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1 Introduction

It’s a love-hate relationship, economists are at once fascinated and uncomfortable with multiple

equilibria. On the one hand, economic and political crises can be described as times of high

non-fundamental volatility: they involve large and abrupt changes in outcomes, but often

lack obvious comparable changes in fundamentals. Many attribute an important role to more

or less arbitrary shifts in ‘market sentiments’ or ‘animal spirits’, and models with multiple

equilibria formalize these ideas.1 On the other hand, these models can also be viewed as

incomplete theories, which should ultimately be extended along some dimension to resolve

the indeterminacy. Morris and Shin (1998, 2000) argue that this dimension is information,

that multiplicity vanishes once the economy is perturbed away from the perfect-information

benchmark.

This result is obtained with an exogenous information structure, but information is largely

endogenous in most situations of interest. Financial prices and macroeconomic indicators

convey information about what others are doing and thinking. These variables are monitored

intensely during times of crises and appear to be an important part of the phenomena. As

an example, consider the Argentine 2001–2002 crisis, which included devaluation of the peso,

default on sovereign debt, and suspension of bank payments. Leading up to the crisis, the

peso-forward rate and bank deposits deteriorated steadily throughout 2001. This was widely

reported by news media and investor reports, and closely watched by people making important

economic decisions.

The aim of this paper is to understand the role of endogenous information in crises. We

focus on two distinct forms of non-fundamental volatility. First, we investigate the existence

of multiple equilibria, since sunspots could then create volatility unrelated to fundamentals.

Second, for situations with a unique equilibrium, we examine the sensitivity of outcomes to

non-fundamental disturbances. We argue that endogenizing public information is crucial for

understanding both sources of volatility.

The backbone of our model is the coordination game that Morris-Shin and others have used

to capture applications such as currency crises, bank runs and financial crashes. We introduce

a financial market where individuals trade using their private information. The rational-

expectations equilibrium price aggregates disperse private information, while avoiding perfect

revelation due to unobservable supply shocks as in Grossman and Stiglitz (1976). This price

is our endogenous public signal.

The main insight to emerge is that the precision of endogenous public information increases

1 Applications range from bank runs, currency attacks, debt crises, and financial crashes, to riots, revolu-
tions, and social change. See, for example, Diamond and Dybvig (1983), Obstfeld (1986, 1996), Calvo (1988),
Cooper and John (1988), Cole and Kehoe (1996), Velasco (1996). Cooper (1998) provides an excellent review.
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Figure 1: σx measures the exogenous noise in private information and σε the exogenous noise
in the aggregation of information.

with the precision of exogenous private information. When private signals are more precise,

individuals’ asset demands are more sensitive to their information. As a result, the equilibrium

price reacts relatively more to fundamental than to non-fundamental variables, conveying more

precise public information.

This has important implications for the determinacy of equilibria. The endogenous increase

in the precision of public information permits agents to better forecast one another’s actions

and thereby makes it easier to coordinate. Consequently, uniqueness need not obtain as a

perturbation away from the perfect-information benchmark. Indeed, in our baseline model

multiplicity is ensured when noise is small.

This result is illustrated in Figure 1, which displays the regions of uniqueness and multi-

plicity in the exogenous parameter space of our model. On the vertical axis σx represents the

noise in private information; on the horizontal axis σε represents the noise in the aggregation

process, namely, the randomness in asset supply. Multiplicity obtains when either σx or σε is

sufficiently small.

In our baseline model the asset’s dividend depends merely on the exogenous fundamentals.

The financial market then provides information relevant for the coordination game, but there

is no feedback in the opposite direction. In an extension we allow for such a feedback by

considering the possibility that the dividend depends on the outcome of the coordination

game. This may capture, in a stylized fashion, the real rate of return on peso-forwards during

currency attacks, or more generally stock-market returns during economic crises. Interestingly,

multiplicity then emerges in the equilibrium price. This is easily explained. In equilibrium, the

price affects the coordination outcome; the outcome in turn affects the dividend; hence, the

dividend itself is a function of the price. Since a higher price can lead to a higher dividend, the
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demand for the asset is backward bending, giving rise to multiple intersections with supply.

Motivated by bank runs and riots, we also consider a model where individuals do not trade

a financial asset but instead directly watch over what others are doing: everyone observes a

noisy signal of the average action in the population. This introduces endogenous public

information in the Morris-Shin framework parsimoniously, without the need for modeling a

financial market. It also brings a main element of herding models, the observation of other

players’ actions, into coordination games. Our results on equilibrium multiplicity carry over

here, illustrating that our key mechanism is information aggregation—not the particular form

that arises through financial markets.

Results on multiplicity are of interest because non-fundamental volatility may arise if

agents use sunspots to coordinate on different equilibria. However, our results are not limited

to an interpretation of crises as situations with multiple equilibria. We show that a reduc-

tion in noise can increase the sensitivity of outcomes to non-fundamental disturbances, thus

contributing to volatility, even when the equilibrium is unique.

Related Literature. Our analysis builds on Morris and Shin (1998, 2000, 2003), under-

scoring their general theme that the information structure is crucial in coordination games.

We also share with Chari and Kehoe (2003) the perspective that the distinctive feature of

crises is non-fundamental volatility, although we focus on the interplay of information and

coordination rather than herding.

Atkeson (2000), in his discussion of Morris and Shin (2000), was the first to highlight the

potential role of financial markets as endogenous sources of public information. He noted that

fully-revealing prices could restore common knowledge. By introducing noise in the aggrega-

tion process, we ensure that none of our results are driven by restoring common knowledge.

Closely related is Hellwig, Mukherji and Tsyvinski (2005), who endogenize interest rates in

a currency-crises model. Their model also features information aggregation, but they focus on

how the determinacy of equilibria depends on whether the central bank’s decision to devalue

is triggered by large reserve losses or high interest rates. Tarashev (2003) considers a similar

application, but focuses on conditions that deliver a unique equilibrium.

