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Abstract

Variation in urban density is a core determinant of patterns of productivity within countries, but
does it also shape patterns of trade across countries? We develop a strategy to estimate the ex-
tent to which local population density boosts productivity in each industry. Combining these
industry-level estimates with fine-grained global population data, we show that both US states
and countries with more spatially concentrated (“denser”) populations disproportionately export
in density-loving sectors. The estimates are similar using an instrumental variables strategy that
exploits countries’ historical population distributions, and are driven by variation across sectors
in the importance of R&D and collaborative/interactive tasks in production. We rationalize these
findings with a model in which national export specialization emerges endogenously from the
distribution of factors within countries, and show how location-level data can be aggregated to
measure country-level specialization. Even conditional on aggregate endowments, the within-
country spatial distribution of factors can explain a large share of patterns of trade.
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1. INTRODUCTION

Does the distribution of economic activity within countries affect the pattern of trade across countries?
There is mounting evidence that the distribution of factors within countries—and in particular, urban
development—is a key determinant of productivity.1 Cities are engines of growth and ingenuity,
boosting productivity and “magnify[ing] humanity’s strengths” (Glaeser, 2011). Density eases search
frictions in the labor and product markets, often attracts high-skilled and talented workers, provides
large and local consumption markets, and spurs high-tech investment and innovation (e.g. Duranton
and Puga, 2004; Moretti, 2012). Thus, urban agglomeration, as well as place-based policies designed
to either spur or dampen it, has potentially large effects on regional welfare and inequality (e.g. Kline
and Moretti, 2014; Hsieh and Moretti, 2019). While there is a large body of evidence showing that
density affects domestic productivity and inequality, little is known about whether variation in density
and the forms of production that it promotes affect patterns of international specialization and trade.

Most analyses of international comparative advantage treat countries as unified factor markets
or equilibrium “points” in the production space. In this framework, domestic heterogeneity has
little impact on international specialization. An early version of the hypothesis that domestic het-
erogeneity could affect patterns of trade dates back to Courant and Deardorff (1992), who argue that
the “lumpiness” of factor distribution can affect a country’s pattern of exports through the lens of
a Heckscher-Ohlin model of factor abundance. A key source of domestic heterogeneity is variation
across locations in population density. Case-study evidence suggests that density bolsters productiv-
ity differentially across industries, some of which end up located at the center of large agglomerations
while others end up in smaller cities or sparsely populated areas (e.g., Nakamura, 1985; Rosenthal
and Strange, 2004). Thus, the extent to which a country’s population is concentrated in dense areas
might affect not only local productivity, but also its international specialization.

This paper investigates the extent to which global variation in population density affects patterns
of trade. We develop a new strategy to estimate the extent to which local density bolsters production
in each industry. Combining this industry-level measure of density affinity with fine-grained data
on the global distribution of population density, the key ingredient in urban productivity, we show
that denser countries have a strong comparative advantage in density-loving sectors. The findings
are largely driven by R&D intensive sectors that rely disproportionately on collaborative and inter-
active tasks, indicating that these are important intervening mechanisms. While a range of work has
analyzed the effect of trade on domestic economic geography, these findings indicate that domestic
economic geography also affects patterns of trade.2

Model. We first present a model that illustrates how the distribution of factors of production within
countries—having a concentrated versus dispersed population—affects patterns of trade. In the

1For example, see Keesing and Sherk (1971), Ciccone and Hall (1996), Duranton and Puga (2004), and Moretti (2012)
and more recently Davis and Dingel (2014) and Gaubert (2018).

2On the impact of trade shocks on domestic economic geography, see, for example: Autor, Dorn, and Hanson (2013),
Caliendo, Dvorkin, and Parro (2015), Dix-Carneiro and Kovak (2015), Ramondo, Rodrı́guez-Clare, and Saborı́o-Rodrı́guez
(2016), and Bakker (2018)
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model, industries vary in the extent to which their productivity is boosted by local population den-
sity.3 Countries are composed of locations endowed with different sector-neutral effective housing
productivity. Endogenously, countries with more dispersion in the costs of building dense cities ex-
hibit higher population-weighted density (i.e. a more spatially concentrated population) and have a
comparative advantage in sectors that benefit relatively more from local agglomeration.

The theory provides three key insights. First, it motivates our empirical strategy and generates
the regression equation used to estimate variation across industries in density affinity. In particular, it
shows how location-level data on industry composition, combined with instruments for construction
costs, can be used to estimate the key parameter that governs industry-level benefits from population
density. Second, it generates a closed-form expression for country-by-industry level exports that is a
function of location-specific productivities. While productivity in our model varies across locations,
trade data are measured at the country-by-industry level; this aggregation result shows it is possible
to link (unobservable) location-level productivity measures to (observable) country-level trade flows.
Finally, the model generates a log-linear expression for exports, which is the regression equation we
will estimate in the main part of our empirical analysis.

