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Abstract

We study the optimal tradeoff between commitment and flexibility in a
consumption-savings model. Individuals expect to receive relevant information
regarding tastes, and thus value the flexibility provided by larger choice sets.
On the other hand, they also expect to suffer from temptation, with or without
self-control, and thus value the commitment afforded by smaller choice sets.
The optimal commitment problem we study is to find the best subset of the in-
dividual’s budget set. This problem leads to a principal-agent formulation. We
find that imposing a minimum level of savings is always a feature of the solution.
Necessary and sufficient conditions are derived for minimum-savings policies to
completely characterize the solution. We also discuss other applications, such
as the design of fiscal constitutions, the problem faced by a paternalist, and
externalities.
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1 Introduction

A commonly articulated justification for government involvement in retirement in-

come is the belief that an important fraction of the population saves inadequately

when left to their own devices (Diamond, 1977). From a worker’s perspective most

pension systems, pay-as-you-go and capitalized systems alike, effectively impose a

minimum-savings requirement. One purpose of this paper is to see if such minimum-

savings policies are optimal in a model where agents suffer from the temptation to

over-consume.

More generally, if people suffer from temptation and self-control problems, what

should be done to help them? Current models emphasizing such problems lead to a

simple but extreme answer: it is optimal to completely remove all future choices. In

particular, in the intertemporal choice framework it is best to commit individuals to

a particular consumption path, removing all future savings choices—full commitment

is optimal. In these models, the desire to commit is simply overwhelming.

Eliminating all ex post choices is unlikely to be a good idea when new information

regarding preferences or other variables is expected to arrive in the future. In these

circumstances, individuals value the flexibility to act on their information. Indeed,

in the absence of temptation or self-control problems maintaining all future sav-

ings choices implements the optimal allocation—full flexibility is optimal and strictly

preferable to full commitment.

This paper studies the design of optimal commitment devices in situations where

eliminating all choices is not necessarily optimal. We introduce a value for flexibility

and study the resulting tradeoff with commitment, defined as the removal of some fu-

ture choices. Our model combines a preference for flexibility and a preference for com-

mitment by introducing taste shocks into both a time-inconsistent quasi-hyperbolic

discounting framework (Phelps and Pollack, 1968; Laibson, 1997) and the tempta-

tion and self-control model of Gul and Pesendorfer (2001). The resulting preferences

belong to a class introduced by Dekel, Lipman, and Rustichini (2001).

The individual we model suffers from temptation for higher present consumption.

Each period a taste shock is realized that affects the individual’s desire for current

versus future consumption.1 Importantly, taste shocks are privately observed by the

individual. If, instead, taste shocks were observable and verifiable by an outside party,

1 Our analysis focuses on taste shocks, but the crucial feature is the arrival of any new information
relevant to the savings decision. Flexibility would also be valuable if one modeled health, employment
and income shocks. As we later show in detail, with constant absolute risk aversion preferences, a
model with income shocks is isomorphic to a model with taste shocks.
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one could simply contract upon them in a way that avoids all temptation and achieves

the unconstrained ex-ante optimum. But when the shocks are private information

only the agent can act upon them, introducing a tradeoff between commitment and

flexibility. Commitment is valued because it reduces temptation, flexibility is valued

because it allows the use of valuable private information.

The optimal commitment problem we study selects a subset of the individual’s

budget set to maximize ex-ante utility, taking into account the ex-post temptation

problem individuals experience facing that set. The commitment problem does not

allow insurance or transfers across taste shocks. Although this restriction is not

without loss of generality, it is a natural starting point for at least three reasons.

First, it is useful to isolate the problem of commitment—defined as a reduction of

choices from the individual’s budget constraint—from the problem of insurance or

redistribution, which is beyond the scope of this paper. Second, individuals may

have access to commitment technologies, such as an illiquid asset, but not insurance

contracts. Thus, it is important to understand what the ideal commitment device, not

featuring insurance, looks like. Finally, the possibility of transferring resources across

different types is simply absent in some reinterpretations of our model discussed in

Section 5.

Commitment devices are valuable in this framework for two distinct reasons. First,

by affecting the allocation toward higher savings, they counteract the overconsump-

tion from temptation. In the time-inconsistent quasi-hyperbolic model this is the

only gain. In addition, in the model with costly self control, commitment devices

may reduce self-control costs of resisting the temptation. We set up the optimal

commitment problem as a principal-agent problem, where the ‘principal’ has the in-

dividual’s ex-ante preferences, and the ‘agent’ has the ex-post preferences.

A very simple commitment device in this setting is a minimum-savings rule, which

restricts individuals to save above some level, allowing complete flexibility otherwise.

Facing such a rule, individuals with low enough taste shocks will be unconstrained,

saving above the imposed minimum; those with high enough taste shocks will be

constrained by the minimum-savings level and as a result they all choose the same

consumption and savings bundle.

Our main result concerns the optimality of such simple commitment devices. We

provide a necessary and sufficient condition on the distribution of taste shocks for

a minimum-savings rule to completely characterize the solution to the commitment

problem. To establish this result it is necessary to ensure two things. First, that it

is not desirable to have individuals consuming strictly below the budget line—that
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‘money burning’ is not optimal. Second, that the best subset of the budget line is

simply all those points above some minimum-savings level.

More generally, we show that the optimal commitment device always shares a key

feature with minimum-savings rules: types above some threshold have the same con-

sumption and savings bundle. This bunching result has a strong economic intuition.

If instead agents at the very top are separated, then they would surely be consuming

more than what the principal would for any taste shock. Thus, at the top there is no

trade-off between commitment and flexibility, and locally no flexibility is provided.

Our analysis is also useful for other applications, quite different from the consump-

tion-savings model we focus on, and we discuss some examples. The first concerns

fiscal constitutional design, where citizens value government spending, but ruling

administrations value it even more. Our results translate to conditions for simple

spending caps to be optimal. Second, we discuss paternalism, whereby a principal

cares about an agent but have some disagreement with the agent’s preferences. Our

results may then be relevant for thinking about minimum-schooling laws. Finally, we

discuss an environment where individuals impose consumption externalities on each

other; a utilitarian planner maximizes average welfare and internalizes these exter-

nalities, but individuals acting privately do not. These examples illustrate how our

results may be applicable to other situations featuring a tradeoff between commitment

and flexibility.

This paper relates to several choice-theoretical papers in the literature. Mod-

els with time-inconsistent preferences solved as a competitive game, as in Strotz

(1956), were the first to formalize a value for commitment. In particular, the hy-

perbolic discounting model has proven useful for modeling the possibility of un-

dersaving and the desirability of commitment devices (Phelps and Pollack, 1968;

Laibson, 1997). In a series of recent papers Gul and Pesendorfer (2001, 2004a,b) and

Dekel, Lipman, and Rustichini (2001, 2004) have provided axiomatic foundations for

preferences that value commitment and have derived useful representation theorems.

Kreps (1979) provided an early axiomatic foundation for a preference for flexibility,

and showed that these preferences can always be represented by including taste shocks

in an expected-utility framework.

Our paper contributes to work on optimal social security design, especially that

which incorporates a concern for possible undersaving by individuals. To the best

of our knowledge, modeling the tradeoff between commitment and flexibility is novel

in this context. For example, Laibson (1998) studies corrective Pigouvian taxation

in a deterministic representative-agent model with quasi-hyperbolic discounting. In-
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terestingly, Krusell, Kuruscu, and Smith (2005) show that linear taxation is not an

effective instrument for resolving the temptation problems faced by agents that have

some self-control. In contrast, the pure commitment mechanisms we consider here

would attain the first-best allocation in these environments; this underscores the im-

portance of modeling a desire for flexibility. On the other hand, with non-degenerate

taste shocks our focus on pure commitment mechanisms, which do not allow for

transfers across types, is restrictive. A natural next step is to incorporate a value for

flexibility (e.g. with taste shocks) while also allowing for transfers.

Other work features similar tradeoffs between some form of commitment and

flexibility. For example, following Holmström (1977, 1984) many papers have ad-

dressed the problem of managerial delegation to a biased but informed agent. Early

work proceeded under various simplifying assumptions: quadratic payoff functions,

a one-dimensional action to be delegated, and restricted the delegation set to be

an interval; recent work has relaxed the latter assumption (Melumad and Shibano,

1991; Martimort and Semenov, 2004). Also related is Athey, Atkeson, and Kehoe

(2005), who emphasize a tradeoff between rules and discretion in the context a time-

inconsistent benevolent government. We believe that our results and methods, which

apply powerful Lagrangian optimization techniques, may prove useful for these and

other applications.

