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Abstract
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tribution with variance that is larger than the standard one. We also find that with
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1 Introduction

Many empirical studies estimate the structural, causal, or treatment effect of some variable on

an outcome of interest. For example, we might be interested in estimating the effect of some

government policy on an outcome such as income. Since policies and many other variables

are not exogenous, researchers rely on a variety of approaches based on observational data

when trying to estimate such effects. One important method is based on assuming that

the variable of interest can be taken as exogenous after controlling for a suffi cient set of

other factors or covariates. See, for example, Heckman and Vytlacil (2007) and Imbens and

Wooldridge (2009) for recent reviews and further references.

A problem empirical researchers face when relying on covariates to estimate a structural

effect is the availability of many potential controls. Typically, intuition will suggest a set

of variables that might be important but will not identify exactly which variables are im-

portant or the functional form with which variables should enter the model. This lack of

clear guidance about what variables to use leaves researchers with a potentially vast set of

potential covariates including raw regressors available in the data as well as interactions and

other nonlinear transformations thereof. Many economic studies include very many of these

variables in order to control for as broad array of covariates as possible. For example, it is

common to include dummy variables for many potentially overlapping groups based on age,

cohort, geographic location, etc. Even when some controls are dropped after valid covariate

selection, as was developed by Belloni, Chernozhukov, and Hansen (2014), many controls

may remain in the final regression specification.

We present inference methods that account for the presence of many controls in regression

models. We do this using a large sample approximation where the number of covariates

grows as fast as the sample size. We find a limiting normal distribution with variance that

is larger than the standard asymptotic variance. We show that with homoskedasticity this

larger variance is fully accounted for by using standard errors with a degrees of freedom

adjustment for inclusion of many covariates. This asymptotics and the associated standard

errors provides an important justification for the practice of adjusting for degrees of freedom

even when disturbances are not normally distributed. As always the asymptotics is meant

as an approximation that provides useful inference methods for applications. In this way the

asymptotic approximation given here should prove useful in practice.

This paper also adds to the literature on regression where the number of regressors grow

with the sample size. Huber (1973) showed that fitted regression values are not asymptot-

ically normal when the number of regressors grows as fast as sample size. The problem is

circumvented here by focusing on the coeffi cients of some regressors when the number of
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covariates gets large. Recently, El Karoui, Bean, Bickel, Lim, and Yu (2013) showed that,

with a Gaussian distributional assumption on the regressors, certain coeffi cients and con-

trasts are asymptotically normal when the number of regressors grow as fast as sample size,

but do not give inference results. We do give inference results in showing that the degrees

of freedom adjustment to standard errors accounts correctly for many covariates and do not

impose distributional assumptions on the regressors. We also use a different and simpler ap-

proach to the asymptotic theory. We note that our results were presented at the 2010 Joint

Statistical Meetings and are independent of El Karoui, Bean, Bickel, Lim, and Yu (2013).

The asymptotics here is based on asymptotic normality results for degenerate U-statistics.

To help explain and motivate this theory we note that asymptotic normality for degenerate

U-statistics has already been used in other settings. Such results are the basis for the many

instrument asymptotics where the number of instruments grows as fast as the sample size.

Kunitomo (1980) and Morimune (1983) derived asymptotic variances that are larger than the

usual formulae when the number of instruments and sample size grow at the same rate, and

Bekker (1994) and others provided consistent estimators of these larger variances. Hansen,

Hausman, and Newey (2008) showed that using many instrument standard errors provides a

improvement for a range of number of instruments. This asymptotics has also proven useful

for small bandwidth approximations for kernel-based density-weighted average derivative

estimators in Cattaneo, Crump, and Jansson (2010, 2014b). They show that when the

bandwidth shrinks faster than needed for consistency of the kernel estimator, the variance

of the estimator is larger than the usual formula. They also find that correcting the variance

provides an improvement over standard asymptotics for a range of bandwidths.

We use a common framework for these results to motivate the asymptotic theory. The

common framework is that the object determining the limiting distribution is a V-statistic,

which can be decomposed into a bias term, a sample average, and a “remainder” that

is an asymptotically normal degenerate U-statistic. Asymptotic normality of the remainder

distinguishes this setting from others with degenerate U-statistic. Here asymptotic normality

occurs because the number of covariates goes to infinity, while the behavior of a degenerate

U-statistic is different in other settings. When the number of covariates grows as fast as

the sample size the remainder has the same magnitude as the leading term, resulting in an

asymptotic variance larger than just the variance of the leading term. The many covariate,

many instrument, and small bandwidth results share this structure. In keeping with this

common structure, we refer here to such results under the general heading of “alternative

asymptotics”. While not all semiparametric estimation problems share this structure, we

show by example that its scope may indeed be useful for econometrics. In the conclusions

section below we also discuss its limitations and its relation to other type of alternative
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asymptotic approximations in semiparametrics problems and other loosely related contexts.

An important generalization to the results presented herein is to asymptotics and infer-

ence with many covariates under heteroskedasticity. Constructing consistent standard errors

estimator under heteroskedasticity of unknown form in this setting turns out to be quite

challenging. In Cattaneo, Jansson, and Newey (2015), we present a detailed discussion of

heteroskedasticity-robust standard errors for linear models where the number of covariates

increases at the same rate as the sample size, which covers the partially linear model with

number terms growing at the same rate as the sample size.

The rest of the paper is organized as follows. Section 2 describes the common structure of

many instrument and small bandwidth asymptotics, and also shows how the structure leads

to new results for the partially linear model. Section 3 formalizes the new distributional

approximation for many covariates. Section 4 reports results from a small simulation study

aimed to illustrate our results in small samples. Section 5 concludes. Appendix A collects

the proofs of our results, while Appendix B discusses heuristically how our results can be

extended to the case of generated regressors and related problems.

2 A Common Structure

We consider inference on structural effects in an environment where variables of interest may

be taken as exogenous conditional on covariates. We pose the problem in the framework of

a partially linear model. Let (yi, x
′
i, z
′
i)
′, i = 1, . . . , n, be a random sample satisfying

yi = x′iβ0 + g(zi) + εi, E[εi|xi, zi] = 0, (1)

where yi is a scalar dependent variable, xi ∈ Rd are the treatment/policy variables of interest,
zi are explanatory variables, g(z) is an unknown function, and E[V[xi|zi]] is of full rank. The
goal of the analysis is to conduct inference about the structural effect β0.

A series estimator of β0 is obtained by regressing yi on xi and functions of zi. To describe

the estimator, let p1(z), p2(z), . . . be approximating functions, such as polynomials or splines,

and let pK(z) = (p1(z), . . . , pK(z))′ be aK-dimensional vector of such functions. We consider

a regression that includes a K × 1 vector of covariates pK(zi) that may consist of zi and

transformations of zi to adequately approximate g(zi). The conditional mean restriction

E[εi|xi, zi] = 0 means that xi may be considered exogenous after controlling linearly for

variables that can approximate g(zi). We will assume that linear combinations of these

variables provide approximations to g(zi) and to E[xi|zi] with relatively small approximation
errors for each object. To describe the estimator let Mij denote the (i, j)-th element of
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M = In − PK(P ′KPK)−1P ′K , where PK = [pK(z1), . . . , pK(zn)]′. A series estimator of β0 in

(1) is given by

β̂ =

(
n∑
i=1

n∑
j=1

Mijxix
′
j

)−1( n∑
i=1

n∑
j=1

Mijxiyj

)
.

