finite if β = 2 and is infinite

if β < 2.

• The β =∞ case arises when the boundary of F is linear at v. This occurs in repeated

games with transferable utility, as in Athey and Bagwell (2001), Levin (2003), and

Goldlücke and Kranz (2012).

15In addition, to appreciate the role of the “max”in the definition, suppose that N = 2, (0, 0) ∈ F , and
the local boundary of F at (0, 0) is given by f (x) = −x if x < 0 and f (x) = x2 if x ≥ 0. Then the
max-curvature of bnd (F ) at (0, 0) is 2.
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The following is our key theorem.

Theorem 1 Fix an exposed point v ∈ exp (F ) \V CE where bnd (F ) has max-curvature of

order β, and fix a direction λ ∈ Λv. Then there exists c > 0 such that

λ · (v − w) ≥ cζ (δ) for all δ < 1 and w ∈ EB (δ) , where

ζ (δ) =


(

1−δ
max{− log(1−δ),1}

)1/2

if β = 1,

(1− δ)max{β/2,β−1} if β > 1.

The key implications of Theorem 1 are as follows:

• For Pareto weights where welfare is maximized at a kink in bnd(F ), equilibrium inef-

ficiency in the blind game is at least O
(

((1− δ) / (− log (1− δ)))1/2
)
.

• For Pareto weights where welfare is maximized at a point where bnd(F ) has positive

curvature, equilibrium ineffi ciency in the blind game is at least O (1− δ).

We will see that both of these bounds– as well as the (1− δ)β/2 bound for β ∈ (1, 2]– are

tight. Moreover, the bound in the kinked case remains tight up to log-factor slack in the

public game, while the bound in the β ∈ (1, 2] case remains tight up to constant-factor slack

in the public game. These results imply that the gains from non-recursive equilibria are

small at any point of non-zero curvature.16

We outline the proof of Theorem 1 in the next subsection. The basic logic is that if a

repeated game Nash equilibrium gives payoffs close to v ∈ exp (F ), then the stage game

payoff must be close to v almost all the time along the equilibrium path of play. Since

signals have full support, this implies that payoffs remain close to v almost all the time even

after low-probability signal realizations. This in turn implies that, on average, equilibrium

continuation play does not vary much with the signal realizations. But then, if v /∈ V CE,

16In contrast, if welfare is maximized at a point with max-curvature of order β > 2, Theorem 1 allows
ineffi ciency much smaller than 1−δ. This bound is tight in the β →∞ limit, since in some games with linear
Pareto frontiers effi ciency is exactly achieved at some δ < 1 (e.g., Athey and Bagwell, 2001). We conjecture
that the (1− δ)β−1 bound given by Theorem 1 is in fact tight for any β > 2– in that there exists some game
and v ∈ exp (F ) \V CE with max-curvature of order β that can be approached at rate (1− δ)β−1– but we
have not proved this.
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we can conclude that δ must be so high that even small variations in continuation play can

provide strong incentives.17

We mention a couple technical aspects of the statement of Theorem 1. First, generically,

the condition v ∈ exp (F ) \V CE is equivalent to v ∈ exp (F ) \V NE: since v is extremal, the

distinction only matters in the non-generic case where v is attained at two different pure

action profiles. Second, the condition λ ∈ Λv (i.e., v = argmaxw∈F λ ·w) cannot be weakened

to v ∈ argmaxw∈F λ · w. To see this, consider the stage game

L R

C 1, 1 0, 1

D1 2, 0 −2, 0

D2 −2, 0 2, 0

Here the point v = (1, 1) is exposed and is not attainable as a static CE; bnd(F ) has

curvature of order 1 (i.e., a kink) at v; and v ∈ argmaxw∈F λ ·w for λ = (0, 1). But the point

w = (0.5, 1) is attained by the static NE
(
C, 1

2
L+ 1

2
R
)
(so w ∈ EB (δ) for all δ ∈ [0, 1)) and

satisfies λ · w = λ · v, so the conclusion of Theorem 1 fails.

4.2 Proof Sketch for Theorem 1

We sketch the proof of Theorem 1, deferring the details to the appendix. Fix any v ∈

exp (F ) \V CE and λ ∈ Λv. We wish to derive a lower bound for λ · (v − w)– the ineffi ciency

of w in direction λ– which holds for any w ∈ EB (δ).

We introduce some notation. Note that any outcome µ ∈ ∆ ((A× Y )∞) defines a mar-

ginal distribution over period-t action profiles, αµt ∈ ∆ (A), as well as an occupation measure

αµ ∈ ∆ (A), defined as

αµ = (1− δ)
∞∑
t=1

δt−1αµt .

17This logic is the same as that of Theorem 6.5 of Fudenberg, Levine, and Maskin (1994) (who credit
Madrigale, 1986), which says that an extremal non-static Nash payoff vector v cannot be exactly attained
for any δ < 1 under full-support monitoring. Fudenberg, Levine, and Maskin state this result for PPE, but
the same argument works for Nash. Theorem 1 is a quantitative version of this result.
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The players’ex ante payoffs under µ are determined by αµ, as, by linearity of u,

(1− δ)
∞∑
t=1

δt−1u (αµt ) = u

(
(1− δ)

∞∑
t=1

δt−1αµt

)
= u (αµ) .

Thus, lettingMB (δ) be the set of Nash equilibrium outcomes µ in the blind game ΓB (δ),

we wish to derive a lower bound for

inf
µ∈MB(δ)

λ · (v − u (αµ)) .

Now, for each player i, let Si denote the set of functions si : Ai → Ai, which we call

manipulations. For any i ∈ I, α ∈ ∆ (A), and si ∈ Si, define the deviation gain

gi (si, α) =
∑
a∈A

α (a) (ui (si (ai) , a−i)− ui (a)) .

The interpretation is: if the recommended action profile a is drawn according to α and player

i takes si (ai) when recommended ai rather than obeying the recommendation, her expected

payoff gain is gi (si, α). Finally, for any complete history of play h = (at, yt)
∞
t=1 and any

player i and manipulation si, let

ûi,t (h) = ui (at)− vi and `i,t (si, h) =
p (yt|at)− p (yt|si (ai,t) , a−i,t)

p (yt|at)
.

That is, ût (h) is the difference between player i’s realized period t payoffat history h and vi–

which we will call player i’s period t reward at history h– and `t (h) is the realized likelihood

ratio difference of the period t signal yt at the period t action profile at, as compared to the

action profile (si (ai,t) , a−i,t) that results when player i manipulates according to si.

A simple necessary condition for an outcome µ to be consistent with equilibrium play

(Lemma 6 in the appendix) is that, for each player i, manipulation si, and period t, we have

gi (si, α
µ
t ) ≤ Eµ

[
`i,t (si, h)

∞∑
t′=t+1

δt
′−tûi,t′ (h)

]
. (2)

This inequality holds because, if it were violated, player i could gain by obeying her rec-
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ommendation in every period other than t, while manipulating according to si in period t.

Given this inequality, since bnd (F ) has max-curvature of order β at v, we have

inf
µ∈MB(δ)

λ · (v − u (αµ))

≥ inf
µ∈∆((A×Y )∞)

sup
i∈I,si∈Si

inf
(ûi,t(h))t,h∈[−ūi,ūi]

s.t. (2)

Eµ
[

(1− δ)
∞∑
t=1

δt−1η |ûi,t (h)|β
]
, (3)

where ūi is the range of ui. Intuitively, the program (3) minimizes the maximum over players

i and manipulations si of the β
th moment of the deviation of player i’s stage game payoff

from vi, subject to the incentive constraint (2).

To prove the theorem, it remains to bound (3) as a function of δ and β. To do so, consider

the inner problem where µ is fixed and (i, si) ∈ argmaxi,si gi (si, α
µ). Let (1− δ) δt−1ξt denote

the Lagrange multiplier on the period t incentive constraint, and form the Lagrangian

sup
(ξt)t≥0

inf
(ût(h))t,h∈[−ū,ū]

(1− δ)
∞∑
t=1

δt−1Eµ
[
η |ût (h)|β + ξt

(
gµt − `t (h)

∞∑
t′=t+1

δt
′−tût′ (h)

)]
, (4)

where we have simplified notation by letting ût (h) = ûi,t (h), gµt = gi (si, α
µ
t ), and `t (h) =

`i,t (si, h). The Lagrangian expresses a tradeoff between effi ciency and incentives: to maxi-

mize effi ciency, the reward ût (h) must minimize the sum of the ineffi ciency resulting from

the curvature of bnd(F ) (i.e., η |ût (h)|β) and an incentive cost in each earlier period t̃ < t

(i.e., −ξ t̃`t̃ (h) ût (h)). Moreover, if we take ξt to be constant across periods (i.e., ξt = ξ ∀t),

we can reverse the order of summation between t and t′ (and also note that û1 (h) = 0 for

all h at the optimum) to rewrite the Lagrangian as

sup
ξ≥0

inf
(ût(h))t≥2,h∈[−ū,ū]

(1− δ)
∞∑
t=2

δt−1Eµ
[
η |ût (h)|β − ξLt−1 (h) ût (h)

]
+ ξgµ,

where Lt (h) =
∑t

t′=1 `t′ (h) and gµ = gi (si, α
µ) = (1− δ)

∑∞
t=1 δ

t−1gµt . Thus, to bound

the Lagrangian, it suffi ces to bound the probability that |Lt (h)| is large. Since Lt is a

martingale with sub-Gaussian increments (by Assumption 1), the required bounds follow

from large deviations theory (Lemma 9). Intuitively, these bounds say that sequences of
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signals with large cumulative likelihood ratio differences– which are highly informative when

they occur– also occur with low equilibrium probability, and hence do not provide a large

amount of information on average. These bounds imply that the value of the Lagrangian–

and hence ineffi ciency under outcome µ– cannot be too much smaller than gµ. Finally, since

v ∈ exp (F ) \V CE, if u (αµ) is close to v then gµ = maxi,si gi (si, α
µ) is not too small (Lemma

4), which yields the desired bound.

4.3 Tightness of the Effi ciency Bound in the Kinked Case

Wewill see in the next section that ineffi ciency of order (1− δ)β/2 is attainable when β ∈ [1, 2]

under public monitoring. This implies that the lower bound on ineffi ciency in Theorem 1

cannot be improved when β ∈ (1, 2] (the smooth, non-zero curvature case). Here we show

that, in the kinked case (β = 1), ineffi ciency of order ((1− δ) /− log (1− δ))1/2 is sometimes

attainable in the blind game. This shows that the lower bound on ineffi ciency in Theorem

1 also cannot be improved when β = 1. Consequently, withholding feedback can accelerate

the rate of convergence by at most a factor of (− log (1− δ))−1/2 in the kinked case.

Our result here concerns the one-sided prisoner’s dilemma described in Section 3.1

Proposition 1 In the one-sided prisoner’s dilemma, there exists c > 0 such that, for any

suffi ciently large δ < 1, there exists v ∈ EB (δ) satisfying

v1 = v2 > 2− c
(

1− δ
− log (1− δ)

)1/2

.

The proof constructs a review strategy with ineffi ciency of order ((1− δ) / (− log (1− δ)))1/2,

as sketched in Section 3.1.

5 Attainable Effi ciency with Public Strategies

We now show that the maximum effi ciency levels identified in Theorem 1 are attainable

under public monitoring in the smooth, non-zero curvature case, and are attainable up to a

log factor in the kinked case. To this end, denote the set of feasible and strictly individually
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rational payoffs by F ∗ =
{
v ∈ F : vi > vi := minα−i∈×j 6=i∆(Aj) maxai∈Ai ui (ai, α−i) ∀i

}
. For

v ∈ bnd (F ∗), define Λ∗v = {λ ∈ Λ : v ∈ argmaxw∈F ∗ λ · w}.

The following definition is a counterpart of Definition 1, adjusted to apply to all boundary

points rather than only exposed points. It says that moving away from v along the boundary

of F ∗ entails an effi ciency loss of order at most β, relative to Pareto weights λ.18

Definition 2 Fix a boundary point v ∈ bnd (F ∗). For any β ≥ 1, the boundary of F ∗ has

min-curvature of order at most β at v if, for all λ ∈ Λ∗v, there exists k > 0 such that

λ · (v − w) < kd (v, w)β for all w ∈ bnd (F ∗) .

The boundary of F ∗ has min-curvature of order β at v if

β = sup
{
β̃ : bnd (F ∗) has min -curvature of order at most β̃ at v

}
.

Note that, at any exposed point v ∈ bnd (F ∗), the min-curvature of bnd (F ∗) is at least

1 and at most the max-curvature.

The following assumption generalizes standard identification conditions for the public-

monitoring folk theorem to the case where action sets can be infinite.

Assumption 2 There exists x̄ > 0 such that the following conditions hold:

i. For each i, there exists a minmax profile against i, αi ∈ ×j 6=i∆ (Aj) × Ai, and xj : Y →

[−x̄, x̄] for each j 6= i, such that

aj ∈ argmax
a′j

uj
(
a′j, α−j

)
+ E

[
xj (y) |a′j, α−j

]
for all j 6= i and aj ∈ supp (αj) . (5)

ii. For each a ∈ A, c ∈ {−1,+1}, and (i, j) with i 6= j, there exists xi : Y → [−x̄, x̄] such

18For example, if N = 2, (0, 0) ∈ F ∗, and the local boundary of F ∗ at (0, 0) is given by f (x) = −x if
x < 0 and f (x) = x2 if x ≥ 0, then the min-curvature of bnd (F ∗) at (0, 0) is 1.
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that

ai ∈ argmax
a′i

ui (a
′
i, a−i) + E [xi (y) |a′i, a−i] and (6)

aj ∈ argmax
a′j

E
[
cxi (y) |a′j, a−j

]
. (7)

Intuitively, Assumption 2 says that, when payoff transfers of magnitude at most x̄ are

available, players −i can be incentivized to minmax player i, and player i can be incentivized

to take a given action ai via transfers from player j without affecting player j’s incentive to

take a given action aj.19

We consider the rate of convergence of EP (δ) toward a strictly individually rational

payoff vector v ∈ bnd (F ∗). For finite stage games, Hörner and Takahashi (2016) show that

this rate equals (1− δ)1/2. Thus, withholding feedback can accelerate the rate of convergence

by at most a factor of (− log (1− δ))−1/2 in finite-action games. We now show that whenever

the boundary of F ∗ has non-zero curvature (β ≤ 2), the rate equals (1− δ)β/2. (We discuss

the zero curvature case below.) Thus, withholding feedback cannot accelerate the rate of

convergence in smooth games with non-zero curvature.

We require the standard assumption that dimF ∗ = N and further exclude payoff vectors

where some player obtains her maximum feasible payoff.20

Theorem 2 Assume that Assumption 2 holds and dimF ∗ = N , and fix any v ∈ bnd (F ∗),

satisfying vi < maxa ui (a) for all i, where bnd (F ∗) has min-curvature of order β ≥ 1. Then

there exists c > 0 such that d
(
v, EP (δ)

)
≤ c (1− δ)min{β,2}/2 for any suffi ciently large δ < 1.

Theorem 2 builds on Fudenberg, Levine andMaskin (1994), Hörner and Takahashi (2016),

and Sugaya and Wolitzky (2023). As these authors showed, a given level of ineffi ciency

19Assumption 2 is similar to assumptions (A1)—(A3) of Kandori and Matsushima (1998). The difference
is that we allow |A| =∞ and state Assumption 1 directly in terms of the existence of transfers x that satisfy
(5)—(7), while Kandori and Matsushima assume that |A| < ∞ and hence can state conditions in terms of
the convex hull of the set of vectors of signal probabilities generated by different actions, which imply the
existence of transfers x satisfying (5)—(7) by the separating hyperplane theorem.
20To attain the same rate of convergence toward “max points,”one must show that, for v ∈ argmaxv′∈F∗ λ·

v′, as λ approaches a coordinate direction ei, v must be implemented by action profiles where player i’s
deviation gain vanishes. In finite-action games, Hörner and Takahashi (2016) show that this is possible
under a genericity condition on payoffs. For a class of infinite-action games (the linear-concave games
considered below), this is possible under a bounded cross-partial derivative condition.
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relative to an exposed point v and a direction λ ∈ Λv is attainable under public monitoring

if it equals the distance in direction λ between v and a self-generating ball B ⊆ F . We must

thus find a self-generating ball B ⊆ F at distance O
(

(1− δ)min{β,2}/2
)
to v in direction

λ ∈ Λv. To this end, let d = d (B, v) be the desired distance, and (without loss) let u = v−dλ

be the closest point to v in B. (See Figure 1.) Consider decomposing u into an instantaneous

payoff v and continuation payoffs (w (y))y that lie on the translated tangent hyperplane H

with normal vector λ passing through the point E [w (y)] = v − ((1− δ) /δ) dλ. Under

Assumption 2, the continuation payoffs (w (y))y can be chosen to enforce v on H ∩B if the

diameter of H ∩ B, which we denote by x, is of order 1 − δ. At the same time, denoting

the radius of B by r, the Pythagorean theorem gives (x/2)2 + (r − ((1− δ) /δ) d)2 = r2, and

hence x = O
(√

(1− δ) rd
)
. It follows that the product rd is of order 1 − δ, and hence

r = O
(

(1− δ)1−min{β,2}/2
)
. Finally, for a point v where the (max-)curvature of bnd (F )

equals β, a ball B with radius r = O
(

(1− δ)1−min{β,2}/2
)
and center v − (r + d)λ, where

d = O
(

(1− δ)min{β,2}/2
)
, lies entirely within F . For example, if β = 1 then r and d are both

O
(

(1− δ)1/2
)
and thus shrink at the same rate as δ → 1; while if β ≥ 2 then r = O (1) and

d = O (1− δ), so B simply shifts toward v as δ → 1.21

In light of Theorem 1, when β > 2 one might hope to find conditions under which

d
(
v, EP (δ)

)
= O

(
(1− δ)β−1

)
. While this may be possible, we do not pursue such a result

here. The diffi culty is that the corresponding ball B would have to have radius r of at

least O
(

(1− δ)2−β
)
(as rd must be at least O (1− δ)). While such a ball can satisfy the

self-generation condition B ⊆ F in a neighborhood of v, its radius explodes as δ → 1 (when

β > 2), so it must violate self-generation at some point far from v. Therefore, any conditions

that ensure that d
(
v, EP (δ)

)
is less than O (1− δ) must involve the global geometry of the

feasible payoff set. Investigating such conditions is left for future work.

