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Abstract

Pigou (1920) pointed to �uncompensated damage done to surrounding woods

by sparks from railway engines� as the canonical example of an environmental

externality. We study a modern corollary � illegal tropical forest �res used

for clearing land � using 15 years of daily satellite data covering over 107,000

�res across Indonesia. We exploit variation in wind speed and in who owns

surrounding land to generate variation in the degree to which the use of �re

at a given time and place represents an externality. We �nd �rms overuse �re

relative to a case where all spread risks are internalized. However, �rms appear

partially sensitive to the risks of government punishment, which deters them

from burning near protected forest or populated areas on particularly windy

days. Counterfactuals suggest that if �rms treated all surrounding land the way

they treat neighboring populated areas, �res would be reduced by 80 percent.
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1 Introduction

Environmental economics is rooted in the study of environmental externalities. Early

forerunners of the modern �eld (Marshall 1890, Pareto 1909, Pigou 1920) highlighted

the failure of market economies to properly account for the environmental conse-

quences of economic activity. This failure rests importantly on the possibility that

one agent's utility or production function may depend directly on real variables cho-

sen by another without an o�er of compensation for their e�ect (see, for example,

Salanié 2000). For example, Pigou (1920) pointed to the �uncompensated damage

done to surrounding woods by sparks from railway engines� as the canonical example

of an environmental externality.

Much of the early analysis of environmental externalities lay in the theoretical

realm, with a focus on developing a consistent framework to analyze market fail-

ure as well as design corrective policies. For example, Pigou (1920)'s discussion of

corrective taxes and subsidies was succeeded by theoretical contributions relating to

tradable permits (Dales 1968) and the possibility that an e�cient solution to exter-

nalities may under certain circumstances be achieved by private negotiations (Coase

1960) or decentralized self-regulation (Ostrom 1990, Ostrom 1998). In the aftermath

of the credibility revolution in economics (Angrist and Pischke 2010), a wave of em-

pirical papers focused on estimating the health and other impacts of di�erent types

of environmental externalities, for example, pollution (Chay and Greenstone 2003,

Deryugina et al. 2019, Currie et al. 2009), forest �res (Frankenberg et al. 2005, Jay-

achandran 2009, Koplitz et al. 2016, Kim et al. 2017) and emissions-induced climate

change (Schlenker et al. 2005, Burke et al. 2009, Burgess et al. 2017).

By contrast, there has been comparatively less empirical attention given to the

economic question of how externalities a�ect private decision making in the �rst place

� that is, the degree to which private actors change their behavior depending on the

extent to which the environmental damage they cause is an externality. This is an

important question as the actions of private individuals and �rms account for the

bulk of environmental externalities we observe in the world and so understanding

what drives their decisions is paramount (Greenstone and Jack 2015).1 Whether

1Important contributions in this area include the literature on the political economy drivers of
environmental externalities (Burgess et al. 2012, Kahn et al. 2015, Lipscomb and Mobarak 2017)
which investigates externalities in regulation across political jurisdictions. Other recent work has
explored the degree to which external actors can alter private decision making through payments
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or not they lessen actions that potentially damage others will largely a�ect how

environmental change unfolds in the tropics, and more broadly.

In this paper, we study this question by examining a modern corollary of Pigou's

�sparks from railway engines�: tropical forest �res in Indonesia. Fires are used in

many tropical countries, including Indonesia, as a cheap � though illegal � means of

land clearance by �rms but pose the risk that, once set, they burn out of control.

Firms, in e�ect, face the choice between a cheap but risky technology (�re) and a

safer but more expensive technology (mechanical clearance) when readying land to

grow plantation crops such as oil palm or wood �ber.2 The decision to ignite an

illegal forest �re is de facto a decision not to use the safe technology for clearing land.

There is a an extensive theoretical (Acemoglu et al. 2012, Acemoglu et al. 2016)

and empirical (Aghion et al. 2016) literature looking at how �rms choose between

production technologies that do and do not have externalities (often in the context

of pollution), but this has been less of a focus in the land use literature.

Many features make �res an almost ideal environment in which to analyze private

agents' externality-generating activities and what incentivizes them to control how

much they are used. Fires are observable from space, and using the data sets we

have assembled, we can track their precise ignition point and daily spread. This

daily �re data can be superimposed on geocoded maps of di�erent types of land use

zones, which vary from highly protected forest such as national parks to areas where

property rights are less well de�ned. Finally, the riskiness of using �re depends on

wind speed, which increases the probability a �re spreads to surrounding land. The

combination of varying wind speeds over time and space, as well as di�erences in who

owns surrounding land, generates variation in the degree to which the use of �re at a

given time and place represents an externality (i.e., we focus on the degree to which

landowners are more sensitive to spread risks induced by stronger winds when the area

to which an ignited �re would spread is their own land versus owned by others). This

for ecosystem services (see, e.g., Jayachandran et al. 2017) and improved auditing (e.g., Du�o et al.
2013), but does not study changes in the degree to which the behavior in question is, in itself, an
externality.

2Mechanical clearance using bulldozers and other heavy equipment is estimated to cost 44-70%
more than using �re (Simorangkir 2007). This trade-o� between private bene�t and the extent of the
externality also lies at the core of other environmental phenomena such as illegal release of e�uents
and illegal �shing. The degree to which the �rm has to bear the cost of imposing these externalities
on others may have a bearing on whether they choose the illegal action with external consequences
over the legal alternative with fewer externalities.
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enables us to discern the degree to which �re setters take into account the externality

that their actions cause, and to consider how alternative policy environments may

a�ect their decisions.

Understanding why tropical forest �res start and how they might be controlled is

important in its own right as they represent a signi�cant source of local, national and

global externalities (Cochrane and Schulze 1998, Keeley et al. 2004, Gillett et al. 2004,

Cruz et al. 2012, Kraaij et al. 2018) whose prevalence may worsen as the earth warms

(Parry et al. 2007, Pitman et al. 2007, Abatzoglou and Williams 2016). Globally, �res

are particularly prevalent in developing countries containing large stands of tropical

forest with economic growth and trade liberalization often driving increased forest

exploitation (Harstad 2020). In particular, when we pull together MODIS satellite

data for detecting all �res across the world for the period 2003-2018, we �nd that the

incidence of �res in heavily forested low-income countries is about four times higher

than that in forested high-income countries (see Appendix Figure A.1). Indonesia,

which along with Brazil and the Democratic Republic of Congo contains the bulk

of the earth's tropical forests, is on the front line of the global �re problem.3 The

degradation of these forests a�ects the pace of global environmental change so how

to conserve them has become an international policy concern (Harstad 2020, Hsiao

2020).

Indeed, vast systems of �res regularly erupt in Indonesia and have burned millions

of hectares of forest in recent years. While we focus on local externalities due to �re

spread in this paper, more broadly, the externalities generated by these �res are

manifold and often extend beyond Indonesia's borders, including signi�cant health

impacts (Frankenberg et al. 2005, Jayachandran 2009, Koplitz et al. 2016, Kim et al.

2017), ecosystem loss (Yule 2010) and global warming (Page et al. 2002, Permadi

and Oanh 2013). For example, the major 2015 Indonesian �res alone released about

400 megatons of CO2 equivalent (Van Der Werf et al. 2017), at their peak emitting

more daily greenhouse gases than all US economic activity, and are estimated to have

caused over 100,000 excess deaths across Indonesia, Malaysia and Singapore (Koplitz

et al. 2016). Hsiao (2020) estimates that the palm oil industry in Indonesia and

3Indonesia is responsible for less than 1% of the global area burned, but accounts for 8% of
carbon and almost a quarter of methane emissions from �res, due to the large amount of biomass
burned in the tropical forest and peatlands (Van Der Werf et al., 2017). In 2019 alone, Indonesian
forest �res emitted around twice the amount of carbon than �res in the Brazilian Amazon forest
(Jong, 2019).
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Malaysia, where �re is used extensively to clear forest land, accounted for 4.7% of

global CO2 emissions from 1986 to 2016 � more than all emissions from India. Forest

�res are therefore among the most environmentally damaging illegal behaviors that

�rms in Indonesia engage in.

To understand what a�ects the decision to set �res, we created a novel �re dataset

on �re ignitions and spread. We begin with 15 years of daily hotspot data from the

MODIS satellites, which record � for every one square km pixel, each day � whether

there is a �re in that pixel or not, calculated from the four MODIS �yovers that occur

each day (Giglio and Justice 2015). The MODIS datasets can detect quite small �res

� as small as 50 m2 � within each pixel. To track �re ignition and spread, we merge

this data across time and space to trace the likely path of each �re; that is, we assign

contiguous pixels burning on adjacent days to be part of the same �re. This allows us

to determine the most likely location where each �re started and, for each ignition,

the area over which it ultimately spread. This procedure yields over 107,000 unique

�res in our data, covering all of the main forest islands of Indonesia for the period

October 2000 to January 2016. We merge these data with detailed geospatial data on

boundaries for the Indonesian national forest estate, protected forest areas and every

logging, wood �ber and palm oil concession in the Indonesian national forest system.

Any uncompensated burning of land outside of a concession is an externality, but we

are also interested in whether �re starters take into account the type of land that �res

may spread to when making the ignition decision as these may carry di�erent social

costs.

These data con�rm that �re spread is a tail risk event � and that these risks

entail an important local externality. The vast majority of �res burn for a single day

(87% of all �res) and do not spread beyond their initial ignition area (89%). But

the �res that do spread can become enormous: the largest �re in our data spread

to cover 466 times its initial area and the largest single �re in our data burned 764

square kilometers. Twenty-nine percent of the total area burned by �res over our

study period is outside the initial extent burned by the �res on the day they were

ignited. Moreover, a substantial part of the damage from spreading �res is borne by

others: across all multi-day �res, 32% of land burned outside the initial ignition area

is outside the concession where the �re began.

The data reveal that �res do not occur randomly but rather are associated with

human activity, and appear likely to be used systematically as part of the clearing
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process by �rms, consistent with the qualitative evidence (Neslen 2016; Cossar-Gilbert

and Sam 2015; BBC 2015; Mahomed 2019; Schlanger 2019; Mellen 2019; Karmini and

NG 2019; Nicholas 2019). We show that �res are eight times more likely (per hectare)

to occur in oil palm or wood �ber concessions � for which land is cleared completely

and then replanted � compared to logging concessions, which are selectively logged

rather than clear-cut. Since we focus on �rms' incentives to start �res as a cheap

means of land clearance for conversion to industrial plantations, we concentrate our

analysis of externalities and the control of forest �res on the 39,077 �res started inside

wood �ber and palm oil concessions across the study period.

We investigate the links between land clearing and �res further by combining

our �res data with annual satellite data on deforestation from Hansen et al. (2013).

Doing so, we �nd that �res are vastly more likely to occur immediately following recent

deforestation, consistent with the notion of `slash and burn' but at an industrial scale.

In particular, increasing the share of a pixel deforested from 0 to 100 percent leads to

a 279 percent increase in the probability of �re in that pixel in the subsequent year.

This is unlikely due to the fact that deforestation simply makes the land naturally

more �ammable: we �nd that the year after that � i.e. just two years after the

deforestation event � the pixel is in fact less likely to burn than before deforestation

took place. We also exploit this slash and burn cycle to see whether the likelihood of

using �re post-deforestation varies with district electoral cycles and �nd that its use

is suppressed in election years, when it might perhaps dent the incumbent district

head's electoral chances.

Having documented the human origins of many of these �res, we then turn to the

central question of how externalities play into the decision to use �re. We use the fact

that wind in�uences the likelihood that �res spread, and that the degree to which the

costs of a spreading �re are borne by others depends on how much surrounding land is

part of the owner's parcel or belongs to someone else. We �rst show empirically that

wind speed does, indeed, predict the degree of �re spread: one standard deviation

higher wind speed (equivalent to about 5km/hr) increases the area of �re spread by

287 percent.4

Combining variation in wind speeds over time and space with cross-sectional vari-

4One might also expect wind to predict the direction of �re spread in addition to the overall
likelihood of �re spread, but this does not appear to be true in the data. We discuss this in more
detail below.
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ation in who owns surrounding land, we show that �re setters do appear to take the

externalities from �re setting into account. Speci�cally, we �nd that �res are substan-

tially less likely to be started on windy days in areas where the �re would be more

likely to spread inside the same concession compared to when it would spread to land

owned by others. Landowners therefore disproportionately avoid burning their own

land relative to that of others when �re is particularly risky, suggesting that a Coasian

bargain has not been reached. This is interesting as, in theory, concession holders

could arrive at agreements to bring forest burning down to an � at least locally �

e�cient level without the need for government intervention.

We then compare the degree to which �rms avoid imposing externalities on ad-

jacent private property depending on the costs doing so might incur, by examining

how varying wind speeds interact with heterogeneity in what type of land lies just

outside their borders. To do so, for each of the more than 300,000 1km2 pixels in-

side palm oil and wood �ber concessions in our data, we calculate what share of the

surrounding pixels are made up of di�erent types of land. We focus on four types of

land: other private concessions, protected areas (i.e., national parks and watershed

protected areas), areas outside the national forest system (i.e. normal private land,

which contains the vast bulk of the population), and unleased productive forest (i.e.

areas that could be assigned as future concessions, but have not been assigned to

date). We also calculate the average population density in the surrounding area. We

then compare how �re ignitions change on windy versus non-windy days � i.e. when

spread risk is high versus when it is low � depending on what kinds of land are nearby.