Donald and Newey (1994) gave conditions for asymptotic normality of this estimator using

standard asymptotics. See also Linton (1995) and references therein for related asymptotic

results when using kernel estimators.

Conditional on Z = [z1, . . . , zn]′, β̂ depends on a V-statistic. Plugging in for yi for each

i and solving gives
√
n(β̂ − β0) = Γ̂−1n Sn, (2)

with

Γ̂n =
1

n

n∑
i=1

n∑
j=1

Mijxix
′
j, Sn =

1√
n

n∑
i=1

n∑
j=1

xiMij(gj + εj),

where gi = g(zi). Conditional on Z, the term Sn is a V-statistic

Sn =
n∑
i=1

n∑
j=1

unij(Wi,Wj),

where Wi = (x′i, εi)
′ and unij(Wi,Wj) = xiMij(gj + εj)/

√
n. We assume throughout this

section that there exists a sequence of non-random matrices Γn satisfying Γ−1n Γ̂n →p Id for

Id the d× d identity matrix, and hence we focus on the V-statistic Sn. (All limits are taken
as n→∞ unless explicitly stated otherwise.)

To explain the many covariate asymptotics, and to provide a link to previous work on

many instruments and small bandwidths, it is helpful to provide a general analysis of the

V-statistic Sn. This V-statistic has a well known (Hoeffding-type) decomposition that we

describe here because it is an essential feature of the common structure. For notational

implicitly we will drop the Wi and Wj arguments and set unij = unij(Wi,Wj) and ũnij =

unij + unji − E[unij + unji]. Let ‖ · ‖ denote the Euclidean norm. If E[‖unij‖] < ∞ for all i, j, n,

then

Sn = Bn + Ψn + Un, (3)

where

Bn = E[Sn], Ψn =
n∑
i=1

ψni (Wi), Un =
n∑
i=2

Dn
i (Wi, ...,W1),

ψni (Wi) = unii − E[unii] +

n∑
j=1,j 6=i

E[ũnij|Wi],
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Dn
i (Wi, ...,W1) =

n∑
j=1,j<i

(ũnij − E[ũnij|Wi]− E[ũnij|Wj]).

It is straightforward to see that E[ψni (Wi)] = 0, E[Dn
i (Wi, ...,W1)|Wi−1, ...,W1] = 0, and

E[ΨnUn] = 0. This decomposition of a V-statistic is well known (e.g., van der Vaart (1998,

Chapter 11)), and shows that Sn can be decomposed into a sum Ψn of independent terms, a

U-statistic remainder Un that is a martingale difference sum and uncorrelated with Ψn, and

a pure bias term Bn.1 The decomposition is important in many of the proofs of asymptotic

normality of semiparametric estimators, including Powell, Stock, and Stoker (1989), with

the limiting distribution being determined by Ψn, and Un being treated as a “remainder”

that is of smaller order under a particular restriction on the tuning parameter sequence (e.g.,

when the number of covariates increase slowly enough).

An interesting property of Un is that it is asymptotically normal at some rate when the

number of covariates grow. To be specific, if regularity conditions specified below hold and

K →∞ with the sample size, it turns out that V[Ψn]−1/2Ψn

V[Un]−1/2Un

→d N (0, I2d).

In other settings, where the underlying kernel of the U-statistic does not vary with the

sample size, the asymptotic behavior of Un can be different. Many degenerate U-statistics

will converge to a weighted sum of independent chi-square random variables (e.g., van der

Vaart (1998, Chapter 12)). However, as the number of covariates grows, the kernel of the

underlying U-statistic forming Un changes with the sample in such a way that the individual

contributions Dn
i (Wi, ...,W1) to Un are small enough to satisfy a Lindeberg-Feller condition

leading to a Gaussian limiting distribution (usually established using the martingale property

of Un). For an interesting discussion of this phenomenon, see de Jong (1987). This type of

asymptotic normality result for degenerate U-statistics has previously been shown in other

settings, as further explained below.

When the number of covariates grows as fast as the sample size V[Ψn] and V[Un] have

the same magnitude in the limit. Because of uncorrelatedness of Ψn and Un, the asymptotic

variance will be larger than the usual formula which is limn→∞V[Ψn] (assuming the limit

exists). As a consequence, consistent variance estimation under many covariate asymptotics

requires accounting for the contribution of Un to the (asymptotic) sampling variability of

1In time series contexts, the exact decomposition is less useful, but approximations thereof with properties
similar to those we discuss herein can be developed. For an example and related references see Atchadé and
Cattaneo (2014).
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the statistic.

To apply this calculation to many covariates, note that by E[εi|xi, zi] = 0 we have

E[xiεi|Z] = 0. Therefore, letting unij = unij(Wi,Wj) as we have done previously, we have

E[unij|Z] = hiMijgj/
√
n, unij − E[unij|Z] = Mij (vigj + xiεj) /

√
n,

ũnij = Mij (vjgi + vigj + xjεi + xiεj) /
√
n, E[ũnij|Wi, Z] = Mij (vigj + hjεi) /

√
n,

for i 6= j, where hi = h(zi) = E[xi|zi] and vi = xi − hi. In this case, the bias term in (3) is

Bn =
1√
n

n∑
i=1

n∑
j=1

Mijhigj,

which will be negligible under regularity conditions, as shown in the next section. Moreover,

Ψn =
1√
n

n∑
i=1

Miiviεi +Rn, Rn =
1√
n

n∑
i=1

n∑
j=1

Mij(vigj + hiεj),

where Rn has mean zero and converges to zero in mean square as K grows, as further

discussed below. Under standard asymptotics Mii will go to one and hence the limiting

variance of the leading term in Ψn corresponds to the usual asymptotic variance. Finally,

we find that the degenerate U-statistic term is

Un =
1√
n

n∑
i=1

n∑
j=1,j<i

Mij (viεj + vjεi) = − 1√
n

n∑
i=1

n∑
j=1,j<i

Qij (viεj + vjεi) ,

where Qij is the (i, j)-th component of PK(P ′KPK)−1P ′K . Remarkably, as discussed below,

this term is essentially the same as the degenerate U-statistic term for certain instrumental

variables estimators. Consequently, a central limit theorem of Chao, Swanson, Hausman,

Newey, and Woutersen (2012) that was applied to many instrument asympotics is applicable

to regression with many covariates. We will employ it to show that Un is asymptotically

normal as K →∞.
Distribution theory with many covariates may be seen as a generalization of the conven-

tional asymptotics in the sense that under conventional asymptotics the asymptotic variances

emerging from both approaches coincide. But, the alternative asymptotic approximation also

allows for the covariates to grow at the same rate as the sample size, where the limiting as-

ymptotic variance is larger. Thus, in general, there is no reason to expect that the usual

standard error formulas derived under conventional asymptotics will remain valid more gen-

erally. From this perspective, many covariate asymptotics provides theoretical justification
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for new standard error formulas that are consistent under both conventional and many co-

variate asymptotics. We refer to the latter standard error formulas as being more robust

than the usual standard error formulas available in the literature. For instance, using these

ideas, more robust standard errors formulas were derived previously for many instrument

asymptotics in IV models (Hansen, Hausman, and Newey (2008)) and small bandwidth

asymptotics in kernel-based semiparametrics (Cattaneo, Crump, and Jansson (2014b)).