We finally mention a class of infinite games where Assumption 2(ii) holds.22 Say that the

game is linear-concave if (i) for each i, Ai is a compact interval
[
Ai, Āi

]
⊆ R, and ui (ai, a−i)

is differentiable and concave in ai for every a−i with a bounded derivative: there exists κ > 0

21For the detailed argument for any β, see Lemma 17 in the online appendix.
22If Assumption 2(ii) holds, then even if Assumption 2(i) fails a Nash-threat folk theorem still holds, i.e.,

Theorem 2 holds with F ∗ replaced by the set of feasible payoffs that Pareto dominate a convex combination
of static Nash payoffs.
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Figure 1: Self-Generating a Ball. To maximize effi ciency, r and d must be chosen to minimize
d subject to the constraints that B ⊆ F and x is at least O (1− δ).

such that |∂ui (ai, a−i) /∂ai| ≤ κ for all i, a; and (ii) the public signal is a D-dimensional

real variable, Y = ×Dd=1Y
d ⊆ RD, and µd (a) = E

[
yd|a

]
is a linear function of a for each

dimension d. In a linear-concave game, let M i (a) =
(

d
dai
µd (â)

∣∣∣
â=a

)
d
be a D-dimensional

vector representing the sensitivity of the mean public signal to player i’s action. Say that a

linear-concave game satisfies pairwise identifiability if for any a and i 6= j, M i (a) 6= 0 and

the spans of M i (a) and M j (a) intersect only at the origin.23

Proposition 2 In any linear-concave game satisfying pairwise identifiability, Assumption

2(ii) holds.

5.1 Proof Sketch for Theorem 2

We recall a key definition and lemma from Abreu, Pearce, and Stacchetti (1990).

Definition 3 A bounded set W ⊆ RN is self-generating if for all v̂ ∈ W , there exist α ∈

×i∆ (Ai) and w : Y → RN satisfying
23This condition is the same as Assumption 1 of Sannikov (2007).
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Promise keeping (PK) v̂ = (1− δ)u (α) + δ
∫
y
w (y) p (y|α) dy.

Incentive compatibility (IC) supp (αi) ⊆ argmaxai (1− δ)ui (ai, α−i)+δ
∫
y
wi (y) p (y|ai, α−i) dy

for all i.

Self-generation (SG) w (y) ∈ W for all y.

When (PK), (IC), and (SG) hold, we say that the pair (α,w) decomposes v̂ on W .

Lemma 1 Any bounded, self-generating set W is contained in EP (δ).

It thus suffi ces to find a bounded, self-generating setW such that d (v,W ) = O
(

(1− δ)β
∗/2
)
,

where β∗ = min {β, 2}. To do so, we first establish a suffi cient condition for a ball B to be

self-generating. This condition builds on Fudenberg and Levine (1994) and Sugaya and

Wolitzky (2023).24

Definition 4 The maximum score in direction λ ∈ Λ with reward bound x̄ > 0 is

k (λ, x̄) := sup
α∈×i∆(Ai),x:Y→RN

λ ·
(
u (α) +

∫
y

x (y) p (y|α) dy

)
, subject to

1. (IC): supp (αi) ⊆ argmaxai ui (ai, α−i) +
∫
y
xi (y) p (y|ai, α−i) dy for all i.

2. Half-space decomposability with reward bound x̄ (HSx̄): λ · x (y) ≤ 0 and ‖x (y)‖ ≤ x̄

for all y.

Lemma 2 For any x̄ > maxu,u′∈F ‖u− u′‖ and ε > 0, if a ball B of radius r satisfies

k (λ, x̄) ≥ max
v′∈B

λ · v′ + ε for all λ ∈ Λ, and (8)

x̄2 ≤ δ

1− δ
εr

36
, (9)

then B is self-generating.

24Lemma 2 is similar to Lemma 6 of Sugaya and Wolitzky (2023), but is simpler because the monitoring
structure varies together with δ in our 2023 paper but is fixed in the current paper, so here we do not need
as much control over the relationship between δ and the reward bound x̄.
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We then show that there exists B with d (v,B) = O
(

(1− δ)β
∗/2
)
that satisfies the

suffi cient condition for self-generation just given.

Lemma 3 There exist x̄ > maxu,u′∈F ‖u− u′‖, c > 0 and δ̄ < 1 such that, for any δ > δ̄,

there exist ε > 0 and a ball B of radius r satisfying (8), (9), and d (v,B) ≤ c (1− δ)β
∗/2.

The proof of Lemma 3 uses Assumption 2 and the assumptions that dimF ∗ = N , vi ∈

(vi,maxa ui (a)) for all i, and bnd (F ∗) has min-curvature of order β ≥ 1 at v. The logic is

similar to that accompanying Figure 1.

The proofs of Lemmas 2 and 3 are deferred to the online appendix. Given these lemmas,

taking x̄, c, and δ̄ as in Lemma 3 establishes Theorem 2.

6 A Stronger Result for the Principal-Agent Problem

In this section, we establish that withholding feedback in a standard repeated principal-agent

problem leaves unchanged not only the rate of convergence to effi ciency (the order of ineffi -

ciency in 1− δ), but also the exact level of first-order ineffi ciency (the constant multiplying

1− δ). This stronger result also has the virtue of identifying the precise features of the stage

game and the monitoring structure that determine the level of first-order ineffi ciency.

Consider a standard repeated principal-agent problem in discrete time. In each period

t, an agent chooses an effort level a from a compact interval A =
[
0, Ā

]
, and a signal y is

then drawn according to a pmf or pdf p (y|a). Assume that p (y|a) is twice continuously

differentiable in a, with first and second derivatives pa (y|a) and paa (y|a). A contract spec-

ifies, for each period t, a recommended effort level rt ∈ A as a function of the history of

past recommendations and signals (rt′ , yt′)
t−1
t′=1, as well as the agent’s current consumption

ct ≥ 0 as a function of (rt′ , yt′)
t
t′=1. In the public game, the agent chooses her period t action

at as a function of
(
(rt′ , at′ , yt′)

t−1
t=1 , rt

)
; in the blind game, she chooses at as a function of(

(rt′ , at′)
t−1
t=1 , rt

)
only. The agent’s payoff in period t is u (ct) − ψ (at), where the consump-

tion utility u is twice continuously differentiable on R+ with u (0) = 0, u′ > 0, u′′ < 0,

limc→∞ u
′ (c) = 0, and

sup
c∈[0,∞)

u′′ (c)

(u′ (c))3 < 0, (10)
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and the effort cost ψ is twice continuously differentiable on A with ψ (0) = ψ′ (0) = 0 and

ψ′′ > 0. (We discuss the role of condition (10) below.) The principal’s payoff in period t is

at − ct.25 The parties have the same discount factor δ ∈ [0, 1).

For any effort level a ∈ A, the score of the signal y is

ν (y|a) =
pa (y|a)

p (y|a)
for all y ∈ Y,

and the Fisher information– the variance of the score– is

I (a) =

∫
y

pa (y|a)2

p (y|a)
dy.

We require the following technical assumption, which implies that the Fisher information

is finite, strictly positive, and Lipschitz continuous in a; the distribution of the score is

sub-Gaussian; and a second-order condition holds.

Assumption 3 The following hold:

i. For all a ∈ A, there exists ∆ > 0 such that

∫
y

maxã∈[a,a+∆] pa (y|ã)2

p (y|a)
dy <∞.

ii. I (a) is strictly positive and Lipschitz continuous on A.

iii. The score ν (y|a) is sub-Gaussian with variance proxy I (a):

∫
y

exp (θν (y|a)) p (y|a) dy ≤ exp

(
θ2I (a)

2

)
for all θ ∈ R.

25As indicated above, at is not contractable. The interpretation is that at − ct is the principal’s expected
payoff, where her realized payoff is determined by yt and ct.
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iv. There exists K̂ such that, for all a, â ∈ A, we have

∫
y

ν (y|a) paa (y|â) dy ≤ 0 and (11)∫
y

paa (y|â)2

p (y|a)
dy ≤ K̂. (12)

For example, Assumption 3 is satisfied if Y is finite, or if Y ⊆ Rn and y = g (a) + ε for a

deterministic function g : A→ Y with a bounded gradient and multivariate normal noise ε

with covariance independent of a. Note that Assumption 3(iii) strengthens Assumption 1.

For any w ∈
[
−ψ

(
Ā
)
, ū
)
, where ū = limc→∞ u (c) ∈ R+∪{∞}, let F̄ (w) be the first-best

payoff for the principal when the agent’s payoff equals w, which is given by

F̄ (w) = max
a∈A

a− u−1 (w + ψ (a)) .

Let ā (w) be the maximizer (which is unique, as the maximand is strictly concave), and let

c̄ (w) = u−1 (w + ψ (ā (w))) be the corresponding consumption for the agent. Note that F̄

is twice continuously differentiable, and ā and c̄ are continuously differentiable. In addition,

since ψ′ (0) = 0 and u′ > 0, we have ā (w) > 0 for all w ∈
[
−ψ

(
Ā
)
, ū
)
.

Finally, let FB
δ (w) (resp., F P

δ (w)) denote the maximum payoff for the principal over

all v ∈ EB (δ) (resp., v ∈ EP (δ)) where the agent’s payoff is w. That is, FB
δ (w) is the

principal’s second-best payoff in the blind game, while F P
δ (w) is her second-best payoff in

the public game. Recall that EB (δ) ⊇ EP (δ), so FB
δ (w) ≥ F P

δ (w). Nonetheless, we show

that FB
δ (w) and F P

δ (w) agree up to a first-order approximation as δ → 1.

Theorem 3 For any δ < 1 and w ∈ (0, ū), we have

FB
δ (w) = F̄ (w) +

1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+ o (1− δ) and

F P
δ (w) = F̄ (w) +

1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+ o (1− δ) , (13)

where in each equation o (1− δ) stands for a (different) function satisfying limδ→1 o (1− δ) / (1− δ) =

0.
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Theorem 3 shows that, whether or not the agent receives feedback, the first-order ineffi -

ciency of an optimal contract is precisely

1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
. (14)

In the public monitoring case, this result is similar to Theorem 5 of Sannikov (2008) and

Corollary 1 of Sadzik and Stacchetti (2015), but we consider a discrete-time game with a gen-

eral monitoring structure, while Sannikov considers a continuous-time game with Brownian

noise, and Sadzik and Stacchetti consider the “frequent action limit”of a class of monitoring

structures that converge to Brownian noise. However, the key point of Theorem 3 is that

the first-order ineffi ciency is exactly the same under private monitoring. Thus, even if the

principal can conceal the agent’s past performance in a standard repeated principal-agent

problem, she can do little better than to fully reveal it and utilize a public contract.

A rough intuition for Theorem 3 is that, with high probability, the agent’s continuation

payoff is approximately constant for a long time under an optimal contract, so there is little

information about the continuation payoff to conceal, and thus little value from concealing

it.

The proof of Theorem 3 is facilitated by the principal’s ability to commit to delivering

any feasible promised continuation value for the agent. It may be possible to generalize

Theorem 3 to smooth games with 1-dimensional actions and product structure monitoring

(as considered by Sannikov, 2007), but this would require constructing equilibria that attain

specific continuation payoff vectors far from the initial target vector. This possibility is left

for future research.

We finally comment on the role of condition (10). This condition implies that the second-

order effi ciency loss from varying the agent’s utility is uniformly bounded away from zero.

With CRRA utility u (c) = c1−γ/ (1− γ), it holds iff γ ≥ 1/2. Without this condition,

review strategies with infrequent, large rewards may yield a first-order improvement over

(14) if u′ (c) converges to 0 suffi ciently slowly as c→∞.
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6.1 Proof Sketch for Theorem 3

We first bound FB
δ (w) from above. Fix a period t and a small constant ∆ > 0, and

consider the manipulation where, whenever the agent is recommended effort a in period t,

she instead takes effort a − (ψ′ (a) /I (a)) ∆. (The agent thus shades her effort more after

recommendations where effort is more costly or less detectable.) For this manipulation to

be unprofitable for all t and ∆ > 0, we must have

Eµ
[
ψ′ (at)

2

I (at)
− ψ′ (at) ν (yt|at)

I (at)

∞∑
t′=t+1

δt
′−tût′

]
≤ 0 for all t, (15)

where µ is the equilibrium occupation measure and ût′ = u (ct′)−ψ (at′)−w is the deviation

of the agent’s period t′ utility from w (see Lemma 22 in the online appendix). Letting

(1− δ) δt−1ξt denote the Lagrange multiplier on this relaxed period t incentive constraint

(as in the proof Theorem 1) and letting ξt = 1−δ
δ
F̄ ′′ (w) for all t, the inner problem in the

Lagrangian (4) becomes

inf
(ût(h))t,h

(1− δ)
∞∑
t=1

δt−1Eµ
 F̄ (w + ût (h))− F̄ (w)

+1−δ
δ
F̄ ′′ (w)

(
ψ′(at)

2

I(at)
− ψ′(at)ν(yt|at)

I(at)

∑∞
t′=t+1 δ

t′−tût′ (h)
)
 .

Taking the Taylor approximation F̄ (w + ût (h))− F̄ (w) ≈ F̄ ′′(w)
2

ût (h)2 and rearranging, this

equals

1− δ
δ

F̄ ′′ (w)

2
inf

(ût(h))t,h

∞∑
t=1

Eµ
 δtût (h)2 − 21−δ

δ
ψ′(at)ν(yt|at)
I(at)

∑∞
t′=t+1 δ

t′ût′ (h)

+2 (1− δ)
∑∞

t=1 δ
t−1 ψ′(at)

2

I(at)

 .
The FOC for ût is

ût (h) =
1− δ
δ

t−1∑
t′=1

ψ′ (at′) ν (yt′ |at′)
I (at′)

for all t ≥ 2 and h.26

26A subtlety is that the Taylor approximation for F̄ (w + ût) − F̄ (w) is slack if ût is large, which occurs
if some score ν (yt′ |at′) is large. However, large scores occur with low probability by Assumption 3, and the
effi ciency gain from relying on large scores is limited by condition (10). These complications are addressed
in the proof of Lemma 10 in the appendix.
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Substituting the FOC into the Lagrangian (together with û1 (h) = 0 for all h) and simplifying

(see equation (30)) gives
1− δ
δ
Eαµ

[
ψ′ (a)2

I (a)

]
F̄ ′′ (w)

2
.

Finally, to attain ineffi ciency of order 1 − δ, we must have |αµ − a (w̄)| ≤ O (1− δ). Ineffi -

ciency is thus no less than

1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+

1− δ
δ

(
Eαµ

[
ψ′ (a)2

I (a)

]
− ψ′ (ā (w))2

I (ā (w))

)
F̄ ′′ (w)

2

=
1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+ o (1− δ) .

We next bound F P
δ (w) from below. Given a continuation payoff wt for the agent, sup-

pose the principal implements first-best effort ā (wt) by offering the corresponding first-best

consumption c̄ (wt) and providing incentives entirely by varying the continuation payoffwt+1

while making it a martingale: E [wt+1|wt] = wt. The Taylor approximation of ineffi ciency is

then equal to
∞∑
t=1

Eµ
[
(wt+1 − wt)2] F̄ ′′ (wt)

2
.