The information structure is endogenous also in Angeletos, Hellwig and Pavan (2003, 2004),

but in different ways. They examine, respectively, signaling effects in a policy game and the

interplay between information and crises in a dynamic setting. Dasgupta (2003) introduces

signals of others’ actions in an investment game, as in Section 5 of this paper, but assumes

that these signals are entirely private instead of public.

Finally, our paper contributes to the rational expectations literature by introducing a

coordinating role for prices. In this literature, prices only provide information regarding

exogenous dividends. In contrast, in our framework prices are also useful for predicting one
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another’s actions and hence affect coordination. This novel coordinating role is crucial for our

results on price multiplicity and volatility.

The rest of the paper is organized as follows. Section 2 introduces the basic model and

reviews the exogenous information benchmark. Section 3 incorporates an asset market and

examines the determinacy of equilibria. Section 4 examines multiplicity in the price. Section 5

studies the model with direct signals on actions. Section 6 considers comparative statics in

regions with a unique equilibrium. Section 7 concludes.

2 The Basic Model: Exogenous Information

Before introducing a financial price or other endogenous public signals, we briefly review the

backbone of our model with exogenous information, as in Morris and Shin (2000, 2004).

Setup

Actions and Payoffs. There is a status quo and a measure-one continuum of agents, indexed

by i ∈ [0, 1]. Each agent i can choose between two actions, either attack the status quo

ai = 1, or not attack ai = 0. The payoff from not attacking is normalized to zero. The payoff

from attacking is 1 − c if the status quo is abandoned and −c otherwise, where c ∈ (0, 1)

parameterizes the cost of attacking. The status quo, in turn, is abandoned if and only if

A > θ, where A denotes the mass of agents attacking and θ is the exogenous fundamental

representing the strength of the status quo. It follows that the payoff of agent i is

U(ai, A, θ) = ai(1A>θ − c),

where 1A>θ is the indicator of regime change.

Our normalization that U(0, A, θ) = 0 is irrelevant for equilibrium behavior, and hence

for our positive results.2 The key property of the payoff structure is a coordination motive:

U(1, A, θ)− U(0, A, θ) increases with A, so the incentive to attack increases with the mass of

agents attacking. If θ were commonly observed by all agents, both A = 1 and A = 0 would

be an equilibrium whenever θ ∈ (θ, θ] ≡ (0, 1]. This interval represents the critical range of

fundamentals over which the regime outcome depends on the size of the attack.

Interpretations. In models of self-fulfilling currency crises, as in Obstfeld (1986, 1996) and

Morris and Shin (1998), the central bank is forced to abandon its peg when a sufficiently

2 In contrast, welfare analyses would be sensitive to the specification of U(0, A, θ)—one must take a stand
depending on the application. For example, one may wish to assume that U(0, A, θ) depends on A and θ to
capture the idea that crises are undesirable.
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large group of speculators attacks the currency; θ then parameterizes the amount of foreign

reserves or the ability and willingness of the central bank to maintain its peg. In models of

bank runs, such as Goldstein and Pauzner (2000) and Rochet and Vives (2004), regime change

occurs when a large enough number of depositors decide to withdraw their deposits, forcing

the banking system to suspend payments. Another possible interpretation is an economy with

investment complementarities, as in Cooper and John (1988), Chamley (1999) and Dasgupta

(2003).3

Information. Following Morris-Shin, information is assumed imperfect and asymmetric, so

that θ is not common knowledge. In the beginning of the game, nature draws θ from a given

distribution, which constitutes the agents’ common prior about θ. For simplicity, the prior is

taken to be the improper uniform over the entire real line. Agent i then receives a private

signal xi = θ + σxξi, with σx > 0 and ξi ∼ N (0, 1) is independent of θ, and independently

distributed across agents. Agents also observe an exogenous public signal z = θ + σzε, where

σz > 0 and ε ∼ N (0, 1) is common noise, independent of both θ and ξ.4 The information

structure is parameterized by the standard deviations σx and σz; equivalently, by αx = σ−2
x

and αz = σ−2
z , the precisions of private and public information.

Equilibrium Analysis

Throughout the paper, we focus on monotone equilibria defined as perfect Bayesian equilibria

such that, for a given realization z of the public signal, an agent attacks if and only if the

realization x of his private signal is less than some threshold x∗(z).5

In such an equilibrium, the aggregate size of the attack is A(θ, z) = Φ
(√

αx(x
∗(z) − θ)

)
,

where Φ denotes the cumulative distribution function for the standard normal. The status

quo is then abandoned if and only if θ ≤ θ∗(z) , where θ∗(z) solves A(θ, z) = θ, or equivalently

x∗(z) = θ∗(z) + 1√
αx

Φ−1(θ∗(z)). (1)

It follows that the expected payoff from attacking is Pr(θ ≤ θ∗(z) | x, z) − c and therefore

x∗(z) must solve the indifference condition Pr(θ ≤ θ∗(z) | x, z) = c. Since posteriors about θ

are normally distributed with mean αx

αx+αz
x+ αz

αx+αz
z and precision α = αx +αz, this condition

3 Other applications include debt crises, financial crashes, and revolutions (Cole and Kehoe, 1996; Atkeson,
2000; Morris and Shin, 2004; Corsetti, Guimaraes and Roubini, 2004; Edmond, 2005).

4 Normality makes the analysis of the effects of public information tractable (see Morris and Shin, 1999,
2000, 2003, 2004).

5 Our main results concerning multiple equilibria are obtained even within this restricted class. Moreover,
with exogenous information, uniqueness within this class implies overall uniqueness.

5



uniqueness 

z

multiplicity

x

Figure 2: Exogenous information. σx and σz parameterize the noise in private and public
information; uniqueness is ensured for σx small enough.

is

Φ
(√

αx + αz

(
θ∗(z)− αx

αx+αz
x∗(z)− αz

αx+αz
z
))

= c. (2)

Hence, an equilibrium is simply identified with a joint solution to (1) and (2).

Substituting (1) into (2) gives a single equation in θ∗ :

− αz√
αx

θ∗ + Φ−1(θ∗) =
√

1 + αz

αx
Φ−1(1− c)− αz√

αx
z. (3)

It is easy to check that this equation always admits a solution and that the solution is unique

for every z if and only if αz/
√

αx ≤
√

2π, which proves the following result.