By classifying land in this way, we can benchmark the degree to which property

owners avoid damaging other types of land to the way they behave vis-a-vis unleased

productive forest land, which tends to be largely unprotected by the government

(or anyone else) and therefore enjoys the weakest property rights. In particular, we

examine how landowners treat the risk of �re spread to national parks, which are

explicitly protected by the government, and land outside the national forest system,

which is typically comprised of villages and smallholders, in comparison to risk of

spread to unleased and largely unprotected productive forest land.

As a benchmark, to quantify how government concerns with burning vary across

land types, we analyze data from the �rst government investigations into private �rms

for causing forest �res in 2015. The haze from the 2015 �res enveloped Indonesia and

several surrounding countries, led to a state of emergency of being declared in six
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Indonesian provinces and prompted the government to take action. The government

published the initials of each �rm they investigated, which we match to �rm names

in our concession data. We can then ask what types of �res were most likely to lead

to government investigation. We �nd that, conditional on the total area burned,

the government is substantially more likely to investigate �rms whose �res ended

up burning land in protected areas and areas with high population density. By

contrast, the government does not seem di�erentially likely to investigate cases where

the �re damage is largely in concessions. A fraction of �rms that were investigated

su�ered consequences � such as having their licenses revoked � which indicates some

commitment of government to punish landholders whose �res end up burning national

parks and populated lands.

We then bring in our data on �re externalities and compare how landholders treat

externalities on the types of land for which the government is potentially a protector

to how they treat externalities on other private lands. We show that, indeed, the

relative weights on di�erent types of �res the government appeared to use in these

investigations line up with the relative weights on di�erent types of risks that �rms

appear to use when deciding whether or not to use �res. This suggests that �rms

do behave as if they are responding to Pigouvian-style (1920) incentives. Even if the

level of �re use is still excessive compared to the social optimum (given the regional

and global externalities it creates), �rms internalize which types of �res are relatively

more costly in terms of �re spread and local damage.

The results thus suggest that �rms are strategic in two senses: 1) they overuse

�re relative to what they would do if all spread risks were internalized, but 2) they

do take into account the risks of government punishment and this deters them from

burning near protected or highly populated areas. But on net, the social damages

from �res still vastly exceed the likely private bene�ts � for example, the estimated

external damages for the 1997/1998 Indonesian �res range from 1,286 (Glover and

Jessup 1999) to 6,074 (Varma 2003) 2020 USD per ha burnt, while the average private

bene�ts (di�erence in per ha cost of burning versus mechanical clearance) average

around 52 2020 USD per ha after taking into account fertilizers and other costs

(Guyon and Simorangkir 2002). Bene�t cost ratios between 0.04 and 0.008, which

lie well below 1, suggest that while qualitatively the government is deterring the �res

that are relatively more costly, on net the government may wish to deter substantially

more �res than it is currently doing.
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Given this, the �nal part of the paper uses our analysis to derive some implications

for the design of policies to better control these externalities, taking into account the

responsiveness of private actors that we estimate here. Stopping �res and conserving

tropical forests are now considered key nature-based solutions for confronting climate

change, but how to design e�ective policies to achieve this remains a challenge (Gi-

rardin et al. 2021; Chausson et al. 2020; Seddon et al. 2020; Melo et al. 2021; Mori

et al. 2021).5 We �nd several results. First, we consider the scope of land zoning

policies, which have been widely used by the Indonesian government in the past. We

�nd that even if �rms treated all surrounding land the way they treat their own land �

i.e. a fully-Coasian solution where who owns the land does not matter for �re setting

behavior � �res would only be reduced by 14%. This suggests that creating better

property rights on unleased government land, and relying on private solutions à la

Coase, will only have a relatively small e�ect on �res. Similarly, our counterfactuals

suggest that a tort reform that allowed existing concessions to recover damages � i.e.

so that land owners treated all surrounding existing land in other private concessions

as if it was in their own � would only reduce �res by 6%.

Second, we consider stronger incentives generated by meting out punishments for

setting �res � a policy in the spirit of Pigou. We simulate what would happen if

enforcement were to increase such that existing property owners treated the risk of

�re spread � anywhere � the same as they do that in the categories the government

currently punishes most severely, i.e. populated areas and national parks. We �nd

that this would have a substantial e�ect: if �rms were as concerned about spread

risks to surrounding lands as they are about spread to populated areas or protected

forest, �res would be reduced by 80% or 67%, respectively. By comparison, an en-

forcement regime that prevented any �res from spreading outside the concession of

ignition would result in an estimated 23% reduction in the area burned, while en-

tirely preventing spread into protected and populated areas alone would result in

only a 2% reduction in the area burned. These results are consistent with evidence in

Souza-Rodrigues (2019), which estimates a model of demand for deforestation on pri-

vate properties in the Brazilian Amazon and �nds that counterfactual incentive-based

5This concern is both national and international. For example, in 2010 Norway and Indonesia
entered into anagreement with Norway committing $1 billion dollars in exchange for reductions
of deforestation in Indonesia. In this REDD+ (reducing emissions from deforestation and forest
degradation) framework, payments would be made ex-post for achieved reductions in deforestation
compared to the `business-as-usual' rate.
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policies may be very e�ective in reducing deforestation.

The remainder of this paper is organized as follows. Section 2 puts together

the necessary data sets to look at when and why forest �res are started. Section

3 describes the patterns of forest �res in our empirical setting and examines their

relationship with spatial land use and land clearance. Section 4 looks at results on

factors that a�ect the propensity to start forest �res. A key �nding is that both public

and private regulation have not been e�ective in containing forest �re externalities.

To gain insights into what policies might be e�ective, Section 5 considers how di�erent

policy counterfactuals would a�ect the extent to which forest �res are started and

spread. Section 6 concludes.

2 Setting and Data

2.1 The forest sector

The Indonesian national forest system � known as the `forest estate' (kawasan hutan)

� is a vast system of national forest, covering over 130 million hectares, equivalent

to the size of the U.S. states of Texas, California, and Washington combined. This

comprises about 70% of Indonesia's total land area, and is almost twice as large as

the U.S. national forest system.

While technically owned by the Indonesian central government, much of this land,

in the so-called �production� forest, has been leased out through long-term concessions

for both logging and plantations. These two types of concession entail very di�erent

land-use patterns which, as we will see below, lead to very di�erent uses of �re.

Logging concessions are required to sustainably manage the forest through selective

logging. Plantations, by contrast, are typically clear-cut (harvesting the valuable

timber and clearing the rest), and after having been cleared, are planted either with

fast-growing species used for paper pulp (wood �ber plantations) or for oil palm.

These plantation sectors are vast. For example, two very large pulp mills in Riau

province have a combined capacity to process over six million tons of pulp and paper

products annually and pulping from two of Indonesia's largest �rms is estimated to

have been responsible for the deforestation of over 2.5 million hectares.6 Indonesia is

6See discussion by WWF at https://wwf.panda.org/our_work/our_focus/forests_practice /for-
est_sector_transformation_updated/app_april_updated/deforestation_updated/.
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also the world's largest producer of palm oil (Hsiao 2020), the world's most commonly

used vegetable oil. Oil palm plantations have grown fourfold since 2000, and now

occupy 7% of Indonesia's land area (Edwards 2019).

The remaining national forest land (i.e. the land not in a concession) falls into two

categories. The Indonesian government has designated 43% of the national forest as

`protected' forest estate for watershed and biodiversity protection, including national

parks, with logging and other extractive activities prohibited. The remaining unleased

production forest is considered to be `no man's land', with unclear ownership and

extraction rights. Thus though all the land in the forest estate is owned by the

central government there is a continuum of areas, from those leased out for commercial

exploitation by private companies to areas that are strictly protected by government.

Other than some scattered squatter settlements, human populations live largely

outside the forest estate on privately owned land. The history of land zoning in

Indonesia thus means there is a patchwork of property right regimes across space that

may carry di�erent costs of �res spreading into them. We can exploit this variation

to see whether �rms take into account the externalities they might impose on others

in their �re starting decisions.

Despite the existence of legislation regarding forest clearing and zoning, adherence

to these laws is imperfect. For example, district heads (responsible for monitoring

legal logging and controlling illegal logging since 1999) have been found to allow

logging outside o�cial concessions (Resosudarmo et al. 2006). They also facilitate

the creation of new oil palm plantations inside national forest areas and sanction

the transport and processing of illegally harvested logs (Casson 2001). Incomplete

documentation of land ownership also renders the legitimacy of some land clearing

activities unclear.

2.2 Use of �re for land clearing

Although illegal, �re is often used as a means of land clearance. After valuable

timber has been harvested, land is burned to clear away the remaining debris prior

to planting. Fire is attractive to concession holders because it is cheap: for example,

estimates from Riau province in 2000 suggest that burning primary forest is 44%

cheaper than alternative clearance methods (e.g. bulldozers) for oil palm plantations,

and 70% cheaper for wood �ber and timber plantations (Simorangkir 2007). Other

11



bene�ts of �res for concession holders in this context have also been documented,

including rapid nutrient release and inhibiting the spread of plant diseases.

2.3 Policies to prevent forest �res

Policies to control �res in Indonesia center on two main branches: zoning and penalties

for using �res as a means of clearing land.7 On zoning, the 1967 Basic Forestry Law

gave the national government the exclusive right of forest exploitation in the forest

estate (ROI 1967, Barber 1990). This law centralized government control over the

forest and enabled development of the oil palm, wood �ber, and timber sectors. The

zoning of land into protection and production forest was in part designed to protect

sections of the forest estate from deforestation and hence also from the use of �re

in the conversion process. The 1999 Forestry Law, which updated the 1967 Law

and gave district governments an important role in enforcing forest policy (Burgess

et al. 2012), has become the main legal instrument against forest �res by setting out

principles for forest management and prohibiting the burning of any part of the forest

estate.8

In a similar vein, controls on conversion of land have also been used to try to

prevent �res. To tackle �res associated with degraded peatlands, a temporary mora-

torium on granting permits to clear primary forests and peatlands for plantations or

logging was instated in 2011. After being deemed relatively ine�ective, peatland pro-

tection was strengthened in response to the 2015 �res by the removal of an exception

for already existing concessions and the creation of a dedicated Peatland Restoration

Agency.9 In 2018, an additional three-year moratorium on new oil palm plantation

licenses was issued, in combination with a call for regional governments and ministries

to review existing licenses.

Zoning policies have been supplemented by policies that impose penalties on those

that set �res to clear forested land. In the aftermath of the enormous 1997 �res,

7Detailed sources relating to all policies described in this section are described in Appendix J.
8All burning of forests was prohibited without exception in 1999, pursuant to Article 50, Law

No. 41/1999. The 2009 Environmental Protection and Management Law (No. 32/2009) allows the
burning of two hectares of land per family head for the planting of local varieties; this excludes oil
palm and timber and should not a�ect �res in the large-scale concessions we study here. It also
reduced the maximum punishment for burning forest.

92015 also saw a presidential instruction requiring all levels of government to develop land and
forest �re management systems and to apply sanctions for businesses who do not implement �re
management.
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the 1999 Forestry Law increased anti-�re e�orts, stipulating �nes of up to 5 billion

Rupiah and imprisonment for up to 15 years for burning forest, as well as requiring

individuals and businesses in �re prone areas to prevent environmental degradation

and pollution caused by wild�res. This regulation was used, most notably, for a

string of prosecutions against oil palm and timber companies for their role in creating

the 2015 �res. Some of these prosecutions resulted in high-pro�le court decisions

mandating hundred-billion Rupiah �nes. However, over three trillion rupiah (220

million USD) in �nes from ten companies had still not been paid by 2019.

Indonesia's forest �re policies, therefore, are characterized by two main challenges.

First, political decentralization at the end of the 1990s created a complex relationship

between central and district-level policymaking, which created political incentives for

increasing deforestation and lax implementation of existing regulations (Burgess et al.

2012).10 Second, enforcement of policies aiming to control forest �res is often weak,

from regulations granting concession rights through to punishment for o�enders.11

2.4 Data

2.4.1 Identifying �re ignition and spread from �re hotspots

To create data on �res, we begin with data on �re hotspots. We start with data

collected by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We

use the MODIS Terra daily Level 3 �re product, a 1km gridded composite of �re

pixels detected in each grid cell over each 24 hour period (Giglio and Justice 2015)

from October 2000 to January 2016. This is derived from the MODIS satellites,

which collectively take 4 images of virtually the entire planet each day. MODIS

routinely detects �aming and smoldering �res with a size of 1000m2 and under optimal

observation conditions can detect �res as small as 50m2.

We link daily MODIS observations over time in order to track the ignition and

spread of individual �res across Indonesia during our study period. We create a `�re'

observation using an iterative procedure. This starts with an initial �re, denoted AX ,

10While the Ministry of Forestry can rezone land to prevent uses that are likely to lead to �re,
ambiguous land use planning, which is rife with overlapping tenure claims and con�icts, often makes
this di�cult.

11Licenses being granted often contradict o�cial forest area designations, such as when mining
concessions are granted in protected forest areas (Enrici and Hubacek 2016). Oil palm companies
charged with setting �res in 2015 have used lengthy court appeals and a lack of policy harmonization
across di�erent layers of government to avoid handing over �nes (Greenpeace 2019).
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comprising a given pixel, or set of contiguous pixels, that is on �re on day X. A

1-pixel bu�er is then created on each side of AX and if any pixel within this bu�er

is on �re on day X + 1, we call this a continuation of �re AX . If a contiguous set of

pixels is on �re on day X + 1 but only some of them intersect the bu�er, all of them

are classi�ed as a continuation of �re AX . A 1-pixel bu�er is in turn created around

the �re on day X + 1, and this process is iterated forward over time. If a pixel is

covered by cloud on a given day, the next day's observation is used instead.