To bound the variance Eµ
[
(wt+1 − wt)2], note that the agent’s incentive constraint is

ā (wt) ∈ argmax
a

(1− δ) (u (c̄ (wt))− ψ (a)) + δ

∫
p (y|a) (wt+1 (y)− wt) dy,

with FOC

(1− δ)ψ′ (ā (wt)) + δ

∫
pa (y|ā (wt)) (wt+1 (y)− wt) dy = 0.

To minimize variance subject to the agent’s FOC, the principal takes wt+1 (y)− wt propor-

tional to ν (y|ā (wt)), which gives variance

Eµ
[
(wt+1 − wt)2] =

(
1− δ
δ

)2
ψ′ (ā (wt))

2

I (ā (wt))
.27

27It is infeasible to take wt+1 (y) − wt exactly proportional to ν (y|ā (wt)) when ν (y|ā (wt)) is large, but
this is a rare event by Assumption 3. See Lemma 25 in the online appendix for the formal construction of
the agent’s continuation payoff.
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The resulting ex ante ineffi ciency thus equals

Eµ
[∑

t

δt−1

(
1− δ
δ

)2
ψ′ (ā (wt))

2

I (ā (wt))

F̄ ′′ (wt)

2

]

=
1− δ
δ2

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+
∑
t

δt−1

(
1− δ
δ

)2

Eµ
[
ψ′ (ā (wt))

2

I (ā (wt))

F̄ ′′ (wt)

2
− ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2

]

=
1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+ o (1− δ) ,

where the last line follows as Eµ
[
(wt+1 − wt)2] = O

(
(1− δ)2), and hence |wt − w| ≤

O
(√

t (1− δ)
)
with high probability, so in the second line both the sum from t = 1 to

(1− δ)−1 and the sum from t = (1− δ)−1 to ∞ are o (1− δ) (see the proof of Lemma 12).

7 Discussion

7.1 The Low-Discounting/Low-Monitoring Double Limit

This paper focuses on the rate at which ineffi ciency vanishes as δ → 1 for a fixed monitoring

structure. In contrast, in Sugaya and Wolitzky (2023) we showed that in the double limit

where δ → 1 at the same time as monitoring precision degrades, the prospects for cooperation

depend on a ratio of discounting and monitoring precision. This double limit arises, for

example, in the “frequent action limit” considered by Abreu, Milgrom and Pearce (1991),

Fudenberg and Levine (2007), Sannikov and Skrzypacz (2010), and Sadzik and Stacchetti

(2015), where signals are parameterized by an underlying continuous-time process, actions

and signal observations occur simultaneously every∆ units of time, and the analysis concerns

the ∆→ 0 limit.

The results of the current paper extend to the low-discounting/low-monitoring double

limit. To see this, maintain the assumption that the monitoring structure is sub-Gaussian

with variance proxy K, but now view K as a variable that varies simultaneously with the

discount factor. Since K proxies the variance of the likelihood ratio difference, a higher

value for K corresponds to more precise monitoring, so the low-discounting/low-monitoring

double limit arises when K → 0 and δ → 1 simultaneously. For example, in the standard
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frequent action limit, discounting and monitoring vanish at the same rate, so (1− δ) /K

remains constant as K → 0 and δ → 1.

From this more general perspective, it can be shown (by nearly the same proof) that

Theorem 1 holds verbatim with (1− δ) /K in place of 1 − δ. Conversely, Theorem 2 also

holds with (1− δ) /K in place of 1− δ, under the condition that x̄ in Assumption 2 can be

taken to be of order K−1/2. For example, this condition holds with finite signals with p (y|a)

bounded away from zero, or with Gaussian signals.

7.2 Summary and Directions for Future Research

This paper has used a rate-of-convergence approach to analyze the gains from non-recursive

equilibria in standard repeated agency problems and games with patient players. The main

result is that these gains are “small”: (i) in finite-action games, non-recursive equilibria

reduce ineffi ciency by at most a log factor; (ii) in smooth games, non-recursive equilibria

reduce ineffi ciency by at most a constant factor; and (iii) in smooth principal-agent problems,

non-recursive equilibria do not reduce first-order ineffi ciency. The key force underlying these

results is that, while pooling information across periods leads to more precise monitoring, it

also entails larger rewards and punishments, which reduces the scope for providing incentives

by transferring continuation value rather than destroying it.

A basic lesson of our analysis is that the value of withholding feedback in dynamic agency

is very different in a one-offproduction process that unfolds gradually over time (as in Holm-

ström and Milgrom, 1987) as compared to a repeated interaction. Since continuation payoff

transfers are impossible in one-shot interactions, the monitoring benefit of withholding feed-

back dominates, so withholding feedback can be very valuable. But in repeated interactions,

this benefit is offset by the cost of using larger rewards and punishments, which limit con-

tinuation payoff transfers.

We mention some possible extensions of our results. First, as discussed in Section 5,

characterizing rates of convergence toward exposed points with curvature of order β > 2 is

a challenging open question involving non-local properties of the feasible payoff set. Second,

as discussed in Section 6, it may be possible to generalize Theorem 3 from smooth agency

problems to smooth games. Third, it would be interesting to relax the assumption that the
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likelihood ratio difference is sub-Gaussian. This could result in a faster rate of convergence,

because rare but highly informative signals would become more common, and such signals

become more useful as δ increases. Fourth, it remains to characterize the rate of convergence

when different actions of player 1 generate signals of player 2’s action of very unequal pre-

cision (e.g., in games where player 2’s action is entirely unobserved unless player 1 pays a

“monitoring cost”). Fifth, it would be interesting to extend our results to stochastic games.

More broadly, the rate of convergence to effi ciency as discounting vanishes many be a useful

lens for analyzing a range of other questions about long-run economic relationships, beyond

the value of withholding performance feedback.

Appendix

A Proof of Theorem 1

We first bound a player’s deviation gain at any α ∈ ∆ (A) that attains payoffs close to v.

Lemma 4 There exist ε > 0 and γ > 0 such that, for all α ∈ ∆ (A) satisfying λ ·

(v − u (α)) < ε, there exist a player i and a manipulation si such that gi (α, si) > γ.

Proof. Since v ∈ exp (F ) \V CE, for all α ∈ ∆ (A) such that v = u (α), there exist i and si

such that gi (si, α) > 0. Let

γ =
1

2
inf

α∈∆(A):v=u(α)
sup
i,si

gi (si, α) .

Note that γ > 0. To see this, note that gi (Id, α) = 0 for all i, α, so γ ≥ 0, and suppose

toward a contradiction that there exists a sequence αn such that v = u (αn) for all n and

supi,si gi (si, α
n) → 0. Since ∆ (A) is weak*-compact by Alaoglu’s theorem, taking a subse-

quence if necessary, αn → α ∈ ∆ (A). Moreover, since each ui is continuous, u (α) = v; and

since each Ai is compact, by the maximum theorem, supsi gi (si, α) = limn supsi gi (si, α
n) = 0

for all i, contradicting v /∈ V CE.

Now suppose that for all ε > 0 there exists αε ∈ ∆ (A) satisfying λ · (v − u (αε)) < ε and

gi (si, α
ε) < γ for all i, si. Taking a subsequence if necessary, αε → α ∈ ∆ (A). Moreover,
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we have u (α) = limε u (αε) = v (since u (αε) ∈ F and v ∈ exp (F )), and supsi gi (si, α) =

limε supsi gi (si, α
ε) ≤ γ for all i (by the maximum theorem), so supi,si gi (si, α) ≤ γ, contra-

dicting the definition of γ.

Fix such ε and γ. Next, for any outcome µ and period T , define the occupation measure

over the first T periods by αµ,T =
(
(1− δ) /

(
1− δT

))∑T
t=1 δ

t−1αµt , and define T (δ) =

d(log 2) / (− log δ)e. We first bound λ · (v − u (αµ)) for any µ where all player’s deviation

gains over the first T (δ) periods are small.

Lemma 5 For any outcome µ where gi
(
si, α

µ,T (δ)
)
≤ γ for all players i and manipulations

si, we have λ · (v − u (αµ)) ≥ ε/2.

Proof. Since δT ≤ 1/2 by construction, we have

λ · (v − u (αµ)) = (1− δ)
∞∑
t=1

δt−1λ · (v − u (αµt ))

≥ (1− δ)
T∑
t=1

δt−1λ · (v − u (αµt )) =
(
1− δT

)
λ ·
(
v − u

(
αT
))
≥ λ

2
·
(
v − u

(
αT
))
.

By construction of (ε, γ), if λ ·
(
v − u

(
αT
))

< ε then supi,si gi
(
αT , si

)
> γ. Hence,

supi,si gi
(
αT , si

)
≤ γ implies λ ·

(
v − u

(
αT
))
≥ ε, as desired.

We next establish the incentive constraint, (2).

Lemma 6 For any equilibrium outcome µ ∈ MB (δ), player i, manipulation si, and period

t, we have gi (si, α
µ
t ) ≤ Eµ

[
`i,t (si, h)

∑∞
t′=t+1 δ

t′−tût′ (h)
]
.

Proof. For any sequence of action profiles (at)
∞
t=1 and any period t, letwt (h) =

∑∞
t′=t δ

t′−tui (at′).

Since µ is an equilibrium outcome, for every t ∈ N we have

gi (α
µ
t , si) ≤

∫
ht,at,yt

(p (yt|at)− p (yt|si (ai,t) , a−i,t)) δE
[
wt+1 (h) |ht, at, yt

]
dµ
(
ht, at

)
dyt.

This holds because, if she follows her recommendation in every period t′ 6= t while ma-

nipulating according to si in period t, player i obtains an expected continuation payoff of∫
ht,at,yt

p (yt|si (ai,t) , a−i,t)E [wt+1 (h) |ht, at, yt] dµ (ht, at) dyt in period t + 1, and this devia-

31



tion must be unprofitable. The lemma follows as

∫
ht,at,yt

(p (yt|at)− p (yt|si (ai,t) , a−i,t)) δE
[
wt+1 (h) |ht, at, yt

]
dµ
(
ht, at

)
dyt

=

∫
ht,at,yt

p (yt|at) `i,t (si, h) δE
[
wt+1 (h) |ht, at, yt

]
dµ
(
ht, at

)
dyt

=

∫
h

`i,t (si, h)
∞∑

t′=t+1

δt
′−tût′ (h) dµ (h) ,

where the last line follows by iterated expectation.

We now come to our key lemma, which bounds (4)– and hence λ · (v − u (αµ))– for any

µ where some player’s deviation gain over the first T (δ) periods is large.

Lemma 7 There exists c̄ > 0 such that, for any outcome µ, player i, and manipulation si,

and discount factor δ < 1 satisfying gi
(
si, α

µ,T (δ)
)
> γ, we have

sup
(ξt)t≥0

inf
(ût(h))t,h∈[−ū,ū]

(1− δ)
∞∑
t=1

δt−1Eµ
[
η |ût (h)|β + ξt

(
gµt − `t (h)

∞∑
t′=t+1

δt
′−tût′ (h)

)]
≥ c̄ζ (δ) .

Together, Lemmas 5, 6, and 7 imply that λ·(v − u (αµ)) ≥ max {ε/2, c̄ζ (δ)} ≥ max {ε/2, c̄} ζ (δ)

for all δ < 1 and µ ∈MB (δ). Theorem 1 therefore holds with c = min {ε/2, c̄}.

It thus remains to prove Lemma 7. To this end, let ξt = ξ ≥ 0 if t ≤ T (δ), and ξt = 0

otherwise. Letting T = T (δ) to ease notation, we then have

(1− δ)
∞∑
t=1

δt−1ξt`t (h)
∞∑

t′=t+1

δt
′−tût′ (h) = (1− δ) ξ

T∑
t=1

`t (h)
∞∑

t′=t+1

δt
′−1ût′ (h)

= (1− δ) ξ
∞∑
t=2

δt−1Lmin{t−1,T}ût (h) , and

(1− δ)
∞∑
t=1

δt−1ξtg
µ
t = ξ (1− δ)

T∑
t=1

δt−1gµt = ξ
(
1− δT

)
gi
(
si, α

µ,T
)
≥ ξγ

2
.

In total, we see that (4) is no less than

sup
ξ≥0

(
ξγ

2
+ inf

(ût(h))t≥2,h∈[−ū,ū]
(1− δ)

∞∑
t=2

δt−1Eµ
[
η |ût (h)|β − ξLmin{t−1,T}ût (h)

])
. (16)

The following lemma thus establishes Lemma 7.
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Lemma 8 For each β ≥ 1, there exists c̄ > 0 such that, for any µ and δ, the value of (16)

is no less than c̄ζ (δ).

In turn, Lemma 8 relies on the following large deviations bound for martingales.

Lemma 9 Let (Xt)t≥1 be a sequence of martingale increments adapted to a filtration (Ht)t≥0,

so that E [Xt|Ht−1] = 0, and let (ωt)t≥1 be a stochastic process adapted to the same filtration

satisfying E [exp (θXt) |Ht−1] ≤ exp
(
θ2ωt/2

)
for all t ≥ 1 and θ ∈ R. Let ST =

∑T
t=1 Xt

and WT =
∑T

t=1 ωt. For all T ≥ 1, we have E [exp (θST )] ≤ exp
(
θ2WT/2

)
, and hence (i)

Pr (|ST | ≥ x) ≤ 2 exp (−x2/ (2WT )) for all x ≥ 0, and (ii) E [|ST |ϕ] ≤ 2 (ϕWT/e)
ϕ/2 for all

ϕ ≥ 0.

Proof. By iterated expectation,

E [exp (θST )] = E [exp (θST−1)E [exp (θXT ) |HT−1]] ≤ E [exp (θST−1)] exp
(
θ2ωT/2

)
.

Recursively applying the same argument gives E [exp (θST )] ≤ exp
(
θ2WT/2

)
. Applying

the Chernoff bound then gives (i) and (ii): see, e.g., Lemmas 1.3 and 1.4 of Buldygin and

Kozachenko (2000).

Proof of Lemma 8. We consider separately the cases where β = 1 and β > 1.

Case 1: When β = 1, the minimand in (16) is linear in ût (h). Minimizing over ût (h) ∈

[−ū, ū], we see that (16) equals

sup
ξ≥0

(
ξγ

2
+ (1− δ)

∞∑
t=2

δt−1

∫
h:ξ
∣∣∣Σmin{t−1,T}
t′=1

`t′ (h)
∣∣∣≥η
(
η − ξ

∣∣Lmin{t−1,T}
∣∣) ūdµ (h)

)
. (17)

Note that E
[
`t| (at′ , yt′)t−1

t′=1 , at
]

= 0 and E
[
exp (θ`t) | (at′ , yt′)t−1

t′=1 , at
]
≤ exp

(
θ2K/2

)
for all

t, h, and θ, by (1). Hence, by Lemma 9, Lmin{t−1,T} is sub-Gaussian with variance proxy

K min {t− 1, T}, and thus satisfies

Pr
(
ξ
∣∣Lmin{t−1,T}

∣∣ ≥ x
)
≤ 2

(
exp

(
− x2

2ξ2K min {t− 1, T}

))
.
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We thus have

∫
h:ξLmin{t−1,T}≥η

(
η − ξ

∣∣Lmin{t−1,T}
∣∣) dµ (h)

= Prµ
(
ξ
∣∣Lmin{t−1,T}

∣∣ ≥ η
)
η − Eµ

[
1
{
ξ
∣∣Lmin{t−1,T}

∣∣ ≥ η
} ∣∣ξLmin{t−1,T}

∣∣]
= −

∫
x≥η

Prµ
(
ξ
∣∣Lmin{t−1,T}

∣∣ ≥ x
)
dx ≥ −2

∫
x≥η

exp

(
− x2

2Kξ2 min {t− 1, T}

)
dx,

where the second equality is by integration by parts. Now note that

∫
x≥η

exp

(
− x2

2Kξ2 min {t− 1, T}

)
dx =

√
2ξ2K

√
min {t− 1, T}

∫
y≥ η√

2ξ2K
√

min{t−1,T}

exp
(
−y2

)
dy

≤ 2ξ2K

η
min {t− 1, T} exp

(
− η2

2ξ2K min {t− 1, T}

)
≤ 2ξ2KT

η
exp

(
− η2

2ξ2KT

)
, (18)

where the first inequality uses the Mills ratio inequality φ (−x) /Φ (−x) ≥ x for x ≥ 0.

Hence, (17) is no less than

sup
ξ≥0

(
ξγ

2
− 4ūξ2K

η
(1− δ)

∞∑
t=2

δt−1T exp

(
− η2

2ξ2KT

))
≥ sup

ξ≥0
ξ

(
γ

2
− 4ūξKT

η
exp

(
− η2

2ξ2KT

))
.