The rest of the paper is organized as follows. Section 2 lays out the basic model

with quasi-hyperbolic preferences. Section 3 studies optimal commitment and derives

the main results. Section 4 extends the results to preferences displaying temptation

and self-control. We discuss other interpretations of our model and applications of

our results in Section 5. The final section concludes.

2 Basic Consumption-Savings Problem

In this section, we introduce the basic consumption-saving setup with time inconsis-

tent preferences. There are two periods and a single consumption good each period.

We denote first and second period consumption by c and k, respectively. Given total

resources y, the consumer is constrained by the budget set B(y) ≡ {(c, k) ∈ R
2
+ |

c+ k ≤ y}, where we have normalized the net interest rate to zero.

In the first period individuals receive a taste shock θ from a bounded set Θ with

distribution function F (θ), normalized so that E[θ] = 1. The taste shock affects the

marginal utility of current consumption: higher θ makes current consumption more
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valuable. Taste shocks are assumed to be the individual’s private information.

We follow Strotz (1956), Phelps and Pollack (1968), Laibson (1997) and others by

modeling the agent in each period as different selves, with different preferences. For

the ensuing games played between selves we consider subgame perfect equilibria as

our solution concept.

The utility for self-1 from periods t = 1, 2 with taste shock θ is then,

θU(c) + βW (k),

where U : R+ → R and W : R+ → R are increasing, concave and continuously

differentiable, and 0 < β ≤ 1. Utility for self-0 from periods t = 1, 2 is given by:

E [θU(c) +W (k)] .

This setup represents a two-period version of quasi-geometric discounting. We asso-

ciate 1 − β with the strength of temptation towards present consumption.

There is disagreement among the different selves on discounting but agreement re-

garding taste shocks. The tension is between tailoring consumption to the taste shock

and self-1 ’s constant desire for higher current consumption. This tension generates

the tradeoff between commitment and flexibility from the point of view of self-0. In-

deed, this is the central feature of the model, which can be reinterpreted and applied

to other situations with similar tradeoffs (see Section 5).

The taste shock distribution can be interpreted in two ways. Under an objec-

tive interpretation, it represents the actual probability distribution over ex post or-

dinal preferences. Under a subjective interpretation, in contrast, the distribution

encompasses both subjective probability assessments on ordinal preferences and the

cardinality from state-dependent utility.

Taste shocks are a tractable way of introducing a value for flexibility and may also

capture the significant variation in consumption and savings behavior observed in the

data, after conditioning on all available variables. Other shocks, such as unobservable

income or health, can also generate a value for flexibility. Indeed, a model with

privately observed income shocks is equivalent to the model with privately observed

taste shocks when the utility function is exponential. We discuss such equivalence in

subsection 5.4.

A useful benchmark allocation is the ex-ante first-best allocation, (cfb(θ), kfb(θ)),

defined by the solution to max(c,k)∈B(y){θU(c) + W (k)}. This allocation would be
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feasible if taste shocks were not private information and were contractible. Another

benchmark allocation is that obtained with full flexibility or no commitment: self-1 is

constrained only by the resource constraint and solves max(c,k)∈B(y) [θU(c) + βW (k)].

We denote the unique solution to this problem by (cf (θ), kf (θ)).

3 Optimal Commitment without Self-Control

Commitment entails reducing the set of available choices. The optimal commit-

ment problem is to choose a subset C ⊂ B(y) of the budget set that maximizes

the expected utility of self-0 given that choices are in the hands of self-1, that

is, that the allocation is the outcome of a subgame perfect equilibrium. Formally,

we choose C ∈ B(y) so as to maximize
∫

[θU(c(θ)) + W (k(θ))]dF (θ) subject to

c(θ), k(θ) ∈ arg max(c,k)∈C(θU(c) + βW (k)).

Finding the best subset C is equivalent to the following principal-agent problem

directly over allocations c(θ) and k(θ):

max
c, k

∫

[θU(c(θ)) +W (k(θ))] dF (θ)

subject to

θU(c(θ)) + βW (k(θ)) ≥ θU (c (θ′)) + βW (k (θ′)) for all θ, θ′ ∈ Θ (1)

c(θ) + k(θ) ≤ y for all θ ∈ Θ (2)

Given total resources y, the problem is to maximize expected utility from the point

of view of self-0 (henceforth: the principal) subject to the constraint that θ is private

information of self-1 (henceforth: the agent). The incentive compatibility constraint

(1) ensures that the agent reports the shock truthfully.2

2 Several recent papers study principal-agent problems where the agents have non-standard
preferences. For example, Della-Vigna and Malmendier (2004), Eliaz and Spiegler (2004),
Esteban and Miyagawa (2005), and Sarafidis (2005) study optimal non-linear pricing contracting
problems with agents that suffer from time inconsistency or self-control problems; none of these
papers examine the design of optimal commitment devices as in this paper. Some authors have
studied the problem of commitment through the manipulation of information or memory instead of
explicit contracts (e.g. Carrillo and Mariotti, 2000; Benabou and Tirole, 2002).
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3.1 Two and Three Types

We begin by studying the optimal commitment problem with only two taste shocks

and then turn to the case with a continuum. When taste shocks take only two possible

values the optimum can be fully characterized as follows.

Proposition 1. Suppose Θ = {θl, θh}, with θl < θh. There exists a β∗ ∈ (θl/θh, 1)

such that for β ∈ [β∗, 1] the first-best allocation is implementable. Otherwise,

(i) if β ≥ θl/θh separation is optimal, i.e. c∗ (θh) > c∗ (θl) and k∗ (θh) < k∗ (θl),

(ii) if β ≤ θl/θh bunching is optimal, i.e. c∗ (θl) = c∗ (θh) and k∗ (θl) = k∗ (θh),

In both cases, the optimum can be attained without burning money: c∗(θ) + k∗(θ) = y

for θ = θh, θl.

Proof. In the Appendix. Q.E.D.

The result that the first-best allocation is incentive compatible for low enough

levels of temptation relies on the discrete difference in taste shocks and does not hold

with a continuum of shocks. For higher temptation the first-best allocation is no

longer incentive compatible and the proposition shows that the solution takes one of

two forms. For intermediate levels of temptation it is optimal to separate the agents.

To achieve separation the principal must offer bundles that yield to the agent’s ex-post

desire for higher consumption, giving them higher consumption in the first period than

the first-best. For high enough temptation, however, separating the agents requires

too much first-period consumption, and bunching both types becomes preferable.

Bunching resolves the commitment problem at the expense of flexibility. The optimal

amount of flexibility depends negatively on the degree of disagreement relative to

the dispersion of taste shocks. The proposition also shows that the optimum can be

attained on the frontier of the budget set, so that ‘money burning’ is not required.

Unfortunately, with more than two types, extending these conclusions is not

straightforward. For example, consider three taste shocks, θl < θm < θh, with re-

spective probabilities pl, pm and ph. In this case bunching may occur between any

consecutive pair of shocks. Money burning for the middle type may be optimal if pm

is small enough and β ∈ (β∗, θl/θm), where β∗ is as defined by the proposition above

with two types, θl and θh. This captures the intuition that if the middle shock occurs

with very low probability, money burning is not very costly and might be preferable

for incentive purposes. If β /∈ (β∗, θl/θm) money burning is never optimal for small
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enough pm. However, we have found numerically that when β < β∗ money burn-

ing may be optimal for an intermediate range of pm.3 These results help illustrate

that money burning is a possible feature of the solution and that conditions on the

distribution are required to rule it out.

3.2 Continuous Distribution of Types

For the rest of the paper we assume that the distribution of types is represented by

a continuous density f(θ) over the bounded interval Θ ≡ [θ, θ]. It is convenient to

change variables from (c(θ), k(θ)) to (u(θ), w(θ)) where u(θ) ≡ U(c(θ)) and w(θ) ≡

W (k(θ)), and we term either pair of functions an allocation. Let C ≡ U−1 and

K ≡ W−1, which are then increasing and convex functions.

We now characterize the incentive compatibility constraints (1). Facing a direct

mechanism given by (u(θ), w(θ)), an agent with taste shock θ maximizes over the

report and obtains utility V (θ) ≡ maxθ′∈Θ{(θ/β)u(θ′) + w(θ′)}. If truth-telling is

optimal then V (θ) = (θ/β)u(θ)+w(θ), by integrating the envelope condition V ′(θ) =

u(θ)/β one obtains the standard integral condition

θ

β
u(θ) + w(θ) =

∫ θ

θ

1

β
u(θ̃)dθ̃ +

θ

β
u(θ) + w(θ) (3)

Incentive compatibility of (u,w) also requires u to be a non-decreasing function of

θ: agents that are more eager for current consumption cannot consume less. Thus,

condition (3) and the monotonicity of u are necessary for incentive compatibility. As

is standard, these two conditions are also sufficient.

