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Abstract

Conditional moment restrictions can be combined through GMM estimation to con-
struct more efficient semiparametric estimators. This paper is about what happens as
the number of conditional moment restrictions increases. The limit of the asymptotic
variance is derived and it is shown that the limit equals the semiparametric bound when
the moment restrictions characterize the semiparametric model. These results are ap-
plied to transformed, censored, and truncated regression models. In each case a set of
moment conditions is given that leads to approximate efficiency of the GMM estimator.
Asymptotic efficiency is shown, with J?/n — 0 being sufficient for valid asymptotic in-
ference in one important case, where J is the number of moment conditions. A sample
selection application is given.
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1 Introduction

Generalized method of moments (GMM) provides a useful way of constructing efficient
estimators, by combining moment restrictions. This approach is parsimonious and has
good small sample properties in many cases (see Chamberlain, 1987 and Newey, 1988,
1993). It is particularly useful in models where the efficiency bound is complicated,
so that direct construction of an efficient estimator is difficult, but there are relatively
simple moment conditions that can be used for estimation. There are many important
examples of such models, including several considered in this paper.

The purpose of this paper is to consider efficient estimation with an infinite sequence
of conditional moment restrictions depending on nuisance parameters. We show that
the limit of the GMM asymptotic variance equals the semiparametric bound when the
moment conditions characterize the semiparametric model in a certain local sense, dis-
cussed below. This result enables one to check to see whether a particular sequence of
moment conditions has ” complete information” about parameters of interest, in the sense
that they lead to full efficiency. For example, we find that, in the censored regression
model with disturbance independent of regressors, the moment restrictions from Powell’s
(1986) quantile estimators can be combined to achieve efficiency, despite their regressor
trimming. We also show that in truncated regression models, moment restrictions like
those of Newey (1987) can be combined for efficiency. In both of these examples it is
relatively simple to check efficiency, despite the complicated nature of the bounds. This
simplicity results from the efficiency characterization being the dual of the one adopted
by Chamberlain (1987).

Conditions are given for asymptotic efficiency with estimated unconditional moment
restrictions. In particular we show that for Chamberlain’s (1987) estimator with spline
instruments, J2/n — 0 suffices for valid asymptotic inference, where .J is the number of
moment conditions. These results improve on those of Newey (1988, 1993), Hahn (1997),
and Koenker and Machado (1999), and are the most general possible when endogeneity

1S present.



We also consider an application to sample selection based on the Mroz (1987) women’s
labor supply paper, where the residual density estimator is sharply bimodal. We find that
standard errors are greatly reduced when nonlinear moments are used, being much smaller
than those of the Newey, Powell, and Walker (1990). This result shows that precise results
can be obtained by semiparametric estimation in these data, when nonlinear moments

are used.

2 Combining Moment Restrictions

To describe the general type of estimator we consider let z denote a single data obser-
vation, 3 a ¢ x 1 parameter vector, and I' = (71, 72...) a sequence of scalar parameters,
and (p1(z, 5,7), p2(z,8,7), ...) a sequence of functions, each of which depends only on a
finite number of elements of I". Also, let 2 denote a vector of conditioning variables and
Bo and vy denote true values. The estimators we consider are based on the conditional

moment, restrictions

Elpi(z, B0, 70)le] = 0,(7 = 1,2, ..). (1)

The case of unconditional moment, restrictions is included as a special case where z = 1.

A finite number of these moment conditions can be used to form a GMM estimator.
Let J denote a positive integer, v, the r x 1 subvector of I' that enters the first .J
functions, 8 = (8',v)), and p(z,0) = (p1(z,5,7), ..., ps(z, B8,7)), where indexing by J
of r, 8, and p is suppressed for notational convenience. Also, let A(z) be an matrix of
functions of the conditioning variables with ./ columns. Then equation (1) implies the
unconditional moment restrictions E[A(x)p(z,60y)] = 0. Let (21, ..., 2,) denote the data
and §,(0) = S, A(z;)p(z;,6)/n. The unconditional restrictions can be combined to

form an estimator 6 in the now familiar way given by Hansen (1982), as
6 = argmin g, (0) W ga(6), (2)

where W is a positive semi-definite matrix.



In this paper we will focus on the case where A(x) is efficient, i.e. minimizes the
asymptotic variance among all possible A(z). We maintain this focus because the efficient
A(z) can generally be estimated without affecting efficiency. To describe the efficient
instruments, let Q(z) = Elp(z, 0)p(z,00) |x], D(z) = OE[p(z, B, v)|x]/0B|s=5,, H(x) =

Elp(z, Bo, V)|x]/0Vs|y=re, and G(z) = [D(z), H(z)]. Then, as shown by Chamberlain
(1987) (and Newey, 2001 in the singular £2(x) case), the choice of A(x) that minimizes

the asymptotic variance of 6 is

where for a matrix B, B~ denotes any generalized inverse, satisfying BB~B = B. In
this paper we will give conditions for a fixed subvector of 6 to be asymptotically efficient
in a semiparametric model as J grows. These efficiency results will apply to a fixed
subvector of I' as well as to the parameters § that are common to the moment conditions.
Specifically, we will consider the asymptotic efficiency of § = 1, O]é, where the dimension
of § (i.e. of I) remains fixed as .J grows.

In general the optimal function A*(x) will need to be estimated. It is well known from
Hansen (1982) that this estimation does not affect the asymptotic variance of 4 in the
unconditional case, where x = 1 and A* is a matrix of constants. It has also been shown
that this result also holds when z is non-trivial and A*(x) is estimated nonparametrically,
in Newey (1993). This justifies us in ignoring the estimation of A*(x) in the comparison
of asymptotic variances. Furthermore, these comparisons will also be valid for the case
where p(z,0) has components that need to be estimated, even nonparametric ones, as
long as this estimation does not affect the asymptotic variance.

In the case where p(z, §) is nonlinear, computation can be simplified without affecting
efficiency by using a one-step method. Let G(z), Q(z)”, and A(z) = G(z)Q(z)~ be
estimators of the respective functions and @ an initial root-n consistent estimator. Then

the one-step estimator

Z )0p(2;,0) /00 i p(z, 0), (3)



will be asymptotically equivalent to the optimal GMM estimator with A(z) = A*(z).
Furthermore, this equivalence will continue to hold if p(z, ) is replaced by an estimator
in such a way that the asymptotic variance is unaffected.

Two examples are useful for illustration. The first is the semiparametric transforma-
tion model with a parametric disturbance distribution. In this model z = (y,z) for a
scalar dependent variable y and there is an unknown, monotonic increasing function 7(-)

satisfying
T(y) = 2’6o + ¢, € and z are independent, ¢ has p.d.f. g(g, Ag).

This model includes the proportional hazards model as a special case, where ¢ has an
extreme value distribution. It also includes proportional hazards with a known distribu-
tion for the heterogeneity. In these cases 7(y) will be equal to the log of the integrated
baseline hazard at y. Estimation of this model has been considered previously by Bickel
et. al. (1993), where further references are given. In general the efficiency bound for this
model is complicated, as are the efficient estimators that have previously been proposed
(except for certain special cases), while there are simple moment conditions that can be
used for approximately efficient estimation.

Parametric conditional moment restrictions can be obtained by considering the prob-
ability that y lies in intervals, as in Han and Hausman (1990). Consider a sequence
(7;)32, of scalars. Let 8 = (&', X)), G(u,\) = [ g(e, \)de be the CDF corresponding
to g(e, ), and

pi(z, B,7;) = Uy < g;) — G(v; — 2’6, A).
These residuals will satisfy the conditional moment restrictions of equation (1) for v;9 =
7(g;). Here the parameters ; represent values of the transformation at various points.
Therefore, 6 may include estimators of the transformation at certain points, correspond-
ing to estimators of the integrated hazard in duration models. It turns out that these
moment restrictions can be used to approximately attain the semiparametric bound for
the transformation model, including for the estimators of the transformation values.

The optimal GMM estimator based on these conditions will be equivalent to the



maximum likelihood estimator (MLE) for the ordered choice model based on the intervals
between the cutoffs y;. Specifically, for 6 = (8',v,...,vs), Pj(z,0) = G(v; — /6, \) —
G(vj-1 — 2’8, N), (j =1,...,J + 1), with 4y = —o0 and ~,,, = 400, the ordered choice
MLE will satisfy

n J+1
6= argmaxz > WGi—1 <y < gy)inPi(x;,0).
=1 5=1
The first-order conditions for this MLE are (see Appendix B),

O3 o O)O I[Py (1, B), Py (a2, 6))/98 = 0.

i=1j=1
This has the form of a GMM estimator where A(x) has j* column 8 In[P;(x, 6)/ P, (x, 8)]/08.
By efficiency of MLE we know that this A(z) must be efficient (where estimation of A(x)
does not affect the efficiency), making the MLE asymptotically equivalent to the GMM
estimator with A*(x). Consequently, the efficiency results for GMM given below will
apply to the ordered choice MLE. It will be shown if (g;)%2, is dense in f then as .J — oo
the asymptotic variance of a fixed subvector of § approaches the semiparametric bound

The second example is the conditional mean index model of Ichimura (1993), where
Elylw] = Elylv(w, fo)], Ely*] < oo, (4)

for some vector of regressors w and known vector of functions v(w, 3). A simple approach
to efficient estimation can be based on unconditional moment restrictions. This model

implies that for any function a(w) with finite second moment, v = v(w, fy), and ¢ =

y — Elylv],
0 = Ela(w)e] = E[{a(w) — Ela(w)v]}e]. (5)

These moment restrictions do not have the simple parametric form of equation (1), due
to the presence of conditional expectations. However, it is possible to nse nonparametric
estimators for the conditional expectations without affecting the asymptotic variance,
so that asymptotic variance comparisons can be made as if the conditional expectations

were known.



For a sequence of functions (a;(w), az(w), ...) let

pi(2, ) = {a;(w) = Bla;(w)|v(w, B)]}H{y = Elylv(w, )]} (6)
For these functions the moment conditions of equation (1), with x = 1, are equivalent
to equation (). Let (2, 8) = {a;(w) — Ela;(w)lo(w, 8)]Hy — Blylv(w, )]}, where
E [-|v(z, B)] denotes some nonparametric regression estimator with regressors v(z, 3), and
let p(z,5) = (p1(2,8),..., ps(2,8)). Then it is well known that 37 | 5(z;, 30)/\/n and
i1 (2, Bo)/+/n have the same limiting distribution and that for vz = dv(w, By)/03

and a(w) = (ay(w), ..., ay(w))’,

plim(n™* iaﬁ(zi,ﬁo)/aﬁ) = FElop(z, 5o) /08 =G
— —Bl{a(w) - Ela(w)lo]}{OElyi)/v}us]

Consequently, a GMM estimator based on p(z, 8) will have the same asymptotic variance
as one based on p(z,3). Also, since z = 1 here, each A(x) just corresponds to constant
linear combination coefficients, with the optimal one given by A*(z) = A* = G'Q!
for Q@ = Elp(z, fo)p(z, Bo)']. Then an optimal GMM estimator can be constructed in
the usual way, by using a preliminary estimator § to form () = S oz, B)p(z, B) /n,

forming 5,,(8) = Y, p(2;, 8)/n, and solving

A= argmaingpy, (/ﬁ)'fl_lﬁn (B)

A one-step version is given by estimating the optimal linear combination by A = G/Q~L,
where G = —n~ ' 7 {a(w;) — Elajv(ws, B)]}YOE[y|v(w:, B)]/08, and forming 3 = 3 —
(AG)~*Ap,(B). It will be shown that this estimator is approximately efficient as .J grows,
if (a;(w), az(w), ...) is a mean square spanning set, meaning that finite linear combinations
of these functions can approximate as closely as desired any function with finite mean

square.