Proposition 1 (Morris-Shin). In the game with exogenous information, the equilibrium is

unique if and only if 0 < σx ≤ σ2
z

√
2π.

Figure 2 depicts the regions of (σx, σz) for which the equilibrium is unique. For any positive

σz, uniqueness in ensured by a sufficiently small positive σx. The key intuition behind this

result is that private information anchors individual behavior and limits the ability to forecast

one another’s actions. The lower σx is relative to σz, the more heavily individuals use their

private information. Since private information is diverse, this makes it more difficult for

individuals to predict the actions of others—heightening strategic uncertainty. When this

effect is strong enough, multiplicity breaks down.

Moreover, as σx → 0 individuals cease to use the public signal so the equilibrium depen-

dence on the common noise ε vanishes. Indeed, letting R(θ, ε) = 1A(θ,θ+σzε)>θ denote the

equilibrium regime outcome, the following limit result holds.
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Proposition 2 (Morris-Shin Limit). In the limit as σx → 0, there is a unique equilibrium in

which R(θ, ε) → 1 if θ < θ̂ and R(θ, ε) → 0 if θ > θ̂, where θ̂ = 1− c.

Proof. See Appendix.

This limit illustrates a sharp discontinuity of the equilibrium set around σx = 0: a small

perturbation away from perfect information suffices to obtain a unique equilibrium. It also

implies that crises, defined as situations displaying high non-fundamental volatility, cannot be

addressed in the limit as σx → 0 since the unique equilibrium becomes insensitive to ε.

3 Financial Markets: Endogenous Information

The results above presume that the precision of public information remains invariant while

varying the precision of private information. We argue that this is unlikely to be the case

when public information is endogenous through prices or other macroeconomic indicators.

To investigate the role of prices, we introduce a financial market where agents trade an

asset prior to playing the coordination game. Because the dividend depends on the underlying

fundamentals or the aggregate attack, the equilibrium price will convey information that is

valuable in the coordination game.

Setup

As before, nature draws θ from an improper uniform distribution over the real line and each

agent receives the exogenous private signal xi = θ + σxξi. We avoid direct payoff linkages

between the financial market and the coordination game to isolate and focus on information

aggregation. Agents can be seen as interacting in two separate stages.

In the first stage agents trade over a risky asset with dividend f at price p. We adopt the

convenient CARA-normal specification introduced by Grossman and Stiglitz (1976). We as-

sume a constant absolute risk aversion utility function over the final wealth position generated

from this portfolio choice. Thus, utility is V (wi) = −e−γwi for γ > 0, where wi = w0−pki+fki

is final wealth, w0 is initial endowed wealth, and ki investment in the asset.

The net supply of the asset is uncertain and not observed, given by Ks(ε) = σεε, where

σε > 0 and ε ∼ N (0, 1) and independent of θ and ξi. As in Grossman-Stiglitz, the role of the

unobserved shock ε is to introduce noise in the information revealed by the market-clearing

price. In this way, σε parameterizes the exogenous noise in the aggregation process.

The second stage is essentially the same as the benchmark model of the previous section:

agents choose whether to attack or not; the status quo is abandoned if and only if the mass

of agents attacking, A, exceeds θ; and the payoff from this stage is U(ai, A, θ) = ai(1A>θ − c).
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The only difference is that agents now observe the price that cleared the financial market

in stage 1. The regime outcome, the asset’s dividend, and the payoffs from both stages are

realized at the end of stage 2.

Individual asset demand and attack decisions are functions of x and p, the realizations of

the private signal and the price. The corresponding aggregates are then functions of θ and p.

We define an equilibrium as follows.

Definition. An equilibrium is a price function, P (θ, ε), individual strategies for investment

and attacking, k(x, p) and a(x, p), and their corresponding aggregates, K(θ, p) and A(θ, p),

such that:

k(x, p) ∈ arg max
k∈R

E
[
V

(
w0 + (f − p)k

) | x, p
]

(4)

K(θ, p) = E [ k(x, p) | θ, p ] (5)

K (θ, P (θ, ε)) = Ks (ε) (6)

a(x, p) ∈ arg max
a∈{0,1}

E
[
U

(
a,A(θ, p), θ

) | x, p
]

(7)

A(θ, p) = E [ a(x, p) | θ, p ] (8)

The equilibrium regime outcome is R(θ, ε) = 1A(θ,P (θ,ε))>θ.

Conditions (4)–(6) define a rational-expectations competitive equilibrium for stage 1. In

particular, condition (4) states that individual asset demands are conditioned on all available

information, including anything inferable from the price realization p = P (θ, ε), while (5) gives

aggregate demand and (6) imposes market clearing. Conditions (7)–(8) then define a perfect

Bayesian equilibrium for stage 2, much as in Section 2 but with the important difference that

the endogenous price p replaces the exogenous public signal z.

We first consider the case where the dividend depends only on θ, in which case the only

link between the financial market and the coordination game is that the former provides

an endogenous public signal that is relevant for the latter. In Section 4, we consider the

possibility that there is a feedback in the oppositive direction as well. The first case isolates

the coordinating role of prices; the second shows how this can contribute to volatility in the

asset market itself.
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Equilibrium Analysis

For simplicity, we let f = θ and, following Grossman and Stiglitz (1976), focus on linear price

functions that are not perfectly revealing.6 Observing the price realization is then equivalent

to observing a normally distributed signal with some precision αp = σ−2
p ≥ 0. The posterior

of θ conditional on x and p is normally distributed with mean δx + (1− δ)p and precision α,

where δ = αx/α and α = αx + αp. It follows that individual asset demand is

k(x, p) =
E[ f | x, p ]− p

γ Var[ f | x, p ]
=

δα

γ
(x− p) =

αx

γ
(x− p),

and therefore aggregate demand is K(θ, p) = (αx/γ)(θ − p). Market clearing K(θ, p) = σεε

then implies

P (θ, ε) = θ − σpε,

which verifies the guess of a linear price function with

σp = γσεσ
2
x. (9)

Thus, public information improves with private information. This is the key observation of the

paper and has important implications for the determination and characterization of equilibria

in the coordination game: agents can use prices to better predict one another’s actions.

