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Abstract

Variation in urban density is a core determinant of patterns of productivity within countries, but
does it also shape patterns of trade across countries? We develop a strategy to estimate the ex-
tent to which local population density boosts productivity in each industry. Combining these
industry-level estimates with fine-grained global population data, we show that both US states
and countries with more spatially concentrated (“denser”) populations disproportionately export
in density-loving sectors. The estimates are similar using an instrumental variables strategy that
exploits countries’ historical population distributions, and are driven by variation across sectors
in the importance of R&D and collaborative/interactive tasks in production. We rationalize these
findings with a model in which national export specialization emerges endogenously from the
distribution of factors within countries, and show how location-level data can be aggregated to
measure country-level specialization. Even conditional on aggregate endowments, the within-
country spatial distribution of factors can explain a large share of patterns of trade.
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1. INTRODUCTION

Does the distribution of economic activity within countries affect the pattern of trade across countries?
There is mounting evidence that the distribution of factors within countries—and in particular, urban
development—is a key determinant of productivity.1 Cities are engines of growth and ingenuity,
boosting productivity and “magnify[ing] humanity’s strengths” (Glaeser, 2011). Density eases search
frictions in the labor and product markets, often attracts high-skilled and talented workers, provides
large and local consumption markets, and spurs high-tech investment and innovation (e.g. Duranton
and Puga, 2004; Moretti, 2012). Thus, urban agglomeration, as well as place-based policies designed
to either spur or dampen it, has potentially large effects on regional welfare and inequality (e.g. Kline
and Moretti, 2014; Hsieh and Moretti, 2019). While there is a large body of evidence showing that
density affects domestic productivity and inequality, little is known about whether variation in density
and the forms of production that it promotes affect patterns of international specialization and trade.

Most analyses of international comparative advantage treat countries as unified factor markets
or equilibrium “points” in the production space. In this framework, domestic heterogeneity has
little impact on international specialization. An early version of the hypothesis that domestic het-
erogeneity could affect patterns of trade dates back to Courant and Deardorff (1992), who argue that
the “lumpiness” of factor distribution can affect a country’s pattern of exports through the lens of
a Heckscher-Ohlin model of factor abundance. A key source of domestic heterogeneity is variation
across locations in population density. Case-study evidence suggests that density bolsters productiv-
ity differentially across industries, some of which end up located at the center of large agglomerations
while others end up in smaller cities or sparsely populated areas (e.g., Nakamura, 1985; Rosenthal
and Strange, 2004). Thus, the extent to which a country’s population is concentrated in dense areas
might affect not only local productivity, but also its international specialization.

This paper investigates the extent to which global variation in population density affects patterns
of trade. We develop a new strategy to estimate the extent to which local density bolsters production
in each industry. Combining this industry-level measure of density affinity with fine-grained data
on the global distribution of population density, the key ingredient in urban productivity, we show
that denser countries have a strong comparative advantage in density-loving sectors. The findings
are largely driven by R&D intensive sectors that rely disproportionately on collaborative and inter-
active tasks, indicating that these are important intervening mechanisms. While a range of work has
analyzed the effect of trade on domestic economic geography, these findings indicate that domestic
economic geography also affects patterns of trade.2

Model. We first present a model that illustrates how the distribution of factors of production within
countries—having a concentrated versus dispersed population—affects patterns of trade. In the

1For example, see Keesing and Sherk (1971), Ciccone and Hall (1996), Duranton and Puga (2004), and Moretti (2012)
and more recently Davis and Dingel (2014) and Gaubert (2018).

2On the impact of trade shocks on domestic economic geography, see, for example: Autor, Dorn, and Hanson (2013),
Caliendo, Dvorkin, and Parro (2015), Dix-Carneiro and Kovak (2015), Ramondo, Rodrı́guez-Clare, and Saborı́o-Rodrı́guez
(2016), and Bakker (2018)
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model, industries vary in the extent to which their productivity is boosted by local population den-
sity.3 Countries are composed of locations endowed with different sector-neutral effective housing
productivity. Endogenously, countries with more dispersion in the costs of building dense cities ex-
hibit higher population-weighted density (i.e. a more spatially concentrated population) and have a
comparative advantage in sectors that benefit relatively more from local agglomeration.

The theory provides three key insights. First, it motivates our empirical strategy and generates
the regression equation used to estimate variation across industries in density affinity. In particular, it
shows how location-level data on industry composition, combined with instruments for construction
costs, can be used to estimate the key parameter that governs industry-level benefits from population
density. Second, it generates a closed-form expression for country-by-industry level exports that is a
function of location-specific productivities. While productivity in our model varies across locations,
trade data are measured at the country-by-industry level; this aggregation result shows it is possible
to link (unobservable) location-level productivity measures to (observable) country-level trade flows.
Finally, the model generates a log-linear expression for exports, which is the regression equation we
will estimate in the main part of our empirical analysis.

Measurement. To measure industry-level density affinity, we rely on a within-country prediction
of the model and turn to detailed business location data across US urban areas from the County
Business Patterns (CBP) to non-parametrically estimate the extent to which each sector is dispropor-
tionately located in denser locations. To account for potential endogeneity in the correlation between
density and industry specialization, and consistent with the source of density heterogeneity in our
theoretical framework, we use subterranean geological instruments that shift local density by easing
vertical construction costs and constraints. This generates causal estimates of the marginal impact
of population density on industry-level production. In the end, this procedure yields industry-level
measures of density affinity across all 4-digit NAICS manufacturing sectors; the substantial hetero-
geneity in density affinity that we estimate lends credibility to the modeling assumption of significant
variation in sector-specific sorting with respect to population density.

To measure population-weighted density across regions and countries, we rely on satellite-derived
gridded population data from the LandScan database. LandScan incorporates comprehensive country-
level census data on the distribution of population, and derives gridded population estimates using
“smart interpolation,” a multi-layered, dasymetric, spatial modeling approach. These data make it
possible to directly calculate characteristics of the geographic population distribution of each country.
To measure population-weighted density, we sum population density across grid cells within each
country, weighting each cell by its total population. This captures the experienced population density
of the average worker in the country and measures the concentration of population across space.

Country-level estimates of population weighted density are displayed in the map in Figure 1.
There is substantial variation in density across countries, even within continents and income levels.
For example, Finland and Sweden are two of the wealthiest and also two of the least dense countries
in the world, by our measure; indeed, both countries have strong revealed comparative advantage in

3In the baseline model, we are agnostic about the source of this variation in agglomeration externalities across sectors.
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Figure 1: Population weighted population density across countries (deciles). The figure is a map in
which countries are color-coded based on their population-weighted density decile. Darker countries
have higher population-weighted density.

pulp and paper product exports, one of the least density-loving sectors by our measure.4 Within sub-
Saharan Africa, Botswana is among the least dense countries while the nearby Democratic Republic
of Congo and Djibouti, among the world’s poorest countries, are among the densest.5 Finally, the
United States has mid-range population-weighted density since it has both very dense cities, as well
as a relatively large share of the population living in suburbs, towns, and rural areas.

Results. Before turning to cross-country trade, we first focus on US states and investigate whether
variation in density affect their export patterns across industries. Using the LandScan data, we esti-
mate the population-weighted density of each state, and document that denser states indeed export
relatively more in “density-loving” sectors.6 While this result is a preliminary test of our hypothe-
sis, it also validates our density affinity measures as supply side determinants of sector productivity,
rather than the product of path dependence or demand-side forces. That is, our estimates of industry-
level density affinity could have been driven by the fact that certain sectors are over-represented in
certain US locations for historical or demand-side reasons; in this case, we would not expect them
to correlate with productivity in more vs. less dense states. However, the state-level export results
suggests that density-loving sectors are indeed more productive in denser regions within the US.

Next, we investigate the role of density as a source of country-level comparative advantage. We

4See Sweden exports in the Atlas of Economic Complexity for HS4 codes 4800-4810, NAICS code: 3221.
5Indeed, Djibouti, exhibits a strong revealed comparative advantage in semiconductors, one of the most density-loving

sectors. See Djibouti exports in the Atlas of Economic Complexity for HS4 code: 8541, NAICS code: 3344.
6While some recent studies have attempted to estimate export data at the metropolitan level (see e.g. the database

constructed by Tomer and Kane, 2014), most trade flows data are still collected at a broader level of aggregation. The
lowest level of consistent and exhaustive trade reporting in the United States is the state.
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show that countries with higher population-weighted density have a revealed comparative advan-
tage in density-loving sectors. This finding is robust to the inclusion of a broad range of interacted
country and industry-level controls, including the skill and capital intensity of each sector, as well as
country-level income, skill endowment, specialization in agriculture, and other covariates that might
bias the relationship between density and exports. The results are also similar across a range of pos-
sible parameterizations of the density affinity measure; either including or excluding observations
with zero trade; and using either OLS or Poisson-PML estimators.

To correct for potential reverse causality from trade flows to country-level density (see Krugman
and Elizondo, 1996; Ades and Glaeser, 1995), we exploit differences in states’ and countries’ historical
population distributions to construct instruments for modern density. Data on the historical distri-
bution of cities and their populations were collected by Chandler (1987), and recently digitized by
Reba, Reitsma, and Seto (2016). While patterns of trade might shape modern economic geography,
it is unlikely that modern patterns of trade, which have evolved substantially in recent decades and
particularly after World War II (Irwin, 2017), affect the historical distribution of cities within countries
several hundred years ago. Using this strategy, the estimated effect of density on trade flows from
our baseline results remains very similar. In our sample of countries, we find that the impact of the
within-country population distribution on patterns of trade is comparable to, and if anything slightly
larger in magnitude than, the impact of human or physical capital.

Finally, we investigate potential channels underpinning the relationship between density affinity
and trade. The goal of our density-affinity measure is to capture all possible effects of population
density on industry-level productivity; therefore, the baseline measure does not take a stand on any
particular mechanism. An important question, however, is which tangible industry-level characteris-
tics drive our findings. Using data on the task content of production in each industry, we find that the
relative importance of different tasks in more vs. less density-loving sectors is an important mecha-
nism. Denser countries tend to have a comparative advantage in sectors that rely on more interactive
and collaborative tasks, while less dense countries specialize in sectors that rely on interaction with
machines. We also find evidence that the research and development (R&D) intensity and natural re-
source input share of each industry are additional intervening mechanisms, consistent with evidence
that dense cities spur innovation (e.g. Duranton and Puga, 2001; Duranton and Puga, 2004; Moretti,
2012) and that only industries that do not rely on natural resources are free to locate in cities (Ades
and Glaeser, 1995). Last, we rule out a range of additional potential mechanisms; for example, we
find no evidence that the results are driven by industry-level skill or capital intensity, or reliance on
service-sector inputs (e.g., Abdel-Rahman, 1994). Together, the mechanisms that we propose explain
65% of our baseline estimate, suggesting that additional and un-observed industry characteristics
also contribute to industries’ sorting and resulting international specialization.

Related Literature. This study is at the intersection of several areas of research. Our theoretical
framework is most closely related to Courant and Deardorff (1992) and Courant and Deardorff (1993),
who argue that patterns of trade come not only from relative aggregate factor abundance, but also
from factor distribution within countries (”lumpiness”). The idea has been explored more recently by

4



Debaere (2004), Bernard, Robertson, and Schott (2010), and Brakman and Van Marrewijk (2013). We
first provide a more general characterization of how within-country factor distributions can affect
international comparative advantage. We then propose that the distribution of population density
is one key source of “factor lumpiness” and document how, combined with variation in the casual
effect of density on industry-level productivity, it affects patterns of trade.

This paper also builds on prior work studying the sorting of sectors across cities (e.g. Davis and
Dingel, 2014; Gaubert, 2018) and the differential extent of agglomeration across sectors (Rosenthal
and Strange, 2001; Holmes and Stevens, 2004; Ellison, Glaeser, and Kerr, 2010; Faggio, Silva, and
Strange, 2017). We extend work in this area by developing a new strategy to estimate industry-
specific sorting with respect to density and investigate the relationship between within-country sort-
ing and cross-country trade.

We also extend a recent body of work studying the interplay between trade and within-country
heterogeneity, often highlighting the effect of trade on within-country disparities (Autor, Dorn, and
Hanson, 2013; Caliendo, Dvorkin, and Parro, 2015; Dix-Carneiro and Kovak, 2015). Some stud-
ies have highlighted the potential importance of within-country trade costs for international trade
(Rauch, 1991; Coşar and Fajgelbaum, 2016; Ramondo, Rodrı́guez-Clare, and Saborı́o-Rodrı́guez,
2016; Sotelo, 2020; Fajgelbaum, 2022), and a large theoretical literature on international specialization
arising from agglomeration, initiated by Krugman (1991), has given rise to studies of the interaction
between domestic migration and traditional sources of comparative advantage (Van Marrewijk et al.,
1997; Ricci, 1999; Pflüger and Tabuchi, 2016; Bakker, 2018; Pellegrina and Sotelo, 2021).