The principal’s problem is thus to maximize
∫ θ

θ
(θu(θ) + w(θ)) f(θ)dθ subject to

the budget constraint C (u(θ))+K (w(θ)) ≤ y, the incentive compatibility constraint

(3), and monotonicity u (θ′) ≥ u(θ) for θ′ ≥ θ. Note that this problem is convex since

the objective function is linear and the constraint set is convex.

Substituting the incentive compatibility constraint (3) into the objective function

and the resource constraint and integrating by parts allows us to simplify the problem

by dropping the function w(θ), except for its value at θ. Consequently, the principal’s

problem reduces to finding a function u : Θ → R and a scalar w that solves: 4

3 More precise statements and proofs of these results are available in an online supplementary
document.

4The objective function and the left-hand side of the constraint are well defined for all (w, u) ∈ Φ
since monotonic functions are integrable and the product of two integrable functions, 1 − G(θ) and
u(θ), is integrable (Rudin, 1976, Theorem 6.9 and 6.13).
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max
w,u∈Φ

{

θ

β
u(θ) + w +

1

β

∫ θ̄

θ

(1 −G(θ))u(θ)dθ

}

(4)

W (y − C (u(θ))) +
θ

β
u(θ) −

θ

β
u (θ) − w −

1

β

∫ θ

θ

u(θ̃)dθ̃ ≥ 0 for all θ ∈ Θ (5)

where Φ = {w, u | w ∈W (R+) , u : Θ → U(R+) and u is non-decreasing} and

G(θ) ≡ F (θ) + θ (1 − β) f(θ).

Any allocation (w, u) ∈ Φ uniquely determines an incentive compatible direct

mechanism using (3). An allocation (w, u) is feasible if (w, u) ∈ Φ and the budget

constraint (5) holds.

3.3 Minimum-Savings

This section shows that minimum-savings rules are necessarily part of the optimum.

Bunching at the top can be achieved by removing bundles previously offered for

types above θ̂, who then move to the bundle of θ̂ , which is the one still available.

That is, for any feasible allocation (w, u) and θ̂ ∈ Θ, take the allocation (w, û) given

by û(θ) = u(θ) for θ < θ̂, and û(θ) = u(θ̂) for θ ≥ θ̂ . Thus, bunching the upper tail

is always feasible; we now show that it is also always optimal.

Proposition 2. An optimal allocation (w, u∗) satisfies u∗(θ) = u∗ (θp) for θ ≥ θp,

where θp is the lowest value in Θ such that

∫ θ̄

θ̂

(

1 −G(θ̃)
)

dθ̃ ≤ 0

for θ̂ ≥ θp. It is optimal for the budget constraint (5) to hold with equality at θp.

Proof. The contribution to the objective function from types with θ ≥ θp is (1/β)
∫ θ̄

θp

(1−

G(θ))u(θ)dθ. Substituting u =
∫ θ

θp

du+ u (θp) and integrating by parts we obtain,

u (θp)
1

β

∫ θ̄

θp

(1 −G(θ)) dθ +
1

β

∫ θ̄

θp

∫ θ̄

θ

(

1 −G(θ̃)
)

dθ̃du. (6)

Note that, for the second term,
∫ θ̄

θ

(

1−G(θ̃)
)

dθ̃ ≤ 0 for all θ ≥ θp . It follows that it

is optimal to set du = 0, or equivalently u(θ) = u (θp) for θ ≥ θp.
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When θp = θ, all types are pooled at the same bundle and it is clearly not optimal

to be in the interior of the budget set. If θp is interior then the first term in 6 is

zero, so u (θp) can always be increased up to the point where the budget constraint

binds without affecting the objective function. Thus, it is optimal not to have money

burning at θp. Q.E.D.

This result states that, for any bounded distribution of taste shocks, a positive

mass of upper agents gets the same bundle of consumption and savings, which lies on

the budget line. A minimum-savings rule that binds for some types has the property

that top types are bunched. Thus, this section of the allocation can be implemented

by a minimum-savings rule that is binding for precisely these agents. It follows that,

minimum-savings are necessarily part of the optimum.

To gain some intuition for this result, note that self-1 with taste shock θ ≤ βθ̄

shares the preferences of self-0 with a higher taste shock, equal to θ/β. That is, the

indifference curves of θu+βw and (θ/β)u+w are equivalent. Informally, these types

can make a case for their preferences. In contrast, self-1 types with θ > βθ̄ display a

blatant desire for current consumption from self-0 ’s point of view. That is, there is

no possible taste shock for self-0 that justifies self-1 ’s preferences. Separating such

types requires consumption to increase with θ, but this cannot be optimal since they

are overconsuming from self-0 ’s point of view. Thus, these agents should be bunched.

In other words, at the very top of the distribution, for θ ≥ βθ̄, there is no trade-off

between commitment and flexibility. The Lemma shows that bunching goes further,

that in the neighborhood of βθ̄ the value of commitment continues to dominate that

of flexibility: θp < βθ̄.5

3.4 Simple Minimum-Savings Policies

We showed above that minimum-savings are necessarily part of the optimum. We now

investigate whether minimum-savings policies may fully characterize the optimum.

The results with discrete types suggest the need for some condition on the distribution

of taste shocks. The following condition turns out to be exactly what is needed.

5 The assumption that taste shocks are bounded above, equivalent to assuming that consumption
in the second period is bounded away from zero under full flexibility, ensures that θp is well defined.
For distributions with unbounded support θp may not be well defined, and full flexibility may be
optimal. For example, with a Pareto distribution F (θ) = 1 − (b/θ)

α
for x ≥ b implying G(θ) =

1 + ((1 − β) a − 1) (b/θ)
α
. For α ≥ (1 − β)

−1
one obtains that θp = b so it is optimal to pool all

agents. However, for α < (1 − β)
−1

there is no solution to θp and, it turns out, it is optimal to
provide full flexibility.
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Assumption A. G(θ) ≡ (1 − β) θf(θ) + F (θ) is increasing for all θ ≤ θp.

When the density f is differentiable Assumption A is equivalent to a lower bound

on its elasticity

θ
f ′(θ)

f(θ)
≥ −

2 − β

1 − β
.

The lower bound is negative and continuously decreasing in β. The condition is

satisfied for any density f with θf ′/f bounded below when β is close enough to 1.

Moreover, many densities satisfy this condition for all β ∈ [0, 1]. For example, it is

trivially satisfied for all density functions that are non-decreasing, and holds for the

exponential distribution, the log-normal, and the Pareto and Gamma distributions

for a subset of their parameters.

It is important to recall the two possible interpretations for taste shocks when con-

sidering Assumption A. Given the state-dependent utility function, θU(c) + βW (k),

an objective interpretation of the distribution of shocks, F (θ), implies that it can be

identified from ex-post behavior. For example, if individuals have full flexibility and

choose freely along the budget constraint, the observed distribution of consumption

and savings choices, cf (θ) and kf (θ), identifies the distribution of taste shocks, given

the utility functions and the temptation parameter. In contrast, under a subjective

interpretation information regarding taste shocks must be elicited directly ex-ante

from the individual, which is likely to be empirically more challenging.

Our next result shows that under Assumption A agents with θ ≤ θp are offered

their ex post unconstrained optimum from the budget line, and agents with θ ≥ θp

are bunched at the unconstrained optimum for θp. That is, the optimal mechanism

offers the whole budget line to the left of the point (cf (θp), k
f (θp)) and corresponds

to a simple minimum-savings rule that imposes k ≥ kf (θp). Denote the proposed

allocation in terms of utility assignments by (w∗, u∗), with w∗ = W (kf (θ)), u∗(θ) =

U
(

cf (θ)
)

for θ ≤ θp and u∗(θ) = U(cf (θp)) for θ > θp.

We next show that this simple allocation is optimal if and only if Assumption A

holds. Our strategy involves applying Lagrangian theorems, which require verifying

that our problem is sufficiently convex and differentiable. Once this is established

the argument is simple: we impose the necessary and sufficient first-order conditions

at the conjectured allocation and back out the implied Lagrangian multipliers; the

required non-negativity of these multipliers turns out to be equivalent to Assumption
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A.6,7

Define the Lagrangian function as

L (w, u|Λ) ≡
θ

β
u (θ) + w +

1

β

∫ θ̄

θ

(1 −G(θ))u(θ)dθ

+

∫ θ̄

θ

(

W (y − C (u(θ))) +
θ

β
u(θ) −

(

θ

β
u(θ) + w

)

−

∫ θ

θ

1

β
u(θ̃)dθ̃

)

dΛ(θ),

where the function Λ is the Lagrange multiplier associated with the incentive compat-

ibility constraint.8 Without loss of generality we set Λ
(

θ̄
)

= 1. Note that we do not

need to incorporate the monotonicity into the Lagrangian. Instead, we work directly

with Φ, which includes the monotonicity condition. Integrating the Lagrangian by

parts yields:

L (w, u|Λ) =

(

θ

β
u (θ) + w

)

Λ (θ) +
1

β

∫ θ̄

θ

(Λ(θ) −G(θ))u(θ)dθ

+

∫ θ̄

θ

(

W (y − C (u(θ))) +
θ

β
u(θ)

)

dΛ(θ).