Measurement. To measure industry-level density affinity, we rely on a within-country prediction
of the model and turn to detailed business location data across US urban areas from the County
Business Patterns (CBP) to non-parametrically estimate the extent to which each sector is dispropor-
tionately located in denser locations. To account for potential endogeneity in the correlation between
density and industry specialization, and consistent with the source of density heterogeneity in our
theoretical framework, we use subterranean geological instruments that shift local density by easing
vertical construction costs and constraints. This generates causal estimates of the marginal impact
of population density on industry-level production. In the end, this procedure yields industry-level
measures of density affinity across all 4-digit NAICS manufacturing sectors; the substantial hetero-
geneity in density affinity that we estimate lends credibility to the modeling assumption of significant
variation in sector-specific sorting with respect to population density.

To measure population-weighted density across regions and countries, we rely on satellite-derived
gridded population data from the LandScan database. LandScan incorporates comprehensive country-
level census data on the distribution of population, and derives gridded population estimates using
“smart interpolation,” a multi-layered, dasymetric, spatial modeling approach. These data make it
possible to directly calculate characteristics of the geographic population distribution of each country.
To measure population-weighted density, we sum population density across grid cells within each
country, weighting each cell by its total population. This captures the experienced population density
of the average worker in the country and measures the concentration of population across space.

Country-level estimates of population weighted density are displayed in the map in Figure 1.
There is substantial variation in density across countries, even within continents and income levels.
For example, Finland and Sweden are two of the wealthiest and also two of the least dense countries
in the world, by our measure; indeed, both countries have strong revealed comparative advantage in

3In the baseline model, we are agnostic about the source of this variation in agglomeration externalities across sectors.
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Figure 1: Population weighted population density across countries (deciles). The figure is a map in
which countries are color-coded based on their population-weighted density decile. Darker countries
have higher population-weighted density.

pulp and paper product exports, one of the least density-loving sectors by our measure.4 Within sub-
Saharan Africa, Botswana is among the least dense countries while the nearby Democratic Republic
of Congo and Djibouti, among the world’s poorest countries, are among the densest.5 Finally, the
United States has mid-range population-weighted density since it has both very dense cities, as well
as a relatively large share of the population living in suburbs, towns, and rural areas.

Results. Before turning to cross-country trade, we first focus on US states and investigate whether
variation in density affect their export patterns across industries. Using the LandScan data, we esti-
mate the population-weighted density of each state, and document that denser states indeed export
relatively more in “density-loving” sectors.6 While this result is a preliminary test of our hypothe-
sis, it also validates our density affinity measures as supply side determinants of sector productivity,
rather than the product of path dependence or demand-side forces. That is, our estimates of industry-
level density affinity could have been driven by the fact that certain sectors are over-represented in
certain US locations for historical or demand-side reasons; in this case, we would not expect them
to correlate with productivity in more vs. less dense states. However, the state-level export results
suggests that density-loving sectors are indeed more productive in denser regions within the US.

Next, we investigate the role of density as a source of country-level comparative advantage. We

4See Sweden exports in the Atlas of Economic Complexity for HS4 codes 4800-4810, NAICS code: 3221.
5Indeed, Djibouti, exhibits a strong revealed comparative advantage in semiconductors, one of the most density-loving

sectors. See Djibouti exports in the Atlas of Economic Complexity for HS4 code: 8541, NAICS code: 3344.
6While some recent studies have attempted to estimate export data at the metropolitan level (see e.g. the database

constructed by Tomer and Kane, 2014), most trade flows data are still collected at a broader level of aggregation. The
lowest level of consistent and exhaustive trade reporting in the United States is the state.
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show that countries with higher population-weighted density have a revealed comparative advan-
tage in density-loving sectors. This finding is robust to the inclusion of a broad range of interacted
country and industry-level controls, including the skill and capital intensity of each sector, as well as
country-level income, skill endowment, specialization in agriculture, and other covariates that might
bias the relationship between density and exports. The results are also similar across a range of pos-
sible parameterizations of the density affinity measure; either including or excluding observations
with zero trade; and using either OLS or Poisson-PML estimators.