Finally, our empirical framework builds on existing analyses of non-traditional sources of com-
parative advantage; recent studies that rely on a similar framework include Nunn (2007), Costinot
(2009), Chor (2010), Bombardini, Gallipoli, and Pupato (2012), and Cingano and Pinotti (2016).

Outline. The paper is organized as follows. Section 2 provides a simple formalization of our hy-
pothesis that comparative advantage across countries stems, in part, from the distribution of popula-
tion within countries. Section 3 describes the data used in the empirical analysis. Section 4 presents
our main results and Section 5 concludes.

2. MODEL

We present a model that illustrates how within-country heterogeneity in density can affect a coun-
try’s pattern of exports across industries. We show how two key ingredients — within-country het-
erogeneity in the cost of generating density (“housing productivity”) and differential returns to ag-
glomeration across industries — produce patterns of specialization both within and across countries.
The model generates a closed form expression for country-by-sector exports and the exact regression
equations that will guide our empirical analysis.
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2.1 Environment

We study an economy in which countries exhibit domestic heterogeneity across inhabited locations,
or ”cities.” A country i is composed of cities, indexed by c ∈ Ci, with equilibrium population Lc.
The country’s total population is L̄i = ∑c Lc; workers are mobile across regions within a country, but
not across borders. The economy consists of J tradable sectors indexed by j = 1, ..., J, as well as a
non-tradable good specific to each city, ”housing” (Hc). Tradable goods can be shipped from city c to
city d, with iceberg trade costs τc,d ≥ 1.

2.1.1 Consumption

Workers in city c earn nominal wage wc, and derive utility Uc from the consumption of housing and
a Cobb-Douglas basket of tradable sectors:

Uc(hc, cj=1,...,J) =
(hc

β

)β( 1
1− β

S

∏
j=1

(
cj

αj
)αj
)1−β

where hc is the worker’s housing and cj, total consumption of sector j, is a CES aggregate of a contin-
uum of varieties indexed by ω, with elasticity σ.

Assuming free within-country trade (τc,c′ = 1 if c, c′ ∈ Ci), the price level in each tradable sector

j is common across cities and equal to: pj =
( ∫ 1

0 pj(ω)1−σdj
) 1

1−σ . The aggregate tradable price level
in the country P is P = ΠJ

j=1 p
αj
j and we define the price of housing in city c as phc. We assume that

σ > 1, so that within each sector, varieties are substitutes. In a spatial equilibrium, utility for a worker
with income Yc is equalized across cities:

Uc =
Yc

P1−β pβ
hc

= Ū ∀ c (2.1)

While locations are assumed to have equal land area, they differ in productivity in the housing sector
so that the effective supply of land in location c is fixed at Bc, the key local congestion force in the
model and source of heterogeneity across locations.7 Equalizing housing supply and demand yields
equilibrium housing prices in each city:

p
1
ξ

Hc = β
LcYc

BcP
ξ−1

ξ

(2.2)

All Ricardian rents accruing to local landowners are fully taxed by the city government and rebated
to resident workers as lump-sum transfers Tc, as in Helpman (1998). Thus, the disposable income Yc

of a worker in city c: Yc = wc + Tc =
wc

1−βξ , where wc is the wage in c. Combining this expression with

7As in Gaubert (2018), atomistic landowners in city produce housing using land and tradable goods. For simplicity,
we assume that they divide spending on final goods used as inputs in housing production across the J industreis in the
same manner as workers; alternatively, one could model the other, non-location-specific input into housing production as
migrant labor living at zero cost on rural land and only consuming the final good. The details are given in Appendix B.

6



(2.1) yields an expression for city-level wages:

wc = P(1− βξ)Ū
1

1−βξ β
βξ

1−βξ
Lc

Bc

βξ
1−βξ

(2.3)

2.1.2 Production

To study the impact of density on industrial geography and trade, we turn to the supply side of the
economy. For simplicity, output in industry j and city c is linear in labor Ljc(ω), the only input to
production. In industry j, the output of variety ω in city c, Qjc(ω), is given by:

Qjc(ω) = ÃjcLjc(ω)

A producer draws a Ricardian productivity parameter in each variety of good j in location c, Ãjc,
from a Fréchet distribution, with cumulative distribution function:8

Pr(Ãcj(ω) ≤ Ã) = Fjc(Ã) = exp(−
( Ã

Ajc

)−θ
)

The unit cost of production for variety ω in sector j and location c is then wc
Ãcj

.
Here we introduce the key assumption of the model: the relationship between population density

and industry-level productivity in a location. We assume that the scale of a sector’s productivity in
city c depends on (i) the city’s equilibrium population density Dc, and (ii) the extent to which each
sector benefits from local density, η̃j. In particular, we let: Ajc = D

η̃j
c .

The sector-specific ”density elasticity,” η̃j, mediates the relationship between density and sector-
specific productivity. Variation in η̃j across sectors—the extent to which industry productivity ben-
efits from local agglomeration—will be central to our empirical analysis, and is the key modeling
assumption. The idea that industries could benefit differentially from urban density has been argued
in prior work (e.g. Rosenthal and Strange, 2004; Faggio, Silva, and Strange, 2017) and is corroborated
by our empirical estimates in Section 3.9

2.1.3 Trade across cities

Under the maintained assumption of zero trade costs within a country, cost minimization by con-
sumers in any location d implies that the share of spending on varieties from location c in sector j
must be equal for any locations d in the same country:

πdcj = πcj =
pcjXdcj

Xdj
=

(D
η̃j
c )

θw−θ
c

∑c′(D
η̃j
c′ )

θw−θ
c′

(2.4)

8We assume the distribution has shape parameter θ > σ− 1. θ, which governs the variance across varieties, is assumed
constant across both locations and sectors. As is traditional in supply-driven models of specialization, θ > σ− 1 ensures
that the CES price index for each sector is well defined.

9We remain agnostic here about the specific source of sector-specific density affinity; in section 4.5, we explore potential
determinants of η̃j.
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where πdcj denotes spending in city d on goods in sector j produced in city c.10

2.1.4 Equilibrium

Goods market clearing. In the equilibrium of the closed domestic economy, the wage bill in each
sector j and city c equals total spending on goods produced in sector j in city c.11 This generates the
tradable goods market clearing condition:

wcLjc = αj
(AcD

η̃j
c )

θw−θ
c

∑c′(Ac′D
η̃j
c′ )

θw−θ
c′

∑
d

wdLd (2.5)

In the absence of within-country trade costs, the price index for good j is independent of the location
where it is consumed and is proportional to:12

pj ∝
[
∑
c′
(Ac′D

η̃j
c′ )

θw−θ
c′
]− 1

θ ∝
[
∑
c′
(Ac′D

η̃j− βξ
1−βξ

c′ )θ
]− 1

θ (2.6)

Trade balance requires that tradable spending from all locations on all goods produced in location c
is equivalent to the total wage bill in location c:

wcLc = ∑
j

∑
d

πdcjαj(1− βξ)YdLd = ∑
j

αjπcj ∑
d

wdLd = ∑
d

wdLd ∑
j

αjπcj (2.7)

Moreover, the housing market must clear in every location, as in Equation (2.2).

Labor market clearing. The ratio of labor allocated to sectors j and j′ in each city c is given by:

Ljc

Lj′c
=

αj

αj′
(

pj

pj′
)θ D

θ(η̃j−η̃j′ )
c (2.8)

Total population in a city equals the sum of employment across tradable sectors:

∑
j

Ljc = Lc (2.9)

The labor market clears for the country as a whole:

∑
c

Lc = ∑
c

∑
j

Ljc = L̄ (2.10)

10This expression is derived in Appendix B and relies on standard Eaton-Kortum algebra similar to Costinot, Donaldson,
and Komunjer (2011) and Michaels, Rauch, and Redding (2013). Given the unbounded nature of the Fréchet distribution,
the production structure does not lead to the full specialization of cities in the production of some sectors, which would
make the exposition more involved by inducing censoring at the bottom of the sector-city employment density without
adding substantial insight in the model.

11Note that sector j spending coming from location d is equal to the sum of consumer spending (αj(1− β)YdLdπjc) and
intermediate spending by housing producers (αjβ(1− ξ)YdLdπjc), so that total spending in d on j goods produced in c is
αj(1− βξ)YdLdπjc = αjwdLdπjc.

12The proportionality coefficients are independent of the sector and city, since θ is assumed constant
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We now define the equilibrium of the domestic economy.

Definition 2.1 (Equilibrium). An equilibrium in the closed economy is defined as an allocation of labor Ljc

across cities and sectors such that utility is equalized across sites; housing prices satisfy (2.2); trade shares
satisfy (2.4); wages satisfy (2.5) and (2.7); tradable prices satisfy (2.6); and labor allocations satisfy (2.8), (2.9)
and (2.10).

2.2 Implications

2.2.1 Within-Country Specialization

We now investigate the domestic sorting of production generated by the model. Double-differencing
spending shares (2.4) from any location d across two goods j and j′ and locations c and c′ yields:

( πjc

πj′c

)/( πjc′

πj′c′

)
=

Dc

Dc′

θ(η̃j−η̃j′ )

(2.11)

The absolute unit cost of production is increasing in density Dc; however, due to the need to com-
pensate workers with higher nominal wages, as Dc increases costs increase relatively faster in sectors
with lower η̃j. Denser cities thus have a comparative advantage in sectors that benefit more from
agglomeration. Immediately, this implies:

Lemma 1. The share of the labor force employed in higher η̃j sectors is relatively larger in denser cities:

( Ljc

Lj′c

)/( Ljc′

Lj′c′

)
=
( wcLjc

wcLj′c

)/( wc′Ljc′

wc′Lj′c′

)
=
( πjc

πj′c

)/( πjc′

πj′c′

)
=

Dc

Dc′

θ(η̃j−η̃j′ )

(2.12)

A log-linear expression for Ljc then takes the form:

log(Ljc) = κc + λj + η̃jθ × log(DC) (2.13)

Thus, within countries, employment in more density-loving sectors (high-η̃j) disproportionately
takes place in denser locations.13 In our empirical analysis, we use Equation 2.13 to estimate a value
for ηj = η̃jθ for each sector j (see Section 3.3). Moreover, motivated by the model mechanism in which
exogenous variation in housing productivity, Bc is the main supply-side shifter of local density, we
use geological instruments for log(DC) that shift construction costs independently from local demand
conditions when we estimate (2.13). Equation 2.3 serves as our first-stage identifying variation in
local population density. Our estimates of the ηj of each sector is the key industry-level variation in
our main empirical analysis.

13Introducing decreasing returns at the establishment level, for example related to the use of a fixed factor in production
such as management skill or land, would make these cross-cities, within-country comparative advantage results hold in
terms of the number of establishments as well, consistent with our empirical results in section 4.
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2.2.2 Cross-Country Specialization

Next, we turn to the model’s implications for international trade. Conditional on a fixed distribution
of location-level population, the closed economy price index in sector j relative to j′ is lower when
η̃j > η̃j′ . Stronger agglomeration forces in a sector increase productivity in all cities, and lower
equilibrium prices for any distribution of density. A more dispersed population implies relatively
more variation in sourcing prices across producing locations for higher η̃j sectors. Substitution across
sourcing cities implies lower relative price indices for more ”density-loving” sectors in countries with
a more dispersed population. This sub-modularity property of price indices in η̃j and Dc is at the core
of comparative advantage of countries in our global economy.

Comparative Advantage. To illustrate the implications of the model for patterns of exports under
international trade, we aggregate trade flows at the country level. As in Ramondo, Rodrı́guez-Clare,
and Saborı́o-Rodrı́guez (2016), we study the special case of N countries, indexed by i, each composed
of a set of regions c ∈ Ci, trading J goods indexed by j. We continue to assume that iceberg trade
costs are zero across two regions within any country; we also assume trade costs are symmetric and
constant across any two regions in two different countries.