3 The Spanning Condition

A certain spanning condition is critical for the GMM estimator § = 7, O]é to approx-

imately attain the semiparametric efficiency bound. The asymptotic variance of § will

7



be
5, = [LOYEG(x) Q) Gla)]} (1,0

As is usual for GMM with an increasing set of moment conditions, 23y will be decreasing
in J, in the positive semi-definite sense. Consequently, ¥, = lim 2, will exist (see
Appendix B). The GMM estimator will be approximately efficient if 3, is equal to the
semiparametric (asymptotic) variance bound. The spanning condition will be sufficient
for this equality.

Intuitively, efliciency should be closely related to whether the moment conditions
characterize the semiparametric model, i.e. whether the restrictions imposed by all the
moment conditions are the same as imposed by the model. Unless this condition holds,
there will be information in the model that is not exploited by the GMM estimator.
When this condition holds the GMM estimator based on many moments should pick
up most of the information in the model, leaving only a small remainder when enough
moments are used.

Because asymptotic efficiency is a local property, a local formulation of the efficiency
condition, in terms of directions of departure from the truth, gives the easiest approach.
The spanning condition will be that the set of directions allowed by the moment condi-
tions is the same as allowed by the model. These direction sets are referred to as tangent
spaces, so that the spanning condition is that the model tangent space is the same as
the moment tangent space. Of course, if equality of tangent sets implies equality of dis-
tributions, then the local condition will coincide with the global one that the model and
moments imply the same restrictions on the distribution. Tangent space equality turns
out to be easy to check though, and allows us to sidestep global conditions, so the local
formulation seems to be the most useful.

Before stating the spanning condition we should describe the tangent sets. The model
tangent set is formulated in terms of scores, as in Bickel et. al. (1993). Partition the

data observation as z = (y, z), and suppose that the model specifies that the conditional



density of y given x is a member of a semiparametric family

{f(ylz,B8,h): B € B,he€ M}, (7)

where B is an open subset of ®? and, A denotes a function, H is a set of such func-
tions. For example, in the transformation model given above the density of y given
z has this form with h = 7 and f(y|z,8,h) = [d7(y)/dy]g(7(y) — 25, \) for the den-
sity g(e,A) = dG(e,N)/de. It will be assumed throughout that the marginal distribu-
tion of x is unrestricted, as appropriate for evaluating efficiency with conditional mo-
ment restrictions. Define a regular parametric submodel to be the family of densities
{f(ylz, Bo, h(n))}, where 1) is a scalar parameter, with h(n) equal to the truth at some 7,
where ”regular” means that the square root of the density is mean-square differentiable
with respect 7, has a nonzero Fisher information, and possibly satisfies other regularity
conditions (such as boundedness of conditional second moments of p(z,6)). Let S, =
Ol f(ylz, Bo, h(n))/On|,=r, denote the score for the parametric submodel, where a z ar-
gument is suppressed for notational convenience and the scores are defined more precisely
in terms of derivatives of the square root of the density (e.g. see Bickel, et. al. 1993).
The model tangent set 7" is the closed linear span of the set of such scores. It represents
directions of departure from the truth that are allowed by the model.

To describe the moment tangent set, consider a parametric family {f(y|z,n)} of
conditional densities satisfying the moment restrictions of equation (1), mecaning that

there exists y(n) such that
[ s Bo A ) F (ol midy =0, = 1,2,
identically in 7. Differentiating this identity with respect to n, for j =1, ..., .J, gives
Elptlz] = H(z)e,c = =0v;(no)/On,t = dlnf(y|x,no)/On. (8)
This suggests a tangent set for the first J moments of the form

Ty = {t: E[t*] < oo, E[t|z] = 0, E[pt|z] = H(z)c for a constant vector c}, (9)



where E[t|z] = 0 holds because of the usual zero mean property of conditional scores.
Then, because T; will be a decreasing sequence of sets (increasing J corresponds to

adding moment conditions) the tangent set for all the moments will be given by

Tp = ﬂf}O:ITJ.

Here T, represents the set of all directions of departure from the truth that are allowed
by the moment conditions.

Assuming the moment conditions are implied by the semiparametric model, it will
be the case that a score for a parametric submodel satisfies equation (8) for all J. Con-
sequently, 7' C T,. Therefore, the model and moment tangent spaces will be equal if
T, € T, meaning that any direction of departure allowed by the moment conditions is

also allowed by the model. This leads to the following condition:
Spanning Condition : T, =T.

Intuitively, using GMM will lead to approximate efficiency when imposing all the
moment conditions restricts the density so as to only allow directions of departure that
are given by the semiparametric model.

We nuse two regularity conditions to obtain a precise result. We define regularity of a

parametric family of densities as in the discussion of the model tangent space above.

Assumption 1: With probability one, f(y|x, B, ho) is reqularin 3, OE[p;(z, 3, v0)|x]/ 08| s=5,
exists, [mazgepp;i(z,B,7)%f(ylx, B, ho)dy is bounded, and p;(z,3,7v) is continuous at

each (8 wunth probability one.

For some of the examples it will be important that this condition allows the residual
to be discontinuous in 3, as long as at each g this occurs with probability zero. The next
condition allows for some of the residuals to be zero with positive probability, which is

also important in the examples.

Assumption 2: For each J there is R(x) such that H(x) = Q(z)R(x), there is a sym-

metric generalized inverse Q2(x)~ such that E[G(z)'Q(x)~G(z)] exists and is nonsingular,
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and B has a finite and nonsingular semiparametric variance bound.

The condition H(z) = Q(z)R(z) is easy to check in the examples we consider and
should be satisfied quite generally. If there is a parametric submodel f(ylx,7), as dis-
cussed above, with 9v(ny)/dn nonsingular then by equation (8), H(z) = E[pt'{—0v(ny)/dn}|z],
so this condition holds by Lemma 6 of the Appendix.

Theorem 1: If Assumptions 1 and 2 and the spanning condition are satisfied then

limj_oc2y = X, 15 the semiparametric bound.

In the Appendix a projection formula for the GMM limit ¥, is derived. This formula
extends Chamberlain’s (1987) bound to the case where there are a countably infinite
number of moment restrictions. It is compared with a corresponding formula for the
semiparametric bound to obtain the proof of Theorem 1. For ease of exposition we
reserve discussion of these formulae and the proofs to the Appendix.

Consider the transformation model as an example. For a parametric submodel 7(y, n),

the score is

Sy = 0ln[r,(y,n)g(r(y,n) — v)]/On = 7y (y) /7, (y) + 7 (y)s(e),

where subscripts denote partial derivatives, g(¢) = g(e, Xo), s(e) = ¢-(¢)/g(c), and v =
x'dp. Therefore, the tangent set 7' will be the closed, linear span of the set of objects of
this form. To compare this set with T, note that p;(z, 3, y) depends only on ~;, so that
Hjw(z) =0, (j # k), and Hj;(x) = OF|[p;(2, Bo,vjo)lx]/Ov; = —g(7(y;) — v). Then T,
will consist of those t(y, z) such that E[t|z] = 0 and

Jj _ N
Elpstlal = [ty 2)7()o(r(y) - v)dy = —g(r(7;) — v)e(@;).
If (3;)32, is dense and g(e) is differentiable and positive everywhere, then there is a c(y)
such that this equation holds with y; replaced by any y € R. Differentiating with respect.

to y and solving for ¢ then gives

ty, 2) = =y (y)/7(y) — cly)s(e).

11



This expression has exactly the same form as the score for 5 for a parametric submodel,
with —c(y) replacing 7,(y). Thus, the moment tangents satisfy the same conditions as
the score for parametric submodels, and hence the spanning condition will be satisfied.
Consequently, the asymptotic variance of the ordered choice MLE of the regression and
distribution parameters, as well transformation values, will converge to the semiparamet-
ric bound as the intervals become finer.

Consider next the index model example. In this case a parametric submodel f(z|n)
must be such that [yf(y|w,n)dy is a function of only v. Therefore, its derivative will

also be a function of only v, giving

(9/ y- flylw,mo)dy/On = Ely-Olnf(ylw,ne)/0n|w] = Ele - dlnf(ylw, n)/On|w]
= FEle- S)w] = Ele - S,|v],

where the second equality follows by the nusual mean zero property of scores E[0ln.f (y|w, ny)/Onjw] =
0 and the third by S, = dlnf(y|lw,no)/0n + Olnf(w|ny)/On and E[elw] = 0. Since the
score is otherwise unrestricted, it follows that T' = {¢ : Eet|w] = Elet|v]}. Now suppose
that finite linear combinations of (a;(w), az(w), ...) can approximate any function with
finite mean-square arbitrarily well. For instance, the set of all integer power series in a
bounded, one-to-one transformation of w have this property. It is well known that this
property is equivalent to any function 6(w) with E[d(w)?] finite and Ela;(w)d(w)] = 0
for all j being zero. Then, since x = 1 in this example, the moment tangent set is given

by the set of ¢ with finite mean square, such that for each j,

0 = Elpt) = El{a;(w) — Ela, (w)lo]} Elthu] (10)

Elaj(w){Elet|w] — Elet|v]}].

Suppose that Var(elw) is bounded, so that Flet|w] has finite mean square. Then the

mean-square spanning property and this equation imply that
Eletlw] = Elet|v].

Thus, the moment tangents satisfy the same conditions as the scores for parametric

submodels, and hence the spanning condition will be satisfied.
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The previous GMM efficiency result of Chamberlain (1987) is based on approximating
by a linear combination of moment conditions. It turns out that the spanning condition is
the dual of this previous approach. We have given first priority to the spanning condition
because it is easiest to check in the most difficult cases.