The next lemma exploits the convexity of the problem to show that appropriate

first-order conditions are necessary and sufficient for optimality.

Lemma of Optimality. (i) If an allocation
(

w0, u0

)

∈ Φ is optimal with u0 continu-

ous then there exists a non-decreasing Λ0 such that the following first-order conditions

6 One virtue of this approach is that we do not need to restrict the maximization with ad hoc
‘technical conditions’ such as piecewise differentiability or continuity.

7 Our approach allows us to incorporate the monotonicity condition implied by incentive com-
patibility directly. It differs from the common approach of neglecting monotonicity and trying to
guarantee that the solution to the relaxed problem turns out to be monotone.

8 Intuitively, the Lagrange multiplier Λ can be thought of as a cumulative distribution function
that determines the importance of the resource constraints. If Λ is representable by a density λ ,
then the constraints can be incorporated as the familiar integral of the product with the density
function λ(θ). Although this is a common approach, in general, Λ may have points of discontinuity.
Indeed, the multiplier we construct has two points of discontinuity.
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in terms of Gateaux differentials:9

∂L
(

w0, u0;w0, u0|Λ0

)

= 0 (7)

∂L
(

w0, u0;hw, hu|Λ0

)

≤ 0 (8)

hold for all (hw, hu) ∈ Φ and hu continuous.

(ii) Conversely, if there exists a non-decreasing Λ0 such that the first-order con-

ditions (7) and (8) hold, for all (hw, hu) ∈ Φ, then (u0, w0) is optimal.

Proof. See appendix. Q.E.D.

Using the second expression for the Lagrangian the Gateaux differential at the

proposed allocation (w∗, u∗) is given by:

∂L (w, u;hw, hu|Λ) =

(

θ

β
hu (θ) + hw

)

Λ (θ) +
1

β

∫ θ̄

θ

(Λ(θ) −G(θ))hu(θ)dθ

+
θp

β

∫ θ̄

θp

(

θ

θp

− 1

)

hudΛ(θ) (9)

for all (hw, hu) ∈ Φ. The next proposition uses this Lemma to prove that a minimum-

savings rule is the optimum under Assumption A.

Proposition 3. The minimum-savings allocation (w∗, u∗) is optimal if Assumption A

holds.

Proof. We show that there exists a non-decreasing multiplier Λ∗ such that the pro-

posed (w∗, u∗) satisfies the first-order conditions (7) and (8) for all (hw, hu) ∈ Φ. Let

Λ∗ (θ) = 0, Λ∗(θ) = G(θ) for (θ, θp], and Λ∗(θ) = 1 for θ ∈
(

θp, θ̄
]

. Note that Λ∗ is

not continuous; it has an upward jump at θ and a jump at θp. We need to show that

the jump at θp is upward. Indeed,

lim
θ↓θp

Λ∗(θ) − Λ∗ (θp) = 1 −G (θp) ≥ 0,

9 Given a function T : Ω → Y , where Ω ⊂ X and X and Y are normed spaces, if for x ∈ Ω and
h ∈ X the limit

lim
α↓0

1

α
[T (x + αh) − T (x)]

exists, then it is called the Gateaux differential at x with direction h and is denoted by ∂T (x;h).
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which follows from the definition of θp. To see this, note that if θp = θ the result

is immediate since then Λ∗ would jump from 0 to 1 at θ. Otherwise, by definition

θp is the lowest θ̂ such that
∫ θ̄

θ̂

(

1 −G
(

θ̃
))

dθ̃ ≤ 0 for all θ ≥ θ̂, which implies that

1 −G (θp) ≥ 0.

Substituting the proposed multiplier Λ∗ into the Gateaux differential (9),

∂L (w, u;hw, hu|Λ
∗) =

1

β

∫ θ̄

θp

(1 −G(θ))hu(θ)dθ =
1

β

∫ θ̄

θp

[

∫ θ̄

θ

(1 −G(θ̃))dθ̃

]

dhu(θ),

where the last equality follows by integrating by parts, which can be done given the

monotonicity of hu and by the definition of θp. This Gateaux differential is zero at

the proposed allocation, and by the definition of θp it is non-positive for all hu non-

decreasing. It follows that the first-order conditions (7) and (8) are satisfied for all

(hw, hu) ∈ Φ. Q.E.D.

Proposition 3 shows that the optimal allocation can be very simple and imple-

mented by imposing a minimum level of savings. The next proposition shows that

more complicated schemes are optimal if Assumption A does not hold.

Proposition 4. If Assumption A does not hold, then no minimum-savings rule is

optimal.

Proof. Let [a, b] ⊂ [θ, θp), with a < b, be an interval where G is strictly decreasing

(Assumption A does not hold). Let (ŵ, û) |xp
be a minimum-savings allocation indexed

by xp : û(θ) = uf (θ) for θ < xp; û(θ) = uf (x) for θ ≥ xp, and ŵ = wf (θ). So, xp

denotes the proposed bunching point.

The proof proceeds by contradiction. Suppose that (ŵ, û) |xp
is optimal for some

xp. Then by part (i) of the Lemma of Optimality, there has to exist a non-decreasing

Lagrange multiplier Λ̂ such that the conditions for optimality (8) and (7) are satisfied

at the proposed allocation for all (hw, hu) ∈ Φ and hu continuous. Condition (8)

with hu = 0 requires that Λ̂ (θ) = 0 since hw is unrestricted. Using Λ̂ (θ) = 0 and

integrating (9) by parts (Theorem 6.20 in Rudin, 1976, guarantees this step given

that hu continuous) leads to:

∂L
(

ŵ, û;hw, hu|Λ̂
)

= γ (θ)hu (θ) +

∫ θ̄

θ

γ(θ)dhu(θ), (10)
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with

γ(θ) ≡
1

β

∫ θ̄

θ

(Λ̂(θ̃) −G(θ̃))dθ̃ +
xp

β

∫ θ̄

max{θ,xp}

(

θ̃

xp

− 1

)

dΛ̂(θ̃);

where by condition (8) it follows that γ(θ) ≤ 0 for all θ ∈ Θ,is necessary for optimality.

Then (7) implies that γ(θ) = 0 for θ ∈ [θ, xp], i.e. wherever û is strictly increasing.

It follows then that Λ̂(θ) = G(θ) for all θ ∈ (θ, xp]. The proposed allocation (ŵ, û)

thus determines a unique candidate multiplier Λ̂ in the separating region (θ, xp]. This

implies that xp ≤ a, otherwise, and the associated multiplier Λ̂(θ), which is equal to

G in the separating region, would be decreasing for θ ∈ [a,min {xp, b}]. Integrating

by parts the second term of the γ equation we obtain:

γ (xp) =
1

β

∫ θ̄

xp

(1 −G(θ̃))dθ̃,

which is independent of the choice of the multiplier Λ̂. But for any xp ≤ a < θp, we

have that γ (xp) > 0 by the definition of θp, contradicting a necessary condition for

optimality. Hence no minimum-savings rule is optimal. Q.E.D.

The minimum-savings allocations in both propositions do not entail money burn-

ing. Recall that with three types money burning may be optimal. A situation with

three types can be approximated by continuous types taking a sequence of continuous

densities becoming increasingly peaked around θl, θm and θh. However, the distribu-

tions in the sequence would eventually violate Assumption A, which requires a density

with bounded slope. Thus, with continuous distributions that violate Assumption A

money burning may be optimal.

Even if one restricts attention to allocations that do not involve money burning, an

improvement over the minimum-savings policy can be constructed by removing inter-

vals in the separating regions wherever the monotonicity condition in Assumption A

fails.10 Since the resulting allocation does not involve money burning it illustrates

that the proposition does more than rule such allocations out.

This construction also yields intuition into Assumption A, for suppose it’s con-

dition is not satisfied for θa < θ < θb ≤ θp. When one removes the open interval

between cf (θa) and cf (θb) all types with θ ∈ (θa, θb) move from their unconstrained

optimum to one of the two extremes, cf (θa) or cf (θb). The change in welfare de-

pends critically on how many of such types moved to the left versus the right, since

10 A formal statement and proof of this “drilling” result is contained in the supplementary material.
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welfare rises from those moving left and falls from those moving right. The slope of

the density function affects precisely this, explaining its role in Assumption A.