To make the results as stark as possible, we assume all countries have the same total population
L̄ = Li. We let land area in each city, so that we simplify the model to the case where Lc = Dc. We
define Xinj as exports from country i to country n in industry j, w̃ijas the average wage in sector j
in country i, and Mi as country i’s aggregate wage bill. We can then state the following aggregation
result:

Proposition 1. Exports of sector j from country i to country n are given by

Xinj = αj Mn
Tijw̃−θ

ij τ−θ
ni

∑s Tsjw̃−θ
sj τ−θ

ns

where the country level productivity parameter is:

Tij =
(

∑
c∈Ci

(AcD
η̃j
c )

1
1+θ (

Ljc

Lji
)

θ
1+θ
)1+θ

Moreover, the aggregate wage bill can be expressed as:

Mi = ∑
j

w̃ijLij = ∑
j

∆ijL
θ

1+θ

ij T
1

1+θ

ij

where ∆ij, country i’s market access in sector j, solves the system of N × S equations:

∆ij =
[
αj

∑n Mnτ−θ
in

∑s τ−θ
is ∆−θ

sj L
1

1+θ

sj T
1

1+θ

sj

] 1
1+θ

Proof. See Appendix B.
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The country-by-sector composite productivity shifter Tij is relatively higher for density-loving
(high η̃j) goods in countries with a more spatially concentrated population (which are, all else equal,
countries with more variance in sector-neutral housing productivity Bc). Even though all countries
have the same total population, the within-country population distribution drives patterns of cross-
country trade. This is made clear by the following corollary:

Corollary 1. A second-order approximation to the Tij country-by-sector productivity shifter yields that it is
increasing in the product of the within-country variance of density and a function of the density affinity:

Tij ' ηj(ηj − 1) ∑
c∈Ci

(d̃c)
2

For ηj ≥ η̄, this country-by-sector productivity shifter is increasing in an interaction term between sectoral
density affinity ηj and within-country density population-weighted density Di = ∑c∈Ci

(d̃c)2, so that a log-
linear approximation to country-level exports can be expressed as:

log(X)ij = log(∑
n

Xinj) ' ξi + νj + βDi × ηj + o(X) (2.14)

Proof. See Appendix B.

Conditional on fixed effects at the country and industry-level, exports from country i in industry
j are increasing in the interaction between country-level population weighted density and industry-
level density affinity. As our main test of the theory and hypothesis, in our empirical analysis we
will use Equation 2.14 to estimate β. We will estimate ηj using the empirical analog to Equation 2.13
and we will measure population-weighted density Di for each country using global grid cell level
population estimates.

2.2.3 From Theory to Measurement: Population-Weighted Density

From the equilibrium definition in Section 2.1, the population distribution can be expressed as the
labor market clearing (2.10), along with a system of C equations that depend on city-level population-
weighted density, city-level population weighted amenities, and a constant term:

LcD
βξ

1−βξ
c = ∑

j
αj

(AcD
η̃j− βξ

1−βξ
c )θ

∑c′(Ac′D
η̃j− βξ

1−βξ

c′ )θ
∑
d

LdD
βξ

1−βξ

d (2.15)

There is a unique equilibrium when the maximum sector-level density elasticity (η̃max = maxj η̃j > 0)
is ”not too large” relative to the share of land in housing production (ξ); this makes congestion forces
strong enough to offset multiple equilibria.14

14The proof is analogous to Redding (2016). For a sufficiently small η̃max, a location’s density Dc is increasing in its
productive amenity Ac, since a higher Ac increases the marginal product of labor in any sector, leading to rising nominal
wages, population inflows, and land prices, until utility is again equalized. Agglomeration forces, modeled as positive η̃j’s,
reinforce this phenomenon, but do not offset it if they are small enough.
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At the country level a greater dispersion of Bc leads to greater equilibrium Dc dispersion. In
particular, the population density distribution in an economy with more dispersed Bc is second-order
stochastically dominated by the population density distribution in an economy with less dispersed
A∗c (see Appendix B), and we will observe the footprint of productivity dispersion across cities in
the dispersion (or concentration) of population. In the special case where total population is held
constant, which we ensure in our empirical analysis by controlling for total population and land area,
greater dispersion in the exogenous Bc’s can be mapped directly to greater country-level “population-
weighted density” (directly given by the variance of population across equally-sized locations):

Di =
∫ max Dc

0
L2

c dH(Dc)

which captures the local population density experienced by the average worker in the economy.
While, as discussed below, there are several intuitively appealing features of using this as our county-
level parameterization of population concentration, the model also indicates that it is the observable
consequence of dispersion (or lack thereof) of the primitive productivity distribution. This is the
measure we estimate next in Section 3, and use as our main measure of population concentration
(“density”) in Section 4.1.

3. MEASUREMENT

In this section, we first describe the main data sources used in the empirical analysis. We then de-
scribe how we measure both country-level population-weighted density (Di) and industry-level den-
sity affinity (ηj).

3.1 Data Sources

Economic Geography. Data on economic activity in the US are collected from the 2016 version of
the County Business Patterns (CBP) data set. The CBP contains information on employment, estab-
lishment counts, and total payroll in each industry and Core-Based Statistical Area (CBSA). We focus
on measures at the NAICS 4-digit level, which are less likely to suffer from suppression.15 We use
these data as part of our strategy to estimate industry-level density affinity.

To construct instruments for local density, we compile data on distance to subterranean bedrock
for all US CBSAs. Raster data displaying the distance to bedrock of each 250m grid cell in the US,
which we use to construct the instruments, are from the International Soil Reference and Information
Centre (ISRIC) SoilGrid project.16

We also compile data on a range of industry-level characteristics to use as control variables in our
main analysis. From the latest available year in the NBER-CES Manufacturing Industry Database, we
collect industry-level information on capital intensity, the labor share, and average wages. We also

15We verify that our results are not sensitive to imputation when using interpolation techniques to impute missing
employment data in the CBP.

16See here: https://www.isric.org/explore/soilgrids.
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compile data from the American Community Survey to control for the age and gender breakdown,
as well as detailed measures of the educational attainment of the workforce in each industry.

Density. Spatial data on global population density are obtained from the LandScan Database.17

These data are calculated by combining existing demographic and census data with remote sens-
ing imagery, and are released as a raster data set composed of one square-kilometer grid cells.18 The
resulting population count is an ambient or average day/night population count. We use the the
LandScan data to compute state and country-level estimates of population-weighted density. We also
replicate our results using several alternative sources of gridded poulation data, including the Global
Human Settlement Layer, the Gridded Population of the World, and the WorldPop Project. For our
instrumental variables analysis, we also rely on new measures of historical population and city size
distributions constructed from data sets recently introduced by Reba, Reitsma, and Seto (2016) and
Fang and Jawitz (2018).

Trade. US State-level international exports from 2016 are collected from the US Census Bureau’s
USATradeonline database.These data are provided at the NAICS 4-digits level, which is our primary
level of analysis across industries. We focus on gross exports flows, as they are the natural coun-
terpart of spending in our theoretical framework. Cross-country trade flows data are obtained from
the UN Comtrade Database for all available exporters in 2016, at the HS4 digit level. We map HS4
industries to NAICS-4 industries using the crosswalk developed by Pierce and Schott (2012).

Additional Data. To include additional controls in our cross-state and cross-country estimates, we
compiled US state-level data on educational attainment, age composition, and worker income from
the 2016 American Community Survey estimates. At the country level, we also compiled informa-
tion on educational attainment, urbanization, GDP per capita, and a range of other country-level
characteristics from the World Bank’s World Development Indicators and International Monetary
Fund’s World Economic Outlook databases, and measures of country-level capital stocks from the
Penn World Tables.

17LandScan data can be found here: https://landscan.ornl.gov We use the LandScan data product from 2016.
18For more information, see here: https://landscan.ornl.gov/documentation. According to LandScan: ORNL’s LandScan

is the community standard for global population distribution. At approximately 1 km resolution (30 × 30 degree), LandScan is the
finest resolution global population distribution data available and represents an ambient population (average over 24 hours). [...] The
LandScan global population distribution models are a multi-layered, dasymetric, spatial modeling approach that is also referred to as a
“smart interpolation” technique. In dasymetric mapping, a source layer is converted to a surface and an ancillary data layer is added
to the surface with a weighting scheme applied to cells coinciding with identified or derived density level values in the ancillary data.
[...] The modeling process uses sub-national level census counts for each country and primary geospatial input or ancillary datasets,
including land cover, roads, slope, urban areas, village locations, and high resolution imagery analysis; all of which are key indicators
of population distribution. [...] Within each country, the population distribution model calculates a “likelihood” coefficient for each cell
and applies the coefficients to the census counts, which are employed as control totals for appropriate areas. The total population for
that area is then allocated to each cell proportionally to the calculated population coefficient
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3.2 Estimating State and Country Level Density

For both US states and countries, we compute population-weighted density (Di) as:

Di = ∑
g∈G(i)

(
Lg ×

Lg

∑g′∈G(i) Lg′

)
where g indexes grid cells and G(i) is the set of grid cells in country (or state) i. Lg is the population,
according to LandScan, in grid cell i. Since all grid cells are the same size, Lg is also the density of grid
cell i. This measure is equivalent to weighting the population density of each grid cell in a country or
state by its population, and yields a measure of population density that approximates to the expected
experienced density of a person in the state or country.19

This is our key state and country-level independent variable of interest. Intuitively, this measure
captures the concentration of population within a state or country. For a given total population
if people are very concentrated in a few cities this measure will be large whereas if people are is
dispersed across many less-dense cities or suburban and rural areas, Di will be small. Figure 1 in the
Introduction displays the variation in our measure of country-level density across countries.

Figure 2 plots the distribution of Di across US states. While, intuitively, populous and urban
states like New York and California have high measures of Di, so do Massachusetts and Washington;
large states like Texas and Florida, with their large but more sprawling cities, are in the middle of the
distribution. As with the country-level figure, one lesson from this map is that traditional measures
of urbanization or average density fail to capture variation in experienced density, the key mecha-
nism behind urban spillovers. For example, while the experienced density of individuals in New
York State is substantially higher than Texas or Florida, the urbanization rate in the 2010 census was
comparable in all three states (87.9, 84.7, and 91.2 respectively).

3.3 Estimating Sector-Specific Density Affinity

Using industry-by-city level data from the US County Business Patterns (CBP), we estimate the ag-
glomeration elasticity of each tradable manufacturing sector. Because our focus is cross-country
trade, and manufactured goods account for the bulk of international exports, we emphasize the ex-
istence of substantial within-manufacturing differences in density affinity. Thus, none of our results
are driven by differences between agriculture and non-agriculture, or any other broader sectors of
the economy.

We compute a “density-elasticity” for each industry by estimating the following empirical analog
of the the model’s Equation (2.13):

log(Lcj) = αc + γj + ∑
j

ηj ·
(
ln Dc · Ij

)
+ εcj (3.1)

where c indexes cities and j indexes sectors. log(Lcj) is the (log of the) number of employees in in-
dustry j and location (city) c. αc and γj are city and sector fixed-effects, respectively. Dc is population

19See Wilson (2012) for a justification of the use of population-weighted density by the United States Census Bureau.
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Figure 2: Population weighted population density across US states. The figure is a map in which
US states are color-coded based on their population-weighted density quintile. Darker shaded states
have higher population-weighted density.

density at the level of the Core Based Statistical Area (CBSA), our empirical analog of the “cities” in
the model, and Ij is an indicator that equals one for sector j. The coefficients of interest are the density
elasticities, ηj, the key source of industry-level variation in the model. These elasticities capture the
extent to which each industry tends to be more or less represented in denser locations.

We first estimate Equation (3.1) using OLS and report the ten sectors with the highest and lowest
density elasticities in Panel A of Table 1. Since CBSA-level density is likely correlated with a range of
other city-level characteristics that might affect industry sorting, it is difficult to interpret the purely
correlational estimates. To circumvent this issue, we construct an instrument for CBSA-level density
in order to estimate the causal effect of a marginal change in CBSA-level density on industry-specific
production. Subterranean geology affects ease of vertical construction, and hence potential popula-
tion density, but is unlikely to independently affect other city-level characteristics. Our instrument is
the (log of the) average distance of each CBSA to subterranean bedrock. Lower distance to bedrock
in a location eases the land constraint, and can be interpreted as increasing the available share of land
Bc in our theoretical framework; construction often requires a foundation in bedrock and is more
difficult when bedrock is deep (e.g. Schuberth, 1968; Landau and Condit, 1999).20 By exogenously
shifting density, we estimate the response of industry specialization to density alone, capturing the
causal effect of a marginal change in city-level density on industry-level production.

