Recitation 3: Understanding Marginals

Jon Cohen

September 31, 2021
Recitation Takeaways

1. Marginal treatment effects as framework for policy extrapolation (applied to MH, AS, and selection on MH)
 - Accessible review article: Cornellison et al. (2016) Labour Economics

2. Alternative ways to characterize marginal compliers
 - Derive gap between marginal and average characteristics using regression equation Gruber, Levine, and Staiger (1999) QJE
 - Derive any functional of IV complier characteristics or potential outcomes Abadie (2003) JoE
Outline

Marginal Treatment Effects

Characteristics of the Marginals
MTE vs. LATE

- **Rough intuition**: MTE is the continuous version of the LATE

- **Usefulness**: Various treatment effects of interest—ATE, ATT, ATUT, LATE, etc.—can be expressed as averages of MTEs
 - Selection on gains for different IV’s deliver internally valid LATE that may not be useful for extrapolating to ATE

- **Notation**: Outcome Y, (binary endogenous) treatment D, instrument Z
 - E.g. $Y \equiv$ healthcare utilization, $D \equiv$ health insurance coverage, $Z \equiv$ (randomly assigned) insurance premium

- See Cornellison et al. (2016) Labour Economics for more details
Visual IV for LATE (Binary Z)

$E[Y|Z]$

$Z = 0$

Reduced form

Slope is IV Wald estimate (LATE)

$Z = 1$

1st stage

$E[D|Z]$
Visual IV for LATE (Non-binary Z)

See Figure 1 of Angrist (1990) AER on Vietnam draft lottery
Recasting Instrument as Revealing Unobservables

- Translate x-axis to propensity score: \(E[D|Z] = P(D = 1|Z) \equiv P(Z) \in [0, 1] \)
- \(Z \) traces out unobserved willingness to select into treatment
- Slope at a given point reveals *marginal* treatment effect at a given quantile of the willingness to select into treatment distribution
Visual IV for MTE (Non-binary Z)

Slopes are local IV estimates (MTE)
Understanding MTE’s Using Potential Outcomes

- Previous graphs showed outcomes of both $D = 1$ and $D = 0$ at each Z
- Instead, we can separately show (potential) outcomes for $D = 1$ and $D = 0$ by Z
 - **EFC**: Y_1 as utilization w/ insurance, Y_0 as utilization w/o insurance, Z as randomly assigned price
 - See Brinch, Mogstad, Wiswall (2017) JPE for more details
No Selection and No Causal Effects

\[E[Y|Z] \]

\[E[D|Z] \equiv P(Z) \]

- "No MH or AS"
- \(ATE = ATT = ATUT = E[Y|D = 1] - E[Y|D = 0] = 0 \)
Causal Effects but No Selection on Levels or Slopes

\[E[Y|Z] \]

\[E[D|Z] \equiv P(Z) \]

- "MH but not AS"
- \[ATE = ATT = ATUT = LATE = E[Y|D = 1] - E[Y|D = 0] \neq 0 \]
No Causal Effects but Selection on Levels

$E[Y|Z]$

$E[D|Z] \equiv P(Z)$

- “AS but not MH”
- $ATE = ATT = ATUT = LATE = 0 \neq E[Y|D = 1] - E[Y|D = 0]$
Causal Effect with Selection on Levels and Slopes

- "Selection on MH"
- $ATE \neq ATT, ATUT, LATE$ varies by Z

\[E[Y|Z] \]

\[E[D|Z] \equiv P(Z) \]
Aside: Estimating MTE’s with Binary Z

- Previous graphs suggest that you can implement MTE’s with a binary Z assuming linearity of potential outcomes
 - Test with linearity assumption for $LATE \neq ATE$ is testing for unequal slopes by D
- More variation in Z allows you to relax assumptions
Aside: Selection Bias Formula for ATE

• Formula for ATT should be familiar:

\[E[Y_1|D = 1] - E[Y_0|D = 0] = E[Y_1 - Y_0|D = 1] + E[Y_0|D = 1] - E[Y_0|D = 0] \]

Observed diff. in outcomes \(\text{ATT} \) Selection bias

• ATE decomposition has additional term of treatment effect heterogeneity:

\[E[Y_1|D = 1] - E[Y_0|D = 0] = E[Y_1 - Y_0] + \]

Observed diff. in outcomes \(\text{ATE} \)

\[E[Y_0|D = 1] - E[Y_0|D = 0] + \]