To compare with the previous approach it needs to be generalized to allow for the
nuisance parameters v and for conditioning on x, and the efficiency of estimators of /3
should be considered. To do so, let V; be the block of 33; corresponding to 8 and let V/
be the semiparametric variance bound for estimators of 3. Also, for a set A consisting
of random variables with finite mean square and conditional mean zero given z, let
At = {8|E[s?] < o0, E[slz] = 0, E[sa] = 0Va € A} denote its orthogonal complement.
As is well known, under appropriate regularity conditions there is a representation V =
(E[SS'])~!, with each component of S being the element of T that is closest in mean-
square to the corresponding component of the score for 8. The random vector S is
often referred to as the efficient score. As shown in Newey (1993) for the unconditional
case without nuisance parameters, the optimal function A*(x) can be interpreted as the
coefficients of a regression of the efficient score on the moment functions, so that the
efficiency bound is approximately attained when linear combinations of the moments
approximate the efficient score. The following result generalizes this previous one to

conditional moment restrictions with nuisance parameters.

Theorem 2: If Assumptions 1 and 2 are satisfied then
V=V = ming s n@)=o E{S — 7(@)p}{S — m(x)p}],

and V; — V if and only if for each J there is mw;(x) with E[m;(z)H(z)] = 0 such that
E[||S — m;(z)p||*] — 0 as J — oo.

This result shows that the difference of the inverses of the semiparametric bound and
GMM variance is the variance of the residuals from approximating the efficient score by
m(x)p, where E[r(z)H(x)] = 0. The presence of z in 7(x) accounts for the conditioning

on r and the constraint on 7(z) of E[n(z)H (z)] = 0 accounts for the presence of . This

13



result specializes to that of Newey (1993) when x = 1 and 7 is not present. In general
V; — V when for each J there is 7,(z) such that 7;(x)p can approximate the efficient
score arbitrarily well for large enough J.

One of the positive aspects of this result is that it is constructive, with cfficiency
following from finding 7;(x) where 7;(x)p approximates S (and E[n;(x)H(x)] = 0). The
problem is that constructing such 7 ;(x) can be very hard, particularly when ~ present.
The root of this problem is that the structure of 7 is often complicated, leading to
a complicated form for the efficient score S. This problem leads to falling back on a
more abstract sufficient condition, that any element of 7+ can be approximated by the

moment conditions. Specifically, let M denote the mean-square closure of the set
{ms(x)p: E[{m;(x)p}?] < oo, Elns(x)H(z)] =0, J € {1,2,...}}.

That is, M is the set of random variables that can be approximated arbitrarily closely
in mean-square by 7;(x)p, with E[r;(x)H(x)] = 0. Then T+ = M will be sufficient
for V; — V, since the components of S are in 7T¢. The following result shows that the

spanning condition is equivalent, to this sufficient condition.

Theorem 8: If Assumptions 1 and 2 are satisfied then T, = M= and the spanning
condition is satisfied if and only if T+ = M.

Thus we see that the spanning condition is equivalent to T = M, and so to the
previous approach of Chamberlain (1987). Furthermore, this result also shows T, = M=+

while T = T++ is a well known result. Thus 7 = T, is the dual of M = T+ ie. the

spanning condition is the dual of the Chamberlain (1987) type of condition for efficiency.
The spanning condition has received first, priority because the most difficult cases seem to
correspond to T+ having a complicated structure, but 7' being relatively simple. In these
cases it is much easier to work with the tangent sets than their orthogonal complements.
This relative simplicity is illustrated by the transformation model example, where it was

straightforward to show equality of moment and model tangent sets, but Bickel et. al.

(1993) shows that the orthogonal complement of the model tangent set. is complicated.
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Other examples are provided by censored and truncated regression with an independent

disturbance, as considered in the next Section.

4 Censored and Truncated Regression with Indepen-
dent Disturbance

Two important semiparametric limited dependent variable models are censored and trun-
cated regression models with a disturbance that is independent of the regressors. There
is a large literature on estimation of these models, see Powell (1994). In both of these
models the efficiency bounds are complicated, but there are simple moment conditions,
so that GMM may be useful for efficient estimation. In this Section we give GMM
estimators that can approximately attain the semiparametric bound for each of these
models.

These models can be formulated as missing data models for the latent regression
y* = 2'fo + £, and x are independent, ¢ has p.d.f. g(e). (11)

The censored regression model is one where z is always observed, but only y = maz{0, y*}
is observed. The truncated regression model is one where (y, z) is only observed if y* > 0.

To construct moment conditions in each model we consider functions m;(<), (j =
1, ...,n), and suppose that there is ;o such that E*[m,(e—~;0)] = 0, where E*{-] represents
the expectation for the latent data. For censored regression we require that mn;(e) is
constant below some value, and let 7; = sup{¢ : m;(e) = m;(é),e < &} For truncated
regression we require that m;(e) is zero below some value, and let 7; = sup{¢ : m;(e) =

0,e < &}. Then for 8 = (5,1, ...,vs) and

pi(2,0) = 1(v; +2'B > —1))m;(y — v — 2'8), ( = 1,..., J), (12)

the conditional moment restriction of equation (1) is satisfied, as shown by Newey(2001),
where references and examples are given.
The optimal matrix A*(z) has the same form for both censored and truncated re-

gression. Let A be the J x J matrix with Ay = E*[m;(e — vjo)mule — o)), (J, k =
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1,..,J). Also, let d be the J x 1 vector with d; = OE*[m;(e — vj0 + @)]/0cla=0,
and D = diag(dy, ...,d;) be the diagonal matrix with j** diagonal element d;. Also,
let I(z,0) be the selection matrix that selects those p;(z,6) with v; + 2/ > —1;,
~and I(x) = I{x,0y). Then, as shown in Newey (2001), G(z) = I(x)'I(z)[d2’, D] and
Qz)” = I(z)[I(z)AI(z)]7 I(x), so that

A*(x) = [d2’, D]'I(x)'[I(x)AI(z)] ' 1(z). (13)

4.1 Censored Regression

For censored regression we consider quantile estimation, where m;(¢) = 1(e < 0) — «,
0 < aj < 1, as in Powell (1986). Here 7; = 0 and v, is the aéh quantile of the distribution
of e. Also, it is straightforward to estimate the unknown components [(z),d, and A
of A*(z). Here Ay = min{a;,ar} — ajor is known and d; = g(vj0). Let 3 and ¥;
be preliminary estimators of the parameters and #; = /3. For example, 3 could be
obtained from some censored regression quantile estimator and each %; from minimizing
the censored regression quantile objective function Y-, ¢;(y; — max{0, @, + ,}), where
g;(u) = [aj — L{u > 0)Ju. For & = y; — ©;, let K(u) denote a kernel function, satisfying
J K(u)du =1 and other regularity conditions, h; a bandwidth parameter, K;; = K((&;, —
3)/h)1(y; > 0), and Kj; = JZ6.45,)m; I (u)du.  The kernel density estimator of d;
from Hall and Horowitz (1990) is d; = Y%, Ki/(h; ¥, Kji). Let d = (dy, ..., d,) and
D = diag(dy, ...,d;). Then A*(z) can be estimated by

A(z) = [do’, DY I(x,0)'[I(x,0)AI(x,0) ) I(x,0)
A one step estimator can be formed as in equation (3).

By comparing the model and moment tangent sets we can see why the asymptotic
variance will approach the bound as the quantiles become dense on the rcal line. By
independence of € and x, a parametric submodel for the conditional density of 1 given z
will have the form f(y|z,n) = 1(y > 0)g(e,n) + L(y = 0) [=2 g(u,n)du, where g(e,n) is a
parametric submodel for the density of . Then for s(¢) = d1lng(e,n)/0n|;=y,, the score
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will be

Sy = Uy >0)s(e) + Ly = 0)Els(e)ly = 0, 7]

= 1(y > 0)s(e) — 1(y = 0) Pr(y > 0]z) Pr(y = 0]2) 'E[s(e)|y > 0, z],

where the second equality follows by E[s(g)|x] = 0. Thus, the model tangent set consists
of functions that depend only on ¢ for y > 0, and that are determined by their values
for y > 0. Thus, to show that the spanning condition holds, it suffices to show that
the moment tangents depend only on ¢ when y is positive. Intuitively, conditional on
v > —7j0, quantile independence of ¢ from x holds at all quantiles with ;0 > o,
implying independence of ¢ and = (and hence t(e,z) depending only on ¢) on the set
where € > ;90 and v > —7;o. The spanning condition then holds because the set where
y = €+ v > 0 is the union of the sets where € > ;9 and v > —7;y over the countable,
dense set of quantiles.

The following result gives precise conditions for efficiency.

Theorem 4: If g(c) is positive, v is continuously distributed, and (aj)%2, is dense
in (0,1), then the asymptotic variance of the GMM estimator for censored regression

quantiles converges to the semiparametric bound as J — oo.

Because the spanning condition is satisfied, as J grows the asymptotic variance of the
slope estimator will approach the bound derived by Cosslett (1987) and Ritov (1990),
and the quantile estimators will also approach efficiency. Thus, combining moment, re-
strictions from censored regression quantiles leads to efficiency of regression slope and
quantile estimators. This approach provides a simple alternative to the efficient estimator
of Ritov (1990). It should also be noted that using quantiles amounts to a step func-
tion approximation of the efficient estimator, which approximation might be improved

by using p;(z, 8,7) that are smooth in ¢.
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4.2 Truncated Regression

For truncated regression we consider m;(s) = a;1(e > 0) - 1(e > 73), 0 < o; < 1, 7; > 0,
similarly to Newey (1987). Here, for Pr* denoting the latent probability distribution of
£, Y0 is the solution to Pr*(e > v + 7;)/Pr*(e > 7) = «;, which will exist when the
density of g(¢) is strictly log-concave and a boundary condition holds, as specified below.
Estimating A*(z) is more difficult for truncated regression because it is not possible to
form direct estimators of the constants d and A. One can use a GMM estimator as in
Newey (2001). Order j so that ;10 < 7,0, and assume that there are no ties. Let
P’ (z,0) denote the vector of the first j elements of p(z,0), X = (1,2'), and

7(z,0) = (- >28> -9 00X,(G=1.,J-1), (14)
9(2,0) = 1a'B> —v))p(2,0) @ X, g(2,0) = (4" (2,0, ....g7 (2,0)") .

Evidently, g(z,6y) = A(z)p(z,6y) for some matrix A(x) and p(z,6) from equation (12).
Also, as shown in Newey (2001), Bg(z, 6y) = A*(2)p(z, by) for a matrix B. It follows that
the one-step optimal GMM estimator using the moment functions from equation (14) is
as efficient as the estimator with the best instruments. This estimator can be formed
using some G and ) as

0=6—(AG)'A iﬁ(zi, 0)/n, A=GQ " (15)

i=1

We refer the interested reader to Newey (2001) for a fuller description of this estimator,
including construction of G and .