The correlation between CBSA-level density and the log of the distance to bedrock is shown in
Figure 3. The correlation coefficient is highly statistically significant (t-statistic = 8.07) suggesting that,
consistent with the mechanical impact of distance to bedrock on construction, CBSA-level variation
in subterranean bedrock systematically shifts equilibrium population density. The necessary identi-

20Past research has made use of underlying geologic characteristics to provide exogenous sources of variation in land
supply availability and estimate its economic effects (Rosenthal and Strange, 2008; Saiz, 2010; Combes et al., 2010; Duranton
and Turner, 2018).
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Table 1: The Ten Most and Least Density Elastic Industries: OLS and IV Estimates

(1) (2) (3) (4)

NAICS	
Code

Industry	Name NAICS	
Code

Industry	Name

3222 Converted	Paper	Product	Manufacturing 3117 Seafood	Product	Preparation	and	Packaging

3345 Navigational,	Measuring,	Electromed.,	and	Cntrl	Instruments 3131 Fiber,	Yarn,	and	Thread	Mills

3261 Plastics	Product	Manufacturing 3112 Grain	and	Oilseed	Milling

3344 Semiconductor	and	Other	Elec.	Comp.	Manufacturing 3365 Railroad	Rolling	Stock	Manufacturing

3363 Motor	Vehicle	Parts	Manufacturing 3162 Footwear	Manufacturing

3339 Other	General	Purpose	Machinery	Manufacturing 3361 Motor	Vehicle	Manufacturing

3342 Communications	Equipment	Manufacturing 3221 Pulp,	Paper,	and	Paperboard	Mills

3321 Forging	and	Stamping 3161 Leather	and	Hide	Tanning	and	Finishing

3255 Paint,	Coating,	and	Adhesive	Manufacturing 3211 Sawmills	and	Wood	Preservation

3353 Electrical	Equipment	Manufacturing 3122 Tobacco	Manufacturing

3117 Seafood	Product	Preparation	and	Packaging 3361 Motor	Vehicle	Manufacturing

3151 Apparel	Knitting	Mills 3331 Ag.,	Construction,	and	Mining	Machinery	Manufacturing

3342 Communications	Equipment	Manufacturing 3112 Grain	and	Oilseed	Milling

3121 Beverage	Manufacturing 3325 Hardware	Manufacturing

3219 Other	Wood	Product	Manufacturing 3221 Pulp,	Paper,	and	Paperboard	Mills

3132 Fabric	Mills 3339 Other	General	Purpose	Machinery	Manufacturing

3371 Household	and	Institutional	Furniture	and	Cabinet	Manuf. 3111 Animal	Food	Manufacturing

3344 Semiconductor	and	Other	Elec.	Comp.	Manufacturing 3274 Lime	and	Gypsum	Product	Manufacturing

3113 Sugar	and	Confectionery	Product	Manufacturing 3114 Fruit	and	Veg.	Preserving	and	Specialty	Food	Manuf.

3211 Sawmills	and	Wood	Preservation 3346 Manuf.		and	Reproducing	Magnetic	and	Optical	Media

Bottom	Ten	Industries	by	Density	ElasticityTop	Ten	Industries	by	Density	Elasticity

Panel	B:	IV	Estimates	(Bedrock	Instrument)

Panel	A:	OLS	Estimates

fication assumption is that distance to subterranean bedrock only affects industry sorting through its
impact on ease of construction and hence population density.21

We then generate IV-2SLS estimates ηj using the interaction between industry-level indicators
(Ij) and (log of) distance to bedrock as the instruments. Industries with the highest and lowest IV
estimates of ηj are listed Panel B of Table 1. As a robustness check, since some of the CBP employ-
ment data are imputed, we also estimate versions of ηj for each sector using city-by-sector level data
on the number of establishments; below, we show all results are very similar using this alternative
measure.22

While many of these sectors are intuitive and commonly associated with production in dense
cities, in the case of the top sectors, or production away from large cities, in the case of the bottom
sectors, they also do not map clearly onto common determinants of comparative advantage. The top
of our list features both industries that are skill-intensive (e.g. Semi-conductor and Other Electronic
Component Manufacturing) and industries that are not skill-intensive (e.g. Beverege Manufactur-

21While this assumption seems likely, we also verify that the results are similar after controlling for other ground and
soil characteristics (e.g. characteristics of soil content, agricultural suitability, etc.). These estimates and their possible
parameterizations are available upon request.

22Equation 2.13 of the model, the estimating equation in this section, also holds when the dependent variable is log of
city-by-industry establishments, so long as there are decreasing returns to scale at the establishment level.
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Figure 3: Distance to Bedrock and Population Density. The figure is a binned scatter plot. It reports
the correlation between log of distance to bedrock and log of population density at the CBSA level.
The t-statistic is 8.07.

ing). The same is true for capital intensity.23

Figure 4 shows the distribution of establishments in the top and bottom ten sectors listed in Panel
B of Table 1 across the US. For each CBSA c and sector j, we compute:

Representationcj =
(∑j∈T,B Establishmentscj

∑j Establishmentscj

)/(∑c ∑j∈T,B Establishmentscj

∑c ∑j Establishmentscj

)
where T and B are the set of ten highest and lowest ηj sectors respectively. This normalization cap-
tures the over- or under-representation of top or bottom sectors in city c by normalizing the share of
city c manufacturing establishments that belong to j ∈ T/B by the overall share of manufacturing
establishments that belong to j ∈ T/B in the US.

Figure 4a shows the distribution of low-ηj sectors; they are disproportionately located in Upper
Midwest and Central and Northern Plains regions (purple-shaded regions). Figure 4b shows the
distribution of high-ηj sectors; they are disproportionately located on the East and West coasts, as
well as in cities in Texas and parts of the Midwest. There is significant variation within states as
well–almost all states have locations in which both high and low ηj sectors are disproportionately
produced.

23Moreover, motor vehicle manufacturing, for example, the top of Nunn (2007)’s list of contract intensive industries, but
are at opposite ends of our list. The same is true of Manufacturing and Reproducing Magnetic and Optical Media.
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(a) Low ηj Sectors (b) High ηj Sectors

Figure 4: Representation of Low- and High- ηj Sectors Across US Cities. Both (a) and (b) are US
CBSA-level maps. (a) displays the relative representation of low-ηj sectors, the ten sectors with the
lowest first principal component of our six density elasticity estimates. (b) displays the relative rep-
resentation of high-ηj sectors, the ten sectors with the lowest first principal component of our six
density elasticity estimates. These sectors are listed in Table 1

4. RESULTS: DENSITY AND THE PATTERN OF TRADE

This section presents our main findings that denser states and countries have a comparative advan-
tage in density-loving sectors. We first introduce our main estimating framework, and then present
our baseline state-by-sector and country-by-sector results. Next, we present instrumental variables
estimates that corroborate the baseline findings, and investigate the potential mechanisms that un-
derpin the main result.

4.1 Estimation Framework

To investigate whether population-weighted density, Di, is a systematic source of comparative ad-
vantage, our main empirical estimating equation is:

yij = αi + γj + β · η IV
j ln(Di) + X′ijΓ + eij (4.1)

where i indexes states or countries and j indexes sectors. This is the empirical analog of Equation
2.14 from the model. The unit of observation is a country (or state)-by-sector pair, and the depen-
dent variable is total exports in sector j from state or country i. The independent variable of interest
is an interaction term between (i) IV estimates of industry-level density affinity η IV

j and (ii) log of
state or country-level population weighted density ln(Di). The density affinity of all NAICS-4 sec-
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tors were estimated using Equation 3.1 and the instrumental variables strategy outlined in Section
3.3. Following Silva and Tenreyro (2006), we use the Poisson pseudo-maximum likelihood (PPML)
estimator as our baseline specification, but show throughout that results are similar using OLS and a
log-transformed dependent variable.24

The coefficient of interest is β. If β > 0, it implies that countries with greater population-weighted
density have a revealed comparative advantage in “density-loving” sectors.25 Since all specifications
include country (or state) and industry fixed effects, any characteristics that vary only across coun-
tries or industries are fully absorbed. In order to probe the robustness of our estimates of β and make
sure they are not biased by some omitted characteristic, we report estimates that include a range of
controls that vary at the state-by-sector or country-by-sector level (X′ij), described in detail below. In
Section 4.4 we propose an instrumental variables strategy that exploits variation in historical popu-
lation and city size distributions as shifters of modern population density.

4.2 US State-Level Results

We first present estimates of Equation 4.1 across US states. The over-representation of some man-
ufacturing sectors in dense areas in the United States might stem from either local supply or local
demand conditions. Our hypothesis focuses on the supply side, by suggesting that denser cities are
relatively more efficient in the production of “density-loving” industries. If this is the case, dense
areas within the US should not only attract relatively more employment and production in these in-
dustries, but also export significantly more of them internationally. Moreover, while many models of
international trade consider the entire US as a single “point,” different parts of the US specialize in
vastly different industries (see e.g. Irwin (2017) for a long-term perspective). Thus, as a preliminary
test of our hypothesis that regions with greater population-weighted density specialize in the export
of density-loving industries, we present results at the US state-by-industry level.26

Panel A of Table 2 reports Poisson maximum likelihood estimates while Panel B reports OLS
estimates with log of exports as the outcome variable. Across specifications, we find that the co-
efficient of interest β is positive and statistically significant, suggesting that US states with greater
population-weighted density have a comparative advantage in density-loving industries. Column 1
presents the coefficient of interest when only η IV

j × ln(Di)—the interaction between state-level popu-
lation weighted density and industry-level density affinity—is included on the right hand side (along
with state and industry fixed effects).

This first set of results demonstrates that US states that exhibit a more spatially concentrated pop-
ulation export relatively more in sectors whose production is concentrated in denser metropolitan
areas. According to our estimates, a one-standard deviation increase in the density interaction in-
creases the dependent variable by 0.139 standard deviations. Next, we probe the sensitivity of this

24As shown by Fally (2015), the Poisson pseudo-maximum likelihood estimation method has the additional benefit of
ensuring that predicted trade flows satisfy the ”adding up” constraint implicit in gravity models of trade.

25This framework follows the regression-based index of comparative advantage summarized in French (2017), as used,
among others, by Nunn (2007) or Bombardini, Gallipoli, and Pupato (2012).

26While some recent studies have attempted to estimate export data at the metropolitan level (see e.g. the database
constructed by Tomer and Kane (2014)), most trade flows data are still collected at a broader level of aggregation. The
smallest level of consistent and exhaustive trade reporting in the United States is the state.
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Table 2: State-Level Results: Density and Comparative Advantage

(1) (2) (3) (4) (5) (6) (7)

Strategy	for	estimation	of	
density	affinity:

Panel	A:	Outcome	Variable	is	Total	Exports	(Thousands),	PML	Model
Di	x		ηj 0.612*** 0.539*** 0.563*** 0.437*** 0.538*** 3.508*** 3.241***

(0.145) (0.117) (0.201) (0.0917) (0.199) (0.541) (0.660)

Panel	B:	Outcome	Variable	is	log(Exports),	OLS	Model
Dc	x		ηj 0.146* 0.129* 0.142* 0.120* 0.124 0.864** 0.839**

(0.0734) (0.0725) (0.0738) (0.0685) (0.0793) (0.358) (0.363)
R-squared 0.756 0.758 0.757 0.758 0.760 0.756 0.760
Factor	Intensity	Controls No Yes No No Yes No Yes
State	Level	Controls No No Yes No Yes No Yes
Industry	Level	Controls No No No Yes Yes No Yes
State	FE Yes Yes Yes Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes Yes Yes Yes
States 50 50 50 50 50 50 50
Observations 4,182 4,132 4,182 4,132 4,132 4,182 4,132

	ηj	computed	using	industry-

level	number	of	
establishments

	ηj	computed	using	industry-level	employment

Notes:	The	unit	of	observation	is	a	state-by-sector	pair.	The	coefficient	of	interest	is	the	coefficient	on	an	interaction	between	state-level	
population	weighted	density	and	sector-level	density	affinity	computed	using	the	bedrock	IV	and	city-level	employment	in	columns	1-5	
and	estalishments	in	columns	6-7.	Panel	A	reports	Poisson	pseudo-maximum	likelihood	estimates	while	Panel	B	reports	OLS	estimates.	
All	specifications	include	state	and	sector	fixed	effects,	along	with	other	controls	listed	at	the	bottom	of	each	column.	Standard	errors,	
clustered	at	the	state	level,	are	reported	in	parentheses.		*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	levels	respectively

Dependent	Variable	is	Total	Exports	from	the	State-Sector

baseline finding.

Sensitivity: Additional Controls. The remaining specifications in Table 2 investigate the robustness
of this baseline result to the inclusion of additional controls. In order to rule out the possibility that
the results are driven by state-level differences in education and comparative advantage in high-skill
industries (Davis and Dingel, 2014), in column 2 we include a series of interactions between state-
level educational attainment and sector-level skill demand. In particular, we separately interact the
share of people in each state who have achieved a (i) high school degree, (ii) a bachelors degree, and
(iii) a graduate degree, with the share of people employed in each sector (i) that have a high school
degree or (ii) that have at least a college degree. The inclusion of these six interactions has little effect
on our coefficient of interest.