Selection bias

\[(1 - P(D = 1))(E[Y_1 - Y_0|D = 1] - E[Y_1 - Y_0|D = 0]) \]

Share untreated \(\text{ATT} \) \(\text{ATUT} \)

• See here for full derivation
Taking Stock

- Growing recognition of treatment effect heterogeneity
- MTEs provide a formal framework for:
 1. Aggregating heterogeneous treatment effects to policy-relevant parameters
 2. Considering how treatment effect heterogeneity interacts with selection into treatment
Outline

Marginal Treatment Effects

Characteristics of the Marginals
• **Specification**: \(c_i = \gamma + \delta p_i + u_i \)

• **Sample**: \(i \) who select into coverage at price \(p_i \) (of measure \(D(p) \))

• **Variation**: \(p_i \) randomly assigned

• **Intuition**: \(p_i \) has no causal effect on \(c_i \) so \(\delta \neq 0 \) is due to sample selection

• **Translating to marginal outcome**: Use chain rule to express marginal (costs at \(p \)) in terms of average (costs at \(p \)) and total number (\(D(p) \))
Gruber, Levine, and Staiger (1999): Gap Between Marginal and Average

- **Research question**: What is the impact of abortion on average living standards due to selection?

- **Specification**: \(O_{st}/B_{st} = \alpha \ln(B_{st}) + \text{controls} \)

 - E.g. \(O/B \equiv \% \) infants under FPL

 \[
 \alpha = \frac{\partial O/B}{\partial \ln(B)}
 \]

 \[
 = B \frac{\partial O/B}{\partial B}
 \]

 \[
 = \frac{\partial O}{\partial B} - \frac{O}{B}
 \]

- **Variation**: Instrument for state births \(B_{st} \) using abortion law repeal

- **Intuition**: Same as EFC
Abadie (2003): Extending LATE Theorem Logic

• Binary instrument Z, binary treatment D, outcome Y
• Potential outcomes Y_{zd} and D_z for $d \in \{0, 1\}$, $z \in \{0, 1\}$
• Standard IV assumptions:
 ■ Independence: $(Y_{00}, Y_{01}, Y_{10}, Y_{11} \perp Z)$
 ■ Exclusion: $P(Y_{1d} = Y_{0d}) = 1$ for $d \in \{0, 1\}$
 ■ 1st stage: $0 < P(Z = 1) < 1$ and $P(D_1) > P(D_0)$
 ■ Monotonicity: $P(D_1 \geq D_0) = 1$
Abadie’s κ in words

- Split population into compliers (C), always-takers (AT), and never-takers (NT)
- Use law of total probability to decompose any observable into those for C, AT, NT
- Observables for AT revealed by $(D, Z) = (1, 0)$ and NT by $(D, Z) = (0, 1)$
- “Subtract off” AT and NT by reweighting based on realized (D, Z)
 - Applicable for any function $^1 g(\cdot)$ (e.g. quantile) applied to any observable (i.e. outcome Y, treatment D, or covariate X)
 - Applicable for complier $Y(1)$ [$Y(0)$] by subtracting off AT [NT] from treated [untreated] outcomes
Abadie’s κ in math

Complier observables

- Define $\kappa = 1 - \frac{D(1 - Z)}{P(Z = 0)} - \frac{(1 - D)Z}{P(Z = 1)}$

 \begin{align*}
 \text{Subtract off } AT & \quad \text{Subtract off } NT

 & \text{complier observables }
 \end{align*}

- $E[g(Y, D, X)|D_1 > D_0] = \frac{1}{P(D_1 > D_0)} E[\kappa g(Y, D, X)]$

 \begin{align*}
 \text{scale by size of } C & \quad \text{weight each observation }

 & \text{Complier Treated Potential Outcomes}

 \end{align*}

- Define $\kappa(1) = 1 - \frac{D}{P(Z = 0)} - \frac{(Z - P(Z = 1)}{P(Z = 0)P(Z = 1)}$

 \begin{align*}
 \text{NT get 0 weight } & \quad \text{AT get weight < 0 NT}

 & \text{Analogous for Complier Untreated Potential Outcomes}
 \end{align*}
Comparing Approaches

- **EFC**: Clear mapping to visual plots of potential outcomes
- **Gruber et al.**: Derivation from regression specification
- **Abadie**: Derivation from LATE theorem logic
 - Powerful to be able to estimate any function of potential outcomes (and therefore treatment effects on those functions)