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 DYNAMIC (S, s) ECONOMIES

 BY RICARDO J. CABALLERO AND EDUARDO M. R. A. ENGEL

 In this paper we provide a framework to study the aggregate dynamic behavior of an
 economy where individual units follow (S, s) policies. We characterize structural and
 stochastic heterogeneities that ensure convergence of the economy's aggregate to that of
 its frictionless counterpart, determine the speed at which convergence takes place, and
 describe the transitional dynamics of this economy.

 KEYWORDS: (S, s) policy, idiosyncratic shocks, heterogeneity, aggregation, synchroniza-
 tion, convergence, speed of convergence.

 1. INTRODUCTION

 IN RECENT YEARS there has been a surge in the application of formal microeco-

 nomic models of discontinuous and lumpy adjustment-originally developed in
 the early 50's for retail inventories-to a variety of topics in economics, such as
 cash balances, labor demand, investment, entry and exit, prices, durable goods,
 and technology upgrade. Yet the possibility of explaining aggregate economic
 phenomena based on these models has remained largely unexplored, primarily
 because of the technical difficulties involved. Since aggregate data do not look
 as discontinuous and lumpy as their microeconomic counterparts, in order to

 apply these models to macroeconomic data aggregation has to be modeled

 explicitly. This is hard to do when shocks are not purely idiosyncratic but also
 have a common (or, equivalently, aggregate) component. The few results exis-
 tent in the literature have provided important insights, but have been limited
 either to numerical simulations (Blinder (1981)) or to steady state analysis
 (Caplin (1985), Caplin and Spulber (1987)).2 This paper's main contribution is
 to provide a framework within which the out-of-steady-state aggregate dynamics
 of an economy with lumpy adjustment at the microeconomic level can be
 studied analytically.

 We simplify the mathematics substantially by only considering a particular,
 but widely used, adjustment policy: the one sided (S, s) rule. In the last section
 we argue that many of this paper's insights either carry over directly to more
 general forms of adjustment rules or provide the natural foundation for their
 study.

 One of the appealing characteristics of (S, s) rules is their simplicity: an
 individual agent allows his state variable (e.g. inventories) to fall freely until it
 reaches a certain critical level s; at this point abrupt action takes place and the

 state variable is reset to an upper value S from where the cycle starts again.

 1 We thank Roland Benabou, Olivier Blanchard, Andrew Caplin, Peter Diamond, Mohamad
 Hammour, Esteban Jadresic, Keith Head, Robert Porter, four anonymous referees, and seminar
 participants at Columbia, MIT, and Princeton for very useful comments. Ricardo Caballero
 acknowledges financial support from NSF through Grant SES-9010443.

 2 Others have performed comparative statics experiments in models with no aggregate (continu-
 ous) shocks (e.g. Akerlof (1979), Tsiddon (1989)).
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 Examples where the optimality of fixed (S, s) rules has been established go back
 to the problem of inventories management (Scarf (1959)); a more recent
 example is price setting in the presence of menu costs (Sheshinski and Weiss
 (1977, 1983), Caplin and Sheshinski (1987)). Moreover, the fixed (S, s) model
 has also been extensively used in the Operations Research and Economics
 literatures as an approximation for more complex optimal rules (e.g. Arrow,
 Harris, and Marschak (1951), Karlin and Fabens (1959), Blinder (1981),
 Ehrhardt, Schultz, and Wagner (1981), Blanchard and Fischer (1989, p. 405)).

 Whenever microeconomic units adjust discretely and by large amounts, the
 issue of heterogeneity acquires high priority. The similarity between the econ-
 omy's aggregate path and the discontinuous and lumpy path of microeconomic

 units grows with the degree of synchronization of units' actions. In the limit,
 when all units are identical and act simultaneously (the symmetric equilibria
 assumption), the aggregate path is indistinguishable from that of an individual
 unit. On the other hand, if units' actions exhibit little synchronization, the
 aggregate may depart substantially from the behavior of any single (representa-
 tive) unit. In this paper we study the aggregate implications of the process of
 endogenous synchronization and staggering of individual units.

 We consider a dynamic economy where agents differ in their initial positions
 within their bands and face both stochastic and structural heterogeneity, where
 the former refers to the presence of (unit specific) idiosyncratic shocks, and the
 latter to differences in the widths of units' (S, s) bands and their response to
 aggregate shocks. We study the evolution of the economy's aggregate and the
 evolution of the difference between this aggregate and that of an economy
 without microeconomic friction, where the latter pertains to a situation where
 individual units adjust with no delay to all shocks. We also examine the
 sensitivity of this difference to common shocks. For example, in the retail
 inventory problem the aggregate deviation and sensitivity to common shocks

 correspond to the aggregate inventory level and its sensitivity to aggregate
 demand shocks, respectively.

 In Section 2 we determine conditions under which the microeconomic effect

 of lumpy adjustment rules has no aggregate impact. Section 3 begins the study
 of the economy's aggregate (out-of-steady-state) dynamics by discussing the
 summary variables we use to describe the economy over time. In Section 4 we
 consider the effect of stochastic heterogeneity on the economy's dynamic
 aggregate behavior when no structural differences are present. We show that
 the economy's aggregate converges to that of its counterpart without friction
 when idiosyncratic shocks spread out without bound over time, and that the
 speed of convergence increases with the rate at which dispersion occurs; we also
 show that common shocks play no role in aiding convergence. Structural
 heterogeneity is incorporated into the analysis in Section 5; we show that it can
 lead to convergence by itself, that the speed of convergence grows with the
 degree of structural heterogeneity, and that common shocks aid convergence
 when structural differences are present. Section 6 shows that, paradoxically, the
 interaction between both forms of heterogeneity may actually slow down con-
 vergence. Section 7 presents final remarks. An extensive appendix follows.
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 2. BASIC MODEL AND STEADY STATE

 We consider an economy composed of a large number of units, and approxi-

 mate this large number by a continuum, indexed by i E [0, 1]. We let zi(t)
 denote the difference between xi(t), the actual value of unit i's state variable at
 time t when an (S, s) policy is followed, and x*(t), the value of the same
 variable when there is no friction. For example, consider the retail inventory
 problem, where firms decide on their optimal inventory holding in the presence

 of uncertain demand and fixed replenishment costs. In this case x*(t) and xi(t)
 are accumulated sales and accumulated inventory orders, and zi(t) is the level
 of inventories.

 We express every frictionless (optimal) variable, x*(t), as the sum of an

 idiosyncratic component, vi(t), and the unit's response to an aggregate shock
 a(t) Jx*(t) di:

 (1)x*(t) = Oia(t) + vi(t),

 where Oi is unit i's sensitivity to the common shock.3 For example, in the retail
 inventory problem da(t) denotes aggregate demand shocks and Oi the sensitivity
 of sector i's demand to these shocks. We normalize the sensitivity parameters so

 that fJOOi di = 1; this implies that by construction fJOvi(t) di = 0 for all t.
 We assume that, for each unit i, zi(t) decreases monotonically and continu-

 ously until it reaches the unit specific trigger barrier, si; at this point finite
 control is exerted on xi to bring zi back to the unit specific target barrier Si.4

 ASSUMPTION 1-Stationarity, symmetry, monotonicity, and continuity:

 1. The variable zi(t) is controlled according to a fixed band, one sided, unit
 specific (S, s) policy.

 2. The (S, s) rules are symmetric: Si = si.
 3. The variable zi(t) decreases monotonically during time periods where no

 control is exerted.6

 4. The sample paths of vi(t) are continuous and those of a(t) are continuous,
 increasing, and unbounded.

 3 Of course, studying the determination of the x:*(t)'s themselves is a topic in itself.
 4 We assume that the (S, s) rules followed by units are given exogenously. This has two

 consequences. First, we do not consider the relation between the economy's aggregate behavior and
 the determinants of the (S, s) policies' optimal target and trigger points. This can be done easily, yet
 doing so is beyond the scope of this paper. Second, the results we derive also apply in a broader
 class of problems, where (S, s) rules are not optimal but can be justified as either simple rules that
 approximate more complex first best rules or, perhaps equivalently, as arising from near rational
 behavior.