To correct for potential reverse causality from trade flows to country-level density (see Krugman
and Elizondo, 1996; Ades and Glaeser, 1995), we exploit differences in states’ and countries’ historical
population distributions to construct instruments for modern density. Data on the historical distri-
bution of cities and their populations were collected by Chandler (1987), and recently digitized by
Reba, Reitsma, and Seto (2016). While patterns of trade might shape modern economic geography,
it is unlikely that modern patterns of trade, which have evolved substantially in recent decades and
particularly after World War II (Irwin, 2017), affect the historical distribution of cities within countries
several hundred years ago. Using this strategy, the estimated effect of density on trade flows from
our baseline results remains very similar. In our sample of countries, we find that the impact of the
within-country population distribution on patterns of trade is comparable to, and if anything slightly
larger in magnitude than, the impact of human or physical capital.

Finally, we investigate potential channels underpinning the relationship between density affinity
and trade. The goal of our density-affinity measure is to capture all possible effects of population
density on industry-level productivity; therefore, the baseline measure does not take a stand on any
particular mechanism. An important question, however, is which tangible industry-level characteris-
tics drive our findings. Using data on the task content of production in each industry, we find that the
relative importance of different tasks in more vs. less density-loving sectors is an important mecha-
nism. Denser countries tend to have a comparative advantage in sectors that rely on more interactive
and collaborative tasks, while less dense countries specialize in sectors that rely on interaction with
machines. We also find evidence that the research and development (R&D) intensity and natural re-
source input share of each industry are additional intervening mechanisms, consistent with evidence
that dense cities spur innovation (e.g. Duranton and Puga, 2001; Duranton and Puga, 2004; Moretti,
2012) and that only industries that do not rely on natural resources are free to locate in cities (Ades
and Glaeser, 1995). Last, we rule out a range of additional potential mechanisms; for example, we
find no evidence that the results are driven by industry-level skill or capital intensity, or reliance on
service-sector inputs (e.g., Abdel-Rahman, 1994). Together, the mechanisms that we propose explain
65% of our baseline estimate, suggesting that additional and un-observed industry characteristics
also contribute to industries’ sorting and resulting international specialization.

Related Literature. This study is at the intersection of several areas of research. Our theoretical
framework is most closely related to Courant and Deardorff (1992) and Courant and Deardorff (1993),
who argue that patterns of trade come not only from relative aggregate factor abundance, but also
from factor distribution within countries (”lumpiness”). The idea has been explored more recently by

4



Debaere (2004), Bernard, Robertson, and Schott (2010), and Brakman and Van Marrewijk (2013). We

�rst provide a more general characterization of how within-country factor distributions can affect

international comparative advantage. We then propose that the distribution of population density

is one key source of “factor lumpiness” and document how, combined with variation in the casual

effect of density on industry-level productivity, it affects patterns of trade.

This paper also builds on prior work studying the sorting of sectors across cities (e.g. Davis and

Dingel, 2014; Gaubert, 2018) and the differential extent of agglomeration across sectors (Rosenthal

and Strange, 2001; Holmes and Stevens, 2004; Ellison, Glaeser, and Kerr, 2010; Faggio, Silva, and

Strange, 2017). We extend work in this area by developing a new strategy to estimate industry-

speci�c sorting with respect to density and investigate the relationship between within-country sort-

ing and cross-country trade.

We also extend a recent body of work studying the interplay between trade and within-country

heterogeneity, often highlighting the effect of trade on within-country disparities (Autor, Dorn, and

Hanson, 2013; Caliendo, Dvorkin, and Parro, 2015; Dix-Carneiro and Kovak, 2015). Some stud-

ies have highlighted the potential importance of within-country trade costs for international trade

(Rauch, 1991; Coşar and Fajgelbaum, 2016; Ramondo, Rodr�́guez-Clare, and Saboŕ�o-Rodr�́guez,

2016; Sotelo, 2020; Fajgelbaum, 2022), and a large theoretical literature on international specialization

arising from agglomeration, initiated by Krugman (1991), has given rise to studies of the interaction

between domestic migration and traditional sources of comparative advantage (Van Marrewijk et al.,

1997; Ricci, 1999; P�̈uger and Tabuchi, 2016; Bakker, 2018; Pellegrina and Sotelo, 2021).

Finally, our empirical framework builds on existing analyses of non-traditional sources of com-

parative advantage; recent studies that rely on a similar framework include Nunn (2007), Costinot

(2009), Chor (2010), Bombardini, Gallipoli, and Pupato (2012), and Cingano and Pinotti (2016).

Outline. The paper is organized as follows. Section 2 provides a simple formalization of our hy-

pothesis that comparative advantage across countries stems, in part, from the distribution of popula-

tion within countries. Section 3 describes the data used in the empirical analysis. Section 4 presents

our main results and Section 5 concludes.

