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1 Introduction

Most standard macro and growth models rely on very restrictive behavioral assumptions about

households — infinitely lived, often representative, agents who are capable of solving complex

maximization problems without any behavioral biases or limitations, and of implementing the

optimal decisions without any inconsistencies or mistakes. It is an uncomfortable stage of intro-

ductory graduate courses when these assumptions are introduced and students rightfully ask

whether everything depends on them. A natural conjecture is that these assumptions do mat-

ter and any degree of behavioral richness would render any general conclusions impossible.

Not only do general equilibrium effects become notoriously complicated and the set of indirect

effects correspondingly rich; we would also expect the specific departure from full rationality

— e.g., systematic mistakes, ambiguous beliefs, overoptimism or dynamic inconsistency — to

have a first-order impact on the direction in which the economy responds to changes in policy

or technology.

In this paper, we study one-sector growth models and establish that while it is true that

at the individual level outcomes depend critically on the exact behavioral specification, robust

predictions of long-run responses to changes in environment (policy, preferences or technology)

can nonetheless be obtained in the presence of general behavioral preferences.1 Specifically, we

identify conditions that are sufficient — and when the steady-state equilibrium is unique or

when changes are small, also necessary — for changes in environment to lead to comparative

statics in line with the predictions of the baseline neoclassical growth models. These condi-

tions depend only on the direction of the direct response to a change in environment, defined as

the (partial equilibrium) impact on aggregate savings, computed from the consumption-saving

problem of households, holding the pre-tax prices fixed at their initial steady-state values. Put

simply, if the direct response to a change in environment is an increase in aggregate savings,

then no matter how complex the general equilibrium interactions that will play out dynami-

cally (as prices change), the long-run impact on the capital stock and output per capita will be

positive. Conversely, if the direct response is a decrease in aggregate savings, then the long-run

impact on the capital stock and output per capita will be negative.

Before we elaborate on this result further and provide an intuition, let us explain it in the

context of a specific policy change — a reduction in the capital income tax rate. In baseline

“neoclassical” settings, including the Ramsey-Cass-Koopmans model or the Aiyagari model,

1To prove that these conclusions and intuitions hold under a broad class of specifications of mistakes and behav-
ioral assumptions, we develop them in a general framework that nests a rich set of behavioral preferences, including
those based on quasi-hyperbolic discounting, non-separable preferences, ambiguity, self-control, sparseness, sys-
tematic mistakes, under or overoptimism, and imperfect optimization.
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this direct response is simply the “partial equilibrium” change in aggregate savings, holding

prices at their initial steady-state values. This response is always positive under standard as-

sumptions, ensuring that lower capital income taxes lead to higher capital-output ratio and

output per capita in the long run. Taking this as a benchmark, our results can then be read

as saying that any set of rich and more realistic behavioral preferences that do not reverse the

direction of the direct response will leave the qualitative comparative statics of the steady-state

equilibrium unchanged — the capital-labor ratio and output per capita will increase in response

to lower capital income taxes.2 These results apply with minimal assumptions, which in partic-

ular implies that subsets of individuals can have different types of behavioral preferences and

can make various types of systematic mistakes in their expectations or optimization.

Conversely, our results also delineate robust conditions for behavioral preferences and sys-

tematic mistakes to reverse the direction of long-run comparative statics: When the direct re-

sponse to a change in environment goes in the opposite direction of the direct response in

benchmark neoclassical models, long-run (general equilibrium) comparative statics will go in

the opposite direction of the conventional comparative statics — no matter how the various

general equilibrium interactions play out. So if lower capital taxes reduce aggregate savings

upon impact, they will lead to lower capital stock and output per capita in the long run.

Figure 1 presents these results diagrammatically. All four panels of the figure depict the key

object in our analysis, “the market correspondence”, which summarizes the aggregate saving re-

sponses at different levels of the capital-labor ratio (see Section 2.5). Our main theorem amounts

to saying that, for long-run comparative statics, it is sufficient to look at how the market corre-

spondence shifts at the capital-labor ratio of the initial steady-state equilibrium. Panel 1 illus-

trates this point. Even though the market correspondence that applies for a new environment

is not everywhere above the initial market correspondence, it is strictly above it at the original

capital-labor ratio, and this is sufficient for us to establish that the change in environment will

lead to a higher capital-labor ratio.

Panel 2 provides a complementary case. While in Panel 1 general equilibrium interactions

reinforced the direct response, in this case they dampen it. In general, it is very difficult to

determine, without explicit computations, whether Panel 1 or Panel 2 will apply — because

general equilibrium interactions are difficult to characterize. Crucially, however, the direction

of long-run comparative statics can be determined without this knowledge.

Panel 3 shows the converse case. Now the direct response is a reduction in aggregate sav-

ings. As a result, the figure shows that the long-run and output per capita will decline. Hence,

2Naturally, different distribution of preferences and mistakes across households will have quantitative implica-
tions. These are of course important for many applications, even though they are not our focus in the current paper.
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Panel 1: Equilibrium adjustment reinforces the
direct response

Panel 2: Equilibrium adjustment partially re-
verses the direct response

Panel 3: Reversal of the direct response implies
reversal of the long-run outcome

Panel 4: Equilibrium adjustment reverses di-
rect response (note the “downwards jumps”)

Figure 1: Panel 1 shows an instance in which general equilibrium effects amplify the direct
response, while in Panel 2 they dampen it. In Panel 3 the direct response is a decline in aggregate
savings, so the long-run impact incorporating general equilibrium effects is also negative. The
scenario in Panel 4, where the direct response is positive and the long-run impact is negative,
is impossible in the one-sector behavioral growth model because individual savings functions
cannot “jump down” (equivalently, consumption functions cannot “jump up”). To overturn the
(long-run) comparative statics in Panels 1-2, the direct response must be negative as in Panel 3.

if we think of Panel 1 as corresponding to the benchmark neoclassical growth model, Panel

3 would capture the case where behavioral preferences reverse the direction of the direct re-

sponse, and as a result, lead to the complete opposite of the neoclassical long-run comparative

statics. Finally, Panel 4 depicts the case ruled out by our theorems: appropriate, and quite weak,

upper hemi-continuity assumptions preclude the possibility of downward jumps in the market

correspondence.

These points are further clarified in Section 4, focusing on three types of economies fea-

turing popular behavioral departures from neoclassical models: those with quasi-hyperbolic

preferences as in Phelps and Pollak (1968), Laibson (1997) and Harris and Laibson (2001); those

with self-control and temptation problems as in Gul and Pesendorfer (2004); and those with

systematic misperceptions. We show that using our approach is straightforward in all three of

these cases (as well as in several others presented in Appendix C). In fact, our analysis yields
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general equilibrium comparative statics in this class of models that, to the best of our knowl-

edge, do not exist in the literature. For example, with quasi–hyperbolic preferences, we show

that when the extent of present-bias is limited and the intertemporal elasticity of substitution is

not too high, models with quasi-hyperbolic preferences yield qualitatively similar comparative

statics to those of neoclassical growth models (in other words, they can be represented by Pan-

els 1 and 2 of Figure 1). Yet, with sufficiently high present-bias and intertemporal elasticity of

substitution, the comparative statics are reversed (as in Panel 3 of Figure 1). In this case, for in-

stance, lower capital income taxes lead to a lower capital stock and reduced output per capita in

the long run. Once again, our approach enables the derivation of these general results without

any explicit characterization of general equilibrium interactions — they follow directly from the

inspection of the direct response to a change in environment.

To see that these findings are not driven by some strong implicit assumptions and to build

an intuition for them, it is instructive to revisit the classic Aiyagari model with fully-rational

(“neoclassical”) heterogeneous agents. In such an economy, the equilibrium adjustment follow-

ing the direct response involves random/stochastic changes in individual asset holdings (the

distribution of income), as well as prices and the aggregate capital stock as the economy settles

into a new steady-state equilibrium. Even with fully-rational agents, this adjustment is complex:

because of income effects, some households may change their savings in the opposite direction

of the aggregate change as their income and the prices they face evolve. With behavioral pref-

erences or biases, it is potentially even more so since we have to take into account not just the

conventional income effects and price changes, but also any systematic mistakes in optimization

or expectations, more complex intertemporal trade-offs and issues related to dynamic inconsis-

tency. Nonetheless, our main theorems show that, even in such settings and exactly at the same

level of generality as in the baseline Aiyagari economy, we can establish qualitative long-run

comparative statics.3 However, as we emphasize in Section 4.4, though fairly general results

about aggregate changes can be derived, there is a type of “indeterminacy” at the individual

level — nothing much can be said about how individuals will behave and which individuals

will go in the opposite direction of the aggregate economy. This observation also clarifies that

our results are not a consequence of some (implicit) monotonicity assumption that ensures all

households move in the same direction. On the contrary, our results are about aggregate out-

3As we explain later, a key requirement for our analysis is “time-stationarity” meaning that, facing the same prob-
lem starting at different points in time, individuals will make the same choices. As we point out in footnote 12, this
does not preclude dynamic inconsistency, but rules out situation in which there are “temporary misperceptions”,
which would entail beliefs changing systematically with calendar time. In the presence of such temporary misper-
ceptions, our results would still apply but the relevant direct response may no longer correspond to the observed
impact effect of a shock; in particular, in this case, the relevant direct response would need to be evaluated at the
“long-run beliefs” of households (after temporary misperceptions have disappeared).
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comes, without any knowledge or implication about individual adjustments.

We can now present the intuition for these results at two complementary levels. The first

is economic in nature and it is related to an idea that already appears in Becker (1962) that

“aggregation” disciplines economic behavior. Though we cannot say anything about individual

behavior, we can determine the behavior of market-level variables (that is, aggregates such as

the capital stock and income per capita). This is because even if many households respond in the

opposite direction of the direct response, in equilibrium enough households have to move in the

same direction as the direct response. The second intuition for our result is more mathematical.

To develop this intuition, suppose that the steady-state equilibrium is unique, and focus on a

policy change that increases aggregate savings at the initial capital-labor ratio. Then the only

way the new steady-state equilibrium could have lower capital stock is when the equilibrium

response goes in the opposite direction and more than offsets the initial increase in aggregate

savings. This in turn can only be true if a higher capital stock induces lower savings. But even

if this were the case, the equilibrium response could not possibly overturn the direct response.

This is because the economic force leading to lower savings would not be present if the new

steady-state equilibrium ended up with a lower capital stock, and thus the indirect equilibrium

response would in this case reinforce rather than overturn the initial (positive) direct response.

When there are multiple steady-state equilibria, this reasoning would not apply to all of them,

but we develop a similar argument for extremal (greatest and least) steady-state equilibria, and

under multiplicity, it is these equilibria to which our conclusions apply.

Our paper is related to several literatures. The first, already mentioned, is Becker (1962)’s

seminal paper which argues that market demand curves will be downward sloping even if

households are not rational because their budget constraints will put pressure for even random

behavior to lead to lower demand for goods that have become more expensive. Machina (1982)

makes a related type of observation about the independence axiom in expected utility theory.

Though related to and inspired by these contributions, our main result is very different. While

Becker’s argument is about whether an increase in price will lead to a (partial equilibrium)

change in aggregate behavior consistent with “rational behavior”, our focus is about taking the

initial change in behavior, whether or not it is rational, as given and then establishing that,

under general conditions on the objectives and behavioral biases and constraints of households,

the (general) equilibrium responses will not reverse this direct response.

The second literature we build on is robust comparative statics (e.g., Topkis (1978), Vives

(1990), Milgrom and Shannon (1994), Milgrom and Roberts (1994), Milgrom (1994), Quah

(2007)). Not only do we share these papers’ focus on obtaining robust qualitative compara-
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tive static results, but we also use similar tools, in particular a version of the “curve-shifting”

arguments of Milgrom and Roberts (1994) (see also Acemoglu and Jensen (2015)) which allow

us to derive robust results in non-monotone economies.4 Nevertheless, our main theorem is

not an application of any result we are aware of; rather, it significantly extends and strengthens

the approach used in the robust comparative statics literature (we provide a detailed technical

discussion of the relationship with previous literature in Appendix B). Most significantly, in

contrast to other approaches in the literature, our comparative static results only rely on “local

information” — on behavior at a specific capital-labor ratio (or vector of prices) rather than the

much stronger notions requiring that behavior increases or decreases savings for all prices.5 As

a result, we are able to establish economically and mathematically stronger results: whenever

the sum of the initial savings responses of all agents is positive at the initial capital-labor ratio,

the full general equilibrium will involve an increase in the capital-labor ratio.

In this context, it is also useful to compare our results to those of our earlier paper, Ace-

moglu and Jensen (2015), where we analyzed a related setup, but with three crucial differences.

First, and most importantly, there we focused on forward-looking rational households, thus es-

chewing any analysis of behavioral biases and their impacts on equilibrium responses. Second,

and as a result of the first difference, we did not have to deal with the more general problem

considered here, which requires a different mathematical approach. Third, we imposed con-

siderably stronger assumptions to ensure that the direct response of all households went in the

same direction at all prices, which we do not do in the current paper.

Finally, our paper is related to several recent works that incorporate rich behavioral biases

and constraints into macro models. These include, among many others, Laibson (1997), Harris

and Laibson (2001), Krusell and Smith (2003), Krusell, Kuruscu and Smith (2010), and Cao and

Werning (2018) who study the dynamic and equilibrium implications of hyperbolic discounting

(building on earlier work by Strotz (1956), and Phelps and Pollak (1968)). Particularly note-

worthy in this context is Barro (1999) who shows that many of the implications of hyperbolic

discounting embedded in a one-sector growth model are similar to those of standard prefer-

ences, but this is in the context of a model with a representative household and does not contain

any comparative static results for this or other classes of behavioral preferences, which are our

main contribution. Gul and Pesendorfer (2001, 2004) and Fudenberg and Levine (2006, 2012) de-

4See p.590 in Acemoglu and Jensen (2015) for additional discussion of such non-monotone equilibrium compar-
ative statics results.

5See for example Lemma 1 (and Figures 1-3) in Milgrom and Roberts (1994) or Definition 5 in Acemoglu and
Jensen (2015). Milgrom and Roberts (1994) also use local assumptions, but just to derive local comparative statics
results (see Figure 7 and the surrounding discussion); this is different from our results, which are global despite
being based on local assumptions.
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velop alternative approaches to temptation and self-control and their implications for dynamic

behavior. These latter two classes of models are discussed in detail in Section 4, where we show

how our results can be applied to obtain new comparative statics in these settings.

