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Abstract.

We consider inference in the linear regression model with a single endogenous
variable and potentially weak instruments. We construct confidence sets for the
coefficient on endogenous variable by inverting the Anderson-Rubin, Lagrange
multiplier, and conditional likelihood ratio tests. Our confidence sets have correct
coverage probabilities even when the instruments are weak. We propose a numer-
ically simple algorithms for finding these confidence sets, and we present a Stata
command that supersedes the one presented in Moreira and Poi (2003).
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1 Introduction

We consider inference on the parameter of a single endogenous variable in instrumental
variables (IV) regression with potentially weak instruments. Most empirical applications
rely on inference based on the asymptotic normal approximation of the t-statistic. That
is, they perform tests for significance of the coefficient by comparing the t-statistic with
quantiles of the normal distribution, and they use the conventional Wald-type confidence
intervals. However, in many empirically relevant situations, the correlation between
instruments and the endogenous regressor is weak, and the normal approximation of
the t-statistic performs poorly (Nelson and Startz (1990)). As a result, the conventional
test of significance on the parameter of the instrumented variable has incorrect size, and
the Wald-type confidence interval has low coverage probability.

A wide literature is devoted to finding tests about the coefficient β on the single
included endogenous regressor that are valid in the presence of potentially weak instru-
ments. Andrews and Stock (2005) and Stock et al. (2002) give excellent surveys of the
literature. The class of tests robust to weak identification includes the Anderson and Ru-
bin (1949) test, the Lagrange multiplier (score) test proposed by Kleibergen (2002) and
Moreira (2001), and the conditional likelihood ratio test suggested by Moreira (2003).

Confidence set construction is a well-known dual problem to hypothesis testing. If
we have a procedure for testing the hypothesis H0 : β = β0 with correct size even in
the presence of weak instruments, then we can construct a confidence region for the
parameter also robust to weak instruments by inverting the test. That is, a value β0

c© 2001 StataCorp LP st0001



2 Weak instruments

belongs to a confidence set if and only if the hypothesis H0 : β = β0 cannot be rejected.

Moreira and Poi (2003) introduced the Stata commands condivreg and condtest
implementing the Anderson-Rubin, score, conditional likelihood ratio, and conditional
Wald tests. They also provided the command condgraph that performed a series of
tests H0 : β = β0, where β0 belongs to a fine grid. The user could then construct the
robust confidence set by finding the area of acceptance for the given test.

However, that procedure has several drawbacks. First, performing the conditional
likelihood ratio and the conditional Wald tests for even modestly large data sets could
take several hours and is not very accurate. Both of those tests are based on Moreira’s
conditional approach, and the critical value functions for these tests are simulated from
the conditional distribution of the test statistic under the null. The simulations are
computationally intensive and not always accurate.

The second obstacle is the fact that finding a confidence set by grid testing is im-
plementable only if we can a priori restrict possible values of the coefficient to belong
to a bounded set. In most applications we cannot make such a restriction. Gleser and
Hwang (1987) and Dufour (1997) showed that if the parameter set is not bounded and
we can have arbitrary weak instruments, then every almost-sure finite confidence set has
zero coverage probability. That is, a confidence region robust towards weak instruments
must be infinite with positive probability, making a grid search non-feasible in practice.
Even if we do restrict the parameter space to be bounded, grid testing can be extremely
time consuming.

Fortunately, several valuable results have been obtained in the past few years. An-
drews et al. (2005) found a way to perform the conditional likelihood ratio test without
having to perform simulations. They also showed that the conditional Wald test has
extremely low power against a large range of alternatives and its power curve can be
non-monotonic. Andrews et al. (2005) recommended not using Wald test in practice.
Mikusheva (2005) proposed algorithms that allow one to construct confidence sets by
inverting the Anderson-Rubin, score, and conditional likelihood ratio tests in a fast and
accurate way without having to use a grid search.

We introduce a new version of condivreg that implements the advances mentioned
above. We recommend that all existing users of condivreg upgrade to this newer
version.

The paper is organized as follows. Section 2 contains a brief overview of the model
and definitions of the Anderson-Rubin, the score and the conditional likelihood ratio
tests. Section 3 provides algorithms for inverting these tests in order to construct weak
instrument robust confidence sets. In section 4 we describe the syntax of the Stata
command condivreg and provide an example of its usage.
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2 Tests robust to weak instruments

In this section we introduce notations and give a brief overview of the tests robust
towards weak instruments. The model contains a structural equation and a reduced
form equation for a single endogenous regressor:

y1 = y2β + Xγ1 + u (1)
y2 = Zπ + Xξ + v2 (2)

Vectors y1 and y2 are n × 1 endogenous variables, X is an n × p matrix of exogenous
regressors, Z is an n×k matrix of instrumental variables; β ∈ R, γ1, ξ ∈ Rp and π ∈ Rk

are unknown parameters. We assume without loss of generality that Z′X = 0. The
n× 2 matrix of errors [u : v2] is i.i.d across rows, each row being normally distributed
with mean zero and non-singular covariance matrix.