Taken together, the previous two propositions imply that minimum-savings poli-

cies completely characterize the optimum if and only if the distribution of taste shocks

satisfies Assumption A, which is the case for a wide class of distributions. Recall that

for low enough levels of temptation, for β close to 1, Assumption A is satisfied for

essentially all distributions. In this sense, simple minimum-savings policies are espe-

cially likely to be optimal for modest levels of temptation.11

Our result is also relevant for thinking about the market’s provision of commitment

devices. Indeed, simple market arrangements may be able to mimic the optimal one.

Under Assumption A, the optimal allocation can be implemented with the use of a

particular form of illiquid asset. Suppose the consumer initially divides his wealth

between two assets: liquid and illiquid. Both assets have the same rate of return, but

funds invested in the illiquid asset cannot be used for consumption at t = 1, they

can only be consumed at t = 2. Thus, investing in the illiquid asset represents a

self-imposed minimum level of savings, and in this way the individual can implement

the optimal allocation.

In an earlier version of this paper (Amador, Werning, and Angeletos, 2003) we

show that all our results extend to finitely many periods with i.i.d. taste shocks.

By using a dynamic programming argument each stage is similar to the two-period

problem in (4)–(5). Minimum-savings are always part of the solution, and a simple

minimum-savings policy completely characterizes the solution if and only if Assump-

tion A holds. This result establishes that the commitment afforded by the illiquid

asset structure studied by Laibson (1997) may in fact be fully optimal.

We turn next to comparative statics with respect to the strengh of temptation.

As the strength increases, so that β decreases, θp decreases so more types are bunched

and the minimum-savings level increases.

Proposition 5. The bunching point θp increases with β. The minimum-savings level,

kmin = y − C (u (θp)), decreases with β.

Proof. That θp is weakly increasing follows directly from its definition. To see that

kmin is decreasing note that it solves (θp/β)U ′ (y − kmin) /W
′ (kmin) = 1, and that an

11 Of course, for small levels of temptation the minimum-savings level will also be small, since θp

converges to θ̄ as β → 1.
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interior θp solves θp/β = E [θ | θ ≥ θp]. Combining these we obtain

E [θ|θ ≥ θp]
U ′ (y − kmin)

W ′ (kmin)
= 1

Since E [θ | θ ≥ θp] is increasing in θp, the result follows from the concavity of U

and W . Q.E.D.

4 Optimal Commitment with Self-Control

In this section we study an individual facing temptation, but with some power of

self-control. This model captures the idea that individuals may partially resist temp-

tations, but that it is costly to do so. In this framework commitment devices are

valuable not only because they affect equilibrium behavior, but also because they

may reduce the costs of exerting self-control.

Dekel, Lipman, and Rustichini (2001, 2004) and Gul and Pesendorfer (2001) con-

sider ex ante preferences defined over choice sets made available to the agent ex post.

Our specification for the ex ante utility of set C is

P (C) = E[ max
(c,k)∈C

(θU(c) +W (k) + ϕ (θU(c) + βW (k)))

− ϕ max
(c,k)∈C

(θU(c) + βW (k))], (11)

which is adopted from Krusell, Kuruscu, and Smith (2005). The parameter ϕ > 0

captures the cost of self-control, while (1−β) captures the strength of the temptation

to consume in the current period. This specification has the convenient property

that as ϕ→ ∞ preferences converge to the quasi-hyperbolic model. Indeed, we shall

show that slightly modified versions of our previous results and analysis from the

quasi-hyperbolic case apply here.

Up to this point we have allowed only the taste shock θ to be uncertain. We

now pursue a generalization, allowing the levels of temptation and self-control costs

to be uncertain as well. There are two motivations for such a generalization. First,

in a recent paper Dekel, Lipman, and Rustichini (2004) provide natural examples

illustrating the need for uncertain temptation and provide axiomatic foundations for

it. Second, the generalization also allows us to capture the commonly held view that

differences in savings may be partly due to differences in temptation or self-control

costs (Diamond, 1977). We assume θ, β and ϕ are drawn from a continuous joint
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distribution over some bounded rectangular support
[

θ, θ̄
]

×[β, β̄]×[ϕ, ϕ̄] where β > 0.

The optimal commitment problem can be stated as maximizing P (C) by choosing

a subset C ⊂ B(y) where B(y) = {(c, k) | c + k ≤ y} is the budget constraint. As

before, we seek to rewrite this as a principal-agent problem. The objective function

in (11) can be written as:

E {(1 + βϕ) max
υ,ω∈C

[(θ/β̂)υ + ω] − ϕβ max
υ,ω∈C

[(θ/β)υ + ω]},

where we let β̂ be (1 + βϕ) / (1 + ϕ). Define the random variables ẑ and z by ẑ ≡ θ/β̂

and z ≡ θ/β, and let the extended support Θ̂ be the union of the supports for z and

ẑ, so that Θ̂ ≡ [x, x̄] ≡ [θ(1 + φ)/(1 + βφ), θ̄/β]. Let an allocation over the extended

support Θ̂ be given by a pair of functions u : Θ̂ → U (R+) and w : Θ̂ → W (R+).

The principal-agent formulation of the commitment problem is to find an alloca-

tion that maximizes

E [(1 + βϕ) (ẑu(ẑ) + w(ẑ) − βϕ(zu(z) + w(z))] (12)

subject to C (u (x)) +K(w(x)) ≤ y and

(u(x), w(x)) ∈ arg max
υ,ω∈C

[xυ + ω] (13)

for all x ∈ Θ̂.

Let α (x) ≡ E [(1 + βϕ) | ẑ = x], and κ (x) ≡ E [βϕ | z = x]. Denote by h1 (ẑ) and

h2 (z) the densities of ẑ and z, respectively. By the law of iterated expectations, we

have that the new objective function (12) can be written as

∫

Θ̂

(xu(x) + w(x))ĝ (x) dx, (14)

where the density ĝ (x) ≡ α (x)h1 (x)− κ (x)h2 (x) can be negative or positive. This

alternative expression for the utility function (11) corresponds to the signed measure

representation theorem by Dekel, Lipman, and Rustichini (2001).

The incentive compatibility constraints (13) are equivalent, as before, to

xu (x) + w (x) = xu (x) + w +

∫ x

x

u (x′) dx′ (15)

with the associated monotonicity constraint. We can now substitute (15) into the
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objective function (14) and the resource constraints. Let Ĝ (x) =
∫ x
ĝ (z) dz (where

Ĝ (x̄) = 1 ). Integrating the objective function by parts then yields the following

program:

max
(w,u(·))∈Φ̂

{

xu (x) + w +

∫

Θ̂

[1 − Ĝ (x)]u (x) dx

}

(16)

subject to

W (y − C (u (x))) + xu (x) − xu (x) − w −

∫ x

x

u(x′)dx′ ≥ 0, (17)

where Φ̂ ≡ {w, u |w ∈W (R+) , u : Θ̂ → U (R+) and u is non-decreasing}.

With the problem mapped into a version that is formally equivalent to the problem

(4)–(5) the following propositions are direct translations of our previous results.

Proposition 6. An optimal allocation (w∗, u∗) satisfies u∗ (x) = u∗ (xp) for x ≥ xp

where xp is the lowest value in Θ̂ such that

∫

x̂

(1 − Ĝ (x))dx ≤ 0

for all x̂ ≥ xp. It is optimal for the budget constraint to hold with equality at xp.

Define the full flexibility allocation as uf (x), wf (x) ∈ arg maxu,w {xu+ w} subject

to C (u) + K (w) ≤ y. Let the proposed allocation be given by w = wf (x), and

u∗ (x) = uf (x) if x < xp and u∗ (x) = uf (xp) if x ≥ xp. We introduce the following

assumption analogous to that of Assumption A:

Assumption B. Ĝ (x) is non-decreasing for all x ≤ xp.

The next proposition states that minimum-savings rules are optimal under as-

sumption B.

Proposition 7. The allocation (w∗, u∗) is optimal if assumption B holds. If assump-

tion B does not hold, no minimum-savings rule is optimal.

Proof. The proof of the first statement is identical to that in Proposition 3, except

that the multiplier Λ does not jump at the bottom x (because here Ĝ (x) is zero at

x). The second statement follows the proof of Proposition 4. Q.E.D.

We now discuss two results that obtain when the strength of temptation and

the self-control costs are not random. We first connect the condition behind As-

sumption A, from Section 3, with Assumption B; it shows that relative to the time-

inconsistent quasi-hyperbolic model, the possibility of self-control strengthens the
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case for minimum-savings policies to characterize the full optimum. The second re-

sult shows that, as is natural, higher temptation and lower self-control costs raise the

minimum-savings level, increasing commitment at the expense of flexibility. Proofs

for both results are contained in the appendix.