2. MODEL

We present a model that illustrates how within-country heterogeneity in density can affect a coun-

try's pattern of exports across industries. We show how two key ingredients — within-country het-

erogeneity in the cost of generating density (“housing productivity”) and differential returns to ag-

glomeration across industries — produce patterns of specialization both within and across countries.

The model generates a closed form expression for country-by-sector exports and the exact regression

equations that will guide our empirical analysis.

5



2.1 Environment

We study an economy in which countries exhibit domestic heterogeneity across inhabited locations,

or ”cities.” A country i is composed of cities, indexed by c 2 Ci , with equilibrium population Lc.

The country's total population is L̄i = å c Lc; workers are mobile across regions within a country, but

not across borders. The economy consists ofJ tradable sectors indexed by j = 1, ...,J, as well as a

non-tradable good speci�c to each city, ”housing” ( Hc). Tradable goods can be shipped from city c to

city d, with iceberg trade costs t c,d � 1.

2.1.1 Consumption

Workers in city c earn nominal wage wc, and derive utility Uc from the consumption of housing and

a Cobb-Douglas basket of tradable sectors:

Uc(hc, cj= 1,...,J) =
� hc

b

� b� 1
1 � b

S

Õ
j= 1

(
cj

aj
)aj

� 1� b

where hc is the worker's housing and cj , total consumption of sector j, is a CES aggregate of a contin-

uum of varieties indexed by w, with elasticity s.

Assuming free within-country trade ( t c,c0 = 1 if c, c0 2 Ci ), the price level in each tradable sector

j is common across cities and equal to: pj =
� R1

0 pj (w)1� sdj
� 1

1� s . The aggregate tradable price level

in the country P is P = P J
j= 1p

aj

j and we de�ne the price of housing in city c as phc. We assume that

s > 1, so that within each sector, varieties are substitutes. In a spatial equilibrium, utility for a worker

with income Yc is equalized across cities:

Uc =
Yc

P1� bpb
hc

= Ū 8 c (2.1)

While locations are assumed to have equal land area, they differ in productivity in the housing sector

so that the effectivesupply of land in location c is �xed at Bc, the key local congestion force in the

model and source of heterogeneity across locations.7 Equalizing housing supply and demand yields

equilibrium housing prices in each city:

p
1
x
Hc = b

LcYc

BcP
x� 1

x

(2.2)

All Ricardian rents accruing to local landowners are fully taxed by the city government and rebated

to resident workers as lump-sum transfers Tc, as in Helpman (1998). Thus, the disposable incomeYc

of a worker in city c: Yc = wc + Tc = wc
1� bx , where wc is the wage in c. Combining this expression with

7As in Gaubert (2018), atomistic landowners in city produce housing using land and tradable goods. For simplicity,
we assume that they divide spending on �nal goods used as inputs in housing production across the J industreis in the
same manner as workers; alternatively, one could model the other, non-location-speci�c input into housing production as
migrant labor living at zero cost on rural land and only consuming the �nal good. The details are given in Appendix B.
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(2.1) yields an expression for city-level wages:

wc = P(1 � bx)Ū
1

1� bx b
bx

1� bx
Lc

Bc

bx
1� bx

(2.3)

2.1.2 Production

To study the impact of density on industrial geography and trade, we turn to the supply side of the

economy. For simplicity, output in industry j and city c is linear in labor Ljc(w), the only input to

production. In industry j, the output of variety w in city c, Qjc(w), is given by:

Qjc(w) = Ã jcLjc(w)

A producer draws a Ricardian productivity parameter in each variety of good j in location c, Ã jc,

from a Fréchet distribution, with cumulative distribution function: 8

Pr( Ãcj(w) � Ã) = Fjc( Ã) = exp(�
� Ã

A jc

� � q)

The unit cost of production for variety w in sector j and location c is then wc
Ãcj

.

Here we introduce the key assumption of the model: the relationship between population density

and industry-level productivity in a location. We assume that the scale of a sector's productivity in

city c depends on (i) the city's equilibrium population density Dc, and (ii) the extent to which each

sector bene�ts from local density, h̃j . In particular, we let: A jc = D
h̃j
c .