An example of this procedure is shown in Figure 1. In the Figure, pixels outlined

in black had a �re on Day 1 according to that day's MODIS hotspot data, and pixels

colored red had a �re on Day 2. The white boxes A, B, and C denote three �res that

we classify as single �res, with ignition area as the black area and total spread extent

as the union of the black and red areas.

This procedure yields a total of 176,855 �res across Indonesia from October 2000

to January 2016. Summary statistics are presented for all �res, but we restrict at-

tention to Indonesia's major forested islands (excluding Java and the Lesser Sunda

Islands) and to pixels inside the forest estate, yielding a total of 107,334 �res. The

focus of our study is a quantitative analysis of �rms' incentives to start �res as a

relatively cheap means of land clearance for conversion to industrial plantations. The

majority of the paper's analysis therefore concentrates on the 39,077 �res started in-

side wood �ber and palm oil concessions across the study period, although we present

robustness checks for alternative sample restrictions including logging concessions as

well in Appendix G.

2.4.2 Land classi�cation and concessions

We overlay the �re data with data on land classi�cations and forest concessions. First,

land is divided into areas within and outside the forest estate. Second, within the

forest estate, land is demarcated into conservation and protection zones, hereafter

referred to as `protected forest', as opposed to forest in which production can take

place. The map, which we obtained from Global Forest Watch, is shown in Fig-

ure 2, displaying forest estate and conservation/ protection zones across Indonesia.

Third, we overlay these broad categorizations with concession boundaries. Data were

obtained from Global Forest Watch on the location of logging concessions (for the

selective logging of natural forests), palm oil concessions (allocated for industrial-

scale palm oil production) and wood �ber plantation concessions (allocated for the
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establishment of fast-growing tree plantations to produce timber and wood pulp for

paper and paper products). The data are compiled from di�erent government, NGO

and other sources and include georeferenced shape�les demarcating the extent of each

concession as well as information on �rm � and, in some cases, �rm group � name.

The data are imperfect but provide the best available data on concession boundaries

in Indonesia during our study period.12

Figure 3 shows the distribution of concessions in Sumatra, alongside areas demar-

cating the forest estate and protection/ conservation zones. As shown in the Figure,

the majority of concession holdings are within the forest estate but outside protection

and conservation zones.

These classi�cations yield four land categories of interest for the analysis: pro-

tected forest, productive forest (land in the forest estate that is not in protected

areas) inside concessions, unleased productive forest (land in the forest estate that is

neither in protected areas nor inside concessions) and areas outside the forest estate.13

2.4.3 Deforestation data

We augment this data with data on deforestation. Annual deforestation data from

2001-2014 across Indonesia was extracted from Hansen et al. (2013) at a resolution of

1 arc-second (approximately 30m per pixel at the equator). This was used to calculate

the area of each of the pixels used in our analysis that was deforested in a given year.

2.4.4 Wind data

Data on the vector components of daily wind at 297 grid points across Indonesia

over our study period was downloaded from the National Oceanic and Atmospheric

Administration's NCEP-DOE Reanalysis 2 Gaussian Grid.14 This was used to calcu-

late daily wind speed, from which monthly averages were calculated, at each of these

297 points. The inverse distance weighted interpolation tool in ArcGIS was used to

12For instance, the data are known to be incomplete and subject to inaccuracies as a result of
overlaps between di�erent concession types where permits are issued by di�erent ministries, out of
date maps and di�erent dates of data from di�erent provenances (Greenpeace 2015).

13There are two additional land categories which are not of interest for the analysis and which
are therefore suppressed in the results. These are protected forest inside concessions (these areas
comprise only 2% of the total land area and are likely due to mapping inaccuracies) and concession
areas that fall outside the forest estate (5% of total land area).

14https://esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html
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interpolate this data in order to assign a wind speed to each of the 1km2 pixels used

in our analysis.

2.4.5 Data on public and private regulation

In late 2015, lists of �rms investigated and sanctioned by the Indonesian government

for starting forest �res throughout Sumatra and Kalimantan islands was released

by the Ministry of Forestry and the Environment.15 This followed a comprehensive

investigation to uncover the �rms that had started the devastating �res of 2015 which

led to thick smogs across Indonesia, Singapore and Malaysia. All �rms identi�ed in

the initial investigative list were investigated for possible administrative sanctions,

including requiring �rms to rehabilitate land, license suspensions, requirements of

public apologies, and the possibility of having their concessions revoked. By the

end of 2015, 56 �rms had received sanctions of some form, including 23 �rms whose

licenses were revoked, suspended, or otherwise referred for government sanctions.

3 The Origins of Forest Fires

We begin in Section 3.1 by describing the patterns of forest �res and their relationship

with spatial land use throughout Indonesia. Section 3.2 examines the relationship

between �re and land clearing by merging �re data with data on deforestation from

previous years. Section 3.3 looks at whether the use of �re following deforestation

varies across the district electoral cycle.

3.1 Descriptive statistics: �re and land-use

To illustrate the relationship between �res and land use, Figure 4 zooms in on the

province of Riau in central Sumatra, an area of substantial forest activity, to show

the distribution of �re ignitions in our data overlaid with the land classi�cation and

concessions data, at a �ne geographic scale. Each 1km2 grid cell shown in Figure 4

15The list of investigated �rms was released in September 2015
(http://www.mongabay.co.id/2015/09/18/inilah-ratusan-perusahaan-dengan-lahan-
terbakar-yang-bakal-kena-sanksi/) and the list of sanctioned �rms in December 2015
(http://www.mongabay.co.id/2015/12/22/baru-23-perusahaan-terindikasi-bakar-lahan-kena-sanksi-
administrasi/). As described above, these lists include only the initials of investigated and
sanctioned �rms, not complete �rm names.
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represents a grid cell in which we detect at least one �re ignition. Concessions are

outlined (yellow for wood �ber; orange for oil palm). Protected forest zones are shown

in dark green; regular forest estate areas are shown in light green; and areas outside

the forest estate are shown in white. Note that not all of the regular forest estate is

allocated to a concession; substantial parcels of the forest estate remain unallocated.

We refer to these areas as unleased productive forest.

Several patterns are worth noting. First, there are a vast number of �res. The

area shown in the map covers approximately 7,700 square km, slightly larger than

the US state of Delaware, and has over 3,400 separate �re ignitions during the period

of our study. The �res are clearly geographically clustered in areas of intense �re

activity.

Second, the spatial patterns of land use appear to be related to ignition patterns.

A `natural' rate of �re ignition across space would suggest that the shares of land

area and �re ignitions by each forest zone should be approximately equivalent. Yet

in this relatively high �re area, we observe almost no �res started in the preservation

area (Zamrud National Park, previously known as the Tasik Serkap Wildlife Reserve)

shown in the middle-right of the map. Similarly, we see almost no �res in the area

outside of the forest estate in the bottom left, which is a small town.

Similar patterns emerge when we consider the entire dataset of over 100,000 �res.16

Appendix Figure A.2(a) compares the share of Indonesia's land area by land use zone

with the share of ignitions in each zone. As in the example described above, ignitions

are disproportionately less likely to occur in protected areas, and more likely to occur

in production forest areas.

The pattern is even more striking when we look across di�erent concession types in

Appendix Figure A.2(b), which shows that �res are much more likely in the types of

concessions associated with land-clearing. Speci�cally, among all �res started within

concessions, 46% of �res are started in oil palm concessions � which drain and clear

existing forest before planting oil palm � even though they comprise just 28% of total

concession land area. Similarly, 42% of �res are started in wood �ber plantations

� which clear land after wood is harvested before replanting � even though these

comprise just 22% of land area. By contrast, logging concessions, which practice

selective logging rather than clear cutting, have a much lower share of ignitions �

16As discussed above, we exclude Java and the Lesser Sunda Islands, which have relatively little
forest, from our analysis.
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just 12% of �res, even though they comprise 51% of total concession areas. This is

consistent with evidence that �res are the most pro�table form of land clearance in

the `�rst rotation' when clearing vegetation and converting forests to oil palm and

wood �ber (Simorangkir 2007).

3.2 Fire as part of the land-clearing process

The data above suggest that �res are more likely in the types of forest concessions �

oil palm and wood �ber � where land is cleared and converted to alternate uses, rather

than in logging concessions, which focus on selective logging. To establish this link

more precisely, however, we can move to the pixel level, and look at the relationship

between deforestation and subsequent �res.

To do so, we use the Hansen et al. (2013) global deforestation dataset. Since

this dataset is based on Landsat, it has a resolution of approximately 30m per pixel

at the equator, which is much �ner than the 1km resolution of the MODIS-based

hotspot data. We therefore calculate, for each of the 1km pixels in our MODIS-based

�re hotspot data, the share of that pixel that was deforested in year t based on the

Hansen et al. (2013) data.

To illustrate these patterns, Figure 5 shows part of the same area of Riau province

as Figure 4, zoomed in further given the high spatial resolution of the deforestation

data. The map shows ignition areas in 2013, with 1km boxes (the resolution of

the MODIS �re data) illustrating all pixels where an ignition was detected in 2013.

We overlay this with the �ne-resolution deforestation data, showing in orange all

deforestation that took place in 2012. The map illustrates that, at least in this area,

almost all of the ignitions took place in areas that had experienced deforestation the

previous year.

To analyze this more formally across our entire data, we estimate a �xed e�ects

Poisson panel regression of the form:

E[Ignitionsimt] = γiexp(β1Forestlossit−1 + β2Forestlossit−2

+β3Forestlossit−3 + δm + δt)
(1)

where an observation is a MODIS-sized 1km pixel in a given month m and year t.

In this speci�cation, γi is a pixel �xed e�ect, δm are month �xed e�ects and δt are

year �xed e�ects. Note that this is a count model since multiple �res can start in the
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same pixel within the same month, since �res are measured daily.17 Robust standard

errors (i.e. robust to arbitrary variance of the error term, as long as the expectation

in (1) is correctly speci�ed; see Wooldridge 1999), clustered using 50km x 50km grid

cells, are shown in parentheses.18

Two important aspects of this speci�cation are worth noting. First, pixel �xed

e�ects are important, because they capture �xed di�erences in land use (e.g. pro-

tection areas vs national park areas) and land characteristics over time. This nets

out �xed di�erences that may lead some areas to be more vulnerable to �re than

others. Second, time �xed e�ects capture the fact that some years are more likely to

experience �res (due to drought, for example), which may happen to be correlated

with previous deforestation patterns.

The results are shown in Table 1, focusing in on wood �ber and palm oil conces-

sions.19 We �nd that �re ignition is more likely in recently deforested areas. The

magnitudes are substantial: a 1km pixel that was completely deforested is expected

to have 279% percent more ignitions than it would have otherwise. Interestingly, sub-

sequent lags of the deforestation variable are negative. This suggests that the timing

between deforestation and �re use is quite tight, consistent with the use of �res as

part of the land clearing process, rather than recent deforestation simply making the

land more �ammable by natural causes (in which case one would expect subsequent

lags to also be positive). Combined, these results suggest a clear picture: many of

the �res we observe appear to be a systematic part of the land clearance process.

.

3.3 Are �res responsive to government?

As power was decentralized after the fall of Soeharto, district governments were em-

powered to manage the natural resources within their jurisdictions (see Burgess et al.

2012). Democratic elections of district heads were asynchronous as they followed when

terms of Soeharto-appointed heads came to an end (Skou�as et al. 2011; Martinez-

Bravo et al. 2017).

17We obtain very similar results when aggregating the data to the pixel-year level.
18These and subsequent results are robust to clustering at 25km x 25km or 100km x 100km grid

cells, see Appendix I.
19Appendix Table G.1 and G.2 show this for all concessions, and all forest land, and show similar

patterns.
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We can therefore exploit the slash and burn cycle portrayed in Table 1 to see

whether the propensity to start �res in previously deforested pixels varies across the

electoral cycle. This will give us insights both into whether district governments

play a role in containing �res and whether that enforcement depends on political

incentives. Forest �res (particularly when they run out of control) are both highly

visible and potentially damaging to the local electorate and so political incentives to

suppress them might vary across the electoral cycle. To the extent that we �nd that

�res do follow the political cycle, it also reinforces the idea that these �res are set

intentionally.

To look at this, we restrict the sample to pixels experiencing some deforestation

in year t− 1 and then estimate the incidence of �res depending on the location of a

district in its 5-year election cycle. We also do this across di�erent types of produc-

tion and protected forest where the value of starting �res may vary (see Section 3.1).

We estimate robust Poisson regressions with pixel-level �xed e�ects, thus restricting

attention to pixels which experienced deforestation in multiple years.20 This is possi-

ble because the deforestation data from Hansen et al. (2013) has a much �ner spatial

resolution than the MODIS �re data (30m×30m compared to 1km2). We therefore

exploit the fact that there are often multiple deforestation events in a given pixel in

di�erent years, which allows us to include pixel �xed e�ects and examine whether

there are more �res in t conditional on a deforestation event in t − 1, depending on

position in the district election cycle, holding everything else about the pixel constant.