Finally, letting

ξ∗ = η
(
KT max

{
log
(
28KTū2γ−2

)
, 1
})−1/2

,

we have

sup
ξ≥0

ξ

(
γ

2
− 4ūξKT

η
exp

(
− η2

2ξ2KT

))
≥ ξ∗

(
γ

2
− 4ū

√
KT

(
max

{
log
(
28KTū2γ−2

)
, 1
})−1/2

exp

(
−1

2
max

{
log
(
28KTū2γ−2

)
, 1
}))

≥ ξ∗
(
γ

2
− 4ū

√
KT exp

(
−1

2
log
(
28KTū2γ−2

)))
=

ξ∗γ

4

=
ηγ

4

(
KT max

{
log
(
28KTū2γ−2

)
, 1
})−1/2

≥ ηγ

4

(
(4K log 2) max

{
log
(
29 (log 2)Kū2γ−2

)
, 1
})−1/2

ζ (δ) ,
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where the last inequality follows because T ≤ d(log 2) / (1− δ)e ≤ 2 (log 2) / (1− δ) and

max {− log xy, 1} ≤ 2 max {− log x, 1}max {− log y, 1} for all x, y ∈ R. This is a constant

multiple of ζ (δ), as desired.

Case 2: When β > 1, the minimand in (16) is convex in ût (h). Relaxing the constraint

ût (h) ∈ [−ū, ū] and minimizing over ût (h) ∈ R gives

ût (h) =

(
ξ

ηβ

) 1
β−1

sign
(
Lmin{t−1,T}

) ∣∣Lmin{t−1,T}
∣∣ 1
β−1 for all t ≥ 2.

Hence, substituting for ût (h), (16) is no less than

sup
ξ≥0

(
ξγ

2
− ξ

β
β−1

(
1

η

ββ−1 − 1

ββ

) 1
β−1

(1− δ)
∞∑
t=2

δt−1E
[∣∣Lmin{t−1,T}

∣∣ β
β−1

])
. (19)

By Lemma 9, Lmin{t−1,T} is sub-Gaussian with variance proxy K min {t− 1, T} ≤ K (t− 1),

and thus satisfies

Eµ
[∣∣Lmin{t−1,T}

∣∣ β
β−1

]
≤ 2

(
β

e (β − 1)

) β
2(β−1)

(K (t− 1))
β

2(β−1)

≤ 2

(
β

e (β − 1)

) β
2(β−1)

K
β

2(β−1) (t− 1)max{ β
2(β−1)

,1} .

Next, for any ϑ ≥ 1, we let k (ϑ) ≥ 1 satisfy

∞∑
t=1

δttϑ ≤ k (ϑ)

(1− δ)ϑ+1
for all δ. (20)

(The existence of such k (ϑ) follows from the standard fact that
∑∞

t=1 δ
ttϑ = Γ (ϑ+ 1) (1− δ)−(ϑ+1)+

O
(

(1− δ)−ϑ
)
: see, e.g., Wood, 1992, eqn. (6.4).) With this definition, we have

(1− δ)
∞∑
t=2

δt−1E
[∣∣Lmin{t−1,T}

∣∣ β
β−1

]
≤ 2

(
β

e (β − 1)

) β
2(β−1)

K
β

2(β−1)k
(

max
{

β
2(β−1)

, 1
})

(1− δ)−max{ β
2(β−1)

,1}

≤ 2

(
β

e (β − 1)

) β
2(β−1)

K
β

2(β−1)k
(

max
{

β
2(β−1)

, 1
})

(1− δ)−max{ β
2(β−1)

,1} .
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Thus, (19) is no less than

sup
ξ≥0

ξ

γ
2
− 2

(
β

e (β − 1)

) β
2(β−1)

(
ββ−1 − 1

ηββ

) 1
β−1

K
β

2(β−1)k
(

max
{

β
2(β−1)

, 1
})( ξ

(1− δ)max{β/2,β−1}

) 1
β−1

 .

Since the coeffi cient of
(
ξ/ (1− δ)max{β/2,(β−1)}

) 1
β−1

is independent of δ, there exists ĉ > 0

such that if ξ = 4ĉ (1− δ)max{β/2,β−1} then the resulting value is no less than ξγ/4, which is

again a constant multiple of ζ (δ).

B Proof of Proposition 1

Consider a review strategy where the game is divided into blocks of T consecutive periods.

Let T = bρ/(1− δ)c, where ρ > 0 is a small number to be determined: note that ρ ≈ 1− δT

when δ ≈ 1. In the first block, the players are prescribed (C,L) in every period. At the end

of the first block– as well any subsequent block where (C,L) is prescribed– the mediator

records the summary statistic

E = 1

{
1√
T

T∑
t=1

(2y1,t − 1) ≤ −
√
− log (1− δ)

}
.

(Here periods are numbered from the start of the block and y1,t ∈ {0, 1} is the signal of

player 1’s action in the tth period of the block.28) If E = 0, the players “pass the review”

and (C,L) is prescribed in the next block. If E = 1, then with some probability q ∈ [0, 1]

(which also remains to be determined), the players fail the review and (D,R) is prescribed

forever. With the complementary probability 1− q, the players pass the review anyway and

(C,L) is prescribed in the next block.

We show that there exists c > 0 and δ̄ < 1 such that, for any δ > δ̄, the parameters

ρ and q can be chosen so that this strategy profile is an equilibrium that yields payoff

v > 2− c ((1− δ) / (− log (1− δ)))1/2 for each player.29

28The event E does not depend on the signals (y2,t)
T
t=1 of player 2’s action. Indeed, monitoring player 2

is unnecessary, as player 2 takes a static best response at action profile (C,L).
29We write v instead of vi here, since the players’payoffs are the same.
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Let p be the probability that E = 1 when player 1 takes C throughout a block; let p1 be

the probability that E = 1 when player 1 takes D once and takes C T − 1 times; and let pT

be the probability that E = 1 when player 1 takes D throughout. Observe that v is given

by

v =
(
1− δT

)
2 + δT (1− pq) v ⇐⇒ v = 2− δTpqv

1− δT
. (PK)

At the same time, the incentive conditions that player 1 prefers to take C throughout a block

where (C,L) is prescribed, rather than taking D in period 1 only, or always taking D, are

1− δ ≤ δT (p1 − p) qv and (IC1)

1− δT ≤ δT (pT − p) qv. (ICT )

Conditions (IC1) and (ICT ) are obviously necessary for the review strategy to be an equilib-

rium; moreover, as shown by Matsushima (2004, p. 846), they are also suffi cient.30 It thus

suffi ces to find c > 0, δ̄ < 1, ρ, and q such that, for any δ > δ̄, (PK), (IC1), and (ICT ) hold,

and v > 2− c ((1− δ) / (− log (1− δ)))1/2.

Define

v∗ = 2− 1− δ
1− δT

p

p1 − p
and q =

(
2δT

1− δ (p1 − p)−
δT

1− δT
p

)−1

. (21)

With these definitions, (PK) and (IC1) hold with equality, with v = v∗. We show that

lim
δ→1

1−δ
1−δT

p
p1−p√

1−δ
− log(1−δ)

<
5
√
ρeρ

eρ − 1
for all ρ > 0, (22)

lim
ρ→0

lim
δ→1

2δT (p1 − p)
1− δ − δTp

1− δT
> 1, and (23)

lim
ρ→0

lim
δ→1

δT q (pT − p)
1− δT

> 1. (24)

Given these inequalities, the proof is completed by first taking ρ > 0 and δ̄1 > 0 such that

the inequalities in (23) and (24) hold for ρ and all δ > δ̄1, then taking δ̄2 > 0 such that

30Matsushima considered repeated games with two players and conditionally independent signals. Condi-
tional independence implies that a player does not learn about her opponents signals during a review block,
just as players do not learn about the mediator’s signals in ΓB . The same argument thus applies here.
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the inequality in (22) holds for ρ for all δ > δ̄2, and finally taking c = 5
√
ρeρ/ (eρ − 1) and

δ̄ = max
{
δ̄1, δ̄2

}
.

We now establish (22)—(24). Let k =
⌊(√

T/2
)(√

T −
√
− log (1− δ)

)⌋
. Note that

p = Pr

(
T∑
t=2

y1,t < k

)
+

1

2
Pr

(
T∑
t=2

y1,t = k

)
< Pr

(
T∑
t=2

y1,t ≤ k

)
, and

p1 − p =
1

4
Pr

(
T∑
t=2

y1,t = k

)
=

(T − 1)!

k! (T − 1− k)!

(
1

2

)T+1

≥ (T )!

k! (T − k)!

(
1

2

)T+2

, (25)

where the last inequality holds because k ≤ T/2.

We first establish (22). Recall that the y1,t are independent Bernoulli random variables.

As shown by Zhu, Li, and Hayashi (2022, Theorem 2.1),

Pr
(∑T

t=2 y1,t ≤ k
)

Pr
(∑T

t=2 y1,t = k
) ≤ k + 1− T

2
+

√(
k − 1− T

2

)2

+ 2k.

Since

p

p1 − p
< 4

Pr
(∑T

t=2 y1,t ≤ k
)

Pr
(∑T

t=2 y1,t = k
) and lim

δ→1

1−δ
1−δT

(
k + 1− T

2
+
√(

k − 1− T
2

)2
+ 2k

)
√

1−δ
− log(1−δ)

=

√
ρeρ

eρ − 1
,

where the second line follows by l’Hopital’s rule, we have

lim
δ→1

1−δ
1−δT

p
p1−p√

1−δ
− log(1−δ)

≤ lim
δ→1

1−δ
1−δT 4

Pr(
∑T
t=2 y1,t≤k)

Pr(
∑T
t=2 y1,t=k)√

1−δ
− log(1−δ)

=
4
√
ρeρ

eρ − 1
<

5
√
ρeρ

eρ − 1
,

which establishes (22).

We next establish (23). Applying Stirling’s formula to (25), we have

p1 − p ≥
√

2π (T − 1)

4e2
√
k (T − 1− k)

(
T − 1

2k

)k (
T − 1

2 (T − 1− k)

)T−1−k

. (26)
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Therefore,

lim
ρ→0

lim
δ→1

δT (p1 − p)
1− δ ≥ lim

ρ→0
lim
δ→1

δT

1− δ

√
2π (T − 1)

4e2
√
k (T − 1− k)

(
T − 1

2k

)k (
T − 1

2 (T − 1− k)

)T−1−k

=∞.

On the other hand, limρ→0 limδ→1
δT p

1−δT ≤ limδ→1
δT

1−δT = limρ→0
e−ρ

1−e−ρ =∞, which establishes

(23).

Finally, we establish (24). We will show that limδ→1 p = 0 and limδ→1 pT = 1. Hence, for

suffi ciently large δ, pT − p ≥ 1/2. This implies (24), as we have

lim
ρ→0

lim
δ→1

δT q (pT − p)
1− δT

= lim
ρ→0

lim
δ→1

δT

1− δT
1

δT
pT − p

2p1−p
1−δ −

p

1−δT
by (21)

≥ lim
ρ→0

lim
δ→1

1

1− δT
1
2

2p1−p
1−δ

≥ lim
ρ→0

lim
δ→1

1− δ
1− δT

( √
e (T − 1)

2π
√
k (T − 1− k)

(
T − 1

2k

)k (
T − 1

2 (T − 1− k)

)T−1−k
)−1

=∞,

where the second inequality follows by applying Stirling’s formula to (25).

It remains to show that limδ→1 p = 0 and limδ→1 pT = 1. Note that the random variable

2y1,t−1 has zero mean and unit variance when player 1 takes C. Thus, by the Berry—Esseen

theorem, there exists an absolute constant C0 such that

p = Prplayer 1 takes C
(

1√
T

T∑
t=1

(2y1,t − 1) ≤ −
√
− log (1− δ)

)
≤ Φ

(
−
√
− log (1− δ)

)
+ C0

(
Eplayer 1 takes C

[
|2y1,t − 1|3

]
√
T

)
δ→1−→ 0.

On the other hand, (4y1,t − 1) /
√

3 has zero mean and unit variance when player 1 takes D.
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Thus, again by Berry—Esseen,

pT = Prplayer 1 takes D
(

1√
T

T∑
t=1

(2y1,t − 1) ≤ −
√
− log (1− δ)

)
= Prplayer 1 takes D

(
1√
T

T∑
t=1

4y1,t − 1√
3
≤
√
T − 2

√
− log (1− δ)√

3

)

≥ Φ

(√
T − 2

√
− log (1− δ)√

3

)
+ C0

Eplayer 1 takes D
[∣∣(4y1,t − 1) /

√
3
∣∣3]

√
T

 δ→1−→ 1,

completing the proof.

C Proof of Theorem 3

We first show that first-order ineffi ciency in the blind game is no less than (14). Fix δ < 1,

w ∈ (0, ū), and a Nash equilibrium in the blind game where the agent’s payoff is w. Let

µ ∈ ∆ ((A× Y )∞) and α ∈ ∆ (A) be the corresponding outcome and occupation measure.

Let ût = u (ct)− ψ (at)− w.

By feasibility, the principal’s payoff is at most

(1− δ)
∞∑
t=1

δt−1Eµ
[
F̄ (w + ût)

]
.

At the same time, incentive compatibility implies inequality (15) (see Lemma 22 in the online

appendix), and promise keeping implies

(1− δ)
∞∑
t=1

δt−1Eµ [ût] = 0. (27)

The following is the key lemma.
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Lemma 10 There exist c, ε > 0 such that, for any suffi ciently large δ < 1, we have

max
(ût(h))t,h≥−(w+h(Ā))

s.t. (15) and (27)

(1− δ)
∞∑
t=1

δt−1Eµ
[
F̄ (w + ût (h))

]

≤ F̄ (w) +
1− δ
δ
Eα
[
ψ′ (a)2

I (a)

]
F̄ ′′ (w)

2
+ c (1− δ)1+ε . (28)

We sketch the proof of Lemma 10, relegating the details to the online appendix. Subtract-

ing F̄ (w) from both sides of (28), dividing both sides by 1−δ
δ

F̄ ′′(w)
2
, and taking a second-order

Taylor approximation of the LHS (where the first-order term is zero by (27)) gives

inf
(ût(h))t,h≥−(w+ψ(Ā)) s.t. (15)

∞∑
t=1

δtEµ
[
ût (h)2] .

To establish Lemma 10, it suffi ces to show that the value of this program exceeds Eα
[
ψ′ (a)2 /I (a)

]
.

To see this, take a common Lagrange multiplier of 2 (1− δ) δt−1 on (15) for each t. Then,

by weak duality, the value of the program is no less than

inf
(ût(h))t,h

∞∑
t=1

Eµ
[
δtût (h)2 − 2

ψ′ (at) ν (yt|at)
I (at)

1− δ
δ

∞∑
t′=t+1

δt
′
ût′ (h)

]
+ 2Eα

[
ψ′ (a)2

I (a)

]
. (29)

Taking the first-order condition for ût (h) and substituting into (29) as in the text gives

−
(

1− δ
δ

)2 ∞∑
t=2

δtEµ
( t−1∑

t′=1

ψ′ (at′) ν (yt′ |at′)
I (at′)

)2
+ 2Eα

[
ψ′ (a)2

I (a)

]
= Eα

[
ψ′ (a)2

I (a)

]
,

where the equality follows because, since (ψt (at) vt (yt|at) /It (at))t is a sequence of martin-

gale increments, we have

Eµ
( t−1∑

t′=1

ψ′ (at′) ν (yt′|at′)
I (at′)

)2
 =

t−1∑
t′=1

Eµ
[(

ψ′ (at′) ν (yt′ |at′)
I (at′)

)2
]

=

t−1∑
t′=1

Eαt′
[(

ψ′ (a)

I (a)

)2

E
[
ν (y|a)2]] =

t−1∑
t′=1

Eαt′
[
ψ′ (a)2

I (a)

]
,
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and hence

(
1− δ
δ

)2 ∞∑
t=2

δtEµ
( t−1∑

t′=1

ψ′ (at′) ν (yt′ |at′)
I (at′)

)2
 =

(
1− δ
δ

)2 ∞∑
t=2

δt
t−1∑
t′=1

Eαt′
[
ψ′ (a)2

I (a)

]

= (1− δ)
∞∑
t=1

δt−1Eαt
[
ψ′ (a)2

I (a)

]
= Eα

[
ψ′ (a)2

I (a)

]
. (30)

At the same time, since F̄ is strictly concave, there exists ε1 > 0 such that the principal’s

payoff is at most F̄ (w) − ε1Eα
[
(a− ā (w))2]. (See Lemma 19 in the online appendix.) So,

together with Lemma 10, the following lemma establishes that first-order ineffi ciency in the

blind game is no less than (14).

Lemma 11 There exist ĉ, ε̂ > 0 such that, for any suffi ciently large δ < 1, we have

max
α

min

{
1− δ
δ
Eα
[
ψ′ (a)2

I (a)

]
F̄ ′′ (w)

2
+ c (1− δ)1+ε ,−ε1Eα

[
(a− ā (w))2]}

≤ 1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+ ĉ (1− δ)1+ε̂ .