The sector-speci�c ”density elasticity,” h̃j , mediates the relationship between density and sector-

speci�c productivity. Variation in h̃j across sectors—the extent to which industry productivity ben-

e�ts from local agglomeration—will be central to our empirical analysis, and is the key modeling

assumption. The idea that industries could bene�t differentially from urban density has been argued

in prior work (e.g. Rosenthal and Strange, 2004; Faggio, Silva, and Strange, 2017) and is corroborated

by our empirical estimates in Section 3.9

2.1.3 Trade across cities

Under the maintained assumption of zero trade costs within a country, cost minimization by con-

sumers in any location d implies that the share of spending on varieties from location c in sector j

must be equal for any locations d in the same country:

p dcj = p cj =
pcjXdcj

Xdj
=

(D
h̃j
c )qw� q

c

å c0(D
h̃j

c0)qw� q
c0

(2.4)

8We assume the distribution has shape parameter q > s � 1. q, which governs the variance across varieties, is assumed
constant across both locations and sectors. As is traditional in supply-driven models of specialization, q > s � 1 ensures
that the CES price index for each sector is well de�ned.

9We remain agnostic here about the speci�c source of sector-speci�c density af�nity; in section 4.5, we explore potential
determinants of h̃j .
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where p dcj denotes spending in city d on goods in sector j produced in city c.10

2.1.4 Equilibrium

Goods market clearing. In the equilibrium of the closed domestic economy, the wage bill in each

sector j and city c equals total spending on goods produced in sector j in city c.11 This generates the

tradable goods market clearing condition:

wcLjc = aj
(AcD

h̃j
c )qw� q

c

å c0(Ac0D
h̃j

c0)qw� q
c0

å
d

wdLd (2.5)

In the absence of within-country trade costs, the price index for good j is independent of the location

where it is consumed and is proportional to: 12

pj µ
�
å
c0

(Ac0D
h̃j

c0)qw� q
c0

� � 1
q µ

�
å
c0

(Ac0D
h̃j �

bx
1� bx

c0 )q� � 1
q (2.6)

Trade balance requires that tradable spending from all locations on all goods produced in location c

is equivalent to the total wage bill in location c:

wcLc = å
j

å
d

p dcjaj (1 � bx)YdLd = å
j

ajp cj å
d

wdLd = å
d

wdLd å
j

ajp cj (2.7)

Moreover, the housing market must clear in every location, as in Equation (2.2).

Labor market clearing. The ratio of labor allocated to sectors j and j0 in each city c is given by:

Ljc

Lj0c
=

aj

aj0
(

pj

pj0
)qD

q(h̃j � h̃j0)
c (2.8)

Total population in a city equals the sum of employment across tradable sectors:

å
j

Ljc = Lc (2.9)

The labor market clears for the country as a whole:

å
c

Lc = å
c

å
j

Ljc = L̄ (2.10)

10This expression is derived in Appendix B and relies on standard Eaton-Kortum algebra similar to Costinot, Donaldson,
and Komunjer (2011) and Michaels, Rauch, and Redding (2013). Given the unbounded nature of the Fréchet distribution,
the production structure does not lead to the full specialization of cities in the production of some sectors, which would
make the exposition more involved by inducing censoring at the bottom of the sector-city employment density without
adding substantial insight in the model.

11Note that sector j spending coming from location d is equal to the sum of consumer spending (aj (1 � b)YdLdp jc) and
intermediate spending by housing producers ( aj b(1 � x)YdLdp jc), so that total spending in d on j goods produced in c is
aj (1 � bx)YdLdp jc = ajwdLdp jc.

12The proportionality coef�cients are independent of the sector and city, since q is assumed constant
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We now de�ne the equilibrium of the domestic economy.

De�nition 2.1 (Equilibrium) . An equilibrium in the closed economy is de�ned as an allocation of labor Ljc

across cities and sectors such that utility is equalized across sites; housing prices satisfy (2.2); trade shares

satisfy (2.4); wages satisfy (2.5) and (2.7); tradable prices satisfy (2.6); and labor allocations satisfy (2.8), (2.9)

and (2.10).

2.2 Implications

2.2.1 Within-Country Specialization

We now investigate the domestic sorting of production generated by the model. Double-differencing

spending shares (2.4) from any location d across two goods j and j0and locations c and c0yields:

� p jc

p j0c

��� p jc0

p j0c0

�
=

Dc

Dc0

q(h̃j � h̃j0)
(2.11)

The absolute unit cost of production is increasing in density Dc; however, due to the need to com-

pensate workers with higher nominal wages, as Dc increases costs increase relatively faster in sectors

with lower h̃j . Denser cities thus have a comparative advantage in sectors that bene�t more from

agglomeration. Immediately, this implies:

Lemma 1. The share of the labor force employed in higherh̃j sectors is relatively larger in denser cities:

� Ljc

Lj0c

��� Ljc0

Lj0c0

�
=

� wcLjc

wcLj0c

��� wc0Ljc0

wc0Lj0c0

�
=

� p jc

p j0c

��� p jc0

p j0c0

�
=

Dc

Dc0

q(h̃j � h̃j0)
(2.12)

A log-linear expression for Ljc then takes the form:

log(Ljc) = kc + l j + h̃jq � log(DC) (2.13)

Thus, within countries, employment in more density-loving sectors (high- h̃j) disproportionately

takes place in denser locations.13 In our empirical analysis, we use Equation 2.13 to estimate a value

for hj = h̃jq for each sectorj (see Section 3.3). Moreover, motivated by the model mechanism in which

exogenous variation in housing productivity, Bc is the main supply-side shifter of local density, we

use geological instruments for log (DC) that shift construction costs independently from local demand

conditions when we estimate (2.13). Equation 2.3 serves as our �rst-stage identifying variation in

local population density. Our estimates of the hj of each sector is the key industry-level variation in

our main empirical analysis.

13Introducing decreasing returns at the establishment level, for example related to the use of a �xed factor in production
such as management skill or land, would make these cross-cities, within-country comparative advantage results hold in
terms of the number of establishments as well, consistent with our empirical results in section 4.
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2.2.2 Cross-Country Specialization

Next, we turn to the model's implications for international trade. Conditional on a �xed distribution

of location-level population, the closed economy price index in sector j relative to j0 is lower when

h̃j > h̃j0. Stronger agglomeration forces in a sector increase productivity in all cities, and lower

equilibrium prices for any distribution of density. A more dispersed population implies relatively

more variation in sourcing prices across producing locations for higher h̃j sectors. Substitution across

sourcing cities implies lower relative price indices for more ”density-loving” sectors in countries with

a more dispersed population. This sub-modularity property of price indices in h̃j and Dc is at the core

of comparative advantage of countries in our global economy.

Comparative Advantage. To illustrate the implications of the model for patterns of exports under

international trade, we aggregate trade �ows at the country level. As in Ramondo, Rodr �́guez-Clare,

and Saboŕ�o-Rodr�́guez (2016), we study the special case ofN countries, indexed by i, each composed

of a set of regions c 2 Ci , trading J goods indexed by j. We continue to assume that iceberg trade

costs are zero across two regions within any country; we also assume trade costs are symmetric and

constant across any two regions in two different countries.

To make the results as stark as possible, we assume all countries have the same total population

L̄ = Li . We let land area in each city, so that we simplify the model to the case where Lc = Dc. We

de�ne X inj as exports from country i to country n in industry j, w̃i j as the average wage in sectorj

in country i, and M i as country i's aggregate wage bill. We can then state the following aggregation

result:

Proposition 1. Exports of sector j from country i to country n are given by

X inj = aj Mn

Ti j w̃
� q
ij t � q

ni

å s Tsjw̃
� q
sj t � q

ns

where the country level productivity parameter is:

Ti j =
�

å
c2Ci

(AcD
h̃j
c )

1
1+ q (

Ljc

Lji
)

q
1+ q

� 1+ q

Moreover, the aggregate wage bill can be expressed as:

M i = å
j

w̃i j Li j = å
j

Di j L
q

1+ q
i j T

1
1+ q

i j

whereDi j , country i's market access in sector j, solves the system of N� S equations:

Di j =
h
aj

å n Mnt � q
in

å s t � q
is D� q

sj L
1

1+ q
sj T

1
1+ q
sj

i 1
1+ q

Proof. See Appendix B.
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The country-by-sector composite productivity shifter Ti j is relatively higher for density-loving

(high h̃j) goods in countries with a more spatially concentrated population (which are, all else equal,

countries with more variance in sector-neutral housing productivity Bc). Even though all countries

have the same total population, the within-country population distribution drives patterns of cross-

country trade. This is made clear by the following corollary:

Corollary 1. A second-order approximation to the Ti j country-by-sector productivity shifter yields that it is

increasing in the product of the within-country variance of density and a function of the density af�nity:

Ti j ' hj (hj � 1) å
c2Ci

(d̃c)2

For hj � h̄, this country-by-sector productivity shifter is increasing in an interaction term between sectoral

density af�nity hj and within-country density population-weighted density Di = å c2Ci
(d̃c)2, so that a log-

linear approximation to country-level exports can be expressed as:

log(X) i j = log(å
n

X inj ) ' xi + nj + bD i � hj + o(X) (2.14)

Proof. See Appendix B.