Indeed, since stage 2 here is equivalent to the benchmark model of Section 2, with the

price p playing the role of the public signal z, the analysis is completed by replacing σz in

Proposition 1 with σp from equation (9).

Proposition 3. In the financial market economy with exogenous dividend there are multiple

equilibria if σ2
εσ

3
x < 1/(γ2

√
2π).

In Proposition 1 the noise in public information was fixed, so a sufficiently low private noise

ensured uniqueness. In contrast, here better private information improves public information,

and at a rate fast enough to ensure multiplicity. The result is illustrated in Figure 3. In

contrast to Figure 2, as the private noise σx decreases, the public noise σz also decreases,

eventually pushing the economy into the multiplicity region.7

An immediate implication is that uniqueness can no longer be seen as a small perturbation

away from common knowledge: multiplicity is ensured when either σx or σε are small, as

6 In Grossman and Stiglitz’s setup, the perfectly revealing equilibrium seems implausible, and it is not
known whether other non-linear equilibrium price functions exist.

7 Adding an exogenous source of public information in our model would only strengthen the case for
multiplicity, which would then obtain for either low or high private noise σx.
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Figure 3: Endogenous information. As σx decreases, σz also decreases; multiplicity is therefore
ensured for σx small enough.

illustrated in Figure 1. Indeed, both extreme common-knowledge outcomes can be recovered

as either noise vanishes.

Proposition 4. Consider the limit as σx → 0 for given σε, or σε → 0 for given σx. There

exists an equilibrium in which R(θ, ε) → 0 whenever θ ∈ (θ, θ), as well as an equilibrium in

which R(θ, ε) → 1 whenever θ ∈ (θ, θ). In every equilibrium, P (θ, ε) → θ for all (θ, ε).

Our results highlight the coordinating role of prices. Because agents interact in the financial

market, they can use prices to predict what others will do in the coordination game. Indeed,

the better informed agents are when entering the financial market, the better able they are

to predict each other’s actions when leaving. Thus, improving private information reduces

strategic uncertainty and recovers multiplicity.

This argument relies on σp, the endogenous public noise, falling at a rate faster than does

the square root of σx, the exogenous private noise. This property holds here and in the cases

considered below, but is sensitive to the details of the aggregation channel. In the Appendix

we discuss and analyze an extension designed to highlight this point. There the dividend of

the asset is imperfectly correlated with the exogenous fundamentals that are relevant for the

coordination game. The idea is to introduce additional noise in the aggregation process. If

one assumes that this noise remains bounded away from zero as σx goes to zero, then σp also

remains bounded away from zero and hence uniqueness obtains in the limit. Nevertheless,

more precise private information continues to generate more precise public information, and

contributes to multiplicity over some range of parameters. Moreover, the limit result turns

out to be robust to this extension for the case with an endogenous dividend, which we turn

to next.
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4 Price Multiplicity

Motivated by the fact that crises are likely to affect asset market returns, we now consider the

case where the asset’s dividend is endogenously determined by the coordination game. This

may capture, in a stylized fashion, the real rate of return on peso-forwards during currency

attacks, or more generally stock-market returns during economic crises. As in the case with

an exogenous dividend, the precision of the information conveyed endogenously by the price

increases with the precision of exogenous private information. Again, this guarantees multi-

plicity for small levels of noise. The novel implication here is that multiplicity emerges also

in the financial price.

The model is exactly as in the previous section, except for the endogeneity of the divi-

dend. In particular, we let the dividend be a function of the aggregate size of attack in the

coordination game, f = f(A). To preserve normality of the information structure, we take

f(A) = −Φ−1(A).

In monotone equilibria, agents attack if and only if their private signal is below some

threshold x∗(p), so the aggregate attack is A(θ, p) = Φ(
√

αx(x
∗(p) − θ)) and the realized

dividend is f =
√

αx(θ− x∗(p)). Since p is observed, agents can calculate p̃ = p/
√

αx + x∗(p),

which represents the price of an asset that pays f̃ = f/
√

αx+x∗(p) = θ. We focus on equilibria

with a one-to-one mapping between p and p̃, so that the observation of p is equivalent to the

observation of p̃.

We guess and verify that the posterior for θ is normally distributed with mean δx+(1−δ)p̃

and precision α, where δ = αx/α and α = αx + αp, for some αp = σ−2
p ≥ 0. Individual asset

demands are then given by

k(x, p) =
E[ f | x, p ]− p

γVar[ f | x, p ]
=

√
αx

γ
(x− p̃)

and aggregate demand by

K(θ, p) =

√
αx

γ
(θ − p̃) =

√
αx

γ

(
θ − p√

αx

− x∗(p)

)

Market clearing thus implies p̃ = θ − σpε with

σp = γσεσx.

Once again, public information improves with private information.

Since stage 2 is identical to the benchmark model except for the endogeneity of the public

signal, the thresholds θ∗(p) and x∗(p) must solve versions of equations (1) and (2), but with
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Figure 4: Backward-bending asset demand and price multiplicity.

p̃ = p/
√

αx + x∗(p) replacing z, and with αp replacing αz:

θ∗(p) = Φ
(√

αx

αx+αp
Φ−1(1− c)− αp

αx+αp
p
)

and x∗(p) = θ∗(p) + 1√
αx

Φ−1(θ∗(p)). (10)

It follows that the thresholds θ∗(p) and x∗(p), and hence the asset demand K(θ, p), are uniquely

determined. Also, K(θ, p) is continuous in p with lim
p→−∞

K(θ, p) = ∞ and lim
p→∞

K(θ, p) = −∞.

Thus, the market clearing condition K(θ, p) = Ks(ε) always admits at least one equilibrium

price. However, since the dividend f =
√

αx(θ− x∗(p)) is increasing in p, asset demand is not

necessarily decreasing in p. Indeed,

sign

(
∂K(θ, p)

∂p

)
= −sign

(√
αx

αp

− φ
(
Φ−1(θ∗)

))
,

so that demand is non-monotone if and only if
√

αx/αp <
√

2π, or equivalently σ2
εσx <

1/(γ2
√

2π), that is, when either noise is small.