 5 The only reason for making this assumption is that it simplifies some of the algebraic
 expressions. It is easy to work without it, as we did in preliminary versions of this paper. For

 example, this implies that in the retail inventory problem zi represents the inventory level in
 deviation from its long run average.

 6 This assumption requires that the sum of changes in aggregate and idiosyncratic components
 always be positive: oi da(t) + dvi(t) > 0. We assume that a(t) grows sufficiently fast-compared to
 the rate at which idiosyncratic shocks disperse-for this assumption to hold. In some cases,
 however, calculations are simpler if we consider distributions generating idiosyncratic shocks that
 have infinite tails. Our model is appropriate in this case if the fraction of units violating the
 monotonicity assumption is small.
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 This framework can accommodate many well known problems, apart from the
 retail inventory problem mentioned above. A few of them are:

 . The Pricing Problem, where firms pay a menu-cost when they adjust their

 nominal prices. In this case x*(t) is the frictionless optimal price and xi(t) the
 actual price charged.

 . The Cash-Balance Problem, where consumers decide on the optimal level
 of cash holdings when adjusting their cash-balances is costly. In this case, x*(t)

 and xi(t) are accumulated expenditures and accumulated withdrawals, and
 zi(t) is the current cash balance.

 . The Technology Update Problem, where firms decide on whether to scrap

 their current machines and update them or not. In this case, x*(t) and xi(t) are
 desired and actual state of technology, and zi(t) is the gap between them.

 . The Durable Goods Problem, where consumers decide when to buy a

 durable good and adjusting the stock they have is costly. In this case, x4(t) and

 xi(t) are desired and actual levels of the stock of durable goods, and zi(t) is the
 gap between them. In this problem, the sensitivity parameters could correspond
 to the marginal propensities to consume.

 . The Capital Stock Adjustment Problem, where firms decide when to adjust
 their capital stock when there are nonconvex costs of adjustment. In this case,

 x*(t) and xi(t) are desired and actual levels of the stock of capital, and zi(t) is
 the gap between them.7

 The main goal of this paper is to examine the behavior of the variable we call

 "the aggregate," defined as the integral of the xi(t)'s over all i's and denoted by
 X(t). Using the definition of the zi(t)'s, and letting Z(t) fJozi(t) di, leads to
 the following expression for X(t):

 (2) X(t) = a(t) + Z(t).

 When there is no microeconomic friction, all the zi's are identically zero; thus
 X(t) = X*(t) = a(t). As we are interested in the effects of microeconomic (S, s)
 policies on the departure of X(t) from X*(t), we focus on the mean of the
 cross-section distribution of individual departures, Z(t).8 The entire analysis
 carried out in this paper-in particular the computation of the latter mean-is
 conditional on the actual path of the aggregate shock a(t). It turns out that the
 results we derive do not depend on any particular features of this path, as long
 as a(t) is continuous, increasing, and tends to infinity (see Assumption 1). We
 therefore do not need to specify the stochastic mechanism underlying common
 shocks. The fact that we consider the dynamic path of the actual cross-section
 distribution-and not that of the joint distribution of all units-in spite of the
 presence of aggregate shocks, is one of the building blocks of the methodology

 7The monotonicity assumption is appropriate in the inventory problem when returns are
 dominated by new sales and the holding cost does not vary much; in the pricing problem, when core
 inflation is sufficiently large; in the cash balance problem, when expenditures dominate the interest
 rate variability; and in the technology, consumer durables, and investment problems, when the
 obsolescence and depreciation rates dominate the uncertainty faced by firms and consumers.

 8 To reconstruct X(t) based on Z(t) we need to know the value of a(t). This is usually obtained
 from a theoretical model for the frictionless economy.
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 we develop in this paper. Its usefulness is best appreciated when we consider
 convergence issues in Sections 4 and 5. We therefore postpone discussing its
 importance until the final section.

 Instead of working directly with zi(t), it is notationally convenient to describe
 the problem in terms of the fraction unit i has covered of its (S, s) band at time

 t, cj(t). We therefore define

 1 zi(t)
 (3) ci(t) 2

 2 Ai

 where Ai Si - si denotes unit i's bandwidth. The variable ci(t) takes values in
 [0,1); it starts its cycle when ci(t) = 0 (i.e. when zi(t) = Si) and ends it when
 ci(t) reaches one (i.e. when zi(t) reaches si). Substituting xi(t) - x(t) for zi(t)
 in (3) yields

 ci( t) = - _ i x

 Substituting x*(t) by (1), adding and subtracting ci(O), and noting that (xi(t) -
 xi(0))/Ai is always an integer, yields

 (4) ci(t) = (CO(0) + 'i A t ()) (mod 1),

 where x(mod 1) denotes the difference between the real number x and its

 integer part and we set a(O) and vi(O) equal to zero without loss of generality.
 We let ct, Vt, 6, and A denote random variables with a joint probability

 distribution identical to that of the joint cross-section distribution of the ci(t)'s,
 the vi(t)'s, the 0i's, and the Ai's.9 Thus, we have that

 O (a(t) + vt
 (S) ct= co + A (mod 1).

 An expression for the aggregate deviation, Z(t), can be obtained directly in
 terms of the variables we defined above. All that is needed to determine Z(t) is
 the value of the current aggregate shock, a(t), and the cross-section distribution

 of the random vector (co, vt, A, 6).

 9 Note that e9 and A do not have time subindices, indicating that units' sensitivity parameters and
 bandwidths do not change over time.
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 PROPOSITION 1: Suppose Assumption 1 holds. Then Z(t) = g(a(t), t) and X(t)
 = a(t) + g(a(t), t), where

 1 [f( 6?a+
 g(a,t) -E(A) EA co+ A )(mod 1)}]

 2 A~.iii0

 PROOF: Follows directly from equations (3), (4), and (5). Q.E.D.

 The intermittent and lumpy microeconomic behavior is irrelevant at the
 aggregate level when-for any realization of the stochastic mechanism underly-
 ing aggregate and idiosyncratic shocks-Z(t) remains constant over time. With-
 out loss of generality we suppose that the constant aggregate deviation is equal
 to zero in what follows.

 DEFINITION 1: The aggregate deviation of an economy satisfying Assumption
 1 is at its steady state at time t = 0 if g(a, t) = 0 for all a > a(O) 0 and all t > 0,
 with g(a, t) defined in Proposition 1.

 Whether the economy's aggregate deviation is at its steady state or not
 depends on the stochastic mechanism underlying the model. There are various
 sets of conditions under which the aggregate deviation remains equal to zero as
 time passes. In this paper we consider conditions that can be expressed only in
 terms of the cross-section distributions defined above. In the following proposi-
 tion-which is an extension of Proposition 1 in Caballero and Engel (1989b)-we
 show that when units' initial positions within their cycle are distributed uni-
 formly on [0, 1) and independent from the remaining sources of heterogeneity,
 the economy's aggregate deviation is at its steady state.

 PROPOSITION 2 (Caballero and Engel (1989b)): Given Assumption 1, the

 economy's aggregate deviation is at its steady state at time t = 0 if co is uniform on
 [0, 1) and independent from A, e and vt for all t > 0. Furthermore, ct is uniform
 on [0,1) for all t> 0.

 This result shows that when units' positions within their cycle are indepen-
 dent from the sources of structural and stochastic heterogeneity, there exists a
 cross-section (or empirical) distribution of the c 's that is invariant under
 continuous, monotone, aggregate shocks. This distribution is uniform. It follows

 from equation (3) that there also exists a cross-section distribution of the zi's
 that is invariant under the same class of shocks. This distribution is determined
 by the probability distribution of A; it is uniform only when bandwidths do not
 vary across units.