In column 3, we control for a series of state-level variables interacted η IV
j in order to investigate

whether the baseline result is driven by some omitted state-level characteristic that may be correlated
with Di. These controls include (log of) the median household income; (log of) state-level population;
the share of inhabitants with high school, bachelor, and graduate degree; and the share of young
people, aged 18-30. It is possible, for example, that denser states are also just wealthier and that this
drives the baseline estimate. However, the coefficient of interest remains very similar after including
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these controls.
In order to address the potential for omitted industry-level characteristics, in column 4 we control

for a series of industry-level characteristics interacted with ln(Di). These covariates, computed for
each manufacturing industry in the US, are the value of installed capital per worker, (log of) the
average employee compensation, the share of workers with at least a college degree, the average age
of employees, and the gender breakdown of employment. In column 5 we include all 17 controls
mentioned thus far and again, the coefficient of interest remains very similar. It does, however,
lose statistical significance in Panel B when we use an OLS regression model and log of exports as
the outcome variable; this is driven by a larger standard error rather than a decline in coefficient
magnitude.

Sensitivity: Measurement. The results are also not sensitive slight variations in our strategy to esti-
mate the ηj of each sector or trade values. In columns 6-7 of Table 2 we repeat the specifications from
columns 1 and 5—the specifications without any controls and the specification with all controls—and
construct the ηj using industry-level establishment data rather than employment data. Reassuringly,
in both columns 6 and 7 and in both Panels A and B, our coefficient of interest is positive and highly
significant. More generally, Table A1 reports estimates from a series of additional specifications; each
reported coefficient in Table A1 is estimated from a separate regression. The results are very similar
if we use the versions of ηj estimated using OLS (instead of IV) and using city-level data on payroll,
rather than employment or establishments. All findings are also similar if we exclude state-industry
pairs with zero exports (Table A2).

4.3 Country-Level Estimates

We now turn to the main result of the paper: the relationship between density and patterns of cross-
country trade. Estimates of 4.1 in which the units of observation are country-industry pairs are re-
ported in Table 3. Panel A presents Poisson pseudo-maximum likelihood estimates while Panel B
reports OLS estimates. The coefficient of interest in a specification without controls is presented in
column 1; it is positive and highly significant. Countries with a more concentrated population distri-
bution have a revealed comparative advantage in density-loving sectors.

In column 2, we control directly for traditional determinants of comparative advantage, including
capital and skill intensity (Romalis, 2004).27 Since data on the country-level capital stock is only
available for 90 countries, the sample size of the regression is reduced; nevertheless, the coefficient of
interest is almost exactly identical.

These estimates indicate that the distribution of population within countries is a potentially im-
portant determinant of comparative advantage and patterns of trade. Our point estimate from col-
umn 2, when factor endowment controls are included, implies that a one standard deviation increase
in the density interaction increases the outcome variable by 0.113 standard deviations. This is slightly

27In particular, we interact country-level capital stock (as drawn from the Penn World Tables) with an industry’s average
level of capital intensity obtained from the NBER-CES Manufacturing database. We also interact measures of educational
attainment at the country level with our estimates of the skill intensity of an industry in US data computed from the share
of high school and college attainment of workers in the industry in the American Community Survey data.
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Table 3: Country-Level Results: Density and Comparative Advantage

(1) (2) (3) (4) (5)

Panel	A:	Outcome	Variable	is	Total	Exports	(Thousands),	PML	Model
Di	x		ηj 0.456*** 0.464*** 0.757*** 0.462*** 0.765***

(0.111) (0.110) (0.0849) (0.0710) (0.0731)

Panel	B:	Outcome	Variable	is	log(Exports),	OLS	Model
Di	x		ηj 0.104** 0.105** 0.288*** 0.122*** 0.262***

(0.0487) (0.0524) (0.0645) (0.0454) (0.0627)

R-Squared 0.814 0.796 0.793 0.816 0.797

Factor	Intensity	Controls No Yes No No Yes

Country	Level	Controls No No Yes No Yes

Industry	Level	Controls No No No Yes Yes

Country	FE Yes Yes Yes Yes Yes

Industry	FE Yes Yes Yes Yes Yes

Countries 134 90 107 134 83

Observations 10,464 7,241 8,542 10,332 6,674

Dependent	Variable	is	Total	Exports	from	the	Country-Sector

Notes:	The	unit	of	observation	is	a	country-by-sector	pair.	The	coefficient	of	interest	is	the	coefficient	

on	an	interaction	between	country-level	population	weighted	density	and	sector-level	density	affinity	

computed	using	the	bedrock	IV	and	city-level	employment.	Panel	A	reports	Poisson	pseudo-maximum	

likelihood	estimates	while	Panel	B	reports	OLS	estimates.	All	specifications	include	country	and	sector	

fixed	effects,	along	with	other	controls	listed	at	the	bottom	of	each	column.	Standard	errors	clustered	

at	the	country	level,	are	reported	in	parentheses.			*,	**,	and	***	denote	significance	at	the	10%,	5%,	

and	1%	levels	respectively.

larger in magnitude than the coefficient on the capital interaction, which implies a standardized beta
coefficient of 0.109.28 As we include additional controls (below), the magnitude of the coefficient of
interest rises and implies a beta coefficient on the density interaction of 0.276.

Sensitivity: Additional Controls. The remaining columns of Table 3 probe the sensitivity of the
estimates to the inclusion of additional controls. In column 3 we control for a series of country-level
characteristics interacted with the sector-level density elasticity measure, η IV

j . These are included to
account for the fact that population-weighted density is potentially related to other country-level
characteristics that may affect comparative advantage. In particular, we control for (the log of)
country-level total population, educational attainment, urbanization, the share of population em-
ployed in agriculture, the share of population employed in service production, (log of) per capita
GDP (PPP adjusted), and a rule of law index, all interacted with η IV

j . Again, the coefficient of interest
is very similar. In Table A3 we reproduce our findings after including continent-by-industry fixed
effects; this specification flexibly controls for differences in industry-specific productivity and trade in

28Reassuringly, our estimates of the magnitudes of comparative advantage due to factor endowments is very similar to
Nunn (2007), who estimates a beta coefficient on an analogous capital interaction of 0.105.
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different parts of the world, and again the results are very similar.
Next, we investigate the robustness of the result to the inclusion of industry-level controls. We

control for the same industry-level controls as in Table 2, interacted with country-level measures of
population-weighted density, Di. Reassuringly, the coefficient of interest is again very similar after
the inclusion of these controls. In column 5, we include all controls mentioned thus far on the right-
hand side of the regression. Due to missing covariates, the sample size is reduced to 83 countries, yet
the coefficient of interest remains positive and highly significant, suggesting that our findings are not
driven by standard determinants of comparative advantage or other measurable country or industry
level characteristics.

Sensitivity: Measurement. We next investigate whether the results are sensitive to our measure-
ment strategies. Table A5 documents that the results are not sensitive to the use of our alternative
estimates of ηj, estimated using establishment or payroll data. The estimates are also very similar
after excluding countries in the bottom 10% of the income and population distributions. The low-
est income countries likely also have lower quality data and the smallest or poorest countries might
have extreme values of either density or trade values. As in the case of our state-level estimates, the
findings are also very similar if we include country-industry pairs with zero exports (Table A2).

Finally, we show that the results are robust to using alternative sources of of population data.
While our baseline results rely on the Landscan database, other organizations, using slightly dif-
ferent methodologies to account for sparse data in parts of the world, also produce gridded global
population estimates. Alternative population databases include the Global Human Settlement Layer,
the Gridded Population of the World, and the WorldPop Project. We measure country-level popu-
lation density using each of these data sets and re-estimate our baseline results after computing the
independent variable of interest from each data source. These results are presented in Table A4 and
our findings are very similar across population data sources.29

4.4 Endogeneity: Instrumental Variables Estimates

This section proposes an instrument for population-weighted density and reports instrumental vari-
able estimates of our baseline specification. The goal of introducing an instrument is to make sure
that the baseline results are not driven by reverse causality. That is, it is possible that the composition
of a state or country’s exports has feedback effects and shapes its economic geography; we would
then find a positive coefficient on our density interaction, but it would be incorrect to interpret the
relationship as evidence that density is a source of comparative advantage. To rule out the possibility
that our results capture the effect of trade on economic geography, we use characteristics of a state or
country’s historical population distribution to construct instruments for the population distribution
today. While characteristics of a country’s historical population distribution predict its modern pop-
ulation distribution, it seems unlikely that modern patterns of trade, which developed largely after

29We thank Richard Delome for pointing this out to us, and rely on his version of the data sets
which can be found here: https://github.com/richarddelome/density_metrics/blob/master/README.md?fbclid=

IwAR1KQ1KJB5FeLW45R0HXA63gfET9XT8jS7ecmaQ9h-B7LmPYuJW1ODAdK98.
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World War II (e.g. Irwin, 2017), have a direct effect on the population distribution in in 1900.
The ideal instrument for our purposes would be a historical measure of population weighted

density, analogous to our contemporary measure. For each US state, we construct exactly such a
measure using grid cell level estimates of the historical US population distribution presented in Fang
and Jawitz (2018).30 Using this gridded data set, we compute the population weighted density of
each US state in 1900 (D1900

i ).31 The first stage estimating equation is thus:

η IV
j ln(Di) = ξ · η IV

j · ln(D1900
i ) + αi + γj ++X′ijΓ + eij (4.2)

where we hypothesize that ξ >> 0. This would indicate that historical population-weighted density
is a strong predictor of state-level population-weighted density today.

Our state-level IV-2SLS estimate of Equation 4.1, in which the first stage estimating equation is
(4.2), is presented in column 1 of Table 4. In column 4, we report the version of the estimate when ηj

is estimated from data on establishments. The IV-2SLS coefficient estimates are positive, statistically
significant, and similar in magnitude to the OLS estimates, suggesting that our state-level findings are
not driven by reverse causality. Moreover, the first stage relationship is also strong; the Kleibergen-
Paap first stage F-statistic is 25.159.

While it is possible to directly estimate the historical population weighted density of each US
state, to our knowledge this is not possible at the country level. Therefore, we need an alternative
strategy to construct the country-level instruments. In order to adapt the logic of our identification
strategy to the country-level analysis, we determine the location and population of cities around the
world in 1900 using historical data collected by Chandler (1987), and recently digitized by Reba,
Reitsma, and Seto (2016).32 Intuitively, high Di corresponds to having a high city population con-
centrated in a relatively small number of cities. For each state and country, we therefore compute
the total population across all cities (p1900

i ), as well as the inverse number of cities (c1900
i ). We include

both, as well as their interaction (p1900
i · c1900

i ), all interacted with ηj, as excluded instruments. We
expect p1900

i · c1900
i · ηj to be positively correlated with Di · ηj, the endogenous variable, since a high

value of p1900
i · c1900

i implies that in 1900 the state had high overall city population concentrated in a
small number of cities.

The first stage estimating equation using the city-level data is:

η IV
j ln(Di) = ζ · c1900

i · η IV
j + ξ · p1900

i · η IV
j + φ · p1900

i · c1900
i · η IV

j + αi + γj ++X′ijΓ + eij (4.3)

and we hypothesize that φ > 0. States (and below, countries) with a high historical urban population
concentrated in a small number of cities should—if the logic of the instrument is correct—have higher
population-weighted density today.

30Fang and Jawitz (2018) combine historical census data with population modeling techniques to construct a spatially
explicit distribution of the US population for each decade since 1790. While the most advanced version of their model also
uses socioeconomic characteristics of each region to predict population, we use the “Level 4” version of the model that
does not take socioeconomic characteristics into account.

31We select the year 1900 for comparability with our country-level IV estimates, which have additional data constraints
and are reported below.

321900 was chosen because it is the oldest year with broad and global coverage.