Koopmans (1960), Epstein and Hynes (1983), Kreps and Porteus (1978), Lucas and Stokey

(1984) and Epstein and Zin (1989, 1991) develop richer models of dynamic behavior with non-

time-separable preferences, and Becker and Boyd (1997) and Backus, Routledge and Zin (2004)

develop certain macroeconomic implications of such preferences. Gilboa (1987), Schmeidler

(1989) and Gilboa and Schmeidler (1995) develop models of decision-making with max-min

features resulting from lack of unique priors, and Hansen and Sargent (2001, 2010) and Hansen,

Sargent and Tallarini (1999) discuss related preferences in various macroeconomic applications.

Recent important work by Gabaix (2014, 2017) considers the macroeconomic implications of

bounded rationality resulting from the inability of individuals to deal with complex problems

and their need to reduce it to a sparse optimization problem, while Sims (2003) and Wood-

ford (2013) consider the consequences of other complexity constraints on optimization. Finally,

there are several examples of models featuring (systematic) mistakes and near-rational behav-

ior including Simon (1956), Luce (1959), McFadden (1974), McKelvey and Palfrey (1995), and

Train (2009). In the context of expectation formation and their implications for macroeconomics

classic references include Cagan (1956), Nerlove (1958) and more recently Fuster, Herbert and

Laibson (2012) and Beshears et al (2013). None of these papers develop comparative statics for

macroeconomic models that apply under general behavioral preferences.

The rest of the paper is organized as follows. Section 2 describes the model and introduces

the “market correspondence” (which is key to our analysis). Section 3 contains the main results

and applications. Section 4 shows how our results can be applied with quasi-hyperbolic prefer-

ences, in the presence of self-control and temptation utility and with systematic misperceptions,

in each case demonstrating the possibility that standard comparative static results can be re-

versed (for somewhat new reasons). We also establish in this section a type of indeterminacy

result — while there are often unambiguous aggregate comparative statics, not much can be

said about individual behavior. Section 5 concludes, while the Appendix contains an abstract

discussion of our comparative statics results and the proofs of the results presented in the text.

2 Behavioral One-Sector Growth Models

This section introduces the general model. Most importantly, this allows for a broad variety

of behavioral specifications of consumption-savings behavior in an (otherwise) textbook one-

sector framework.
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2.1 Production and Markets

The production side is the same as the canonical neoclassical growth model (e.g., Acemoglu

(2009)) augmented with general distortions.

Labor is in fixed supply and normalized to unity so we can use capital, capital-labor ratio

and capital-per-worker interchangeably and denote it by k. Markets clear at all times, and pro-

duction is described by a profit maximizing aggregate constant returns firm with a smooth (per

capita) production technology y = f(k) that satisfies f(0) = 0, f ′ > 0, and f ′′ < 0. We also

impose that there exists k̄ > 0 such that f(k) < k all k ≥ k̄, which ensures compactness. This

condition is implied by the standard Inada conditions when these are imposed. The rate of

depreciation is ∆ ∈ [0, 1].

We allow for taxes and distortions ω(k) and τ(k) on labor and capital. Throughout, “market

prices” refer to pre-tax factor prices, ŵ(kt) ≡ f(kt) − f ′(kt)kt and R̂(kt) ≡ f ′(kt). Hence, the

after-tax (and after-distortion) wage and rate of return facing the households are

wt = w(kt) ≡ (1− ω(kt))(f(kt)− f ′(kt)kt) , (1)

and

Rt = R(kt) ≡ (1− τ(kt))f
′(kt)−∆ . (2)

The simplest example of such distortions are proportional taxes on capital and labor in-

come, τ(kt) = τ and ω(kt) = ω. Other examples include distortions from contracting frictions

or markups due to imperfect competition. When τ(k) = ω(k) = 0 for all k, we recover the

benchmark case with no distortions.

We allow proceeds from these distortions to be partially rebated to households (which will

be the case when they represent taxes and some of the tax revenues are redistributed the house-

holds or when they result from markups that generate profits). The total amount of resources

that is not rebated to households — that is, either consumed by the government, invested in

public goods or wasted, in all cases in a way that does not affect marginal utilities — is denoted

by

G = G(kt) . (3)

If nothing is rebated, then

G(kt) = ω(kt)(f(kt)− f ′(kt)kt) + τ(kt)f
′(kt) . (4)

On the other hand, if the only source of distortions is taxes because the government rebates

everything back to consumers (e.g., in the form of lump-sum transfers), then G(kt) = 0. This is

the situation we focus on in our main applications in Section 4.
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2.2 Households and Capital Markets

There is a continuum of households [0, 1] with a typical household denoted by i ∈ [0, 1]. As in

Aiyagari (1994), households are subject to borrowing constraints and any randomness is such

that there is no aggregate uncertainty. Capital kt is therefore deterministic and factor prices

are given by (1) and (2) at all times. This specification nests the simpler homogenous agents,

complete market models corresponding to there being no (ex-post) variation across agents and

the borrowing limit being the “natural borrowing limit” (see Aiyagari (1994), p.666 or Cao and

Werning (2018), p.809).

At date t each household i is influenced by a household specific shock zit, where (zit)
∞
t=0

is a Markov process with invariant distribution µzi . For concreteness, we suppose that zit =

(εit, l
i
t, σ

i
t) where lit is the household’s labor endowment, εit is a random utility parameter, and

σit captures any misperceptions as explained below. It is convenient to set eiτ = (wτ , Rτ , T
i
τ , z

i
τ ),

where T it denotes the transfers/rebates that household i receives at time t.6

At each date t, household i’s objective is to maximize utility conditional on its beliefs (or

expectations) about the future variables (eiτ )∞τ=t+1 as well as its anticipated future savings be-

havior. Let us denote the “true model” by θM . This includes a complete description of all of this

section’s contents, including current and future taxes, the stochastic process governing (zit)i∈[0,1],

equilibrium conditions, and so forth.

Household i ∈ [0, 1] forms beliefs at date t on the basis of the true model θM and its observa-

tions of economic variables summarized in eit, and this belief formation processes is summarized

by the mapping P it : (wt, Rt, T
i
t , z

i
t, θ

M ) 7→ P it (·;wt, Rt, T it , zit, θM ). Here beliefs, represented by

P it (·;wt, Rt, T it , zit, θM ), define a probability measure on future outcomes; that is, for any measur-

able setB, the household believes that (eiτ )∞τ=t+1 lies inB with probability P it (B; eit, θ
M ) ∈ [0, 1].7

When this will cause no confusion, we omit (eit, θ
M ) and write P it (·) instead of P it (·; eit, θM ).

Rational expectations, for example, is the special case where the marginal distribution of ex-

ogenous parameters coincides with objective probabilities (as implied by the Markov process

(ziτ )∞τ=t+1), and the household uses the true model θM to correctly predict future prices. Other

belief formation processes may completely ignore the true model and may generate beliefs on

the basis of other variables summarized in eit.8

6To simplify the notation, we have assumed that there are no shocks to capital income and to taxes/distortions.
These can be incorporated into our analysis and included in zit straightforwardly.

7See the paragraph just before Assumption 1 below for details on the measurable space to which this statement
refers.

8A simple and familiar example is the Aiyagari model (Aiyagari (1994)), where zi are i.i.d. labor endowment
shocks zi ∼ µzi , and agents have rational expectations so beliefs about future prices coincide with actual (equi-
librium) prices and beliefs about the future realizations of the labor endowment shock coincides with the objective
probability measure, µzi . For this reason, as in models with rational expectations more generally, beliefs can be sup-

9



In this description, the following are worth emphasizing: (i) P it (·) denotes beliefs while P it
represents the process of belief formation; (ii) since wτ and Rτ are the after-tax/after-distortion

wage and rate of return, P it implicitly incorporates beliefs about future taxes and distortions;

(iii) beliefs need not be additive measures; in particular, households may have ambiguity and

entertain multiple simultaneous beliefs about the future wage or other variables (Gilboa (1987),

Schmeidler (1989), Gilboa and Schmeidler (1995)); and (iv) unlike in models based on rational

expectations and common knowledge, beliefs need not be correct conditional on available in-

formation; in particular, households’ beliefs may be in contradiction with each other and with

actual outcomes. In fact, beliefs may be independent both of the model θM and other house-

holds’ beliefs altogether, as in the case of adaptive expectations. They may also temporarily or

even permanently deviate from actual outcomes. For example, a household might believe that

the future rates of return will be (σiτRτ )∞τ=t+1, where Rτ is the (actual) after-tax rate of return

and σiτ is i.i.d. random noise, with mean γ ∈ R+, representing genuine uncertainty or “anxiety”

about the future state of the economy. When this random noise is present, beliefs would be

systematically incorrect. Moreover, when, in addition, γ 6= 1, even the mean forecast of the

household in question would be incorrect.

Turning next to saving behavior, we denote household i’s assets (gross savings) by ait. ai ∈ R

denotes household i’s borrowing constraint. We also impose an upper bound ai ∈ R, but this

comes with no loss of generality under compactness in production (Section 2.1) because ai may

be chosen so that it never binds in equilibrium, P it -almost everywhere and for almost every

household i.

If at date t, the household chooses (gross) savings sit = ait+1 ∈ [ai, ai], its consumption will

be

cit = (1 +Rt)a
i
t + wtl

i
t + T it − ait+1 , (5)

and it will expect a future consumption stream of

cit+1 = (1 +Rt+1)ait+1 + wt+1l
i
t+1 + T it+1 − si,t+1

eit+1
(ait+1)

cit+2 = (1 +Rt+2)si,t+1

eit+1
(ait+1) + wt+2l

i
t+2 + T it+2 − si,t+2

eit+2
(si,t+1

eit+1
(ait+1))

... =
...

. (6)

Here si,τ
ei

(aiτ ) denotes anticipated savings of a “future self” at date τ > t conditioned on that

self observing eiτ , receiving assets aiτ , and forming the beliefs P iτ (·) = P iτ (·; eiτ , θM ). This for-

mulation clarifies that if the “current self” (the household at date t) has incorrect beliefs, then

pressed/ignored altogether. In general we do not assume that zi are independent across households as long as any
dependency is consistent with the absence of aggregate uncertainty (the simplest case is when beliefs are indepen-
dent conditioned on prices and policy). Beliefs P i will clearly not be independent since they depend on the same set
of information (prices, the model, etc.).

10



future savings will be incorrectly perceived as well, introducing a dynamic inconsistency (Sec-

tion 4.3). Moreover, since utility is random due to the parameter εiτ , the current self is generally

uncertain, and may be wrong, and even systematically wrong, about the behavior of future

selves. For example, we consider in Section 5 a household who systematically overestimates

its future propensity to save. Finally, while current consumption cit is fully pinned down by

current income and savings ait+1, the sequence of future consumption (cit+1, c
i
t+2, . . .) depends

on the outcomes (eτ )∞τ=t+1 and is therefore random. Since the probabilities assigned to future

outcomes are determined by the household’s beliefs P it (·) = P it (·, et, θM ), and these beliefs map

current asset holdings ait and gross savings a′ to future consumption via (6), the distribution of

(or beliefs about) future consumption ci,t+1 is:

P c,it (A|a′, P it (·, eit, θM )) = P it ({(eiτ )∞τ=t+1 : (6) maps (eiτ )∞τ=t+1 into A when ait+1 = a′}) .

In particular, beliefs matter both directly through expected income and indirectly because they

shape future savings.

We follow Epstein and Zin (1989) and define utility directly on (cit, c
i
t+1, c

i
t+2, . . .). Hence

given (deterministic) current consumption, cit ≥ 0, and the (random) future consumption se-

quence ci,t+1 = (cit+1, c
i
t+2, . . .), the household obtains utility U ε

i
t,i(cit, c

i,t+1).

A (gross) savings level is optimal, denoted by ai,∗t+1, if it maximizes U ε
i
t,i(cit, c

i,t+1) subject to

the previously described constraints (5)-(6), current assets ait, current observations eit, antici-

pated future savings behavior, and the current beliefs P it (·) = P it (·, eit). This may be expressed

formally as follows:9

ai,∗t+1 ∈ arg max
a′∈[ai,āi]

U ε
i
t,i(cit, c

i,t+1)

subject to cit = (1 +Rt)a
i
t + wtl

i
t + T it − a′,

ci,t+1 ∼ P c,it (·|a′, P it (·, eit, θM )), and
given ait and eit.

(7)

Given these choices, the distribution of future consumption in terms of beliefs can be written

as P c,it (·) = P c,it (·|a′, P it (·, eit, θM )).

In case U ε
i
t,i(cit, c

i,t+1) has an expected utility representation with deterministic utility com-

ponent uε
i
t,i, (7) reduces to the more familiar formulation;

ai,∗t+1 ∈ arg max
a′∈[ai,āi]

E
P c,it

[uε
i
t+1,i(cit, c

i,t+1))]

subject to cit = (1 +Rt)a
i
t + wtl

i
t + T it − a′,

given ait and eit.

(8)

9To simplify the notation, we are omitting the non-negativity constraints on consumption (which are nevertheless
imposed throughout).
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Note however that in this formulation we are following Epstein and Zin (1989) and allowing

for preferences not to have an expected utility representation. Throughout, we focus on two

main cases. The first is the recursive specification studied by Epstein and Zin (1989),

U ε
i
t,i(cit, c

i,t+1) = W
(
cit, g

−1
(
E
P c,it

[g(U ε
i
t+1,i(ci,t+1))]

))
. (9)

Here W is the aggregator and g a strictly increasing function (defining the certainty equiva-

lent). As is well known, the Epstein-Zin specification permits risk attitudes to be disentangled

from the degree of intertemporal substitutability through, for example, Kreps-Porteus prefer-

ences. In (9) when beliefs are not additive measures, the expectations operator is the Choquet

integral (see Section 5 for more details on models featuring ambiguity).

The second case we focus on is the weakly additive specification:

U ε
i
t,i(cit, c̃

i,t+1) = H
(
uε
i
t(cit) + βh

(
g−1

(
E
P c,it

[g(V εit+1,i(ci,t+1))]
)))

. (10)

Here uε
i
t is a strictly increasing and (weakly) concave function, β > 0 is a constant (“pa-

tience”), and h and H are strictly increasing functions.10 If U ε
i
t,i = V εit,i and beliefs are correct,

then (10) is dynamically consistent (in particular, recursive). However, our main interest in (10)

stems from behaviors that are dynamically inconsistent, such as models of hyperbolic and more

general delay discounting (Section 4.1), or versions of “sparse” optimization problems in the

spirit of Gabaix (see Appendix C). The dynamic inconsistency implications of incorrect beliefs

also feature in Section 4.3 in the context of recursive utility.