A backward-bending demand curve is possible here because of the two-way feedback be-

tween the financial market and the coordination game. A higher price realization makes agents

in the second stage less inclined to attack. A smaller attack raises the asset dividend. Pro-

vided that this effect is strong enough, the demand for the asset can increase with its price

over some region.

The solid line in Figure 4 illustrates a case where a backward-bending demand meets supply

three times. The dashed lines show parallel shifts with changes in θ; only the low (high) price

equilibrium remains for low (high) enough values of θ relative to ε. Thus, when demand

is non-monotone, there is a non-empty set of (θ, ε) for which there are three market clearing

prices. Multiplicity in the price function then feeds into multiplicity in the coordination game,
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by composing x∗(p) and θ∗(p) with P (θ, ε).

Proposition 5. In the financial market economy with endogenous dividend there are multiple

equilibria if σ2
εσx < 1/(γ2

√
2π). Multiplicity then emerges in both the regime outcome R(θ, ε)

and the price function P (θ, ε).

Note that multiplicity does not emerge in individual strategies for given price realization.

In this sense, price multiplicity is crucial for equilibrium multiplicity. To gain some intuition for

this result, consider the common-knowledge case with σx = 0. Then x = θ, p = f = −Φ−1(A),

and therefore θ < A if and only x < Φ(−p); so it is optimal to attack if and only if x < Φ(−p)

and individual strategies are uniquely determined as functions of (x, p). Indeed, these common-

knowledge outcomes are approached as noise vanishes.

Proposition 6. Consider the limit as σx → 0 for given σε, or σε → 0 for given σx. There

is an equilibrium in which R(θ, ε) → 0 and P (θ, ε) → ∞ whenever θ ∈ (θ, θ), as well as an

equilibrium in which R(θ, ε) → 1 and P (θ, ε) → −∞ whenever θ ∈ (θ, θ).

Proof. See Appendix.

In our economy the financial price plays three roles for market participants. First, it affects

the cost of acquiring a given asset—the standard substitution effect present in any model.

Second, it signals the dividend of the asset—the usual information-aggregation role highlighted

by the rational expectations literature. Third, it affects the outcome in the coordination game

and thereby changes the dividend of the asset itself—the novel coordination role for prices

identified in this paper.

This third effect is the source of price multiplicity in our model. It has the interesting

implication that financial markets can have a destabilizing effect. Indeed somewhat paradoxi-

cally, this effect is highest in situations of low exogenous noise. This is in contrast to standard

Grossman-Stiglitz environments where lower noise (e.g. supply shocks or noisy traders) leads

to lower volatility.

To the best of our knowledge, our result on price multiplicity is new. Gennotte and

Leland (1990) and Barlevy and Veronesi (2003) find multiple equilibrium prices in noisy

rational-expectation models, but the source of multiplicity there is entirely different. In these

papers, the dividend is exogenous and the price does not play any coordinating role. Instead,

multiplicity obtains from non-linearities in information aggregation.8

Also, our result was obtained in a particular context, but is likely to apply more generally.

Indeed, Hellwig, Mukherji and Tsyvinski (2005) verify that this multiplicity result also holds

in a currency-crisis model where the coordination game is embedded in the financial market.

8In particular, informed traders interact with uninformed traders and multiplicity originates from the
inference problem faced by the latter: the uninformed agents’ demand for the asset can turn backwards when
they interpret an increase in the price as an indication of high demand from the informed agents.
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5 Observing One Another

In this section, we remove the financial market and examine instead situations where infor-

mation originates within the coordination game itself: agents observe a public signal about

the aggregate attack. Such a feature seems relevant for thinking about bank runs, where

widespread news coverage of a panic may spur other depositors to draw on their own ac-

counts. More generally, during times of crises it is unlikely that individuals are in the dark

about what others are doing. Quite the contrary, they are most likely looking avidly over

their shoulders. Indeed, in coordination models the desire for such direct information is most

natural—agents are keen to learning about the actions of others since this affects their payoffs

U(a,A, θ) directly.

An additional benefit is that this framework allows us to study information aggregation

with a minimal modification of exogenous-information Morris-Shin benchmark. It also bridges

a gap between coordination models—that stress complementarities in actions—and herding

models—which stress the observation of others’ actions.

The model is identical to the benchmark model from Section 2 except that the public

signal z is replaced with

y = S(A, ε),

where ε is noise independent of θ and ξ. To preserve normality of the information structure

and obtain closed-form solution, we take S(A, ε) = Φ−1(A) + σεε and ε ∼ N (0, 1).9 The

information structure is parameterized by (σx, σε).

We assume that agents can condition their decision to attack on this indicator of contem-

poraneous aggregate behavior. Taken literally this clashes with standard game-theory, but

we do not take this literally. Rather, we think this captures in a parsimonious way the idea

that many act based on some information about others’ actions, or are able to revise their

actions based on such information.10 In any case, an earlier version of this paper (Angeletos

and Werning, 2004) developed a sequential variant that delivers similar results, while allowing

standard game-theoretic equilibrium concepts.11

9 This convenient specification was introduced by Dasgupta (2003) in a different environment.
10 Minelli and Polemarchakis (2003) develop a similar theme and argue that “At a Nash equilibrium of a

game with uncertainty and private information [. . .] individuals do not extract information from the acts of
other individuals in the same round of play; this takes literally the simultaneity of moves. But it is naive.”