Accounting for the presence of Un should also yield improvements when numbers of co-

variates do not satisfy the knife-edge condition of growing at the same rate as the sample

size. For instance, if the number of covariates grows just slightly slower than the sample size

then accounting for the presence of Un should still give a better large sample approxima-

tion. Hansen, Hausman, and Newey (2008) show such an improvement for many instrument

asymptotics. It would be good to consider such improved approximations more generally,

though it is beyond the scope of this paper to do so.

To motivate and provide background for this approach we show next that both many in-

strument asymptotics and small bandwidth asymptotics have the structure described above.

2.1 Connection with Many Instrument Asymptotics

To link many covariate asymptotics with many instrument asymptotics we focus on the

JIVE2 estimator of Angrist, Imbens, and Krueger (1999), but the idea applies to other

IV estimators such as the limited information maximum likelihood estimator. See Chao,

Swanson, Hausman, Newey, and Woutersen (2012) for more details, including regularity

conditions under which the following discussion can be made rigorous.

Let (yi, x
′
i, z
′
i)
′, i = 1, . . . , n, be a random sample generated by the model

yi = x′iβ0 + εi, E[εi|zi] = 0, (4)

where yi is a scalar dependent variable, xi ∈ Rd is a vector of endogenous variables, εi is a
disturbance, and zi ∈ RK is a vector of instrumental variables.
To describe the JIVE2 estimator of β0 in (4), now let Qij denote the (i, j)-th element of

Q = Z(Z ′Z)−1Z ′, where Z = [z1, · · · , zn]′. After centering and scaling, the JIVE2 estimator

β̂ satisfies

√
n(β̂ − β0) =

(
1

n

n∑
i=1

n∑
j=1,j 6=i

Qijxix
′
j

)−1(
1√
n

n∑
i=1

n∑
j=1,j 6=i

Qijxiεj

)
.
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Conditional on Z, β̂ has the structure in (2) with Wi = (x′i, εi)
′ and

Γ̂n =
1

n

n∑
i=1

n∑
j=1,j 6=i

Qijxix
′
j, unij(Wi,Wj) = 1(i 6= j)Qijxiεj/

√
n,

where 1(·) is the indicator function.
For i 6= j, E[unij(Wi,Wj)|Z] = 0 and

E[unij(Wi,Wj)|Wi, Z] = QijxiE[εj|Z] = 0, E[unji(Wj,Wi)|Wi, Z] = QijΥjεi/
√
n,

where Υi = E[xi|zi] can be interpreted as the reduced form for observation i. As a conse-

quence, (3) is satisfied with Bn = 0,

ψni (Wi) = (
n∑

j=1,j 6=i

QijΥj)εi = Υi(1−Qii)εi/
√
n− (Υi −

n∑
j=1

QijΥj)εi/
√
n,

Dn
i (Wi, ...,W1) =

n∑
j=1,j<i

Qij (viεj + vjεi) /
√
n, vi = xi −Υi.

BecauseΥi−
∑n

j=1QijΥj is the i-th residual from regressing the reduced form observations

on Z, by appropriate definition of the reduced form this can generally be assumed to vanish

as the sample size grows. In that case,

Ψn =
1√
n

n∑
i=1

Υi(1−Qii)εi + op(1).

Furthermore, under standard asymptotics Qii will go to zero, so the limiting variance of the

leading term in Ψn corresponds to the usual asymptotic variance for IV. The degenerate

U-statistic term is

Un =
1√
n

n∑
i=1

n∑
j=1,j<i

Qij (viεj + vjεi) .

Chao, Swanson, Hausman, Newey, and Woutersen (2012) apply a martingale central limit

theorem to show that this Un will be asymptotically normal when K → ∞ and certain

regularity conditions hold. Here we see that the Un term for JIVE2 has the same form as

for many covariates. Thus, many covariate asymptotics can be obtained by using previous

results for many instruments.
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2.2 Connection with Small Bandwidth Asymptotics

We can also show that small bandwidth asymptotics for certain kernel-based semiparametric

estimators is based on a generate U-statistic like that considered above. To keep the expo-

sition simple we focus on an estimator of the integrated squared density, but the structure

of this estimator is shared by the density-weighted average derivative estimator of Powell,

Stock, and Stoker (1989) treated in Cattaneo, Crump, and Jansson (2014b) and more gen-

erally by estimators of density-weighted averages and ratios thereof (see, e.g., Newey, Hsieh,

and Robins (2004, Section 2) and references therein). Furthermore, these ideas are also ap-

plicable to other semiparametric problems such as those involving (i) certain functionals of

U-processes arising in latent models as in Aradillas-Lopéz, Honoré, and Powell (2007) and

references therein, (ii) U-statistics used for specification testing as in Li and Racine (2007,

Chapter 12) and references therein, and (iii) U-statistics obtained from convolution estima-

tors as in Schick and Wefelmeyer (2013) and references therein. Since the main purpose here

is to highlight the connections between many covariate asymptotics and other alternative

asymptotics in the literature, rather than to extend the scope of alternative asymptotics, we

do not discuss those other potential applications here.

Suppose xi, i = 1, . . . , n, are i.i.d. continuously distributed p-dimensional random vectors

with smooth p.d.f. f0 and consider estimation of the integrated squared density

β0 =

∫
Rp
f0(x)2dx = E[f0(xi)].

A leave-one-out kernel-based estimator is

β̂ =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

Kh(xi − xj),

where K(u) is a symmetric kernel and Kh(u) = h−pK(u/h). As shown by Giné and Nickl

(2008), this estimator is optimal, attaining root-n consistency under weak conditions. This

estimator has the V-statistic form of (2) with Wi = xi and

Γ̂n = 1, unij(Wi,Wj) =
1√

n(n− 1)
1(i 6= j){Kh(xi − xj)− β0}.

Let fh(x) =
∫
Rp K(u)f0(x+ hu)du and βh =

∫
Rp fh(x)f0(x)dx. By symmetry of K(u),

E[unij(Wi,Wj)|Wi] = E[unji(Wj,Wi)|Wi] =
1√

n(n− 1)
{fh(xi)− β0},
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E[unij(Wi,Wj)] =
1√

n(n− 1)
{βh − β0},

so the terms in the decomposition (3) are of the form

Bn =
√
n{βh − β0}, Ψn =

1√
n

n∑
i=1

2{fh(xi)− βh},

Un =
2√

n(n− 1)

n∑
i=1

n∑
j=1,j<i

{Kh(xi − xj)− fh(xi)− fh(xj) + βh}.

Here, 2{fh(xi)−βh} is an approximation to the well known influence function 2{f0(xi)−
β0} for estimators of the integrated squared density. Under regularity conditions, fh(xi)
converges to f0(xi) in mean square as h→ 0, so that

Ψn =
1√
n

∑
1≤i≤n

2{f0(xi)− β0}+ op(1).

A martingale central limit theorem can be applied as in Cattaneo, Crump, and Jansson

(2014b) to show that the degenerate U-statistic term Un will be asymptotically normal as

h → 0 and n → ∞, provided that n2hp → ∞. It is easy to show that n2hpV[Un] → ∆ =

β0
∫
Rp K(u)2du, under mild regularity conditions. Alternative asymptotics occurs when hp

shrinks as fast as 1/n, resulting in V[Ψn] and V[Un] having the same magnitude in the limit.