The results are shown in Table 2. In column 1 we see that for the whole forest

estate we can reject the hypothesis that �re setting following deforestation is �at

over the electoral cycle (p-value < 0.01). Relative to �res in the year prior to the

election, there is a clear drop in �res in the year of an election. This pattern is

driven by �res in productive forest (columns 2, 3, 4) with a drop in the incidence of

�res being particularly sizeable for oil palm concessions. For oil palm concessions,

we estimate that burning following deforestation is around 38% lower in the election

year compared to the year prior to an election. We also �nd that the decline in �res

is only in election years, bouncing back to pre-election levels in the year following the

20We model the conditional burning probability as E [yijt] = γi exp(
∑1

τ=−2 βτElectionj,t−τ + δt)
where yijt indicates the number of �res a pixel i in district j experiences in year t, after having
been deforested in year t-1. γj and δt are �xed e�ects at the pixel and year level, respectively. Of
the nearly 1.3 million pixels, 66,958 pixels with multiple deforestation events and some variation in
slash-and-burn provide the variation used to estimate the model.
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election (shown in the test of `this vs. last' in the table.) In strict contrast, we do not

observe electoral cycles where conversion of forested land to other uses is prohibited.

These results show that �rms are least likely to use �re as a means of clearing

recently deforested land when the electoral incentives for district governments to

suppress �res are strongest.21 This points to more stringent enforcement of forest �re

regulations during election years when the smog and other damages they generate

may dent the electoral chances of the district head. This is an important as it goes

beyond establishing the presence of the slash and burn cycle in Section 3.2 to show

that government policy a�ects the decision of what technology to use to clear land

once a parcel of land has been deforested.

4 Externalities and the Control of Forest Fires

The three pieces of evidence from Section 3 on where �res are set, when they are set

and whether they respond to electoral incentives all point to forest �res in Indonesia

being driven by human activity. This section examines whether �rms take the ex-

ternalities from �re setting into account in their decision of whether to burn forest

or not. Understanding this is critical to understanding whether and how forest �res

might be controlled.

4.1 Ignitions, wind speed, and �re spread risks

A key risk from using �re for land clearance is that the �re may spread beyond the

initial ignition area. To quantify this risk, we use our processing of the MODIS hotspot

data, which allows us to separate areas of initial ignition and areas of subsequent

�re spread. Note that this procedure may underestimate spread � since we classify

all adjacent pixels that have a hotspot on the same day as a single `ignition', this

procedure counts only spread occurring over multiple days, rather than spread within

21This result lines up with other work we have done looking at political cycles in aggregate

ignitions and area burned, which considers political cycles in total ignitions each year at the district
level (Balboni et al. 2021). Here, we are able to exploit recent deforestation as a trigger for �re (see
1) by focusing only on pixels deforested in t − 1, and running regressions at the pixel level. The
�ne-grained approach here allows us to include pixel �xed e�ects, which capture factors such as soil
types which may in�uence �ammability. The analysis here also allows us to zero down on the oil
palm and wood �ber areas of the productive forest that we know from Section 3.1 are the most
prone to burning.
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a single day.

Nevertheless, our data reveal that there are tail risks associated with �re-setting

behavior. Eighty-seven percent of the 107,334 �res in our sample burn for only one

day and 89% do not spread beyond their original ignition area. However, the long

tails of these distributions reveal that there is a small chance that �res burn for much

longer than this (up to a maximum of 36 days) and spread to cover an area much

greater than their ignition area (up to a maximum of 466 times the ignition area) and

very large areas in absolute terms (up to a maximum of 764 1km2 pixels). The risk of

�re spread also imposes a risk of externalities: across all multi-day �res started inside

concessions, 32% of the total land burned is outside the concession in which the �re

was ignited.

The risks of �re spread may vary over time depending on wind speed. Greater

winds can increase �re spread for several reasons. Increased winds supply more oxy-

gen, which increases the intensity of the �res. Winds also exert pressure on the �re

to move, igniting new areas, rather than simply burning existing areas.22

To investigate this in our data, we merge our �re data with data on average

prevailing wind speeds in each month, obtained from the NOAA global wind speed

model, as described above. To isolate the e�ect of windspeed from other factors that

may in�uence �re spread, we implement a �xed e�ects Poisson speci�cation of the

form:

E[FireSpreadimt] = γiexp(β1Windspeedimt + β2Ignitionsimt + δm + δt) (2)

where FireSpreadimt is a count of the average number of pixels of �re spread area

(burned area minus ignition area) of all �res started in pixel i during month-year mt,

Windspeedimt is the average wind speed in pixel i during month-year mt (measured

in standard deviation units), Ignitionsimt is the number of ignitions in pixel i during

month-year mt, γi are pixel �xed e�ects and δm and δt are month and year �xed

e�ects.23 As above, we use robust standard errors to allow for arbitrary distributions

22While intuitively one may expect the direction of the wind to in�uence the direction of �re
spread, wind direction at the ground is very complex and in�uenced by the convection currents
of the �re itself, and is notoriously hard to predict. In our data wind direction does not predict
the direction of �re spread, although there is evidence from other contexts that wind direction may
in�uence the direction of smoke spread from �res, which occurs at much higher altitudes and is
hence more in�uenced by prevailing higher-altitude wind directions (e.g. Rangel and Vogl (2019)).

23We have also explored robustness to alternative �xed e�ects strategies. In particular, for all en-
suing regressions including pixel, month and year �xed e�ects, we �nd similar results including pixel
and month-year �xed e�ects or pixel and month-year-island �xed e�ects, which could potentially
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of the error term.

The results are shown in Table 3 and demonstrate that an ignited �re is more

likely to spread to cover a larger area when prevailing winds are strong. Column 1

shows the results with just pixel �xed e�ects, column 2 shows the results with both

pixel and time �xed e�ects. Because these models include pixel �xed e�ects � which

is important to capture �xed di�erences in spread risks across di�erent soil types and

other �xed land characteristics � this regression is identi�ed on the 5,444 pixels for

which we observe at least one spreading �re during our period.

The resulting magnitudes suggest that wind substantially increases the risk of �re

spread. Focusing on the results in column 2, a one-standard deviation increase in wind

speed � equivalent to about 5km/hr � increases the extent of �re spread by 287%.

Combined, the results in this section suggest not only that �re is risky due to the

risk that it spreads, but that that this risk is predictable � high winds substantially

increase the risk of spread.

4.2 Externalities in �re spread and containment

Use of �re entails a risk of spread, but the degree to which spread risk is costly depends

on what type of land it could spread to. One could imagine, for example, that a �re

spreading into unoccupied forest land may be of less concern to a landowner than a

�re that spreads into a city or town. Similarly, �re spreading into a protected national

park might be more of a concern than it spreading into unoccupied land.

To measure the degree to which potential �re users are deterred by the externalities

they may cause, we use the product of two factors which together create riskiness of

starting a particular �re that varies across time and locations. First, as described

above, we use monthly data on wind speed at each pixel (as described in Section

2.4), which yields spatial and temporal variation in the probability of �re spread.

Second, there is local variation in the cost of �re spread driven by the types of

land that surround each pixel. To quantify the latter, for each pixel in our data, we

construct the share of pixels by land category in a 6km radius surrounding each pixel,

exempli�ed in Figure 6.24 The expected external cost of starting a �re in a particular

capture year-speci�c seasonality in addition to overall seasonality; see Appendix H for details.
24A radius of 6km was chosen to estimate the area at risk of �re spread. This is the 90th percentile

of the distribution of the maximum distance between �re ignition centroids and the boundary of
extents burned for multi-day �res.
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pixel in a particular month depends on the product of these two factors � wind speed

in that pixel in that month, and the composition of the types of land that surround

the pixel.

We next consider whether �re-setting behavior is in�uenced by the likelihood

of �res spreading to particular land types. We consider the e�ects of �res being

di�erentially likely to spread to (i) land with the same versus di�erent owners, and

(ii) land types where there may be a di�erential threat of punishment. In both cases,

we consider the impact on ignition probability and, conditional on a �re starting, on

the probability of containment.

We investigate this with the following speci�cation:

E[Ignitionsimt] = γiexp(β1WindSpeedimt+∑
j β

j
2NeighborLandTypeji ×WindSpeedimt

+β3Xi ×WindSpeedimt + δm + δt)

(3)

where NeighborLandTypeji is the share of land in the 6km radius bu�er surround-

ing pixel i that is in land type j; the coe�cient(s) on this interaction, β2, capture(s)

whether potential �re setters di�erentially use �res depending on the magnitude of

their expected externality. Equation (3) includes pixel �xed e�ects (γi) and time �xed

e�ects (δm, δt), which absorb �xed pixel characteristics and common time shocks. We

also include interactions of wind speed with island, concession type, the total size

of the concession (to account for the fact that in larger concessions more pixels will

mechanically have smaller shares of pixels outside the concession), and with baseline

forest cover. We consider speci�cations where NeighborLandTypeji is divided accord-

ing to whether or not land in the 6km bu�er surrounding pixel i is in the same con-

cession as pixel i (for land inside concessions only), and where NeighborLandTypeji
is divided according to land type classi�cations.

The identi�cation thus rests on comparing areas surrounded by di�erent land types

on more versus less windy days. As such, it is important to consider the intertemporal

dynamics of wind. In this context, wind is positively though imperfectly serially

correlated across months.25 Given this, it is likely that the costs of waiting for a non-

windy period to start a �re for land clearing may be non-trivial (at least a few months)

once the land is ready to be cleared for planting. This supports the identi�cation

strategy used, which abstracts from inter-temporal substitution of ignitions.

25Month-to-month serial correlation is 0.4; see Appendix Table B.1.
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4.3 Magnitude of externalities: burning your own vs others'

land

We begin by examining results where we split land surrounding each pixel based on

what fraction is part of the concession in which the pixel is located, versus is `external'

to the concession owner. To do so, we estimate equation (3), using as the the key

NeighborLandType interaction the variable FractionBufferOwn, which calculates

what share of the 6km bu�er pixels is in the same concession as the central pixel.

The results, shown in Table 4, reveal that �re ignitions inside wood �ber and

palm oil concessions are signi�cantly less likely on windy days in areas where the �re

would be more likely to spread inside the same concession compared to where spread

would be external. Table 4 includes speci�cations including pixel, month and year

�xed e�ects and successive controls for wind speed × island, wind speed × concession

type, wind speed × 2000 forest cover and wind speed × concession area.26,27

The coe�cients of interest are interactions, i.e. they estimate
∂2E[Ignitionsimt]

∂WindSpeed∂FractionBufferOwn
, and hence require some care to interpret. The negative

coe�cients we �nd says that land owners are more sensitive to spread risks (induced

by stronger winds) when the area to which the �re would spread (i.e. the bu�er zone)

is largely their own land. To gauge magnitudes, we consider the semi-elasticity of

ignitions with respect to the share of the bu�er with the same owner as the central

pixel. This can be interpreted as the percentage change in ignitions resulting from an

additional bu�er pixel in one's own land, for a given wind speed. Taking the derivative

of the estimating equation 3 with respect to the fraction of the bu�er in the same

concession as the central pixel and re-arranging terms yields this semi-elasticity as:

∂E[Ignitionsimt]

∂FractionBufferOwni

/E[Ignitionsimt] = β2WindSpeedimt (4)

where β2 is the estimated interaction coe�cient.

The estimated β2 coe�cients in Table 4 � i.e., the coe�cients on WindSpeed

26In an especially demanding speci�cation including concession �xed e�ects interacted with wind
speed, �re ignitions inside concessions are again found to be less likely on windy days in areas where
the �re would be more likely to spread inside the same concession compared to where spread would
be external, although the results are no longer signi�cant at conventional levels in this case (see
Appendix Table C.1).

27Appendix tables F.1 and F.2 present results separately for wood �ber and palm oil concessions:
while e�ects are stronger statistically in the case of the former, the point estimates are similar in
both cases.
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interacted with FractionBufferOwn � range from -0.007766 to -0.002124. At the

mean wind speed, these coe�cients imply that one additional bu�er pixel in one's

own land decreases ignitions by 0.2%-0.7%. We next use these semi-elasticities to

ask what the e�ect would be of a typical bu�er being entirely owned by the same

owner as the central pixel. Using the fact that the 6km bu�ers contain 137 pixels

and that the mean number of bu�er pixels in the same concession as the central pixel

is 96, this suggests that a typical bu�er being owned entirely by the same owner as

the central pixel would reduce ignitions by 8% to 25% when the wind speed takes its

mean value. An equivalent calculation when the wind speed is at the 95th percentile

value suggests that this e�ect would be much larger � 22% to 61% � on very windy

days.28

The central results in Table 4 thus reveal that �re setters do appear to take the

externalities from �re-setting into account, suggesting a failure of Coasian (1960)

bargaining to fully internalize externalities. In principle, part of the explanation for

this might lie in the di�culty of contracting where pixel bu�ers contain land owned

by several di�erent parties. We do not, however, �nd signi�cantly di�erent results in

speci�cations that restrict attention only to those pixels whose entire 6km bu�er is

in either the same concession as the central pixel or in a single other private party's

concessions, suggesting that the externality is present even in cases involving only a

single property border between two private �rms (see Appendix Table D.1). This is

a tighter test of Coase and suggests that multiple-party contracting issues alone are

not necessarily driving the results. Appendix Table D.2 also presents results for the

subset of bu�ers where pixels are either in the same concession as the central pixel or

in unleased productive forest, where Coasian bargaining might be least likely given

that property rights are least well de�ned in unleased productive forest. While the

point estimates on the interaction terms are in general larger in this case, the results

are not signi�cantly di�erent from those in the main speci�cation in Table 4.29 The

fact that results for concessions surrounded by concessions look similar to those for

concessions surrounded by unleased productive forest futher suggests that Coasian

28Note that direct (i.e., uninteracted) e�ects of FractionBufferOwn are captured in the �xed
e�ect of equation (3), and hence do not appear in equation (4). Presumably, one would expect these
to be negative (more land in own bu�er would lead to more caution about use of �re, even with
little wind), in which case the estimates in this paragraph are a lower bound.