To check equality of the moment and model tangent sets, as needed for the span-
ning condition, we first derive the model tangent set. By independence of ¢ and z,
a parametric submodel for the conditional density of y given z will have the form
fylz,n) = gle,n)/ IS g(u,n)du, where g(e,n) is a parametric submodel for the den-
sity of . Then for s(e) = dlng(e,n)/In|,=n,, the score will be

Sy = s(e) — E*[s(e)|y" > 0,z]. (16)

Here the score is an additively separable function of ¢ and z that has conditional mean

zero given z. Thus, to show that the spanning condition holds, it suffices to show that
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the moment tangents must be additively separable functions of ¢ and . Intuitively,
conditional on v > —7jo, the moment restrictions hold at all j* with with ;0 > 7o,
implying that Pr(e > v+ 7|z)/Pr(e > 7|z) does not depend on x for all v > ;¢ and
7 >0, i.e. Pr(e > 7|z) = ¢(7) Pr(e > v 0|z). This form implies scores that are additive
in € and z for v > —7v;0 and € > ;9. The spanning condition then holds because the
set where y > 0 is the union of these sets, similarly to the censored case. The following

result makes this intuition precise.

Theorem 5: If g(e) is positive, differentiable, and strictly log concave, lim, [l —
Gy + 7)l/[L = G(v)] = 0 for every T > 0, v is continuously distributed, and (a;,7;)%2,
is dense in (0,1) x (0,00), then the asymptotic variance of the truncated moment GMM

estimator converges to the semuparametric bound as J — oo.

Similarly to quantiles, it should be noted that these moment functions correspond
to a step function approximation of the efficient. estimator, which might be improved by

using p,(z, §,~) that are smooth in .

5 Asymptotic Efficiency

When the spanning condition is satisfied, the estimator will be close to being efficient
for J large enough, an approximate efficiency result. Asymptotic efficiency requires a
specification of a rate of growth of J with the sample size so that the bound is achieved.
This section provides such conditions.

In the formulation of regularity conditions there is always a trade-off between gener-
ality and ease of verification. Here we give one general result and one example showing
how the regularity conditions can be checked. Although substantial work is involved
in applying the general result, we believe it to be useful, because it allows one to side-
step algebraic and probabilistic arguments that will be required for showing asymptotic
efficiency in many cases.

The general result covers cases with estimated unconditional moment restrictions, no

nuisance parameter estimates, and smooth moment functions. Specifically, it applies to

19



a one-step estimator as given in equation (3), with x = 1, and § = 3. Many of the
estimators can be thought of as having this form, with the nuisance parameter estimates
subsumed in p. Much work may be required to verify these conditions when nuisance
parameters are present.

Let S; = S(z) be the efficient score for the " observation p; = p(z, Bo), pi = p(2, Bo),
and A* = G'Q L.

Theorem 6: Suppose that J — oo and n — oo and i) for each J, G = —FE|[p,S!] and
there exists m; such that E[||S; — mrpill*] — 0; for each J there is a nonsingular constant
matriz B such that when p(z, ) is replaced by the nonsingular linear transformation
Bp(z, B), the following conditions are satisfied: i) the smallest eigenvalue of Q is bounded
away from zero; iii) || — Qf 2 0; w) VI|A*(Q — Q)| L 0; v) for any 5 on the line
joining 5 and Bo, NI\ Siy pa(z, 8)/n = G| 2 0; and vi) || iy (ps = pi)/ /il 2 0.
Then for V* = (E[S;S!])~!,

V(B = Bo) % N, V), (G'QG) B v,

The first part of condition i) is a semiparametric version of the generalized information
matrix equality, that is often straightforward to show. The second part of condition i)
will follow from the spanning condition via Theorem 3 (because the components of .S;
are in T%). The other convergence conditions lead to asymptotic efficiency.

An example is the Chamberlain (1987) estimator that uses many unconditional mo-
ment restrictions to estimate a model with a fixed number of conditional moment re-
strictions. Specifically, suppose there is a vector u(z,8) satisfying Flu(z, o)|w] = 0
and let p’(w) be a vector of approximating functions (e.g. powers or splines). Consider
the one-step estimator in equation (3) with j(z,8) = p(z,8) = u(z, 8) @ p’(w). Let
D(w) = Elug(z, Bo)|w], u = u(z, f), S(w) = Elur'|w)], N be some neighborhood of Sy,

01(2) = supgep [lus(z, H)|, and 05(2) = max;<, supgep [|Ous(z, 8) /95|

Theorem 7: Suppose that i) E[||u]|*|w], E[01(2)*|w], and E[S2(2)|w] are bounded; ii)

Jor any scalar function b(w) with E[b(w)?] < oo there exists w; such that E[{b(w) —
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il (w)}?] — 0 as J — oo; i) L(w) has smallest eigenvalue that is bounded away from
zero; w) for each J there is a nonsingular constant matriz B such that p’ (w) = Bp’ (w)
satisfies sup,, |57 (w)|| < ¢(J) and E[p’ (w)p’ (w)'] has smallest eigenvalue that is bounded
away from zero; and v) J((J)?/n — 0. Then for V* = (E[D(w)'S(w) ™t D(w)]) ™},

V(B — o) 5 N0, V), (G'QG) Bov,

Condition v) restricts the rate of growth of J in a way that depends on condition
iv), which is a normalization like that adopted by Newey (1997). The allowed rate of
growth for J depends on p/(w) and the distribution of w. Under the conditions of Newey
(1993) and Hahn (1997), where w is bounded, the components of p’(w) are powers of
w, and the density of w is bounded away from zero on some interval, {(JJ) can be taken
equal to CJY’ for some constant C. In that case the allowed growth rate for .J is
JIn(J)/In(n) — 0. If stronger restrictions are placed on the distribution of w then J
can be allowed to grow at a faster rate. For power series and the density of w bounded
away from zero on a rectangular support, ((J) = CJ (Andrews, 1991), so that the rate
condition is J*/n — 0. Under the same condition on w, for regression splines (Newey,
1997) or Fourier series over the whole support (Andrews, 1991), ((J) = C.J/2, so that
J?/n — 0 is the rate condition. For efficiency reasons regression splines or power series
would be preferred to Fourier series, because the periodicity of Fourier series would lead
to poor approximation of the optimal instruments, that need not be periodic.!

Koenker and Machado (1999) obtained a nice result showing that asymptotic effi-
ciency is possible with J3/n — 0 for Fourier series. This result shows that the less
restrictive condition J?/n — 0 gives efficiency, for Fourier series and regression splines.
The source of this improvement is condition iv) of Theorem 6. Previous work has used
VIIQ — Q| & 0, which is sufficient for iv) because ||A*|| is bounded under the other
conditions. Condition iv) exploits the fact that all that is really needed for asymptotic

efficiency is that a linear combination of all the moment conditions be well behaved in

IThis efficiency problem can be remedied by constraining the support to lie strictly inside the full
domain of a Fourier series, but then ¢(J) will no longer be C'.J'/2 for some constant C.
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large samples.

For other estimators it may be possible to weaken further the condition J*/n — 0.
For example, Donald and Newey (2001) show that in the linear simultaneous equations
model the limited information maximum likelihood estimator is efficient when .J/n — 0.
In general, though, the estimator considered here has a bias term in the expansion of
V(B — ) that is of order J/\/n, so that J%/n — 0 will be required for the asymptotic
efficiency.

For applications it is important to know how to choose J as a function of the data.
Donald and Newey (2001) give some results for conditional moment restrictions with
homoskedasticity. Extending those results to the general case considered here is beyond

the scope of this paper, but has been done in Donald, Imbens, and Newey (2002).

6 A Sample Selection Empirical Example

Sample selection bias is important in many econometric applications, but correcting for it
can lead to imprecise estimators. In some applications, using moment, conditions beyond
the usual least squares ones may lead to large efficiency gains. As an example, we consider
Mroz’s (1987) data on female labor supply. The data consists of measurcments on the
characteristics of 753 married women, drawn from the 1975 University of Michigan Panel
Study of Income Dynamics. Of the 753 women in the analysis sample, 428 were working
at the time of the study. The equation of interest has a left-hand side variable that is the
annual hours of work. The right-hand side variables include the logarithm of the wage
rate, family income less wife’s labor income, indicators for young and older children in the
family, and the wife’s number of years of age and education. The (binary choice) selection
equation has as regressors all of the exogenous right-hand side variables from the hours
equation, labor force experience, and other background variables, and various interaction
terms. The model will be identified by the exclusion from the labor supply equation of
several variables that are included in the selection equation. These variables arce labor

force experience, mother’s education, father’s education, and a regional unemployment
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variable. Exclusion of each of these variables from labor supply seems reasonable.
Figure 1 graphs the density of the residual from a Heckman (1979) two-step least
squares estimator like that given in Table X of Mroz (1987). Evidently, it is multimodal
with sharp peaks, as might be expected if individuals cluster around specific amounts of
full and part time work. Gaussian disturbances generally only lead to some asymmetry
in the selected data, so that this shape suggests the disturbances are not Gaussian. Of
course this means that parametric methods based on Gaussian distributions may be
inconsistent. It also means that, by analogy with linear regression, we might expect
nonlinear moment conditions to add greatly to the efficiency of least squares in this
setting. For example, Newey (1988) shows that in regression large efficiency gains are

possible with bimodal error distributions by using multiple, nonlinear moment conditions.

6.1 The Model and Estimator

To describe the model we consider let y* be the left-hand side variable, w be a vector of
right-hand side variables, and J, a vector of regression parameters. Some components
of w are allowed to be endogenous. Also, let z be a vector of exogenous variables that

includes the exogenous components of w. The model is then

*

y* = w'fBy+e, y* only observed if d = 1,

Pr(d = 1jz)=p; ¢ and z independent given p and d = 1

The selection probability p is often referred to as the propensity score. This model is
implied by a latent variable model for d, where d = 1(7(z) + v > 0) for an unknown
function 7(z) and a disturbance v, p is a one-to-one function of 7(x), and the conditional
distribution of (e,v) given z depends only on 7(z). A conditional mean version of this
model was considered by Ahn and Powell (1993). The semiparametric efficiency bound
for this model with exogenous w was derived by Newey and Powell (1993).

This model implies that any function of £ should be uncorrelated with any function of
x, conditional on p. We consider a particular class of moment restrictions that exploit the

conditional independence of ¢ and z. Let m(e, p) be a vector of functions, D denote the
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event d = 1, and subscripts denote partial derivatives. Let p denote some nonparametric
estimator of the propensity score. Also, let E [#]p = p, D] denote the predicted value
from a nonparametric regression on p in the selected sample, evaluated at p, 1 a linear

combination of z that is used to instrument for w, and

MB,p) = Elm(y —w'B,p)|p = p, D, ii(p) = Elw D].

Then moment. conditions can be formed as follows. For ;\p(ﬁ p) = 8;\(6 ,p)/Op,

hi(8) = dilm(y — wiB, b;) — MB, b)) — pid(B, 5i)(ds — s),
pi(B) = 0(B) @ [wi — fu(ps)].