We now show that first-order ineffi ciency in the public game is no more than (14). The

proof is constructive. As a first step, it is helpful to first construct a static contract that

induces a target effort level ā ∈ A. In particular, if the agent is rewarded with a utility of

(ψ′ (ā) /I (ā)) ν (y|ā) following any signal realization y, she chooses a to maximize

∫
y

ψ′ (ā)

I (ā)
ν (y|ā) p (y|a) dy − ψ (a) .

The solution is a = ā, because a = ā satisfies the first-order condition

∫
y

ψ′ (ā)

I (ā)
ν (y|ā) pa (y|a) dy = ψ′ (a) ,

and the second-order condition holds by (11). Moreover, the expected reward equals zero.

Heuristically, the repeated game equilibrium is constructed by using the above reward

to adjust the agent’s continuation payoff wt after each period t (so the agent’s continuation
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payoff is a martingale), while targeting effort level ā (wt) in each period t. This heuristic

requires two adjustments, however. First, if the score ν (y|a) is unbounded, we must truncate

the reward for extreme scores, and then further adjust the reward so the agent’s first-order

condition is exactly satisfied. Second, it is convenient to target zero effort once the agent’s

continuation payoff wt strays too far from its initial value w.

Formally, fix any ε > 0. Recursively, given the agent’s promised continuation payoff

wt (ht) at history ht = (rt′ , yt′)
t−1
t′=1, we define the recommended period t action rt (ht) and

consumption level ct (ht) (which is independent of the period t signal yt), as well as the next

period continuation payoff wt+1 (ht, yt), as follows. First, say that a history ht is regular if

|wt (ht)− w| ≤ (1− δ)1/2−ε, and irregular otherwise. At a regular history, define rt (ht) =

ā (wt (ht)), ct (ht) = c̄ (wt (ht)), and

wt+1

(
ht, yt

)
= wt

(
ht
)

+
1− δ
δ

xrt(ht) (y) ,

where, for each ā ∈ A, xā (y) is an adjusted version of (ψ′ (ā) /I (ā)) ν (y|ā) (constructed in

Lemma 25 in the online appendix) that satisfies

ā ∈ argmax
a

∫
y

xā (y) p (y|a) dy − ψ (a) ,∫
y

xā (y) p (y|ā) dy = 0, (31)∫
y

xā (y)2 p (y|ā) dy =
ψ′ (ā)2

I (ā)
+O (1− δ) , and (32)

|xā (y)| ≤ (1− δ)−1/4 .

At an irregular history, define rt (ht) = 0, ct (ht) = u−1 (wt (ht)), and wt+1 (ht, yt) = wt (ht)

for all yt. Note that the initial history h1 is regular, and that if a history ht is irregular, then

so is every subsequent history. Note also that, by construction, |wt+1 (ht, yt)− wt (ht)| =

O (1− δ)3/4 for every regular history ht and signal yt. Since |wt (ht)− w| ≤ (1− δ)1/2−ε for

every regular history ht, this implies that, for suffi ciently large δ < 1, we have wt (ht) ∈ [0, 2w]

for every history ht.

The proof is completed by the following lemma, which shows that the first-order ineffi -
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ciency of this equilibrium is no more than (14).

Lemma 12 There exist c̃, ε̃ > 0 such that, for any suffi ciently large δ < 1, the principal’s

payoff in the above equilibrium is no less than

F̄ (w) +
1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
− c̃ (1− δ)1+ε̃ .

Intuitively, since wt (ht) is a martingale with volatility of order (1− δ)2 (by (31) and

(32)), it is very unlikely that wt (ht) moves more than a O
(

(1− δ)1/2
)
distance away from

w within a timeframe that has more than an O (1− δ) payoff impact. Consequently, the

principal’s payoff is almost entirely determined by her payoff at regular histories, and thus

equals

Eµ
[

(1− δ)
∞∑
t=1

δt−1F̄
(
wt
(
ht
))]

+ o (1− δ) ,

where µ is the equilibrium outcome. Taking a second-order Taylor expansion aroundwt (ht) =

w and ignoring the remainder, this equals

F̄ (w) + Eµ
[

(1− δ)
∞∑
t=1

δt−1 F̄
′′ (w)

2

(
wt
(
ht
)
− w

)2

]
.

Since

wt
(
ht
)

= w +
1− δ
δ

t−1∑
t′=1

xat′ (yt′) for all regular histories ht

and (32) holds, the same calculation as for (30) gives

Eµ
[

(1− δ)
∞∑
t=1

δt−1 F̄
′′ (w)

2

(
wt
(
ht
)
− w

)2

]
=

1− δ
δ
Eα
[
ψ′ (a)

I (a)

]
F̄ ′′ (w)

2
+ o (1− δ) ,

where α is the equilibrium occupation measure. Finally, since wt (ht) is close to w with high

probability under α, we have Eα [ψ′ (a) /I (a)] = ψ′ (ā (w)) /I (ā (w)) + o (1), completing the

proof.
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Online Appendix

D Proof of Lemma 2

The proof is similar to (but simpler than) the proof of Lemma 6 of Sugaya and Wolitzky

(2023). To show that B is self-generating, it suffi ces to show that the extreme points of any

ball B′ ⊆ B of radius r/2 are decomposable on B′.

Lemma 13 (Sugaya and Wolitzky (2023), Lemma 10) Suppose that for any ball B′ ⊆
B with radius r/2 and any direction λ ∈ Λ, the point v̂ = argmaxv′∈B′ λ · v′ is decomposable
on B′. Then B is self-generating.

We thus fix a ball B′ ⊆ B of radius r/2 and a direction λ ∈ Λ, and let v̂ = argmaxv′∈B′ λ ·
v′. We construct (α,w) that decompose v̂ on B′.

Since k (λ, x̄) ≥ maxv′∈B λ · v′+ ε by hypothesis, there exist α and x : Y → RN satisfying
(IC), (HSx̄), and

λ ·
(
u (α) +

∫
y

x (y) p (y|α) dy

)
≥ max

v′∈B
λ · v′ + ε/2 ≥ max

v′∈B′
λ · v′ + ε/2. (33)

To construct w, for each y, let

w (y) = v̂ +
1− δ
δ

(
v̂ − u (α) + x (y)−

∫
y′
p (y′|α)x (y′) dy′

)
.

We show that (α,w) decomposes v̂ on B′ by verifying (PK), (IC), and (SG).

(PK): This holds by construction: we have
∫
y
w (y) p (y|α) dy = (1/δ) (v̂ − (1− δ)u (α)),

and hence (1− δ)u (α) + δ
∫
y
w (y) p (y|α) dy = v̂.

(IC): Setting aside the constant terms in w (y), we see that an action ai maximizes

(1− δ)ui (ai, α−i)+δ
∫
y
wi (y) p (y|ai, α−i) dy iff it maximizes ui (ai, α−i)+

∫
y
xi (y) p (y|ai, α−i) dy,

which follows from (IC).

(SG): We start with a simple geometric observation.

Lemma 14 (Sugaya and Wolitzky (2023), Lemma 11) For each w ∈ RN , we have
w ∈ B′ if λ · (v̂ − w) ≥ 0 and

d (v̂, w) ≤
√

(r/2)λ · (v̂ − w). (34)
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We thus show that, for each y, w (y) satisfies λ · (v̂ − w (y)) ≥ 0 and (34). Note that

v̂ − w (y) =
1− δ
δ

(
u (α) +

∫
y′
x (y′) p (y′|α) dy′ − v̂ − x (y)

)
.

By (HSx̄) and (33), we have λ · (v̂ − w (y)) ≥ (δ/ (1− δ)) ε/2, and therefore

√
(r/2)λ · (v̂ − w (y)) ≥ 1− δ

δ

√
δ

1− δ
εr

4
. (35)

Similarly, we have

d (v̂, w) ≤ 1− δ
δ

(
d (v̂, u (α)) + d

(∫
y′
x (y′) p (y′|α) dy′, x (y)

))
≤ 1− δ

δ

(
max
u,u′∈F

‖u− u′‖+ 2x̄

)
≤ 1− δ

δ
3x̄. (36)

Comparing (35) and (36), we see that w (y) satisfies (34) whenever 3x̄ ≤
√

(δ/ (1− δ)) εr/4,
which holds by (9).

E Proof of Lemma 3

Since dimF ∗ = N and vi < maxa ui (a) for all i, there exist η̄ > 0 and F̄ ⊆ F ∗ such that

{w ∈ F ∗ : d (v, w) ≤ η̄} ⊆ F̄ , dim F̄ = N , and vi < wi < maxa ui (a) for all i and w ∈ F̄ .
Fix any such

(
η̄, F̄

)
.

The following lemma is similar to Lemma 5 of Hörner and Takahashi (2016) or Lemma

7 and pp. 1750—1751 of Sugaya and Wolitzky (2023).

Lemma 15 There exists x̄ > ū such that k (λ, x̄) ≥ maxv′∈F̄ λ · v′ for all λ ∈ Λ.

Proof. Let x̂ > 0 satisfy the conditions of Assumption 2. For each i, since vi < wi <

maxa ui (a) for all w ∈ F̄ , there exist λi > −1 and λ̄i < 1 such that (i) for all λ ∈ Λ with

λi ≤ λi, we have λ · u (α)−
∑

n 6=i |λn| x̂ ≥ maxw∈F̄ λ · w for all α satisfying ui (α) = vi; and

(ii) for all λ ∈ Λ with λi ≥ λ̄i, we have λ · u (α) −
∑

n 6=i |λn| x̂ ≥ maxw∈F̄ λ · w for all α

satisfying ui (α) = maxa ui (a). Given such
(
λi, λ̄i

)
i
, we define

x̄ =
√
N

(
2N + max

i

max{|λi| , λ̄i}√
(1−max{|λi| , λ̄i}2)/(N − 1)

)
x̂.

For each λ, we now construct (α, x (y)) such that λ · (u (α) +E [x (y) |α]) ≥ maxw∈F̄ λ ·w and
(IC) and (HSx̄) hold. To do so, fix any i ∈ argmax |λi|, and consider three cases.
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(i) λi ≤ λi. In this case, take a minmax profile α
i and (x̂j (y))j 6=i that satisfy Assumption

2(i). Define xi (y) =
∑

n6=i |λn| x̂/λi and xj (y) = x̂j (y) for all y. (IC) holds for j 6= i

given Assumption 2(i), and (IC) holds for i since player i takes a best response in αi and

xi (y) is independent of y. (HSx̄) holds with x̄ ≥ 2Nx̂ given Assumption 2(i). Finally,

λ · u (αi) + E [λ · x (y)] ≥ λ · u (αi)−
∑

n6=i |λn| x̂ ≥ maxw∈F̄ λ · w.
(ii) λi ≥ λi. In this case, take ā

i ∈ maxui (a) and (x̂j (y))j 6=i that satisfies (6) for player

j. Define xi (y) =
∑

n 6=i |λn| x̂/λi and xj (y) = x̂j (y) for all y. The argument is now the

same as case (ii).

(iii) Otherwise, there exists n 6= i such that |λi| / |λn| ≤ max{|λi| , λ̄i}/
√

(1−max{|λi| , λ̄i}2)/(N − 1).

Fix such n. Next, fix a ∈ A such that λ · u (a) ≥ maxw∈F̄ λ · w. For player i, take xi (y)

such that Assumption 2(ii) holds for a, (i, n), and c = sign (−λn/λi). For player j 6= i,

take xj (y) such that Assumption 2(ii) holds for a, (j, i), and c = sign (−λj/λi). We then
define xi (y) = xi (y) −

∑
j 6=i

λj
λi
xj (y), xn (y) = xn (y) − λi

λn
xi (y), and xj (y) = xj (y) for

j 6= i, n. Then, (IC) holds for player i since ai ∈ arg maxa′i u (a′i, a−i) + E [xi (y) |a′i, a−i] and
ai ∈ arg maxa′i E [− (λj/λi)x

j (y) |a′i, a−i] for all j 6= i by Assumption 2(ii). (IC) holds for

player n since an ∈ arg maxa′n u (a′n, a−n)+E [xn (y) |a′n, a−n] and an ∈ arg maxa′n E [− (λi/λn)xi (y) |a′n, a−n]

by Assumption 2(ii). In addition, (IC) holds for player j 6= i, n since aj ∈ arg maxa′j u
(
a′j, a−j

)
+

E
[
xj (y) |a′j, a−j

]
by Assumption 2(ii). Finally, (HSx̄) holds since λ · x (y) = 0 for all y and

‖x (y)‖ ≤
√
N
∑

j |xj (y)| ≤
√
N (2N + |λi/λn|) x̂ ≤ x̄.

By Lemma 15, it suffi ces to find c > 0 and δ̄ < 1 such that, for all δ > δ̄, there exist

ε > 0 and a ball B with radius r > 0 such that

max
v′∈F̄

λ′ · v′ ≥ max
v′∈B

λ′ · v′ + ε for all λ′ ∈ Λ, (37)

rε ≥ 36x̄2 (1− δ) , and (38)

d (v,B) ≤ c (1− δ)β
∗/2 . (39)

If β∗ = 1 then, as in Lemma 3 of Hörner and Takahashi (2016), it suffi ces to take any

o ∈ int
(
F̄
)
and any ` > 0 suffi ciently large compared to 36x̄2, let r = (1− δ)1/2, and take B

to have radius r and center (1− `r) v + `ro.

For the rest of the proof, we assume that β∗ > 1. We first derive a geometric condition

for w ∈ F ∗, similar to Lemma 14.

Lemma 16 There exist λ ∈ Λ∗v, ρ > 0, and κ > 0 such that, if d (v, w) < ρ and κd (v, w)β
∗
<

λ · (v − w), then w ∈ int (F ∗).

Proof. Since F ∗ is full-dimensional and hasmin-curvature of order at most β at v, there exist

ε̄ > 0 and κ > 0 such that, for all w ∈ bnd (F ∗) satisfying d (v, w) < ε̄, we have λ · (v − w) <
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κd (v, w)β ≤ κd (v, w)β
∗
for all λ ∈ Λ∗v. Let Bε′ (v) =

{
w ∈ RN : d (v, w) = ε′

}
. Since F ∗ is

full-dimensional, there exists λ ∈ Λ∗v, ε
′ > 0, and t > 0 such that C := Bε′ (v) − tλ ⊆ F ∗.

Fix such λ, ε′, and t, and let ε = min {ε̄, ε′, t}.
Now fix any ρ < min{ε, (t/2κ)1/β∗} and d < ρ, and letG =

{
w ∈ Bd (v) : λ · (v − w) ≥ 2κdβ

∗}
.

We wish to show that G ⊆ F ∗ (and in particular G ⊆ int (F ∗), since G ∩ bnd (F ∗) = ∅).
To see this, letW = Bd (v)∩bnd (F ∗),H =

{
w : λ · (v − w) = κdβ

∗}
,H ′ = {w : λ · (v − w) = t},

and D = C ∩H ′. Since d < ρ < min{ε, (t/κ)1/β∗}, G lies in between H and H ′. In addition,

the projection of G onto H is a subset of the projection of W onto H, and the projection of

G onto H ′ is a subset of D. Hence, we have G ⊆ co (W ∪D). Finally, since W ⊆ F ∗ and

D ⊆ C ⊆ F ∗, and F ∗ is convex, we have co (W ∪D) ⊆ F ∗, so G ⊆ F ∗.

Lemma 17 There exist c̄ > 0, η > 0, and δ̄ < 1 such that, for all δ > δ̄, there exists a ball

B ⊆ F̄ of radius r = η (1− δ)1−β∗/2 satisfying d (v,B) = c̄ (1− δ)β
∗/2.

Proof. Fix λ ∈ Λ∗v, ρ > 0, and κ > 0 as in Lemma 16. Given c̄ and η to be determined,

let B be the ball with radius r = η (1− δ)1−β∗/2 and center o = v − (r + d)λ, where d =

c̄ (1− δ)β
∗/2, and take any ŵ ∈ ∂B. Let x = λ · (ŵ − o), so that xλ is the projection of ŵ− o

on λ. Then,

‖v − ŵ‖2 = ‖v − o− xλ‖2 + ‖ŵ − o− xλ‖2 = (r + d− x)2 + r2 − x2, and

λ · (v − ŵ) = r + d− x.

Recall that, by construction, {w ∈ F ∗ : d (v, w) ≤ η̄} ⊆ F̄ . Since d (v, w) ≤ d (v, o) +

d (o, w) ≤ 2r + d for all w ∈ B, it suffi ces to show that 2r + d ≤ η̄ and B ⊆ F ∗. By Lemma

16, if d (v, w) < ρ and κd (v, w)β
∗
≤ λ · (v − w) then w ∈ F ∗. Since x ∈ [−r, r], it suffi ces to

find c̄, η, and δ̄ such that, for all δ > δ̄, we have

2r + d ≤ η̄, (40)

((r + d)− x)2 + r2 − x2 ≤ ρ2 for all x ∈ [−r, r] , and (41)

max
x∈[−r,r]

f (x, δ, β∗) ≤ 0, (42)

where

f (x, δ, β∗) := κ
(
(r + d− x)2 + r2 − x2

)β∗/2 − (r + d− x) .