 Proposition 2 presents an economy with strong forms of microeconomic
 rigidity that has an aggregate behavior indistinguishable from that of an econ-
 omy without friction. This is a generalization of the insightful result in Caplin
 and Spulber (1987). They consider the case where all units have the same
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 bandwidth, no idiosyncratic shocks are present, and common shocks have the
 same impact on all units' X*(t)'s. None of these conditions are required for
 Proposition 2 to hold. In addition, the scenario described in Proposition 2 has a

 realistic feature that is absent in an economy without structural or stochastic
 heterogeneity: the relative positions of units within their cycle changes over
 time. The order in which units adjust their state variable does not repeat itself

 from one cycle to another.

 Proposition 2 assumes that the initial cross-section distribution of the ci's is
 independent from the joint distribution of idiosyncratic shocks, bandwidths, and

 sensitivity parameters. If this is not the case, the cross-section distribution of the

 ci's generally does not remain uniform on [0,1) and the aggregate deviation,
 Z(t), does not remain constant. This happens, for example, when units with
 smaller bandwidths-or larger sensitivity parameters-are initially concen-
 trated at the beginning of their cycle, as is further illustrated in Section 5.

 3. DESCRIPTION OF NON-STEADY-STATE DYNAMICS

 There are many reasons why Assumption 1 may be momentarily violated and
 the (S, s) economy's aggregate deviation be forced away from the steady state
 described in Proposition 2. For example, in the case of the pricing problem, a
 finite (discrete) change in a(t), like an oil shock or a large monetary shock,
 bunches a fraction of units at the beginning of their cycle. Alternatively, a
 widening of units' bands-due, for example, to an increase in the rate of core
 inflation in an economy where bands are set optimally-leaves a fraction of the

 new state space initially with no units. In the time period following any one of
 these "structural changes," the aggregate deviation typically does not remain
 constant and the economy therefore is not at its steady state anymore.

 In the following three sections we study the dynamic behavior of the economy
 outside of its steady state. We consider idiosyncratic shocks and structural
 heterogeneity as possible sources of convergence; the latter meaning differences

 in bandwidths and sensitivity parameters. For expository simplicity, we study the
 effects of these factors separately before considering their interaction.

 Proposition 1 characterizes the dynamic path of the difference of the aggre-
 gates from economies with and without frictions. For example, it can be used to
 determine the evolution of the average level of inventories after an oil shock.
 Yet we may not only be interested in the level of aggregate inventories at a
 given point in time, but also in the potential impact of a small aggregate

 demand shock on this aggregate. This impact on Z(t) is equal to the (partial)
 derivative of the function g-defined in Proposition 1-with respect to a,

 evaluated at (a(t), t). We denote this derivative by A(t) ag/la.
 The relation between A(t) and the cross-section distribution of firms' posi-

 tions within their cycle is best understood if we look at the effect of a small
 common shock, Aa, on the aggregate deviation, Z(t), when sensitivity parame-
 ters do not vary across units (6? 1). We begin with the units that are forced to
 start a new cycle. The common shock forces a unit with bandwidth A to adjust
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 only if it has covered a fraction larger than or equal to 1 - (Aa/A) of its cycle
 before the shock. The fraction of units with bandwidth A that reach their trigger

 point is proportional to Aa .f(Ct IA)(l-)/A + O((Aa)2),10 where fx(A) denotes
 the density of the random variable X. Other things equal, this fraction is
 smaller the larger the common bandwidth. This effect is exactly offset by the
 fact that Z(t) grows more when a unit with a larger bandwidth restarts its cycle.
 Thus, the contribution to the aggregate deviation of those units that adjust and

 have bandwidth equal to A is proportional to Aa f(Ct,A =A)(1 i-f(A); the total
 increase in Z(t) due to units reaching their trigger point is then equal to

 Aa ff(C,IA =A)(1 -)fA(A) dA = Aa -fc(t ). Next we consider those units that do
 not start a new cycle after the aggregate shock. Every unit that does not adjust
 decreases its contribution to Z(t) by Aa; their total contribution is equal to Aa
 (minus a term of order (Aa)2 that accounts for the fact that not all units belong
 to the group that does not start a new cycle). We have therefore shown that

 Ag/Aa is equal to ftc(1-)- 1 + O(A a). Letting Aa approach zero we conclude
 that J(t)=fct(1-) -.

 It is apparent from the previous paragraph and Proposition 1 that both J(t)
 and Z(t) may be equal to zero even when the economy's aggregate deviation is
 "far away" from its steady state. On the one hand, J(t) is equal to zero every

 time fj(l-) is equal to one;" on the other hand, Proposition 1 implies that
 Z(t) = 0 every time fAE(ctIA = A)fA(A) dA = 0. Therefore Z(t) = 0 whenever
 the weighted average of the "sectoral" aggregates is equal to zero, where the
 latter are defined as the aggregates conditional on a common bandwidth. Since
 these sectoral aggregates may evolve in rather arbitrary ways, there is no reason
 why their average should remain equal to zero in the future.

 It is tempting to argue, based on Proposition 2, that the economy's aggregate
 deviation is at its steady state every time the cross-section distribution of units

 within their cycle, ct, is uniform on [0, 1). This intuition is supported by the fact
 that Z(t) = E{A( - cd)} is equal to zero when ct is uniform on [0, 1) and
 independent from A. Yet this argument is not correct, since c0 is generally not
 independent from A. For example, consider the case where a fraction of units is
 bunched at the beginning of their cycle after the economy is perturbed away
 from its steady state. Other things equal, units with larger bandwidths move a
 smaller fraction of their cycle in a given period of time, so that the correlation

 between A and ct is negative in the time period following the perturbation. We
 conclude that although Z(), 1(t), and the shape of the cross-section distribu-
 tion of units' positions within their cycle are interesting summary variables of

 10 The 1- is used in place of 1 to remind us that there are no units with ci(t) = 1, since this is a
 trigger point. Strictly speaking, this notation is unnecessary since the density of an absolutely
 continuous random variable is determined up to a set of Lebesgue measure zero. What we have in
 mind is a continuous version of this density.

 11 This assumes that all sensitivity parameters are the same across units. The expression for J(t)
 is extended to the general case as follows. We apply the argument given in the text with the density

 of ct conditional on the value of i9 instead of fc and take expectation with respect to 19,
 concluding that J(t) = Ee9[Of(c e9)(1 )] - 1. The assertion that J(to) = 0 does not imply that J(t)
 remains equal to zero is still valid.
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 the economy's aggregate deviation at any particular instant in time, neither of
 them has the property of capturing how much the economy's aggregate behavior

 differs from that of its counterpart without frictions. Next we consider two

 indices that do have this property:

 Z* (t)-SUP{a >a(t), s >t} ig(a s) I,

 and

 dg(a, s)
 J*(t) SPuP{a>a(t),st} s a

 The definition of these indices is now illustrated by describing how one of them,

 Z*(t), is evaluated at a given instant in time, to. Suppose that accumulated
 common shocks at time to are equal to ao. Consider all possible future paths of
 the aggregate shock, {a(s), s > t}, that satisfy Assumption 1 and have a(to) = ao,
 and calculate the maximum (absolute) aggregate deviation for every one of
 them. The index Z*(t) then is equal to the largest among these maxima. The
 aggregate deviation and its sensitivity to small aggregate shocks have (absolute)
 values that are bounded from above by Z*(t) and J*(t) for any future
 trajectory of the common shock that satisfies Assumption 1.12 Accordingly, we
 define "convergence of the economy's aggregate to that of its counterpart with no
 friction" as follows.

 DEFINITION 2: The aggregate of an economy that satisfies Assumption 1
 converges to that of its frictionless counterpart if Z*(t) and J*(t) tend to zero
 as t tends to infinity.

 In sum, we describe the dynamic behavior of an (S, s) economy using four
 summary variables. We look at the economy's aggregate deviation from the
 frictionless counterpart, at the sensitivity of this index to common shocks, and at
 the suprema of these indices over all possible realizations of the underlying
 stochastic mechanism.