3 Many Covariate Asymptotics

In this section we make precise the previous discussion for many covariate asymptotics and

also consider inference under homoskedasticity. The estimator β̂ described above for many

covariates can be interpreted as a two-step semiparametric estimator with tuning parameter

K, the first step involving series estimation of the unknown (regression) functions g(z) and

h(z). Donald and Newey (1994) gave conditions for asymptotic normality of this estimator

when K/n→ 0. Here we generalize their findings by obtaining an asymptotic distributional

result that is valid even when K/n is bounded away from zero.

The analysis proceeds under the following assumption.

Assumption PLM (Partially Linear Model)

(a) (yi, x
′
i, z
′
i)
′, i = 1, . . . , n, is a random sample.

(b) There is a C <∞ such that E[ε4i |xi, zi] ≤ C and E[‖vi‖4|zi] ≤ C.
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(c) There is a C > 0 such that E[ε2i |xi, zi] ≥ C and λmin(E[viv
′
i|zi]) ≥ C.

(d) rank(PK) = K (a.s.) and there is a C > 0 such that Mii ≥ C.

(e) For some αg, αh > 0, there is a C <∞ such that

min
ηg∈RK

E[|g(zi)− η′gpK(zi)|2] ≤ CK−2αg , min
ηh∈RK×d

E[‖h(zi)− η′hpK(zi)‖2] ≤ CK−2αh .

Because
∑n

i=1Mii = n − K, an implication of part (d) is that K/n ≤ 1 − C < 1,

but crucially Assumption PLM does not imply that K/n → 0. Part (e) is implied by

conventional assumptions from approximation theory. For instance, when the support of

zi is compact commonly used basis of approximation, such as polynomials or splines, will

satisfy this assumption with αg = sg/dz and αh = sh/dz, where sg and sh denotes the

number of continuous derivatives of g(z) and h(z), respectively. Further discussion and

related references for several basis of approximation may be found in Newey (1997), Chen

(2007), Cattaneo and Farrell (2013) and Belloni, Chernozhukov, Chetverikov, and Kato

(2015), among others.

3.1 Asymptotic Distribution

From the discussion in the previous section, we see that the asymptotic distribution of β̂ will

be determined by the behavior of Γ̂n and Sn. The following lemma approximates Γ̂n without

requiring that K/n→ 0.

Lemma 1 If Assumption PLM is satisfied and if K →∞, then

Γ̂n = Γn + op (1) , Γn =
1

n

n∑
i=1

MiiE[viv
′
i|zi].

Because
∑n

i=1Mii = n−K, it follows from this result that in the homoskedastic vi case

(i.e., when E[viv
′
i|zi] = E[viv

′
i]) Γ̂n is close to

Γn = (1−K/n)Γ, Γ = E[viv
′
i],

in probability. More generally, with heteroskedasticity, Γ̂n will be close to the weighted

average Γn. Importantly, this result includes standard asymptotics as a special case when

K/n→ 0, where
∑n

i=1(1−Mii)/n = K/n, the law of large numbers and iterated expectations

11



imply

Γn =
1

n

n∑
i=1

E[viv
′
i|zi]−

1

n

n∑
i=1

(1−Mii)E[viv
′
i|zi] + op(1)

=
1

n

n∑
i=1

E[viv
′
i|zi] + op(1) = Γ + op(1).

Next, we study

Sn =
1√
n

n∑
i=1

n∑
j=1

Mijviεj +Bn +Rn.

The following lemma quantifies the magnitude of the bias term Bn as well as the additional

variability arising from the (remainder) term Rn.

Lemma 2 If Assumption PLM is satisfied and if K →∞, then Bn = Op(
√
nK−αg−αh) and

Rn = op(1).

Like the previous lemma, this lemma does not require K/n → 0. Interestingly, the

bias term Bn involves approximation of both unknown functions g(z) and h(z), implying

an implicit trade-off between smoothness conditions for g(z) and h(z). The implied bias

condition K2(αg+αh)/n→∞ only requires that αg + αh be large enough, but not necessarily

that αg and αh separately be large. It follows that if this bias condition holds, then

Sn =
1√
n

n∑
i=1

n∑
j=1

Mijviεj + op(1),

as argued heuristically in the previous section.

Having dispensed with asymptotically negligible contributions to Sn, we turn to its lead-

ing term. This term is shown below to be asymptotically Gaussian with asymptotic variance

given by

Σn =
1

n
V

[
n∑
i=1

n∑
j=1

Mijviεj

∣∣∣∣∣Z
]

=
1

n

n∑
i=1

M2
iiE[viv

′
iε
2
i |zi] +

1

n

n∑
i=1

n∑
j=1,j 6=i

M2
ijE[viv

′
iε
2
j |zi, zj].

Here, the first term following the second equality corresponds to the usual asymptotic ap-

proximation, while the second term adds an additional term that accounts for large K. Once

again it is interesting to consider what happens in some special cases. Under homoskedas-
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ticity of εi (i.e., when E[ε2i |xi, zi] = E[ε2i ]),

Σn =
σ2ε
n

n∑
i=1

n∑
j=1

M2
ijE[viv

′
i|zi] =

σ2ε
n

n∑
i=1

MiiE[viv
′
i|zi] = σ2εΓn, σ2ε = E[ε2i ],

because
∑n

j=1M
2
ij = Mii. If, in addition, E[viv

′
i|zi] = E[viv

′
i], then Σn = σ2ε (1−K/n) Γ.

Also, if K/n→ 0, then by
∑

1≤i,j≤n,i6=jM
2
ij/n ≤ K/n and the law of large numbers, we have

Σn =
1

n

n∑
i=1

M2
iiE[viv

′
iε
2
i |zi] + op (1) = E[viv

′
iε
2
i ] + op (1) ,

which corresponds to the standard asymptotics limiting variance.

The following theorem combines Lemmas 1 and 2 with a central limit theorem for

quadratic forms to show asymptotic normality of β̂.

Theorem 1 If Assumption PLM is satisfied and if K2(αg+αh)/n→∞, then

Ω−1/2n

√
n(β̂ − β0)→d N (0, Id), Ωn = Γ−1n ΣnΓ−1n .

If, in addition, E[ε2i |xi, zi] = σ2ε, then Ωn = σ2εΓ
−1
n .

This theorem shows that β̂ is asymptotically normal whenK/n need not converge to zero.

An implication of this result is that inconsistent series-based nonparametric estimators of

the unknown functions g(z) and h(z) may be employed when forming β̂, that is, K/n9 0 is

allowed (increasing the variability of the nonparametric estimators), provided that K →∞
(to remove nonparametric smoothing bias). This asymptotic distributional result does not

rely on asymptotic linearity, nor on the actual convergence of the matrices Γn and Σn, and

leads to a new (larger) asymptotic variance that captures terms that are assumed away

by the classical result. The asymptotic distribution result of Donald and Newey (1994) is

obtained as a special case where K/n→ 0. More generally, when K/n does not converge to

zero, the asymptotic variance will be larger than the usual formula because it accounts for

the contribution of “remainder”Un in equation (3). For instance, when both εi and vi are

homoskedastic, the asymptotic variance is

Γ−1n ΣnΓ−1n = σ2εΓ
−1
n = σ2εΓ

−1(1−K/n)−1,

which is larger than the usual asymptotic variance σ2εΓ
−1 by the degrees of freedom correction

(1−K/n)−1.
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3.2 Asymptotic Variance Estimation under Homoskedasticity

Consistent asymptotic variance estimation is useful for large sample inference. If the as-

sumptions of Theorem 1 are satisfied and if Σ̂n − Σn →p 0, then

Ω̂−1/2n

√
n(β̂ − β0)→d N (0, Id), Ω̂n = Γ̂−1n Σ̂nΓ̂−1n ,

implying that valid large-sample confidence intervals and hypothesis tests for linear and

nonlinear transformations of the parameter vector β can be based on Ω̂n.2 Under (condi-

tional) heteroskedasticity of unknown form, constructing a consistent estimator Σ̂n turns out

to be very challenging if K/n 9 0. Intuitively, the problem arises because the estimated

residuals entering the construction of Σ̂n are not consistent unless K/n→ 0, implying that

Σ̂n − Σn 9p 0 in general. Solving this problem is beyond the scope of this paper; see

Cattaneo, Jansson, and Newey (2015).

