Confidence and the Propagation of Demand Shocks

George-Marios Angeletos¹ Chen Lian² ${}^{1}MIT$ and NBER ${}^{2}UC$ Berkeley

CRETE 2021 @ Naxos

- Household deleveraging or other AD shocks
 - \implies Consumers spend less
 - \implies Firms produce and hire less
 - \implies Consumers lose confidence and spend even less
 - \implies Firms produce and hire even less
 - $\implies \cdots$
 - \implies The Great Recession!

Basic RBC: no

- In GE, interest rates adjust, offsetting AD shock
- N, Y, and I move in opposite direction than C

Basic NK: perhaps

- Only when MP does not replicate flexible price outcomes
- Translates any AD shock to a monetary expansion/contraction
- Inflation and output must co-move
- Also, hard to get C and I to comove

Element 1: variable utilization + adjustment cost for K

- \Rightarrow intertemporal substitution in production
- \Rightarrow AS responds to AD along flexible-price outcomes

Element 2: confusion between idiosyncratic & agg. income fluctuations

 \Rightarrow confidence multiplier

(feedback loop b/w y, consumer sentiment, & investor sentiment)

 $1+2 \Rightarrow$:

u, y, h, c, i comove without TFP & π

- 1. Start with FIRE (full-info, rational expectations) and no investment margin variable utilization \Rightarrow AS responds to AD
- 2. Add info friction (or bounded rationality) \Rightarrow confidence multiplier
- 3. Comovement and other implications
 - Gov spending (crowding in, front-loading vs back-loading)
 - Comovement between savers and borrowers
 - Comovement between consumption and investment
 - TFP/AS shocks vs AD shocks

Preferences and AD Curve

• Preferences (representative agent & complete info)

$$\mathcal{U}(c_t, n_t) + \beta_t \mathcal{U}(c_{t+1}, n_{t+1}) + \beta_t \beta_{t+1} \mathcal{U}(c_{t+2}, n_{t+2}) + \cdots$$

$$\mathcal{U}(c,n) = \frac{c^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}} - \frac{n^{1+\frac{1}{\nu}}}{1+\frac{1}{\nu}}$$
$$\log \beta_t = (1-\rho_\beta) \log \beta + \rho_\beta \log \beta_{t-1} - \underbrace{\log \eta_t}_{\text{AD shocl}}$$

- Positive η_t shock = urge to consume = real AD shock
- AD curve (log-linearized, complete info):

$$y_t = -\sigma \left(R_t + \beta_t \right) + \mathbb{E}_t \left[y_{t+1} \right]$$

Technology and AS Curve

• Technology

$$y_{t} = (l_{t})^{\alpha} (u_{t}k_{t})^{1-\alpha}$$
$$k_{t+1} = (1 - \delta (u_{t}) + \Psi (\iota_{t})) k_{t},$$

• Tentatively: shut down ι_t margin (infinite adjustment cost: $\Psi(0) = 0$ and $\Psi'(0) \to \infty$)

Technology and AS Curve

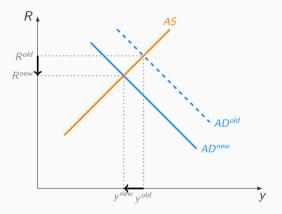
• Technology

$$y_{t} = (l_{t})^{\alpha} (u_{t}k_{t})^{1-\alpha}$$
$$k_{t+1} = (1 - \delta (u_{t}) + \Psi (\iota_{t})) k_{t},$$

- Tentatively: shut down ι_t margin (infinite adjustment cost: $\Psi(0) = 0$ and $\Psi'(0) \to \infty$)
- AS curve (log-linearized):

$$\begin{aligned} y_t &= \left(1 - \tilde{\alpha}\right) \left(u_t + k_t\right), \\ u_t &= \frac{\beta}{\tilde{\alpha} + \beta \phi} R_t + \beta \mathbb{E}_t \left[u_{t+1}\right] \\ k_{t+1} &= k_t - \kappa u_t, \end{aligned}$$
where $\tilde{\alpha} \equiv 1 - \frac{(1 - \alpha) \left(1 + \frac{1}{\nu}\right)}{1 + \frac{1}{\nu} - \alpha + \frac{\alpha}{\sigma}}$ and $\phi \equiv \frac{\delta''(u^*)u^*}{\delta'(u^*)}.$