 4. CONVERGENCE AND IDIOSYNCRATIC SHOCKS

 4.1. Convergence

 In this section we isolate stochastic heterogeneity as the only source of

 convergence by assuming that all units have the same bandwidth (Ai A) and
 the same sensitivity parameters (0i- 1).

 There are many ways in which the economy's aggregate may converge to that
 of its frictionless counterpart. For example, convergence takes place if idiosyn-
 cratic shocks are correlated with co in such a way that they exactly fill in the
 gaps between the density of ct and a density uniform on [0,1) in finite time and,

 12 Considering suprema in the definitions above is just one possible choice. We could work with a
 weighted average-over all possible values of a > a(t) and s > t-where the weights reflect the
 likelihood of different sample paths of the common shock and the time discount rate.
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 after this happens, become independent of units' positions within their cycle so

 that ct remains uniform on [0, 1) (see Proposition 2). This way of achieving
 convergence is rather far-fetched; there exist other scenarios where convergence
 takes place that are even more arbitrary. In this section we consider conditions

 that ensure convergence when there is no systematic relation between co and
 the realizations of the idiosyncratic shocks.

 ASSUMPTION 2-Independence: The random variables co and vt are indepen-
 dent for all t > 0, or, equivalently, dvt is independent from cs, for all s < t.

 Under the independence assumption, convergence is not achieved by filling in
 the gaps in finite time, but by making initial conditions irrelevant as time passes.

 This happens when the cross-section distribution of idiosyncratic shocks, vt,
 folded back into the unit interval, converges to a distribution uniform on [0, 1)
 and thereby "washes away" the initial cross-section distribution of units' posi-
 tions within their cycle. An example is useful at this point. Suppose that the

 process generating any unit's idiosyncratic shocks, (vi(t), t > 0), is Gaussian with
 variance a2(t) growing as time passes. Since these processes are independent

 across units, the cross-section distribution of idiosyncratic shocks, vt, also is
 normal and has the same variance. This follows from the Glivenko-Cantelli
 Theorem; see e.g. Billingsley (1986). Figure la illustrates how the cross-section
 density of idiosyncratic shocks flattens out; the corresponding evolution of the

 density of ct is illustrated in Figure lb-where we have abstracted from the
 value of the common shock a(t)-for the case where co is a spike at 0.5. Since
 the expected value of ct approaches one half, Z(t) tends to zero, and since the
 cross-section density of ct is approaching one, A(t) =f,(1 -) - 1 tends to zero.
 Furthermore, since bandwidths and sensitivity parameters are the same across
 units, aggregate shocks do not act as a unit separating mechanism; all they do is
 move units around their cycle. Figure lc illustrates this by showing how the

 density of ct varies for different values of the common shock at a fixed instant in
 time (t = 1.0). It follows that Z*(t) and J*(t) both tend to zero. Thus Figure 1
 suggests that all summary variables converge to zero when the cross-section
 density of idiosyncratic shocks flattens out as time passes. This assumes that
 densities are unimodal, or at least that they do not oscillate too much. The
 following assumption makes these intuitive conditions on the density of the v 's
 precise.

 ASSUMPTION 3-Flattening out of densities: The total variation of the density
 of vt tends to zero as t tends to infinity.13

 13The total variation of a function f(x) is equal to SUp >k If(Xk +) - f(Xk) I, where the supre-
 mum is taken over all finite increasing sequences x1 <X2 <X3 < .... It follows directly from this
 definition (see, e.g., Proposition 3.8 in Engel (1991)) that the total variation of a unimodal function
 is equal to twice the maximum value it attains. More generally, if f(x) is piecewise continuously
 differentiable, with jumps of absolute magnitude 8al, f2 then its total variation is equal to
 E3k + f If '(x) dx.
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 Assumption 3 holds when the density of vt is unimodal and its largest value
 tends to zero as t tends to infinity. Two situations where this happens are when
 the vi's are normal and their variance tends to infinity, and when the vi's are
 absolutely continuous and are an integrated process. The proposition that
 follows provides general conditions under which convergence occurs.

 PROPOSITION 3: Suppose idiosyncratic shocks and differences in units' initial
 positions within their cycle are the only sources of heterogeneity and Assumptions
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 1-3 hold. Then the economy's aggregate converges to that of its counterpart

 without friction and ct converges to a distribution uniform on [0, 1).

 PROOF: See the Appendix. Q.E.D.

 The assumptions of Proposition 3 are on the cross-section distribution of
 idiosyncratic shocks, not on the processes generating individual units' shocks.

 Since we have a continuum of units, the Glivenko-Cantelli Theorem (see

 Billingsley (1986)) provides a link between assumptions on the vi(t)'s and
 assumptions on vt. For example, if idiosyncratic shocks are i.i.d. across units,
 then the cross-section distribution of idiosyncratic shocks is equal to the
 probability distribution generating individual shocks. Another example is when

 the vi(t)'s are of the form yiwi(t), with the wi(t)'s i.i.d. across units and yi a
 fixed, unit specific parameter (that could depend on Oi and Ai). In this case vt
 has the same probability distribution as the product of the independent random

 variables F and wt, where F corresponds to the cross-section distribution yi's,
 and wt to the common distribution of wi(t)'s.

 4.2. Speed of Convergence

 Figure 1 suggests that convergence is faster when the variance of idiosyncratic
 shocks, relative to the common bandwidth, is larger. It also shows that the speed
 at which the economy's aggregate behavior approaches that of an economy with
 no friction-as measured by Z*(t) and J*(t)-does not depend on the sample
 path of the common shock a(t). We illustrate these issues with an example.

 Suppose the economy's aggregate deviation is at its steady state, when an
 increase in the variance of shocks leads all units to increase their bandwidths by
 50%, and that the new idiosyncratic shocks follow a Brownian motion with
 instantaneous standard deviation equal to 5%. From the symmetry assumption

 it follows that co is uniform on [1/4,3/4). Figure 2a shows the resulting paths
 of the aggregate deviation Z(t) for two economies which only differ in the
 realizations of the common shock, a(t). The explicit dependence of g(a(t), t) on

 t (via vt) is reflected in the dampening of the oscillations of the sample paths of
 Z(t). The dependence of g on a(t) determines the speed at which the actual
 sample paths oscillate; the number of oscillations grows with the speed at which
 common shocks accumulate. Figure 2b illustrates the corresponding paths of
 J(t).

 The convergence mechanism we consider in this section ensures that the

 cross-section distribution of units' positions within their cycle converges to a
 distribution U uniform on [0, 1). It is therefore not surprising that the summary
 variables Z*(t) and J*(t) are closely related to particular notions of distance

 between ct and U. Since the corresponding relation for J*(t) can be derived
 intuitively, we only consider this case. From our discussion in Section 3, we have

 that J(t) is equal to fc(1 -) - 1. The index J*(t) is obtained by maximizing
 dg/da over all values of a > a(t) and all values of s > t. Modifying the value of
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 a for a fixed instant in time s rotates the density of cs without affecting its
 shape; for this see Figure lc and imagine joining both ends of the x-axis to
 form a circular diagram, as in Caplin and Spulber (1987). It follows that

 supa Idg(a, s)/da I is equal to SUpa Ifc(a) - 11. The latter expression is the
 sup-distance between the densities of c5 and U, which we denote by R(cs, U). It
 is equal to the largest relative error made when approximating the distribution

 of CS by a distribution uniform on [0,i).14 We therefore have that J*(t)=
 sups5t R(cs, U). Figure lb indicates that it is quite likely that R(cs, U) de-
 creases monotonically over time. This is indeed true when the vi's have
 independent increments, as is shown in Proposition A4 in the Appendix. It then

 follows that J*(t) = R(ct, U), that is, that the largest (percentage) error made
 when approximating the probability of an event under ct by the corresponding
 probability under U is equal to the largest sensitivity of the aggregate deviation
 to small common shocks over all possible future sample paths of a(t).