Under homoskedasticity of εi, however, the asymptotic variance Σn simplifies and ad-

mits a correspondingly simple consistent estimator. To describe this result, note that if

E[ε2i |xi, zi] = σ2ε then Σn = σ2εΓn, where Γ̂n − Γn →p 0 by Lemma 1. It therefore suffi ces to

find a consistent estimator of σ2ε. Let

s2 =
1

n− d−K

n∑
i=1

ε̂2i , ε̂i =
n∑
j=1

Mij(yj − β̂
′
xj),

denote the usual OLS estimator of σ2ε incorporating a degrees of freedom correction.

The following theorem shows that s2 is a consistent estimator, even when the number of

terms is “large”relative to the sample size.

Theorem 2 Suppose the conditions of Theorem 1 are satisfied. If E[ε2i |xi, zi] = σ2ε, then

s2 →p σ
2
ε and Σ̂HOM

n − Σn →p 0, where Σ̂HOM
n = s2Γ̂n.

This theorem provides a distribution free, large sample justification for the degrees-of-

freedom correction required for exact inference under homoskedastic Gaussian errors. Intu-

itively, accounting for the correct degrees of freedom is important whenever the number of

terms in the semi-linear model is “large”relative to the sample size.

2Another approach to inference would be via the bootstrap. For small bandwidth asymptotics, Cattaneo,
Crump, and Jansson (2014a) showed that the standard nonparametric bootstrap does not provide a valid
distributional approximation in general. We conjecture that the standard nonparametric bootstrap will also
fail to provide valid inference for other alternative asymptotics frameworks.
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4 Small Simulation Study

We conducted a Monte Carlo experiment to explore the extent to which the asymptotic

theoretical results obtained in the previous section are present in small samples. Using the

notation already introduced, we consider the following partially linear model:

yi = x′iβ + g(zi) + εi, E[εi|xi, zi] = 0, E[ε2i |xi, zi] = σ2ε,

xi = h(zi) + vi, E[vi|zi] = 0, E[v2i |zi] = σ2v(zi),

where d = 1, β = 1, dz = 5, zi = (z1i, · · · , zdzi)′ with z`i ∼ i.i.d. Uniform(−1, 1), ` =

1, · · · , dz. The unknown regression functions are set to g(zi) = h(zi) = exp(‖zi‖2), which
are not additive separable in the covariates zi. The simulation study is based on S = 5, 000

replications, each replication taking a random sample of size n = 500 with all random

variables generated independently. We consider 6 data generating processes (DGPs) as

follows:
Data Generating Process for Monte Carlo Experiment

(εi, vi) —Distributions

Gaussian Asymmetric Bimodal

σ2v(zi) = 1 Model 1 Model 3 Model 5

σ2v(zi) = ς(1 + ‖zi‖2)2 Model 2 Model 4 Model 6

Specifically, Models 1, 3 and 5 correspond to homoskedastic (in vi) DGPs, while Models 2, 4

and 5 correspond to heteroskedastic (in vi) DGPs. For the latter models, the constant ς was

chosen so that E[v2i ] = 1. The three distributions considered for the unobserved error terms εi
and vi are: the standard Normal (labelled “Gaussian”) and two Mixture of Normals inducing

either an asymmetric or a bimodal distribution; their Lebesgue densities are depicted in

Figure 1. We explored other specifications for the regression functions, heteroskedasticity

form, and distributional assumptions, but we do not report these additional results because

they were qualitative similar to those discussed here.

The estimators considered in the Monte Carlo experiment are constructed using power

series approximations. We do not impose additive separability on the basis, though we do

restrict the interaction terms to not exceed degree 5. To be specific, we consider the following
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polynomial basis expansion:

Polynomial Basis Expansion: dz = 5 and n = 500

K pK(zi) K/n

6 (1, z1i, z2i, z3i, z4i, z5i)
′ 0.012

11 (p6(zi)
′, z21i, z

2
2i, z

2
3i, z

2
4i, z

2
5i)
′ 0.022

21 p11(zi) + first-order interactions 0.042

26 (p21(zi)
′, z31i, z

3
2i, z

3
3i, z

3
4i, z

3
5i)
′ 0.052

56 p26(zi) + second-order interactions 0.112

61 (p56(zi)
′, z41i, z

4
2i, z

4
3i, z

4
4i, z

4
5i)
′ 0.122

126 p61(zi) + third-order interactions 0.252

131 (p126(zi)
′, z51i, z

5
2i, z

5
3i, z

5
4i, z

5
5i)
′ 0.262

252 p131(zi) + fourth-order interactions 0.504

257 (p252(zi)
′, z61i, z

6
2i, z

6
3i, z

6
4i, z

6
5i)
′ 0.514

262 (p257(zi)
′, z71i, z

7
2i, z

7
3i, z

7
4i, z

7
5i)
′ 0.524

267 (p262(zi)
′, z81i, z

8
2i, z

8
3i, z

8
4i, z

8
5i)
′ 0.534

272 (p267(zi)
′, z91i, z

9
2i, z

9
3i, z

9
4i, z

9
5i)
′ 0.544

277 (p272(zi)
′, z101i , z

10
2i , z

10
3i , z

10
4i , z

10
5i )
′ 0.554

Thus, our simulations explore the consequences of introducing many terms in the partially

linear model by varying K on the grid above from K = 6 to K = 277, which gives a range

for K/n of {0.012, · · · , 0.554}. For each point on the grid of K/n, we report average bias,
average standard deviation, mean square error and average standardized bias of β̂ across

simulations. We also consider the coverage error rates and interval length for two asymptotic

95% confidence intervals:

CI0 =

[
β̂ − Φ−11−α/2

σ̂Γ̂
−1/2
n√
n

, β̂ + Φ−11−α/2
σ̂Γ̂
−1/2
n√
n

]
,

CI1 =

[
β̂ − Φ−11−α/2

sΓ̂
−1/2
n√
n

, β̂ + Φ−11−α/2
sΓ̂
−1/2
n√
n

]
,

where σ̂2 = (n− d−K)s2/n, and Φ−1u = Φ−1(u) denotes the inverse of the Gaussian distrib-

ution function. That is, CI0 and CI1 are formed employing the t-statistic constructed using
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the homoskedasticity-consistent variance estimators without and with degrees of freedom

correction, respectively.

The main findings from the Monte Carlo experiment are presented in Tables 1—3. All

results are consistent with the theoretical conclusions presented in the previous section.