11 The population is divided into two groups, ‘early’ and ‘late’ agents. Neither group observes contempo-
raneous activity. Early agents move first, on the basis of their private information alone. Late agents move
second, on the basis of their private information as well as a noisy public signal about the aggregate actions of
early agents. Moreover, the case with simultaneous moves studied here is approached in the sequential variant
as the fraction of early agents goes to zero.
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Definition. An equilibrium consists of an endogenous signal y = Y (θ, ε), an individual attack

strategy a(x, y), and an aggregate attack A(θ, y), that satisfy:

a(x, y) ∈ arg max
a∈{0,1}

E [ U(a,A(θ, y), θ) | x, y ] (11)

A(θ, y) = E [ a(x, y) | θ, y ] (12)

y = S(A(θ, y), ε) (13)

Just as in the asset market model of Section 3, our equilibrium definition is a hybrid of

rational-expectations and perfect Bayesian equilibrium concepts. Equation (11) requires the

attack choice to be optimal given all available information, including the realized signal y of the

aggregate attack. Equation (12) aggregates. Equation (13) imposes the rational-expectations

consistency requirement, the signal must be generated by individual actions that are, in turn,

dependent on it.

In monotone equilibria, an agent attacks if and only if x ≤ x∗(y) and the status quo is

abandoned if and only if θ ≤ θ∗(y), so an equilibrium is identified with a triplet of functions

x∗(y), θ∗(y), and Y (θ, ε). As before, we focus on equilibria that preserve normality of the

information structure.12

The model behaves in a similar way to the endogenous dividend model from Section 4.

Here agents receive a direct signal of the attack A, while there the price was an indirect signal

of the attack A, but both y and p convey the same information in equilibrium. Indeed, the

noise in the endogenous public information generated by y turns out to be

σy = σxσε,

implying that multiplicity once again survives for small levels of noise.

Proposition 7. In the economy with observable actions an equilibrium always exists. If

σ2
εσx < 1/

√
2π there are multiple equilibria.

Proof. See Appendix.

Indeed, when multiplicity arises it is with respect to aggregate outcomes and not individual

strategies, as in Section 4. Extreme common-knowledge outcomes can be obtained as either

noise vanishes, so that non-fundamental volatility is greatest near perfect-information (as in

Proposition 4 and Proposition 6).

12 Formally, we consider equilibria such that G(Y (θ, ε)) = λ1θ + λ2ε for some strictly monotone function G
and non-zero coefficients λ1, λ2.
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6 Non-fundamental Volatility

We now investigate the role of the information structure for non-fundamental volatility, that

is, volatility conditional on θ. We are interested in two sources of non-fundamental volatility.

First, when there are multiple equilibria, sunspot variables may be used as coordination devices

and thus contribute to volatility. Second, when the equilibrium is unique its dependence on

the noise shock ε generates volatility.

Recall that with exogenous information, multiplicity disappears when agents observe the

fundamentals with small private noise (Proposition 1). Thus, there is no sunspot volatility

when σx is small enough. Moreover, as σx → 0, the size of the attack and the regime outcome

become independent of ε (Proposition 2). Thus, all non-fundamental volatility vanishes.13

With endogenous information, the impact of private noise is quite different. We first

summarize the implications of our results for the sunspot source of non-fundamental volatility.

A reduction in σx may take the economy from the uniqueness to the multiplicity region,

introducing sunspots (Proposition 3, Proposition 5 and Proposition 7). Indeed, potential

sunspot volatility is greatest when either noise vanishes, σx → 0 or σε → 0, in the sense that

the regime’s fate can become entirely dependent on the sunspot realization (Proposition 4 and

Proposition 6). Moreover, when the dividend is endogenous, sunspot volatility also emerges

in prices (Proposition 5), and again becomes most extreme as noise vanishes (Proposition 6).

We now turn to the second source of non-fundamental volatility and argue that, with

endogenous information, less noise may increase volatility even without entering the region of

multiple equilibria: when the equilibrium is unique, a reduction in σx or σε can increase the

sensitivity of equilibrium outcomes to the exogenous shock ε.

To show this result, we focus on the two financial-market models and proceed as follows.

The regime is abandoned if and only if θ ≤ θ∗(p) with p = P (θ, ε). As long as the equilibrium

is unique, θ∗(p) is continuously decreasing in p, and the price function P (θ, ε) is continuously

increasing in θ. Hence, the regime is abandoned if and only if θ ≤ θ̂(ε), where θ̂(ε) is the

unique solution to θ̂(ε) = θ∗
(
P (θ̂(ε), ε)

)
. Solving for θ̂(ε) in this way we obtain

θ̂(ε) = Φ

(
ψ +

σp

σx

ε

)
,

where ψ ≡ (1 + 1/σ2
p)

1/2Φ−1(1− c). It follows that

∂θ̂

∂ε
=

σp

σx

φ
(
Φ−1(θ̂)

)

13 Morris and Shin (2003, 2004) study the volatility of unique equilibria further in coordination games with
exogenous information.
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Figure 5: The regime-change threshold θ̂ as a function of the shock ε. The dashed line
corresponds to lower level of noise than the solid line.

and therefore θ̂(ε) satisfies a single-crossing property with respect to σp/σx. In this sense, the

sensitivity of the regime outcome to the non-fundamental shock ε increases with σp/σx.

With exogenous dividend, σp/σx = 1/(γσεσx) and therefore the sensitivity of θ̂ (ε) to ε

increases with a reduction in either noise. This result is illustrated in Figure 5, which depicts

the threshold θ̂(ε), with the dashed line corresponding to a lower σx or σε than the solid one.

With endogenous dividend, σp/σx = 1/(γσε). The impact of public noise is identical to

the exogenous dividend case: sensitivity increases with σε. In contrast, the sensitivity is now

invariant to the amount of private noise σx. This result still contrasts with the case of exoge-

nous information, where one can show that sensitivity is reduced when private information

improves (the result in Proposition 2 can be seen as the extreme case).

Consider next the implications for price volatility. With exogenous dividend we have

p = θ − γσεσ
2
xε. The impact of noise on the sensitivity of the price to ε is then exactly as in

Grossman-Stiglitz: a reduction in either σx or σε reduces price volatility.

In contrast, when the dividend is endogenous, we have p = f(A) − γσεε. Conditional

on the size of the attack—or, equivalently here, on the dividend—the volatility of the price

decreases with a reduction in σε and is independent of σx. But since the attack A is a function

of ε, a reduction in σε may have an ambiguous overall effect on price volatility. Indeed, we

have verified numerically that price volatility can increase with a reduction in σε. Thus, the

coordinating role of prices identified in Section 4 can generate volatility in asset markets even

without multiplicity.