 Figures 2c and 2d show the trajectories of Z*(t) and J*(t) that correspond to
 Figures 2a and 2b. These do not depend on the particular paths of a(t). It
 follows from the formulas we derive for the summary statistics in the Appendix
 that the speed of convergence increases with the relative importance of idiosyn-
 cratic shocks compared with the common bandwidth. For example, if in the

 experiment of Figure 2 xi(t) and x(t) are the logarithms of economically
 meaningful variables and time is measured in years, then it takes about 18 years
 before J*(t) is below 5 percent when o/A is equal to 0.1; if a/A is equal to 0.5
 it takes only about 9 months.15

 In Proposition Al in the Appendix, we provide general expressions for the
 indices used to construct these figures. They are all expressed in terms of the

 Fourier coefficients of vt, and show that, loosely speaking, the smaller the
 Fourier coefficients, the faster all indices converge to zero. This can be under-
 stood in terms of the example given in Figure 1 above, since Fourier coefficients

 measure how fast vt spreads out.'6 Moreover, in the particular case where
 idiosyncratic shocks have independent increments, all the indices converge to
 zero at the same rate as lklt, where k denotes the first nontrivial Fourier

 14 Formally:

 Pr{cUeA}
 R(cS, U)= SUpA Pr{eA-1'

 where the supremum is taken over all Borel sets with positive Lebesgue measure. The proof may be
 found in Caballero and Engel (1989a).

 15 We have limited our attention to cases where the economy converges to the steady state, but
 the same approach can be used when this does not happen. In Caballero and Engel (1989b) we show
 that when the vi(t)'s are stationary, the synchronizing features of large aggregate shocks can only be
 partially undone by stationary idiosyncratic shocks.

 16 Given a random variable X, the real and imaginary parts of its first Fourier coefficient are
 equal to the expected value of cos(2vrX) and sin(2vrX). Since the sine and cosine functions are
 periodic, these expectations are equal to those of cos(27rX(mod 1)) and sin(27iX(mod 1)) and
 therefore measure how near to a uniform distribution the random variable X is after being folded
 back onto the unit interval.
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 coefficient of v1/A that differs from zero.17 Hence the speed of convergence is
 faster, the smaller the first nontrivial Fourier coefficient of v1/A. For example,

 when idiosyncratic shocks follow a Brownian motion with instantaneous vari-

 ance 2, we have that Ik I = exp ( - 2irr2a-2/A2). Since the variance of the
 random variable that is folded back into the unit interval (see equation (4)) is
 (o-/A)2, it is not surprising that convergence is faster when this ratio is larger.

 5. CONVERGENCE AND STRUCTURAL HETEROGENEITY

 Structural heterogeneity-namely, differences in bandwidths and sensitivity
 parameters-is a second source of convergence. It ensures convergence by
 itself, even if no idiosyncratic uncertainty is present. It also adds various new

 features to the analysis of convergence and speed of convergence. Most promi-
 nently, aggregate shocks stop being irrelevant-as was the case in Section

 4-and become the driving force behind convergence.
 In this section we isolate structural heterogeneity as a source of convergence,

 by assuming that there are no idiosyncratic shocks. We consider both sources of
 convergence simultaneously in Section 6. We find it convenient to study sepa-

 rately the cases where differences in bandwidths and differences in sensitivity

 parameters are the only sources of convergence. We begin with the former case.

 5.1. Heterogeneous Bandwidths

 When structural heterogeneity due to different bandwidths is present, equa-
 tion (3) may be used to show that

 (6) Z(t) =fAfA(A) { 2-C( t JA)} dA,

 where fA(A) denotes the probability density of bandwidths and C(tIA) the
 average position within their cycle of the "sector" of the economy formed by

 units with bandwidths equal to A.
 Equation (6) shows that, as mentioned in Section 3, units with a larger

 bandwidth have a larger weight when determining the deviation of the aggre-
 gate from its frictionless counterpart. The weight is proportional to both the size
 of the bandwidth and the size of the sector. This equation also shows that the
 aggregate path of the economy may converge to that of its frictionless counter-
 part in one of two ways. First, convergence takes place if units within each
 sector approach a distribution uniform on their common bandwidth. Each
 sector then behaves as in a frictionless economy, and adding over all sectors
 shows that the economy's aggregate mimics that of its frictionless counterpart.

 Convergence occurs in this way when the density of idiosyncratic shocks spreads
 out without limit as time passes (see Section 4). Yet convergence may take place

 17 When we say that g(t) converges to zero at the same rate as a positive decreasing function
 h(t), we mean that

 0< lim (limsup I g(u)I/h(t)) <+ooX
 t- +0 u >ut
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 even when the aggregate deviation of units with the same bandwidth does not
 converge at all, but synchronization among the aggregate deviations of different
 bandwidths breaks down over time. This is the case with sufficient differences in

 bandwidths.

 5.1.1. Convergence

 We start our discussion of convergence by presenting an example where

 differences in bandwidths are the only source of convergence. All Oi's are the
 same, there are no idiosyncratic shocks, and all units start off at the beginning
 of their cycle. We consider a cross-section distribution of the inverse-band-

 widths-the 1/Ai's-that is uniform on [10,20] and assume that the xi's and
 x*s are the logarithms of economically meaningful variables. Bandwidths there-
 fore vary between 5 and 10 percentage points. Since there are no idiosyncratic
 shocks, and all units start off at the beginning of their cycle, we may imagine

 that there is only one unit in each sector. The deviation of any given sector does
 not approach zero; it exhibits cycles that do not dampen out over time.

 As common shocks begin to accumulate, units with different bands move in a
 fully synchronized manner within their bandwidths until they start completing
 their first cycle (when a(t) = 0.05). The times at which units complete their
 cycles vary because bandwidths differ across units; this is the source of conver-
 gence in this example.

 From equation (5) we have that c, = (a(t)/AXmod 1), therefore the distribu-
 tion of ct is uniform on [0,1) every time accumulated common shocks are equal
 to a multiple of 0.1. It departs from this distribution after every visit, yet every
 time by less. A visit to the uniform distribution is characterized by the fact that
 the correlation between units' positions within their cycle and their bandwidths
 decreases when compared to the previous visit. Figures 3a and 3b show the
 paths of Z(t) and J(t). The discontinuities in J(t) (the vertical lines in Figure
 3b) are due to the fact that the density of 1/A is not continuous at its
 endpoints. Modifying this density slightly at these points would lead to the same
 qualitative behavior without jumps. The figure shows that the aggregate devia-
 tion, Z(t), and its sensitivity to small common shocks, J(t), oscillate on their
 way to zero.

 When there is no stochastic heterogeneity, both Z(t) and J(t) only depend
 on time through the current value of a(t); g(a, t) g(a) remains constant as t

 varies (see Proposition 1). Hence the path of Z*(t) = supa,a(t) Ig(a)J and
 J*(t) = supa >a(t) Ig'(a)I are both equal to the envelopes of the sample path of
 Z(t) and J(t). Figures 3c and 3d show how Z*(t) and J*(t) evolve over time.
 This example also serves to show that convergence may take place even if units'
 initial positions within their cycles are highly correlated with their bandwidths.
 Structural heterogeneity achieves convergence by breaking down the correlation
 between the aggregates of different sectors.

 Consider any cross-section distribution of 1/A that has a sufficiently smooth
 density. Partition the set of possible bandwidths into a finite number of
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 intervals, and approximate the cross-section distribution of bandwidths within

 each interval by a uniform distribution. The argument given above applies to the
 sector composed of units with bandwidths in any one interval; these units'
 aggregate deviation therefore converges. It follows that the behavior of the
 entire economy's aggregate converges to that of its counterpart without friction.
 This argument explains why, when differences in bandwidths is the only source

 of heterogeneity, convergence takes place when the inverse of units' bandwidths

 have a smooth density. Since our model has a continuum of units, this is a
 relatively weak assumption.

 The previous argument is based on assuming that co has all its mass
 concentrated at a point. It can be generalized to the case where co and A are
 not "perfectly" correlated by requiring that the density of 1/A, conditional on

 any value of co, be sufficiently smooth.