First, the results for standard Normal and non-Normal errors are qualitatively similar. This

indicates that the Gaussian approximation obtained in Theorem 1 is a good approximation in

finite samples, even when K is a nontrivial fraction of the sample size. Second, as expected,

a small choice of K leads to important smoothing biases. This affects the finite sample

properties of the point estimators as well as the distributional approximations obtained in

this paper. In particular, it affects the empirical size of all the confidence intervals. Third,

in all cases the results under homoskedasticity or heteroskedasticity in vi are qualitatively

similar, showing that our theoretical results provide a good finite sample approximation in

both cases, even when K is a nontrivial fraction of the sample size. Fourth, as suggested by

Theorem 2, confidence intervals without degrees of freedom correction (CI0) are under-sized,

while the confidence intervals with degrees of freedom correction (CI1) have close-to-correct

empirical size in all cases. This result shows that the degrees of freedom correction is crucial

to achieve close-to-correct empirical size when K/n is non-negligible.

In conclusion, we found in our small-scale simulation study that our theoretical results for

the partially linear model with possibly many terms provide good approximation in samples

of moderate size. In particular, under homoskedasticity of εi, we showed that confidence

intervals constructed using s2 exhibit good empirical coverage even whenK/n is “large”. We

also confirmed that the Gaussian distributional approximation given in Theorem 1 represents

well the finite sample distribution of β̂ even when K/n is “large”.

In Cattaneo, Jansson, and Newey (2015) we analyze in detail the case of (conditional)

heteroskedasticity in εi, which requires the use of a new standard error formula, and also

compare those results to the case of homoskedasticity analyzed herein. We do not reproduce

those results here to avoid repetition.

5 Conclusion

This paper showed asymptotic normality and gave consistent standard errors for coeffi cients

of interest when the number of covariates grows as fast as the sample size. It was also

shown how this asymptotics has a similar structure to previously established results for

many instrument asymptotics or small bandwidths. These results are all based on results for

degenerate U-statistics, where asymptotic normality happens when the number of covariates

diverge to infinity or the bandwidth shrinks to zero.
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Our results apply to a class of semiparametric estimators β̂ satisfying

√
n(β̂ − β0) = Γ̂−1n Sn + op(1),

where Γ̂n and Sn take a particular V-stastistic form, as discussed in Section 2. This class

of semiparametric estimators covers several interesting problems, but it is by no means

exhaustive. For example, Cattaneo and Jansson (2015) show that a large class of (kernel-

based) semiparametric estimators admit an expansion of the form

√
n(β̂ − β0) = Γ̂−1n Sn − Bn + op(1),

where the bias term Bn is quantitatively and conceptually distinct from the smoothing bias

Bn described in Section 2 and, crucially, dominates the quadratic term Un arising from the

V-statistic Sn; that is, Un = op(Bn) in that setting. Nevertheless, the structure we have

considered in this paper is useful, providing new results for the partially linear model and a

common structure for disparate literatures on many instruments and small bandwidths.

Finally, as a reviewer pointed out, the alternative asymptotics discussed in this paper are

also qualitative distinct, but conceptually similar, to that encountered in the recent literature

on “large”panel data models where the number of units n and the number of periods T are

proportional; see, for example, Alvarez and Arellano (2003), Hahn and Newey (2004) and

references therein. Specifically, whereas the “large-(n, T ) asymptotics”lead to the presence

of a first-order bias in the distributional approximation (centering), the alternative asymp-

totics discussed in this paper lead to a change in the first-order variance of the distributional

approximation (scale). Therefore, the “large-(n, T ) asymptotics”in panel data contexts are

more closely related to those obtained in Cattaneo and Jansson (2015) for non-linear semi-

parametric problems, than to the distribution theory emerging from the common structure

highlighted in this paper.

Appendix A: Proofs

All statements involving conditional expectations are understood to hold almost surely.

Qualifiers such as “a.s.”will be omitted to conserve space. Throughout the appendix, C

will denote a generic constant that may take different values in each case.

Proof of Lemma 1. Let X = [x1, . . . , xn]′, H = [h1, . . . , hn]′, and V = [v1, . . . , vn]′. By

18



Assumption PLM and the Markov inequality,

tr(
1

n
H ′MH) = min

ηh∈RK×d

1

n

n∑
i=1

‖h(zi)− η′hpK(zi)‖2 = Op(K
−2αh)→p 0.

Also, V ′V/n = Op(1) by Assumption PLM and the Markov inequality, so by the Cauchy-

Schwarz inequality and M idempotent, ‖H ′MV/n‖ ≤ [tr(H ′MH/n) tr(V ′V/n)]1/2 →p 0. By

the triangle inequality, we then have

Γ̂n =
1

n
X ′MX =

1

n
(V +H)′M(V +H) =

1

n
V ′MV + op(1).

Next, by Lemma A1 of Chao, Swanson, Hausman, Newey, and Woutersen (2012),

1

n
V ′MV =

1

n

n∑
i=1

Miiviv
′
i +

1

n

n∑
i=1

n∑
j=1,j 6=i

Mijviv
′
j =

1

n

n∑
i=1

Miiviv
′
i + op(1).

Finally, by the Markov inequality and using E[n−1
∑n

i=1Miiviv
′
i|Z] = Γn,

1

n

n∑
i=1

Miiviv
′
i − Γn →p 0

because Assumption PLM implies that viv′i and vjv
′
j are uncorrelated conditional on Z and

that E[M2
ii‖vi‖4|Z] ≤ C. �

Proof of Lemma 2. Let G = [g1, . . . , gn]′ and ε = [ε1, . . . , εn]′. By the Cauchy-Schwarz

inequality, M idempotent, Assumption PLM, and the Markov inequality,

‖ 1

n
G′MH‖ ≤

√
tr(

1

n
G′MG)

√
tr(

1

n
H ′MH) = Op(K

−αg−αh),

which gives Bn = G′MH/
√
n = Op(

√
nK−αg−αh).

Also, Rn = (V ′MG+H ′Mε)/
√
n = Op(K

−αg +K−αh) = op(1) because

E[‖ 1√
n
V ′MG‖2|Z] =

1

n
G′ME[V V ′|Z]MG ≤ C

1

n
G′MG = Op(K

−2αg)

and

E[‖ 1√
n
H ′Mε‖2|Z] = tr(

1

n
H ′ME[εε′|Z]MH) ≤ C tr(

1

n
H ′MH) = Op(K

−2αh)

by Assumption PLM and the Markov inequality. �
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Proof of Theorem 1. By Lemma A2 of Chao, Swanson, Hausman, Newey, and

Woutersen (2012),

Σ−1/2n

1√
n

n∑
i=1

n∑
j=1

Mijviεj →d N (0, Id)

under Assumption PLM. Combining this result with Lemmas 1 and 2, we obtain the results

stated in the theorem. �

Proof of Theorem 2. Let Y = [y1, . . . , yn] and ε̂ = [ε̂1, . . . , ε̂n]′ = M(Y − Xβ̂). It

follows similarly to the proof of Lemma 1 that

1

n
ε′Mε =

1

n

n∑
i=1

Miiε
2
i +

1

n

n∑
i=1

n∑
j=1,j 6=i

εiMijεj

=
1

n

n∑
i=1

MiiE[ε2i |zi] + op (1) =
n−K
n

σ2ε + op(1),

so it suffi ces to show that ε̂′ε̂/n = ε′Mε/n+ op(1).