29We provide a formal statistical test of this in Table 6 below, which shows that nearby unleased
productive forest is in fact treated no di�erently than nearby other private concessions.
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bargaining is not playing a role in containing �res. This is worth noting, as with

weak government enforcement one would hope that private interests might help to

control the use of �re. This does not appear to be the case.30

It is possible that strategic interactions between neighbors may be important

for the results if, for instance, neighbors have correlated incentives to start �res such

that coordinated �res are started simultaneously by neighbors or �res are ignited with

neighbors' acquiescence.The results in Table 4 demonstrate that being surrounded by

one's own land has a deterrent e�ect on �re-setting on windy days, suggesting that it

is unlikely that landowners wish to clear large areas of their concession at once (for

instance to take advantage of economies of scale). If landowners do not aim to burn

large swaths of their own land simultaneously, it seems less likely still that concession

holders should necessarily want to burn their land at the same time as their neigh-

bors. Instead, landowners may be expected to burn di�erent plots at di�erent times

according to, for instance, whether the plot is still forested or whether and when it

has been planted with plantation crops. Nevertheless, to investigate the possibility of

strategic interactions between neighbors, we estimate the same speci�cation restrict-

ing attention to situations where such e�ects may be less likely, namely (i) �res whose

initial size is one pixel, and (ii) �res where no neighboring concession starts a �re in

the same period. In both cases, the results are statistically indistinguishable from the

main results (see Appendix Tables E.1 and E.2 respectively).

In addition to studying the impacts on �re ignitions, we also investigate whether,

conditional on a �re starting, it is less likely to spread when the spread would be to

neighbors' land. E�orts to reduce �re spread may re�ect actions taken either prior to

a �re starting (such as building in �re breaks), or actions taken after the �re starts

(i.e. �re�ghting e�ort), or a combination thereof. Importantly, actions to reduce

�re spread once a �re has started might be undertaken by the government or other

private actors, so that externality-containing (or inducing) behavior is more di�cult

to attribute to the owner of the concession in which the �re starts in this case. We

estimate this using the following OLS speci�cation to determine how the spread of

�re f ignited in pixel i at time t is in�uenced by the prevailing wind speed interacted

with surrounding land type:

30We �nd weak evidence that single-concession �rms may be those driving the �nding that �re
setters take the externalities from �re-setting into account. While this e�ect is attenuated for multi-
concession �rms, the attenuation is not driven by the largest �rms (measured by the number of
concessions held by the �rm).
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FireSpreadfimt = α + γi + δm + δt + β1WindSpeedimt

+
∑

j β
j
2NeighborLandTypeji ×WindSpeedimt

+β3Xi ×WindSpeedimt + ϵfimt

(5)

The results of this analysis, shown in Table 5, reveal no signi�cant e�ect in this

case, suggesting that the main margin is the ignition of new �res, not �re-surpressing

activity once �res are lit.

4.4 Does it matter who your neighbors are?

We next benchmark the degree to which property owners avoid damaging other types

of land to the way they behave vis-a-vis unleased productive forest land, which tends

to be largely unprotected by the government (or anyone else). We implement this

by re-estimating equation (3), dividing NeighborLandTypeji according to land type

classi�cations that distinguish private land owned by the same concession-holder as

the central pixel; private land owned by other concession-holders; national parks and

conservation areas, which are explicitly protected by the government; land outside

the national forest system, which is typically comprised of villages and smallholders;

and unleased productive forest outside concession boundaries (which is the omitted

category). We also examine the overall population density in the bu�er area as a

measure of the risk that �res would spread into populated areas.31

The results of this exercise are shown in Table 6 (ignitions) and 7 (spread). The

results in Table 6 suggest that concession owners make more of an e�ort to avoid

starting �res that risk spreading into their own land, protected forest or land outside

the forest estate, relative to those that risk spreading into unleased productive forest.

They appear to treat other �rms' concessions similarly to land that lies in the unleased

productive forest estate, suggesting that private party enforcement is not very strong

in this context. We can again use the semi-elasticity of ignitions with respect to the

share of the bu�er that is comprised of di�erent land types (e.g. equation (4)) to

interpret the magnitude of these coe�cients. The results suggest that one additional

bu�er pixel in protected forest versus unleased productive forest decreases ignitions by

0.9% at the mean wind speed and 2.7% when the wind speed is at the 95th percentile.

31This is calculated by (i) assigning a population density to each 1km grid cell based on the
population density of the desa in which the grid cell centroid lies; and (ii) �nding the average
population density of the grid cell centroid points that lie within each pixel's 6km bu�er.
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The deterrent e�ect of surrounding land outside the forest estate is even stronger: in

this case, these �gures are 1.6% and 4.6% respectively.

The containment results broken down by land type in Table 7 again show little

impact on �re spread based on nearby areas, suggesting that again ignitions are the

main margin a�ected.

4.5 Do agents internalize government preferences?

Intentionally burning areas of the wood �ber and palm oil forest concessions we

study was illegal throughout our study period, but the government may implicitly

place di�erent sanctions on di�erent types of �res depending on what types of land

are damaged. To back out the government's implicit weights on di�erent types of �re

damage, we use data on �rms investigated by the Indonesian government for forest �re

violations, as described in Section 2.4, to consider what the Government punishment

function looks like. We then consider how aligned this is with the �re-setting behavior

of concession holders.

To estimate the government's decision rule, we estimate the following equation at

the level of concessions c:
Pr(Punishedc) = F (α +

∑
j ̸=o βjBurnedAreajc + γTotalBurnedAreac

+δPopnBurnedAreac + ηConcAreac)
(6)

where F (·) is the CDF of logistic distribution; Punishedc is a dummy equal to 1 if

concession c is owned by a �rm that appeared on the list of investigated �rms and in

the province in which the �rm was investigated; BurnedAreajc is the number of pixels

in land type j (excluding omitted category o) burned by �res started in concession

c in the 12 months prior to the release of the investigated �rm lists (September

2014 to August 2015); TotalBurnedAreac is the total area burned by �res started in

concession c during that time; PopnBurnedAreac is the population in areas burned by

�res started in concession c during that time; and ConcAreac is the area of concession

c. α captures island or province �xed e�ects.32 Standard errors are clustered at the

level of �rm groups, de�ned according to �rm group name where this is available and

�rm name otherwise.

The results are shown in Table 8. Larger �res are clearly more likely to be pun-

32The estimation sample includes only concessions in those provinces for which �rm investigation
lists were published and in which at least one �re was started between September 2014 and August
2015.
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ished; conditional on �re size, the government is also likely to target larger conces-

sions. Looking in terms of the types of area burned suggests a few key patterns. First,

the government is substantially more likely to punish those �rms owning concessions

whose �res spread into populated areas. Second, the government is also likely to tar-

get those �rms owning concessions whose �res spread into protected zones (though

the coe�cient is statistically signi�cant only in the speci�cation with province �xed

e�ects). Pixels in unleased productive forest are treated no di�erently than land

in the concession itself. What is remarkable about these patterns is that they very

much mirror the patterns of avoidance behavior we saw in Table 6, suggesting that

concession owners substantially avoid the same types of land that trigger government

investigations. This suggests that �rms do behave as if they are responding to Pigou-

vian (1920) style incentives, and that these are stronger than the Coasian solution

for burning other private lands.

5 Counterfactuals and Implications for Policy

In this section, we use our estimates to consider several counterfactual simulations in

order to understand how changes in policies directed at containing forest �res would

change the degree of �re use. As discussed in Section 2 the central government has

far-reaching powers to control land allocations via land zoning policies and the issuing

(and enforcement) of �nes and other penalties for setting illegal forest �res within the

forest estate. Given the important role of these two types of policies in controlling

�res, we simulate the e�ect of hypothetical modi�cations of these policies which can,

in principle, be enacted by the state.

Each simulation exercise is discussed in turn in the subsections below, and the full

set of results is summarized in Table 9.

5.1 Counterfactual land zoning policies

The results in Section 4 indicate that a more spatially concentrated allocation of

concession rights should reduce the incidence of �res. This arises because a more

spatially concentrated allocation of concessions increases the likelihood that a given

pixel's bu�er has the same owner as the central pixel and, as shown in Table 4, this has

a deterrent e�ect on externality-inducing �re-setting. We investigate this by using the
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coe�cients estimated in Table 4, combined with a simulation exercise that achieves

a more concentrated allocation of concession rights by assigning all concessions to

have a single owner while keeping constant the total area allocated to concessions. It

is worth noting that this counterfactual runs counter to current Indonesian policies,

where bans on the transfer of concession rights as well as limits on the number of

concessions held by a �rm within a district e�ectively limit the spatial concentration

of land.

The �rst step in the simulation exercise is to estimate the coe�cients in equation

(3), focusing on FractionBufferOwni:

E[Ignitionimt] = γiexp(β1WindSpeedimt

+ β2FractionBufferOwni ×WindSpeedimt

+ β3Xi ×WindSpeedimt + δm + δt) (7)

We then simulate the value of the dependent variable under the counterfactual sce-

nario by replacing FractionBufferOwni with the number of bu�er pixels in the same

`aggregate concession' as pixel i under this counterfactual, keeping all other covariates

(including the pixel �xed e�ects) unchanged:33

ˆE[Ignitionimt] = γ̂iexp(β̂1WindSpeedimt

+ β̂2FractionBufferOwnAggi ×WindSpeedimt

+ β̂3Xi ×WindSpeedimt + δ̂m + δ̂t) (8)

This exercise suggests that assigning all concessions to have the same owner would

result in a 6% reduction in ignitions inside wood �ber and palm oil concessions within

the forest estate over our study period as a result of lower externality-inducing �re-

setting.

The previous counterfactual experiment can also be extended to consider how far

ignitions would be reduced if agents treated all land � including land not already

allocated to concessions � as if it were their own concession land, using the same

approach but setting FractionBufferOwni to be equal to 100%. In this case, the

simulations suggest that ignitions would instead be reduced by 14%.

33This implies that pixels in which no ignitions were observed over the study period will also
contain no ignitions under the counterfactuals. While some covariates might also be expected to
change under the counterfactuals, the key e�ect of interest is the change in incentives induced by
the changing externality e�ect.
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The results in Section 4 also indicate that �re-setters are deterred by the likelihood

of a �re spreading into neighboring protected forest. This points to an alternative

potential policy: namely, zoning more land to be designated as protected land. Such

systematic zoning has been a regular policy tool since 1982, when the Indonesian

government presented a national conservation plan which increased the protected

area to around 10% of Indonesia's total land (Jepson et al. 2002).34 One approach

one could feasibly take is to zone all remaining land in the national forest that has

not yet been leased out as protected forest, with concomitant enforcement of �res

spreading into those areas. We calculate the implications of this through a similar

approach, i.e. designating unleased productive forest to be protected forest land and

using the estimated coe�cients in Table 6. This exercise suggests that this alternative

policy would result in a much larger decline in ignitions inside wood �ber and palm

oil concessions within the forest estate over our study period, at 26%.

The results in Table 6 reveal that bu�er land outside the forest estate � which is

where the population lives � has the strongest deterrent e�ect on would-be �re-setters

of all of the land types considered. The �nal counterfactual simulation examines the

potential reduction in ignitions if agents acted as if all land in each bu�er were in this

land category. This may not be feasible, of course, but it is a useful counterfactual to

illustrate the degree to which enhanced government enforcement could matter.35 This

counterfactual simulation results in a sharp 80% reduction in ignitions were agents to

treat all land as if it were land outside the forest estate. A slightly smaller reduction

of 67% would be achieved were agents to instead treat all land as if it were protected

forest.36

The implementation of policies such as those described here would of course be

34Over the following decades, both new protected forests were designated, and large shares of
existing protected forests were re-converted to production forest (Jong 2020). Recent court rulings
have restricted the power of the central government to designate new protected areas (Enrici and
Hubacek 2016).

35In this case, the counterfactual aims to capture only the deterrent e�ect of surrounding land
associated with all bu�er land being treated as if it were land outside the forest estate. Of course,
reassigning bu�er pixels inside concessions to be a di�erent land type would mechanically also
change the categorization of the central pixels, and therefore the sample of ignitions considered in
the analysis, but given that this is not the e�ect of interest that we are aiming to consider with
this counterfactual we abstract from this e�ect. This e�ect therefore captures the e�ect of increased
enforcement as if all land outside a concession was in a particular land category.

36Note that this result is substantially higher than in the calculation in the previous subsection
because we are now considering the counterfactual of treating all land as if it were protected, whereas
the previous counterfactual only rezoned `unleased forest estate land' as protected.
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likely to give rise to general equilibrium e�ects and practical implementation chal-

lenges that complicate the interpretation of these estimates. For instance, designating

more land as protected areas may lead to a reduction in the intensity of government

enforcement; increasing land concentration might also have adverse economic and

social consequences in the long run (see, e.g., Smith 2021); and political economy

considerations would likely loom large in interactions between landowners and gov-

ernment in changing the distribution and concentration of land rights. The aim of the

current exercise is to use the paper's estimates to investigate the potential e�cacy

of alternative land zoning and Pigouvian policies, such that a quantitative treatment

of broader such e�ects is beyond the scope of this analysis, but such factors may be

important in governing the impact of these policies in practice.

