Information Design, Informational Robustness and Non-Linear Pricing

Stephen Morris (MIT)

Presidential Address for the Society for the Advancement of Economic Theory, Paris

July 2023

recent developments in information economics

(1) information economy

- information central to digital economy
(2) second generation of information economics...
- non parametric approach to modelling information
- three related questions:
(1) Bayesian persuasion or information design: what information structure is optimal for an agent who can control it?
(2) informationally robust predictions: what bounds can the analyst put on outcomes without knowing the information structure?
(3) revenue guarantees: what mechanism provides the best guarantee of revenue (or some other objective), whatever the information structure?

my talk today

- illustrate the three questions and the relation to the information economy in a single economic setting: the non-linear pricing model of Mussa-Rosen (1978)
- in particular, I will.....
(1) sketch a slightly non-standard and informal treatment of the classic screening / mechanism design problem of Mussa-Rosen (1978)
(2) introduce the three questions by asking what happens if we vary the information structure - instead of or in addition to choosing the mechanism?
- talk is based on work with Dirk Bergemann (Yale University) and Tibor Heumann (Pontificia Universidad Catolica de Chile), as well as other co-authors and authors
- will post slides and with references...

setting 1

- continuum of buyers
- the "value" of t th quantile buyer is $v=V(t)$, where increasing $V:[0,1] \rightarrow[\underline{v}, \bar{v}]$
- i.e., c.d.f. of values on $[\underline{v}, \bar{v}]$ is V^{-1}
- seller has fixed inventory of different quality goods
- the "quality" of the t th quantile good is $q=Q(t)$, where increasing $Q:[0,1] \rightarrow[\underline{q}, \bar{q}]$
- i.e., c.d.f. of qualities on $[\underline{q}, \bar{q}]$ is Q^{-1}
- mass of buyers and goods both normalized to 1

setting 2

- utility of consumer of value v paying p for good of quality q is

$$
v \cdot q-p
$$

- can also
(1) endogenize inventory with convex cost (as in Mussa-Rosen 78)
(2) consider finite bidder auction with single unit demand
- we will first solve for the optimal selling mechanism assuming buyers know their values....
- ... and then discuss various scenarios where buyers' information is varied

modelling mechanism 1

- incentive compatibility implies that expected quality of the good must be an increasing function of buyer's expected value
- therefore, there must be assortative matching of expected qualities and expected values in any incentive compatible mechanism
- so all that matters is the distribution of expected qualities sold
- so a mechanism assigns expected quality $x=X(t)$ to the t th quantile buyer, where $X:[0,1] \rightarrow[\underline{q}, \bar{q}]$

modelling mechanism 2

- what mechanisms X can the seller choose among?
- seller can (i) pool qualities (offer lotteries) and (ii) exclude buyers (which we model as setting quality to 0)
- equivalently, the seller can induce a mean preserving contraction of the distribution of qualities (by pooling) and a first-order stochastic dominance shift downwards (by exclusion)
- equivalently, the seller can choose any X such that Q weakly majorizes $X\left(Q \succeq_{w} X\right)$ i.e.,

$$
\int_{x}^{1} X(t) d t \leq \int_{x}^{1} Q(t) d t
$$

for all $x \in[0,1]$

information rent

- write $U(t)$ for the rent (utility) of quantile t buyer; by envelope theorem

$$
U^{\prime}(t)=V^{\prime}(t) X(t)
$$

- information rent by quantile is

$$
U(t)=\int_{s=0}^{t} V^{\prime}(s) X(s) d s
$$

- total information rent is

$$
U(V, X)=\int_{t=0}^{1}\left[\int_{s=0}^{t} V^{\prime}(s) X(s) d s\right] d t
$$

total surplus and profit

- total surplus is

$$
S(V, X)=\int_{t=0}^{1} V(t) X(t) d t
$$

- a famous profit formula:

$$
\begin{aligned}
\Pi(V, X) & =\overbrace{\int_{t=0}^{1} V(t) X(t) d t}^{\text {Surplus } S(V, X)} \overbrace{\int_{t=0}^{1}\left(\int_{s=0}^{t} V^{\prime}(s) X(s) d s\right) d t}^{\text {Information Rent } U(V, X)} \\
& =V(0) X(0)+\int_{t=0}^{1} V(t)(1-t) X^{\prime}(t) d t
\end{aligned}
$$

mechanism design: regular case

- what is the optimal mechanism for the seller (maximizing profits), taking as given the distribution of values?
- choose $X \preceq_{w} Q$ to maximize $\Pi(V, X)$
- "regular" case: if virtual value $V(t)-V^{\prime}(t)(1-t)$ is increasing (revenue $V(t)(1-t)$ is concave), then
- optimal to exclude buyers with negative virtual values (marginal revenue), i.e., if

$$
t \leq t_{m}=\underset{t \in[0,1]}{\arg \max } V(t)(1-t)-
$$

- allocate remaining inventory at higher quantiles without pooling

mechanism design: irregular case

- more generally,

$$
\max _{X \prec Q} \Pi(V, X)=V\left(t_{m}\right)\left(1-t_{m}\right)+\int_{t_{m}}^{1} \operatorname{cav}[V(t)(1-t)] d Q(t)
$$