The term in 7,(5) involving A, corrects for the estimation of the unknown propensity
score p;, so that the GMM estimator can be formed as if p;(8) was not estimated. For

an initial estimator 3, & = y; — w3, and m, (g, p) = Im(e, p) /e let

Q = sz B)'/n,

G = S dim(ep) @ (s — plp)ul} /.

i=1

The estimator we consider is a one-step GMM estimator formed as

b=

=GO (17)

T), I

(A i (B)/

In the case where w is exogenous these moment conditions contain all the information
available from the model in equation (17). Indeed, Newey and Powell (1999) showed that
the spanning condition is satisfied as the dimension of m(e,p) grows, as long as linear
combinations of m(e,p) can approximate any function of (e,p) in mean-squarc. When
some components of w are endogenous, as in our application, the optimal instruments
w may be nonlinear in z. We leave the issue of the optimal instruments to future work,
choosing here to focus on the shape of the distribution of ¢, as motivated by Figure 1

and the spanning condition for the exogenous case, by using nonlinear functions of ¢ in

the moment conditions.
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For m(e, p) we consider using subvectors of (¢, 2,3, e*) or (®(g), ®()?, ®(e)?, ®(e)?),
where ®(e) is the standard normal CDF. Powers in ®(¢) were considered because they
should be more robust, i.e. less sensitive to outliers in ¢, than raw powers of £. We only
considered up to fourth order powers because the shape of Figure 1 indicates that much of
the efficiency gain should come from these. The bimodal shape of the density corresponds
to a log derivative of the density that changes sign three times, and has different. slopes
at the ends. Such a function is well approximated by a fourth order polynomial. Also, as
moment, restrictions are added, standard errors become less reliable. Monte Carlo results
in Newey (1988) for regression showed high accuracy of standard errors up until about
the fourth order, but rapid deterioration beyond that point. Although those results are
only suggestive, being for a different model, we should be cautious about going beyond
the number suggested by Figure 1.

For the estimated propensity score p; we use the estimated probit probabilities given
in Newey, Powell, and Walker (1990). The probit specification includes many nonlinear
and interaction terms in background variables, and is thus based on flexible functional
forms. In several likelihood ratio tests we found no evidence of additional nonlinear or
interaction terms beyond those previously specified. On this basis we view the probit,
probabilities as being nonparametric. This view is consistent with the results of Newey,
Powell, and Walker (1990), where the kernel estimator of Ahn and Powell (1993) produced
nearly identical coefficient. estimates to the estimators based on p;.

For the conditional expectation estimators \(3, p) and f.(p) we used the predicted val-
ues from regression on (1, 7(p), 7(p)?, 7(p)?) in the selected data, where 7(p) = ¢(®~(p))/p
and ¢ denotes the standard normal density. This choice corresponds to a series estima-
tor of the conditional expectation, with approximating function given by powers of the
inverse Mills ratio. The corresponding sample selection correction is exactly right in the
Gaussian case for the Heckman (1979) two step estimator, while including higher order
terms allows for any functional form. A cubic specification was chosen because it was
slightly more flexible than the quadratic one found by cross-validation in Newey, Powell,

and Walker (1990).
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6.2 Estimation Results

The initial estimator /3 is a two step semiparametric instrumental variables estimator
like that of Newey, Powell, and Walker (1990). Our results differ in allowing nonlabor
income to be endogenous, which may be important due to family choices (e.g. see the
discussion in Mroz, 1987). When we did not instrument for this variable we found that
it was significantly positive when higher moments are used, which is contrary to usual
presumption that leisure is a normal good.

The first set of estimation results are presented below in Table 1. The first Column
contains the results of our initial estimator 3. These results are comparable to those
of Newey, Powell, and Walker (1990), the main difference being the negative sign of
nonlabor income. The remaining three Columns contain the results for more efficient
estimators, using information from nonlinear moments. The Column L, (L =2,....4),
uses powers of € up to the L.

Table 1 - Estimates of Hours Equation
Using Powers of Residual
Variable (1) (2) (3) (4)
Log Wage 183 296 216 126

(259)  (229) (141) (90)
Nonwife Income  -5.5 -12.3 -1.2 0.8
(16.7) (14.4) (11.5) (8.0)
Young Children 57 -66 40 7
(188)  (140)  (90)  (64)
Older Children -65 -37 -50 -71
(40)  (33) (30} (25)

Age 5.2 7.5 4.5 -2.3
(7.1) (6.2) (4.5) (3.0)
Education -75 -62 -88 -65

(40)  (37)  (20)  (14)
Notes: Col. (1) Series; Col. (2) Two Powers,
Col. (3) Three Powers, Col. (4) Four Powers.

The results indicate clearly that use of information in the higher moments significantly
reduces the standard errors. Comparing Column 1 to 4, t-statistics increase greatly. The
regression changes from one where no variables are significant at a .05 level to one where

two are significant. In addition, the wage coefficient is much more precisely estimated,
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with a standard error that is only about 1/3 the size when four powers are used, and a
t-statistic that is significant at the .10 level.

The next set of results, presented in Table 2 below, are generated using powers of
®(¢) instead of simple powers. The Column L, (L = 2, ...,4), uses powers of ®(g) up to
the L.

Table 2 - Estimates of Hours Equation
Using Powers of Normal CDF of Residual

Variable (2) (3) (4)
Log Wage 139 118 220
(292)  (194) (130)
Nonwife Income  -9.4 -5.9 -3.2
(10.7) (8.3) (5.6)
Young Children — -52 -45 99
(230) (166) (86)
Older Children -74 -93 -26
(43)  (32) (22)
Age 6.5 4.3 5.2
(5.3)  (3.6) (3.2)
Education -56 -64 -90

(32)  (28) (17)
Notes: Col. (1) Series; Col. (2) Two Powers,
Col. (3) Three Powers, Col. (4) Four Powers.

Here also the standard errors decrease, although not as much. The p-value for the
estimated effect of the wage variable is .091, which is very small relative to that for the
estimator which just uses the linear restriction. These results are quite good, considering
that the sample size here is very small relative to many cross-section and panel data
applications with selection. Overall, we find statistically significant results, nnlike the
findings in Newey, Powell, and Walker (1990) for the two step least squares estimator.

COMMENT ON DIFFERENCES BETWEEN 1 AND 2

One concern about this approach is that use of multiple moment conditions requires
stronger assumptions about distributions, namely that all the conditions are satisfied
rather than just those for least squares. These assumptions could well be violated in
empirical applications, where some misspecification is bound to be present. We test for

this violation using a sequence of Hausman tests, testing each column of Tables 1 and 2
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versus the previous one. We use Hausman tests because the effect of adding additional
moment restrictions can be clearly seen from the estimates. For Table 1 this procedure
tests the full set of moment restrictions, because the additional number used by each
column is equal to the number of parameters, which is equal to the degrees of freedom
of each Hausman test. Under the null hypothesis that the moment restrictions are true,
these tests will be independent, so that correct p-values can easily be computed.?

For the Hausman tests corresponding to Table 1, where we tested column 2 versus
1, column 3 versus 2, and column 4 versus 3, we take the test statistic to be the larges
of the three, which was 7.4, for column 3 versus 4. This is not a very large value for
a chi-squared distribution with 6 degrees of freedom, with a p-value .29. The p-value
test statistic given by the maximum of the three, which is computed as described in the
above footnote, is .64.

For the Hausman tests corresponding to Table 2, where we tested column 2 versus 3
and column 3 versus 4, the largest Hausman test statistic was 17, for column 3 versus 4.
This is a large value, with corresponding p-value .01 for the individual test and p-value
.02 for the joint test. The test statistic for column 2 versus 3 is only 2.3, suggesting the
misspecification only is a problem for column 4 of Table 2.

Overall, the results of Table 2 show some evidence against the independence hypoth-
esis on which these estimators are based, but do not reject the use of higher moments.
None of the columns in Table 1 are rejected, and only column 4 in Table 2. For the
columns that are not rejected we find large reductions in standard errors that are not ac-
companied by misspecification of the information from the additional moment conditions

used in estimation.

2To see why, consider several estimators based on increasing numbers of moment restrictions 5*, (k=
1,...,K). They will be joint asymptotically normal such that for k& > k, asymptotic variance V, and
covariance C' we have C(8*, 8¥) = V(5*). Then for ky < ko < k3 < k4

C(B! = B, B = By = V(B%) = V(B*) = V(B*) + V(5™) = 0.

Since the differences are joint asymptotically normal, zero covariance implies independence of the dif-
ferences, and hence of the Hausman tests. For two independent tests with the same critical values, and
minimum p-value j over the two tests, the correct p-value will be 25— p2. For three tests, with minimum
p-value p, the correct p-value will be 3p(1 — p) + p>.
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7 Appendix A: Proofs

Throughout the Appendix C will denote a generic constant that may be different in
different uses and I will denote the same identity matrix that gives 6 = [, ()]é. To prove
Theorem 1, we derive a projection formula for the moment limit ¥, and compare it with a
well known formula for the semiparametric variance bound X. Let proj(Y|A) denote the
vector of orthogonal projections of the elements of a random vector Y on a closed linear set.
A, in the Hilbert space of random variables with inner product (Y;]Y2) = E[Y; V5], Also,
let Sp = 0ln f(y|z, B, ho)/0B|s-p,- The semiparametric variance bound for estimators of
Bis V = Var(Ss —proj(Ss|T))~!. Consider any fixed J = J big enough that (v, ..., v;)
includes the nuisance parameters that are present in § = 7, 0]9 Let p and G(z) be the
corresponding residual vector and derivative expectation. Consider any A(z) such that

E[A(x)G(z)] is nonsingular and Var(A(z)p) exists, and let
¥(2) = B(z)p, B(x) = —[1. 0)(B[A(2)G(2)]) " Al=).

Then (z) is the influence function of a GMM estimator with J = J and A(z) = A(z),
meaning that /n( — ) = X7 (z)//n+ 0,p(1). Also let the full tangent space of the
semiparametric model be U = {¢'Sz+t:a € R4, t € T'}. Then, as shown in Bickel et. al.

(1993, Proposition 3.3.1), the semiparametric bound for the asymptotic variance of § is
Y = Var(proj(y|¥)). (18)

Let ¥, = {a'Sg+t : a € R?, ¢t € T,} be the corresponding space for the moment functions.

Then it turns out that
limj_eXy =X, = Var(proj(1|¥,)), (19)

as will be shown below. The proof of Theorem 1 will follow from this result.
To show eq. (19), we need several intermediate results and some additional notation.
For a vector h = (hy, ..., hy) of elements of a Hilbert space P let [h] = {v'h : v € R}

denote the linear span of h. Also, let & denote the direct sum of two linear subspaces,

29



ie. M®N ={m+n:m € Mn € N}. Also, for a closed linear subspace L let
proj(h|L) denote the vector of orthogonal projections of the elements of 4 on L, satisfying
proj(h;|L) € L and (h;— proj(h;|L)|t) =0 for all t € L.