5.2 Counterfactual enforcement regimes

Next, we consider alternative policies targeted at more e�ective enforcement of exist-

ing regulations via Pigou-type �nes incentivizing �rms to prevent the spread of �res

to surrounding land.

The �rst of these considers the impact of preventing the spread of �res started

inside wood �ber and palm oil concessions from crossing property boundaries. In-

donesian law requires concession holders to implement technical solutions that pre-

vent the spread of �res outside of their concession boundaries. However, as we have

seen, this policy is clearly not consistently enforced. We assume a scenario in which

the government strictly enforces this regulation, and �rms make associated technical

investments to prevent �re spread outside their concession boundaries.37 This can be

estimated from our data by identifying the share of the burned area of each �re that

falls outside the concession of ignition, and assuming that this share of the burning

was prevented. This counterfactual simulates the e�ect of, for instance, e�ective reg-

ulation or enforcement of punishments for burning land owned by other concession

holders or public lands. The results suggest that a total of 12.1 million hectares would

have been burned by �res started inside wood �ber and palm oil concessions over our

study period had these �res been prevented from crossing property boundaries. This

37The 1999 Forestry Law equips the Indonesian government with strong tools to �ght the spread
of �res into public lands, with the threat of up to 15 years of imprisonment or �nes of up to 5
billion Rupiah for o�ending persons or businesses. As discussed in Section 2.3, even in cases where
businesses have been ordered to pay high �nes and reparations for infringements, such �nes were
often not paid.
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represents a sizable reduction of 23% relative to the 15.6 million hectare total area

that was burned over the period.

An alternative counterfactual considered is the e�ect of preventing the spread of

�res started inside wood �ber and palm oil concessions into protected forest and pop-

ulated areas only. This corresponds to, for instance, policies that implement e�ective

enforcement of punishment for, or �re-�ghting e�orts to prevent, encroachment into

public lands. The results suggest that in this case the total area burned would have

been much closer to the level actually observed. The total burned area in this case

is estimated to be 15.4 million hectares, which represents only a 2% reduction on the

observed area burned.

An alternative form of regulation implemented over the period is private regula-

tion via membership of the Roundtable on Sustainable Palm Oil (RSPO), a multi-

stakeholder organization founded in 2003 that encourages the production and trade

of certi�ed sustainable palm oil and promotes a zero burning policy.38 To consider

the relative potential e�cacy of this initiative compared to our counterfactuals, we

simulate the e�ect of perfect enforcement of the zero burning policy promoted by the

RSPO among its members. To do so, we simulate the area burned by �res started

inside concessions owned by RSPO members at the time of ignition.39 Removing the

burned area from all of these �res from the total area burned by �res started inside

wood �ber and palm oil concessions over our study period implies only a 3% reduction

in the total area burned to 15.2 million hectares.

38Existing studies �nd muted evidence for reduced incidence of �res in RSPO-certi�ed concessions.
For example, Carlson et al. (2018) �nd that RSPO certi�cation reduced deforestation but not �re
or peatland clearance and Cattau et al. (2016) �nd that the prevalence of �res in Sumatra and
Kalimantan from 2012-2015 was lower in RSPO-certi�ed concessions only in areas and under climatic
conditions when the likelihood of �re is relatively low. Consistent with this, in our data imprecisely
estimated results suggest that palm oil concessions owned by RSPO members may be associated
with fewer ignitions. We do not �nd that RSPO membership a�ects the degree to which concession
owners internalize the costs of �res on neighbors.

39RSPO certi�cation explicitly prohibits burning but the unit of certi�cation is an oil palm
mill and its surrounding supply base, which cannot be mapped directly to our concessions data.
However, the �rst step towards RSPO certi�cation is RSPO membership, which can be matched
to our concessions data. While not an explicit pledge of zero burning, RSPO membership requires
�rms to work towards certi�cation, to provide annual progress reports and acknowledgment of the
RSPO Statutes and Principle and Criteria. RSPO members are matched to our concessions data
by classifying a concession as an RSPO member if the concession name, or the company group to
which the concession belongs, appears in the list of RSPO members published on the RSPO website
(https://www.rspo.org/members/all). This list also includes the date on which each member acceded
to the RSPO. Over our study period, 23% of company groups, owning 12% of palm oil concessions,
became members of the RSPO.
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6 Conclusions

Throughout the world there is a tension between �rms trying to maximize private

bene�ts and the environmental damages their actions impose on society. This tension

is most keenly felt in developing countries where environmental externalities are less

contained due to the imperfect enforcement of environmental regulations. The scale

and growth of these damages within more weakly regulated developing countries has

raised alarm, with the burning of vast tracts of tropical forests often topping the list

of global environmental concerns.

This paper seeks to understand the degree to which these tropical �res are caused

by �rm behavior and, in particular, the extent to which �re is overused because �rms

do not internalize the risks that a �re, once ignited, can spread far beyond its initial

area.

By tracking the daily spread of over 107,000 unique �res over a 15 year period we

are able to show that they are concentrated in areas zoned for conversion to palm oil

and wood �ber, tightly follow deforestation, and are suppressed in election years, all

of which point to the human origins of these �res. This appears to be slash and burn

on an enormous scale.

To make further progress, we then seek to understand whether �rms take into

account local externalities in their decision of whether to set �res. To do this we

exploit the interaction between wind speed (a driver of spread risk) and land types

that surround a concession pixel (that proxy for spread cost). Our results suggest

that, over the period 2000-2016, �re setters do appear to take the externalities from

�re setting into account. Ignitions are signi�cantly less likely on windy days in areas

where the �re would be more likely to spread inside the same concession versus cases

in which spread would be to land with a di�erent owner.

The analysis also considers how concession holders' �re-setting behavior is in�u-

enced by other types of neighboring land. The results suggest that surrounding land

that lies in protected forest estate lands or populated areas outside the forest estate

has a strong deterrent e�ect, consistent with these being the land types in which �res

are most likely to lead to government sanctions.

The results thus suggest that �rms are strategic in two senses: 1) they overuse

�re relative to what they would do if all spread risks were internalized à la Coase,

and 2) they do take into account the risks of government punishment à la Pigou,
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and this deters them from burning near protected or highly populated areas. The

analysis therefore documents how government incentives shape the extent to which

�rms produce a negative environmental externality.

To quantify the magniudes of the externality, we build di�erent policy counterfac-

tuals to examine di�erent routes into better controlling forest �res in the tropics. Our

results from these policy counterfactuals suggest that relatively modest e�ects would

result from either improving property rights and relying on Coasian private bargain-

ing or from tort reform. In contrast, stronger Pigouvian incentives that encouraged

property owners to treat the risk of any �re spread similarly to spread into land types

that the government currently punishes most severely would achieve much stronger

reductions. Indeed, if �rms were as concerned about spread risks to surrounding lands

as they are to protected forest or populated areas, �res would be reduced by 67% or

80%, respectively.

More generally, while economic theory suggests that private bargaining à la Coase

and social pricing à la Pigou may under certain circumstances yield equivalent out-

comes, our analysis suggests that private bargaining does not hold up to its promise

in the context of this local externality. This is an important consideration not just

for Indonesia, but more generally for other countries in the tropics where forest �res

are major sources of local and global externalities.

Our analysis has considered a particular externality associated with forest �res,

namely the local externality that arises if others own the land burned by a spreading

�re. There are, however, a wide range of other local and global externalities associated

with forest �res, including health and economic costs of smoke and haze, ecosystem

loss and global warming induced by greenhouse gas emissions. We use our estimate

of the reduction in the prevalence of forest �res were the damage risk to others'

land to be treated equally to the damage risk to one's own property, together with

the literature quantifying wider impacts of Indonesia's forest �res, to calculate a

back-of-the-envelope estimate of the implied wider potential savings. Based on the

estimated impacts of forest �res in Indonesia40, and assuming that impacts are directly

40The most extensive literature quantifying the impacts of Indonesia's forest �res is based on the
severe �res in 1997-1998, which resulted in the burning of over 5 million hectares of land (Varma,
2003) and the vast spread of haze throughout Southeast Asia. While there are several reasons to
expect that impacts may be heterogeneous across other �re episodes, this literature is helpful in
considering the potential order of magnitude of wider e�ects. Short-term costs and damages of
the 1997-1998 �res for Indonesia and neighboring countries have been conservatively estimated at
4,475 million 1997 USD, mainly in medical costs, airport closures and tourism, and damages to
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proportional to the area burned, the estimated reductions in �res associated with the

maximally e�ective policy we consider would have implied savings from Indonesia's

2015 forest �res41 of 676 to 1,874 million 2015 USD (0.08�0.2% of Indonesia's 2015

GDP), global carbon emission reductions of 0.08 to 0.73 Gigatonnes (up to 7.5% of

the global carbon emissions from fossil fuels) and avoided the premature deaths of

up to 15,386 adults and 4,445 children under three. These �gures suggest that the

damages from failing to internalize local externalities can be substantial.

This paper has only broken the surface of the set of issues around how to control

environmental externalities like tropical forest �res. Three areas look important for

making further progress. The �rst is political economy. If private bene�ts are small

relative to social costs then how can the views of those that are damaged become

represented? Our work on political cycles in �res following deforestation demonstrate

that electoral incentives bite but we do not yet fully understand how popular dislike

of �res can be better represented in policy making. The second is international

policy. Citizens in many countries outside of the countries where the forest �res occur

care about stopping them but have limited means of representing these preferences.

There is now growing interest both in how policy instruments such as conservation

linked trade tari�s (e.g., Harstad 2020, Hsiao 2020) or REDD payments might �ll

the void left by weak domestic regulation but limited evaluation of whether this

works. The third is technology. Ultimately �re is a risky technology for clearing land

with many external harms, and there is a need to understand whether innovations

or incentives can make cleaner alternatives more attractive. The bottom line is that

though the measurement revolution has made us better at monitoring forest �res in

the tropics and understanding their origins, there are many avenues to pursue to

better understand how to control them.

ecosystems and biodiversity (Glover and Jessup, 1999). Subsequent studies estimated the associated
carbon emissions at 0.81�2.57 Gigatonnes (Page et al., 2002) and resulting premature deaths at
22,000�54,000 adults (Heil, 2007) and 15,600 children under 3 (Jayachandran, 2009).

41The 2015 �res burned an estimated 2.6 million hectares of land in Indonesia.

37



References

Abatzoglou, J. T. and A. P. Williams (2016): �Impact of anthropogenic climate change
on wild�re across western US forests,� Proceedings of the National Academy of Sciences, 113,
11770�11775.

Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous (2012): �The Environment and
Directed Technical Change,� American Economics Review, 102, 131�166.

Acemoglu, D., U. Akcigit, D. Hanley, and W. Kerr (2016): �Transition to Clean Tech-
nology,� Journal of Political Economy, 124, 52�104.

Aghion, P., A. Dechezleprêtre, D. Hémous, R. Martin, and J. Van Reenen (2016):
�Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto
Industry,� Journal of Political Economy, 124, 1�51.

Angrist, J. D. and J.-S. Pischke (2010): �The Credibility Revolution in Empirical Economics:
How Better Research Design is Taking the Con out of Econometrics,� Journal of Economic

Perspectives, 24, 3�30.

Balboni, C., R. Burgess, J. Heil, J. Old, and B. A. Olken (2021): �Cycles of Fire? Politics
and Forest Burning in Indonesia,� forthcoming: American Economic Association: Papers and

Proceedings.

Barber, C. V. (1990): �The Legal and Regulatory Framework and Forest Production in Indone-
sia,� in Community Land Rights, Customary Law, and the Law of Timber Concessions in In-

donesia's Forests: Legal Options and Alternatives in Designing the Commons, ed. by C. Zerner,
Jakarta, Indonesia: Ministry of Forestry/FAO, UFT/INS/065, chap. Appendix.

BBC (2015): �Indonesia arrests executives of "haze-causing" companies,� BBC News, retrieved
from https://www.bbc.co.uk/news/world-asia-34276028.

Burgess, R., O. Deschenes, D. Donaldson, and M. Greenstone (2017): �Weather, Cli-
mate Change and Death in India,� Mimeo.

Burgess, R., M. Hansen, B. A. Olken, P. Potapov, and S. Sieber (2012): �The Political
Economy of Deforestation in the Tropics,� The Quarterly Journal of Economics, 127, 1707�1754.

Burke, M. B., E. Miguel, S. Satyanath, J. A. Dykema, and D. B. Lobell (2009):
�Warming increases the risk of civil war in Africa,� Proceedings of the National Academy of

Sciences, 106, 20670�20674.

Carlson, K. M., R. Heilmayr, H. K. Gibbs, P. Noojipady, D. N. Burns, D. C. Morton,

N. F. Walker, G. D. Paoli, and C. Kremen (2018): �E�ect of oil palm sustainability
certi�cation on deforestation and �re in Indonesia,� Proceedings of the National Academy of

Sciences, 115, 121�126.

Casson, A. (2001): Decentralisation of policies a�ecting forests and estate crops in Kutai Barat

District, East Kalimantan, vol. 4, CIFOR.

Cattau, M. E., M. E. Marlier, and R. DeFries (2016): �E�ectiveness of Roundtable on
Sustainable Palm Oil (RSPO) for reducing �res on oil palm concessions in Indonesia from 2012
to 2015,� Environmental Research Letters, 11, 105007.