Proposition 8 (A⇒ B). When β and ϕ are certain, assumption B holds if G(θ) is

non-decreasing on [θ, β̂xp].

Proposition 9. The bunching point xp increases and the minimum savings decreases

with β and decreases with ϕ.

5 Other Applications

In this section we discuss applications of our results to other situations distinct from

the intertemporal consumption model, but that also feature a tradeoff between com-

mitment and flexibility. The last subsection, extends the bunching at the top result

to utility functions that are not additively separable.

5.1 Optimal Fiscal Constitutions

Consider an economy where a ruling government decides the allocation of resources

between private and public consumption. Ex post, the government obtains valuable

information regarding the social value of public services, but is biased towards higher

public spending. Ex ante society faces the constitutional problem of restricting the

fiscal choices available to its government.

The welfare of the citizens is given by θU(g)+W (c), where c denotes private con-

sumption and g public services. The government, on the other hand, wishes to max-

imize β−1θU(g) +W (c), where β−1 > 1 parameterizes the government’s bias towards

public spending. The realization of the value of public services θ is private informa-

tion of the government. The resource constraint is B (y) =
{

(c, g) ∈ R
2
+ | c+ g ≤ y

}

.

A fiscal constitution is a subset C ⊆ B (y), that constrains the government to choose

(c, g) ∈ C to maximize its objective.

Note that our restriction to pure commitment mechanisms, with no transfers

across types, seems especially natural in this application. The optimal constitution

is a subset C that maximizes society’s welfare given the (mis)behavior of the govern-

ment. Proposition 2 shows that it is always optimal to limit government spending.
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Proposition 3 implies that, under Assumption A, only an upper cap on government

spending is needed.

5.2 Optimal Paternalism

Few would argue that parents are not, at times, literally paternalistic towards their

children. Much government regulation—such as minimum schooling laws, drinking

and drug restrictions or prohibitions, etc—is also largely justified on paternalistic

grounds. Paternalism involves disagreement regarding preferences between individ-

uals, instead of within an individual as is the case with temptation. However, the

crucial feature in our model is a form of disagreement, but not any particular source

for this disagreement. Consequently, our results can be applied to some paternalistic

situations as well.

As an example, consider the case of a child who must divide time between school-

ing, s, and leisure, l, constrained by a time endowment, s + l ≤ 1. The child has

utility function θU (l) + βW (s) with β < 1. The parameter θ affects the marginal

valuation of leisure and is the child’s private information. The paternalist—parent or

government—cares about the child but has a different preference over his allocation

of time and maximizes θU(l) +W (s); she values schooling relatively more than the

child does.

This setup focuses on the time allocation dimension for which pure commitment

mechanisms that rule out transfers across types are natural. The problem faced by

the paternalist maps directly into our setup. Our result then provides conditions

under which imposing a minimum schooling level is optimal.12

5.3 Externalities

There are two consumption goods, c and k. The population is composed of a contin-

uum of agents indexed by θ, distributed according to F (θ). The utility of agent-θ is

given by

V (θ) ≡ θU(c(θ)) + βW (k(θ)) + (1 − β)

∫

W (k(θ̃)dF (θ̃),

where β < 1 and (c(θ), k(θ)) represent the allocation in the population. The last

term captures a positive externality generated by the consumption of good k. For

12 An interesting extension, that we have not explored here, would add a consumption good and
allow for transfers across types in this good. In such a model, a natural conjecture is that the
optimal mechanism would feature some monetary incentives to schooling.
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example, it may represent the possible externality imposed from the appearance of

neighbors’ houses.

Agents do not internalize the externality and maximize θU(c) + βW (k). A utili-

tarian planner, however, maximizes:

∫

V (θ)dF (θ) =

∫

[θU(c(θ)) +W (k(θ))] dF (θ).

This welfare function is equivalent to one without externalities but where a utilitarian

planner assigns utility θU(c) +W (k) to agent θ. If the only instrument available to

the government is the removal of consumption opportunities, then this maps directly

into our framework. Our main result then provides conditions for the optimality of a

rule that imposes a minimum level of consumption for the good generating positive

externalities.13

5.4 An Income Shock Interpretation for Taste Shocks

Returning to the intertemporal consumption application, suppose that instead of

taste shocks the individual experiences an income shock q in the first period, with

distribution F (q) over Q ≡ [q, q̄]. We focus on pure commitment mechanisms that

offer no insurance, so the budget constraint of each consumer imposes

c(q) + k(q) ≤ y + q for all q ∈ Q

We assume the realization of q is private information to the agent. The planner does

observe the savings decision k(q) = y+ q− c(q). The agent’s incentive constraints are

u(c(q)) + βw(k(q)) ≥ u(c(q′) + q − q′) + βw(k(q′)) for all q, q′ ∈ Q

To obtain a perfect mapping to our taste shock framework we adopt the exponential

utility function: u(c) = −e−c. The incentive constraints are then equivalent to

u(c(q) + q − q) + βw(k(q)) ≥ u(c(q′) + q − q′) + βw(k(q′))

equ(c(q) − q) + βw(k(q)) ≥ equ(c(q′) − q′) + βw(k(q′))

13 Perhaps, this relates to housing codes, which restrict the use of home owners’ property. However,
more generally, the restriction to no transfers may be less natural for some cases given the more
standard Pigouvian tax approach to externalities. For example, in the case of pollution, monetary
incentives have been employed in addition to maximum quantity restrictions.
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Define θ ≡ eq, and letting ĉ(θ) ≡ c (ln(θ)) − ln(θ) and k̂(θ) ≡ k (ln(θ)). Then the

problem can be written as follows:

max
ĉ,k̂

E[θu(ĉ(θ)) + w(k̂(θ))]

subject to

θu(ĉ(θ)) + w(k̂(θ)) ≥ θu(ĉ(θ′)) + w(k̂(θ′))

ĉ(θ) + k̂(θ) ≤ y

The problem is then identical to our main setup. This example is important

because it provides an objective reinterpretation of the taste shocks. Assumption A

imposes a restriction on the distribution of income shocks, which might be identified

directly, or indirectly from observable savings behavior.

5.5 Bunching for More General Utility Functions

We now extend the bunching result to preferences that are not additively separable

between c and k. In particular, let U(c, k, θ) and V (c, k, θ) denote the utility functions

for the agent and principal, respectively. As before θ ∈ Θ ≡ [θ, θ̄].

We assume that the taste shocks provide an ordering in that higher θ tilts pref-

erences, for both agent and principal, towards higher current consumption. We also

assume that the agent, relative to the principal, is biased towards current consump-

tion, at least at the top. These assumptions can be formalized as single-crossing

conditions.

Assumption C. The utility functions U(c, k, θ) and V (c, k, θ) satisfy

(i) If U(ca, ka, θ) ≥ U(cb, kb, θ) for ca > cb, then U(ca, ka, θ
′

) > U(cb, kb, θ
′

) for all

θ
′

∈ Θ such that θ
′

> θ.

(ii) If V (ca, ka, θ) ≥ V (cb, kb, θ) for ca > cb, then V (ca, ka, θ
′

) > V (cb, kb, θ
′

) for all

θ
′

∈ Θ such that θ
′

> θ.

(iii) There exist a θb < θ̄ such that for any ca > cb, if V (ca, ka, θ̄) ≥ V (cb, kb, θ̄) then

U(ca, ka, θb) > U(cb, kb, θb).

The first two conditions state that higher types single cross lower types for both

utility functions. The third condition ensures a form of bias at the top: it states that
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there exists an interior taste shock, such that the preferences of the agent with this

shock single crosses that of the planner with the highest taste shock. Note that these

conditions are all satisfied in the additively separable case considered previously.

For any allocation (c, k) define (ĉ, k̂) as follows

(ĉ(θ), k̂(θ)) =

{

(c(θ), k(θ))

(c(θb), k(θb))

if θ ≤ θb

if θ > θb

The following result states that some bunching is always optimal.

Proposition 10. Suppose assumption C holds. Then, for any feasible allocation

(c, k), the allocation (ĉ, k̂) is a feasible improvement.

Proof. In the appendix. Q.E.D.

The proof of this result relies on the fact that an allocation that separates all types

must be offering bundles for the highest types that ensure that these are overconsum-

ing, from the principal’s point of view (this is the role of condition (iii)). Removing

an upper portion leads these types to bunch at the remaining bundle with the highest

available current consumption (the role of assumption (i)). This reallocation is also

preferred by the principal (the role of assumption (ii)).

6 Conclusions

Our consumer values commitment to avoid the temptation of current consumption,

and flexibility to respond to taste shocks. The resulting tradeoff makes the design of

an optimal commitment device non-trivial.