- in the "irregular case" (where virtual value $V(t)-V^{\prime}(t)(1-t)$ is not increasing), optimal to pool intervals whenever

$$
\operatorname{cav}[V(t)(1-t)]>V(t)(1-t)
$$

- X is "monotone partitional", alternating pooling and full revelation
- Myerson (1981) ironing; also Kleiner et al (2022)

modelling information

- recall that the "value" of t th quantile buyer is $v=V(t)$, where $V:[0,1] \rightarrow[\underline{v}, \bar{v}]$
- an information structure for buyers will give rise to a distribution over expected values
- let expected value of the t th quantile buyer be $w=W(t)$, where $W:[0,1] \rightarrow[\underline{v}, \bar{v}]$
- expected values must be a mean preserving contraction of the (ex post) values
- equivalently, the seller can choose any W such that V majorizes $W(V \succeq W)$ i.e.,

$$
\int_{x}^{1} W(t) d t \leq \int_{x}^{1} V(t) d t
$$

for all $x \in[0,1]$, with equality if $x=0$.

pure information design

- now suppose that the seller can choose an information structure W to maximize profits but the inventory must be sold efficiently (so $X=Q$).
- thus the seller chooses $W \preceq V$ to maximize $\Pi(W, Q)$
- "regular" case: if inverse hazard rate $(1-t) Q^{\prime}(t)$ is increasing, optimal to fully reveal values
- if not, concavification argument gives optimal policy
- as in mechanism design problem, W is "monotone partitional", alternating pooling and full revelation
- under reasonable conditions, pooling at the top, separation at the bottom
- in particular, in second price auction, optimal to pool high valuation bidders, separate low valuation bidders

mechanism design and information design

- suppose seller can choose both mechanism and information (to maximize profits)
- thus the seller chooses $W \preceq V$ and $X \preceq_{w} Q$ to maximize $\Pi(W, X)$
- maximization subject to two majorization constraints
- optimal W has finite number of expected values in support, and mechanism has corresponding finite expected qualities
- intuition: if there was ever full revelation, pooling a small interval would give rise to third order decrease in total surplus, second order decrease in information rent
- under mild conditions, it is optimal to provide no information, sell the uniform lottery to all buyers and extract full surplus

digital markets

- suppose a seller must decide how many virtually differentiated variants of a good to sell and at what prices
- every variant is available to all buyers at common price (no personalized pricing)
- but seller can target consumers with a particular variant, i.e., make a (perhaps implicit) recommendation
- this gives implementation of previous direct mechanism
- but suggests that recommendation systems may not be optimal for vertically differentiated goods

varying information: more questions

(1) information design I: what information structure maximizes profits (given efficient or optimal mechanism)?
(2) information design II: what information structure maximizes information rent?
(3) revenue guarantee: what information structure minimizes profits?
(4) robust predictions: what bounds can one put on profits and information rent if you don't know the information structure

question 2: maximizing information rent

- what information structure maximizes information rent given that the seller will choose an optimal mechanism given the information structure?
- thus "the buyers" choose the chooses $W \preceq V$ to maximize $U(W, X)$ subject $X \preceq_{w} Q$ maximizing $\Pi(W, X)$
- compare Roessler and Szentes (2017) for the homogenous quality case
- continuous information structure is optimal
- equalize virtual values with generalized Pareto distribution but must also deter seller from exclusion

question 3: minimizing profits

- what information structure minimizes profits given that the seller will choose an optimal mechanism given the information structure?
- thus an "adversary" chooses $W \preceq V$ to minimize $\Pi(W, X)$ subject $X \preceq_{w} Q$ maximizing $\Pi(W, X)$
- or consider zero sum game where (i) seller chooses $X \preceq_{w} Q$ and (ii) adversary chooses $W \preceq V$ to maximize/minimize revenue respectively
- saddle point (X, W)
- compare Du (2018) for the homogenous quality case
- solution is revenue guarantee for the seller and X is the mechanism that attains it

question 4: robust predictions

- what bounds can the analyst put on profits and information rent if you don't know the information structure?
- to answer question, suppose a (metaphorical) informational designer maximizes a weighted sum of profits and information rent, anticipating that a seller would choose the profit maximizing mechanism
- thus the information designer chooses $W \preceq V$ to maximize $\lambda \Pi(W, X)+\mu U(W, X)$ (for positive and negative λ and μ) subject $X \preceq_{w} Q$ maximizing $\Pi(W, X)$
- finite support solution if weight on profits exceeds weight on information rent (for same reason as earlier)
- continuous solution otherwise
- see picture

conclusion

- you may have heard a lot about (and maybe written about) Bayesian persuasion and information design in recent years (also well represented at SAET Paris)
- to a significant extent, this comes from an internal dynamic in the theory community
- two external drivers of interest:
- the information economy
- the sensitivity of first generation information economics to parametric information structures
- the way forward is surely integration on second generation information economics and information economy applications

bergemann-heumann-morris papers

"Optimal Information Disclosure in Classical Auctions," also with Constantin Sorokin and Eyal Winter, American Economic Review: Insights
"Screening with Persuasion"
"The Consumer Optimal Information Structure in Optimal Auctions"