Chausson, A., B. Turner, D. Seddon, N. Chabaneix, C. A. J. Girardin, V. Kapos,

I. Key, D. Roe, A. Smith, S. Woroniecki, and N. Seddon (2020): �Mapping the e�ec-
tiveness of nature-based solutions for climate change adaptation,� Global Change Biology, 26,
6134�6155.

38



Chay, K. Y. and M. Greenstone (2003): �The impact of air pollution on infant mortality:
evidence from geographic variation in pollution shocks induced by a recession,� The Quarterly

Journal of Economics, 118, 1121�1167.

Coase, R. (1960): �The Problem of Social Cost,� Journal of Law and Economics, 3, 1.

Cochrane, M. A. and M. D. Schulze (1998): �Forest �res in the Brazilian Amazon,� Conser-
vation Biology, 12, 948�950.

Cossar-Gilbert, I. A. and Sam (2015): �Setting a country alight: Indonesia's devastating
forest �res are manmade,� The Guardian, retrieved from https://www.theguardian.com/global-
development-professionals-network/2015/nov/07/setting-a-country-alight-indonesias-
devastating-forest-�res-are-manmade.

Cruz, M., A. Sullivan, J. Gould, N. Sims, A. Bannister, J. Hollis, and R. Hurley

(2012): �Anatomy of a catastrophic wild�re: the Black Saturday Kilmore East �re in Victoria,
Australia,� Forest Ecology and Management, 284, 269�285.

Currie, J., E. A. Hanushek, E. M. Kahn, M. Neidell, and S. G. Rivkin (2009): �Does
pollution increase school absences?� The Review of Economics and Statistics, 91, 682�694.

Dales, J. (1968): Pollution Property and Prices, University of Toronto Press.

Deryugina, T., G. Heutel, N. H. Miller, D. Molitor, and J. Reif (2019): �The mortality
and medical costs of air pollution: Evidence from changes in wind direction,� American Economic
Review, 109, 4178�4219.

Duflo, E., M. Greenstone, R. Pande, and N. Ryan (2013): �Truth-telling by third-party
auditors and the response of polluting �rms: Experimental evidence from India,� The Quarterly
Journal of Economics, 128, 1499�1545.

Edwards, R. B. (2019): �Export agriculture and rural poverty: Evidence from Indonesian palm
oil,� Australian National University.

Enrici, A. and K. Hubacek (2016): �Business as usual in Indonesia: governance factors e�ecting
the acceleration of the deforestation rate after the introduction of REDD+,� Energy, Ecology
and Environment, 1, 183�196.

Frankenberg, E., D. McKee, and D. Thomas (2005): �Health consequences of forest �res
in Indonesia,� Demography, 42, 109�129.

Giglio, L. and C. Justice (2015): �MOD14A1 MODIS/Terra Thermal Anomalies/Fire Daily
L3 Global 1km SIN Grid V006,� Tech. rep., NASA EOSDIS LP DAAC.

Gillett, N., A. Weaver, F. Zwiers, and M. Flannigan (2004): �Detecting the e�ect of
climate change on Canadian forest �res,� Geophysical Research Letters, 31.

Girardin, C. A. J., S. Jenkins, N. Seddon, M. Allen, S. L. Lewis, C. E. Wheeler,

B. W. Griscom, and Y. Malhi (2021): �Nature-based solutions can help cool the planet - if
we act now,� Nature, 593, 191�194.

Glover, D. and T. e. Jessup (1999): Indonesia's �res and haze: The cost of catastrophe,
Institute of Southeast Asian Studies, Singapore.

Greenpeace (2015): �Indonesia's Forests: Under Fire,� .

��� (2019): �Indonesian Forest Fires Crisis: Palm oil and pulp companies with
largest burned land areas are going unpunished,� Greenpeace South Asia, retrieved from
https://www.greenpeace.org/southeastasia/publication/3106/3106.

39



Greenstone, M. and B. K. Jack (2015): �Envirodevonomics: A Research Agenda for an
Emerging Field,� Journal of Economic Literature, 53, 5�42.

Guyon, A. and D. Simorangkir (2002): �The Economics of Fire Use in Agriculture and
Forestry - A preliminary Review for Indonesia,� .

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. Turubanova, A. Tyukavina,

D. Thau, S. Stehman, S. Goetz, T. Loveland, et al. (2013): �High-resolution global
maps of 21st-century forest cover change,� Science, 342, 850�853.

Harstad, B. (2020): �Trade and Trees: How Trade Agreements Can Motivate Conservation
Instead of Depletion,� .

Heil, A. (2007): �Indonesian forest and peat �res: emissions, air quality, and human health,�
Ph.D. thesis, University of Hamburg.

Hsiao, A. (2020): �Coordination and Commitment in International Climate Action: Evidence
from Palm Oil,� Working paper.

Jayachandran, S. (2009): �Air Quality and Early-Life Mortality: Evidence from Indonesia's
Wild�res,� Journal of Human Resources, 44, 916�954.

Jayachandran, S., J. De Laat, E. F. Lambin, C. Y. Stanton, R. Audy, and N. E.

Thomas (2017): �Cash for carbon: A randomized trial of payments for ecosystem services to
reduce deforestation,� Science, 357, 267�273.

Jepson, P., F. Momberg, and H. van Noord (2002): �A review of the e�cacy of the protected
area system of East Kalimantan Province, Indonesia,� Natural Areas Journal, 22, 28�42.

Jong, H. N. (2019): �Indonesia �res emitted double the carbon of Ama-
zon �res, research shows,� Mongabay Environmental News, retrieved from
https://news.mongabay.com/2019/11/indonesia-�res-amazon-carbon-emissions-peatland/.

��� (2020): �New rule puts Indonesia's protected forests up for grabs for agribusiness,� .

Kahn, M. E., P. Li, and D. Zhao (2015): �Water Pollution Progress at Borders: The Role
of Changes in China's Political Promotion Incentives,� American Economic Journal: Economic

Policy, 7, 223�42.

Karmini, N. and E. NG (2019): �Indonesia seals o� 30 companies over forest �res,� ABC News,
retrieved from https://abcnews.go.com/International/wireStory/indonesia-seals-o�-companies-
forest-�res-65609905.

Keeley, J. E., C. Fotheringham, and M. A. Moritz (2004): �Lessons from the october
2003. Wild�res in Southern California,� Journal of Forestry, 102, 26�31.

Kim, Y., S. Knowles, J. Manley, and V. Radoias (2017): �Long-run health consequences
of air pollution: Evidence from Indonesia's forest �res of 1997,� Economics & Human Biology,
26, 186�198.

Koplitz, S. N., L. J. Mickley, M. E. Marlier, J. J. Buonocore, P. S. Kim, T. Liu,

M. P. Sulprizio, R. S. DeFries, D. J. Jacob, J. Schwartz, et al. (2016): �Public health
impacts of the severe haze in Equatorial Asia in September�October 2015: demonstration of a
new framework for informing �re management strategies to reduce downwind smoke exposure,�
Environmental Research Letters, 11, 094023.

Kraaij, T., J. A. Baard, J. Arndt, L. Vhengani, and B. W. Van Wilgen (2018): �An
assessment of climate, weather, and fuel factors in�uencing a large, destructive wild�re in the
Knysna region, South Africa,� Fire Ecology, 14, 4.

40



Lipscomb, M. and A. Mobarak (2017): �Decentralization and Pollution Spillovers: Evidence
from the Re-drawing of County Borders in Brazil,� The Review of Economic Studies, 84, 464.

Mahomed, R. (2019): �Indonesia �res: Palm oil companies accused of starting blazes,�
Al Jazeera, retrieved from https://www.aljazeera.com/news/2019/09/indonesia-�res-palm-oil-
companies-accused-starting-blazes-190919134146766.html.

Marshall, A. (1890): Principles of economics.

Martinez-Bravo, M., P. Mukherjee, and A. Stegmann (2017): �The non-democratic roots
of elite capture: Evidence from Soeharto mayors in Indonesia,� Econometrica, 85, 1991�2010.

Mellen, R. (2019): �Wild�res in Indonesia have ravaged 800,000 acres. Palm
oil farmers are mostly to blame.� The Washington Post, retrieved from
https://www.washingtonpost.com/world/2019/09/18/wild�res-indonesia-have-ravaged-acres-
palm-oil-farmers-are-blame/.

Melo, F. P. L., L. Parry, P. H. S. Brancalion, S. R. R. Pinto, J. Freitas, A. P.

Manhaes, P. Meli, G. Ganade, and R. L. Chazdon (2021): �Adding forests to the water-
energy-food nexus,� Nature Sustainability, 4, 85�92.

Mori, A. S., L. E. Dee, A. Gonzalez, H. Ohashi, J. Cowles, A. J. Wright, M. Loreau,

Y. Hautier, T. Newbold, P. B. Reich, T. Matsui, W. Takeuchi, K.-i. Okada,

R. Seidl, and F. Isbell (2021): �Biodiversity-productivity relationships are key to nature-
based climate solutions,� Nature Climate Change, 11, 543�550.

Neslen, A. (2016): �Korean palm oil �rm accused of illegal forest burning in Indonesia,� The
Guardian, retrieved from https://www.theguardian.com/environment/2016/sep/01/korean-
palm-oil-�rm-accused-of-illegal-forest-burning-in-indonesia.

Nicholas, H. (2019): �Palm oil, logging �rms the usual suspects as Indonesia �res �are anew,�
Mongabay Environmental News, retrieved from https://news.mongabay.com/2019/04/palm-oil-
logging-�rms-the-usual-suspects-as-indonesia-�res-�are-anew/.

Ostrom, E. (1990): Governing the commons: The evolution of institutions for collective action,
Cambridge University Press.

��� (1998): �A behavioral approach to the rational choice theory of collective action: Presiden-
tial address, American Political Science Association, 1997,� American Political Science Review,
92, 1�22.

Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin (2002):
�The amount of carbon released from peat and forest �res in Indonesia during 1997,� Nature,
420, 61�65.

Pareto, V. (1909): Manuel d'économie politique, vol. 38, Giard & Brière.

Parry, M., M. L. Parry, O. Canziani, J. Palutikof, P. Van der Linden, C. Hanson,

et al. (2007): Climate change 2007-impacts, adaptation and vulnerability: Working group II

contribution to the fourth assessment report of the IPCC, vol. 4, Cambridge University Press.

Permadi, D. A. and N. T. K. Oanh (2013): �Assessment of biomass open burning emissions
in Indonesia and potential climate forcing impact,� Atmospheric Environment, 78, 250�258.

Pigou, A. (1920): The Economics of Welfare, Macmillan.

Pitman, A., G. Narisma, and J. McAneney (2007): �The impact of climate change on the
risk of forest and grassland �res in Australia,� Climatic Change, 84, 383�401.

41



Rangel, M. A. and T. S. Vogl (2019): �Agricultural �res and health at birth,� Review of

Economics and Statistics, 101, 616�630.

Resosudarmo, I. D., C. Barr, A. Dermawan, B. Setiono, et al. (2006): �Decentraliza-
tion's e�ects on forest concessions and timber production,� in Decentralization of forest admin-

istration in Indonesia: Implications for forest sustainability, economic development and commu-

nity livelihoods, Center for International Forestry Research (CIFOR).

ROI (1967): �Undang Undang Nomor 5 Tahun 1967 tentang Pokok-pokok Kehutanan (Basic
Forestry Law),� Republic of Indonesia.

Salanié, B. (2000): Microeconomics of market failures, MIT Press.

Schlanger, Z. (2019): �The global demand for palm oil is driving the �res in Indonesia,�
Quartz, retrieved from https://qz.com/1711172/the-global-demand-for-palm-oil-is-driving-the-
�res-in-indonesia/.

Schlenker, W., W. M. Hanemann, and A. C. Fisher (2005): �Will US agriculture really
bene�t from global warming? Accounting for irrigation in the hedonic approach,� American

Economic Review, 95, 395�406.

Seddon, N., A. Chausson, P. Berry, C. A. J. Girardin, A. Smith, and B. Turner

(2020): �Understanding the value and limits of nature-based solutions to climate change and
other global challenges,� Philosophical Transactions of the Royal Society B: Biological Sciences,
375.

Simorangkir, D. (2007): �Fire use: Is it really the cheaper land preparation method for large-
scale plantations?� Mitigation and Adaptation Strategies for Global Change, 12, 147�164.

Skoufias, E., A. Narayan, B. Dasgupta, and K. Kaiser (2011): �Electoral accountability,
�scal decentralization and service delivery in Indonesia,� Tech. rep., World Bank Policy Research
Working Paper.

Smith, C. (2021): �Land Concentration and Long-Run Development in the Frontier United
States,� Tech. rep., Working Paper.

Souza-Rodrigues, E. (2019): �Deforestation in the Amazon: A uni�ed framework for estimation
and policy analysis,� The Review of Economic Studies, 86, 2713�2744.

Van Der Werf, G. R., J. T. Randerson, L. Giglio, T. T. Van Leeuwen, Y. Chen,

B. M. Rogers, M. Mu, M. J. Van Marle, D. C. Morton, G. J. Collatz, et al. (2017):
�Global �re emissions estimates during 1997�2016,� Earth System Science Data, 9, 697.

Varma, A. (2003): �The economics of slash and burn: a case study of the 1997�1998 Indonesian
forest �res,� Ecological Economics, 46, 159�171.

Wooldridge, J. M. (1999): �Distribution-free estimation of some nonlinear panel data models,�
Journal of Econometrics, 90, 77�97.

Yule, C. M. (2010): �Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp
forests,� Biodiversity and Conservation, 19, 393�409.