We consider separately the cases where β∗ = 2 and β∗ ∈ (1, 2). First consider β∗ =

2. Let η̂ > 0 be such that (41) holds whenever max {r, d} ≤ η̂, and let any c̄ = 1 and

η = min {η̂, η̄/4, κ/4}, so that r = η and d = 1 − δ. For suffi ciently large δ, we have

2r + d ≤ η̄ and d ≤ η̂, and hence (40) and (41) hold. In addition, since f (x, δ, 2) is linear
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in x when β∗ = 2, (42) holds whenever f (r, δ, 2) ≤ 0 and f (−r, δ, 2) ≤ 0. In turn, these

inequalities hold for suffi ciently large δ, since f (r, δ, 2) = d (κd− 1) and limδ→1 κd− 1 < 0,

and f (−r, δ, β∗) = (2r + d) (κ (2r + d)− 1) and limδ→1 κ (2r + d)− 1 = 2κη − 1 < 0.

Next, consider β∗ ∈ (1, 2). Let c̄ = 22/(2−β∗)κ2/(2−β∗)β∗β
∗/(2−β∗) and η = 1, so that

r = (1− δ)1−β∗/2 and d = c̄ (1− δ)β
∗/2. Since max {r, d} → 0 as δ → 1, (40) and (41)

hold for suffi ciently large δ. In addition, f (x, δ, β∗) is concave in x and is maximized over

x ∈ [−r, r] at

x∗ =
2r2 + 2dr + d2 − (κ (r + d) β∗)

2
2−β∗

2 (r + d)
.

It thus suffi ces to show that f (x∗, δ, β∗) ≤ 0 for suffi ciently large δ. By algebra,

f (x∗, δ, β∗) = −2r + d

r + d

d

2
+

(
β∗

β∗
2−β∗ − 1

2
β∗

2
2−β∗

)
κ

2
2−β∗ (r + d)

β∗
2−β∗ .

Finally, since r = (1− δ)1−β∗/2 ≥ c̄ (1− δ)β
∗/2 = d for suffi ciently large δ, we have

f (x∗, δ, β∗) ≤ −d
2

+ 2
β∗

2−β∗ κ
2

2−β∗ β∗
β∗

2−β∗ r
β∗

2−β∗

= − c̄ (1− δ)
β∗
2

2
+ 2

β∗
2−β∗ κ

2
2−β∗ β∗

β∗
2−β∗ (1− δ)

(
1−β

∗
2

)
β∗

2−β∗

= (1− δ)
β∗
2

(
− c̄

2
+ 2

β∗
2−β∗ κ

2
2−β∗ β∗

β∗
2−β∗

)
= 0.

We now complete the proof of Lemma 3. Take c̄, η, δ̄, B, and r as in Lemma 17.

Let B′ be the radial contraction of B by a factor of 1 − 72x̄2 (1− δ)β
∗/2 / (ηr), and define

ε = 72x̄2 (1− δ)β
∗/2 /η and c = c̄+72x̄2/η. Since d (v,B) = c̄ (1− δ)β

∗/2, we have d (v,B′) =

(c̄+ 72x̄2/η) (1− δ)β
∗/2 = c (1− δ)β

∗/2, so (39) holds. Moreover, denoting the radius of B′

by r′, we have

r′ε =

(
1− 72x̄2 (1− δ)β

∗/2

η2 (1− δ)1−β∗/2

)
η (1− δ)1−β∗/2×72x̄2 (1− δ)β

∗/2

η
=

(
1− 72x̄2 (1− δ)β

∗−1

η2

)
72x̄2 (1− δ) .

For suffi ciently large δ, this is greater than 36x̄2 (1− δ), so (38) holds. Finally, since B ⊆ F̄ ,

for all λ′ ∈ Λ we have maxv′∈F̄ λ
′ ·v′ ≥ maxv′∈B λ

′ ·v′ = maxv′∈B′ λ
′ ·v′+72x̄2 (1− δ)β

∗/2 /η =

maxv′∈B′ λ
′ · v′ + ε, so (37) holds.
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F Proof of Proposition 2

To define x̄, we first observe that for each pair of players i 6= j and each action profile a, we

can take
(
xji (d; a)

)
d
such that (i)

∑
d x

j
i (d; a) yd has mean 0 and bounded Euclidean norm;

(ii) rewards
∑

d x
j
i (d; a) yd induce player i to take ai when her opponents take a−i; and (iii)

E
[∑

d x
j
i (d; a) yd|a

]
is independent of player j’s action.

Lemma 18 There exists x̂ such that, for each pair of players i 6= j and action profile

a ∈ A, there exist
(
xji (d; a)

)
d
such that E

[∑
d x

j
i (d; a) yd|a

]
= 0, d

dai
E
[∑

d x
j
i (d; a) yd|a

]
= 1,

d
daj
E
[∑

d x
j
i (d; a) yd|a

]
= 0, and

∣∣∑
d x

j
i (d; a) yd

∣∣ ≤ x̂ for all y.

Proof. For each a and (i, j), let f ij (a) be the value of the program

inf
b∈RD
|b| subject to∑

d

bd
d

dai
µ (ai, a−i) = 1, or equivalently bMi (a) = 1,

∑
d

bd
d

daj
µ (ai, a−i) = 0, or equivalently bMj (a) = 0.

(Here b is a row vector while Mi (a) and Mj (a) are column vectors.)

Since A 3 a is compact and N is finite, it suffi ces to prove that, for each (i, j), (i)

f ij (a) <∞ for all a, and (ii) f ij (a) is upper-semicontinuous.

We first prove (i). As in Lemma 1 of Sannikov (2007), pairwise identifiability implies

that the columns of [M i (a) ;M j (a)] are linearly independent, so there exists L (a) such that

[M i (a) ;M j (a) ;L (a)] is a D-dimensional invertible matrix. For

Q (a) = [Mi (a) ; 0; 0]
[
M i (a) ;M j (a) ;L (a)

]−1
,

we have Q (a)M i (a) = M i (a) and Q (a)M j (a) = 0. Moreover, since M i (a) is non-

degenerate, there exists b̄ such that b̄M i (a) = 1. Since b = b̄Q (a) satisfies the constraints,

we have f ij (a) <∞.
We next prove (ii). Fix any a and η0. There exists b such that |b| ≤ f ij (a) + η0

2

and b satisfies bMi (a) = 1 and bMj (a) = 0. Take L (a) as in the proof of (i). Taking

η1 > 0 suffi ciently small, we can guarantee that [M i (a′) ;M j (a′) ;L (a)] is a D-dimensional

invertible matrix for each a′ with |a− a′| ≤ η1. Define a D-dimensional vector ∆a′ by

∆a′ = [b (Mi (a
′)−Mi (a)) , b (Mj (a′)−Mj (a)) , 0]

[
M i (a′) ;M j (a′) ;L (a)

]−1
.
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By definition,

(b+ ∆a′)Mi (a
′) = bMi (a

′)− b (Mi (a
′)−Mi (a)) = bMi (a) = 1,

(b+ ∆a′)Mj (a′) = bMj (a′)− b (Mj (a′)−Mj (a)) = bMj (a) = 0.

Thus, b − ∆a′ satisfies the constraint for a′, and hence f ij (a′) ≤ |b| + |∆a′|. Since

lim supη1→0 supa′:|a−a′|≤η1
|∆a′ | = 0, for suffi ciently small η1 > 0, we have f ij (a′) ≤ |b| +

|∆a′ | ≤ |b|+ 1
2
η0 ≤ f ij (a)+η0 for all a

′ with |a− a′| ≤ η1, establishing upper-semicontinuity.

Given Lemma 18, Assumption 2(ii) holds with x̄ = ūx̂. To see why, for any i and a, let

∂ui = ∂
∂a′i
ui (a

′
i, a−i)

∣∣∣
a′i=ai

and xi (y) = −∂ui
∑

d x
j
i

(
d; aλ

)
yd. Then,

∂

∂a′i
(ui (a

′
i, a−i) + E [xi (y) |a′i, a−i])

∣∣∣∣
a′i=ai

= 0 and

∂

∂a′j
E
[
cxi (y) |a′j, a−i

]∣∣∣∣
a′j=aj

= 0 for all j 6= i.

Since ui is concave in ai, E [xi (y) |a′i, a−i] is linear in a′i, and E
[
cxi (y) |a′j, a−j

]
is linear in

a′j, we have (6) and (7). Moreover, since |∂ui| ≤ ū, we have |xi (y)| ≤ ūx̂ for all i, y.

G Omitted Details for the Proof of Theorem 3

We require some preliminary lemmas. The first two derive properties of the feasible payoff

set.

Lemma 19 There exists ε1 > 0 such that, for any α ∈ ∆ (A), we have

Eα [a]− u−1 (w + Eα [ψ (a)]) ≤ F̄ (w)− ε1Eα
[
(a− ā (w))2] .

Proof. Since ψ ∈ C2 and ψ′′ > 0, there exists ε1 > 0 such that, for all a ∈ A, we have

ψ (a)− ψ (ā (w)) ≥ ψ′ (ā (w)) (a− ā (w)) + ε1 (a− ā (w))2 .
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Thus, for any α ∈ ∆ (A), we have

F̄ (w)− Eα [a] + u−1 (w + Eα [ψ (a)])

= ā (w)− u−1 (w + ψ (ā (w)))− Eα [a] + u−1 (w + Eα [ψ (a)])

≥ ā (w)− Eα [a] +
Eα [ψ (a)]− ψ (ā (w))

u′ (c̄ (w))

≥ ā (w)− Eα [a] +
ψ′ (ā (w)) (Eα [a]− ā (w)) + ε1Eα

[
(a− ā (w))2]

u′ (c̄ (w))
≥
ε1Eα

[
(a− ā (w))2]
u′ (c̄ (w))

,

where the first inequality is by Taylor expansion of u−1 (w + Eα [ψ (a)])−u−1 (w + ψ (ā (w)))

around w + Eα [ψ (a)] = w + ψ (ā (w)) = c̄ (w), the second inequality is by Taylor expansion

of ψ (a)− ψ (ā (w)) around a = ā (w), and the last equality is by u′ (c̄ (w)) = ψ′ (ā (w)) (by

definition of ā (w)).

Lemma 20 There exists ε2 > 0 such that F̄ ′′ (w) ≤ −ε2 for all w ≥ −ψ
(
Ā
)
.

Proof. Differentiating the equality u′ (c̄ (w)) = ψ′ (ā (w)) with respect to w yields

ā′ (w) =
u′′ (c̄ (w))

u′ (ā (w)) (ψ′′ (ā (w))− u′′ (c̄ (w)))
. (43)

Since F̄ (w) = maxa∈A a − u−1 (w + ψ (a)), by the envelope theorem we have F̄ ′ (w) =

−1/u′ (c̄ (w)), or equivalently F̄ ′ (w) = −1/u′ (w + ψ(ā (w))). Differentiating this equality

respect to w and substituting (43) yields

F̄ ′′ (w) =
u′′ (c̄ (w))ψ′′ (ā (w))

u′ (c̄ (w))3 (ψ′′ (ā (w))− u′′ (c̄ (w)))
.

The lemma follows since ψ′′ > 0, u′′ < 0, and u′′ (c) /u′ (c)3 is bounded away from zero by

(10).

The next lemma gives a key probability bound.

Lemma 21 For any c > 0 and ϑ ≥ 0, there exists δ̄ < 1 such that, for any δ > δ̄ and any

sequence of non-negative random variables (Xt)t≥1, where Xt is distributed according to a cdf

Gt satisfying 1−Gt (x) ≤ 2 exp
(
−cx2/

(
(1− δ)2 t

))
for all t, we have

(1− δ)
∞∑
t=1

δt−1t

∫
x≥(1−δ)

1
2−ε

xϑdGt (x) ≤ (1− δ)2 .
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Proof. Let T = (1− δ)
1
2
−ε. It suffi ces to show that

lim
δ→1

(1− δ)−1
T∑
t=1

δt−1t

∫
x≥(1−δ)

1
2−ε

xϑdGt (x) = lim
δ→1

(1− δ)−1
∞∑

t=T+1

δt−1t

∫
x≥(1−δ)

1
2−ε

xϑdGt (x) = 0.

For each t, we have∫
x≥(1−δ)

1
2−ε

xϑdGt (x)

=

∫
x≥(1−δ)

1
2−ε

ϑxϑ−1 (1−Gt (x)) dx+ (1− δ)ϑ(
1
2
−ε)
(

1−Gt

(
(1− δ)

1
2
−ε
))

≤ 2ϑ

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx+ 2 (1− δ)ϑ(

1
2
−ε) exp

(
−c (1− δ)1−2ε

(1− δ)2 t

)
,

where the equality is by integration by parts and limx→∞ x
ϑ (1−Gt (x)) = 0, and the in-

equality is by 1−Gt (x) ≤ 2 exp
(
−cx2/

(
(1− δ)2 t

))
. Note that

∑T
t=1 tδ

t−1 ≤ (1− δ)−2 and,

if t ≤ T , then (1− δ)1−2ε /
(
(1− δ)2 t

)
≥ (1− δ)−ε. Therefore

lim
δ→1

(1− δ)−1
T∑
t=1

tδt−1 (1− δ)ϑ(
1
2
−ε) exp

(
−c (1− δ)1−2ε

(1− δ)2 t

)
= 0.

At the same time, since
∑∞

t=T+1 tδ
t−1 = δT+1(1+T (1−δ))

δ(1−δ)2 ≤ (1− δ)−2−ε δT ≤ (1− δ)−2−ε exp
(
− (1− δ)−ε

)
,

we have

lim
δ→1

(1− δ)−1
∞∑

t=T+1

tδt−1 (1− δ)ϑ(
1
2
−ε) exp

(
−c (1− δ)1−2ε

(1− δ)2 t

)
= 0.

It thus suffi ces to show that

lim
δ→1

(1− δ)−1
T∑
t=1

tδt−1

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx = 0, and (44)

lim
δ→1

(1− δ)−1
∞∑

t=T+1

tδt−1

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx = 0. (45)

We first establish (44). Since
∑T

t=1 tδ
t−1 ≤ (1− δ)−2 and (1− δ)2 T = (1− δ)1−ε, it

suffi ces to show that

lim
δ→1

(1− δ)−3

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)1−ε

)
dx = 0.
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If ϑ ≤ 1 then

(1− δ)−3

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)1−ε

)
dx

≤ (1− δ)(
1
2
−ε)(ϑ−1)−3

∫
x≥(1−δ)

1
2−ε

exp

(
− cx2

(1− δ)1−ε

)
dx

≤ (1− δ)(
1
2
−ε)(ϑ−1)−3

√
π

c
(1− δ)1/2 exp

(
−c (1− δ)−ε

) δ→1−→ 0,

where the second inequality follows by the same calculation as (18). If instead ϑ > 1 then,

for suffi ciently large δ, we have

(1− δ)−3

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)1−ε

)
dx

=
1

2
(1− δ)−3

∫
y≥0

(
y + (1− δ)1−2ε)ϑ−1

exp

(
−
c
(
y + (1− δ)1−2ε)

(1− δ)1−ε

)
dy

≤ 1

2
(1− δ)−3+ϑ(1−2ε) exp

(
−c (1− δ)−ε

) ∫
y≥0

exp

((
ϑ− 1

(1− δ)1−2ε −
c

(1− δ)1−ε

)
y

)
dy

=
1

2
(1− δ)−3+ϑ(1−2ε) exp

(
−c (1− δ)−ε

)(
− ϑ− 1

(1− δ)1−2ε +
c

(1− δ)1−ε

)−1
δ→1−→ 0,

where the second follows by integration by substitution (setting y = x2 − (1− δ)1−2ε), the

third line follows because

(
y + (1− δ)1−2ε)ϑ−1

= (1− δ)(1−2ε)(ϑ−1) exp

(
(ϑ− 1) log

(
y

(1− δ)1−2ε + 1

))
≤ (1− δ)(1−2ε)(ϑ−1) exp

(
(ϑ− 1) y

(1− δ)1−2ε

)
,

and the fourth line follows because ϑ−1
(1−δ)1−2ε − c

(1−δ)1−ε < 0 for suffi ciently large δ.

We next establish (45). For any t, we have

∫
x≥0

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx =

1

2

(
(1− δ)2 t

c

)ϑ
2 ∫

y≥0

y
ϑ
2
−1 exp (−y) dy

=
1

2

(
(1− δ)2 t

c

)ϑ
2

Γ

(
ϑ

2

)
,
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where the first line follows by setting y = cx2/
(
(1− δ)2 t

)
, and the second line follows by

the definition of the gamma function, Γ. Hence, there exist constants c1, c2 such that∫
x≥0

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx ≤ c1 (1− δ)2c2 tc2 for all t.