All sets are equipped with the Borel σ-algebra and the topology on probability measures

and on random sequences is the weak convergence topology (Epstein and Zin (1989), p.940).

Throughout, we impose the following very weak continuity conditions on utility and beliefs, as

well as compactness on the set of random utility parameters.

Assumption 1 U i,ε
i
(c0, c1, c2, . . .) is continuous in (εi, c0, c1, . . .), P i(B;w,R, zi, θM ) is continu-

ous in (w,R, z) for any measurable set B, and εi ∈ Ei where Ei ⊆ R is compact.

It is worth reiterating that we are greatly simplifying the description of the environment here

by imposing time-invariance. First, this involves imposing time-invariant utility so that utility at

time t, U εit (cit, c
i,t+1) = U εi(cit, c

i,t+1) for all t. Economically, this implies that households obtain

the same (continuation) utility from the same consumption sequence starting from different

points in time. Second, it involves assuming that the belief formation process is time-invariant,

so that P it : (eit, θ
M ) 7→ P it , is time-invariant and can be written as

P it = P i for all t = 0, 1, 2, . . . and all i ∈ [0, 1] . (11)
10Time-separable expected utility maximization is a special case of both formulations.
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One justification is that the belief formation process may have already converged to a time-

invariant limit starting from some initial condition.

These restrictions enable us to focus on the comparative statics of steady states — otherwise,

saving decisions would not have time-invariant limits precluding the existence of non-stochastic

steady states.11 In particular, in the next subsection we establish that, under these assumptions,

saving functions will be time-stationary, even though they will allow for dynamic inconsistency

and discontinuities. Time-stationarity is crucial for our analysis, since without it there will typ-

ically be no steady states.

The time-invariance restriction is not without cost, and our results have to be applied with

care in settings that are not time-invariant. For example, a policy change may create an initial

period of belief confusion or mistaken perception, which becomes dissipated over time, induc-

ing a specific type of time-dependence (Gabaix (2017)). If this is reversed in the course of the

next T <∞ periods, our analysis applies in principle but with some important caveats.12

2.3 Time-Stationary Savings Correspondences

Under time-invariance, there is no loss of generality in focusing on a household at date t = 0.

To simplify notation, this is done in the following key definition where we also denote the

observations at date 0 without subscript to further simplify (so ei0 = (w0, R0, T
i
0, z

i
0) is simply

written as e = (w,R, T i, zi)). As a shorthand, we define an “environment”, denoted by θ =

(θM , (P i)i∈[0,1]), to summarize the true model θM and beliefs (P i)i∈[0,1].

Definition 1 (Time-Stationary Savings Functions and Savings Correspondences) sθ,i
w,R,T i,zi

:

R→ R is a time-stationary savings function (TSSF) if for all initial levels of assets ai ∈ [ai, āi], for all

(w,R, T i), almost all zi = (li, εi, σi), and conditioning on these, the beliefs P i(·;w,R, T i, zi, θM )

about the future random sequence (wt, Rt, T
i
t , z

i
t)
∞
t=1, sθ,i

w,R,T i,zi
(ai) is an optimal savings level

when all “future selves” adopt the same savings function:

sθ,i
w,R,T i,zi

(ai) ∈ arg max
a′∈[ai,āi]:a′≤(1+R)ai+wli+T it

U i,ε
i
((1 +R)ai + wli + T i − a′, (1 +R1)a′+

w1l
i
1 + T i1 − s

θ,i

w1,R1,T i1,z
i
1
(a′), (1 +R2)sθ,i

w1,R1,T i1,z
i
1
(a′) (12)

+ w2l
i
2 + T i2 − s

θ,i

w2,R2,T i2,z
i
2
(sθ,i
w1,R1,T i1,z

i
1
(a′)), . . .) .

11Equation (11) implies that, conditional on current observations (or initial conditions) ait, wt, Rt, T it , and zit , a
household will face the same decision problem at date t as its future self will face at date τ > t if that future self faces
the exact same initial conditions, (aiτ , wτ , Rτ , T

i
τ , z

i
τ ) = (ait, wt, Rt, T

i
t , z

i
t), and anticipates the same future savings

behavior. In particular, the future self will then form the same beliefs about the future.
12This is because the relevant concept is no longer the “direct response” that takes place with the temporary beliefs,

but the “hypothetical direct response” that would have obtained with the time-stationary beliefs (that apply after T
periods) at the initial capital-labor ratio k∗.
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The union of all time-stationary savings functions is called the time-stationary savings corre-

spondence, Sθ,i
ei

(ai) = {sθ,i
ei

(ai) : sθ,i
ei

is a TSSF}.

This definition is quite broad and nests both dynamically consistent and dynamically incon-

sistent preferences, and in the latter case allows for both time-consistent and naive behavior (in

particular, beliefs about future selves need not be correct). See Section 4 for explicit examples.

A correspondence is measurable if the inverse image of any open set is Borel-measurable

(Aubin and Frankowska (1990), p.307). The savings correspondence Sθ,i
w,R,zi

(ai) has a compact

range when for fixed w and R, Sθ,i
w,R,zi

(ai) ⊆ Āi, all zi and ai for some compact subset Āi ⊂ R

(note that Āi may depend on w andR so it is possible for households’ savings to go to infinity as

prices go to 0 or infinity). In the Epstein-Zin formulation (9), supermodularity of the aggregator

W has the usual meaning (e.g., Topkis (1978)) and is equivalent to assuming that consumption

at different dates are Edgeworth-Pareto complements (Chipman (1977)).

The proof of the next lemma, as all other proofs in the paper, is presented in Appendix A.

Lemma 1 (Basic Properties of Savings Correspondences) Let Assumption 1 hold and assume

that utility is either given by the dynamically consistent Epstein-Zin formulation (9) where uε

is increasing and concave for all ε, the aggregator W (u, U) is concave in u, and increasing and

supermodular in (u, U), or by the weakly additive specification in (10) whereH and h are strictly

increasing functions and uε0 is concave for all ε. Then for each i ∈ [0, 1], the (time-stationary)

savings correspondence Sθ,i
w,R,zi

(ai) exists, has a compact range, is upper hemi-continuous in w,

R, T i, and ai, measurable in zi, and its least and greatest selections are non-decreasing functions

of assets ai.

They key observation is that under the general conditions of the one-sector behavioral

growth model laid out above, savings correspondences must be “non-decreasing” in the stan-

dard sense of robust comparative statics (e.g., Topkis (1978), Vives (1990), Milgrom and Roberts

(1994)), i.e., the least and greatest selections must be non-decreasing in assets. This is what

rules out downward jumps in Figure 1 in the Introduction. A non-decreasing savings corre-

spondence implies that the associated least and greatest consumption functions increase less

than one-for-one with assets. As a result, any discontinuities must take the form of downward

jumps — otherwise, there will be more than a one-for-one increase in consumption. Allowing

for discontinuities is important since these are often common in the presence of dynamic in-

consistencies (see e.g. Harris and Laibson (2001), p.937), and our Lemma 1 shows that, under

standard assumptions, these will take the form of downward jumps.
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2.4 Steady-State Equilibrium

In what follows, instead of the (time-stationary) saving correspondence Sθ,i
w,R,T i,zi

(ai), it is more

convenient to work with the probability distribution of gross savings of a household induces

by a stochastic/random savings decision âi. We refer to this as the induced savings distribution

and denote it by Sθ,iw,R(âi) (see the footnote for more details).13 Note that with this notation the

transfers (T it )
∞
t=0 are subsumed into the environment θ.

The induced saving distribution captures individual randomness in a succinct way; in par-

ticular, an asset distribution âi is stationary (or invariant) for household i given the stationary

market prices w and R and the environment θ, if and only if âi ∈ Sθ,iw,R(âi).

Recall from (1)-(2) that w andR are the after-tax/distortions wage and rate of return, respec-

tively. Hence they generally depend on the environment θ. Whenever this may cause confu-

sion, we emphasize it by writing the market prices with the environment as a superscript. As

in textbook treatments, we define steady-state equilibria directly in terms of the corresponding

capital-labor ratio:

Definition 2 (Equilibrium) The capital-labor ratio k∗ ∈ R+ represents a (steady-state) equilibrium

given the environment θ, if equilibrium pricesw∗ = wθ(k∗) andR∗ = Rθ(k∗) are given by (1) and

(2), the gross savings (assets) of household i is given by (the random variable) â∗,i ∈ Sθ,iw∗,R∗(â∗,i)
for almost every i ∈ [0, 1], and the capital market clears, that is, k∗ =

∫
â∗,i di.

In this definition we are implicitly assuming that the integral
∫
â∗,i di is well-defined by

some version of the law of large numbers.14

2.5 The Market Correspondence

We are now ready to formally define the key theoretical innovation of this paper, namely the

market correspondence. We will see that steady states in our model correspond to intersections of
13Formally, let Qθ,i(ai, B) =

∫
Zi

1
S
θ,i

w,R,zi
(ai)

(B)µzi(dz
i) be the transition correspondence of savings (where µzi

denote the marginal distribution of the invariant distribution of zt = (zit)i∈[0,1]). For a random variable âi on Ai

with distribution ηit, we can now define Sθ,iw,R(âi) as the set of random variables on Ai with distributions, ηθ,it+1(B) =∫
ai∈B Q

θ,i(ai, B)ηθ,it (dai). Thus Sθ,iw,R(âi) is the adjoint Markov correspondence (or rather, the set of random variable
with distributions given by the adjoint; see the Appendix in Acemoglu and Jensen (2015) for more details).

14There is a large literature on laws of large numbers and their application in the presence of continuum of random
variables as in our economy (Al-Najjar (2004), Uhlig (1996), Sun (2006)). Here and everywhere else in this paper we
remain agnostic about precisely which formulation of the law of large numbers has been applied in the background.
This “agnostic” approach is also the one taken in Acemoglu and Jensen (2015) where

∫
ai(k) di is simply assumed

to equal (or be one-to-one) with a real number. This approach has the advantage of not committing to a specific
interpretation and therefore comes with maximum generality. On the downside, we must be careful to not push the
generality of the setting too far: In the Aiyagari model, for example, any sensible application of a law of large num-
bers will require that the labor endowments’ conditional distributions are at least pairwise independent conditioned
on k. For further details and references, see Acemoglu and Jensen (2010, 2015)).
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the market correspondence with the 45◦ line (Lemma 2), increases in (average) savings translates

into shifts in the market correspondence (Lemma 3), and so forth.

Let Cθ,iw,R(âi) denote the distribution of consumption implied by Sθ,iw,R(âi) for the given envi-

ronment θ.

Definition 3 (Equilibrium Asset Distributions and the Market Correspondence) Let Cθ,i de-

note the consumption correspondence and Sθ,i denote the savings correspondence of house-

hold i ∈ [0, 1]. Also, let G(k) denote government consumption and distortionary waste given

the capital-labor ratio k.

• A measurable mapping λ : (i, k) 7→ λi(k) where λi(k) is a random variable on Ai ⊆ R is

an equilibrium asset distribution, if

λi(k) =
âi(k)∫
âi(k) di

k, for all (i, k) (13)

where (âi(k))i∈[0,1] solve the fixed point problem,

âi(k) ∈ Sθ,iw(k),R(k)(
âi(k)∫
âi(k) di

k) , i ∈ [0, 1] . (14)

• The market correspondenceMθ : R→ 2R is

Mθ(k) = {f(k) + (1− δ)k −G(k)}−

{c ∈
∫
Cθ,iw(k),R(k)(λ

i(k)) di : λi(k) is an equilibrium asset distribution} . (15)

Note that the equilibrium asset holdings λi(k), i ∈ [0, 1], may be correlated across house-

holds (this will happen, for example, if households are subject to correlated shocks). But con-

ditional on k, the definition ofM requires that the integral
∫
Cθ,iw(k),R(k)(λ

i) di has a degenerate

distribution (
∫
Cθ,iw(k),R(k)(λ

i) di denotes both this distribution and its point of unit mass). With

a representative household with consumption correspondence C, (13) reduces to λi = k for all

i, (14) becomes redundant, and (15) becomes Mθ(k) = f(k) + (1 − ∆)k −
∫
Cθw(k),R(k)(k) di.

If, in addition, Cθ is single-valued and we suppress θ, we obtain the standard expression for

aggregate savings in representative agent models:

M(k) = f(k) + (1−∆)k −G(k)− cw(k),R(k)(k) . (16)

The next lemma establishes that we can work directly with the market correspondence with-

out specifying the equilibrium asset distribution. It also confirms that fixed points of the market
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correspondence will be steady-state equilibria. The proof of this lemma uses the fixed point

comparative statics theorem of Acemoglu and Jensen (2015) (Theorem 4, p.601), which itself

builds on Smithson’s generalized fixed point theorem as well as Richter’s theorem (Aumann

(1965)). However, the most critical component of the proof is the observation that for a given k,

Mθ(k) equals the set of fixed points of a convex valued correspondence whose least and greatest

selections are decreasing, and therefore it is itself convex-valued.

Lemma 2 (Properties of the Market Correspondence) Suppose that all households satisfy the

conditions of Lemma 1. Then the market correspondenceMθ is a compact- and convex-valued

upper hemi-continuous correspondence that begins above and ends below the 45◦ line. Fur-

thermore, k ∈Mθ(k) if and only if k is a steady-state equilibrium.

The market correspondence being convex-valued is an important and non-trivial property.

This property does not simply follow from a convexification argument as in Aumann (1965), but

depends critically on the fact that savings correspondences are increasing in the sense of Lemma

1 and so, in particular, on the fact that they have no jumps down. If, in fact, Si were to have

jumps down for a subset of agents of positive measure, then the correspondence
∫
Aθ,ik (·) di

in the proof would have jumps down as well. In that case, the market correspondence would

not necessarily be convex-valued and this paper’s main result that the average direct response

determines the long-run outcome would become invalid.

3 Main Results

This section contains our main results. Generalizations are provided in Appendix B and these

results are applied in the context of specific behavioral models in Section 4.

Recall that θM denotes the “true model”, (P i)i∈[0,1] denotes the households’ beliefs, and

that the environment θ = (θM , (P i)i∈[0,1]) therefore contains all of the exogenous variables,

parameters and policy variables of the model as well as specifications of how beliefs about

exogenous or endogenous objects are formed. This section studies changes in the environment

and the set of possible environments Θ is taken to be an ordered set to facilitate this perspective.