 ASSUMPTION 4-Smoothness (1): The random variable A has finite expectation

 and the density of 1/A, conditional on any value of co, has bounded variation
 V(A -1 lc0) such that ECOV(A -1 lc0) is finite.

 Below we provide a proposition generalizing and formalizing the insights of

 this example.

 PROPOSITION 4: Suppose that differences in bandwidths and units' initial posi-
 tions within their cycle are the only source of heterogeneity, and that Assumptions
 1 and 4 hold. Then the economy's aggregate behavior converges to that of its

 counterpart with no friction and ct converges to a distribution uniform on the
 interval [0, 1).

 PROOF: See the Appendix. Q.E.D.

 5.1.2. Speed of Convergence

 The example above shows that the rate at which the common shock a(t)
 grows-which is irrelevant in the case of only stochastic heterogeneity-is

 crucial when heterogeneity in bandwidths is the only source of convergence.
 The mechanism that leads to convergence in this case is not based upon
 spreading units out, but on having them move around their cycles at different
 speeds. This mixing effect grows with a(t).

 The example above also shows that the distance between the cross-section

 distribution of units' positions within their cycle and a distribution uniform on
 [0, 1) does not decrease monotonically over time. Even though the distribution
 of units within their cycle approaches a distribution uniform on [0, 1), there are

 periods when units "catch up" with each other and the distance between ct and
 its limiting distribution increases. This differs from what we saw in Section 4,

 since the distance between ct and a distribution uniform on [0, 1) decreases
 monotonically over time when stochastic heterogeneity is the only source of
 convergence and idiosyncratic shocks have independent increments.
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 When there is no stochastic heterogeneity, Z*(t) and J*(t) depend on t only
 through the value of a(t); it follows that the speed of convergence grows with
 the rate at which aggregate shocks accumulate. It is shown in the Appendix that,
 under the assumptions of Proposition 4, J*(t) is bounded from above by k/a(t)
 for some constant k that depends on how smooth the corresponding densities
 are. This bound cannot be improved upon; it is sharp when the cross-section
 distribution of units' bandwidths within their cycle is uniform.

 5.2. Heterogeneous Sensitivity Parameters

 When different sensitivity parameters are the only source of convergence,
 equation (3) may be used to show that

 (7) Z(t) =A [{-C(tj0)jfe(0) d0,

 where f,9(0) denotes the probability density of sensitivity parameters and C(t 10)
 the average position within their cycle of the "sector" of the economy formed by
 units with sensitivity parameter equal to 0. As in the case with different
 bandwidths, when differences in sensitivity parameters are the only source of
 heterogeneity, aggregate shocks achieve convergence by gradually eliminating

 the synchronization between sectoral aggregates instead of by having every
 sectoral aggregate deviation converge.

 When all bandwidths are the same (without loss of generality Ai- 1) and
 there are no idiosyncratic shocks, equation (5) implies that c, = (co + a(t)&)(mod
 1); hence ct converges to a distribution uniform on [0, 1) because a(t)@ flattens
 out without bound as aggregate shocks accumulate. The correlation between the
 position within their cycle of units with different sensitivity parameters de-
 creases over time, since common shocks affect them differently and these

 differences accumulate.'8 As long as e has a sufficiently smooth density,

 conditional on any value of co, the economy's aggregate deviation converges to
 that of its frictionless counterpart.

 ASSUMPTION 5-Smoothness (2): The random variable & has a density f,9(0)
 such that f,9(0) and Ofq(0), conditional on any value of co, have bounded
 variation V(fe,(0) I co) and V(of(0) I co); and EcOV(fe,(0) Ico) and EcoV(ofe(0) I co)
 are both finite.

 PROPOSITION 5: Suppose that differences in sensitivity parameters and units'
 initial positions within their cycle are the only source of heterogeneity, and that
 Assumptions 1 and 5 hold. Then the economy's aggregate behavior converges to

 18 Looking at a particular example-say, co= 0, A - 1, and & uniform on [1/2,3/2]-helps
 build the intuition behind how convergence takes place in this case. Since such an analysis is entirely
 analogous to the one we made in Section 5.1, we omit it.
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 that of its counterpart with no friction and c, converges to a distribution uniform
 on the interval [0, 1).

 PROOF: See the Appendix. Q.E.D.

 The speed at which the economy's aggregate converges to that of its friction-
 less counterpart increases with the rate at which a(t) grows; it is shown in the
 Appendix that Z*(t) and J*(t) are both bounded from above by k/a(t), where
 k depends on how smooth the corresponding densities are. This bound is sharp
 when sensitivity parameters have a uniform distribution.'9

 The mechanism that leads to convergence in this case combines those present
 when either idiosyncratic shocks or differences in bandwidths are the sole
 source of heterogeneity. On the one hand, aggregate shocks are the main
 determinant of convergence; on the other, these shocks achieve convergence by
 spreading out indefinitely the x*(t)'s, as idiosyncratic shocks did in Section 4.

 6. INTERACrIONS

 We have found conditions under which stochastic and structural heterogene-
 ity yield convergence separately. It follows that convergence is more likely to
 occur when both sources of heterogeneity are present. We formalize this
 intuition at the end of Section A2 in the Appendix.

 The results on the speed of convergence are, however, far less transparent.
 There is a broad set of parameters for which the intuitive assertion that when a
 second mechanism is added, convergence speeds up, is valid; surprisingly,
 however, this is not universally true.

 Figure 4 presents an example of this paradox. It shows that adding structural
 heterogeneity to stochastic heterogeneity may slow down the speed of conver-

 gence. In this example, idiosyncratic shocks follow a Brownian motion (with
 instantaneous variance equal to 0.4 and 1/A is normal with mean 0.4 and
 variance q22) All units have the same sensitivity parameters and their initial
 distribution within their cycle is uniform on [0, 0.2]. Figure 4 shows the path of

 J*(t) for three values of the parameter -q. It is apparent that-beyond a certain
 time threshold-convergence is faster when stochastic heterogeneity is the only

 source of convergence (0 = 0) than when structural heterogeneity is also pre-
 sent (71 > 0).20

 Figure 4 is best understood by comparing the aggregate deviation without
 structural heterogeneity, Z(t), with the aggregate deviation of a sector com-
 posed of units with a common bandwidth larger than average after structural

 19 It is interesting to note that if instead of Assumptions 4 and 5 we only assume that A and 0
 have a density, then Propositions 4 and 5 continue holding but the corresponding rates of
 convergence may be arbitrarily slow.

 20A similar phenomenon takes place for Z*(t).
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 heterogeneity is added. When structural heterogeneity is added to idiosyncratic
 uncertainty, the sectoral aggregates corresponding to larger bandwidths con-
 verge slower than Z(t), since structural heterogeneity reduces the variance of
 their idiosyncratic shocks relative to their bandwidths and it is this ratio that
 determines the speed of convergence (see Section 4). For the same reason the
 sectoral aggregates corresponding to smaller bandwidths converge faster than
 Z(t). Figure 4 shows an example where the slowdown of units with bandwidths
 larger than average dominates over the combined effect of the acceleration of
 units with bandwidths smaller than average and the decrease in synchronization
 between sectoral aggregates (see Section 5).

 Perverse interactions may also be present when we add stochastic heterogene-
 ity to an economy where structural heterogeneity-in the form of differences in
 bandwidths-leads to convergence by itself. This is best understood when we
 consider the case where there are no differences in sensitivity parameters and
 we group units into sectors according to the value of their idiosyncratic shock at

 time t, v,(t). Since the effect of vi(t) on units within a sector is the same as the
 effect of having a common shock equal to a(t) + vi(t) instead of a(t), the
 discussion in Section 5 shows that sectors with positive vi(t)'s are typically
 nearer to their steady state than they would be if there were no idiosyncratic
 shocks, while sectors with negative realizations are farther away. When adding
 sectoral aggregate deviations, structural heterogeneity decreases the degree of
 synchronization; yet it may happen that units with negative shocks determine
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 the overall speed of convergence. We have constructed examples where this is
 the case.21

 Finally, we consider the case where idiosyncratic shocks interact with differ-
 ences in sensitivity parameters. For simplicity we suppose that bandwidths are

 the same across units. If the vi(t)'s are i.i.d. across units and independent from
 69, then adding idiosyncratic shocks speeds up convergence (this follows from

 Proposition A4 in the Appendix). Yet when vi(t) depends on Oi, there are cases
 where adding structural heterogeneity-in the form of differences in sensitivity

 parameters-slows down the speed at which an economy with stochastic hetero-
 geneity converges.