Lemma A1l: If Ly, Lo, ... is a sequence of closed linear subsets of a Hilbert space P
and h is a vector of elements of P such that m = h—proj(h|N$2, L;) has a corresponding
nonsingular matriz Q = [(mx|my){,_,] of inner products, then for any a € P, we have
proj(allh) @ Ny Ly) — proj(allh] & M2, L;) as J — oo.

Proof: Denote L7 = N/_,L;, L* = N2, L;, and m; = h—proj(h|L’). By Lemma 4.5
of Hansen and Sargent (1991), m; — m = h~proj(h|L*°). Then Q; = [(mx|mn){ ] —

@, so that (), is nonsingular for large enough J. Therefore,

proj(al[m,]) = m,Q7 (muxla))ioy — m'Q™ ((myla))i_, = praj(allm])
Then by orthogonality of [n,] and L7 and orthogonality of [m] and L*, standard Hilbert

space theory and Lemma 4.5 of Hansen and Sargent (1991) gives,

proj(alh} & L7) = proj(allm,] & L”) = proj(allm,]) + proj(a|L”)
— proj(allm)) + proj(al L) = proj(alim] ® L) = proj(al[h] & L*).

Q.E.D.

We now consider the Hilbert space of random variables with inner product (X|Y) =
E[XY].

Lemma A2: For T;, = {t : Elpt|lz] = 0} and T,y = {¢CH(z)'Qz) p:c € N},
T;=T;,®Tx and Ty, and T,y are orthogonal.

Proof: Consider ¢ € T;. Then Elpt|lz] = H(z)c. Let ty = H(x)'Qx)"p and
t, =t —tg. Then ty € T,y by construction, while ¢, € T,, by E[pt,|x] = E[pt|x] —
Elpp'|2)Q:(x)"H(z)e = H(z)c — QUz)Qz)"Qz)R(z)c = H(z)c — Qx)R(z)c = 0. Then
t=1,+tg € Tj, ® Tyg. Furthermore, for t = ¢, 4+ ty € T, & Ty, we have E|pt|z] =
Elpt,|z] + Elpty|z] = Elpp'|z]Q(z) " H(z)c = H(x)e, so t € Ty. Furthermore, for any
tp € Typyty € Tyn, Eltpty] = E[Elt,tyl|z]] = E[¢ H(x)'Qz)~ E[pt,|z]] = 0.

The following result will hold with F(z) = Q(x)~' E[ap|z] when Q(z) is nonsingular,

but requires a proof for Q(z) singular.
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Lemma A3: For any a with E[a*] finite, there exists F(z) such that Elap|x] =

Proof: Consider J x 1 random vector d(z) such that [|6(z)]] < 1 and Q(x)d(x) =
0 with probability one. Then E[{p/d(2)}?] exists, so that so does E[{p/d(x)}?|z] =
§(x)'Q(z)d(x) = 0. Then by iterated expectations, E[{p'd(x)}?] = 0, and hence p'd(x) =
0. It follows that Elap'|z]0(z) = Elap'é(x)|z] = 0. Since this equality holds for any such
§(z), it follows that with probability one E[ap’|z] is orthogonal to the null space for Q(z).
By symmetry of Q(z), its range and the null space are orthogonal subspaces of 7, so
that ®7 is the direct sum of the range and null space. Consequently, £ [ap|r] must be
in the range of Q(z). Q.E.D.

Lemma A4: For any generalized inverse Q(z)™ and any a with E[a®] finite, E[{ E[ap'|z]%z) " p}?]
and E[H (z)'Qz)~ Elpalz]] are finite, and E[E[ap'|z]Q:(z)~ Elpalz]] < Ela?).

Proof: By Lemma A3 there is F(z) such that Elap'|z] = Q(z)F(x), so that for
a = Elap'|z]8%(z) " p,

Elalz] = Elap/|2](z)"Q2)(x) " Elapla]
= Fz)Uz)(z)” Q2)Qz) "' QYz) F(z)
— Fe)Q)P() = Elagla)(z)” Elapla]
is invariant to the generalized inverse. Let A(x) denote a diagonal matrix of eigenvalues of
Q(z) and B(z) an orthonormal matrix with {2(x) = B(2)'A(z)B(z). Let A(2)~'/? denote
the matrix with diagonal elements equal to the inverse square root of corresponding

nonzero elements of A(z) and zeros where A(z) is zero, and L(z) = B(z)'A(z)~/2B(z).

Then L(z)? is a generalized inverse, and by the Cauchy-Schwartz inequality,

Elap|e}e) Blople] < Ela?la) Bl L(x)pla] = Ele]altr(L(x)0a)L(x))
= E[a*z]tr(L(z)Qz)L(z)) = Eld®|z]rank(Q(z)).

Taking expectations of both sides give the first conclusion. To show the second conclusion,

let b = H(z)Q(z)"p and note that H(z)(z)"E[palz] = E[ba|z]. By Assumption 2,
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E[bY] is finite, so that by the Cauchy Schwartz inequality,
Ell| Ebalz]ll] < E[E([lballlz] = E[[[bal]] < oo.

To show the last conclusion, note that E[ap’|z]Q(z)~ E[pa|z] = Ela®|z] and that Elaa|z] =
Ela%|z]. Q.E.D.

Lemma A5: T}, is closed in mean-square.

Proof: Consider ¢, — t,t, € T,,. Then by Lemma A4, for any symmetric, p.s.d.

generalized inverse

o
A

B[E[ptla}Q(x)" Elptla]] = E[E[p(t ~ t)|e] Q)" Elo(t — ta)la]

< E[(t—t)?] —0.

It follows that E[pt|2]'Q(2)” Elpt|z] = 0. By Lemma A3, 0 = E[pt|z]Q(z) E[pt|z] =
F(2)'Q(x)F(x). Then for any square root matrix B(z) with B(z)' B(z) = Q(z), we have
|B(z)F(2)||*> = F(z)Qz)F(z) = 0. It follows that B(z)F(z) = 0, and hence that
Elpt|z] = Qz)F(z) = B(x)'[B(z)F(z)] = 0. Therefore, t € Tj,. Q.E.D.

Lemma A6: For m, = H(x)Q(x) p

proj(alTy) = a = Elaga}0) " p + Elam,)(Blm,mt]) 1,

Proof: By Lemma A4 «, = o — Elap'|2]Q(z) p has finite mean square. Also,
Elpa,|x] = Elpalz] — Qz)Q(x)”E[pajz] = 0 by Lemma A3, so that a, € T;,, and
for any t € Ty,, El(a — a,)t] = E[Elap|x]Qz)"pt] = E[Elap'|2)Q(x)” E[pt|x]] = 0.

Therefore, a, = proj(a|T),,). Also,

Elm,m ] = E[H(z)'Qx)"Qx)Q(z)” H(z)] (20)

is nonsingular by Assumption 2, so that Elam.](E[m,m.])"'m, = proj(a{T;y). The

conclusion then follows Lemmas A2 and A5 and from the standard Hilbert space result
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that the projection on a sum of orthogonal subspaces is the sum of the projections.

Q.E.D.
Lemma AT7: For all J large enough and vy = proj(1|[Ss] @ Ty), it is the case that
Bl =2,
Proof: Let mg = D(z)Q(z) p. It follows similarly to eq. (20) that E[’]T}ﬁﬁl;] =
E[D(z)2x)” H(z)]. Also, it follows from Assumption 1 and Lemma 5.4 of Newey and
McFadden (1994) that D(z) = —E[pSs|x}. Therefore, by Lemma A6,

S — proj(SsITy) = E[Ssplele)p — FIE[Ssp|a]r) H ()] (Elmnr)) .,
= —mg + Elmgm.)(Elm,m.])"'m, = U,

where the last equality defines U.

Next, let Q(z) = E[pp'|z] and consider any J > J. Then for any t € T}, E[t] =
E[B(z)E[pt|z]] = 0. Hence, the components of 1) are in the orthogonal complement of
Tjp, so that proj(y|T;,) = 0. It follows by Lemma A2 that proj(y|T;) = proj(¢|Tixg).

/

Then, since (U', m/,

)’ is a nonsingular linear combination of m = (mj, m.,)’ = G(x)'Q(x) p,
it follows by standard Hilbert space theory that
by = proj(¥[[Ssl & Ty) = proj(|[U] & Ty) = proj(y|[U]) + proj(¢|T))

= proj(llU)) + proj (Y| Tyn) = proj(|[(U', m)"]) = proj(s|[m])

= E[pm/[(E[mm]) 'm.
Let K be the selection matrix so that g = Kp. Note that by construction, p(z, 8, v;) does
not depend on the parameters in § that are not in 4, so that KG(z) = 0E[p(z, 5,77)|z]/00 =
[G(z),0]. Also, by D(z) = —E[pSj|z], Lemma A3, and Assumption 2 therc is an F(z)
such that G(z) = Q(x)F(z). Therefore, for ¥ = (E[A(2)G(z)])~!,

~Elpm) = [1,0SE[A@)5 Q) Gla)] = [T, 0SE[A() KQ(x)Q(z)G()] (21)
— [LOSEA)KG()] = (1, 0S[E[A(x)G(2)]. 0] = [1, 0],

where the identity matrix I has the same number of rows as 0 throughout. Finally, noting

that (E[mm/])~! is the bound for 0, it follows from the last equation that E[¢ )] =
E[ym/}(E[mm/]) " E[my) = [1,01(E[mm/))~'[I,0] = £,. Q.E.D.

33



Proof of Theorem 1: By Lemma Al, v; — * = proj(|[Ss] & N7, T;), so that
by Lemma A7, ¥; = E[y 9/} — E[yv*y*]. Q.E.D.

Proof of Theorem 2: For simplicity suppress the x argument in 7(x), D(x), H(x),
and Q(z). Let 7 = —D'Q” + E[D'Q"H|(E[H'Y H])"'H'2™. Note that E[7*p(7*p)] =
V. Also, let K = E[pS’|z]. Then by Assumption 1 and Lemma 5.4 of Newey and
McFadden (1994), D = —E[pSg|x], and by T C T, E[p - proj(Ss|T) |x] = HC for some
matrix C, so that K = E[pSi|z] — Elp - proj(Ss|T)'|z] = =D — HC. Therefore,

K'Q — E[K'Q H/(E[H'Q™H) ' H'Q™
= 1~ C'H'Q + C'E[H'Q H/(E[H'Q H) '\ H'Q =7
Note that E[n*H] = 0. Also, for any 7 with F[rH] = 0, since Lemma A3 implies that

thereis F' with K = QF and by Assumption 2, H = QR, for B = E[K'Q"H|(E[H'Q H])™!

we have
Elrppr] = Eln*Qn) = E[F'QQ-Qr'] — BE[R'QQ Q]

= E[K'n']| — BE[H'n'] = E[E|SY|z|x'| = E[Sp'w'].