We also consider the corresponding system of reduced-form equations obtained by
substituting equation (2) into equation (1):

y1 = Zπβ + Xγ + v1

y2 = Zπ + Xξ + v2

where

γ = γ1 + ξβ and v1 = u + βv2

The reduced form errors are assumed to be i.i.d normal with zero mean and covariance
matrix Ω. We assume Ω to be known. Andrews et al. (2005) showed that in the case of
unknown Ω asymptotically valid tests can be received by replacing Ω with a consistent
estimator of Ω. Andrews et al. (2004) also pointed out that the assumption of normality
can be taken away at the cost of having only asymptotically valid rather than exactly
valid tests. Here by asymptotically valid we mean having asymptotically correct size
both in weak and strong instrument asymptotics. For definitions of these two types of
asymptotics we refer readers to Andrews et al. (2004).

We are interested in testing the hypothesis H0 : β = β0. We require the testing
procedure to have correct size when the instruments are weak as well as when they are
strong.

Let us introduce the following statistics, properties of which are discussed in Moreira
(2003):

S(β0) = (Z′Z)−1/2Z′Yb0(b′0Ωb0)−1/2
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and

T(β0) = (Z′Z)−1/2Z′YΩ−1a0(a′0Ω
−1a0)−1/2

where b0 = (1,−β0)′, a0 = (β0, 1)′, and Y = [y1 : y2].

We also consider the matrix Q defined as

Q(β0) = [S(β0) : T(β0)]′[S(β0) : T(β0)] =
(

QS(β0) QST (β0)
QST (β0) QT (β0)

)

where QS(β0) = S(β0)′S(β0), QT (β0) = T(β0)′T(β0), and QST (β0) = S(β0)′T(β0).
For notational simplicity, in the remainder of the article we shall simply refer to S and
T, with their dependence on β0 implied.

The Anderson-Rubin test rejects the null hypthesis H0 : β = β0 at significance level
α if the statistic

AR(β0) = S′S = QS(β0)

exceeds the (1− α)-quantile of the χ2 distribution with k degrees of freedom.

The Lagrange multiplier (score) test accepts the null if the statistic

LM(β0) = (S′T)(T′T)−1(T′S) =
Q2

ST (β0)
QT (β0)

is less than the (1− α)-quantile of the χ2 distribution with 1 degree of freedom.

The conditional likelihood ratio test is based on the conditional approach proposed
by Moreira (2003). He suggested a whole class of tests that use, instead of a single fixed
critical value, critical values that are functions of the data. The conditional likelihood
ratio test uses the statistic

LR(β0) =
1
2

[
QS(β0)−QT (β0) +

[
{QS(β0) + QT (β0)}2 − 4

{
QS(β0)QT (β0)−Q2

ST (β0)
}]1/2

]

and critical values mα(QT ) which are functions of QT (β0). For every α the critical
value mα(qT ) is chosen in such a way that the conditional probability of the LR statistic
exceeding mα(qT ) given that QT = qT is equal to α:

P {LR > mα(qT ) |QT = qT } = α.



A. Mikusheva and B. P. Poi 5

The conditional likelihood ratio test accepts the null hypothesis H0 : β = β0 if LR(β0) <
mα(QT (β0)).

Previously, the critical value function mα(qT ) was determined by simulation. The
main problem with this approach is that for an acceptable level of accuracy, one needs
a large number of simulations. Andrews et al. (2005) suggested another way of imple-
menting the conditional likelihood ratio test by calculating the conditional p-value of the
test. Let us define a p-value function p(m; qT ) by the following conditional probability:

p(m; qT ) = P{LR > m|QT = qT }

Then the conditional likelihood ratio test accepts the hypothesis H0 : β = β0 at the α
significance level if

p(LR(β0); QT (β0)) > α.

Andrews et al. (2005) proved that the function p(m; qT ) is equal to

p(m; qT ) = 1− 2K

∫ 1

0

P

{
χ2

k <
qT + m

1 + qT s2
2/m

}
(1− s2

2)
(k−3)/2ds2 (3)

where K = Γ(k/2)/[π1/2Γ((k − 1)/2)] and Γ(·) is the gamma function. They also
suggested a method of calculating the conditional p-value of the test by performing
numerical integration. Their procedure achieves high accuracy and takes almost no
time.