 7. FINAL REMARKS

 In this paper we study the dynamic behavior of an (S, s) economy where units
 face idiosyncratic shocks and differ in both their bandwidths and their responses
 to aggregate shocks. We develop a framework that provides a meaningful

 characterization of the out-of-steady state dynamics of an (S, s) economy, and
 study its convergence properties and the speed at which this occurs.

 The major building block in our approach is to work with the cross-section
 distribution of units' positions within their cycle, conditional on the sample path
 of the aggregate shock. This distribution, combined with that of structural
 differences and sensitivity parameters, describes the actual state of the economy
 at a given instant in time and-if the number of units is sufficiently large-does
 not depend on the value taken by every particular agent's idiosyncratic shock
 but only on the common distribution function originating them. This insight
 follows from the Glivenko-Cantelli Theorem (see Billingsley (1986)); it allows us
 to apply results from probability theory when studying convergence and speed
 of convergence. Although we work with (S, s) rules, the summary variables Z(t),
 1(t), Z*(t), and J*(t) should be applicable to a much broader set of circum-
 stances where microeconomic frictions influence aggregate dynamics.

 We have implicitly assumed in our analysis that the redefinition of initial
 conditions-i.e. whatever moves the economy away from its steady state-oc-
 curs infrequently enough so that the economy has time to converge back to its
 steady state; the insights developed here, however, apply even when this is not
 the case (see Caballero and Engel (1989a), and the working paper version of this
 paper, Caballero and Engel (1990)). In general, there is a permanent tension
 between the natural tendency for the economy's aggregate deviation to converge
 back to the steady state and the impact of repeated large (finite) aggregate
 shocks. Given any process generating the latter, the average distance of the

 21 The argument given above assumes that units' idiosyncratic shocks are independent from their
 bandwidths. If v1 and A are correlated, the perverse effect described above may still happen. One
 exception, though, is when the vi(t)'s are identically distributed except for a scale parameter that is
 proportional to Ai; in this case adding idiosyncratic shocks to differences in bandwidths always
 speeds up convergence. This follows from Proposition A4 and the Glivenko-Cantelli Theorem.
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 economy from the steady state decreases with an increase in the importance of
 stochastic and structural heterogeneity (with the caveats of Section 6).

 The techniques developed here have already found applications beyond the
 framework of this paper. For example, Caplin and Leahy (1989) use them to
 prove convergence (up to a location parameter) in the context of a fully
 symmetric two sided (S, s) economy where heterogeneity is negligible; and
 Caballero and Engel (1989b) have used the concept of synchronization devel-
 oped here to show that when strategic interactions are present, multiple
 equilibria can be ruled out once the cross-section distribution is sufficiently
 close to its steady state.

 To conclude, we stress that the principle of conditioning on the aggregate in
 order to keep track of the evolution of the cross-section distribution is far more

 general than the framework of this paper. This may be one of the building
 blocks of future work on aggregation of heterogeneous units in the presence of
 nonvanishing correlation across units.

 Department of Economics, Columbia University, New York, NY 10025, U.S.A.
 and

 Department of Economics, MIT (Cieplan and Universidad de Chile), Cam-
 bridge, MA 02139, U.S.A.

 Manuscript received February, 1989; final revision received February, 1991.

 APPENDIX Al. EXACT FORMULAS FOR THE SUMMARY VARIABLES

 DEFINITION Al: Given nonnegative real numbers a and t, we define the random variables
 C(a, t) and Y(a, t) as follows:

 1aO + vt
 (8) C(a,t)= (co+ AOv

 (9) Y(a, t) = [C(a, t)](mod 1);

 with co, v,, 0, and A as in Section 2. We then have that the function g(a, t) defined in Section 2 is
 equal to 'EA - E{AY(a, t)}.

 The following three propositions provide expressions to calculate g(a, t) and dg/da when only
 one of the three sources of heterogeneity considered in this paper-idiosyncratic shocks, differences
 in bandwidths, and differences in sensitivity parameters-is present, and all units have the same
 initial position within their cycle. Following these results we show how a simple conditioning
 argument extends them to the case where more than one source of convergence is present and units
 differ in their initial positions within their cycle.

 LEMMA Al: Let X be a random variable whose density f(x) has bounded variation. Then X(mod 1)
 also has a density, f1(x), and fl(x) = Ekf(X + k).

 PROOF: This is a well known result in probability theory; for a proof under the assumptions made
 above, see Proposition 3.4 in Engel (1991). Q.E.D.
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 LEMMA A2: Let X denote a random variable whose characteristic function f(z) satisfies

 Ek>_jjf(2Tk)j < +oo. Then

 (10) E[X(mod 1)] = 2 - 7k)]'

 where Z[ z] denotes the imaginary part of the complex number z and x(mod 1) the difference between x
 and the largest integer less than or equal to x.

 PROOF: The Fourier coefficients of X and X(mod 1) are the same (see, e.g., Lemma 3.1 in Engel
 (1991)); hence the Fourier coefficients of X(mod 1) are summable and X(mod 1) has a continuous

 density, fl(x), with bounded variation. Applying Poisson's Summation Formula (see Butzer and
 Nessel (1971, p. 202) for the version being used here) we then have that fl(x) = Ykf(27rk)e-i2lkx.
 Substituting this expression for fl(x) in E[X(mod 1)] = fxfl(x) dx, interchanging the order of
 integration and summation,22 and integrating the resulting terms, leads to equation (10). Q.E.D.

 PROPOSITION Al: Suppose that co- c, A--123 and 0 1 in equation (10), and assume that the
 density of vt has a characteristic function, ft(z), that satisfies Ek 1 Ift(2rk) I < + oo. Then

 (11) g(a,t)= - E J 4 (21rk)ei (c )1,

 (12) da (a, t) 2 E St [ ft(27rk)ei2rk(c+a)1 da ft1

 where ?[z] and 2 [z] denote the real and imaginary parts of the complex number z.

 PROOF: The expression for g(a, t) follows directly from equation (10) in Lemma Al, letting
 c + a + vt play the role of X.

 The expression for dg/da can be derived formally by differentiating the sum in (11) term by term.
 The change in the order of summation and differentiation is made rigorous by applying Lebesgue's
 Dominated Convergence Theorem (see, e.g., Billingsley (1986)) and using the assumption that the
 Fourier coefficients of vt are summable. Q.E.D.

 PROPOSITION A2: Suppose that co - c with c E [0,1), vt 0, and 0- 1, that EA is finite, and that
 AfA(A) has finite total variation, where fA(A) denotes the density of A. Then

 (13) g (a, t ) =(2c )EA-a + f to A fA(k) dkA,
 2 ~~~k>1 0

 (14) da (a, t) 1+ a , A
 da k>1( ) -

 PROOF: The expression for g(a, t) follows from

 E[AY(a, t)] = JA [(c + A-)(mod 1) fA(A) dA

 Ef c AIc + - klfA(A) dA +Jf A c+ -JfA(A) dA
 k>1 a/(k+1-c)( A al(_ ( A/)

 = cEA +a - E k (kc) AfA(A) dA

 = cEA +a -E fa/(k c)AfA(A) dA.
 k>1 0

 22 This step is based on Fubini's Theorem. It is here where we use the assumption that the
 Fourier coefficients of X are summable.