Equilibrium without Info Frictions



- Resembles NK, but: R vs P in vertical axis, and $y^{natural}$ vs y^{gap} on horizontal axis
- Flexible-price core of NK: vertical AS, y^{natural} invariant to AD
- Here: Intertemporal "Econ 101"

Prop. Demand-driven fluctuations without nominal rigidity

$$\frac{\partial y_t}{\partial \eta_t} = \gamma \equiv \frac{\varsigma \sigma \beta}{\sigma + \varsigma} \frac{1}{1 - \rho_\beta \beta} > 0$$

where σ and $\varsigma \equiv \frac{1-\tilde{\alpha}}{\tilde{\alpha}+\beta\phi}$ parameterize the elasticities of AD and AS, respectively.

• ς and hence γ increase with flexibility of u (decrease with $\phi \equiv \frac{\delta''(u^*)u^*}{\delta'(u^*)}$)

Supply side

• Complete info, same as above

Demand side

- Islands & idiosyncratic shocks
- Knowledge of own discount rate, own income & own interest rates
- Incomplete info about, or inattention to, aggregate conditions
- (Rational) confusion of idiosyncratic & agg. income fluctuations

AD Curve

Prop. The AD Curve

$$y_t = -\sigma \{R_t + \beta_t\} + \mathbb{E}_t [y_{t+1}] + (\mathcal{B}_t + \mathcal{G}_t).$$

• \mathcal{B}_t captures avg misperception of permanent income

$$\mathcal{B}_{t} \equiv \frac{1-\beta}{\beta} \sum_{k=0}^{+\infty} \beta^{k} \int \left(E_{t}^{h} \left[y_{h,t+k} \right] - \mathbb{E}_{t} \left[y_{h,t+k} \right] \right) dh,$$

where $y_{h,t} = y_t + \xi_{h,t}$ is local/idiosyncratic income at t.

• \mathcal{G}_t captures avg misperception of future interest rates

$$\mathcal{G}_{t} \equiv -\sigma \sum_{k=1}^{+\infty} \beta^{k} \int \left(E_{t}^{h} [R_{t+k}] - \mathbb{E}_{t} [R_{t+k}] \right) dh$$

Our Hulten's Theorem

To understand \mathcal{B}_t , let's study first the <u>true</u> aggregate permanent income

Prop. Our Hulten's Theorem

Aggregate permanent income is **invariant to the AD shock** η_t . Instead, it is instead pinned down by technology/capital alone:

$$\sum_{k=0}^{+\infty} \beta^k \int \mathbb{E}_t \left[y_{t+k} \right] = \frac{1-\tilde{\alpha}}{1-\beta} k_t$$

- Standard Hulten's theorem: static. Here: dynamic
- Key assumption: efficient production (both within and across periods)
- Note: current agg output/income *does* move
 - intertemporal substitution without altering present discounted value

Our Hulten's theorem implies that \mathcal{B}_t is procyclical

Mechanism: current aggregate income y_t drops

 \Rightarrow local income $y_{h,t} = y_t + \xi_{h,t}$ drops

 \Rightarrow rationally confused as drop in idiosyncratic income $\xi_{h,t}$

 \Rightarrow drop in perceived permanent income

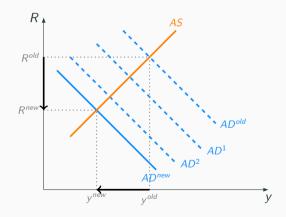
Prop. Pro-cyclical misperception of permanent income

$$\frac{\partial \mathcal{B}_t}{\partial \eta_t} = \frac{1-\beta}{\beta(1-\beta\rho_{\xi})} \left(1-\lambda\right) \frac{\partial y_t}{\partial \eta_t} > 0$$

where $1-\lambda$ measures degree of confusion of idiosyncratic & agg income fluctuations

Confidence Multiplier

AD drops \Rightarrow y drops \Rightarrow perceived permanent income drops even though actual doesn't \Rightarrow AD drops further \Rightarrow y drops further \Rightarrow ...