We find that a minimum-savings rule is always part of the optimal commitment

policy. Moreover, a minimum-savings rule completely characterizes the optimum

when a condition on the distribution of taste shocks is satisfied. The minimum-

savings level then increases with the strength of temptation. These results are robust

to the way temptation is modeled and can be extended to situations with uncertain

levels of temptation and self-control, as well as to longer time horizons.

Our model and results can be applied other situations featuring similar trade-

offs between commitment and flexibility, such as paternalism, the design of fiscal

constitutions to control government spending, and externalities. Another potential

application is to problems of time inconsistency of government policy, to examine the

tradeoff of rules vs. discretion.
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To isolate the problem of commitment as one reducing available choices from the

budget set this paper ignored the possibility of transfers across types. An interest-

ing direction for future research is to consider insurance and taxes that allow these

transfers in order to provide a more complete characterization of the optimal tax

and social-security policies for the class of environments we have considered in this

paper.14
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Appendix

Proof of Proposition 1

With β = 1 the incentive constraints are slack at the first-best allocation. Define

β∗ < 1 to be the value of β for which the incentive constraint of agent-θl holds with

equality at the first-best allocation. Then for β > β∗ both incentive constraints are

slack at the first best allocation and β∗ > θl/θh follows since

β∗ ≡ θl

U
(

cfb (θh)
)

− U
(

cfb (θl)
)

W (y − cfb (θl)) −W (y − cfb (θh))

> θl

U ′
(

cfb (θh)
) (

cfb (θh) − cfb (θl)
)

W ′ (y − cfb (θh)) (cfb (θh) − cfb (θl))
= θl

U ′
(

cfb (θh)
)

W ′ (y − cfb (θh))
=
θl

θh

Now, consider the case where β > θl/θh and suppose that c (θh)+k (θh) < y. Then

an increase in c (θh) and a decrease in k (θh) that holds (θl/β)U (c (θh)) + U (k (θh))

unchanged increases c (θh) + k (θh) and the objective function. Such a change is

incentive compatible because it strictly relaxes the incentive constraint of the high

14 Preliminary work along these lines can be found in Amador, Angeletos, and Werning (2004).
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type pretending to be a low type, leaving the incentive constraint of the low type

unchanged. It follows that we must have c (θh)+k (θh) = y at an optimum. This also

shows that separating is optimal in this case, proving part (i). Analogous arguments

establish part (ii).

Finally, c (θl)+k (θl) < y cannot be optimal since lowering c (θl) and raising k (θl)

holding θlU(c(θl))+βW (k(θl)) constant would then be feasible. Such a variation does

not affect the incentive constraint of the low type and relaxes the incentive constraint

of the high type, yet it increases the objective function since θlU(c(θl)) + W (k(θl))

increases.

Lemma of Optimality and First-Order Conditions

We first show that the maximization of the Lagrangian is a necessary and sufficient

condition for optimality of an allocation. This is stated in the following two results:

Result (i’). Necessity. If an allocation
(

w0, u0

)

∈ Φ with u0 continuous is optimal

then there exists a non-decreasing Λ0 such that the Lagrangian is maximized:

L
(

w0, u0;hw, hu|Λ0

)

≤ L
(

w0, u0;w0, u0|Λ0

)

for all
(

hw, hu

)

∈ Φ,hu continuous (18)

Result (ii’). Sufficiency. An allocation
(

w0, u0

)

∈ Φ is optimal if there exists a

non-decreasing Λ0 such that

L
(

w0, u0;hw, hu|Λ0

)

≤ L
(

w0, u0;w0, u0|Λ0

)

and all
(

hw, hu

)

∈ Φ. (19)

Proof. Our optimization problem maps into the general problem studied in Section

8.3–8.4 by Luenberger (1969): maxx∈X Q (x) subject to x ∈ Ω and G (x) ∈ P , where

Ω is a subset of the vector space X, Q : Ω → R and G : Ω → Z, where Z is a normed

vector space, and P is a positive non-empty convex cone in Z.

For Result (ii’), set:

X = {w, u | w ∈W (R+) and u : Θ → R},

Ω = {w, u| w ∈ W (R+) , u : Θ → U (R+) and u is non-decreasing} ≡ Φ,

Z =

{

z | z : Θ → R with sup
θ∈Θ

|z(θ)| <∞

}

with the norm ‖z‖ = sup
θ∈Θ

|z(θ)| ,

P = {z | z ∈ Z and z(θ) ≥ 0 for all θ ∈ Θ} .

We let the objective function be Q and the left-hand side of the resource constraint be
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defined as G. Result (b’) then follows immediately since the hypothesis of Theorem

1, pg. 220 in Luenberger (1969) are met.

For Result (i’), modify Ω and Z to require continuity of u:

Ω = {w, u| w ∈W (R+) , u : Θ → U (R+) , and u is continuous and non-decreasing}

Z = {z | z : Θ → R and z is continuous}, with the norm ‖z‖ = sup
θ∈Θ

|z(θ)|

with X, P , Q and G as before. Note that Q and G are concave, Ω is convex,

P contains an interior point (e.g. z(θ) = 1 for all θ ∈ Θ) and that the positive

dual of Z is isomorphic to the space of non-decreasing functions on Θ by the Riesz

Representation Theorem (see Chapter 5, pg. 113 in Luenberger, 1969). Finally, if

w0, u0 is optimal within Φ and w0, u0 ∈ Φ∩ {u is continuous } then w0, u0 is optimal

within the subset Φ ∩ {u is continuous} ≡ Ω. Result (i’) then follows since the

hypotheses of Theorem 1 in Luenberger (1969, pg. 217) are met. Q.E.D.

Once we have obtained results (i’) and (ii’), to prove the Lemma of Optimality,

we need to show that the maximization conditions in (18) and (19) are equivalent to

the appropriate first-order conditions. We first show that these first-order conditions

can indeed be computed. The following Lemma helps do this.

Lemma A.1. (Differentiability of integral functionals with convex inte-

grands). Given a measure space (Θ,Θ, µ) and a function ψ : X × Θ → R, where

X ⊂ Rn, suppose the functional T : Ω → R, where Ω is some subset of the space of

all functions mapping Θ into X, is given by T (x) =
∫

Θ
ψ (x(θ), θ)µ (dθ).

Suppose that (i) for each θ ∈ Θ, ψ (·, θ) : X → R is concave; (ii) that the derivative

ψx exists and is a continuous function of (x, θ); and that (iii) x+αh ∈ Ω for α ∈ [0, ε]

for some ε > 0.

Then the h-directional Gateaux differential, ∂T (x;h) exists and is given by

∂T (x;h) =

∫

Θ

ψx (x(θ), θ)h(θ)µ (dθ) ,

if the right hand side expression is well defined.

Proof. Adding and subtracting
∫

Θ
ψx (x(θ), θ)h(θ)µ(dθ) from the definition of the
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Gateaux differential,

∂T (x;h) =

∫

Θ

ψx (x(θ), θ)h(θ)µ(dθ)

+ lim
α↓0

∫

Θ

[

1

α
[ψ (x(θ) + αh(θ), θ) − ψ (x(θ), θ)] − ψx (x(θ), θ)h(θ)

]

µ (dθ) .

We seek to show that the last term is well defined and vanishes.

For α < ε one can show that,

∣

∣

∣

∣

1

α
[ψ (x(θ) + αh(θ), θ) − ψ (x(θ), θ)] − ψx (x(θ), θ)h(θ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

ε
[ψ (x(θ) + εh(θ), θ) − ψ (x(θ), θ)] − ψx (x(θ), θ)h(θ)

∣

∣

∣

∣

, (20)

by concavity of ψ (·, θ). Since ψ (x(θ) + εh(θ), θ), ψ (x(θ), θ) and ψx (x(θ), θ)h(θ)

are all integrable by hypothesis, it follows that 1
ε
[ψ (x(θ) + εh(θ), θ) − ψ (x(θ), θ)] −

ψx (x(θ), θ)h(θ) is also integrable. Since a function is integrable if and only if its

absolute value is integrable, then (20) provides the required integrable bound to

apply Lebesgue’s Dominated Convergence Theorem implying:

lim
α↓0

∫

Θ

[

1

α
[ψ (x(θ) + αh(θ), θ) − ψ (x(θ), θ)] − ψx (x(θ), θ)h(θ)

]

µ (dθ)

=

∫

Θ

[

lim
α↓0

1

α
[ψ (x(θ) + αh(θ), θ) − ψ (x(θ), θ)] − ψx (x(θ), θ)h(θ)

]

µ (dθ) = 0

by definition of ψx. It follows that ∂T (x;h) =
∫

Θ
ψx (x(θ), θ)h(θ)µ (dθ). Q.E.D.

We can apply the lemma A.1 because the Lagrangian functional is the sum of

three terms that can be expressed as integrals with concave differentiable integrands.