The three tests described above have a correct size in a case of weak instruments.
However, they possess different power properties. The Anderson-Rubin test is robust to
misspecifications of equation (2) and can be used as an over-identification test. The score
test should probably not be used in practice, since it is dominated by the conditional
likelihood ratio test. But for historical reasons, it is included in the package. According
to Andrews et al. (2005), the conditional likelihood ratio test is nearly optimal in a class
of invariant similar tests. It possesses better power properties than the Anderson-Rubin
and the score tests for a wide range of parameters.

3 Confidence sets based on tests robust towards weak
instruments.

This section describes algorithms for construction of confidence sets for the coefficient
on the single endogenous regressor β by inverting the Anderson-Rubin, score, and con-
ditional likelihood ratio tests.

Given the tests robust towards weak instruments we can construct confidence sets
by inverting these tests. One way to find the acceptance region for a given test is to
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perform a grid testing. However, such an algorithm works only if the area of search is
bounded, that is, when the parameter space is bounded, or we have some knowledge
about the form of the set and its approximate location. In most empirical application
we cannot a priori restrict the parameter space to be bounded. In general, we also
cannot restrict the area for a grid search since a confidence set with correct coverage
probability in a case with arbitrary weak instruments has infinite length with a positive
probability. It leads to the necessity to find an algorithm of inverting tests without
employing a grid testing.

By definition, the Anderson-Rubin confidence set is the set

CAR
α (Y, X,Z) = {β0 : QS(β0) < χ2

1−α,k}
= {β0 : b′0(Y

′Z(Z′Z)−1Z′Y − χ2
1−α,kΩ)b0 < 0}

which can be found by solving a quadratic inequality. As a result the AR confidence
region CAR

α (Y, X, Z) can have one of four possible forms:

• a finite interval: CAR
α (Y,X, Z) = (x1, x2);

• a union of two infinite intervals: CAR
α (Y,X, Z) = (−∞, x1) ∪ (x2, +∞);

• the whole line: CAR
α (Y, X, Z) = (−∞,+∞); or

• an empty set: CAR
α (Y, X, Z) = ∅.

We want to emphasize that the possibility of obtaining an infinite confidence set is a
necessary condition for having a procedure robust to weak instruments. If instruments
are weak, then the data contains very little information about the coefficient of interest,
and that results in infinite confidence sets. The ability of the Anderson-Rubin test
to produce an empty confidence set is more confusing. It says that no value of the
parameter is compatible with the data, or that the model itself is rejected. It can
happen even when the data was in fact generated from the model (false rejection of the
model).

By definition, the score confidence set is the set

CLM
α (Y, X, Z) = {β0 : LM(β0) < χ2

1−α,1}.

Finding the score region is equivalent to solving an inequality of the fourth power, which
always has a solution in radicals due to Cardano’s formula. However, there is a way
to rewrite the LM statistic in a way that requires solving two quadratic inequalities
instead.

Let M and N denote the maximal and minimal eigenvalues of the matrix Q(β0),
respectively. Mikusheva (2005) showed that both M and N do not depend on β0 and
that the LM statistics has the following form:
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LM(β0) = −{M −QT (β0)} {N −QT (β0)}
QT (β0)

Then the score confidence region is the set

CLM
α (Y,X, Z) =

{
β0 : −{M −QT (β0)} {N −QT (β0)}

QT (β0)
< χ2

1−α,1

}

The confidence set can be found in two steps. In the first step we solve for the values
of QT (β0) satisfying the inequality above. We have an ordinary quadratic inequality
with respect to QT . In the second step we find the score confidence set for β0 by
solving inequalities of the form {β0 : QT (β0) < q1} ∪ {β0 : QT (β0) > q2}. As a result of
this procedure, the score confidence region CLM

α (Y, X,Z) in the case of more than one
instrument can have one of three possible forms:

• a union of two finite intervals: CLM
α (Y, X, Z) = (x1, x2) ∪ (x3, x4);

• a union of two infinite intervals and one finite interval:
CAR

α (Y,X, Z) = (−∞, x1) ∪ (x2, x3) ∪ (x4, +∞); or

• the whole line: CAR
α (Y, X, Z) = (−∞,+∞).