We conclude that less noise may increase volatility in both the regime outcome and the

asset price even when the equilibrium is unique. The results on equilibrium multiplicity may

be viewed as extreme versions of this effect.
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7 Discussion

This paper emphasizes the importance of endogenous public information for understanding

multiplicity and volatility in situations where coordination is important. We model this by

letting agents observe either (i) the price of a financial asset, or (ii) a direct noisy signal of

others’ activity in the coordination game.

Our key result is that the precision of endogenous public information increases with the

precision of exogenous private information. This feature is likely to be very robust and carries

with it the important implication that lower levels of private noise do not necessarily contribute

towards uniqueness.

Whether this effect is strong enough to ensure multiplicity in the limit is sensitive to the

details of the aggregation process, for it depends on whether the precision of public information

increases faster than the square root of the precision of private information. Although this

turns out to hold in all the cases studied above, it need not obtain in some variations of our

asset-market model that introduce additional noise in the aggregation process.

Nevertheless, we believe that the cases presented here, and the result that information

aggregation ensures multiplicity for small enough noise, provide an important benchmark.

Indeed, the simplest model featuring information aggregation selects N individuals at random

to be on a ‘talk show’. Those on the show broadcast their signals to the rest of the population.

This amounts to generating a public signal z = θ + σzε with σz = σx/
√

N . In this case,

public communication links the precision of private and public information in such a way

that multiplicity is once again ensured for small enough noise. We conclude that, while some

extensions may qualify our limit results, they are unlikely to modify our main point that

endogenous public information is important for understanding volatility.
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Appendix

Proof of Proposition 2

Consider the limit as σx → 0 for given σz, or σz →∞ for given σx. In either case, αz/
√

αx → 0

and αz/αx → 0. Condition (3) then implies that θ∗(z) → θ̂ = 1 − c for any z, meaning that

the regime outcome is unique and independent of the non-fundamental shock ε. Similarly,

x∗(z) → x̂, where x̂ = θ̂ if we consider the limit σx → 0, whereas x̂ = θ̂ + σxΦ
−1(θ̂) if we

instead consider the limit σz →∞.

Proof of Proposition 4

In direct analogy to (3), the equilibrium correspondence here is given by

Θ∗(p) = {θ∗ ∈ (0, 1) : p = Q(θ∗)} ,

where

Q(θ∗) ≡ θ∗ −
√

αx

αp
Φ−1(θ∗) +

√
αx+αp

α2
p

Φ−1(1− c). (14)

Note that limθ∗→0 Q(θ∗) = ∞ and limθ∗→1 Q(θ∗) = −∞. Moreover, whenever αp/
√

αx >

1/
√

2π, there exists a non-empty interval (θ1, θ2) ⊂ (0, 1) such that Q is decreasing outside

this interval, and increasing inside it, as illustrated by the dashed line in Figure 6. It follows

that Θ∗(p) is non-empty and has at most three elements.

Any monotone selection from Θ∗(p) defines an equilibrium. Let θ∗l (p) = min Θ∗(p) and

θ∗h(p) = max Θ∗(p); these represent the least and most aggressive equilibria. Consider now

the limit as σx → 0 or σε → 0. Using (9), we have σp = γσεσ
2
x → 0,

√
αx/αp = γ2σ2

εσ
3
x → 0,

and therefore Q (θ∗) → θ∗ for all θ∗ ∈ (0, 1). It follows that Θ∗(p) converges to {1} for p ≤ 0,

to {0, p, 1} for p ∈ (0, 1), and to {0} for p ≥ 1, as illustrated by the solid line in Figure 6. By

p

1

2

Figure 6: The equilibrium correspondence as noise vanishes.
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implication,

θ∗l (p) →
{

1 for p < 0

0 for p > 0
and θ∗h(p) →

{
1 for p < 1

0 for p > 1

At the same time, σp → 0 implies that, for any (θ, ε), P (θ, ε) → θ. It follows that, for any

θ ∈ (0, 1) and any ε, θ−θ∗l (P (θ, ε)) → θ > 0 and θ−θ∗h(P (θ, ε)) → θ−1 < 0, which completes

the proof.

Proof of Proposition 6

Market clearing requires p̃ = p/
√

αx + x∗(p). Using (10), this reduces to p̃ = F (p), where

F (p) ≡ Φ
(
ψ − αp

αx+αp
p
)

+ 1√
αx

ψ +
√

αx

αx+αp
p

and ψ ≡
√

αx

αx+αp
Φ−1 (1− c) and αp = αxαε/γ

2. Consider the correspondence

P(p̃) = { p : p̃ = F (p) }.

Any monotone selection P ∗ from this correspondence defines an equilibrium price function by

letting P (θ, ε) = P ∗(θ− σpε). Note that limp→−∞ F (p) = −∞ and limp→∞ F (p) = ∞, which

together with the continuity of F ensures that P(p̃) is always non-empty. Moreover, whenever

αp/
√

αx > 1/
√

2π, there exists a non-empty interval (p1, p2) ⊂ R such that F is increasing

outside this interval, and decreasing inside it. (Note that F (p) = θ − γσxK (θ, p) and hence

the non-monotonicity of F simply reflects the non-monotonicity of asset demand.)

Take P ∗
l (p̃) = minP∗(p̃) and P ∗

h (p̃) = maxP∗(p̃), let Pl(θ, ε) = P ∗
l (p−σpε) and Ph(θ, ε) =

P ∗
h (p− σpε), consider the limit as σx → 0 or σε → 0. It can be shown that

P ∗
l (p̃) →

{
+∞ for p̃ < 1

−∞ for p̃ > 1
and P ∗

h (p̃) →
{

+∞ for p̃ < 0

−∞ for p̃ > 0

At the same time, σp → 0 implies that, for any (θ, ε), p̃ → θ. It follows that, for any

θ ∈ (0, 1) and any ε, Pl(θ, ε) → −∞ and θ − θ∗ (Pl (θ, ε)) → θ > 0, while Ph(θ, ε) → +∞ and

θ − θ∗ (Ph (θ, ε)) → θ − 1 < 0, which completes the proof.
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Proof of Proposition 7

Given that an agent attacks if and only if x ≤ x∗(y), the aggregate attack is A(θ, y) =

Φ
(√

αx(x
∗(y)− θ)

)
. Condition (13) then implies that the signal satisfies

x∗(y)− σxy = θ − σxσεε. (15)

Note that (15) is a mapping between y and z = θ − σxσεε. Define the correspondence

Y(z) = { y ∈ R | x∗(y)− σxy = z } .