Since the Lagrangian functional is defined over a convex cone Φ, the hypothesis (iii)

of the lemma is met with any ε ≤ 1 for any x ∈ Φ and h = y − x for y ∈ Φ.

Furthermore, in our case
∫

ψu (u(θ), θ)hu(θ)dΛ(θ) is well defined for any u and

hu such that (w, u) ∈ Φ and (hw, hu) ∈ Φ, for some w, hw ∈ R. This follows since u

and hu are non-decreasing on Θ, they are measurable and bounded; and by standard

arguments ψu (u(θ), θ)hu(θ) is also measurable and bounded, and thus integrable.

These arguments establish that we can write the Gateaux differential of the La-
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grangian for (w, u), (hw, hu) ∈ Φ as

∂L (w, u;hw, hu|Λ) =

(

θ

β
hu (θ) + hw

)

Λ (θ) +
1

β

∫ θ̄

θ

(Λ(θ) −G(θ))hu(θ)dθ

+

∫ θ̄

θ

[

θ

β
−W ′ (y − C (u(θ)))C ′ (u(θ))

]

hudΛ(θ)

which collapses to (9) at the proposed allocation.

Finally, the following Lemma, which is a simple extension of a result in Lemma 1

in Luenberger (1969, pg. 227), allows us to characterize the maximization conditions

of the Lagrangian (obtained in results (a’) and (b’) ) by the appropriate first-order

conditions.

Lemma A.2. (Optimality and first-order conditions) Let f be a concave

functional on P , a convex cone in X. Take x0 ∈ P and define H (x0) ≡ {h :

h = x − x0 and x ∈ P}. Then δf (x0, h) exists for h ∈ H (x0). Assume that

δf (x0, α1h1 + α2h2) exists for h1, h2 ∈ H (x0) and δf (x0, α1h1 + α2h2) = α1δf (x0, h1)+

α2δf (x0, h2) for all α1, α2 ∈ R.

A necessary and sufficient condition that x0 ∈ P maximizes f is that

δf (x0, x) ≤ 0 for all x ∈ P

δf (x0, x0) = 0

In our case, all the hypotheses of Lemma A.2 are met for the Lagrangian, because

it is a convex functional over a convex cone, and because Lemma A.1 verifies the

differentiability requirement, as discussed above. Thus, we obtain that a necessary

and sufficient condition for the Lagrangian to be maximized at
(

u0, w0

)

over Φ is

∂L
(

w0, u0;w0, u0|Λ0

)

= 0,

∂L
(

w0, u0;hw, hu|Λ0

)

≤ 0,

for all (hw, hu) ∈ Φ.

Given results (a’) and (b’), the proof of the Lemma of Optimality follows.

Proof of Proposition 8

Let F (·) be the c.d.f. of the taste shocks. We want to show that if G(x) ≡ F (x) +

x (1 − β) f (x) is non-decreasing, then Ĝ (x) = (1 + βϕ)F (β̂x) − βϕF (βx) is non-
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decreasing. After letting λ = 1/ϕ and differentiating, we obtain

∆(x, λ) ≡
(λ+ β

β

)

β̂ (λ) f
(

β̂ (λ)x
)

− βf (βx) ≥ 0,

and note that ∆(x, 0) = 0. Substituting the definition of G (·) yields the alternative

expression,

∆(x, λ) =
λ+ β

β (1 − β)x

[

G(β̂ (λ)x) − F (β̂ (λ)x)
]

− βf (βx) .

Define,

∆̃ (x, λ, z) ≡
λ+ β

β (1 − β)x

[

G (z) − F (β̂ (λ)x)
]

− βf (βx) . (21)

Note that ∆̃ (x, λ, z) increases in z and that ∆̃(x, λ, β̂ (λ)x) = ∆ (x, λ).

To prove ∆(x, λ) ≥ 0 we write,

∆ (x, λ) = ∆̃(x, λ, β̂ (λ)x) = ∆̃(x, 0, β̂ (λ)x) +

∫ λ

0

∆̃λ(x, λ̃, β̂ (λ)x)dλ̃ (22)

and proceed to show that both the terms on the right-hand side are non-negative.

To see the sign of the first term in (22) note that since ∆̃ is increasing in z,

∆̃(x, 0, β̂ (λ)x) ≥ ∆̃ (x, 0, x) = ∆̃(x, 0, β̂ (0)x) = ∆ (x, 0) = 0.

For the integral term in (22) we compute the integrand by differentiating (21) and

rearranging using the definition of G (·) :

∆̃λ (x, λ, z) =
1

β (1 − β)x

[

G (z) −G(β̂ (λ)x) +
λ

1 + λ
β̂ (λ)x (1 − β) f(β̂ (λ)x)

]

.

Thus, for z ≥ β̂(λ̃)x we have ∆̃λ(x, λ̃, z) ≥ 0. It follows that for λ̃ ∈ [0, λ] we have

β̂ (λ)x ≥ β̂(λ̃)x, and therefore ∆̃λ(x, λ̃, β̂ (λ)x) ≥ 0. Thus, the integral term in (22)

is non-negative. Given that β̂ (λ)xp (λ) is non-decreasing in λ we need G (x) to be

non-decreasing up to β̂xp.

Proof of Proposition 9

Writing 1− Ĝ(x) = (1 + βϕ) (1−F (β̂x))−βϕ (1 − F (βx)), integrating and rearrang-

ing:
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∫ x̄

x0

(

1 − Ĝ(z)
)

dz = (1 + ϕ) β̂

∫ x̄

x0

(

1 − F (β̂x)
)

dx− βϕ

∫ x̄

x0

(1 − F (βx)) dx

= (1 + ϕ)

∫ θ̄

β̂x0

(1 − F (θ)) dθ − ϕ

∫ θ̄

βx0

(1 − F (θ)) dθ

=

∫ θ̄

βx0

(1 − F (θ)) dθ − (1 + ϕ)

∫ β̂x0

βx0

(1 − F (θ)) dθ

=

∫ θ̄

βx0

(1 − F (θ)) dθ −

∫ x0(1−β)

0

(

1 − F
( y

1 + ϕ
+ βx0

))

dy

The second equality uses the change in variables θ = β̂x for the first integral, θ =

βx for the second, and the fact that β̂x̄ > βx̄ = θ̄. The third equality simply

rearranges the integrals. The fourth equality performs the change of variables y =

(1 + ϕ) (θ − θ0) using the fact that 1 + ϕ = (1 − β) /(β̂ − β) .

The comparative static with respect to ϕ is now straightforward: an increase in ϕ

raises the integrand 1 − F (y/ (1 + ϕ) + βx0) so that xp must fall with ϕ. To obtain

the comparative static with respect to β we differentiate the last expression:

∂

∂β

∫ x̄

x0

(

1 − Ĝ (z)
)

dz =
[

F (β̂x0) − F (βx0) +

∫ x0(1−β)

0

f
( 1

1 + ϕ
y + βx0

)

dy
]

x0 > 0,

implying that xp rises with β.

Finally, note that the minimum-savings kmin is defined as the solution to:

xp

U ′(y − kmin)

W ′ (kmin)
= 1,

so that comparative statics for xp translate directly into kmin. In particular, kmin is

increasing in ϕ and decreasing in β.

Proof of Proposition 10

First note that part (i) of the single crossing assumption implies that for an allocation

(c, k) to be incentive compatible, c(θ) has to be non-decreasing.

To show that (ĉ, k̂) is feasible, first note that if the resource constraints were

satisfied at the original allocation (c, k), they are also satisfied at (ĉ, k̂). For incentive

compatibility note that (ĉ, k̂) remains incentive compatible for all types θ ≤ θb given
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that (c, k) is incentive compatible. For type θb we have that

U(c(θb), k(θb), θb) ≥ U(c(θ), k(θ), θb) for all θ ≤ θb

Given that c(θ) is non-decreasing, it follows from part (i) of the single crossing as-

sumption that

U(c(θb), k(θb), θ
′) ≥ U(c(θ), k(θ), θ′) for all θ ≤ θb ≤ θ′

The new allocation (ĉ, k̂) is thus incentive compatible. We now show that it is an

improvement over the original allocation.

Note that

U(c(θb), k(θb), θb) ≥ U(c(θ), k(θ), θb) for all θ > θb

From monotonicity and from part (iii) of the single crossing assumption it follows

that

V (c(θb), k(θb), θ̄) ≥ V (c(θ), k(θ), θ̄) for all θ > θb

Using part (ii) of the single crossing assumption,

V (c(θb), k(θb), θ) ≥ V (c(θ), k(θ), θ) for all θ > θb

So, in the new feasible allocation (ĉ, k̂), the value to the planner has weakly improved

for all types. The new allocation (ĉ, k̂) that bunches types above θb is then a weakly

improvement over (c, k).
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