Conditional on �xed effects at the country and industry-level, exports from country i in industry

j are increasing in the interaction between country-level population weighted density and industry-

level density af�nity. As our main test of the theory and hypothesis, in our empirical analysis we

will use Equation 2.14 to estimate b. We will estimate hj using the empirical analog to Equation 2.13

and we will measure population-weighted density D i for each country using global grid cell level

population estimates.

2.2.3 From Theory to Measurement: Population-Weighted Density

From the equilibrium de�nition in Section 2.1, the population distribution can be expressed as the

labor market clearing (2.10), along with a system of C equations that depend on city-level population-

weighted density, city-level population weighted amenities, and a constant term:

LcD
bx

1� bx
c = å

j

aj
(AcD

h̃j �
bx

1� bx
c )q

å c0(Ac0D
h̃j �

bx
1� bx

c0 )q
å
d

LdD
bx

1� bx

d (2.15)

There is a unique equilibrium when the maximum sector-level density elasticity ( h̃max = maxj h̃j > 0)

is ”not too large” relative to the share of land in housing production ( x); this makes congestion forces

strong enough to offset multiple equilibria. 14

14The proof is analogous to Redding (2016). For a suf�ciently small h̃max, a location's density Dc is increasing in its
productive amenity Ac, since a higher Ac increases the marginal product of labor in any sector, leading to rising nominal
wages, population in�ows, and land prices, until utility is again equalized. Agglomeration forces, modeled as positive h̃j 's,
reinforce this phenomenon, but do not offset it if they are small enough.
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At the country level a greater dispersion of Bc leads to greater equilibrium Dc dispersion. In

particular, the population density distribution in an economy with more dispersed Bc is second-order

stochastically dominated by the population density distribution in an economy with less dispersed

A �
c (see Appendix B), and we will observe the footprint of productivity dispersion across cities in

the dispersion (or concentration) of population. In the special case where total population is held

constant, which we ensure in our empirical analysis by controlling for total population and land area,

greater dispersion in the exogenous Bc's can be mapped directly to greater country-level “population-

weighted density” (directly given by the variance of population across equally-sized locations):

D i =
Z max Dc

0
L2

cdH(Dc)

which captures the local population density experienced by the average worker in the economy.

While, as discussed below, there are several intuitively appealing features of using this as our county-

level parameterization of population concentration, the model also indicates that it is the observable

consequence of dispersion (or lack thereof) of the primitive productivity distribution. This is the

measure we estimate next in Section 3, and use as our main measure of population concentration

(“density”) in Section 4.1.

3. MEASUREMENT

In this section, we �rst describe the main data sources used in the empirical analysis. We then de-

scribe how we measure both country-level population-weighted density ( D i ) and industry-level den-

sity af�nity ( hj).

3.1 Data Sources

Economic Geography. Data on economic activity in the US are collected from the 2016 version of

the County Business Patterns (CBP) data set. The CBP contains information on employment, estab-

lishment counts, and total payroll in each industry and Core-Based Statistical Area (CBSA). We focus

on measures at the NAICS 4-digit level, which are less likely to suffer from suppression. 15 We use

these data as part of our strategy to estimate industry-level density af�nity.

To construct instruments for local density, we compile data on distance to subterranean bedrock

for all US CBSAs. Raster data displaying the distance to bedrock of each 250m grid cell in the US,

which we use to construct the instruments, are from the International Soil Reference and Information

Centre (ISRIC)SoilGridproject.16

We also compile data on a range of industry-level characteristics to use as control variables in our

main analysis. From the latest available year in the NBER-CES Manufacturing Industry Database, we

collect industry-level information on capital intensity, the labor share, and average wages. We also

15We verify that our results are not sensitive to imputation when using interpolation techniques to impute missing
employment data in the CBP.

16See here: https://www.isric.org/explore/soilgrids.
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compile data from the American Community Survey to control for the age and gender breakdown,

as well as detailed measures of the educational attainment of the workforce in each industry.

Density. Spatial data on global population density are obtained from the LandScanDatabase.17

These data are calculated by combining existing demographic and census data with remote sens-

ing imagery, and are released as a raster data set composed of one square-kilometer grid cells.18 The

resulting population count is an ambient or average day/night population count. We use the the

LandScandata to compute state and country-level estimates of population-weighted density. We also

replicate our results using several alternative sources of gridded poulation data, including the Global

Human Settlement Layer, the Gridded Population of the World, and the WorldPop Project. For our

instrumental variables analysis, we also rely on new measures of historical population and city size

distributions constructed from data sets recently introduced by Reba, Reitsma, and Seto (2016) and

Fang and Jawitz (2018).