For a given environment, θ∗ ∈ Θ, say, we know from Lemma 2 that steady-state equilibria

(Definition 2) correspond to points where the market correspondence intersects with the 45◦-

line, i.e., k∗ is a steady state if and only if k∗ ∈ Mθ∗(k∗). This was illustrated in Figure 1 in the

Introduction in the case where the market correspondence is single-valued (or we consider an

appropriate selection from it).
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We are now ready to define the direct responses discussed in detail in the Introduction.

Before presenting our main definition (which concerns the aggregate response), it is helpful to

state the more familiar individual household level definition.

Definition 4 (Individual Direct Responses) Let k∗ be an equilibrium given the environment

θ∗ ∈ Θ and denote by âi household i’s associated steady-state assets. Let θ∗∗ ∈ Θ be a different

environment. Then we say that household i’s direct response is positive if its asset holdings increase

at k∗ when the environment changes from θ∗ to θ∗∗, i.e., if

Sθ
∗∗,i
wθ∗∗ (k∗),Rθ∗∗ (k∗),zi

(ai) ≥ Sθ
∗,i
wθ∗ (k∗),Rθ∗ (k∗),zi

(ai) , a.e. (zi, ai) ∈ Zi × Support(âi). (17)

If the inequality is reversed, then household i’s direct response is instead negative.

Note that if savings correspondences are not single-valued, then the inequality in (17) refers

to the strong set order, that is, the least and greatest optimal savings levels must increase. This

convention is adopted throughout the rest of the paper.

The next definition specifies the meaning of direct responses in the aggregate.

Definition 5 (Direct Responses) Let k∗ be an equilibrium given the environment θ∗ ∈ Θ and

consider a different environment θ∗∗ ∈ Θ. We say that the direct response is positive if the mean

asset holdings of households increase at k∗ when the environment changes from θ∗ to θ∗∗, i.e.,

if
∫
âθ
∗∗,i(k∗) di ≥

∫
âθ
∗,i(k∗) di. If the inequality is reversed so that the mean asset holdings

decrease at k∗ when the environment changes from θ∗ to θ∗∗, the direct response is negative.

The definition is intuitive: We average over the asset holdings (or gross savings) of house-

holds in the old and new environments holding the capital-labor ratio k∗ (hence prices) fixed,

and trace the direction of change. As we illustrate in Section 4, the definition makes direct refer-

ence to the associated consumption-savings model. In particular, for given k∗, the relevant asset

holdings can be computed without any knowledge of (general) equilibrium changes in prices

or quantities that follow from the change in environment. Clearly, if individual direct responses

in Definition 4 are uniformly positive, the (aggregate) direct response in Definition 5 is positive.

Note that in both Definitions 4 and 5, (pre-tax) market prices are fixed at their initial steady-

state values. For example, if the only change in environment is a change in the capital tax rate

(θ = τ ), then we have wθ
∗∗

(k∗) = wθ
∗
(k∗) = f(k∗)− f ′(k∗)k∗, and Rθ

∗
(k∗) = (1− τ∗)f ′(k∗)−∆

and Rθ
∗∗

(k∗) = (1 − τ∗∗)f ′(k∗) − ∆. So when investigating whether a change in environment

leads to a positive or negative direct response, it is sufficient to consider the consumption-

savings problem in steady state, with given prices. By comparison, the standard approach in
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the robust comparative statics literature — including in our own work, Acemoglu and Jensen

(2015) — is to impose positive direct responses in the sense of Definition 4 uniformly across all

households and for all market prices (all capital-labor ratios).15 In Section 4, we illustrate how

the direction of the direct response can be determined in growth models with quasi-hyperbolic

preferences, self-control and temptation utilities and systematic misperceptions, and in all of

these cases such results are made possible by the fact that we only need to determine the di-

rection of the direct response, without taking into account any general equilibrium changes in

prices.

We can now state the simplest version of our main result, which establishes that the long-run

equilibrium outcome is pinned down by the direct response.

Theorem 1 (Main Theorem, Unique Steady State) Assume that households satisfy the condi-

tions of Lemma 1. For environments θ∗, θ∗∗ ∈ Θ let k∗ and k∗∗ denote associated non-trivial

steady-state equilibria and assume that these are unique. Then k∗∗ ≥ k∗ if and only if the direct

response is positive when the environment changes from θ∗ to θ∗∗. Similarly, k∗∗ ≤ k∗ if and

only if the direct response is negative when the environment changes from θ∗ to θ∗∗.

Although uniqueness is a special case, the theorem captures this paper’s main message: In

one-sector growth models, long-run outcomes are entirely pinned down by the average of the

direct responses. Misperceptions, biases and other departures from standard, fully-rational and

time-separable preferences thus impact long-run outcomes in so far as they influence household

decisions at given prices. This result also implies that such departures can easily lead to “para-

doxical” comparative statics (which reverse those of the standard neoclassical growth model)

provided that they change the sign of the direct response. Conversely, when they do not do

so, despite the very rich and potentially complex general equilibrium interactions that these be-

havioral preferences may spawn, they will not affect the qualitative properties of the long-run

equilibrium. In the next section, we use this theorem in economies with quasi-hyperbolic pref-

erences, self-control and temptation utilities and systematic misperceptions to investigate the

direction of comparative statics with respect to changes in taxes (how our results can be applied

with other classes of behavioral preferences and biases is discussed in Appendix C).

The remainder of this subsection generalizes Theorem 1 to situations with multiple equi-

libria and extends the discussion of the intuition and the mathematical arguments from the

15For example, in Aiyagari’s model, one can use the results in Light (2018) who shows that households will increase
their savings if preferences are CRRA, the coefficient of relative risk aversion is less than one, and the rate of return
increases (see his Theorem 1). In contrast, we will not impose such uniform positive or negative direct responses.
Rather, our approach relies on the considerably weaker condition that at the (initial) steady-state capital-labor ratio
k∗, the direct response is positive (or negative).
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introductory section.

We next show that both necessity and sufficiency in our main result remain valid when there

are multiple equilibria provided that we focus on the least or the greatest steady state and the

exogenous changes we are considering are “small” (meaning that we can choose them to be

small enough in the usual implicit function theorem sense).

Theorem 2 (Greatest and Least Steady States under Multiplicity I) Assume that households

satisfy the conditions of Lemma 1 and let k∗− = inf{k : k ∈ Mθ∗(k)} denote the least steady

state and k∗+ = sup{k : k ∈ Mθ∗(k)} the greatest steady state when the environment is θ∗ ∈ Θ,

and analogously k∗∗− and k∗∗+ when the environment is θ∗∗ ∈ Θ. Assume in addition thatMθ is

upper hemi-continuous in θ ∈ Θ (where now Θ is a topological space). Consider an infinitesimal

change in the environment to θ∗∗. Then, k∗∗− ≥ k∗− if and only if the direct response is positive at

k∗− when the environment changes from θ∗ to θ∗∗, and k∗∗+ ≥ k∗+ if and only if the direct response

is positive at k∗+ when the environment changes from θ∗ to θ∗∗.

If there are multiple equilibria and the change in environment is not “small” (or we are

unwilling or unable to place a topology on the set of possible environments Θ), the sufficiency

part of our main result will still hold for the greatest equilibrium when the direct response is

positive (and for the least equilibrium when the direct response is negative):

Theorem 3 (Greatest and Least Steady State under Multiplicity II) Assume that households

satisfy the conditions of Lemma 1 and consider k∗ = sup{k : k ∈ Mθ∗(k)} (the greatest steady

state) of the environment θ∗ ∈ Θ. Then if the direct response is positive at k∗ when the envi-

ronment changes from θ∗ to a new environment θ∗∗ ∈ Θ, the economy’s greatest steady state

increases, i.e., sup{k : k ∈ Mθ∗∗(k)} ≥ k∗. Analogously, consider k∗ = inf{k : k ∈ Mθ∗(k)} (the

least steady state) of the environment θ∗ ∈ Θ. Then if the direct response is negative at k∗ when

the environment changes from θ∗ to the new environment θ∗∗ ∈ Θ, the economy’s least steady

state decreases, i.e., inf{k : k ∈Mθ∗∗(k)} ≤ k∗.

Appendix B contains additional results along the lines of the previous two theorems. Al-

though important for theoretical applications, the details are less central to our substantive

results, hence their relegation to the Appendix. In addition, we also provide there a detailed

comparison with the related equilibrium comparative statics results in Milgrom and Roberts

(1994) and Acemoglu and Jensen (2013).

The intuition for the results presented in this section was already discussed in the Introduc-

tion. Here we had elaborate their mathematical and conceptual underpinnings. Most impor-
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Figure 2: A positive direct response shifts the market correspondence up at k∗+ (shown by the
move from the red to the green dot) and leads to a higher steady-state capital-labor ratio (shown
by the blue dot). The figure depicts a case in which there are multiple steady states both before
and after the change in environment.

tantly, our approach enables us to represent any model that falls within the general one-sector

behavioral growth model with a market correspondenceMθ. From Lemmas 1 and 2, savings corre-

spondences have no jumps down which, which implies that the market correspondence will be

compact- and convex-valued, upper hemi-continuous and begin above and end below the 45◦

line. Crucially, a positive direct response will raise (or “shift up”) the market correspondence at

the initial capital-labor ratio k∗ as illustrated in Figure 2 (this is proved in the key Lemma 3 in

the Appendix). As this figure also illustrates, the new equilibrium k∗∗ must then be above k∗,

regardless of whether the market correspondence shifts up or down at other capital-labor ratios

k 6= k∗. This result implies that the direct response of aggregate savings at k∗ pins down the

direction of change for the steady-state.16

4 Applications

In this section, we illustrate how the general framework we have developed so far can be ap-

plied, focusing on three classes of models: those with quasi-hyperbolic preferences as in Phelps

and Pollak (1968), Laibson (1997) and Harris and Laibson (2001); those with self-control and

temptation utility as in Gul and Pesendorfer (2004); and those featuring systematic mispercep-

tions. We emphasize, in particular, how the direct response can be characterized and how, from

16Note also that the figure illustrates the “general” case, in the sense that there are multiple steady states both
before and after the change in the environment, and we focus on the largest ones corresponding to k∗+ and k∗∗+ in
Theorems 2 and 3.
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this analysis, we obtain simple conditions for the equilibrium comparative statics of benchmark

neoclassical models to generalize or to be reversed under these behavioral considerations.

4.1 Quasi-Hyperbolic Preferences

We start with the quasi-hyperbolic preferences studied in Phelps and Pollak (1968), Laibson

(1997) and Harris and Laibson (2001). Despite the popularity and the broad range of applica-

tions of these preferences, we are unaware of any analysis of general equilibrium comparative

statics in this context.17 We will see that using the approach developed in this paper, the general

characterization of long-run equilibrium and comparative statics is straightforward.

We embed these preferences in an Aiyagari economy: Suppose that the economy is inhab-

ited by a continuum of households, all of which have quasi-hyperbolic CRRA preferences with

discount rate δ, present-bias β ≤ 1, and rate of risk aversion γ > 0. At every date, each house-

hold has labor endowment l̂+ lt where l̂ ∈ R++ and lt ∼ µ(·) where µ(·) is i.i.d. with mean zero

and bounded support in (−l̂,+∞). Borrowing is limited only by the present expected value of

future labor income (see Aiyagari (1994), p.666).18

Suppose that there is no labor taxation, while capital is taxed at the rate τ as in (2). Whether

tax receipts are fully rebated back to households is not central, but for specificity, we suppose

that they are fully rebated in a lump-sum fashion (so that G(kt) = 0 for all t in (3)). We assume

full depreciation for notational simplicity and denote the pre-tax rental rate of capital by R̂t, so

that the after-tax rate of return isRt = (1−τ)R̂t−1, and the lump-sum transfer is Tt = τR̂tkt. Let

us define the “environment” as θ = 1 − τ ∈ Θ = [0, 1], highlighting that our main comparative

statics will be with respect to the capital income tax rate τ .

We now investigate whether and when an increase in θ (a lower tax on capital) increases

mean savings at given prices. This involves studying the corresponding consumption-savings

model where we fix w and R̂ at their initial steady-state values. The generalized Euler equation

of the consumption-savings model is

u′(Cθ(zt)) = θR̂δ

∫
(1 + (β − 1)DY Cθ(zt+1))u′(Cθ(zt+1))µ(dlt+1), (18)

where zt = θR̂at+w[l̂+ lt]+Tt, zt+1 = θR̂[zt−Cθ(zt)]+w[l̂+ lt+1]+Tt+1, at is assets, and Cθ the

consumption function. Note that in terms of the paper’s general notation, si,θ
w,R,l̂+lt

(ait) = θR̂ait+

w[l̂+lt]+Tt−Cθ(θR̂ait+w[l̂+lt]+Tt), and because households are ex-ante identical, we omit the i

17The exception is for the deterministic logarithmic utility case, which is observationally equivalent to neoclassical
growth models with standard preferences, as noted in Barro (1999) and Krusell, Kuruscu and Smith (2002).

18This ensures that the borrowing constraints will not bind in equilibrium, simplifying the analysis and enabling
us to directly apply the implicit function theorem.
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superscripts. As in Harris and Laibson (2001) or Aiyagari (1994), a partial equilibrium stationary

distribution is any joint distribution µ∗ over assets and endowments that is an invariant measure

for the stochastic difference equation:

at+1 = sθ
w,R,l̂+lt

(at) , lt ∼ µ . (19)

To apply our main results all we need is to determine whether aggregate savings are increas-

ing or decreasing in θ at given (pre-tax) factor prices. We can further simplify the analysis of

this question and clarify the economics by focusing on the case where the random component

of labor income originating from µ(·) is “small”, which implies that precautionary savings are

small.19 In this case, saving functions become almost linear, and the generalized Euler equation

simplifies to

((1−DY Cθ(z))R̂)γ = θR̂δ (1 + (β − 1)DY Cθ(z)) Ω, (20)

where z is a level of wealth (inclusive of discounted future labor income) in the steady-state

support set from above, and Ω ≈ 1.20 Applying the implicit function theorem,21 we immediately

obtain the key result that the marginal propensity to save 1−DY Cθ(z) of a household with total

wealth z is increasing in θ if and only if

(1−DY Cθ(z))
−1 >

1− β
β

1− γ
γ

. (21)

Note that one advantage of this special case with negligible precautionary savings is that when

(21) holds, the consumption function of all agents will shift in the same direction as the change

in environment θ (since DY Cθ(z) is approximately constant for z in the support of the steady-

state asset distribution µ∗).