We thus have

(1− δ)−1
∞∑

t=T+1

tδt−1

∫
x≥(1−δ)

1
2−ε

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx

≤ (1− δ)−1
∞∑

t=T+1

tδt−1

∫
x≥0

xϑ−1 exp

(
− cx2

(1− δ)2 t

)
dx

≤ c1 (1− δ)2c2−1
∞∑

t=T+1

δt−1tc2+1

≤ c1 (1− δ)2c2−1 δT−1 (T + 1)c2+1
∞∑
t=1

δttc2

≤ c1 (1− δ)c2−2 δT−1 (T + 1)c2+1 k (c2)
δ→1−→ 0,

where k is defined in (20) and the limit follows recalling that δT ≤ exp
(
− (1− δ)−ε

)
.

We now establish inequality (15).

Lemma 22 We have

Eαt
[
ψ′ (a)2

I (a)

]
≤ Eµ

[
ψ′ (at) ν (yt|at)
I (at)

∞∑
t′=t+1

δt
′−tût′

]
for all t.

Proof. Fix any t and ε > 0. Since ψ′ (a) /I (a) is bounded (uniformly in a) given Assumption

3(ii), there exists ∆̃ > 0 such that, for all ∆ < ∆̃, we have (ψ′ (a) /I (a)) ∆ ≤ ε for all a ∈ A.
Fix ∆̄ < ∆̃ such that, for all a ∈ A,

∫
y

(
maxã∈[a,a+∆̄] pa (y|ã)2 /p (y|a)

)
dy < ∞. (Such ∆̄

exists by Assumption 3(i).) Now, for any∆ < ∆̄, consider the manipulation where, whenever

the agent is recommended action a ≥ ε in period t, she instead takes a − (ψ′ (a) /I (a)) ∆.

This manipulation is unprofitable for the agent if and only if

Eαt
[
1 {a ≥ ε}

(
ψ (a)− ψ

(
a− ψ′ (a)

I (a)
∆

))]

≤ Eµ
1 {at ≥ ε}

p (yt|at)− p
(
yt|at − ψ′(at)

I(at)
∆
)

p (y|at)

∞∑
t′=t+1

δt
′−tût′

 .
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Since this holds for all ∆ < ∆̄, we have

lim
∆→0

Eαt

1 {a ≥ ε}
ψ (a)− ψ

(
a− ψ′(a)

I(a)
∆
)

∆


≤ lim

∆→0
Eµ
1 {at ≥ ε}

p (yt|at)− p
(
yt|at − ψ′(at)

I(at)
∆
)

∆p (yt|at)

∞∑
t′=t+1

δt
′−tût′


In this inequality, the LHS is bounded because ψ′ (a)2 /I (a) is bounded given Assumption

3(ii), and hence is equal to Eαt
[
1 {a ≥ ε}ψ′ (a)2 /I (a)

]
, by dominated convergence. As for

the RHS, for each t′ ≥ t + 1, by Cauchy-Schwarz the corresponding term in the sum is

bounded by

Eµ

1 {at ≥ ε}

p (yt|at)− p
(
yt|at − ψ′(at)

I(at)
∆
)

∆p (y|at)

2


1/2

× Eµ
[
û2
t′
]1/2

.

This is finite because
∫
y

(
maxã∈[a,a+∆̄] pa (y|ã)2 /p (y|a)

)
dy < ∞ (by Assumption 3(i)) and

Eµ [û2
t′ ] < ∞ for all t′ (as otherwise the principal’s expected payoff would equal −∞ by

Lemma 20). Hence, the entire RHS is bounded, and hence is equal to Eµ
[
1 {at ≥ ε} (ψ′ (at) ν (yt|at) /I (at))

∑∞
t′=t+1 δ

t′−tût′
]
,

by dominated convergence. In total, we have

Eαt
[
1 {a ≥ ε} ψ

′ (a)2

I (a)

]
≤ Eµ

[
1 {at ≥ ε} ψ

′ (at) ν (yt|at)
I (at)

∞∑
t′=t+1

δt
′−tût′

]
.

Since this holds for all ε > 0, and ψ′ (a)2 /I (a) and ψ′ (at) ν (yt|at) /I (at) are continuous,

taking ε→ 0 completes the proof.

Now we prove our key lemmas, Lemmas 10 and 11. These complete the proof that

ineffi ciency is at least (14) in the blind game.

G.1 Proof of Lemma 10

Multiplying both sides of (28) by 2δ/((1−δ)F̄ ′′ (w)) and using (27), it suffi ces to find c, ε > 0

such that

min
(ût(h))t,h≥−(w+ψ(Ā)) s.t. (15)

∞∑
t=1

δt
2Eµ

[
F̃ (ût (h))

]
F̄ ′′ (w)

≥ Eα
[
ψ′ (a)2

I (a)

]
− c (1− δ)ε ,
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where

F̃ (û) = F̄ (w + û)− F̄ (w)− F̄ ′ (w) û.

By weak duality, taking a Lagrange multiplier of 2 (1− δ) δt−1 on (15) for each t, the LHS

is no less than

min
(ût(h))t,h≥−(w+ψ(Ā))

2

∞∑
t=1

δtEµ

 F̃ (ût (h))

F̄ ′′ (w)
−
(

1− δ
δ

t−1∑
t′=1

ψ′ (at′) ν (yt|at′)
I (at′)

)
︸ ︷︷ ︸

:=Ωδt (h)

ût (h)

+2Eα
[
ψ′ (a)2

I (a)

]
.

(46)

It remains to bound (46). Since F̃ is concave, the first-order necessary and suffi cient

condition for ût (h) is

ût (h) =

{
F̃ ′−1

(
F̄ ′′ (w) Ωδ

t (h)
)
if F̃ ′−1

(
F̄ ′′ (w) Ωδ

t (h)
)
≥ −

(
w + ψ

(
Ā
))
,

−
(
w + ψ

(
Ā
))

if F̃ ′−1
(
F̄ ′′ (w) Ωδ

t (h)
)
< −

(
w + ψ

(
Ā
))
.

Now fix any ε ∈ (0, 1/8) and let

H̄ t =
{
h ∈ (A× Y )∞ : − (1− δ)

1
2
−ε ≤ Ωδ

t (h) ≤ (1− δ)
1
2
−ε
}

for all t. (47)

We establish two further lemmas.

Lemma 23 There exists ĉ > 0 such that, for any suffi ciently large δ < 1, we have

2

(
F̃ (ût (h))

F̄ ′′ (w)
− Ωδ

t (h) ût (h)

)
≥ −Ωδ

t (h)2 − ĉ (1− δ)1+ε for all t and h ∈ H̄t. (48)

Proof. For suffi ciently large δ, we have ût (h) = F̃ ′−1
(
F̄ ′′ (w) Ωδ

t (h)
)
for all t and h ∈ H̄ t.

Since F̃ ∈ C2 and Ωδ
t (h) is bounded (uniformly in δ) for h ∈ H̄ t, by Taylor expansion of

F̃ ′−1 and F̃ ◦ F̃ ′−1 around 0, there exists ĉ > 0 such that, for any δ < 1 and h ∈ H̄ t, we have∣∣∣∣ût (h)−
(
F̃ ′−1 (0)− F̄ ′′ (w)

F̃ ′′ ◦ F̃ ′−1 (0)
Ωδ
t (h)

)∣∣∣∣ ≤ ĉ

3
Ωδ
t (h)2 and∣∣∣∣∣∣∣

2F̃ (ût (h))

F̄ ′′ (w)
−

 2F̃◦F̃ ′−1(0)

F̄ ′′(w)
− 2F̃ ′◦F̃ ′−1(0)

F̃ ′′◦F̃ ′−1(0)
Ωδ
t (h)

+ F̄ ′′(w)

F̃ ′′◦F̃ ′−1(0)

(
1− F̃ ′◦F̃ ′−1(0)×F̃ ′′′◦F̃ ′−1(0)

(F̃ ′′◦F̃ ′−1(0))
2

)
Ωδ
t (h)2


∣∣∣∣∣∣∣ ≤

ĉ

3

∣∣Ωδ
t (h)

∣∣3 .
Since F̃

′−1 (0) = F̃ ′ ◦ F̃ ′−1 (0) = 0 and F̃ ′′ ◦ F̃ ′−1 (0) = F̄ ′′ (w) by definition of F̃ , these
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inequalities simplify to

∣∣ût (h)− Ωδ
t (h)

∣∣ ≤ ĉ

3
Ωδ
t (h)2 and∣∣∣∣∣2F̃ (ût (h))

F̄ ′′ (w)
− Ωδ

t (h)2

∣∣∣∣∣ ≤ ĉ

3

∣∣Ωδ
t (h)

∣∣3 .
Multiplying the first inequality by Ωδ

t (h) and applying the triangle inequality gives

∣∣Ωδ
t (h) ût (h)− Ωδ

t (h)2
∣∣ ≤ ĉ

3
Ωδ
t (h)3 and∣∣∣∣∣2F̃ (ût (h))

F̄ ′′ (w)
− Ωδ

t (h) ût (h)

∣∣∣∣∣ ≤ 2ĉ

3

∣∣Ωδ
t (h)

∣∣3 .
We thus have

2

(
F̃ (ût (h))

F̄ ′′ (w)
− Ωδ

t (h) ût (h)

)
≥ −Ωδ

t (h) ût (h)− 2ĉ

3

∣∣Ωδ
t (h)

∣∣3
≥ −Ωδ

t (h)2 − ĉ
∣∣Ωδ

t (h)
∣∣3

≥ −Ωδ
t (h)2 − ĉ (1− δ)

3
2
−3ε

≥ −Ωδ
t (h)2 − ĉ (1− δ)1+ε ,

where the third line follows by (47), and the fourth line follows because ε < 1/8.

Lemma 24 For any suffi ciently large δ < 1, we have

2
∞∑
t=1

δt
∫
h6∈H̄t

(
F̃ (ût (h))

F̄ ′′ (w)
− Ωδ

t (h) ût (h)

)
dµ (h) ≥ − (1− δ)ε . (49)

Proof. We first show that, for suffi ciently large δ,

∞∑
t=1

δt
∫
h6∈H̄t

Ωδ
t (h)2 dµ (h) ≤ (1− δ)2ε . (50)

To see this, note that (ψ′ (at) ν (yt|at) /I (at))t is a sequence of martingale increments where,
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for all θ > 0,

Eµ
[
exp

(
θ

1− δ
δ

ψ′ (at) ν (yt|at)
I (at)

)
|ht
]
≤ max

a∈A
Ey∼p(y|a)

[
exp

(
θ

1− δ
δ

ψ′ (a) ν (y|a)

I (a)

)]
≤ exp

(
θ2

2

(
1− δ
δ

)2

max
a∈A

ψ′ (a)2

I (a)

)
,

where the second line follows from Assumption 3(iii), noting that ψ′ (a)2 /I (a) is bounded.

Hence, by Lemma 9, there exists c̃ > 0 such that, for all t and x ≥ 0, we have

Prµ
(∣∣Ωδ

t (h)
∣∣ ≥ x

)
= Prµ

(∣∣∣∣∣1− δδ
t−1∑
t′=1

ψ′ (at′) ν (yt′|at′)
I (at′)

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
− c̃x2

(1− δ)2 t

)
.

We can thus apply Lemma 21 to the sequence
(∣∣Ωδ

∣∣
t

)
t≥1

to conclude that (50) holds for

suffi ciently large δ.

Thus, for suffi ciently large δ, we have

2
∞∑
t=1

δt
∫
h6∈H̄t

(
F̃ (ût (h))

F̄ ′′ (w)
− Ωδ

t (h) ût (h)

)
dµ (h)

≥ 2
∞∑
t=1

δt
∫
h6∈H̄t

(
−ε2ût (h)2

2F̄ ′′ (w)
− Ωδ

t (h) ût (h)

)
dµ (h)

≥ F̄ ′′ (w)

ε2

∞∑
t=1

δt
∫
h6∈H̄t

Ωδ
t (h)2 dµ (h) ≥ F̄ ′′ (w)

ε2

(1− δ)2ε ≥ − (1− δ)ε ,

where the first inequality follows by Lemma 20 (as taking a second-order Taylor expansion

gives F̃ (x) ≤ − (ε2/2)x2 for all x ≥ −w), the second follows by minimizing over xt (h), the

third follows by (50), and the fourth follows by F̄ ′′ < 0.

By (48), (49), and Ωδ
t (h)2 > 0, we see that (46) is no less than

−
∞∑
t=2

δtEµ
[
Ωδ
t (h)2]+ 2Eα

[
ψ′ (a)2

I (a)

]
−max {ĉ, 1} (1− δ)ε .

Since (ψ′ (at) ν (yt|at) /I (at))t is a sequence of martingale increments, we have

Eµ
[
Ωδ
t (h)2] =

(
1− δ
δ

)2 t−1∑
t′=1

Eµ
[(

ψ′ (at′) ν (yt′|at′)
I (at′)

)2
]

=

(
1− δ
δ

)2 t−1∑
t′=1

Eαt′
[
ψ′ (a)2

I (a)

]
.
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Therefore, (46) is no less than

−
(

1− δ
δ

)2 ∞∑
t=2

δt
t−1∑
t′=1

Eαt′
[
ψ′ (a)2

I (a)

]
+ 2Eα

[
ψ′ (a)2

I (a)

]
−max {ĉ, 1} (1− δ)ε

= Eα
[
ψ′ (a)2

I (a)

]
−max {ĉ, 1} (1− δ)ε .

Taking c = max {ĉ, 1} completes the proof.

G.2 Proof of Lemma 11

If α assigns probability 1 to a = ā (w) then

min

{
1− δ
δ
Eα
[
ψ′ (a)2

I (a)

]
F̄ ′′ (w)

2
+ c (1− δ)1+ε ,−ε1Eα

[
(a− ā (w))2]}

≥ 1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
.

Hence, the optimal α satisfies

Eα
[
(a− ā (w))2] ≤ 1

ε1

1− δ
δ

ψ′ (ā (w))2

I (ā (w))

−F̄ ′′ (w)

2
. (51)

Since ψ′ (a)2 /I (a) is Lipschitz continuous, there exists κ > 0 such that

1− δ
δ
Eα
[
ψ′ (a)2

I (a)

]
F̄ ′′ (w)

2
+ c (1− δ)1+ε

≤ 1− δ
δ

(
ψ′ (ā (w))2

I (ā (w))
+ (κEα [|a− ā (w)|])

)
F̄ ′′ (w)

2
+ c (1− δ)1+ε .

Note that

1− δ
δ

−F̄ ′′ (w)

2
κEα [|a− ā (w)|] ≤ 1− δ

δ

−F̄ ′′ (w)

2
κ
√
Eα
[
(a− ā (w))2]

≤
(

1− δ
δ

−F̄ ′′ (w)

2

) 3
2

κ

√
ψ′ (ā (w))2

ε1I (ā (w))
,

where the first inequality follows by Cauchy-Schwarz, and the second follows by (51). Since

this expression is of order (1− δ)3/2, there exists c̃ > 0 such that, for suffi ciently large δ, we
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have

1− δ
δ
Eα
[
ψ′ (a)2

I (a)

]
F̄ ′′ (w)

2
+ c (1− δ)1+ε ≤ 1− δ

δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
+ c̃ (1− δ)1+ε ,

completing the proof.

G.3 Construction of xa (y)

Lemma 25 There exists Ī < ∞ such that, for any suffi ciently large δ < 1 and any ā ∈ A,
there exists xā : Y → [− (1− δ)−1/4 , (1− δ)−1/4] satisfying

ā ∈ argmax
a∈A

∫
y

xā (y) p (y|a) dy − ψ (a) , (52)∫
y

xā (y) p (y|ā) dy = 0, (53)∫
y

xā (y)2 p (y|ā) dy ≤ 1

δ

ψ′ (ā)2

I (ā)
, and (54)∫

y

exp (θx (y|ā)) p (y|ā) dy ≤ exp
(
θ2Ī
)
. (55)

Proof. Define, in turn,

ϕā =
I (ā)

E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)2

] , (56)

εā = −ϕā
ψ′ (ā)

I (ā)
E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)

]
, and (57)

xā (y) = ϕā
ψ′ (ā)

I (ā)
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) + εā.

Note that ϕā ≥ 1, since I (ā) = E
[
ν (y|ā)2]. We will prove that xā (y) ∈ [− (1− δ)−1/4 , (1− δ)−1/4]

for all y, and that (52)—(55) hold. We first establish that, for any suffi ciently large δ < 1

and any ā ∈
[
0, Ā

]
, we have

|ϕā − 1| ≤ exp
(
− (1− δ)

1
4

)
and (58)

|εā| ≤
ψ′ (ā)√
I (ā)

exp
(
− (1− δ)−

1
5

)
. (59)

Note that (58) and (59) immediately imply that xā (y) ∈ [− (1− δ)−1/4 , (1− δ)−1/4].