42



Figures and Tables

Figure 1: Example of Fire Identi�cation Algorithm

Notes: Example showing how we merge hotspots into contiguous multi-day '�res'. In this example, Pixels outlined
in black had a �re on Day 1 , and pixels colored red/orange/yellow had a �re on Day 2. The white boxes A, B, and
C denote three �res that we classify as single �res, with ignition area as the black area and total spread extent as
the union of the black and red areas.
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Figure 2: Forest estate and protection/ conservation zones

Legend
Forest estate
Protection/ conservation zones

Notes: The Indonesian forest estate (`kawasan hutan') is shown in green. Within that, protected areas (watershed
protection and conservation) are shown in dark green

Figure 3: Sumatra concessions, forest estate and protection/ conservation zones

Legend
Forest estate
Protection/ conservation zones
Concessions

Notes: The Indonesian forest estate (`kawasan hutan') is shown in green. Within that, protected areas (watershed
protection and conservation) are shown in dark green. Concession boundaries are shown in red.
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Figure 4: Fire ignitions and concession areas in an area of Riau province, Sumatra

Legend
Pixels containing ignitions
Wood fiber concessions
Oil palm concessions
Logging concessions
Forest estate
Protection/conservation zones

I N D O N E S I A

0 10 205 km

0 1,800 3,600900 km

Fire ignitions near 
concession border 

Few ignitions in
protected forest

Ignitions avoid being 
too close to protected area

Few fires in town area
outside forest estate

Notes: Each 1km2 grid cell in red shown represents a grid cell in which we detect at least one �re ignition.
Concessions are outlined (yellow for wood �ber; orange for oil palm). Protected forest zones are shown in dark
green; regular forest estate areas are shown in light green; and areas outside the forest estate are shown in white.
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Figure 5: Riau 2012 deforestation and 2013 ignitions

Legend
Pixels containing 2013 ignitions
Forest loss 2012
Forest estate
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Figure 6: Illustration of pixel bu�er classi�cation

Legend
Pixel of interest's 6km radius buffer
Pixel of interest
Pixel centroids in productive forest in concession
Pixel centroids in unleased productive forest
Pixel centroids in protected forest
Productive forest in concession
Unleased productive forest
Protected forest
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Table 1: Impact of Deforestation on Ignitions

Dependent variable = Pixel Pixel
Number of fires in pixel*month*year FE Month & Year FE
Forest loss (km2) in year t-1 1.0898*** 1.3314***

(0.1241) (0.1314)
Forest loss (km2) in year t-2 -0.3598*** -0.3056**

(0.1335) (0.1340)
Forest loss (km2) in year t-3 -0.5319*** -0.3432**

(0.1804) (0.1484)
Observations 3,224,160 3,224,160
Mean of Dep. Var. 0.0100 0.0100

Poisson regressions. Robust standard errors clustered at level of 50km2
grid cells. All pixels inside wood fiber and palm oil concessions inside
forest estate in Indonesia excl Java and Lesser Sunda Islands.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 2: Conditional burning and electoral cycles
Table 1: Pixel-level regression: With year and grid-id FE

Entire
forest

Oil Palm Fibre Unleased Protected

(1) (2) (3) (4) (5)

Election date:
In 2 years 0.043 0.084 0.060 0.296 -0.389

(0.114) (0.181) (0.171) (0.221) (0.310)
Next year -0.003 0.066 -0.023 0.256 0.232

(0.107) (0.119) (0.145) (0.235) (0.206)
This year -0.358** -0.480** -0.275 -0.351 0.086

(0.142) (0.190) (0.175) (0.287) (0.247)
Last year 0.015 0.046 -0.050 0.064 0.326

(0.101) (0.129) (0.113) (0.225) (0.285)

Observations 1289568 335968 478077 52550 57268
Mean of DV 0.012 0.017 0.016 0.013 0.008
Spatial FE Pixel Pixel Pixel Pixel Pixel
Temporal FE Year Year Year Year Year
Joint p-value <0.01 <0.01 0.100 0.026 0.132
This vs. last:
Difference 0.373 0.527 0.225 0.415 0.240
p-value <0.01 <0.01 0.129 0.039 0.301

Note: Poisson regressions. Outcome is number of fires in t after deforestation in t-1,
omitted category is two years after election. Robust standard errors clustered at
district level in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

1

47



Table 3: Impact of Wind Speed on Fire Spread

Dependent variable = Pixel Pixel
Average fire spread area (burned area minus ignition area) FE Month & Year FE
Wind speed in standard deviation units 0.9645*** 1.3521***

(0.1813) (0.2196)
Observations 5,444 5,444
Mean of Dep. Var. 4.753 4.753

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All regres-
sions control for number of ignitions in pixel-month. All pixels inside wood fiber and palm
oil concessions inside forest estate in Indonesia excl Java and Lesser Sunda Islands.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 4: Ignition Results by Surrounding Land Ownership

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Number of fires in pixel*month-year M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 1.9651*** 2.2243*** 2.1240*** 1.4309*** 1.8695*** 2.4978***

(0.1777) (0.1718) (0.1725) (0.2148) (0.1658) (0.2449)
Wind speed * Num pixels in 6km buffer in same concession as central pixel -0.007766*** -0.005212*** -0.003611** -0.007140*** -0.003347** -0.002124*

(0.001665) (0.001716) (0.001515) (0.001593) (0.001468) (0.001267)
Observations 4,729,680 4,729,680 4,729,680 4,721,940 4,729,680 4,721,940
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 0.00823 0.00823 0.00823 0.00823 0.00823 0.00823

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java
and Lesser Sunda Islands. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer outside same concession as central pixel”.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 5: Spread Results by Surrounding Land Ownership

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Spread extent (total fire area minus ignition area) M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 1.1314 2.0927** 1.2942* 0.08411 1.1607 1.7668*

(0.7607) (1.0586) (0.7633) (0.6507) (0.7520) (0.9782)
Wind speed * Num pixels in 6km buffer in same concession as central pixel -0.0001894 -0.0004962 0.002779 0.001601 -0.002400 -0.001433

(0.007647) (0.008013) (0.007612) (0.007386) (0.007189) (0.007270)
Observations 20,099 20,099 20,099 20,068 20,099 20,068
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 1.335 1.335 1.335 1.335 1.335 1.335

OLS regressions. Robust standard errors clustered at level of 50km2 grid cells. Pixels inside wood fiber and palm oil concessions inside forest estate excl Java and
Lesser Sunda Islands containing at least one fire spreading beyond its ignition area. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer
outside same concession as central pixel”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 6: Ignition Results by Surrounding Land Type

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Number of fires in pixel*month-year M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 2.1466*** 2.8208*** 2.1390*** 1.6878*** 2.1028*** 2.9294***

(0.3509) (0.2620) (0.3268) (0.3952) (0.3323) (0.3165)
Wind speed * Num pixels in 6km buffer in same concession as central pixel -0.008974*** -0.009351*** -0.004257 -0.008609*** -0.004862** -0.005633***

(0.002555) (0.002418) (0.002591) (0.002453) (0.002310) (0.001991)
Wind speed * Num pixels in 6km buffer in different concession from central pixel 0.003277 -0.002204 0.003914 0.002680 0.003174 -0.001034

(0.003443) (0.002648) (0.003039) (0.003197) (0.003348) (0.002467)
Wind speed * Num pixels in 6km buffer outside forest estate -0.01752*** -0.01942*** -0.01203*** -0.01769*** -0.01681*** -0.01562***

(0.004005) (0.003228) (0.003878) (0.003906) (0.003866) (0.003225)
Wind speed * Num pixels in 6km buffer in protected forest -0.01363*** -0.01192*** -0.009082** -0.01264*** -0.01297*** -0.008950***

(0.004108) (0.003206) (0.003721) (0.003956) (0.003951) (0.002913)
Wind speed * Average population density in 6km buffer 0.002547 0.001097 0.002002 0.002503 0.001211 0.0007037

(0.002293) (0.001986) (0.001797) (0.002368) (0.002046) (0.001625)
Observations 4,729,680 4,729,680 4,729,680 4,721,940 4,729,680 4,721,940
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 0.008226 0.008226 0.008226 0.008226 0.008226 0.008226

Poisson regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and
Lesser Sunda Islands. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer in productive forest outside concession”. Suppressed categories: Interac-
tions of wind speed and “Num pixels in 6km buffer in protected forest in concession”, “Num pixels in 6km buffer outside forest estate in concession”, “Num pixels in 6km
buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 7: Spread Results by Surrounding Land Type

Dependent variable = Pixel Pixel Pixel Pixel Pixel Pixel
Spread extent (total fire area minus ignition area) M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs M & Y FEs
Wind speed in standard deviation units 2.2172 3.3458* 2.2866 1.2479 2.2295 2.8069

(1.7858) (2.0024) (1.7810) (1.5817) (1.7809) (1.8166)
Wind speed * Num pixels in 6km buffer in same concession as central pixel -0.007606 -0.009116 -0.005003 -0.006942 -0.009501 -0.01018

(0.01412) (0.01396) (0.01408) (0.01395) (0.01321) (0.01275)
Wind speed * Num pixels in 6km buffer in different concession from central pixel -0.006128 -0.008068 -0.005948 -0.008158 -0.006305 -0.008422

(0.01195) (0.01162) (0.01177) (0.01203) (0.01188) (0.01114)
Wind speed * Num pixels in 6km buffer outside forest estate -0.02631 -0.02555 -0.02367 -0.02862* -0.02665 -0.02413

(0.01672) (0.01644) (0.01667) (0.01698) (0.01657) (0.01596)
Wind speed * Num pixels in 6km buffer in protected forest -0.02453 -0.02418 -0.02174 -0.02264 -0.02513 -0.02037

(0.01939) (0.01927) (0.01884) (0.01888) (0.01934) (0.01847)
Wind speed * Average population density in 6km buffer -0.003537 -0.004520 -0.003954 -0.004830 -0.002867 -0.003778

(0.003077) (0.003194) (0.003000) (0.003285) (0.003048) (0.003410)
Observations 20,099 20,099 20,099 20,068 20,099 20,068
Control: Wind speed × Island NO YES NO NO NO YES
Control: Wind speed × Concession Type NO NO YES NO NO YES
Control: Wind speed × Forest Cover 2000 NO NO NO YES NO YES
Control: Wind speed × Concession Area NO NO NO NO YES YES
Mean of Dep. Var. 1.580 1.580 1.580 1.580 1.580 1.580

OLS regressions. Robust standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and
Lesser Sunda Islands. Omitted category: Interaction of wind speed and “Num pixels in 6km buffer in productive forest outside concession”. Suppressed categories: In-
teractions of wind speed and “Num pixels in 6km buffer in protected forest in concession”, “Num pixels in 6km buffer in concession outside forest estate”, “Num pixels
in 6km buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG”.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 8: Government Punishment Results

Dummy = 1 if firm investigated No FEs Island FEs Province FEs

Pixels outside forest estate burned by fire 0.02596 0.03508 0.02096
(0.06401) (0.03746) (0.05168)

Pixels in unleased productive forest burned by fire -0.05160*** -0.02640 -0.02523
(0.01248) (0.02019) (0.01960)

Pixels in protected forest burned by fire 0.04320 0.08288* 0.08836**
(0.04512) (0.04367) (0.04310)

Total area of fires burned Sep 2014-Aug 2015 0.01790*** 0.01304** 0.01313***
(0.002862) (0.006506) (0.004864)

Concession area (km2) 0.001115 0.001577* 0.001688*
(0.0007603) (0.0008940) (0.001019)

Population in fire extent 0.0006187*** 0.0004503** 0.0004517**
(0.0001654) (0.0002127) (0.0001907)

Observations 597 597 567
Mean of Dep. Var. 0.157 0.157 0.160

Logit regressions. Robust standard errors clustered at level of firm groups. All pixels inside wood
fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted
category “Pixels in productive forest in concession burned by fire”. Suppressed categories “Pixels
in Malaysia / PNG burned by fire”, “Pixels in concession outside forest estate burned by fire”,
and “Pixels in concession in protected forest burned by fire”.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 9: Counterfactual simulation results

Counterfactual % reduction from: Ignitions Area burned
Assign all concessions to single owner 6%
Agents treat all bu�er pixels as concession land with same owner 14%
Zone all unleased productive forest as protected forest 26%
Agents treat all bu�er pixels as land outside forest estate 80%
Agents treat all bu�er pixels as protected forest 67%
Prevent �res from spreading beyond concession in which they started 23%
Prevent �res from extending into protected forest and populated areas 2%
No �res started inside palm oil concessions owned by RSPO members 3%

Note: In �rst four counterfactuals, concessions and associated ignitions are wood �ber and palm
oil concessions within the forest estate only.

52


	Introduction
	Setting and Data
	The forest sector
	Use of fire for land clearing
	Policies to prevent forest fires
	Data
	Identifying fire ignition and spread from fire hotspots
	Land classification and concessions
	Deforestation data
	Wind data
	Data on public and private regulation


	The Origins of Forest Fires
	Descriptive statistics: fire and land-use
	Fire as part of the land-clearing process
	Are fires responsive to government?

	Externalities and the Control of Forest Fires
	Ignitions, wind speed, and fire spread risks
	Externalities in fire spread and containment
	Magnitude of externalities: burning your own vs others' land
	Does it matter who your neighbors are?
	Do agents internalize government preferences?

	Counterfactuals and Implications for Policy
	Counterfactual land zoning policies
	Counterfactual enforcement regimes 

	Conclusions