Notably, if this inequality is reversed, then the the marginal propensity to save is decreasing

in θ (for all steady-state wealth levels) and thus households’ direct response to a tax reduction

is negative. When the steady-state capital-labor ratio is unique, we can apply Theorem 1 and

conclude (proof in the text):22

19Formally, we require that the distance between µ(·) and the degenerate measure with unit mass on 0 is suffi-
ciently small in the Levy-Prokhorov metric.

20Here Ω =
∫

((R̂ŷ)/(R̂ŷ + wlt+1 + τR̂ · (ñ∗ − ŷ)))γ µ(dlt+1), where ñ∗ is steady-state capital inclusive of future
discounted labor income, ŷ = R̂[z − Cθ(z)] and z is such that ŷ = ñ∗. Since lt+1 has mean zero and is close to 0, it is
clear that Ω ≈ 1.

21In this application of the implicit function theorem, we keep z fixed and treat s̄ = 1−DY Cθ(z) as the unknown

variable. We thus get γR̂γ s̄γ−1 ds̄ = Ω
(

[R̂δ(1 + (β − 1)[1− s̄])] dθ − [θR̂δ(β − 1)] ds̄
)

. Because (20) holds, we can
divide through with this equation and rearrange to see that ds̄/dθ > 0⇔ (21).

Note also that when there are nontrivial precautionary savings, we would need to apply an infinite-dimensional
implicit function theorem as in Yano (1989). We adopted the assumption that shocks to labor endowments are small
to attain this simplification.

22Without uniqueness, we could instead use Theorem 2.
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Proposition 1 In the behavioral growth model with quasi-hyperbolic preferences, a reduction

in the capital income tax rate increases the steady-state capital-labor ratio if (21) holds and

reduces it if (21) holds with the inequality reversed.

Several points are worth noting. First, the above argument (hence the proposition) heavily

relies on our main theorems, which establish that even with rich general equilibrium interac-

tions, the impact of changes in environment on long-run equilibrium will be in the same direc-

tion as the direct response at the steady-state prices. The equilibrium adjustment triggered by

the changes in prices and the asset distribution following the direct response involves a complex

interplay between income, wealth and substitution effects and quasi-hyperbolic preferences.

Nonetheless, our main result ensures that these dynamic equilibrium adjustments cannot over-

turn the direction of the direct response.

Second, the proposition shows that with quasi-hyperbolic discounting (and limited precau-

tionary motives), a simple condition, (21), is necessary and sufficient for a reduction in the tax

rate on capital income to increase the long-run capital stock as in standard neoclassical growth

models. This further implies that when this condition is not satisfied, in contrast to standard

neoclassical models, a reduction in the tax rate on capital income reduces the long-run capital

stock.

Third, the proposition and condition (21) also clarify when this paradoxical result happens.

Specifically, because the left-hand side of (21) is bounded from above by 1 + β−1((θδ)−1 − 1),

γ < θ(1−β)δ is sufficient to ensure that (21) holds with the inequality reversed.23 Thus, provided

that the initial tax on capital income is not too high (θ−1 = 1/(1 − τ) not too high), households

are sufficiency present-biased (β low enough), and the intertemporal elasticity of substitution is

high relative to this (γ is low enough), (21) will be violated, the direct response to a reduction in

the capital income tax rate will be towards lower mean savings, and consequently, the steady-

state capital stock will decrease.

Conversely, when β = 1 (so that preferences are dynamically consistent) or when γ ≥ 1

(including in the case where preferences are logarithmic as in Barro (1999) and Krusell, Kuruscu

and Smith (2002)), (21) is always satisfied and thus we have the conventional results that lower

capital taxes increase the long-run capital stock.

Fourth, condition (21) also gives us an intuition about why lower capital taxes can reduce

long-run capital-labor ratio. The generalized Euler equation (18) shows that a higher marginal

utility in the future will be associated with a higher marginal utility today — hence, more sav-

23The upper bound follows because in steady state we must have R̂s̄(θ,R) < 1 and
θR̂δ (1 + (β − 1)DY Cθ(Yt+1)) ≈ 1
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ings in the future will go together with more savings today. This linkage will be particularly

strong when γ is low (high intertemporal elasticity) and θδ(1− β) is high, thus being amplified

by the reduction in the capital income tax rate (a higher θ). In particular, when γ < θ(1−β)δ, cur-

rent consumption becomes so sensitive to future decisions that greater future savings induced

by lower taxes will lead to even more savings today. But this cannot be sustained in steady state,

implying that steady-state savings will have to decrease.

Finally, we should remark that there are various ways in which Proposition 1 can be ex-

tended. The conclusion is a fortiori true when we allow for more systematic mistakes, such

as incorrect expectations about what a change in policy means and what it implies for fu-

ture transfers and rebates. Similar results also apply when we introduce different groups of

consumers with different types of preferences (for example, a subset of the consumers having

quasi-hyperbolic preferences, while the rest have standard preferences or utility functions from

another class). Lastly, the analysis of the model in the presence of non-CRRA preferences and

with substantial precautionary savings because of future uncertainty is similar as well, except

that the direct response to changes in policy is no longer characterized by a single generalized

Euler equation (independent of future income as in (20)). In this case, it is not typically possi-

ble to have an explicit necessary and sufficient condition as in (21),24 but the general analysis

remains similar and as in Proposition 1, a reduction in the capital income tax rate may increase

or reduce the long-run capital stock.

4.2 Self-Control and Temptation

We now present a similar analysis for the dynamic self-control and temptation preferences in-

troduced in Gul and Pesendorfer (2004). Household i has utility function ui, temptation cost vi,

discount factor δi, and (stationary) labor endowment li, at every date (the labor supply is thus

L =
∫
li di). A borrowing constraint prevents households from holding negative gross assets

(this is useful for linking temptation to current wealth as opposed to the borrowed discounted

value of the entire future labor income stream).

As in the previous section, capital is taxed at the rate τ , generating a tax revenue of τR̂kt

at date t which is rebated back to the households through lump-sum transfers, Tt = τR̂kt. The

relevant environment is again represented by θ = 1− τ .

As discussed in Gul and Pesendorfer (2004) (see in particular their Section 6), dynamic self-

control and temptation preferences yield unique optimal payoffs and therefore well-defined

recursive dynamic programs. The model satisfies the conditions of Lemma 1, provided that

24An exception, which still allows an explicit necessary and sufficient condition, is when preferences are CRRA
and all uncertainty comes from variation in future rates of returns.
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overall utility, ui(c)+vi(c), is concave, increasing and continuous. To simplify we are also going

to assume that ui is strictly concave and that ui and vi are twice continuously differentiable on

R+. In addition, we assume that vi is either strictly convex or strictly concave with positive

third derivative. As in Gul and Pesendorfer (2004) (p.119), the consumption-savings model can

be summarized by the Bellman equation:

W i(zit) = max
0≤yit≤zit

ui(zit − yit) + vi(zit − yit) + δiW i((1 +R)yit + wli)− vi(zit) . (22)

Here zit = (1 + R)ait + wli is the household’s current wealth, yit its current savings, w and R

are steady-state market prices given the initial capital tax rate τ = 1 − θ, and W i is the value

function (which is unique and strictly concave).

Let Siθ(z
i
t) denote the (unique) maximizer on the right-hand side of (22) so that, in terms of

our notation si,θ
w,R,li

(ait) = Siθ((1 + R)ait + wli). Denote household i’s steady-state wealth and

consumption by zi,∗ = θR̂ai,∗+wli and ci,∗ = (θR̂−1)ai,∗+wli, respectively. Note that these are

uniquely determined because consumption stationarity implies δiθR̂ > 1 (Gul and Pesendorfer

(2004), p.137).

We now show how we can use Definition 5 to obtain comparative statics in this general equi-

librium model with self-control and temptation utility. First, we derive the Euler equation from

(22). Keeping the initial prices and capital-labor ratio fixed, we obtain the partial equilibrium

responses ∂âθ
∗,i/∂θ to a reduction in capital taxes (an increase in θ = 1−τ ). The average of these

is positive, i.e., ∂
∫
âθ
∗,i(k∗) di/∂θ > 0, where k∗ is the initial steady-state capital-labor ratio if

and only if:25

∫ 1
δiθ2R̂−θ

+ (ai,∗ − k∗)R̂
[
u′′,i(ci,∗)+v′′,i(ci,∗)
u′,i(ci,∗)+v′,i(ci,∗)

− v′′,i(zi,∗)
v′,i(zi,∗)

]
u′′,i(ci,∗)+v′′,i(ci,∗)
u′,i(ci,∗)+v′,i(ci,∗)

− θR̂
[
u′′,i(ci,∗)+v′′,i(ci,∗)
u′,i(ci,∗)+v′,i(ci,∗)

− v′′,i(zi,∗)
v′,i(zi,∗)

] di > 0 . (23)

We therefore conclude (proof in the text):

Proposition 2 Consider the behavioral growth model with dynamic self-control preferences.

Then a reduction in the capital income tax rate increases the steady-state capital-labor ratio if

(23) holds and reduces it if (23) holds with the inequality reversed.

As in the previous subsection, this result heavily exploits our main comparative static theo-

rems. It shows how basic neoclassical comparative statics generalize to a model with dynamic

25Omitting the household index, the Euler equation is −u′(zt − Sθ(zt)) − v′(zt − Sθ(zt)) + δθR̂{u′(θR̂Sθ(zt) +

wl+ Tt − Sθ(θR̂Sθ(zt) + wlTt)) + v′(θR̂Sθ(zt) + wl+ Tt − Sθ(R̂Sθ(zt) + wl+ Tt))− v′(θR̂Sθ(zt) + wl+ Tt)} ≤ 0,
with equality whenever Sθ(z) > 0. To obtain the household’s response, evaluate in the initial steady state where
Tt = (1−θ)R̂k∗, a∗ = Sθ(z

∗) and the borrowing constraint does not bind. Then apply the implicit function theorem.

26



self-control preferences under a range of conditions, but it also highlights how these compara-

tive static results can be reversed because of self-control considerations.

Though the condition in (23) is straightforward to compute and easy to understand, its intu-

ition becomes clearer when we abstract from the redistributive consequences of the tax system.

For this purpose, let us consider the special case of our model where households are homoge-

nous (ui = u, vi = v and δi = δ) and always have the same labor endowment, li = l, so that

ai,∗ = k∗ in the initial steady state. In this case, the second term in the numerator of (23) is equal

to zero, and (23) becomes equivalent to(
θR̂− 1

) u′′(c∗) + v′′(c∗)

u′(c∗) + v′(c∗)
< θR̂

v′′(z∗)

v′(z∗)
, (24)

Since θR̂ > δθR̂ > 1 and u + v is strictly concave, it is clear that when households’ tempta-

tion utilities are convex, (24) holds and a lower capital income tax rate always increases the

capital-labor ratio in steady state. Conversely, suppose that v is strictly concave. Now, if
v′′(z∗)
v′(z∗) /

u′′(c∗)+v′′(c∗)
u′(c∗)+v′(c∗) is greater than 1 − δ, (24) holds with the inequality reversed, and the di-

rect response to a reduction in the capital income tax rate will be negative, leading to a lower

capital-labor ratio in the long run. This comparative static reversal does not require far-fetched

conditions. For example, u = v and these functions exhibiting either a constant or an increasing

absolute rate of risk aversion ensure such a reversal.

We can also provide an economic intuition for this paradoxical result. With dynamic

self-control and temptation preferences and v concave, in addition to the usual consumption

smoothing motive, households have an incentive to smooth their wealth — a smoother wealth

profile leads to lower temptation costs. If this wealth smoothing motive is sufficiently strong

relative to the consumption smoothing motive, a reduction in the capital income tax rate makes

it optimal to reduce savings today in order to achieve this smoother wealth profile. This ex-

planation also highlights that, though Gul and Pesendorfer (2004) focus on the cases where v

is convex, there is nothing in the economics that precludes concave v. But this type of concav-

ity can create powerful behavioral effects that can reverse the direction of general equilibrium

comparative statics. Once again, we are not aware of any results in the literature of this type,

which are enabled by our general results.

4.3 Systematic Misperceptions

Our final application is to a heterogenous household growth model with systematic mispercep-

tions. The description of markets and taxes is as in the quasi-hyperbolic model. To simplify,
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we assume here that households are homogenous with labor endowment l, which they supply

inelastically, so that L = l. As in baseline neoclassical models, there is geometric discounting,

no non-separabilities and no self-control problems. The only behavioral element is that house-

holds can have misperceptions, and we simplify the discussion here by assuming that these

only concern future transfers. Specifically, we assume that instead of the actual future transfers

Tt+1, Tt+2, . . ., households believe that they will receive transfers αTt+1, αTt+2, . . . where α > 0.

This misperception is systematic in the sense that households never correct their mistaken be-

liefs. We impose no binding borrowing constraints on households, so when α = 1, we are back

to the standard neoclassical growth model. On the other hand, when α < 1, households expect

to receive a lower transfer than what is actually the case, and they will underestimate the impact

of a change in capital taxes on their future incomes.

Clearly, this modified one-sector growth model satisfies the conditions of Lemma 1, so, once

more, dynamic general equilibrium effects cannot overturn direct responses, and we can again

focus on the (partial equilibrium) consumption-savings version of the model.

Fixing an initial level of the tax τ ∈ (0, 1), a household’s Euler equation is:

u′(Cθ(zt))

u′(Cθ(z
E
t+1))

= (1− τ)R̂δ . (25)

Here zt = (1+R)at+wl+Tt denotes actual income at date t and zEt+1 = (1+R)[zt−Cθ(zt)]+wl+
TEt+1 is expected income at the following date given the expected transfers TEt+1 = αTt+1. Note that

the key feature of this model is that whenever α 6= 1, zEt+1 will be different from actual income

at date t + 1, zt+1. As a consequence, planned consumption Cθ(z
E
t+1) will differ from actual

consumption Cθ(zt+1) whenever beliefs are incorrect.26 Then, using (25), we have that θR̂δ 6= 1

in steady state whenever α 6= 1, ensuring that, as in the previous subsection, each households’

savings is uniquely determined by equilibrium prices and its current assets.