Then it follows that for any 7 with E{rH] = 0,
E[{S — 7" pH{mp}] = E[Sp'n'] = E[x"pp'n'] = 0.
Therefore,
E[(S —m"p)(S — *p)'] = E[SS) = E[x"pp'n”| =V~ =V, (22)

so that for any 7 with E[rH] = 0, since m = 7* — 7 also satisfies E[rH] = 0,

E[(S = @p)(S —7p)] = E[(S—n"p+mp)(S~n"p+mp)]
— BI(S - 7o) — 7p)) + Elmp(mp)’
The conclusion then follows from the last two egs. and E[rp(7p)] p.s.d.. Q.E.D.

Proof of Theorem 3: Consider any t € T,. Then ¢ will satisfy E[pt|z] = Hc for
every J. Then for every m = n(x)p € M, E[mt] = E[r(z)E|pt|z]] = E[rx(x)H]c = 0.
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Thus we have T, C M L. Now consider ¢t € M+. For a symmetric, p.s.d. Q~ let K =
Elptiz), ¢ = (E[H'Q"H]))'E[H'Y" K], and 7(z) = (K — He)'Q™, where E[H'Q K]
exists by Lemma A4. Note that E{||7(z)p||*] = E[(K — He)QQ™ (K — Hc)] also exists by
Lemma A4 and that E{nH| = E{K'Q H | — /E[H'Q"H| = 0. Therefore n(x)p € M,

implying
0 = Eln(z)pt] = Eln(2)K] = E|[(K — He)'QY K] = E[(K — He)QY (K — He)l,

where the last equality follows by E[rH] = 0. It follows that (K — He)'QQ@ (K — Hc) = 0.
Since H = QR by Assumption 2 and K = QF by Lemma A3, it follows that (F —
Re)'Q(F — Rc) = 0, implying QY/2(F — Rc) = 0 for any square root matrix, implying

0=Q(F — Re) = K — He = Elpt|z] — H(z)c.

Therefore, t € T,. Since this inclusion holds for any ¢t € M + it follows that M+ C T,
and hence that T, = M L. To prove the second conclusion, note that A{ is lincar and
closed, so that by standard Hilbert space theory (T,)* = M . Q.E.D.

Proof of Theorem 4: Let 15 = 1(¢ > 7o) and (a}) be a countable basis of bounded
functions of . Then (15af)%%—, is a basis (the proof is available upon request), meaning
that if E[r(e,2)?] < oo and E[15afr(e,x)] = 0 for all j and k then r(e,z) = 0. Note that
forv > —yand y = 0 we have e = y* —v < —v = y — v. Hence, 1(v > —y)1(y —v <

v) = 1(v > —v)1(e < 7). Therefore,

pi(z, Bo,v;) = v > —y)[L(e <) — o).

By v continuously distributed, it follows that E[p;(z, fo,7v)|z] is differentiable at v with
probability one (w.p.1), with derivative 1(v > —v)g(vy). Hence, H;;(x) = —1Yg(v;0) for
1% = 1(v > —7j0). Consider t(y, z) in the moment tangent set. Since y is a function of z

and e we can regard ¢ as a function of ¢ and z. Then for 15 = 1(e > o)

v Y50 . _
Elptlz] = 15 /*OO t(e,z)g(e)de = =17 E[15t(¢, x)|]

= —1gi(vo)e; = —17d; = Hj5(x)e;, dj = g;(Vio)¢s-



Next, consider j with P; = E[1Y] > 0, and let s;(¢) = E[1%t[e]/P; = Eltle, 1] = 1],
and J(j) = {j' : vj0o > 7jo}. Note that for any j° € J(j) we have 171% = 17. Then

replacing j by j' in the previous equation and multiplying through by 17 gives
1 E[15t(e, z)|x) = 1jdy for all j' € J(j).

Taking expectations of both sides and dividing by P; gives E[1%s;] = E[115t]/P; = d;.
Let 1; = 1513. Note that for any 7, 151; = 1517 for some j' € J(j). Then

Elfaz1;(t — 55)] = Elap13151] — Elag1]15s;]
= Elap1iE[L5 2]} — Elap1i]E[15s;]

Since this equality holds for all j and k it follows that 1;(¢ — s;) = 0 w.p.1. Since this
equality holds for all j, a countable number of these, w.p.1 we have 1;(t — s;) = 0 for all
J with P; > 0.

Next, consider any j and j' with v; > v; and P; > 0. Then
0= 1]'1]'1(83‘ - Sj/) = 1;1;,(8] — Sj/).

Taking conditional expectations given ¢, by independence of x and ¢, P;15 (s; — ;) = 0,
implying 1% (s; — s;7) = 0, so that s;(¢) = s;:(¢) w.p.1 for ¢ > ;. It then follows in a
straightforward way that there is an s(¢) such that 1,(t —s) = 0 for all j (details available
upon request). Then, noting that by denseness of the quantiles, U2, {(e, z) : € > vjo,v >
—vj0} = {(g,2) : e +v > 0}, it follows that t(e,z) = s(e) for y > 0. Then, as noted in
the text, it follows that (¢, z) is an element of the model tangent set. Thus the spanning
condition is satisfied. Q.E.D.

Details for the proof of Theorem 4: Let © be the least upper bound for the
support of v, that may be co. Define s(¢) = 0 for ¢ < —v. Let (7,)52, denote a monotonic
decreasing subsequence of (yy;)52,, with v > —0, 4y — —7 as £ — oo. Let j({) solve
Ye = Yoo and define s(e) = s;41y(¢) for v < e <y and s(e) = s;01)(e) for € > ;0.

Then for any j with v; > ;) we have P;q) > 0, implying s;(e) = s(e) for ¢ > ~;,
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and hence 1;(t —s) = 0. For any j with v,11 < v; < v we have Pjey1) > 0, implying
s;(€) = sjeq1)(e) for v; < €, and hence s;(c) = s(g) for 7; < ¢, so that 1;(t —s) = 0.
Summarizing, we find that 1,(t —s) = 0 for all j with P; > 0. Furthermore, for all j with
P; =0 it is automatically true that 1,(t —s) = 0. Thus for each j, 1;(t — s) = 0 w.p.L.

Since there are a countable of these equalities, it follows that w.p.1, 1,(t — s) = 0 for all

g

Proof of Theorem 5: Let S(v) = [[° g(¢)de be the survivor function for g(¢). By
In g(e) strictly concave and Pratt (1981) it follows that In S(v) is strictly concave. Then

dInS(y)/dy = —g(y)/S(7) is strictly decreasing, so that for any 7 > 0,

O80+7) S+ [ _gb+7) |, 9()
dy S(v) S() Sty+71) " S(y)

Then by lim,_,o[S(v+7)/S(7)] = 0, it. follows that for any 7 > 0 and 0 < a < 1 there is

<0

a unique solution y(a, 7) to S(y+7)/5(7) = «, i.e. to E[al(e > ) —1(e > v+ 7)] =0.

By the implicit function theorem, r(«, 7) = (v(a, 7), 7 + v(a, 7)) is continuous in («, 7)

and has range I' = {(v,¢) : ( > ~}. It follows that I = {(v;0,vj0 + 7;)} is dense in T'.
Now let m$ = a;1(e > 7j0) — 1(e > 7o + 7;). Consider any r(e) with E*[r(2)?] < oo,

and suppose that 0 = E*[mSr] for all j. Then by continuity of the integral it follows that

for all v < (,
S©) [ r(@)g(@)dz/S0) — [ r(e)gle)de = 0.
v ¢
Differentiating with respect to ¢ holding v fixed we see that r(¢) = [° r(e)g(e)de/S(v)

almost, everywhere for all ¢ > ~. By repeated application of this equality for different -,
we find that r(e) is constant almost. everywhere. Then, if r = r(g, z) and «f is as in the
proot of Theorem 4, by the Fubini Theorem, £*[mSagr] = 0 implies [ r(e, x)af F (dz) = ¢
for some constant ¢;. Taking expectations of each of these equalities and subtracting, it
follows that for 7#(z) = [ r(e, z)g(e)de that [[r(e, z) —7(x)]afF(dx) = 0 for each k, which
implies that r(e, z) = r(z). Thus, E*[mSajr] = 0 for all j and k implies r(s, z) = 7(x).
Next we proceed as in the proof of Theorem 4 with notation as given there. It

follows similarly to the last paragraph that if E*[1;m;a?r] = 0 for all j € J(j) and
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all k then r(e,z) = 7(z) = [, r(e.2)g(e)de/P; for all € > 7o and v > —7;9. Also,
it follows similary to the proof of Theorem 4 that E[p;(z, fo,v)|z] is differentiable at -y
with probability one (w.p.1), with derivative H;;(z) = —1}*&@/5(@) where d; = a;g(v;0) —
9(vjo + 75). Then, multiplying through by S(v), for the moment tangents must satisfy

S(v)Elpjtlz] = —1YE*[mit|a] = —=13d; = Hj;(x)c;S(v), dj = djc;.

It then follows anaogously to Theorem 4 that E*[1;m5af(t — s;)] = 0 for all ;' € J(j).
Therefore, for r(e,z) = t(c,z) — s;(¢) and the r;(x) = [ t(e, 2)g(e)de/S(v;0) we find

that
Lt —s;—r;) =0,

for all j with P; > 0. Then, becanse ¢ is additive in a function of € and z for 1; =1 it
follows in a straightforward way, similarly to the proof of Theorem 4, that therc is s(¢)
and r(z) with 1;(t —s—7) = 0 (details available upon request). Then ¢(c,z) = s(g) +t(z)
for all y > 0, so that ¢ is an element of the model tangent set, and the spanning condition
is satisfied. Q.E.D.

Details for the proof of Theorem 5: Consider any j and j’ with v; > +; and
P; > 0.

0=1;1;(s; + 15 — 85 = 15) = 1 15:(s5 — s + 15 — 750).

Define ¢;;; = E[r; —rj|v > —v;]. Taking conditional expectations given &, and using the

definition of ¢;;; we find that

16-/(Sj - Sy + ijl) = 0, lv(’l"j — Ty = ijl) =0.

J J

Also, for y;» > 7/, we have 15, (s — s + cjrju) = 0, so that summing gives 15, (s; — sj» +
cjjo +¢jrn) = 0. Then, by the previous equality with j = ;" it follows by Pr(e > ~;#) > 0
that c;; + cjijn = c¢jjm.

Next, let (v4)5°__ C {7j0}32; be a monotonic increasing sequence with lim, ,_,, v* =
—7v, where ¥ is the least upper bound for the support of v, and lim,_,., 7" = oc. Define

st(e) = s;(¢) and rf(z) = r;(z) for j with +* = vjo. Define ¢ = ¢j; for 7' =~y <
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vo =" Let

( ) . SO(€>7E > ’70

BET st + 0y <e <AL E<0
r(z),v > =+,

) = { r(e) + ¢y <u <=L >

: 0 _ e _ . L 6 _ A s
Consider any jo, and let ¢; = ¢;; for v* = v > v; and ¢ = ¢y for ' = v < ;.