24



Table 4: State-Level Results: IV Estimates

(1) (2) (3) (4) (5) (6)

Strategy	for	estimation	of	
density	affinity:

Dc	x		ηj 0.231** 0.149** 0.288*** 1.098*** 0.657* 0.951***
(0.0878) (0.0692) (0.0865) (0.408) (0.381) (0.349)

ln(population)	x	ηj -0.106 -0.0921
(0.0816) (0.0738)

K-P	F-Statistic 25.159 45.755 25.411 25.251 45.127 37.259
State	FE Yes Yes Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes Yes Yes
States 48 39 39 48 39 39
Observations 4,182 4,132 4,182 4,132 4,132 4,182

Dependent	Variable	is	Total	Exports	from	the	State-Sector

Notes:	The	unit	of	observation	is	a	state-by-sector	pair.	The	coefficient	of	interest	is	the	coefficient	on	an	
interaction	between	state-level	population	weighted	density	and	sector-level	density	affinity	computed	using	
the	bedrock	IV	and	city-level	employment	in	columns	1-3	and	estalishments	in	columns	4-6.	All	estimates	
report	IV-2SLS	estimates.	In	columns	1	and	3,	the	excluded	instrument	is	an	interaction	between	sector-level	
density	affinity	and	state-level	population	weighted	density	computed	from	the	US	1900	poplulation	
distribution.	In	columns	2-3	and	5-6,	the	excluded	instruments	are	the	total	urban	population	in	the	state	in	
1900,	the	inverse	number	of	cities,	and	the	interaction	between	the	two.	The	Kleibergen-Paap	F-statistic	for	
each	first	stage	regression	is	reported	at	the	bottom	of	each	column.	Standard	errors,	clustered	at	the	state	
level,	are	reported	in	parentheses.		*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	levels	
respectively.

	ηj	computed	using	industry-level	
employment

	ηj	computed	using	industry-level	
number	of	establishments

First, in order to validate this strategy, we reproduce our state-by-sector IV estimates using the
instruments constructed from the historical city-level data. These estimates are reported in columns
2-3 of Table 4. The sample is reduced to 39 states because 11 states have no cities in the Chandler
(1987) data in 1900. Nevertheless, the estimates remain positive and highly significant albeit some-
what smaller in magnitude. Since p1900

i (total urban population in 1900), one of the excluded instru-
ments, will likely be mechanically correlated with modern population, we control for modern (log
of) country population interacted with ηj in column 3; the coefficient of interest remains positive and
significant and increases in magnitude. Analogous estimates in which ηj is computed from data on
establishments are reported in columns 5-6, and the results are very similar. Next, we turn to IV-2SLS
estimates of our country-level results. Across countries, we rely exclusively on the instruments con-
structed from the Chandler (1987) city-level data. Although this is a limitation, it is worth noting that
across US states, our instrument constructed from the Chandler (1987) data and our direct estimate of
historical population weighted density are highly positively correlated; the binned partial correlation
plot is reported in Figure 5.

Next, we turn to IV estimates of our main country-level results. Country-by-industry estimates
of Equation 4.1 are presented in Panel A of Table 5; the first stage estimating equation is Equation 4.3
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Table 5: Country-Level Results: IV Estimates

(1) (2) (3) (4) (5) (6)

Excluding	Bottom	10%	by	

Population

Excluding	Bottom	10%	by	

Income

Panel	A:	IV-2SLS	Estimates
Di	x		ηj 0.517** 0.279** 0.411** 0.319*** 0.404** 0.214**

(0.236) (0.117) (0.196) (0.116) (0.185) (0.0894)

ln(population)	x	ηj -0.0895** -0.0434 -0.0887**

(0.0366) (0.0407) (0.0346)

Panel	B:	First	Stage	Estimates
(pi	,	1900)	x	(ci	,	1900)	x		ηj 0.787** 1.021*** 0.797** 1.091*** 1.119*** 1.153***

(0.344) (0.312) (0.338) (0.345) (0.382) (0.356)

pi	,	1900	x		ηj -0.614*** -0.728*** -0.634*** -0.766*** -0.705*** -0.787***

(0.213) (0.180) (0.211) (0.189) (0.227) (0.192)

ci	,	1900	x		ηj -8.705** -10.54*** -8.782** -11.36*** -12.43*** -11.83***

(3.868) (3.497) (3.807) (3.868) (4.304) (3.998)

R-Squared 0.095 0.463 0.115 0.474 0.127 0.527

K-P	F-Statistic 8.533 27.145 9.104 24.904 9.176 28.569

Panel	C:	OLS	Estimates
Di	x		ηj 0.134** 0.196*** 0.169*** 0.181*** 0.129** 0.198***

(0.0624) (0.0709) (0.0608) (0.0676) (0.0635) (0.0719)

ln(population)	x	ηj -0.0753** -0.0175 -0.0861**

(0.0334) (0.0344) (0.0332)

Country	FE Yes Yes Yes Yes Yes Yes

Industry	FE Yes Yes Yes Yes Yes Yes

Countries 86 86 77 77 78 78

Observations 7022 7022 6281 6281 6379 6379

Dependent	Variable	is	Total	Exports	from	the	State-Sector

Notes:	The	unit	of	observation	is	a	country-by-year	pair.	Panel	A	reports	IV-2SLS	estimates,	Panel	B	reports	first	stage	

estimates,	and	Panel	C	reports	OLS	estimates.		The	coefficient	of	interest	is	the	coefficient	on	an	interaction	between	

country-level	population	weighted	density	and	sector-level	density	affinity	computed	using	the	bedrock	IV	and	city-

level	employment.	p	is	the	log	of	the	total	urban	population	in	1900	and	c	is	the	inverse	number	of	cities.	All	

specifications	include	country	and	sector	fixed	effects,	along	with	other	controls	listed	at	the	bottom	of	each	column.	

Sample	restrictions	are	noted	in	the	column	header.	The	Kleibergen-Paap	F-statistic	for	each	first	stage	regression	is	

reported	at	the	bottom	of	Panel	B.	Standard	errors	clustered	at	the	country	level,	are	reported	in	parentheses.			*,	**,	and	

***	denote	significance	at	the	10%,	5%,	and	1%	levels	respectively.

Full	Sample

and first stage estimates are reported in Panel B. For comparison, Panel C reports OLS estimates. Our
baseline country-level IV-2SLS estimate is reported in column 1 of Table 5. The coefficient estimate is
positive and significant, supporting the argument that density is a source of comparative advantage
and that our baseline estimates are not driven by reverse causality. Reassuringly, and following the
state-level analysis, in the first stage specification we find that φ > 0 while the direct effects of p1900

i

and c1900
i are both negative. The IV estimate, however, is larger in magnitude than the OLS estimate.

One explanation for this is that the IV estimate is capturing a particular local average treatment
effect. For example, it could be the case that countries whose modern economic geography is highly
correlated with economic geography in 1900 are also countries that industrialized early, and are very

26



specialized in industries that fit their population distribution. This would generate IV estimates that
are larger than OLS.

Another possible explanation, as noted above, is that variation in the instruments is correlated
with the error term in the second stage regression. Indeed, the instruments are constructed from
historical population data and likely capture variation in total population, not only variation in Di.
Following the control strategy in our baseline results, in column 2 we include an interaction term
between the (log of) present day population and η IV

j as a control. The IV coefficient is smaller in
magnitude in column 2 and more precisely estimated. While it remains larger than the OLS estimate,
it is no longer statistically distinguishable.

One potential concern with using the Chandler (1987) data is that data quality and coverage are
likely different for different sets of countries. In particular, it is likely of lower quality for smaller and
lower income countries, which might be more likely to have cities excluded from the data. To make
sure this is not driving the result, in columns 3-4 and 5-6 we repeat the specifications from columns 1-
2 after dropping countries in the bottom 10% of the population and income distribution respectively.
Reassuringly, our estimates remain very similar. The results are also similar if we drop countries in
the bottom 20 or 25% of the distribution (not reported).

Taken together, the robustness of our result to the battery of controls and specifications in the
previous section, as well as the broadly similar results using these historical instruments, indicates
that density is a important and causal determinant of patterns of trade.

4.5 Mechanisms: What drives density affinity?

We next investigate the potential mechanisms underpinning the baseline results. While in the main
specification we relied on a reduced-form measure of industry-level “density affinity,” in this section
we explore which industry characteristics might drive the baseline estimates. Our approach is to
estimate versions of our baseline estimating equation:

yij = αi + γj + ξ · ln(Di) · Zj + X′ijΓ + eij (4.4)

where Zj is a vector of sector-level characteristics that potentially determine density affinitty (ηj).
We investigate a variety of potential characteristics Zj. If ξ = 0, we interpret that as evidence that
Zj does not drive our main results, whereas if Zj > 0 we interpret that as evidence that Zj is a
potential intervening mechanism. Finally, in order to determine whether our candidate mechanisms
can explain our main findings, we add ηj · ln(Di) to Equation 4.4 and document the extent to which
its effect is attenuated by the inclusion of the Zj · ln(Di)

First, some recent work has highlighted the greater skill and level of human capital in cities (Davis
and Dingel, 2014). In the baseline specification, we control flexibly for the potential role of variation
in skill or education, both across sectors and across countries. In column 1 of Table 6, we report
the coefficient on the interaction between population-weighted density and the share of employment
in each industry in the US with a college degree. The coefficient on this interaction is positive but
statistically insignificant; we also do not find evidence that education is driving the result if we break
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the industry-level education measure into a larger number of discrete bins (not reported). Another
potential determinant of our density affinity measure is the extent to which each sector relies on
differentiated local services. Population density might facilitate the productive provision of services
and sectors that rely more on local services may therefore benefit disproportionately from density
(Abdel-Rahman and Fujita, 1990; Abdel-Rahman and Fujita, 1993). However, we do not find evidence
that service reliance explains the export patterns of high-ηj sectors (column 2). The coefficient on
the interaction between population-weighted density and industry-level service intensity is in fact
negative and far from statistically significant.

Certain industries may locate away from dense cities if they rely on immobile natural resources
(e.g. Ades and Glaeser, 1995). These sectors might be less able to benefit from urban externalities
and variation in natural resource dependence across industries might drive our variation in density
affinity. Indeed, the sectors at the bottom of our “density affinity” list seem to be those that source
extensively from natural resources (see Table 1). To investigate this, we compute the share of natural
resource inputs for each manufacturing sector using the US input-output tables. The coefficient on
the interaction term between population-weighted density and industry-level natural resource de-
pendence is negative and significant (column 3 of Table 6), suggesting that indeed denser countries
export less in sectors that rely on natural resources. This is consistent with the idea that resource-
reliant sectors locate away from urban centers and that dense countries are disproportionately pro-
ductive in industries that do not rely on natural resources.

Yet another potential mechanism is the role of research and development (R&D) in production.
Industries rely differentially on R&D expenditure and innovation in the production process. If cities
facilitate innovation (e.g. Duranton and Puga, 2001; Duranton and Puga, 2004), then sectors that rely
disproportionately on R&D might be especially productive in dense cities. Our baseline estimates
might be capturing the role of density in facilitating R&D. To investigate this, for each sector we com-
pile data on (i) R&D spending per worker and (ii) the share of employees in science, technology, engi-
neering, and mathematical (STEM) fields from the Brookings Advanced Industries database. Again,
we include an interaction term between both measures and country-level density in our baseline
country-level estimating equation; the estimates are reported in column 4 of Table 6. Both interac-
tions are positive and statistically significant, suggesting that density may play a role in facilitating
R&D and that denser places specialize in the export of R&D intensive sectors.

Finally, we take a more hands-off approach and investigate whether the task content of produc-
tion in each sector drives the relationship between density affinity and comparative advantage. To
measure the task content of each industry, we follow Lanz, Miroudot, and Nordås (2013) and com-
bine data from O∗NET on the task content of each occupation with data on occupations by industry
from the Occupational Employment Statistics (for the US) and the Labour Force Survey (for the Euro-
pean Union).33 We aggregate the task content of each occupation to the industry level by weighting
each occupation by its share of total employment in the industry (see Section 4 of Lanz, Miroudot,
and Nordås, 2013). This yields an industry-level measure of the importance of each of the forty-one

33A potential shortcoming of this approach is the fact that we only have data on the task content of production for the
US. Taylor et al. (2008), however, document that the task content of different occupations is very similar across countries.
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Table 6: Exploring Potential Mechanisms

(1) (2) (3) (4) (5) (6)

	ηj	computed	using	industry-level: Total	Emp.
Number	of	

Est.

Di	x		ηj 0.875*** 2.282***
(0.171) (0.494)

Di	x		(Share	Employment	College	Educated)j 0.996 1.989 -1.484
(1.944) (1.538) (1.954)

Di	x		(Services	Input	Share)j -0.646 -0.592 -0.444
(0.620) (0.443) (0.497)

Di	x		(Nat.	Resource	Input	Share)j -1.575** -0.599 -1.186**
(0.652) (0.430) (0.559)

Di	x		(R&D	per	Worker)j 0.0844** 0.0743** 0.0705*
(0.0378) (0.0370) (0.0387)

Di	x		(Share	STEM	Workers)j 1.124** 1.290** 0.804
(0.525) (0.527) (0.493)

Country	Level	Controls Yes Yes Yes Yes Yes Yes
Industry	Level	Controls Yes Yes Yes Yes Yes Yes
Country	FE Yes Yes Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes Yes Yes
Observations 8,437 8,437 8,437 8,333 8,333 8,333

(1) (2) (3) (4) (5) (6)

	ηj	computed	using	industry-level: Total	Emp. Number	of	
Est.