Applying the implicit function theorem, we have:

dSτ (z∗)

dτ
=

(1− τ)R̂δu′′(cE,∗)
(

(α− 1)R̂a∗ − S′τ (zE,∗)(α− 1)R̂a∗
)
− R̂δu′(cE,∗)

−u′′(c∗)− (1− τ)R̂δu′′(cE,∗)
[
(1 + (α− 1)τ)R̂(1− S′τ (zE,∗))− 1− o(|zE,∗ − z∗|)

] ,
where zE,∗ and cE,∗ denote expected income and consumption at the next date in steady state,

a∗ is households’ steady-state assets and limx→0 o(x) = 0. Now supposing that τ is not too

high and α is not too far from 1 (so that misperceptions are not too large), we can conclude that

household i’s direct response to an increase in the capital income tax rate is negative if and only

26This introduces a dynamic inconsistency into the model. The current description parallels “naive behavior” in
the sense of Strotz (1956), except that here the utility objective itself does not cause the dynamic inconsistency.
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if:

(1− τ)
u′′(cE,∗)

u′(cE,∗)
(α− 1)R̂a∗

(
1− S′τ (zE,∗)

)
< 1 . (26)

Using our main results we thus have (proof in the text):

Proposition 3 Consider the behavioral growth model with misperceptions and assume that the

initial tax is not too high and misperceptions are not too strong. Then a reduction in the capital

income tax rate increases the steady-state capital-labor ratio if (26) holds and reduces it if (26)

holds with the inequality reversed.

Just as in the previous two models, we again see how basic neoclassical comparative statics

generalize to alternative behavioral specifications, and how they can be reversed. Specifically,

note that (26) necessarily holds if α ≥ 1 (since the left-hand side is then negative) — in particular,

we unambiguously obtain the usual comparative statics if beliefs are either correct (α = 1) or

the households overestimate their future transfer payments (α > 1). But if α < 1 and the

intertemporal elasticity of substitution is low enough (or equivalently, the absolute rate of risk

aversion is high enough), this inequality is reversed and a lower tax on capital income leads to

a lower capital-labor ratio in the long run.

Intuitively, when α > 1, households overestimate the decline in future income caused by the

tax reduction — hence the tax cut makes them “feel relatively poorer” in the future, motivating

them to shift income towards future dates. Since the usual substitution effect pushes in the

same direction, the conventional comparative statics conclusion remains intact independently

of how strong (or weak) the consumption smoothing motive is. On the other hand, if α < 1,

households underestimate the declines in their future incomes resulting from a lower capital

income tax. As a result, following such a tax reduction, they feel relatively richer in future

dates and reduce their savings and increase their consumption today in response, especially

if the consumption smoothing motive is sufficiently strong (or the intertemporal elasticity of

substitution is sufficiently low).

4.4 Indeterminacy

In this subsection, we show that, although our framework leads to sharp results on how ag-

gregate variables change in response to certain changes in the environment (for example, lower

taxes on capital income leading to greater capital-labor ratios), nothing much can be said about

individual behavior. Specifically, we will establish a type of indeterminacy result, proving that

it is in general impossible to know which households will increase their savings and which ones
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will reduce them. Put differently, fixing a set of households with given preferences, we can al-

ways find the production function and preferences for the rest of the households such that this

initial set will reduce their savings while aggregate savings increase.

For transparency, we will state this “indeterminacy” result for the Aiyagari model with in-

tertemporally separable neoclassical preferences, which guarantees that a reduction in the cap-

ital income tax rate increases the long-run capital-labor ratio. Clearly, indeterminacy in this

model implies, a fortiori, that there will also be indeterminacy with more complex behavioral

preferences.

Let η(·) denote the Lebesgue measure on the set of households [0, 1] so that η(J) is the mass

of a (measurable) subset of households J ⊆ [0, 1]. Let us also refer to the ergodic average of the

savings of a household in a steady state simply as its ergodic savings. Then, we have:

Proposition 4 Consider the Aiyagari model and suppose that all households have CRRA pref-

erences with some coefficient of risk aversion less than one (potentially different across house-

holds). Consider a reduction in the capital income tax rate. Fix a set of households J ⊆ [0, 1]

with η(J) ≤ B for some B > 0 sufficiently small. Then there exist a production function f and

utility functions for the remaining households such that a lower capital income tax will lead

to lower ergodic savings for all households in J , while the steady-state capital-labor ratio and

aggregate savings increase.

In sum, though aggregate savings will necessarily increase, we can say nothing about how

the savings of a fixed set of households will change between the current and the new steady

states. They may increase or decrease depending on the fine details of the utility functions of

the rest of the households. In fact, Proposition 4 shows that the savings of any (albeit small) sub-

set of households may uniformly decrease, while aggregate savings increase. This indeterminacy

finding reiterates that our main results are not driven by some hidden monotonicity assump-

tions — they are truly a consequence of the discipline that this class of models, despite rich

behavioral preferences, imposes on aggregate variables, while placing little or no restrictions on

individual behavior.

We also note that the same indeterminacy result holds with the other behavioral models

discussed in this paper — in particular with quasi-hyperbolic and self-control and temptation

preferences. An increase in the capital-labor ratio of the economy does not pin down which

households will increase their savings, and any given household can increase or reduce its sav-

ings depending on the production function and the preferences of other households in the econ-

omy.
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5 Concluding Remarks and Future Directions

A common conjecture is that equilibrium analysis becomes excessively challenging in the pres-

ence of behavioral preferences and biases, thus implicitly justifying a focus on models with

time-additive, dynamically consistent preferences and rational expectations. In this paper, we

demonstrated that, in the context of one-sector behavioral growth models, this conjecture is

not necessarily correct. Results concerning the direction of change in the long run (or “robust

comparative statics” for the steady-state equilibrium) can be obtained for a wide range of be-

havioral preferences and rich heterogeneity. Put simply, our main results state the following: for

any change in policy or underlying production or preference parameters of the model, we first

determine whether, at the initial capital-labor ratio (or at the initial pre-tax/distortion vector of

prices), aggregate savings increases or decreases; this step involves no equilibrium analysis, but

only the determination of what the average of individual optimization decisions given prices

is. Critically, this needs to be done only at a single vector of prices (or at a single capital-labor

ratio), because our condition is completely “local”. Then under fairly mild regularity conditions

(satisfied for all behavioral preferences we have discussed in this paper), no matter how com-

plex the equilibrium responses are, they will not overturn the direction of the initial change and

thus the steady-state equilibrium will involve a greater capital-labor ratio (and the changes in

prices that this brings). Conversely, if the initial change is a decline in aggregate savings at the

initial capital-labor ratio, the long-run capital-labor ratio will decline.

At the root of this result is a simple and intuitive observation: in the one-sector model, the

only way the direction of the impact of the initial impetus can be reversed is by having the

equilibrium response to this initial shock to go strongly in the opposite direction. For exam-

ple, savings could decline strongly in response to a higher capital-labor ratio. But either such

an equilibrium response would still not overturn the initial increase in aggregate savings, in

which case the conclusion about the steady-state equilibrium applies. Or it would overturn it

and reduce the long-run capital-labor ratio, but in this case the perverse effect would go in the

direction of strengthening, not reversing, the initial increase in savings.

We illustrated these comparative statics by working through one-sector growth models em-

bedding three popular behavioral effects: quasi-hyperbolic preferences, self-control and temp-

tation utilities and systematic mistakes. In all three cases, we showed that our approach can be

applied relatively straightforwardly and leads to results that are, to the best of our knowledge,

new in the literature. Moreover, we found that, for a broad range of parameters, comparative

statics in these behavioral models are similar to those in standard neoclassical growth models.

However, importantly, we also identified economically intuitive conditions under which these
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comparative statics are reversed. In each case, this reversal takes place along the lines of our

main result: behavioral preferences change the direction of the direct response, and, despite

potentially complex general equilibrium interactions, this initial impetus then leads to a change

in the same direction in the long-run equilibrium.

This intuition also clarifies the limitations of our results. A similar logic would not apply

if the economy had multiple state variables rather than the single state variable as in our (one-

sector) behavioral growth model. In such richer circumstances, similar results would necessitate

at least some supermodularity conditions for the set of state variables or a result that in the rel-

evant problems the vector of state variables could be reduced to be functions of a single overall

state variable. One example in which this latter approach can be used straightforwardly is an

extension of our setup to a multi-sector neoclassical growth model. For brevity, we did not de-

velop the details of this model, but the main idea is simple. Suppose that we have a n-sector

growth model with no irreversibilities, neoclassical production functions in each sector and

competitive capital markets (though distortions that differ across sectors can be introduced for

additional generality). Then the marginal return to capital has to be equalized across different

sectors, which determines an allocation of the overall capital stock across sectors and enables us

to have a reduced-form problem just as a function of the overall capital stock. Then similar com-

parative static results can be developed for this overall capital stock in this type of multi-sector

environment. Beyond this case, extending our results to other settings with multiple state vari-

ables is far from trivial, and would typically necessitate strong supermodularity/monotonicity

conditions (in contrast, our current results require no such monotonicity assumptions).

Another evident limitation of our approach bears repeating at this point: our focus has been

on comparative statics, and thus on qualitative rather than quantitative results. Many questions

in modern macroeconomics necessitate quantitative analysis, and the quantitative impact of a

policy change may critically depend on behavioral biases and the exact structure of preferences

even if the direction of long-run change does not. An obvious but challenging area for future

research is to investigate when certain quantitative conclusions may not depend on appropri-

ately introduced behavioral biases or heterogeneity (for example, in the sense that as behavioral

assumptions are modified, quantitative change in some key variables remains near changes im-

plied by a benchmark model).
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Appendix A: Proofs

Proof of Lemma 1. We begin with the weakly additive specification (10). Throughout, the

superscript θ as well as the household index i are omitted to simplify notation. The monotonic

transformation H may be ignored and (12) written as

sw,R,T,z(a) ∈ arg max
a′:a′≤(1+R+σ)a+wl+T

uε0((1 +R+ σ)a+ wl + T − a′) +M(a′) .

Here M is a function that generally depends on w, R, T , z, and a′ but it does not depend on

current assets a. Under Assumption 1, M is continuous function (in particular, beliefs vary

continuously with w, R, T , and z). Since uε0((1 +R+ σ)a+wl− a′) +M(a′) is supermodular in

(a, a′) if and only if uε0 is concave, it follows from Topkis’ theorem (Topkis (1978)) that the least

and greatest optimal savings functions are non-decreasing in current assets a.

If Sw,R,T,z(a) is upper hemi-continuous in z, it is measurable in z (Aubin and Frankowska

(1990), Proposition 8.2.1). To establish both the upper hemi-continuity and measurability re-

quirements of Lemma 1, it therefore suffices to show that under Assumption 1, Sw,R,T,z(a) is

upper hemi-continuous in w, R, T , a, and z. The proof is the same in each case and in fact,

the statement is true if we consider (w,R, T, a, z) jointly. Nonetheless, to simplify notation we

establish the claim only for a. We begin with the case where u0 is strictly concave. Let an → a,

and bn = sw,R,T,z(an) ∈ Sw,R,T,z(an) for all n where sw,R,T,z is a time-stationary savings function

(TSSF). Without loss of generality, index again by n a subsequence with bn → b. We first show

that b ∈ Sw,R,T,z(a). By definition,

bn ∈ arg max
a′:(1+R+σ)an+wl+T≥a′

uε0((1 +R+ σ)a+ wl + T − a′) +M(a′)

Under Assumption 1, M is continuous from below (respectively, above) if and only if sw,R,T,z(·)
is continuous from below (respectively, above). In particular, M is continuous if and only if

sw,R,T,z(·) is continuous. For any a, we can pass to yet another subsequence (again indexed

by n) such that the convergence an → a is monotone. Since u0 is strictly concave, sw,R,T,z is

increasing, and it follows then that bn → b monotonically. In case (an) (and therefore (bn)) is an

increasing sequence, the conclusion that

b ∈ arg max
a′:(1+R+σ)a+wl≥a′

uε0((1 +R+ σ)a+ wl − a′) +M(a′)

follows by a standard continuity argument provided that sw,R,T,z , and therefore M is contin-

uous from below. In the second case of decreasing (an) and (bn) the conclusion follows if

sw,R,T,z is continuous from above. Crucially, it may be shown that if sw,R,T,z is a TSSF, then
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so is both its lower continuous and its upper continuous closures.27 Further, since an increasing

function is continuous except for at an at most countable number of points, sw,R,T,z(a) coin-

cides with its lower and upper continuous closures nearly everywhere (as a minimum, at all

points of continuity). Because of this we may from the beginning of the argument above re-

place sw,R,T,z with, as appropriate, the lower or upper continuous closure without having to

change the sequences (an) and (bn). But then the previous argument may be applied to con-

clude that b ∈ Sw,R,T,z(a). If there are only a finite number of TSSFs, this argument implies

upper hemi-continuity of Sw,R,T,z(a) (since then for any sequence (an) and any sequence (bn)

with bn ∈ Sw,R,T,z(an) all n, there exist convergent subsequences with bn = sw,R,T,z(an) all n for

some fixed TSSF). If Sw,R,T,z is the union of an infinite family of TSSFs, we instead use that if sn

is a sequence of TSSFs, then its pointwise limit is also a TSSF. Finally, to extend the proof from

the case where u0 is strictly concave to the case where u0 is merely assumed to be concave, one

uses a standard approximation argument: consider a sequence of strictly concave functions un0
that converge pointwise to u0; repeat the above argument for all n; use that continuity of the

maximum operator implies that the limit is optimal for u0. That Sw,R,T,z has a compact range

follows immediately from upper hemi-continuity and boundedness of the set of feasible savings

levels.

Next, consider the recursive Epstein-Zin specification (9). It is convenient to adopt Epstein

and Zin’s notation and denote the certainty equivalent by µP where P is the associated measure,

and also, it is convenient to suppress ε and the income transfer T . Let V (a, e) = maxa′W (u((1 +

R)a+wl−a′), µP [V (a′, e′)]) denote the value function where P (·) = P (·, e, θM ) are beliefs formed

conditional on e and θM . It is clear that the value function is weakly increasing in a under the

conditions of the Lemma and, furthermore, V is a continuous function under Assumption 1.

From continuity of the value function follows that the savings correspondence is upper hemi-

continuous (and hence have a compact range and be measurable in z as in the weakly additive

specification considered previously). It remains therefore only to be shown that the savings

correspondence is increasing in a. This follows by the same argument as in the previous weakly

additive case if we can show thatW (u((1+R)a+wl−a′), µP [V (a′, e′)]) is supermodular in a and

a′. Since the objective is concave in a, it is differentiable almost everywhere in a and when the

derivative exists it equals: (1 +R)W ′1(u((1 +R)a+wl−a′), µP [V (a′, e′)]) ·u′((1 +R)a+wl−a′).