Consider first the case where ;0 > +°. Then for £ > v,y and v > —;q,
t:Sj—|—’T’j :S—}—C?—f—’l"j.

Now let v71 < ;0 < 7f, e, =78 < —v;0 < =¥ For x with —7 < v < —4/~!, note
that ¢ 4 ¢ = ¢, so that

r(z) = 'r”(x) + = ri(x) — cf + % = ri(x) + c?.

so that ¢ = s+ r for € > ;0 and = with —v;0 < v < —*L. It also follows analogously
that £ = s + 7 for all x with v > —~¢, so that 1,(t — s — ) = 0. The case with ~;5 < 7.
Follows analogously.

Proof of Theorem 6: Without changing notation let Bp(z, ) replace p(z, 3), noting
that this replacement does not affect the estimator. Consider a further transformation,
where Bp(z, B) replaces j(z, 3), for a symmetric square root B = /2. By the smallest
eigenvalue of Q2 bounded away from zero, the largest eigenvalue of Q! is bounded. It

follows that
IB(Q - QB> = tr(B(Q—Q)B*Q - Q)B) < Ctr(B((1 — Q)($) — Q)B)
= Ctr((Q—Q)BB(Q - Q) < C|I$t - Q%
Similarly, [|A*(Q—Q)B| < C|A*(Q2— Q)| and | B(G - G)|| < C||G = G||. It follows that
all the hypotheses of the theorem hold for this replacement, where ) = I.
Next, note that —G' are the coefficients of the mean-square projection of S; by hy-

pothesis i) (and © = I). Then, also by i), it follows that E[||S; — (—G’p;)|[?] — 0, and

hence that
GG =BG pifG) — (V) (23)
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Next, let Apin(F) and Apax(F') denote the smallest and largest eigenvalues of a symmetric

matrix £. Note that |Q— || 2 0 implies Apax(Q7") = Amin() 1 2 1. Tt follows that for

any conformable sequence Z, of random matrices, |Q7Z,| < O,(1)||Zy]|- Therefore,
I 'G -Gl < JQ7HG =G+ 19T - Q)G

< OG- Gl + I~ 1]]) & 0.

It then follows that [|Q2'G|| = O,(1) and hence

IG'OIG - GG < G- GYQIG + I/ QG - &) Lo (24)

The second conclusion then follows from eq. (23) and the triangle inequality.

To show the first conclusion, note that by i.i.d. observations and )} = [, p =

S pi/ v/ satisfies E[||p)|%) = E|lpil?] = J, so that 5 = O,(J'/?), and hence
1271 5l| = O, (JH2). (25)
It then follows by conditions iv) and v) that
G =GNpll < (G =Gl + G/ = 90|
< (|G =Gl +IG"( = QL ll = 0,(JT2)O(JH2) 5 0.

Also, by condition i) and the Markov inequality,
G'p =SV = O({EIS. — GalFI}2) 2 0.
=1

It then follows by the triangle inequality that G'Q'p = S, Si/\/n + 0,(1). Also, by

vi),
IG5 3= ) (20)
< IGINS AV = 7l = Oyl1oy(1) 0
It follows that G'Q2=2 57, p://n -5 N(0,V*). Then by a mean-value expansion,

VB —p) = [I— (GGG GlVn(B — po) (27)
(GO G) G Z PN
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where G' = Y™, pa(z, B)/n and § is a mean value. It follows similarly to eq. (24) that
GG B (V*)71, so by the Slutzky theorem, the first term following the equality in
the last eq. converges to zero in probability. The conclusion then follows by applying
the Slutzky theorem to the second term. Q.E.D.

Proof of Theorem 7: We proceed by verifying the hypotheses of Theorem 6 for
p(z, B) = u(z, B) ® p’/ (w). Note first that the estimator is invariant to nonsingular linear
transformations of p/(w), so that by iv) we can assume that p’(w) = p’(w). Here let
p; = p/(w;) and Q = Elp;pl]. By iv), Am(Q) is bounded away from zero, so that
1Q~Y2p” (w)]|?> < C¢(J)% Therefore, all of the hypotheses are satisfied with Q~/2p’ (w)
replacing p’ (w), and hence we may assume throughout that E[p;p}] = I.

Let ¥; = Eluujlw;], D; = Elug(z;, fo)|w;i], s denote the dimension of u(z, 3), and
S; = —D/Z;lui. Note that

G = E[Ug(zi,ﬁo> ®pi] = E[Z)z ®pi]. = E[(Ul ®pz)u22:1Dl] = —E[[),S;] (28)

Also, by i) and iii), A; = —D!X7" is bounded. By ii) there is a ¢ x s.J matrix 7, such
that E[||A; — m;(I, ® p;)||?] — 0 as J — oo. Therefore, for p; = u; ® p; and S; = Ae;,

E(lSi —mpill?] = tr(E{A —ms(L @) }S{Ai — ms(L @ pi)}])
< CE[||A; = m;(I; 2 p)|I°] — 0.

Thus, condition i) of Theorem 6 are satisfied.

Next, note that by iii)
Elpipl] = E[%; @ pipi] > E[CI ® pp] > C1,

so that condition ii) of Theorem 6 is satisfied.

Next, let @; = u(z;, 3), so that 0= > Wt @ pipl/n, and dy; = 01(2;). By mean value

expansions, |4; — w;|] < §y,]|8 — Bo|| for each i < n with probability approaching one

(w.p.a.1). Let Q = ¥, u! ® pp,/n. Then by 18 — Boll < 1 and E[llp]|?] = J, by the
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Markov inequality,

Q=2 < 3 st = v |lp] /n

< (-l + 2]

?

< 1B = Boll (8% + 20wl ) il /.

= Op(B[(6%; + 260wl [|p]|1*)/v/n) = Op(J//n) = 0.

i = [ 1) [l |/

Also, we have

EllQ ="} = tr{El(u; @ pip))?] — /0 < El|lu*llpil|*)/n

< CE[pill*}/n < CC)Elllpill*l/n < CC(T)* T/ — 0,

so that by the Markov inequality, |2 — || % 0. Then by the triangle inequality condition

ii1) of Theorem 4 is satisfied.

Next, for any 8 with 8 = Sy + O,(n=Y2), dig; = ug(2;, ), ugi = ug(zi, 3), and
boi = 02(2), let G =5, pg(zi,ﬁ)/n, =), Ug ® p;/n and G="y, ug; @ p;/n. We have

IG =Gl < D llss = ugillllp:dl/n < )18 = Boll 3= daillpill /m
= O,(n72¢()) = 0,(J7?).

Also,

E(G =GP = tr(Elugusdpd) = G'C)/n < Elljus i )/m
< BT pdM/n < CC(T)? /0.

By the Markov inequality it follows that |G — G|| = Op(n"Y2¢(J)) = 0,(J/?), so that
condition v) of Theorem 6 is satisfied.
Next, assume for the moment that 3 is a scalar. By boundedness of E[6%w;] and %,

having smallest eigenvalue bounded away from zero (implying I < C%,), for ps; = ug@p;,
ElllA"psill”] < Ctr{E[A*(I ® pp) A} < Ctr{E[A*(S: @ pip[)A™]}
— CE[lAmY < C.
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Let p; = 1u; ® p;, and note that by expansions, w.p.a.l

15 — pill < CoC(INB = Boll,
A i — pi — ppe(B — Bo)Hl < 1A NS2:llpill 1B = Boll* < CoaC ()5 = Soll*.

Therefore, it follows that

@D = IS A G~ o)l
A7
L4 = p)llloll}

O SHGCIB = Aol + 14" a1 (DB — ol

sl — Boll? + 4% sl STV = ol

= O,(C(J)*/n + B[ A*pil|dv + 14" paill il Jn /2 ()?) = 0,(J?).

(A

pi = pill* + 1A%pilll o — pil

VAN

Next, note that by E[||u]|*|w;] bounded, for

I

E[|AT(Q - = tr{BllalPA"pipiA”] — AQ*A"}/n

IN

CC(I)*tr{ A" El|luil*pipl} A} /n
< CCIr{AE[I @ pp{] A7} /n = O(C(])*/n),

so by the Markov inequality, |A*(Q — Q)| = O,(n~Y2¢(J)}/?) = 0,(J /?). Then by
the triangle inequality, condition iv) of Theorem 6 is satisfied. Furthermore, the last
condition of Theorem 6 holds by since p(z, 8) = p(z, 3), so the conclusion of Theorem 7

follows from Theorem 6. Q.E.D.

8 Appendix B:Additional Derivations

The first result shows the formula for the first-order conditions of the ordered choice

MLE in the transformation model. Let Y;; = 1(7;-1 < v < ;) and P;;(0) = Pj(x;,0).
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Differentiating the log-likelihood gives first-order conditions

n J+1 n J+1
0 = Y3 Y,0InPy(0)/00 =3 3 Yy — Py(0)0ln Py (0)/06
i=1 j—l =1 j=1
n J
= Z Z 0)10In[ Py (0)/ Piisa(0))/00 = 35~ ps(2:,0)0ln [Py (0)/ P 5 1(6)] /08,
i=1j=1 i=1j7=1

where the second and third equalities follow by Z‘IH P,;(0) = 1 identically in ¢ and the
fourth equality by Y;; — Pij(0) = p;j(2.0) — pj_1(2,0), j = 2,...,J, and Y}, — P;1(0) =
p1(z,0).

The next result shows that a sequence of positive semi-definite (p.s.d.) matrices that
is monotonically decreasing in the p.s.d. semi-order has a limit.

Lemma A8: IfY; is positive semi-definite and X5 > ¥ ;41 for each J then lim j_ 02
ex1Sts.

Proof: Let tr(M) denote the trace of a square matrix M. By ¥,—%,,; p.s.d, fr(Z,) —
tr(3y1) = tr(3;,—2,541) > 0, s0 tr(X,) is a nonnegative, monotonic decreasing sequence
that converges. Therefore, tr(2;) is a Cauchy sequence, implying tr(X; — ¥Xx) — 0 as
J —ooand K — oo, K > J. Let |M]|| = \/tr(M'M). For M p.s.d., M = B'AB for an
orthonormal matrix B and a diagonal matrix of nonnegative eigenvalues A, so that by

Aj; =0
IM|> = tr(B'ABB'AB) = tr(B'A*B) = tr(A%) = ZA < tr(A)? = tr(M)%,

Applying this equation with M = ¥; — L, we obtain ||£; — Xk |?

S fr(Z, - ZK)Q.
Because |2 — Xk]| is just the usual Euclidean norm, it follows that each element of ¥,

is a Cauchy sequence, and hence converges. Q.E.D.
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