Di	x		ηj 0.875*** 2.282***
(0.171) (0.494)

Di	x		(Share	Employment	College	Educated)j 0.996 1.989 -1.484
(1.944) (1.538) (1.954)

Di	x		(Services	Input	Share)j -0.646 -0.592 -0.444
(0.620) (0.443) (0.497)

Di	x		(Nat.	Resource	Input	Share)j -1.575** -0.599 -1.186**
(0.652) (0.430) (0.559)

Di	x		(R&D	per	Worker)j 0.0844** 0.0743** 0.0705*
(0.0378) (0.0370) (0.0387)

Di	x		(Share	STEM	Workers)j 1.124** 1.290** 0.804
(0.525) (0.527) (0.493)

Country	Level	Controls Yes Yes Yes Yes Yes Yes
Industry	Level	Controls Yes Yes Yes Yes Yes Yes
Country	FE Yes Yes Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes Yes Yes
Observations 8,437 8,437 8,437 8,333 8,333 8,333

(1) (2) (3) (4) (5) (6) (7)

Di	x		ηj 0.780*** 0.281* 0.269*
(0.183) (0.143) (0.163)

Di	x		(Share	Employment	College	Educated)j 0.996
(1.944)

Di	x		(Services	Input	Share)j -0.646
(0.620)

Di	x		(Nat.	Resource	Input	Share)j -1.575** 0.595
(0.652) (0.679)

Di	x		(R&D	per	Worker)j 0.0844** 0.0242
(0.0378) (0.0276)

Di	x		(Share	STEM	Workers)j 1.124** 3.938***
(0.525) (0.948)

Task	Controls No No No No No Yes Yes
Country	Level	Controls Yes Yes Yes Yes Yes Yes Yes
Industry	Level	Controls Yes Yes Yes Yes Yes Yes Yes
Country	FE Yes Yes Yes Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes Yes Yes Yes
Observations 8,437 8,437 8,437 8,333 8,437 8,333 8,437
Notes:	The	unit	of	observation	is	a	country-by-sector	pair.	All	specifications	include	country	and	sector	fixed	effects,	along	with	other	
controls	listed	at	the	bottom	of	each	column.	Sector-level	density	affinity	computed	using	the	bedrock	IV	and	city-level	employment.	
Additional	interactions	included	in	each	regression	are	noted	on	the	left	side	of	the	table.	Standard	errors	clustered	at	the	country	level,	
are	reported	in	parentheses.			*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	levels	respectively.

Dependent	Variable	is	Total	Exports	from	the	Country-Sector

Notes:	The	unit	of	observation	is	a	country-by-sector	pair.	All	specifications	include	country	and	sector	fixed	effects,	along	
with	other	controls	listed	at	the	bottom	of	each	column.	Sector-level	density	affinity	computed	using	the	bedrock	IV	and	
city-level	employment	(columns	5)	or	city-levelemployment	(column	6).	Additional	interactions	included	in	each	
regression	are	noted	on	the	left	side	of	the	table.	Standard	errors	clustered	at	the	country	level,	are	reported	in	
parentheses.			*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	levels	respectively.

Dependent	Variable	is	Total	Exports	from	the	Country-Sector

Dependent	Variable	is	Total	Exports	from	the	Country-Sector

O∗NET tasks, each of which we interact with country-level density and include on the right hand
side of our baseline estimating equation.

While this analysis is necessarily speculative, our main conclusion is that sectors that rely on more
interactive and collaborative tasks are disproportionately exported from denser places. The tasks that
are important in sectors that disproportionately export from denser countries include “Guiding, Di-
recting, and Motivating Subordinates,” ”Coaching and Developing Others,” ”Communicating with
Persons Outside Organization” and ”Provide Consultation and Advice to Others,” and “Selling or
Influencing Others.” Also in this set are tasks involving technical skill, including “Estimating the
Quantifiable Characteristics of Products, Events, or Information” and “Documenting/Recording In-
formation.” These findings dovetail with recent work by Michaels, Rauch, and Redding (2019) doc-
umenting that since 1880, in the US there has been a dramatic increase in the employment share of
“interactive” occupations in metro areas.

Meanwhile, the set of tasks that are significantly less likely to be important in sectors exported
by denser countries tend to involve interaction with machines, including ”Controlling Machines and
Processes,” ”Operating Vehicles, Mechanized Devices, or Equipment,” ”Repairing and Maintaining
Mechanical Equipment.” The tasks “Handling and Moving Objects” and ”Inspecting Equipment,
Structures, or Material” also enter with negative coefficients of similar magnitude; however, they are
not statistically significant. The full set of tasks that enter the regression, positively or negatively,
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with a significant coefficient (p < 0.1) are listed in Table A6.
We next investigate whether these sector-level characteristics drive the effect of density-affinity in

our main results. In column 5 of Table 6 we reproduce the baseline estimate for reference. In column
6, we include controls for all potentially relevant mechanisms described in this section. While the
coefficient on the density affinity variable remains positive and (Weakly) significant, its magnitude
is reduced by over half, suggesting that the mechanisms described in this section do explain part of
the sector-level variation that drives the comparative advantage of denser countries. In column 7, we
include only the task content interactions, and the coefficient on the density affinity variable remains
similar, suggesting that the task content of more vs. less density-loving sectors form an important
underlying mechanism. Nonetheless, it does not fully explain our baseline results, suggesting that
additional and unobserved industry characteristics are also at play. Uncovering industry-level char-
acteristics that drive sorting with respect to density strikes us as a potentially interesting area for
additional exploration, and we leave a deeper exploration of the determinants of density affinity to
future work.

5. CONCLUSION

This paper argues that some countries specialize in density: countries with an abundance of dense
cities export relatively more in density-loving sectors. Most analysis of sources of comparative ad-
vantage in international trade have emphasized aggregate variation in country-level endowments or
production technologies. Our theory and empirical results, however, suggest that even when two
countries have identical factor endowments in the aggregate, they may specialize in vastly different
industries because the domestic distribution of factors of production shapes comparative advantage.
In particular, a key determinant of patterns of trade across countries might lie in the spatial distribu-
tion of people within them.

We first uncover substantial heterogeneity in the density-affinity of tradable sectors, using a strat-
egy that exploits subterranean geology as a shifter of location-specific population density; while some
sectors are disproportionately located in large cities, others are more disproportionately found in
smaller cities or suburban areas. Next, we show that US states and countries with higher population-
weighted density—that is, with a more concentrated population—export relatively more in sectors
with high density affinity. Population density and distribution affect not only domestic productivity
and inequality, but also comparative advantage and international trade.

The implications of these findings extend into the realms of policy, and we believe that the inter-
action between spatial heterogeneity, trade, and politics is an important area for future work. First,
this paper’s results suggest that place-based policies might have systematically heterogeneous effects
across industries, even to the point of affecting international specialization. By disproportionately
benefiting certain places, and perhaps even altering the population distribution, policy could affect
sector-level comparative advantage. Second, it is a common feature of politics in most countries that
more or less dense places achieve different levels of political representation. In the US, for example,
institutions like the Senate, the Electoral College, and even the lags in House re-districting, lead to the
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systematic over-representation of less dense areas. Our analysis suggests that this inherently leads to
an uneven level of political representation across sectors; the resulting political inequality could have
major implications for trade policy and the approach to politics that each industry pursues.
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Figure 5: Correlation Between Both US State-Level Instruments. This figure presents the partial cor-
relation, conditional on state and industry fixed effects, between (i) log of US state-level population
weighted density in 1900, estimated from the Fang and Jawitz (2018) data set, and (ii) the interaction
between total 1900 city population and the inverse number of cities, estimated from the Chandler
(1987) data set.
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Table A1: State-Level Trade, Alternative Specifications

(1) (2)

η j 	computed	using:
Employment,	IV 0.612*** 0.538***

(0.145) (0.199)
Establishments,	IV 3.508*** 3.241***

(0.541) (0.660)
Payroll,	IV 0.335*** 0.295***

(0.0753) (0.111)
Employment,	OLS 0.788*** 0.459***

(0.236) (0.172)
Establishments,	OLS 2.650*** 1.766***

(0.462) (0.401)
Payroll,	OLS 0.504*** 0.307***

(0.169) (0.117)

All	Controls No Yes
State	FE Yes Yes
Industry	FE Yes Yes
Observations 4,182 4,132

Dependent	Variable	is	Total	Exports	
(Thousands)

Notes:	The	unit	of	observation	is	a	state-by-sector	pair.	Each	coefficient	
is	an	estimate	from	a	separate	regression.	The	coefficient	of	interest	is	
the	coefficient	on	an	interaction	between	state-level	population	
weighted	density	and	sector-level	density	affinity	using	the	strategy	
listed	on	the	left	side	of	the	table.	All	reported	specifications	are	Poisson	
pseudo-maximum	likelihood	estimates	and		include	state	and	sector	
fixed	effects,	along	with	other	controls	listed	at	the	bottom	of	each	
column.	Standard	errors	clustered	at	the	state	level,	are	reported	in	
parentheses.		*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	
levels	respectively.
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Table A2: Main Results: Including Observations with No Exports

(1) (2) (3) (4)

Outcome	Variable:	 Exports Exports	(asinh) Exports Exports	(asinh)

Model: PML OLS PML OLS

Di	x		ηj 0.612*** 0.425** 0.456*** 0.167**
(0.145) (0.169) (0.111) (0.0720)

State	FE Yes Yes - -
Country	FE - - Yes Yes
Industry	FE Yes Yes Yes Yes
Observations 4,250 4,250 11,122 11,122
R-squared 0.709 0.823

US	State-Level Country-Level

Notes:	The	unit	of	observation	is	a	state-industry	pair	(columns	1-2)	or	a	country-industry	pair	
(columns	3-4).	.	The	coefficient	of	interest	is	the	coefficient	on	an	interaction	between	state-	or	
country-level	population	weighted	density	and	sector-level	density	affinity	computed	using	the	
bedrock	IV	and	city-level	employment.		In	columns	1	and	3,	the	outcome	variable	is	total	exports	
and	in	columns	2	and	4,	it	is	the	inverse	hyperbolic	sine	of	total	exports.	Observations	with	zero	
exports	are	included	in	the	estimation.	Standard	errors	clustered	at	the	state	(columns	1-2)	or	
country	(columns	3-4)	level,	are	reported	in	parentheses.	*,	**,	and	***	denote	significance	at	the	
10%,	5%,	and	1%	levels	respectively.
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Table A3: Country-Level Trade, Including Continent × Industry Fixed Effects
\

(1) (2) (3) (4) (5)

Panel	A:	Outcome	Variable	is	Total	Exports	(Thousands),	PML	Model
Di	x		ηj 0.412** 0.403** 0.486*** 0.380*** 0.491***

(0.191) (0.181) (0.163) (0.0986) (0.158)

Panel	B:	Outcome	Variable	is	log(Exports),	OLS	Model
Di	x		ηj 0.139** 0.186** 0.342*** 0.179*** 0.381***

(0.0667) (0.0770) (0.0757) (0.0627) (0.0826)
R-Squared 0.837 0.820 0.821 0.837 0.822
Factor	Intensity	Controls No Yes No No Yes
Country	Level	Controls No No Yes No Yes
Industry	Level	Controls No No No Yes Yes
Country	FE Yes Yes Yes Yes Yes
Industry	x	Continent	FE Yes Yes Yes Yes Yes
Countries 134 90 107 134 83
Observations 10,464 7,159 8,542 10,332 6,674

Dependent	Variable	is	Total	Exports	from	the	Country-Sector

Notes:	The	unit	of	observation	is	a	country-by-sector	pair.	The	coefficient	of	interest	is	the	coefficient	
on	an	interaction	between	country-level	population	weighted	density	and	sector-level	density	affinity	
computed	using	the	bedrock	IV	and	city-level	employment.	Panel	A	reports	Poisson	pseudo-maximum	
likelihood	estimates	while	Panel	B	reports	OLS	estimates.	All	specifications	include	country	and	
continent-by-sector	fixed	effects,	along	with	other	controls	listed	at	the	bottom	of	each	column.	
Standard	errors	clustered	at	the	country	level,	are	reported	in	parentheses.			*,	**,	and	***	denote	
significance	at	the	10%,	5%,	and	1%	levels	respectively.
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Table A4: Main Results: Robustness to Alternative Sources of Population Data