We will later show that Y(z) is non-empty and examine when it is single- or multi-valued.

Take any function Ỹ (z) that is a selection from this correspondence, Ỹ (z) ∈ Y(z) for all

z, and let Y (θ, ε) = Ỹ (θ − σxσεε). The observation of y = Y (θ, ε) is then equivalent to the

observation of z = θ − σzε = Z(y), where Z(y) ≡ x∗(y)− σxy and

σz = σxσε. (16)

That is, it is as if agents observe a normally distributed public signal with precision propor-

tional to precision of exogenous private information.

An agent attacks if and only if x ≤ x∗(y), where x∗(y) solves the indifference condition

Φ
(√

αx + αz

(
θ∗(y)− αx

αx+αz
x∗(y)− αz

αx+αz
Z(y)

))
= c. (17)

The regime in turn is abandoned if and only if θ ≤ θ∗(y), where θ∗(y) solves A(θ, y) = θ, or

equivalently

x∗(y) = θ∗(y) + 1√
αx

Φ−1(θ∗(y)). (18)

Using Z(y) = x∗(y)− σxy and substituting x∗(y) from (18) into (17), we get

θ∗(y) = Φ
(√

αx

αx+αz
Φ−1(1− c) + αz

αx+αz
y
)

, (19)

which together with (18) determines a unique pair θ∗(y) and x∗(y). The strategy a(x, y) and

the corresponding aggregate A(x, y) are thus uniquely determined.

We return to the equilibrium correspondence Y(z). Using (18) and (19) this reduces to

Y(z) = {y : F (y) = z}, where

F (y) ≡ Φ
(

αz

αx+αz
y + q

)
+ 1√

αx

(
− αx

αx+αz
y + q

)
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and q ≡
√

αx/(αx + αz)Φ
−1(1 − c). Note that F (y) is continuous in y, and F (y) → −∞ as

y →∞, and F (y) →∞ as y → −∞, which guarantees that Y(z) is non-empty and therefore

an equilibrium always exists. Next, note that

sign(F ′(y)) = − sign
(
1− αz√

αx
φ

(
αz

αx+αz
y + q

))

and therefore F (y) is globally monotonic if and only if αz/
√

αx ≤
√

2π, in which case Y(z)

is single valued. If instead αz/
√

αx >
√

2π, there is a non-empty interval (z, z) within which

Y(z) takes three values. Different (monotone) selections then sustain different equilibria.

Using αz = αεαx from (16) completes the proof.

Extension with Noisy Dividend

Multiplicity obtains in the limit if the precision of public information increases at a faster rate

than the square root of the precision of private information. Here we show that this property

need not obtain in some variations of our asset-market model that introduce additional noise

in the aggregation process.

The model is as in Section 3 or Section 4, except that the dividend is not perfectly correlated

with the fundamental or the coordination outcome: f = θ+η in the one case, and f = f(A)+η

in the other, where η ∼ N (0, σ2
η) is independent of (θ, ξ, ε).

The equilibrium price continues to aggregate information, but the risk introduced by η

limits the sensitivity of asset demands to changes in expected excess returns. With exogenous

dividend, this effect implies a upper bound on the precision of the information revealed by

the price. As a result, for any given (ση, σε) > 0, multiplicity holds for an intermediate range

of σx, but not in the limit as σx → 0. With endogenous dividend, however, the sensitivity

of the dividend itself to θ increases with the precision of private information, overturning the

previous dampening effect. As a result, multiplicity now obtains even in the limit as σx → 0.

Finally, with either exogenous or endogenous dividend, less noise in the form of smaller

σε or ση contributes to multiplicity. In particular, for any (σx, σε) for which multiplicity was

obtained when ση = 0, multiplicity is again ensured as long as ση is positive but small enough.

Proposition A. (i) When f = θ + η, a unique equilibrium survives for sufficiently small σx,

given (ση, σε). (ii) When f = f(A)+η, multiple equilibria exist for sufficiently small σx, given

(ση, σε). (iii) In either case, the region of (σx, σε) for which the equilibrium is unique vanishes

as ση → 0.

Proof. Part (i). Postulating that the posterior for θ conditional on (x, p) is normally distrib-

uted with mean δx+(1− δ)p and precision α, where δ = αx/α and α = αx +αp, we have that
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individual asset demands are given by

k(x, p) =
E[ f | x, p ]− p

γVar[ f | x, p ]
=

δ(x− p)

γ
(
α−1 + σ2

η

) .

It follows that the equilibrium price is p = θ− σpε, where σp = γ(σ2
x + σ2

η/δ)σε Since δ ∈ [0, 1]

and σx > 0, σp is bounded from below by γσ2
ησε > 0 and hence σx < (γσ2

ησε)
2
√

2π suffices for

the equilibrium to be unique.

Part (ii). We now postulate that the posterior for θ is normally distributed with mean

δx + (1 − δ)p̃ and precision α, where p̃ = p/
√

αx + x∗(p), δ = αx/α, and α = αx + αp. It

follows that

k(x, p) =
E[ f | x, p ]− p

γVar[ f | x, p ]
=

√
αxδ (x− p̃)

γ
(
αxα−1 + σ2

η

)

and therefore p̃ = θ − σpε, where

σp =
1 + σ2

η

1− γσ2
ησε

γσεσx.

Hence, a higher ση again makes it harder for multiple equilibria to exist, nevertheless multi-

plicity is ensured by a sufficiently small σx or σε.

Part (iii). This follows immediately from the fact that, for any given (σx, σε), σp is

decreasing in ση, with σp → 0 as ση → 0.
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