Focus on the impact of \mathcal{B}_t (as if $\mathcal{G}_t = 0$)

Prop. Equilibrium Impact of Confidence Multiplier

 $\frac{\partial y_t}{\partial \eta_t} = \gamma \cdot m^{\operatorname{conf}}(\lambda, \rho_{\xi}),$

where the "confidence multiplier" is given by

$$m^{\operatorname{conf}}(\lambda, \rho_{\xi}) \equiv rac{\varsigma + \sigma}{\varsigma + \sigma - \varsigma rac{1 - \beta}{1 - \beta \rho_{\xi}} (1 - \lambda)} > 1;$$

increases with the degree of confusion, $1 - \lambda$; increases with the persistence of idiosyncratic income, ρ_{ξ} ;; is invariant to the persistence of AD shoc ρ_{β} ; and increases with the MPC.

\mathcal{G}_t : Discounting GE Adjustment in Interest Rate

Consider now the role of \mathcal{G}_t

Prop. Discounting GE

$$\frac{\partial \mathcal{G}_t}{\partial \eta_t} = (1-\lambda) \frac{\sigma^2}{\sigma+\varsigma} \frac{\beta \rho_\beta}{1-\beta \rho_\beta} > 0$$

- Neoclassical GE: interest rates R_{t+k} drop
 - discourages consumption
 - goes against the direct impact of the AD shock
- Here: cannot fully perceive R_{t+k} drop
 - arrests the Neoclassical GE effect
 - i.e., amplifies the impact of the AD shock
- Bottom line: this mechanism reinforces confidence multiplier

Prop. Two Multipliers

The equilibrium response of aggregate output is given by

$$\frac{\partial y_t}{\partial \eta_t} = \gamma \cdot \boldsymbol{m}^{\mathsf{conf}}\left(\lambda, \rho_{\xi}\right) \cdot \boldsymbol{m}^{\mathsf{GE}}\left(\lambda, \rho_{\beta}\right),$$

where

$$m^{\mathsf{GE}}(\lambda,\rho_{\beta}) \equiv 1 + \beta \rho_{\beta} \frac{\sigma}{\sigma+\varsigma} (1-\lambda) \geq 1$$

increases with degree of confusion, $1 - \lambda$, and with persistence of AD shock, ρ_{β} .

Element 1: variable utilization \Rightarrow **AS** responds to **AD**

```
Element 2: info friction \Rightarrow amplification
```

In the paper: signal extraction, endogeneity/uniqueness of λ

Next:

- Bounded rationality interpretations
- Comovement (savers & borrowers; investment & consumption)
- Other shocks (fiscal, TFP)

So far: agents are imperfectly informed but super rational

Broader interpretation of confidence multiplier \mathcal{B}_t

- Key: the response of $c_{h,t}$ to $y_{h,t}$ independent from idio. vs agg.
- Rule of thumb (Kahneman, 2011)
- Extrapolation (Barberis, Greenwood, Jin, Shleifer, 2014)
- One-factor representation (Molavi, 2019)

Broader interpretation of GE discounting \mathcal{G}_t

- Lack of common knowledge (Angeletos & Lian, 18)
- Level-k thinking (Farhi & Werning, 19; Garcia-Schmidt & Woodford, 19)
- Cognitive discounting (Gabaix, 20)
- There: GE discounting of future output gaps = attenuation of current gaps
- Here: GE discounting of future natural R = amplification of current natural y