(1) (2) (3) (4)

Gridded	Population	Data	Set: LandScan	
(Baseline)

Global	Human	
Settlement	
Layer

Gridded	
Population	of	
the	World

Worldpop	
Project

Di	x		ηj 0.456*** 0.468*** 0.443*** 0.497***
(0.111) (0.125) (0.0956) (0.102)

Country	FE Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes
Countries 134 134 134 134
Observations 10,547 10,547 10,547 10,547

Notes:	The	unit	of	observation	is	a	country-by-sector	pair.	The	coefficient	of	interest	is	the	
coefficient	on	an	interaction	between	country-level	population	weighted	density	and	sector-
level	density	affinity	computed	using	the	bedrock	IV	and	city-level	employment.	Population	
weighted	density	is	computed	from	a	different	data	set	in	each	column,	and	the	data	source	is	
listed	at	the	top	of	each	column.	Standard	errors	clustered	at	the	country	level,	are	reported	
in	parentheses.			*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	levels	respectively.
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Table A5: Main Results: Alternative Specifications

(1) (2) (3) (4)

Sample: Full	Sample
Excluding	

countries	with	
pop	<	1	million

Excluding	
bottom	10%		
income	

η j 	computed	using:
Employment,	IV 0.456*** 0.774*** 0.457*** 0.456***

(0.111) (0.0720) (0.111) (0.111)
Establishments,	IV 1.594*** 1.836*** 1.594*** 1.594***

(0.361) (0.262) (0.362) (0.361)
Payroll,	IV 0.248*** 0.401*** 0.248*** 0.248***

(0.0640) (0.0408) (0.0640) (0.0640)
Employment,	OLS 0.292** 0.135 0.292** 0.292**

(0.147) (0.0881) (0.147) (0.147)
Establishments,	OLS 0.793** 0.480** 0.792** 0.792**

(0.329) (0.225) (0.329) (0.328)
Payroll,	OLS 0.224** 0.105* 0.224** 0.224**

(0.0985) (0.0580) (0.0987) (0.0984)

All	Controls No Yes No No
Country	FE Yes Yes Yes Yes
Industry	FE Yes Yes Yes Yes
Observations 10,464 6,674 9,277 9,515

Dependent	Variable	is	Total	Exports	(Thousands)

Notes:	All	reported	coefficients	are	from	regressions	at	the	country-by-sector	level.	Each	
coefficient	is	an	estimate	from	a	separate	regression.	The	coefficient	of	interest	is	the	
coefficient	on	an	interaction	between	country-level	population	weighted	density	and	sector-
level	density	affinity	computed	using	the	strategy	listed	on	the	left	hand	side	of	each	row.		All	
reported	specifications	are	Poisson	pseudo-maximum	likelihood	estimates	and		include	
country	and	sector	fixed	effects,	along	with	other	controls	listed	at	the	bottom	of	each	column.	
Sample	restrictions	are	noted	in	the	column	header.	Standard	errors	clustered	at	the	country	
level,	are	reported	in	parentheses.		*,	**,	and	***	denote	significance	at	the	10%,	5%,	and	1%	
levels	respectively.
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Table A6: Tasks Associated with Sectors that are the Comparative Advantage of More vs. Less Dense
Countries

Panel	A:	Tasks	Associated	with	CA	Sectors	in	More	Dense	Countries

Guiding,	Directing,	and	Motivating	Subordinates
Coaching	and	Developing	Others

Estimating	the	Quantifiable	Characteristics	of	Products,	Events,	or	Information
Identifying	Objects,	Actions,	and	Events

Selling	or	Influencing	Others
Documenting/Recording	Information

Communicating	with	Persons	Outside	Organization
Making	Decisions	and	Solving	Problems
Provide	Consultation	and	Advice	to	Others

Panel	B:	Tasks	Associated	witrh	CA	Sectors	in	Less-Dense	Countries

Controlling	Machines	and	Processes
Operating	Vehicles,	Mechanized	Devices,	or	Equipment
Performing	for	or	Working	Directly	with	the	Public
Repairing	and	Maintaining	Mechanical	Equipment
Resolving	Conflicts	and	Negotiating	with	Others

Assisting	and	Caring	for	Others
Scheduling	Work	and	Activities
Analyzing	Data	or	Information

Notes:	This	table	lists	the	set	of	tasks	whose	interaction	with	population	weighted	density	
yielded	a	positive	and	significant	coefficient	estimate	in	Equation	4.4	(Panel	A)	and	the	set	
of	tasks	whose	interaction	with	population	weighted	density	yielded	a	negative	and	
significant	coefficient	estimate	in	Equation	4.4.	
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B Derivations and proofs

B.1 Housing market

Out of nominal disposable income Yc, a worker in city c spends a constant share phchc = βYc on the
non-tradable good produced in city c, and a constant share (1− β)Yc = Xc on the basket of tradable
sectors, with sub-shares αjXc = pjcc

j on each sector j. Each landowner owns an amount γ of local

land, and produces housing according to the production function: Hc(γ) = γξ(Xhc(γ)
1−ξ )1−ξ . They face

a price phc for housing and a cost of P for the numeraire input. Each landowner then uses an amount
Xhc(γ) = γ(1− ξ)( pHc

P )
1
ξ of tradable inputs, and aggregate housing supply is: Hs(c) = Bc(

pHc
P )

1−ξ
ξ .

Equalizing supply and demand yields equilibrium housing prices in each city (equation 2.2):

p
1
ξ

Hc = β
LcYc

BcP
ξ−1

ξ

Landowners in a city receive proceeds from real estate sales βYcLc, out of which they spend
PXhc = (1 − ξ)βYcLc on the final good, while accruing rents rcBc = ξβYcLc. rc is defined as the
Ricardian rent per unit of land, increasing in local population density and local disposable income.
Using the spatial equilibrium condition and the fact that all land rents are fully rebated to local work-
ers, we have:

Yc = ŪP1−β pβ
hc = ŪP1−β(

βLcYc

BcP
ξ−1

ξ

)βξ = ŪP1−βξ(β
Lc

Bc
Yc)

ξβ

and thus

wc = P(1− βξ)Ū
1

1−βξ β
βξ

1−βξ
Lc

Bc

βξ
1−βξ

∝ P× D
βξ

1−βξ
c

B.2 Comparative advantage of cities

Cost minimization by consumers in any location d implies, in the absence of trade costs and using
standard Eaton-Kortum algebra (Costinot, Donaldson, and Komunjer, 2011; Michaels, Rauch, and
Redding, 2013):

pdj(ω) = min
{

pdcj(j); c ∈ C
}

The probability that the unit cost is less than p for variety ω of good j produced in c is:

Fjc(p) = P(
wc

z̃
< p) = 1− e

−
( wc

p

Ac D
η̃j
c

)θ

The probability that the minimal cost for variety ω of good j is less than p is thus:

Fj(p) = 1− (Πc∈C(1− Fjc(p)) = 1− e−∑c′ (Ac′D
η̃j
c′ )

θw−θ
c′ pθ
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and the probability that location c is the lowest cost supplier for variety ω for location d is:

P(
wc

z̃jc
≤ min

{
pdcj(j); c ∈ C

}
) =

(AcD
η̃j
c )

θw−θ
c

∑c′(Ac′D
η̃j
c′ )

θw−θ
c′

From the Fréchet distribution assumption and the Constant Elasticity of Substitution structure on de-
mand allocation within good j, standard algebra then implies that the share of spending on varieties
from location c in sector j must be equal across all locations d:34

πdcj = πcj =
pcjXdcj

Xdj
=

(AcD
η̃j
c )

θw−θ
c

∑c′(Ac′D
η̃j
c′ )

θw−θ
c′

(B.1)

where πdcj denotes spending in city d on goods in sector j produced in city c, equation 2.4 in the
model.

B.3 Proposition 1

We assume, as in Ramondo, Rodrı́guez-Clare, and Saborı́o-Rodrı́guez (2016), that iceberg trade costs
are nil within a country, and symmetric (at the country-level) across any two locations in two different
countries. The proof follows the structure of Ramondo, Rodrı́guez-Clare, and Saborı́o-Rodrı́guez
(2016), extended to a case with many sectors.

We obtain a natural extension of equation 2.5 in a world of many countries, namely that for any
city c in country i, the wage bill in sector j satisfies:

wcLjc = αj ∑
n

(AcD
η̃j
c )

θw−θ
c τ−θ

in

∑s ∑c′∈Cs
(Ac′D

η̃j
c′ )

θw−θ
c′ τ−θ

sn
∑

d∈Cn

wdLd (B.2)

We rewrite equation (B.2) as:

wc =
(
(

AcD
η̃j
c )

θ

Ljc

) 1
1+θ ∆ij (B.3)

where ∆ij is a country-sector level variable indexing market access in sector j and country i:

∆1+θ
ij = αj ∑

n

τ−θ
in

∑s ∑c′∈Cs
(Ac′D

η̃j
c′ )

θw−θ
c′ τ−θ

sn
∑

d∈Cn

wdLd (B.4)

We can use the fact that:

∑
d∈Cn

wdLd = ∑
d∈Cn

∑
k

wdLdk

34Given the unbounded nature of the Fréchet distribution, the production structure does not lead to the full specialization
of cities in the production of some sectors, which would make the exposition more involved by inducing censoring at the
bottom of the sector-city employment density, without adding substantial insight in the model, given that we do not
attempt a structural estimation of the parameters

43



and equation (B.2) to re-express ∆ij:

∆1+θ
ij = αj ∑

n

τ−θ
in ∑d∈Cn ∑k Lkd

(
(

AdD
η̃k
d )θ

Ldk

) 1
1+θ ∆nk

∑s ∑c′∈Cs
(Ac′D

η̃j
c′ )

θw−θ
c′ τ−θ

sn

∆1+θ
ij = αj ∑

n

τ−θ
in ∑k ∆nkL

θ
1+θ

nk ∑d∈Cn
(AdDη̃k

d )
θ

1+θ ( Lkd
Lnk

)
θ

1+θ

∑s τ−θ
sn ∆−θ

sj L
θ

1+θ

js ∑c′∈Cs
(Ac′D

η̃j
c′ )

θ2
1+θ (

Ljc′
Ljs

)
θ

1+θ

(B.5)

where Lnk = ∑d∈Cn
Ldk. We define the following objects, that depend on the equilibrium distribution

of population within a country:

Tij =
(

∑
c∈Ci

(AcD
η̃j
c )

θ
1+θ (

Ljc

Lji
)

θ
1+θ
)1+θ (B.6)

Mi = ∑
j

∆ijL
θ

1+θ

ij T
1

1+θ

ij (B.7)

Note then that we can re-express equation (B.5) as a system of equations in Mn, Tsj, Lsj, and ∆sj:

∆1+θ
ij = αj

∑n Mnτ−θ
in

∑s τ−θ
is ∆−θ

sj L
1

1+θ

sj T
1

1+θ

sj

(B.8)

We make note that Mi corresponds to the total tradable wage bill in a country:

∑
c∈Ci

wcLc = ∑
c∈Ci

∑
j

wcLcj = ∑
j

∆ijL
θ

1+θ

ij T
1

1+θ

ij = Mi (B.9)

We now use fact (B.9) to derive the bilateral export flows from country i to country n in sector j,
by using the fact that exports of good j from any city c ∈ Ci to any city d ∈ Cn are given by:

xcdj = αjwdLd
(AcD

η̃j
c )

θw−θ
c τ−θ

in

∑s τ−θ
sn ∑c′∈Cs

(Ac′D
η̃j
c′ )

θw−θ
c′

Summing over cities, using (B.5), (B.7) and (B.6), yields, after rearranging:

Xinj = ∑
c∈Ci

∑
d∈Cn

xcdj = αj Mnτ−θ
in

∆−θ
ij T

1
1+θ

ij L
θ

1+θ

ij

∑s ∆−θ
sj T

1
1+θ

sj L
θ

1+θ

sj

(B.10)

We next derive the average wage in country i and sector j:

wij =
∑c∈Ci

wcLcj

∑c∈Ci
Lcj
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by using equation (B.2), again summing over all cities in country i and using the same manipulations:

wij =
∑n Xinj

∑c∈Ci
Lcj

=
∑n Xinj

Lij
= αj

∑n Mnτ−θ
in ∆−θ

ij T
1

1+θ

ij L
− 1

1+θ

ij

∑s ∆−θ
sj T

1
1+θ

sj L
θ

1+θ

sj

(B.11)

and, using the system (B.8) and substituting, we obtain:

wij = ∆ij(
Tij

Lij
)

1
1+θ (B.12)

Plugging (B.12) into equation (B.10) yields proposition 1.
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