Several features of the score confidence set should be emphasized. First, the con-
fidence set is never empty. It always contains the limited information maximum like-
lihood (LIML) estimator. Second, the score confidence set always contains the points
that minimize the p-value of the Anderson-Rubin test and the conditional p-value of
the conditional likelihood ratio test. Finally, the distribution of the length of the score
confidence set first-order stochastically dominates the distribution of the length of the
conditional likelihood confidence set. That is, the score test tends to produce longer
confidence sets than the conditional likelihood ratio test. Because of these last two
features we do not recommend using the score confidence set in practice.

The main difficulty with finding an analytically tractable way of inverting the con-
ditional likelihood ratio test is that both the test statistic LR(β0) and the critical value
function mα(Qt(β0)) depend not only on data, but on the null value of the parameter
β0. Mikusheva (2005) proved that the conditional likelihood ratio confidence set is equal
to the set

CCLR
α (Y,X, Z) = {β0 : QT (β0) > C}

where C is a solution to the equation p(M −C; C) = α, where again M is the maximal
eigenvalue of the matrix Q(β0) and the function p was defined in equation (3). Thus,
the conditional likelihood ratio confidence set can be found as a solution to a quadratic
inequality. As a result, the conditional likelihood ratio confidence region CCLR

α (Y, X,Z)
can have one of three possible forms:
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• a finite interval: CCLR
α (Y, X,Z) = (x1, x2);

• a union of two infinite intervals: CCLR
α (Y, X,Z) = (−∞, x1) ∪ (x2,+∞); or

• the whole line: CCLR
α (Y, X,Z) = (−∞, +∞).

The conditional likelihood ratio confidence set is never empty, it always contains the
LIML estimator.

4 Stata implementation

We have enhanced the condivreg command introduced by Moreira and Poi (2003)
to reflect the advances made in the literature since it was introduced. We strongly
encourage existing users of condivreg to upgrade to the new version. Among the
changes are the following:

1. The results of the tests are presented by reporting (conditional) p-values rather
than test statistics and their corresponding critical values. The conditional p-value
for the conditional likelihood ratio test is calculated by numerical integration as
proposed by Andrews et al. (2005) rather than by simulation.

2. The option to conduct tests using the conditional Wald procedure was removed
because of its extremely poor power properties.

3. The new version of condivreg contains an option to perform tests of the parameter
on the endogenous regressor. Thus, the condtest command of Moreira and Poi
(2003) is deprecated.

4. We implemented algorithms for producing the Anderson-Rubin, score, and con-
ditional likelihood ratio confidence sets within condivreg. Thus, the condgraph
command of Moreira and Poi (2003) is deprecated.

5. Since the conditional likelihood ratio test possesses better power properties than
the Anderson-Rubin and the score tests for a wide range of parameters, condivreg
always reports the conditional likelihood ratio confidence set and p-value. The
results for the Anderson-Rubin and score tests are available by specifying the
corresponding option.

6. The LIML estimate of the parameter on the endogenous variable is reported along
with the conditional likelihood ratio results, even when the main results are ob-
tained via 2SLS.

4.1 Syntax

condivreg depvar
[
varlist

]
(endovar = varlistiv)

[
if

] [
in

] [
, {2sls | liml}

nocons noinstcons ar lm interval level(#) test(#)
]
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by:, rolling:, statsby:, and xi: may be used with condivreg.

4.2 Options

2sls requests that the 2SLS estimator be used; this is the default.

liml requests that the LIML estimator be used. 2sls and liml are mutually exclusive.

nocons indicates that no constant term is to be included in the regression equation.
The default is to include a constant term.

noinstcons indicates that no constant term is to be included in the first-stage regression
of the endogenous variable on the instruments and exogenous variables. Stata’s
ivreg command excludes a constant from both equations if its noconstant option
is specified. Usually one will not want to specify noinstcons unless nocons is also
specified, but we give the user the option to experiment. By default a constant term
is included.

ar provides the coverage-corrected confidence set and size-corrected p-value based on
the Anderson-Rubin test statistic.

lm provides the coverage-corrected confidence set and size-corrected p-value based on
the Lagrange multiplier (score) test statistic.

interval displays the confidence interval, which is the minimal convex interval con-
taining the coverage-corrected confidence set.

level(#) specifies the confidence level, in percent, for confidence intervals. The default
is level(95) or as set by set level; see [U] 23.5 Specifying the width of
confidence intervals.

test(#) contains the hypothesized value of the endogenous variable’s coefficient. The
default is test(0).