27Note that since we consider a continuum of consumers, isolated points on the graph of an individual’s savings
correspondence are irrelevant and this paper’s construction of savings correspondences adds these onto the graph
(but note that every proof in this paper would remain valid had we instead considered increasing selections from the
savings correspondences). Let sw,R,T,z be an increasing function. Then the lower continuous closure is defined by
sw,R,T,z(a) = liman↑a sw,R,T,z(a). The upper continuous closure is defined similarly, replacing an ↑ a with an ↓ a.
These are always well-defined for increasing functions since an increasing function is continuous except at an at
most countable number of points (and the points of discontinuity are of the jump type).

34



By Theorem 4 in Jensen (2007), it is sufficient for increasing differences/supermodularity in a

and a′ that this term is increasing in a′ between any two points where it is well-defined. Since

u is concave, u′((1 + R)a + wl − a′) is increasing in a′. Since W ′1(u, U) is decreasing in u, and

increasing in U , and u((1 +R)a+wl− a′) is decreasing in a′ and µP [V (a′, e′)] is increasing in a′,

W ′1(u((1 +R)a+ wl − a′), µP [V (a′, e′)]) is increasing in a′. The conclusion now follows because

the product of two increasing functions is an increasing function.

Proof of Lemma 2. First use that f(k)+(1−δ)k−G(k) equals aggregate income after taxes and

net of any waste to write the market correspondence in terms of the savings correspondences:

Mθ(k) = f(k) + (1− δ)k −G(k)−
∫

((1 +R(k))ai + liw(k)− Sθ,iw(k),R(k)(
âi(k)∫
âθ,i(k) di

k) di

=

∫
Sθ,iw(k),R(k)(

âi(k)∫
âi(k) di

k) di .

By definition of the equilibrium asset distributions, these are solutions to the fixed point prob-

lem in (14), and therefore the market correspondence can also be written as:

Mθ(k) = {
∫
âi(k) di : âi(k) ∈ Sθ,iw(k),R(k)(

âi(k)∫
âi(k) di

k) , a.e. i ∈ [0, 1]} . (27)

From here it is seen that k ∈ Mθ(k) if and only if there exists (âi(k)) which satisfies (14) and

such that k =
∫
âi(k) di. Substitute this into (14) to see that âi(k) ∈ Sθ,iw(k),R(k)(â

i(k)) which

means that âi(k) is an invariant distribution for household i. Comparing with Definition 2, we

conclude that k ∈Mθ(k) if and only if k is an equilibrium.

For K > 0, let Aik(K) ≡ {âi ∈ P(Āi) : âi ∈ Sθ,iw(k),R(k)(âi
k
K )} where P(Āi) is the set of

probability measures on the compact range Āi ⊆ R of the savings correspondence equipped

with the weak ∗-topology. By Lemma 1, Sθ,i
w,R,zi

(ai) is increasing and upper hemi-continuous

in ai, hence the induced savings distributions (the adjoint Markov correspondence) Sθ,iw,R(âi) is

type I and type II monotone and upper hemi-continuous in âi (see the Appendix in Acemoglu

and Jensen (2015)). It follows from the fixed point comparative statics Theorem 3 in Acemoglu

and Jensen (2015) thatAik(K) is type I and type II monotone in K−1. By Theorem 4 in that same

paper,
∫
Aik(·) di has decreasing least and greatest selections. Since

∫
Aik(·) di is convex valued

by Richter’s theorem (see Aumann (1965)), and a convex and real-valued correspondence whose

least and greatest selections are decreasing must have a convex set of fixed points, Mθ(k) =

{K : K ∈
∫
Aθ,ik (K) di} is therefore convex. Note that the fact that the least and greatest

savings functions have no jumps down is the critical property for the previous argument (that

the savings correspondence is increasing matters only because it ensures this).
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To see that the market correspondence Mθ(k) = {K : K ∈
∫
Aθ,ik (K) di} is upper

hemi-continuous, note that its graph is {(k,K) : (K, k,K) ∈ Graph[
∫
Aθ,ik (K) di]} where

Graph[
∫
Aθ,ik (K) di] = {(K, k, Z) : Z ∈

∫
Aθ,ik (K) di} is a closed set since

∫
Aθ,ik (K) di is upper

hemi-continuous in k and K. ThatMθ(k) is compact follows now from boundedness (savings

correspondences have compact ranges). Finally,Mθ(k) begins above the 45 ◦ line and ends be-

low it. The former is obvious since f(0) = 0 and therefore Mθ(0) = {0}. The latter is true

since consumption is non-negative, henceMθ(k) ≤ f(k), and for sufficiently large k, f(k) ≤ k

because the production technology is effectively compact.

Proof of Theorem 1. The proof relies on the following lemma.

Lemma 3 (Mean Asset Holdings and Shifts in the Market Correspondence) Assume that house-

holds satisfy the conditions of Lemma 1, and let k∗ ∈ Mθ∗(k∗) be either the least steady state

inf{k : k ∈ Mθ∗(k)} or the greatest steady state sup{k : k ∈ Mθ∗(k)} given an environment

θ∗ ∈ Θ. Consider a different environment θ∗∗ ∈ Θ. Then the population’s mean asset holdings

increase at k∗ when the environment changes from θ∗ to θ∗∗ if and only if the market correspon-

dence “shifts up” at k∗ (i.e., provided there exists k̃ ∈ Mθ∗∗(k∗) with k̃ ≥ k∗). Similarly, the

population’s mean asset holdings increase at k∗ when the environment changes from θ∗ to θ∗∗ if

and only if the market correspondence “shifts down” at k∗ (there exists k̃ ∈ Mθ∗∗(k∗) with k̃ ≤
k∗).

Proof. From the proof of Lemma 2 we know thatMθ(k) = {K : K ∈ Fk(K, θ)}where

Fk(K, θ) = {
∫
ai di : ai ∈ Sθ,iw(k),R(k)(

ai

K
k) , a.e. i} .

Fk∗(·, θ∗) and Fk∗(·, θ∗∗) are upper hemi-continuous, convex valued, and necessarily begin

above and end below the diagonal since they are decreasing correspondences (see the proof

of Lemma 2). For clarify, we first consider the case where households’ assets distributions are

uniquely determined in steady state (in principle, different assets distributions might support

the same steady state).

Let k∗ be the greatest equilibrium. If the population’s mean asset holdings increase at k∗,

Fk∗(k
∗, θ∗∗) ≥ k∗, then there exists K ∈ Fk∗(K, θ

∗∗) with K ≥ k∗. Since K ∈ Mθ∗∗(k∗) ⇔
K ∈ Fk∗(K, θ∗∗), it follows that the market correspondence shifts up at k∗. This argument also

applies if k∗ is the least equilibrium since F is decreasing in K.

To see that an increase in mean asset holdings is also necessary for the market correspon-

dence to shift up, use that if there does not exist k̂ ∈ Fk∗(k
∗, θ∗∗) with k̂ ≥ k∗, then because

Fk(K, θ
∗∗) is convex valued with least and greatest selections that are decreasing in K, there
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is not a K ∈ Fk∗(K, θ
∗∗) with K ≥ k∗, and so the population’s mean asset holdings does not

increase as θ∗ changes to θ∗∗.

If households’ steady-state asset distributions are not uniquely determined from k, one one

considers instead the greatest mean asset holdings: Aθ,i+ (k) = sup{E[âi] : âi ∈ Sθ,iw(k),R(k)(â
i)},

and define the greatest average asset holdings across the agents (given θ and the steady state

k): Aθ+(k) =
∫
Aθ,i+ (k) di. Then the change in environment from θ∗ to θ∗∗ shifts the market

correspondence up at k∗ if and only if k∗ ≤ Aθ
∗∗

+ (k∗) (see the proof of Proposition 3). Note

that trivially the left-hand side of this inequality, k∗, is the average asset holding across the

households at the steady state k∗. So, the necessary and sufficient condition is that the greatest

average asset holding after the change in environment is above the average asset holdings before

the change.

We are now ready to prove Theorem 1. Only the case where the population’s mean asset

holdings increase is considered (the case where the population’s mean asset holding decrease is

proved by an analogous argument).

Sufficiency: Since the change to θ∗∗ shifts the market correspondence up at k∗, there exists

k̃ ∈ Mθ∗∗(k∗) with k̃ ≥ k∗. SinceMθ∗∗ ends below the diagonal, it must begin above and end

below the 45◦ line on the interval [k∗,+∞). Mθ∗∗ is also upper hemi-continuous and convex

valued (Lemma 2), hence it intersects the 45 degree line at some point k∗∗ on [k∗,+∞). This

yields a steady-state equilibrium k∗∗ ≥ k∗ given environment θ∗∗, and by assumption, this is

the unique steady-state equilibrium. Parenthetically, note that the same conclusion follows by

instead considering a single-valued market correspondence that is continuous but for jumps up

(see Appendix B).

Necessity: Assume that k∗∗ ≥ k∗ and that the change from θ∗ to θ∗∗ does not increase the

households’ mean asset holdings. By Lemma 3, the market correspondence then does not shift

up at k∗. So supMθ∗∗(k∗) < k∗ since the market correspondence is closed. But then since

the market correspondence ends below the 45◦ line and is upper hemi-continuous and convex

valued,Mθ∗∗ must intersect with the 45◦ at least twice on the interval [k∗,+∞). This contradicts

that the economy has a unique interior steady state given θ∗∗.

Proof of Theorem 2. Since the market correspondence is compact-valued, a sufficiently small

change in the environment can lead to existing equilibria disappearing but not to the creation

of new equilibria. In particular, no new equilibrium can be created below the least equilib-

rium which must therefore increase by the argument used to prove Theorem 1. This argument

obviously also applies to the greatest equilibrium; and in both cases necessity follows by the
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argument from Theorem 1 as well.

Proof of Theorem 3. Let k∗ denote the greatest steady state. Repeating the argument used to

prove the “sufficiency” part of Theorem 1,Mθ∗∗ must have a fixed point on [k∗,+∞). The result

for the least steady-state is proved analogously.

Proof of Proposition 4. Denote that pre-tax rental rate of capital by R̂, the rate of capital

tax by τ ∈ [0, 1) and set θ = 1 − τ . Since the coefficients of relative risk aversion (RRAs) are

below 1, the individual savings functions are increasing in the after-tax rate of return R = θR̂−
∆ and decreasing in the (after-tax) wage w, and the steady-state equilibrium is unique (Light

(2018)). From Lemma 1, the savings functions are also non-decreasing in assets. Therefore,

ergodic savings are increasing in R and decreasing in w. Furthermore, all individual direct

responses to a lower capital income tax are positive, and thus Theorem 1 implies that the long-

run capital-labor ratio increases following such a tax reduction. Consequently, the steady-state

market interest rate (i.e., R̂) declines, and the wage increases.

Figure 3: Blue curves show the demand for capital from the production side, k = (f ′)−1((R +
∆)/θ), before (solid) and after (dashed) the reduction in the capital income tax rate from τ∗ =
1− θ∗ to τ∗∗ = 1− θ∗∗, τ∗ > τ∗∗. The red curves show the supply of savings from the household
side, k = s(R,w((R + ∆)/θ)), where w((R + ∆)/θ) = f((f ′)−1((R + ∆)/θ) − f ′((f ′)−1((R +
∆)/θ))(f ′)−1((R + ∆)/θ). The figure depicts an economy where a large fraction of households
have coefficients of relative risk aversion close to 0, so the supply of savings is very elastic.

Now fix the preferences of the households in J . We first note that, regardless of their exact

RRAs, the ergodic savings of each household in this set declines if the reduction in the market

interest rate is small enough for a given increase in the wage rate w (because, in this case, the

income effect dominates the substitution effect). We next prove that we can choose the prefer-
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ences of the households in [0, 1]\J and the production technology f so that the reduction in the

market interest rate is arbitrarily small and the increase in the wage rate is large. Since η(J) is

small, we can ensure that the equilibrium of this economy is arbitrarily close to the equilibrium

of a hypothetical economy without the household in the set J . Now choose the RRAs of all

households in the set [0, 1]\J to be arbitrarily close to 0. This ensures that the savings curve in

the Aiyagari diagram depicted in Figure 3 is arbitrarily close to a vertical line. Now consider

an increase in θ (a reduction in the capital income tax rate). This leads to an arbitrarily small

shift in the savings curve (shown in red), while for any production function where f ′′(·) < 0,

the demand for capital from the production side shifts up. This ensures that the wage rate, w,

increases, while the change in the after-tax rate of return R is arbitrarily small. This establishes

the desired result.

Appendix B: Changes in the Environment: A Topological Approach,
Discussion of Related Literature

Since this section’s observations may be of independent interest and apply not only to market

correspondences, we are going to view the market correspondenceM : K × Θ → 2R, K ⊆ R,

more abstractly and impose any necessary assumptions directly. Denote by mθ
S(k) = infMθ(k)

and mθ
L(k) = supMθ(k) the least and greatest selections, and by kθS = inf{k ∈ K : k ∈ Mθ(k)}

and kθL = sup{k ∈ K : k ∈ Mθ(k)} the least and greatest fixed points (when they exist, which

of course they do ifM is a market correspondence). Now equip Θ with an order as well as a

topology (in the simplest situation where we consider a change in just a single parameter, Θ

may be taken to be a subset of R, and these would therefore be the usual/Euclidean order and

topology, respectively). We also introduce some additional terminology: A function m : Θ→ R

is (i) increasing if θ ≤ θ̂⇒m(θ) ≤ m(θ̂) for all θ, θ̂ ∈ Θ, and (ii) locally increasing at θ∗ ∈ Θ if θ ≤ θ̂
⇒m(θ) ≤ m(θ̂) for all θ, θ̂ in an open neighborhood of θ∗. Finally,M begins above and ends below

the 45◦ line if m∗(inf K, θ) ≥ inf K and m∗(supK, θ) ≤ supK.

Theorem 4 (Abstract Shifts in Fixed Point Correspondences) Consider an upper hemi-continuous

and convex valued correspondence M : K × Θ → 2R where K is a compact subset of R and Θ is a

compact subset of an ordered topological space. Suppose that the graph begins above and ends below the

45◦ line for all θ ∈ Θ. Then the least and greatest fixed points kθS and kθL are increasing in θ if for all

θ∗ ∈ Θ, mθ
L(kθ

∗
L ) and mθ

S(kθ
∗
S ) are locally increasing in θ at θ∗.

Proof. Consider the greatest fixed point kθ
∗
L given some θ∗ ∈ Θ. To simplify notation, we take

Θ ⊆ R (but the argument is true in general). Since mθ
L(kθ

∗
L ) ≥ mθ∗

L (kθ
∗
L ) = kθ

∗
L for θ∗ + ε >
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θ > θ∗, mθ
L(·) begins above the 45◦ line and ends below it on the interval [kθ

∗
L , supK]. Since

M has convex values, Mθ(·) therefore has a fixed point on this interval, and so kθL ≥ kθ
∗
L .