Trade. US State-level international exports from 2016 are collected from the US Census Bureau's

USATradeonline database.These data are provided at the NAICS 4-digits level, which is our primary

level of analysis across industries. We focus on gross exports �ows, as they are the natural coun-

terpart of spending in our theoretical framework. Cross-country trade �ows data are obtained from

the UN Comtrade Database for all available exporters in 2016, at the HS4 digit level. We map HS4

industries to NAICS-4 industries using the crosswalk developed by Pierce and Schott (2012).

Additional Data. To include additional controls in our cross-state and cross-country estimates, we

compiled US state-level data on educational attainment, age composition, and worker income from

the 2016 American Community Survey estimates. At the country level, we also compiled informa-

tion on educational attainment, urbanization, GDP per capita, and a range of other country-level

characteristics from the World Bank's World Development Indicators and International Monetary

Fund's World Economic Outlook databases, and measures of country-level capital stocks from the

Penn World Tables.
17LandScandata can be found here: https://landscan.ornl.gov We use the LandScan data product from 2016.
18For more information, see here: https://landscan.ornl.gov/documentation. According to LandScan: ORNL's LandScan

is the community standard for global population distribution. At approximately 1 km resolution (30� 30 degree), LandScan is the
�nest resolution global population distribution data available and represents an ambient population (average over 24 hours). [...] The
LandScan global population distribution models are a multi-layered, dasymetric, spatial modeling approach that is also referred to as a
“smart interpolation” technique. In dasymetric mapping, a source layer is converted to a surface and an ancillary data layer is added
to the surface with a weighting scheme applied to cells coinciding with identi�ed or derived density level values in the ancillary data.
[...] The modeling process uses sub-national level census counts for each country and primary geospatial input or ancillary datasets,
including land cover, roads, slope, urban areas, village locations, and high resolution imagery analysis; all of which are key indicators
of population distribution. [...] Within each country, the population distribution model calculates a “likelihood” coef�cient for each cell
and applies the coef�cients to the census counts, which are employed as control totals for appropriate areas. The total population for
that area is then allocated to each cell proportionally to the calculated population coef�cient
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3.2 Estimating State and Country Level Density

For both US states and countries, we compute population-weighted density(D i ) as:

D i = å
g2 G( i)

�
Lg �

Lg

å g02 G( i) Lg0

�

where g indexes grid cells and G( i) is the set of grid cells in country (or state) i. Lg is the population,

according to LandScan, in grid cell i. Since all grid cells are the same size,Lg is also the density of grid

cell i. This measure is equivalent to weighting the population density of each grid cell in a country or

state by its population, and yields a measure of population density that approximates to the expected

experienced density of a person in the state or country. 19

This is our key state and country-level independent variable of interest. Intuitively, this measure

captures the concentration of population within a state or country. For a given total population

if people are very concentrated in a few cities this measure will be large whereas if people are is

dispersed across many less-dense cities or suburban and rural areas,D i will be small. Figure 1 in the

Introduction displays the variation in our measure of country-level density across countries.

Figure 2 plots the distribution of D i across US states. While, intuitively, populous and urban

states like New York and California have high measures of D i , so do Massachusetts and Washington;

large states like Texas and Florida, with their large but more sprawling cities, are in the middle of the

distribution. As with the country-level �gure, one lesson from this map is that traditional measures

of urbanization or average density fail to capture variation in experienced density, the key mecha-

nism behind urban spillovers. For example, while the experienced density of individuals in New

York State is substantially higher than Texas or Florida, the urbanization rate in the 2010 census was

comparable in all three states (87.9, 84.7, and 91.2 respectively).

3.3 Estimating Sector-Speci�c Density Af�nity

Using industry-by-city level data from the US County Business Patterns (CBP), we estimate the ag-

glomeration elasticity of each tradable manufacturing sector. Because our focus is cross-country

trade, and manufactured goods account for the bulk of international exports, we emphasize the ex-

istence of substantial within-manufacturing differences in density af�nity. Thus, none of our results

are driven by differences between agriculture and non-agriculture, or any other broader sectors of

the economy.

We compute a “density-elasticity” for each industry by estimating the following empirical analog

of the the model's Equation (2.13):

log(Lcj) = ac + g j + å
j

hj �
�
ln Dc � I j

�
+ ecj (3.1)

where c indexes cities and j indexes sectors. log(Lcj) is the (log of the) number of employees in in-

dustry j and location (city) c. ac and g j are city and sector �xed-effects, respectively. Dc is population

19See Wilson (2012) for a justi�cation of the use of population-weighted density by the United States Census Bureau.
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