 23 If A A we let vt/A play the role of vt.
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 The expression for dg/da is obtained by differentiating the latter expression. The assumption that
 AfA(A) has bounded variation is used when interchanging the order of differentiation and summa-
 tion. Q.E.D.

 PROPOSITION A3: Suppose that co c with c in [0, 1), vt 0, and A 1, and that Ofe(0) has
 bounded variation, where f,e(0) denotes the density of 0. Then

 1 (k +l1- c\k -c\

 2 k \a/\aa

 dag 1 ( c)
 -(a,t)= 2-1+ E(k-c)fe da a )'

 where F,e(0) denotes the cumulative distribution function of 0.

 PROOF: The expression for g(a, t) is obtained using Lemma Al as follows:

 1 1 (x+k- c)
 E[(c +aO)(mod1)]= - 1:f xfe d

 ak o

 = E J( - l (ua- k + c)fe(u) du
 k (k -c)/a

 = aEO- E (k-c)f(k -/ afe(u) du
 k (k -c)/a

 =a- E(k-c)(F( a

 The expression for dg/da is obtained by differentiating the latter expression; the assumption that
 Of,9(0) has bounded variation is used when interchanging the order of summation and differentia-
 tion. Q.E.D.

 Generalizations

 When more than one source of convergence is present, we obtain expressions for g(a, t) and
 dg/da by calculating E[AY(a, t) IX = x]-and the corresponding derivative-for an appropriately
 chosen random vector X using one of the above propositions, and then taking expected value with
 respect to X. This argument is based on the fact that E[f(X, Y)] = Ex[f(X, Y) IX = x]. It requires
 that the corresponding proposition's regularity conditions hold conditional on X = x for any x, and,
 when calculating dg/da, that they hold uniformly in x. Next we show explicitly how to apply this
 argument for every one of the propositions derived above.

 1. If we want to apply Proposition Al we let ((vt/A)Ico = c, A = A, 0 = 0) play the role of vt and
 c + (aO/A) the role of c. This leads to the following expressions:

 1 1 i2f (,t
 g(a, t) = - k j2[EA{Aei2Tkc(a ) =A} ]

 dg (a, t ) = 2 f9 [ E,e{9ei2rkC(a, t) e = o}],
 da k >1

 with C(a, t) defined in (8).
 2. If we want to apply Proposition A2 we let (A I co = c, 0 = 0, vt = v) play the role of A, aO + v

 that of a, and c that of c.

 3. If we want to apply Proposition A3 we let (91co0 = , A = A, vt = v) play the role of 0,
 c + (v/A) that of c, and (a/A) that of a.
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 APPENDIX A2. CONVERGENCE

 LEMMA A3: Let X denote a random variable that has a density, f(x), with finite total variation
 equal to V(f ). Denote the density of X(mod 1) by f1(x), and the sup-distance between X(mod 1) and a
 distribution uniform on [0,1] by R(X(mod 1), U). Then

 (15) IE[X(mod 1)] - 1 2R(X(mod 1),U),

 (16) R(X(mod 1), U) 6 2 V(f)-

 PROOF: Equation (15) follows from

 IE[X(mod 1)] - f= 1(fi(x) - i)xdx

 6 fI V(x) - 1) Ix dx

 6 R(X(mod 1), U)x dx

 = 'R(X(mod 1), U).

 For a proof of equation (16), which is due to Kemperman, see Theorem 3.9.c in Engel (1991).
 Q.E.D.

 LEMMA A4: 1. Suppose that X and Y are random variables such that (XI Y = y) has a density with
 finite total variation V(XI Y = y) for all values of y and EyV(XI Y = y) is finite. Then X has a density
 with finite total variation V(X) and V(X) 6 EyV(XI Y= y).

 2. Let f(x), fa(x), and fc(x) denote the densities of the random variables X, aX, and X + c, with
 a > 0, and suppose that f(x) has finite total variation V(f ). Then fa(x) and fc(x) also have finite total
 variation and V(fa) = V(f )/a; V(fc) = V(f ).

 PROOF: The proof of the first statement is analogous to that of Proposition 4.6 in Engel (1991).
 The proof of the second statement is trivial. Q.E.D.

 Proof of Proposition 3

 Let R(ct, U) denote the sup-distance between ct and a distribution uniform on the unit interval,
 and V(X) denote the total variation of the density of the random variable X. From Lemma A3 it
 follows that R(ct, U) < V(cO + (vt/A)); Lemma A4 and Assumption 2 then imply that R(ct, U)
 6 2V(vt/A) =A/2V(vt). Assumption 3 now implies that ct converges-in the sup-distance-to U.
 Since J*(t) = sup, R(cs, U) (see Section 4), this is equivalent to having J*(t) converge to zero.
 That Z*(t) also tends to zero follows from the fact that, due to Lemma A3, it is bounded by

 sup, > t R(cs, U). Q.E.D.

 Proof of Proposition 4

 We begin by noting that, since in this case ct only depends on t through the value of a(t),
 convergence of Z*(t) and J*(t) to zero is equivalent to convergence of Z(t) and J(t) to zero. The
 same holds for Proposition 5.

 Let R(ct, U) denote the sup-distance between ct and a distribution uniform on the unit interval
 and V(X) denote the total variation of the density of the random variable X. From Lemma A3 it
 follows that R(ct, U) S V(co + (a(t)/A)). Using Lemma A4 we then have that R(ct, U) 6
 ECOV(A- co)/2a(t); therefore ct converges to U and J*(t) converges to zero at least as fast as
 a(t).

 Theorem 4.4-due to Hopf-in Engel (1991) shows that (ct,A) converges in the weak-star
 topology to (U,A), with A independent from U. It follows that E(ctA) converges to 'EA, and
 therefore Z(t) converges to zero. Q.E.D.
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 Proof of Proposition 5

 It follows from Lemmas A3 and A4 that R(ct, U) 6 k/a(t), with k = EcOV(fe I co)/2; therefore c,
 converges to a distribution uniform on [0, 1) and Z(t) converges to zero.

 To show that 1(t) converges to zero, we first consider the case where co - c. That J(t) converges
 to zero in this case follows from the expression we derived for dg/da in Proposition A3 and the fact

 that Ek((k - c)/a2)fe((k - c)/a) converges to f Ofe(0) dO EO because Of,,(0) is Riemann-inte-
 grable. Furthermore, since EO = 1 we have:

 k -c fk -c (k?+1 -c/a J(t)la E f( - EJOff(O)dO
 k a a (k - la

 1 k -c k - c
 < E~~f4)O feOk 0)~
 a k a a

 with (k - c)/a 6 ok 6 (k + 1 - c)/a. It follows that J(t) 6 V(0fe(0))/a(t); therefore the speed of
 convergence of J*(t)>and, due to Lemma A3 that of Z*(t) too-is bounded from above by
 1/a(t).

 The case where co is not equal to a spike follows from the previous argument by conditioning on
 the value of co and using the hypotheses according to which EcoV(O0f(O) I cO) is finite. Q.E.D.

 Generalizations

 Propositions 3, 4, and 5 can be extended easily to the case where more than one source of
 heterogeneity is present using a conditioning argument analogous to the one we used at the end of
 Section Al. Q.E.D.

 PROPOSITION A4: Suppose that X and Y are independent random variables such that the density of
 Xhas bounded variation. Then the sup-distance between (X + YXmod 1) and a distribution U uniform
 on [0, 1] is less than or equal to the sup-distance between X (mod 1) and U.

 PROOF: Let fx(u) and fx+y(u) denote the densities of X(mod 1) and (X + Y)(mod 1), and
 Fy(u) the cumulative distribution function of Y(mod 1). From Lemma Al and the independence
 assumption it follows that fx+y(u) = ffx(u - v) dFy(v). Hence:

 Ifx+y(u) - f= ffx(u -v) dFy(v) -1
 0

 = If(fX(u V, 1) dFy(v)

 T hfx(u - v) - 1d1 dFr(v)

 6 R(X(mod 1), U) .

 The desired conclusion follows by taking the supremum over all u in [0, 1]. Q.E.D.
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