This argument clearly extends to any θ > θ∗ (not necessarily in a neighborhood) since we may

reach any such θ in a finite number of steps (Θ is compact so any open cover contains a finite

subcover). The more difficult case is when θ∗ − ε < θ < θ∗. Assume for a contradiction that

kθL > kθ
∗
L . Consider θn, where θ < θn < θ∗. Since θn > θ, it follows from the first part of the proof

that kθ
n

L ≥ kθL > kθ
∗
L . Note that these inequalities hold for any θn ∈ (θ, θ∗). Since K is compact,

we may consider a sequence n = 0, 1, 2, . . . with θn ↑ θ∗ and such that limn→∞ k
∗(θn) exists.

kθnL ∈ Mθn(kθnL ) for all n and M has a closed graph, hence limn→∞ k
θn
L ∈ Mθ∗(limn→∞ k

θn
L ).

But since limn→∞ limn→∞ k
θn
L ≥ kθL > kθ

∗
L , this contradicts that kθ

∗
L is the greatest fixed point.

The parallel statement for the least fixed point kθ
∗
S is shown by a dual argument (in this case the

situation where θ∗ − ε < θ < θ∗ is simple while the limit sequence argument must be used for

the case where θ∗ + ε > θ > θ∗).

The following corollary is immediate by combining Theorem 4 with Lemma 3, as we did in

the proof of Theorem 1:

Corollary 1 (Main Comparative Statics Result, Topological Case) Let the assumptions of Theorem

1 hold and assume in addition that Θ is a compact subset of an ordered topological space and that the

market correspondence Mθ(k) is upper hemi-continuous in (θ, k). Then the greatest and least steady

states kθS and kθL are increasing in θ if for all θ∗ ∈ Θ and all θa < θb in a neighborhood of θ∗, the change

in the environment from θa to θb raises mean savings at kθ∗L as well as at kθ∗S .

Note that in all cases, “curve shifting theorems” such as Theorem 4 can be used in our setting

because (i) Lemma 2 has established the requisite properties of the market correspondence;

and (ii) Lemma 3 allows us to relate increases in mean savings/assets with “shifts up” in the

market correspondence. In that sense, curve shifting arguments are the last (and simplest) step

in the proofs of our results; in particular, (i) and (ii) are clearly the more substantial technical

contributions of this paper.28 Nonetheless, it is useful to briefly contrast our use of curve shifting

arguments to similar results in the literature because there are both significant economic and

mathematical differences.

Most of the results in the literature are similar to Corollary 2 in Milgrom and Roberts (1994)

which shows that when the equivalent of our market correspondenceM is “continuous but for

28As mentioned several times in the main text, the key technical contribution is the definition of the market corre-
spondence in terms of an auxiliary fixed point problem which allows us to conduct the analysis without taking asset
distributions (explicitly) into account and ensures that the market correspondence is convex-valued.
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jumps up” and its graph shifts up (meaning that mθ
L(k) and mθ

S(k) are increasing in θ for all k),

then the least and the greatest fixed points increase.29 Let us refer to this well-known result as

the “for all k curve shifting theorem”. The key thing to note is that since the “curve” must shift

up for all k (for all capital-labor ratios in our setting), it requires information not only about

how savings change for the prices determined in the original steady state; it requires that we

have such information for (all) capital-labor ratios/prices. Acemoglu and Jensen (2015), which

relies on such a standard curve shifting theorem, defines “local positive shocks” as changes

in parameters that increase savings for all capital-labor ratios. In conventional settings with

rational expectations, such requirements can be imposed, even if they are quite demanding.

When the economic problems involve rich and variegated behavioral preferences and biases,

they become essentially untenable. It is against this background that Theorem 4 should be

evaluated. It shows that if M is upper hemi-continuous in (k, θ) (rather than just in k, cfr.

footnote 29), the same conclusion requires only that the correspondence shifts up at the least

and the greatest fixed points, kθS and kθL. The results presented in Section 3 similarly require only

local shifts in steady states. That we only need to verify thatM shifts up locally, in particular, at

the steady states, enables us to separate direct responses (or the “all-else-equal” behavior) from

equilibrium responses.

To explain a little further, let us consider a particularly simple case where a dynamic econ-

omy can be reduced to a fundamental equation of the form

G(kt, kt−1, θ) = 0 , (28)

where θ ∈ R is an exogenous parameter, kt ∈ R is capital, or the capital-labor ratio, at date t and

G : R3 → R a smooth function. In this case, the market correspondence can be defined as

Mθ(k) = {k̂ : G(k̂, k, θ) = 0} . (29)

In the Ramsey-Cass-Koopmans model, for example, G(kt, kt−1, θ) = 0 ⇔ kt = g(kt−1, θ), and

then Mθ(k) = g(k, θ). Clearly, k∗ is a steady state given θ if and only if k∗ ∈ Mθ(k∗). Note,

however, that (28) — even in the more general form 0 ∈ G(kt, kt−1, θ) where G is a correspon-

dence — is not general enough to nest our one-sector behavioral growth model (because we

also need to condition on the distribution of assets). Nevertheless, (28) is useful to provide the

technical intuition for our main results since both in the case of (29) and our Definition 3, the

market correspondence is constructed by conditioning on the information that the capital-labor
29 M is continuous but for jumps up if it has convex values, lim supxn↑xm

∗(xn, t) ≤ mθ
L(k), and

lim infxn↓xm∗(x
n, t) ≥ mθ

S(k).
Acemoglu and Jensen (2013) proves that if M is upper hemi-continuous in k and has convex values, then it is

continuous but for jumps up.
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ratio in question, k, has to be consistent with a steady-state equilibrium. In particular, the fact

that, with the conditioning on the steady state k∗, (29) a one-dimensional fixed point problem

allows us to use “curve shifting” arguments without imposing any type of monotonicity on the

dynamical system defined by (28) (see also Acemoglu and Jensen (2015) for a related discussion

of non-monotone methods). GivenMθ(k) and this construction, Theorem 4 and the results pre-

sented in Section 3 enable us to predict how the greatest and the least steady states vary with θ

whenMθ(k) shifts up locally starting at these steady states (and provided thatM satisfies the

relevant theorem’s regularity conditions).

The added generality and flexibility is considerable significant. In many applications, in-

cluding the problem of equilibrium analysis in the behavioral growth model we focus on in

this paper, the conditions for the “for all k curve shifting theorem” will not hold even if (28)

applies. This is for both substantive and technical reasons. Substantively, as already mentioned,

in economies such as the one-sector behavioral growth model the possible heterogeneity in the

responses of agents to changes in the environment would often preclude such uniform shifts.

To see the technical problem, suppose that we were checking these conditions using the implicit

function theorem. That would amount to verifying that dk
dθ > 0 for all k̃ while G(k, k̃, θ) = 0

holds. But since the implicit function theorem requires as a minimum thatDkG(k, k̃, θ) 6= 0, and

“running through all k̃’s” will almost invariably violate this condition for some k̃, this method

will generally fail (order theoretic methods are of no help here either; and of course, it is not

enough to show that dk
dθ > 0 for almost every k̃ because any point we fail to check may pre-

cisely be a point where the market correspondence “jumps”). When we only need to check local

conditions, these difficulties are bypassed.

Appendix C: Additional Examples of Behavioral Growth Models

We now show that our results can also be applied with other popular models of behavioral

preferences and biases than those considered in Section 4. In particular, we briefly outline how

these models satisfy the conditions of Lemma 1, and therefore our main results, Theorems 1-3,

can be readily applied when households have (a mixture of) these preferences.

Random Utility, Mistakes, Approximate Rational, and Satisficing Behavior

Consider an additive objective with delay discounting but assume that utility at each date is

random: U(c0, c1, c2, . . .) = uε0(c0)+f(1)uε1(c1)+f(2)uε2(c2)+. . .. The random utility parameter

εt reflects the household’s idiosyncratic tastes or biases (McFadden (1974), p.108). There are two

(mathematically equivalent) interpretations. The first is that the household is uncertain about its
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future preferences, and if the objective is dynamically inconsistent, it is consequently uncertain

about the behavior of future selves.30 In the second interpretation, uεt is a self’s “true utility”

at date t if and only if εt = 0, hence if εt 6= 0 the household will make a mistake because it will

maximize an objective that departs from its true objective. In either situation, the household’s

savings function will be a behavioral process in the sense of Train (2009), p.3. In the second

interpretation, this behavioral process describes approximate rational behavior (Luce (1959)),

which if the distribution of εt is uniform on [−a, a], a > 0, can also be interpreted as satisficing/ε-

optimizing behavior in the sense of Simon (1956).31 Finally, if ε parametrizes selves’ subjective

beliefs, a time-stationary savings function will be the quantal response equilibrium (McKelvey

and Palfrey (1995)) of the game the current self plays with future selves.

Such (generalized) random utility models fit straightforwardly into (10). If the only source

of uncertainty is the random utility parameter ε, we have z = ε and conditioned on zt, wt, Rt,

and Tt, the household’s beliefs about future (after-tax) prices, transfers, and about (ετ )∞τ=t are

given by Pt(·) = P (·;wt, Rt, Tt, zt, θM ) where θM is the true model. For the conditions of Lemma

1 to hold we need that uε(c) is concave and continuous in c, continuous in ε and we must impose

the belief related continuity conditions of Assumption 1.32

An interesting example, which was mentioned in Section 2.2, is when εt objectively (i.e., as

expressed through µz which is part of the true model θM ) is i.i.d. with mean 0 but the house-

hold through Pt(·) (incorrectly) believes that εt first-order stochastically dominates this objective

probability, and in particular has mean greater than 0. If savings increases in εt, the household

(or agent) is then “over-optimistic” about its future frugality which causes it too save less today

than it would if the beliefs were correct. At the following date, the household will of course be

“disappointed” for not living up to its own expectations but with the time-stationary savings

function of Definition 1, it goes on to assume that next year it will start saving more, and so

on, year after year. This is an example of a systematic bias or misperception (which can in our

model be driven both by time-consistent and naive behavior).

Sparse Maximization and Inattention

A household faced with an infinite (or even just a long) time horizon may, optimally or as

a rule-of-thumb, opt to keep down mental costs involved in estimating, assessing and using

30The game between temporal selves will in this situation be a Bayesian game.
31Whether a household maximizes a function that is ε away from the true objective or ε-maximizes the true objec-

tive amounts to the same as long as the decision function is continuous in ε.
32If the objective is dynamically consistent, it would also fit into (9) and we would be able to consider non-additive

utility. In this case, we must in addition impose complementarity conditions on the aggregator to ensure that goods
are normal (Chipman (1977)). See the discussion immediately prior to Lemma 1.
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objective probabilities and calculating the optimal decision (Sims (2003)). One way to capture

this in dynamic consumption and saving problems is to take as objective
∑T

t=1 β
tu(ct) where T

is finite; so that the household looks only T periods into the future at any point in time. This

specification fits into (10) by taking H , h, and g equal to the identity function, uε0(c) = u(c), and

Ũ ε(c1, c2, . . .) =
∑T

t=1 β
t−1u(ct). Note that because at any future date, the household also looks

T periods into the future, such preferences are dynamically inconsistent; and unless the current

self is naive in the sense of Strotz (1956), it will thus take as given the expected (inattentive)

behavior of future selves. In the deterministic case, the conditions of Lemma 1 will hold if u is

continuous and concave, and in models with uncertainty we must in addition impose continuity

conditions on the belief formation as described in the previous model.

Finite time horizon objectives may be interpreted as a simple version of “sparse maximiza-

tion” in the sense of Gabaix (2014, 2017). It can be combined with the random utility model

above by taking the time-horizon of future selves as an idiosyncratic characteristic of the house-

hold, so that the maximization problem becomes
∑ε

t=1 β
tu(ct), where ε ∈ {1, 2, . . . , T̂} and the

probability distribution over ε reflects the household’s (subjective) beliefs about future selves’

time-horizon (as reflected by the beliefs P (·)). Here, the sparsity of the planning horizon at fu-

ture dates is uncertain from the point of view of today, and the household is uncertain about

how inattentive/sparse future selves will be. Other, richer types of sparsity constraints fol-

lowing Gabaix (2014, 2017) can also be incorporated, for example, by reducing the set of choice

variables. A particularly fruitful approach is to replace the max operator in (12), with the “sparse

max” operator of Gabaix. As explained in Gabaix (2017), the “sparse max” formulation is quite

tractable and implies a “sparse” Bellman operator which is a monotone contraction (see Gabaix

(2017), Lemma 3.6). Using this, general savings correspondences for sparse maximization are

easily shown to satisfy the conclusions of Lemma 1.

Ambiguity

If a household has incomplete information about the objective probabilities governing the ran-

dom disturbances in z, then even under rational expectations (P (·) = P (·;w,R, T, z, θM ) proba-

bilistically correct given the model θM and current observations) it may not have unique subjec-

tive beliefs unless it satisfies the axioms of Savage (1954) (note that this has nothing to do with

whether the subjective beliefs are right or wrong as discussed in the previous example). Since

we have allowed the beliefs P (·) to be non-additive, in which case the expectations in (9)-(10)

refer to the Choquet integral, most models of ambiguity are readily covered by our specification.

In particular, non-additive P (·) may reflect “multiple priors”since Choquet expected utility with
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convex capacities equals the minimum expected utility over the probabilities in the capacity’s

core (Gilboa (1987), Schmeidler (1989), Gilboa and Schmeidler (1995)).

Since we are following Epstein and Zin, ambiguity does not lead to any new complications

for Lemma 1 because the Choquet integral has the same continuity properties as the Lebesgue

integral.

Rules-of-Thumb Behavior

Our results critically depend the fact that Lemma 1 implies that the savings correspondence

has increasing extremum selections. One would typically verify the conditions of this lemma

starting from behavioral microfoundation as we have done so far. But our results can also be ap-

plied directly by taking the savings function (or a savings correspondence) as the starting point,

and then impose simple decision rules (rules of thumb) without an explicit micro-foundation.

In this context, the conclusions of Lemma 1 become assumptions on the saving function (and

these assumptions are equivalently weak). As an example, suppose that the household saves a

fraction of current (or perceived current) income, with that fraction depending on some current

variables such as a measure of the environment’s variability. Just like the systematically wrong

beliefs of Section 4.3, such rules-of-thumb may include “highly irrational” behaviors.
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