Lemma 1 and β̂ − β = op(1) imply (β̂ − β)′X ′MX(β̂ − β)/n = op (1), which together

with the Cauchy-Schwarz inequality and ε′Mε/n = Op(1) gives

1

n
(Y −Xβ̂ −G)′M(Y −Xβ̂ −G) =

1

n
ε′Mε+

1

n
(β̂ − β)′X ′MX(β̂ − β)− 1

n
2ε′MX(β̂ − β)

=
1

n
ε′Mε+ op(1).

Similarly, G′MG/n = op (1) together with (Y −Xβ̂ −G)′M(Y −Xβ̂ −G)/n = Op (1) and

the Cauchy-Schwarz inequality gives

1

n
ε̂′ε̂ =

1

n
(Y −Xβ̂)′M(Y −Xβ̂) =

1

n
(Y −Xβ̂ −G)′M(Y −Xβ̂ −G) + op(1).

The conclusion follows by the triangle inequality. �

Appendix B: Extension to Two-step Estimation

The common structure highlighted in Section 2, and later used to study IV models with may

instruments, kernel-based semiparametric estimators and the series-based semiparametric

semi-linear model, can be extended to account for preliminary estimation. This extension,

though conceptually not diffi cult, may be important in series-based sample selection models

as discussed in Newey (2009), or kernel-based estimators as discussed in Aradillas-Lopéz,
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Honoré, and Powell (2007) and Escanciano and Jacho-Chavez (2012). In this appendix we

discuss this extension heuristically, but relegate a formal analysis for future work.

Following the ideas and notation introduced in Section 2, consider a generic estimator

β̂(θ̂) of the parameter β0 = β0(θ0) ∈ Rd. In this appendix, the notation β̂(θ̂) (as opposed to

β̂) makes explicit that the estimator depends on an estimator θ̂ of the unknown “parameter”

θ0 ∈ Θ, not necessarily finite dimensional. As a natural generalization of (2) we then assume

that
√
n(β̂(θ)− β0) = Γ̂n(θ)−1Sn(θ), Sn(θ) =

n∑
i=1

n∑
j=1

unij(Wi,Wj; θ).

The exact form of unij(Wi,Wj; θ) is context specific; unij(Wi,Wj) = unij(Wi,Wj; θ0) in Section

2 and other examples are given in the references above. Suppose, in addition, that the

estimator θ̂ is consistent in the sense that ‖θ̂ − θ0‖ = op(1), where ‖ · ‖ is some context
specific norm (e.g., if Θ ⊆ Rm then ‖ · ‖ will typically be the Euclidean norm).
It follows from the discussion in the paper, that the limiting distribution of

√
n(β̂(θ̂)−β0)

is determined by Sn(θ̂) whenever Γ̂n(θ0)
−1Γn →p Id and Γ̂n(θ0)

−1Γ̂n(θ̂) →p Id. In many

cases, the latter assumption only imposes a consistency requirement (without a rate) on the

estimator θ̂ and is therefore not particularly restrictive. The term Sn(θ̂) can be handled, for

example, by employing the obvious decomposition

Sn(θ̂) = Fn(θ̂) + Sn, Fn(θ) = Sn(θ)− Sn(θ0), Sn = Sn(θ0),

where now the asymptotic distributional approximation for Sn(θ̂) is explained by the first-

step estimation contribution Fn(θ̂), and the “oracle” term Sn already studied in the main

paper.

The additional term Fn(θ̂) may be analyzed in multiple ways. For example, if θ̂ is finite-

dimensional,
√
n-consistent, and some regularity conditions hold (including θ 7→ unij(w1, w2; θ)

suffi ciently “smooth”and well-behaved), then it may be shown that

Fn(θ̂)− Ḟn(θ̂) = op(n
−1/2), Ḟn(θ̂) =

(
n∑
i=1

n∑
j=1

u̇nij(Wi,Wj; θ0)

)(
θ̂ − θ0

)
,

where u̇nij(w1, w2; θ0) is some function. For instance, u̇
n
ij(w1, w2; θ0) = ∂unij(w1, w2; θ0)/∂θ

if θ 7→ unij(w1, w2; θ) is differentiable or, otherwise, u̇
n
ij(w1, w2; θ0) may be obtained using

U-process theory.

The above heuristics lead to the expansion

Sn(θ̂) = Fn(θ̂) + Sn = Υ̂n(θ̂ − θ0) + Sn + op(n
−1/2),
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where

Υ̂n =

n∑
i=1

n∑
j=1

u̇nij(Wi,Wj; θ0).

This illustrates how the discussion given in the main text may be extended to the case of

two-step estimation. Assuming the first-step estimator θ̂ is
√
n-consistent (as will be the

case whenever it is regular), it follows that the first step makes a non-negligible contribution

to the asymptotic distribution unless the “orthogonality”condition Υ̂n = op(n
2) is satisfied.

Formalizing the above ideas is beyond the scope of this paper, but we conjecture it can

be done in fairly large generality, including some cases where θ̂ is infinite dimensional and

(possibly) not
√
n-consistent.
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Figure 1: Lebesgue Densities of Error Terms Distributions.
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Table 1: Simulation Results, Models 1− 2, Gaussian Distribution.

(a) Model 1: Homoskedastic vi

K/n Bias SD RMSE Bias
SD

CI0 CI1 σ̂ s

0.012 0.481 0.040 0.483 11.898 0.000 0.000 0.039 0.039

0.022 0.001 0.045 0.045 0.031 0.947 0.950 0.045 0.045

0.042 0.002 0.047 0.047 0.051 0.939 0.945 0.045 0.046

0.052 0.002 0.046 0.046 0.049 0.940 0.947 0.045 0.046

0.112 0.002 0.047 0.047 0.041 0.936 0.952 0.045 0.048

0.122 0.000 0.048 0.048 0.005 0.935 0.949 0.045 0.048

0.252 0.001 0.052 0.052 0.013 0.907 0.947 0.045 0.052

0.262 0.000 0.052 0.052 −0.008 0.904 0.949 0.045 0.052

0.504 0.000 0.063 0.063 0.003 0.841 0.951 0.045 0.064

0.514 0.000 0.064 0.064 −0.002 0.828 0.947 0.045 0.064

0.524 0.000 0.064 0.064 −0.003 0.827 0.948 0.045 0.065

0.534 0.000 0.066 0.066 −0.003 0.821 0.950 0.045 0.066

0.544 0.001 0.068 0.068 0.010 0.803 0.946 0.045 0.067

0.554 0.000 0.067 0.067 0.004 0.808 0.949 0.045 0.067

(b) Model 2: Heteroskedastic vi

K/n Bias SD RMSE Bias
SD

CI0 CI1 σ̂ s

0.012 0.483 0.046 0.485 10.460 0.000 0.000 0.039 0.040

0.022 0.002 0.045 0.045 0.034 0.949 0.953 0.045 0.046

0.042 0.001 0.046 0.046 0.015 0.946 0.949 0.045 0.046

0.052 0.002 0.046 0.046 0.034 0.947 0.955 0.045 0.046

0.112 0.001 0.049 0.049 0.015 0.932 0.950 0.045 0.048

0.122 0.001 0.049 0.049 0.025 0.929 0.946 0.045 0.049

0.252 0.000 0.052 0.052 0.009 0.914 0.951 0.046 0.053

0.262 0.001 0.053 0.053 0.025 0.915 0.952 0.046 0.054

0.504 0.000 0.068 0.068 0.002 0.827 0.947 0.048 0.068

0.514 0.001 0.068 0.068 0.019 0.829 0.953 0.048 0.068

0.524 0.003 0.068 0.069 0.050 0.824 0.953 0.047 0.069

0.534 0.000 0.070 0.070 0.003 0.819 0.949 0.048 0.070

0.544 0.002 0.070 0.070 0.024 0.819 0.948 0.048 0.071

0.554 0.000 0.074 0.074 −0.004 0.801 0.943 0.048 0.072

Notes:
(i) columns Bias, SD, RMSE and Bias

SD report, respectively, average bias, average standard deviation, root
mean square error, and average standarized bias of the estimator β̂ across simulations;
(ii) columns CI0 and CI1 report empirical coverage for homoskedastic-consistent confidence intervals,
respectively, without and with degrees of freedom correction;
(iii) columns σ̂ and s report the average across simulations of the standard errors estimators, respectively,
without and with degrees of freedom correction.
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Table 2: Simulation Results, Models 3− 4, Asymmetric Distribution.