64



For (58), note that

0 ≤ ϕā =
I (ā)

I (ā)− E
[
1
{
|ν (y|ā)| > (1− δ)−

1
5

}
ν (y|ā)2

]
≤ I (ā)

I (ā)−
√

Pr
(
|ν (y|ā)| > (1− δ)−

1
5

)
E
[
ν (y|ā)4] .

where the second line follows by Cauchy-Schwarz. By Assumption 3(iii), we have∫
y

exp (θν (y|ā)) p (y|ā) dy ≤ exp
(
θ2I (ā) /2

)
for all ā ∈ A and θ ∈ R. (60)

Since I (ā) is uniformly bounded in ā given Assumption 3(ii), there exists c > 0 such that,

for all ā ∈ A, ϕā is bounded by

I (ā)

I (ā)− exp

(
− (1−δ)−

2
5

c

)
16Γ (2) I (ā)

=
1

1− exp

(
− (1−δ)−

2
5

c

)
16Γ (2)

,

which implies (58).

For (59), note that

|εā| =
ψ′ (ā)

I (ā)

∣∣∣E [ϕā1{|ν (y|ā)| ≤ (1− δ)−
1
5

}
ν (y|ā)

]∣∣∣
≤ ψ′ (ā)

I (ā)

 ∣∣∣E [1{|ν (y|ā)| > (1− δ)−
1
5

}
ν (y|ā)

]∣∣∣
+ (ϕā − 1)

∣∣∣E [1{|ν (y|ā)| ≤ (1− δ)−
1
5

}
ν (y|ā)

]∣∣∣


where the inequality is by E [ν (y|ā)] = 0 and the triangle inequality. As above, applying

Cauchy-Schwarz and Assumption 3(ii)&(iii), we have

ψ′ (ā)

I (ā)

∣∣∣E [1{|ν (y|ā)| > (1− δ)−
1
5

}
ν (y|ā)

]∣∣∣ ≤ exp

(
−(1− δ)−

2
5

c

)
ψ′ (ā)√
I (ā)

.

Again applying Cauchy-Schwarz, together with (58), we have

ψ′ (ā)

I (ā)
(ϕā − 1)

∣∣∣E [1{|ν (y|ā)| ≤ (1− δ)−
1
5

}
ν (y|ā)

]∣∣∣ ≤ ψ′ (ā)√
I (ā)

exp
(
− (1− δ)

1
4

)
.

Taking δ < 1 suffi ciently large so that exp
(
− (1− δ)−2/5 /c

)
+exp

(
− (1− δ)1/4

)
≤ exp

(
− (1− δ)1/5

)
,
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we have (59).

We now establish (52)—(55). Note that (53) follows directly from (57). For (52), for any

a 6= ā, we have

Eā [xā (y)]− ψ (ā)− (Ea [xā (y)]− ψ (a))

= ψ (a)− ψ (ā)− ϕā
ψ′ (ā)

I (ā)

∫
y

1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)

(
p (y|a)

−p (y|ā)

)
dy. (61)

We bound the second line as follows. For any γ ∈ (0, infa∈Ā ψ
′′ (a)) and any ā ∈ A, we have

ψ (a)− ψ (ā) ≥ ψ′ (a) (a− ā) +
γ

2
(a− ā)2 ;

Taking a second-order Taylor expansion of p (y|a) around a = ā, there exists â ∈ A such

that

ϕā
ψ′ (ā)

I (ā)

∫
y

1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) (p (y|a)− p (y|ā)) dy

= (a− ā)ϕā
ψ′ (ā)

I (ā)

∫
y

1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)2 p (y|a) dy

+
(a− ā)2

2
ϕā
ψ′ (ā)

I (ā)

∫
y

1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) paa (y|â) dy.

Substituting (56), (61) is no less than (a− ā)2 /2 multiplied by

γ − ϕā
ψ′ (ā)

I (ā)

∫
y

1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) paa (y|â) dy.

It remains to show that, for any suffi ciently large δ < 1 and any ā, â, this expression is

non-negative. Since ψ′ (ā) /I (ā) is bounded, by (11) it suffi ces to show that

lim
δ→1

sup
ā,â

∫
y

(
ϕā1

{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
− 1
)
ν (y|ā) paa (y|â) dy = 0.

In turn, it suffi ces to show that both∫
y

1
{
|ν (y|ā)| > (1− δ)−

1
5

}
ν (y|ā) paa (y|â) dy and

(ϕā − 1)

∫
y

1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) paa (y|â) dy

converge to 0 as δ → 1, uniformly in (ā, â).
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By Cauchy-Schwarz, the first line is bounded by

Pr
(
|ν (y|ā)| > (1− δ)−

1
5

) 1
4

(∫
y

ν (y|ā)4 p (y|ā) dy

) 1
4

(∫
y

(
paa (y|â)

p (y|ā)

)2

p (y|ā) dy

) 1
2

.

By (60), the first term of this product converges to 0 uniformly in ā as δ → 1, and the second

term is bounded uniformly in ā given Assumptions 2(i) and (ii). Moreover, (12) ensures the

last term is bounded uniformly in (ā, â). So the entire product converges to 0 uniformly in

(ā, â).

Similarly, again by Cauchy-Schwarz, the second line is bounded by

(ϕā − 1)

(∫
y

ν (y|ā)2 p (y|ā) dy

) 1
2

(∫
y

(
paa (y|â)

p (y|ā)

)2

p (y|ā) dy

) 1
2

.

By (58), the first term of this product converges to 0 uniformly in ā as δ → 1; and, as above,

the other terms are bounded uniformly in (ā, â). The product thus converges to 0 uniformly

in (ā, â). This establishes (52).

We next establish (54). By construction, we have

E
[
xā (y)2]− 1

δ

ψ′ (ā)2

I (ā)
= ϕ2

ā

(
ψ′ (ā)

I (ā)

)2

E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)2

]
+2εāϕā

ψ′ (ā)

I (ā)
E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)

]
+ ε2

ā −
1

δ

ψ′ (ā)2

I (ā)
.

By (56), (
ψ′ (ā)

I (ā)

)2

ϕāE
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)2

]
=
ψ′ (ā)2

I (ā)
.

Thus, the above expression equals

ϕā (ϕā − 1)

(
ψ′ (ā)

I (ā)

)2

E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)2

]
+2εāϕā

ψ′ (ā)

I (ā)
E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)

]
+ ε2

ā −
1− δ
δ

ψ′ (ā)2

I (ā)
.

67



Together with(
ψ′ (ā)

I (ā)

)2

E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)2

]
≤ ψ′ (ā)2

I (ā)
,

ψ′ (ā)

I (ā)
E
[
1
{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā)

]
≤ ψ′ (ā)

I (ā)

√
E
[
ν (y|ā)2] =

ψ′ (ā)√
I (ā)

,

(58), and (59), this in turn is bounded by ψ′ (ā)2 /I (ā) multiplied by

ϕā exp
(
− (1− δ)

1
4

)
+ 2ϕā exp

(
− (1− δ)−

1
5

)
+ exp

(
−2 (1− δ)−

1
5

)
− 1− δ

δ
,

which is non-positive uniformly in ā for suffi ciently large δ < 1.

We finally establish (55). It suffi ces to show that, for any I ≥ supa∈A ψ
′ (ā)2 /I (ā), we

have

Pr (|xā (y)| ≥ λ) ≤ 2 exp
(
−λ2/(4I)

)
.

This is immediate if λ ≤
√

(log 2) (4I). Next, for any suffi ciently large δ, ā ∈ A, and

λ ≥
√

(log 2) (4I), we have λ− εā > 0 and −λ− εā < 0 by (59). Hence, we have

Pr (|xā (y)| ≥ λ) = Pr

(
ψ′ (ā)

I (ā)
ϕā1

{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) ≤ −λ− εā

)
+ Pr

(
ψ′ (ā)

I (ā)
ϕā1

{
|ν (y|ā)| ≤ (1− δ)−

1
5

}
ν (y|ā) ≥ λ− εā

)
≤ Pr

(
ψ′ (ā)

I (ā)
ν (y|ā) ≤ −λ+ εā

ϕā

)
+ Pr

(
ψ′ (ā)

I (ā)
ν (y|ā) ≥ λ− εā

ϕā

)
.

Since ν (y|ā) is sub-Gaussian with variance-proxy I (ā) by Assumption 3(iii), we have

Pr

(
ψ′ (ā)

I (ā)
ν (y|ā) ≤ −λ+ εā

ϕā

)
+ Pr

(
ψ′ (ā)

I (ā)
ν (y|ā) ≥ λ− εā

ϕā

)
≤ 2 exp

−
(
λ−εā
ϕā

)2

2ψ
′(ā)2

I(ā)

 .

Finally, note that
(
λ−εā
ϕā

)2

2ψ
′(ā)2

I(ā)

 /

(
λ2

4I

)
≥ 2

(
1− 2εā

λ

)
1

ϕ2
ā

1
ψ′(ā)2

I(ā)
/I
≥ 2

(
1− 2εā√

(log 2) (4I)

)
1

ϕ2
ā

,

which is greater than one uniformly in ā for suffi ciently large δ, by (58) and (59). We thus
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have

Pr

(
ψ′ (ā)

I (ā)
ν (y|ā) ≤ −λ− εā

ϕā

)
+ Pr

(
ψ′ (ā)

I (ā)
ν (y|ā) ≥ λ− εā

ϕā

)
≤ 2 exp

(
−λ

2

4I

)
,

as desired.

G.4 Equilibrium Verification

We verify that the contract defined in the main appendix, with xa (y) defined as in Lemma

25, satisfies incentive compatibility and promise keeping, and hence is an equilibrium.

Lemma 26 For each ht, we have

at
(
ht
)
∈ argmax

a
(1− δ)

(
u
(
ct
(
ht
))
− ψ (a)

)
+ δE

[
wt+1

(
ht+1

)
|ht, a

]
, (62)

wt
(
ht
)

= (1− δ)
(
u
(
ct
(
ht
))
− ψ

(
at
(
ht
)))

+ δE
[
wt+1

(
ht+1

)
|ht, at

(
ht
)]
. (63)

Proof. The conclusion is immediate if ht is irregular. If ht is regular, then (62) follows from
(52) since

argmax
a

(1− δ)
(
u
(
ct
(
ht
))
− ψ (a)

)
+δE

[
wt+1

(
ht+1

)
|ht, a

]
= argmax

a
E
[
xā(wt(ht)) (yt) |ht, a

]
−ψ (a) .

Moreover, (63) holds as u (c̄ (wt (ht)))−ψ (ā (wt (ht))) = wt (ht) by definition of c̄ and ā, and

E [wt+1 (ht+1) |ht, ā (wt (ht))] = wt (ht) by (53).

G.5 Proof of Lemma 12

Let Ĥ t =
{
ht : |wt (ht)− w| ≤ (1− δ)1/2−ε

}
be the set of regular period t histories. Let

xh
t

at (yt) =

{
xat (yt) if ht ∈ Ĥ t,

0 if ht 6∈ Ĥ t,
and X

(
ht
)

=
1− δ
δ

t−1∑
t′=1

xh
t′

at′
(yt′) ,

where in the latter definition ht
′
is the period t′ truncation of ht. Note that wt (ht) =

w +X (ht) for all t and ht, and that ht ∈ Ĥ t iff |X (ht)| ≤ (1− δ)1/2−ε.

We first bound the weight on irregular histories under the equilibrium outcome µ.

Lemma 27 For any suffi ciently large δ < 1, we have (1− δ)
∑∞

t=1 δ
t−1 Prµ

(
ht /∈ Ĥ t

)
≤

(1− δ)2.
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Proof. Note that xhtat (yt) is a sequence of martingale increments. Moreover, by (55),

Eµ
[
exp

(
θ

1− δ
δ

xh
t

at (yt)

)
|ht, at

]
≤ exp

(
θ2

(
1− δ
δ

)2

Ī

)
for all θ, t, at.

Therefore, by Lemma 9,

Prµ
(
X
(
ht
)
> x

)
≤ 2 exp

(
− x2

2
(

1−δ
δ

)2
Īt

)
for all x > 0.

We can now apply Lemma 21 with ϑ = 0 to conclude that, for any suffi ciently large δ,

(1− δ)
∞∑
t=1

δt−1 Prµ
(
ht /∈ Ĥ t

)
= (1− δ)

∞∑
t=1

δt−1 Prµ
(∣∣X (ht)∣∣ > (1− δ)1/2−ε

)
≤ (1− δ)2 .

Recall that ε < 1/8. By Taylor expansion, since 3 (1/2− ε) > 1 + ε and |wt (ht)− w| ≤
(1− δ)1/2−ε for all ht ∈ Ĥ t, for any suffi ciently large δ < 1 and any ht ∈ Ĥ t, we have

at
(
ht
)
− ct

(
ht
)

= ā
(
wt
(
ht
))
− c̄

(
wt
(
ht
))

= F̄
(
wt
(
ht
))

≥ F̄ (w) + F̄ ′ (w)
(
wt
(
ht
)
− w

)
+
F̄ ′′ (w)

2

(
wt
(
ht
)
− w

)2 − (1− δ)1+ε

= F̄ (w) + F̄ ′ (w)
(
wt
(
ht
)
− w

)
+
F̄ ′′ (w)

2
X
(
ht
)2 − (1− δ)1+ε .

At the same time, since wt (ht) ∈ [0, 2w], at (ht)− ct (ht) and F̄ (w) + F̄ ′ (w) (wt (ht)− w)

are bounded, and F̄ ′′ (w) ≤ 0, there exists c1 > 0 such that, for any δ and ht /∈ Ĥ t, we have

at
(
ht
)
− ct

(
ht
)
≥ F̄ (w) + F̄ ′ (w)

(
wt
(
ht
)
− w

)
+
F̄ ′′ (w)

2
X
(
ht
)2 − c1.

Combining these bounds, we have

(1− δ)
∞∑
t=1

δt−1Eµ
[
at
(
ht
)
− ct

(
ht
)]

≥ F̄ (w) +
F̄ ′′ (w)

2
(1− δ)

∞∑
t=2

δt−1

∫
h

X
(
ht
)2
dµ (h)

− (1− δ)1+ε − c1 (1− δ)
∞∑
t=1

δt−1 Prµ
(
ht /∈ Ĥ t

)
. (64)
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Moreover, since (xat (yt))t is a sequence of martingale increments with variance bounded by

(54), we have

(1− δ)
∞∑
t=2

δt−1
∑
h

µ (h)

(
1− δ
δ

t−1∑
t′=1

xat′ (yt′)

)2

=
1− δ
δ

(
(1− δ)

∞∑
t=1

δt−1Ea∼αt
[
Ey∼p(y|a)

[
xa (y)2]]) ≤ 1− δ

δ2 Eα
[
ψ′ (a)2

I (a)

]
,

Together with Lemma 27, (64) now implies that the principal’s payoff is no less than

F̄ (w) +
F̄ ′′ (w)

2

1− δ
δ2 Eα

[
ψ′ (a)2

I (a)

]
− (1− δ)1+ε − (1− δ)2 .

It remains to bound Eα
[
ψ′ (a)2 /I (a)

]
. Since ψ′ (a)2 /I (a) is Lipschitz continuous, there

exists κ > 0 such that

Eα
[
ψ′ (a)2

I (a)

]
− ψ′ (ā (w))2

I (ā (w))
≥ −κEα [|a− ā (w)|] .

Since ā (w) is continuously differentiable and w ∈ [0, 2w], there exists c2 such that, for any t

and ht ∈ Ĥ t,

∣∣at (ht)− ā (w)
∣∣ =

∣∣ā (wt (ht))− ā (w)
∣∣ ≤ c2

∣∣wt (ht)− w∣∣ ≤ c2 (1− δ)1/2−ε .

Since |at (ht)− ā (w)| ≤ Ā for all t and ht, we have

Eα [|a− ā (w)|] ≤ (1− δ)
∑
t

δt−1

(∫
ht∈Ĥt

c2

∣∣wt (ht)− w∣∣ dµ (ht)+ Prµ
(
ht /∈ Ĥ t

)
Ā

)
≤ c2 (1− δ)1/2−ε + 2Ā (1− δ)

∑
t

δt−1 Prµ
(
ht /∈ Ĥ t

)
≤ c2 (1− δ)1/2−ε + 2Ā (1− δ)2 ,

where the third inequality follows from Lemma 27. We thus have

Eα
[
ψ′ (a)2

I (a)

]
− ψ′ (ā (w))2

I (ā (w))
≥ −κc2 (1− δ)

1
2
−ε − 2κĀ (1− δ)2 .

Therefore, by (64) (and using (1− δ) /δ2 = (1− δ) /δ + O
(
(1− δ)2)), there exists c3 such
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that, for any suffi ciently large δ < 1, the principal’s payoff is no less than

F̄ (w) +
1− δ
δ

ψ′ (ā (w))2

I (ā (w))

F̄ ′′ (w)

2
− c3 (1− δ)1+ε ,

completing the proof.
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