4.3 Remarks

condivreg fits a linear regression of depvar on varlist and endogvar using varlistiv
(along with varlist) as instruments for endogvar via the 2SLS or LIML estimator. The
command reports the usual output of the IV regression in the same form as ivreg.
In particular, it reports the conventional t-statistics, p-values, and conventional Wald-
type interval. We emphasize that the p-value and confidence set for the parameter
on the endogenous regressor could be incorrect if instruments are weak. Additionally,
condivreg reports the conditional likelihood ratio confidence region and p-value, both
of which are robust to potentially weak instruments.
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4.4 Example

For illustrative purposes we use the same data set and regression specification as in
[R] ivreg and in Moreira and Poi (2003).

. use http://www.stata-press.com/data/r7/hsng2.dta,clear
(1980 Census housing data)

. condivreg rent pcturban (hsngval = faminc reg2-reg4), ar lm

Instrumental variables (2SLS) regression

First-stage results Number of obs = 50
F( 2, 47) = 42.66

F( 5, 44) = 19.66 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = 0.5989
R-squared = 0.6908 Adj R-squared = 0.5818
Adj R-squared = 0.6557 Root MSE = 22.862

rent Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsngval .0022398 .0003388 6.61 0.000 .0015583 .0029213
pcturban .081516 .3081528 0.26 0.793 -.5384074 .7014394

_cons 120.7065 15.70688 7.68 0.000 89.10834 152.3047

Instrumented: hsngval
Instruments: pcturban faminc reg2 reg3 reg4
Confidence set and p-value for instrumented variable are based on normal apprx

Coverage-corrected confidence set for the coefficient on hsngval
and conditional p-value for Ho: b[hsngval] = 0.0000 based on CLR test:

LIML Confidence Region p-value

.00266862 [ 0.0020 , 0.0037] 0.0000

Additional test(s) Confidence Region p-value

AR empty 0.0000
Score(LM) [-0.0008,-0.0004] U [ 0.0020,0.0038080] 0.0000

The first half of the output looks similar to the output of command ivreg, except
that condivreg also reports the first-stage regression’s F-statistic and R2. The infer-
ential statistics in the coefficient table are based on the typical normal-approximation
procedures. In this example the instruments are strong, and the approximation is quite
accurate. However, in the case of weak instruments these statistics can lead to mislead-
ing inference.

The command also provides statistics that are valid whether the instruments are
weak or strong. The LIML estimator, the conditional likelihood ratio test for significance
and the conditional likelihood ratio confidence set are always reported by default. The
Anderson-Rubin and the score tests and the confidence sets are reported if options ar
and lm are included.
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We want to point out that in this example the conditional likelihood ratio confidence
set is not much different from the one based on the normal approximation, though it
is shifted toward the LIML estimator relative to the conventional Wald interval. The
score confidence set consists of two finite intervals, which is the only possible form of the
bounded score confidence set when the number of instruments is greater than 1. Both
the conditional likelihood ratio and score confidence sets contain the LIML estimator.

In this example the Anderson-Rubin confidence set is empty; that is, no value of the
parameter is compatible with the model. We already pointed out that the Anderson-
Rubin test can produce empty confidence sets (i.e. it rejects the model) even if the
model is correct.

The command also allows the user to perform testing of the hypothesis H0 : β = β0

using the conditional likelihood ratio, Anderson-Rubin, and score tests.

. condivreg rent pcturban (hsngval = faminc reg2-reg4), ar lm test(0.00266862)
> interval

Instrumental variables (2SLS) regression

First-stage results Number of obs = 50
F( 2, 47) = 42.66

F( 5, 44) = 19.66 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = 0.5989
R-squared = 0.6908 Adj R-squared = 0.5818
Adj R-squared = 0.6557 Root MSE = 22.862

rent Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsngval .0022398 .0003388 6.61 0.000 .0015583 .0029213
pcturban .081516 .3081528 0.26 0.793 -.5384074 .7014394

_cons 120.7065 15.70688 7.68 0.000 89.10834 152.3047

Instrumented: hsngval
Instruments: pcturban faminc reg2 reg3 reg4
Confidence set and p-value for instrumented variable are based on normal apprx

Coverage-corrected confidence interval for the coefficient on hsngval
and conditional p-value for Ho: b[hsngval] = 0.0027 based on CLR test:

LIML Confidence Region p-value

.00266862 [ 0.0020 , 0.0037] 0.9917

Additional test(s) Confidence Region p-value

AR empty 0.0260
Score(LM) [-0.0008,0.0038080] 1.0000

In this example we tested the hypothesis that the parameter of interest is equal to
the LIML estimator. The LIML estimator maximizes the p-values for all three tests.
The p-value for the score test and conditional p-value for the conditional likelihood ratio
at the LIML estimator are approximately equal to one. The p-value of the Anderson-
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Rubin test at the LIML estimator is below 5%; it is equivalent to having an empty
confidence set.
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