- Same AS as above
- Only shut down wealth effect of G on labor supply (for simplicity)
- No confusion about tax burden (Ricardian equiv still holds)
- AD with G shocks:

$$y_{t} = -\sigma R_{t} + G_{t} - E_{t} [G_{t+1}] + E_{t} [y_{t+1}] + (\mathcal{B}_{t} + \mathcal{G}_{t})$$

Front-loading $G_t \implies$ positive AD shock \implies confidence multiplier

Prop. Front-loading government spending With strong enough info friction, G_t can crowd in c_t

Back-loading $G_t \implies$ negative AD shock \implies negative multiplier

Credit crunch:

$$c_t^b = -\sigma R_t + \mathbb{E}_t \left[c_{t+1}^b \right] + \mathcal{B}_t + \mathcal{G}_t - \sigma \beta_t$$
$$c_t^s = -\sigma R_t + \mathbb{E}_t \left[c_{t+1}^s \right] + \mathcal{B}_t + \mathcal{G}_t$$

With FIRE, as R_t adjusts, c_t^s moves in the opposite direction than c_t^b

Prop. Borrowers and Savers

With enough noise/bounded rationality, (c_t^s, c_t^b, y_t) positively co-move.

Investment

Allow for investment, with positive but non-infinite adjustment cost

 $k_{t+1} = \left[1 - \delta\left(u_t\right) + \Psi\left(\iota_t\right)\right] k_t.$

Complete info (with small wealth effect on labor supply)

- Positive comovement between c and y
 - non-vertical AS thanks to the forward-looking *u*
- Negative comovement between i and c
 - negative AD shock, $c\downarrow$, $R\downarrow$, $i\uparrow$

Our resolution:

- Investment subject to confidence multiplier too
- Feedback between y_t & investor expectations of returns

Prop. Investment-consumption comovement There exist $\overline{\lambda}, \overline{\phi}, \underline{\nu}, \underline{\psi} > 0$. If $\lambda < \overline{\lambda}, \phi < \overline{\phi}, \nu > \underline{\nu}$ and $\psi > \underline{\psi}$, $(c_t, i_t, y_t, n_t, u_t)$ positively co-move.

- Large confidence multiplier (small λ)
- Elastic utilization (small ϕ and large ψ)
- Elastic labor supply (large ν)

AS Shocks

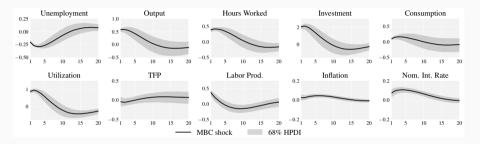
- Replace β shock with aggregate TFP shock
- Confidence multiplier: basically absent
 - Actual permanent income moves with aggregate TFP
 - Confusion of idio and agg shocks \Rightarrow ambiguous \mathcal{B}_t
 - Useful benchmark $\mathcal{B}_t \approx 0 \ (\rho_{\xi} \approx \rho_A)$
- GE discounting: reversed
 - With FIRE: positive TFP Shock \Rightarrow reduces $R \Rightarrow$ encourages AD
 - Without: R adjustment is discounted \Rightarrow AD moves less \Rightarrow y also moves less

Prop. AS vs AD Shock

Friction dampens AS shocks at the same time it amplifies AD shocks

Circling Back to Motivating Facts

• Main Business Cycle Shock (Angeletos, Collard & Dellas, 2020)



- Not only: u, y, h, c, i comove without TFP & π
- But also: evidence of intertemporal substitution in utilization/production
- Plus: Utilization accounts for pro-cyclicality in labor prod
- And: non-accommodative MP and procyclical real R

- Evidence calls for theories that make room for Keynesian narrative, and let AD drive business cycles, without strict reliance on sticky prices and Phillips curves
- This echoes the older literature on coordination failures and multiple equilibria
- Newer literature shifts focus on belief, financial, and other frictions on the demand side
- More to be done on both the empirical and theoretical front!