(a) Model 3: Homoskedastic vi

K/n Bias SD RMSE Bias
SD

CI0 CI1 σ̂ s

0.012 0.481 0.039 0.483 12.486 0.000 0.000 0.038 0.038

0.022 0.002 0.043 0.043 0.040 0.943 0.946 0.042 0.042

0.042 0.001 0.044 0.044 0.032 0.942 0.947 0.042 0.043

0.052 0.001 0.043 0.043 0.023 0.946 0.954 0.042 0.043

0.112 0.001 0.045 0.045 0.023 0.931 0.947 0.042 0.044

0.122 0.002 0.045 0.045 0.036 0.936 0.951 0.042 0.045

0.252 0.001 0.049 0.049 0.013 0.902 0.950 0.042 0.048

0.262 0.001 0.049 0.049 0.013 0.915 0.953 0.042 0.049

0.504 0.000 0.060 0.060 0.001 0.829 0.950 0.042 0.059

0.514 0.000 0.060 0.060 −0.007 0.828 0.948 0.042 0.060

0.524 0.000 0.060 0.060 −0.006 0.830 0.952 0.042 0.061

0.534 0.000 0.061 0.061 −0.001 0.819 0.950 0.042 0.061

0.544 0.000 0.062 0.062 0.000 0.809 0.951 0.042 0.062

0.554 0.001 0.064 0.064 0.009 0.794 0.944 0.042 0.063

(b) Model 4: Heteroskedastic vi

K/n Bias SD RMSE Bias
SD

CI0 CI1 σ̂ s

0.012 0.485 0.046 0.488 10.566 0.000 0.000 0.038 0.038

0.022 0.001 0.042 0.042 0.031 0.947 0.949 0.042 0.043

0.042 0.001 0.043 0.043 0.025 0.946 0.951 0.042 0.043

0.052 0.002 0.044 0.044 0.047 0.937 0.943 0.042 0.043

0.112 0.002 0.045 0.045 0.037 0.933 0.945 0.043 0.045

0.122 0.001 0.046 0.046 0.025 0.929 0.945 0.043 0.046

0.252 0.000 0.050 0.050 −0.004 0.910 0.949 0.043 0.050

0.262 0.001 0.050 0.050 0.020 0.907 0.951 0.043 0.050

0.504 0.000 0.064 0.064 −0.002 0.832 0.947 0.045 0.064

0.514 0.001 0.065 0.065 0.008 0.827 0.948 0.045 0.064

0.524 −0.001 0.065 0.065 −0.015 0.817 0.948 0.045 0.065

0.534 0.001 0.066 0.066 0.013 0.824 0.948 0.045 0.065

0.544 0.000 0.067 0.067 −0.002 0.799 0.951 0.045 0.066

0.554 0.000 0.067 0.067 −0.001 0.811 0.948 0.045 0.067

Notes:
(i) columns Bias, SD, RMSE and Bias

SD report, respectively, average bias, average standard deviation, root
mean square error, and average standarized bias of the estimator β̂ across simulations;
(ii) columns CI0 and CI1 report empirical coverage for homoskedastic-consistent confidence intervals,
respectively, without and with degrees of freedom correction;
(iii) columns σ̂ and s report the average across simulations of the standard errors estimators, respectively,
without and with degrees of freedom correction.
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Table 3: Simulation Results, Models 5− 6, Bimodal Distribution.

(a) Model 5: Homoskedastic vi

K/n Bias SD RMSE Bias
SD

CI0 CI1 σ̂ s

0.012 0.482 0.058 0.486 8.340 0.000 0.000 0.059 0.059

0.022 0.001 0.076 0.076 0.009 0.948 0.950 0.076 0.077

0.042 0.001 0.078 0.078 0.008 0.944 0.948 0.076 0.077

0.052 −0.001 0.078 0.078 −0.010 0.940 0.948 0.076 0.078

0.112 0.002 0.081 0.081 0.026 0.930 0.946 0.076 0.080

0.122 0.001 0.080 0.080 0.018 0.936 0.953 0.076 0.081

0.252 0.002 0.088 0.088 0.026 0.912 0.949 0.076 0.088

0.262 0.001 0.087 0.087 0.008 0.908 0.952 0.076 0.088

0.504 −0.001 0.109 0.109 −0.013 0.827 0.950 0.076 0.108

0.514 0.001 0.108 0.108 0.012 0.832 0.953 0.076 0.109

0.524 0.000 0.110 0.110 0.003 0.825 0.948 0.076 0.110

0.534 −0.004 0.110 0.110 −0.033 0.818 0.950 0.076 0.111

0.544 0.001 0.111 0.111 0.012 0.819 0.949 0.076 0.112

0.554 −0.001 0.111 0.111 −0.006 0.817 0.956 0.076 0.114

(b) Model 6: Heteroskedastic vi

K/n Bias SD RMSE Bias
SD

CI0 CI1 σ̂ s

0.012 0.483 0.062 0.487 7.811 0.000 0.000 0.059 0.060

0.022 0.001 0.077 0.077 0.011 0.945 0.948 0.076 0.077

0.042 0.001 0.077 0.077 0.011 0.945 0.951 0.076 0.078

0.052 −0.001 0.079 0.079 −0.009 0.941 0.948 0.077 0.079

0.112 0.000 0.082 0.082 0.001 0.938 0.954 0.077 0.082

0.122 0.004 0.080 0.080 0.046 0.942 0.955 0.077 0.082

0.252 0.000 0.092 0.092 0.002 0.904 0.946 0.078 0.090

0.262 0.002 0.089 0.089 0.026 0.910 0.957 0.078 0.091

0.504 −0.001 0.117 0.117 −0.005 0.826 0.946 0.080 0.114

0.514 −0.002 0.116 0.116 −0.017 0.828 0.951 0.081 0.116

0.524 0.000 0.118 0.118 0.003 0.821 0.945 0.081 0.117

0.534 0.001 0.118 0.118 0.010 0.815 0.953 0.081 0.119

0.544 0.000 0.119 0.119 −0.003 0.816 0.952 0.081 0.120

0.554 0.000 0.125 0.125 0.001 0.797 0.943 0.081 0.121

Notes:
(i) columns Bias, SD, RMSE and Bias

SD report, respectively, average bias, average standard deviation, root
mean square error, and average standarized bias of the estimator β̂ across simulations;
(ii) columns CI0 and CI1 report empirical coverage for homoskedastic-consistent confidence intervals,
respectively, without and with degrees of freedom correction;
(iii) columns σ̂ and s report the average across simulations of the standard errors estimators, respectively,
without and with degrees of freedom correction.
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