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Abstract

We consider a game theoretic framework to analyze traffic in a congested network, where a

profit-maximizing monopolist sets prices for different routes. Each link in the network is associated

with a flow-dependent latency function which specifies the time needed to traverse the link given

its congestion. Users have utility functions defined over the amount of data flow transmitted,

the delays they incur in transmission, and the expenditure they make for using the bandwidth.

Given the prices of the links, each user chooses the amount of flow to send and the routes to

maximize the utility he receives according to the notion of Wardrop equilibrium. We define a

monopoly equilibrium (ME) as the equilibrium prices set by the monopolist and the corresponding

Wardrop equilibrium. We use this framework to study the performance of the ME relative to the

Wardrop equilibrium without prices and the social optimum, which would result from the choice of

a network planner with full information and full control over the flow and routing choices of users.

We illustrate that ME can improve the performance over the Wardrop equilibrium without prices

because the monopolist internalizes the effects of increased congestion on different paths due to

lack of coordination among users. We next consider a model for the routing problem, where each

user has a fixed amount of data to transmit, under monopoly pricing. Despite nonconvexities in

the model, we show that there exists a Wardrop equilibrium under profit-maximizing prices and

that the ME always achieves the social optimum.
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1. INTRODUCTION

A fundamental problem in communication and data networks is the management of congestion,

both to ensure timely transmission of information and to prevent loss of data in transmission.

The standard approach is to use optimization methods to achieve the best potential network

performance by adjusting the input flow rates of users and routing the resulting traffic. However,

in many scenarios, it is impossible or impractical to regulate the traffic in such a centralized manner.

Moreover, this approach requires considerable knowledge about the needs (preferences) of all the

users in the network, an increasingly unrealistic assumption in the major networks of today such

as the Internet.

The recognition of this problem has motivated a recent theoretical literature to consider the

selfish flow choice and routing behavior of users in the absence of central planning (see, among

others, [ORS93], [Kel97], [KMT98], [LoL99], [ABS02], [BaS02], [RoT02], [JoT03]). In these models,

individuals choose their input flow rates and the routes to optimize their own objective, and are

assumed to form conjectures about the behavior of other users consistent with the game theoretic

notion of Nash Equilibrium, or the notion of Wardrop Equilibrium first introduced in the analysis

of congestion in transportation networks (see [War52]). Not surprisingly, the resulting allocation

differs markedly from the full-information social optimum, which would be chosen by a network

manager with full information. For example, a recent paper by Roughgarden and Tardos [RoT03]

studies a model where selfish agents decide the routing of a given traffic rate and finds that generally

the performance of such “selfish” routing can be much worse than the full-information optimum,

but they also provide a bound on the performance gap in a specific case (when the latency functions

are linear).

With a few notable exceptions (e.g., [BaS02], [MRW01], [HeW03]), however, this literature

considers only situations in which users face no monetary costs of sending information. In con-

trast, many real-world data networks are for-profit entities that charge prices for transmission of

information. In this paper, we construct a model to analyze traffic in a congested network where

there are prices associated with different routes and a profit-maximizing monopolist setting prices.

Our objective is to investigate the consequences of profit-maximizing pricing on the performance

of a network with selfish flow control and routing.

Our model consists of a parallel-link network topology, a large number of heterogeneous users,

and a profit-maximizing monopolist. Each link in the network is associated with a flow-dependent

latency function specifying the time needed to traverse this link given the total flow through
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this link. Users have potentially different utility functions defined over the amount of data flow

transmitted, the delays they incur in transmission, and the expenditure they make for using the

bandwidth. The monopolist sets prices per unit bandwidth for each link, and each user pays a price

proportional to the amount of bandwidth he uses over the links. Given prices of the links, each

user chooses the amount of flow to send and the routes. Formally, this corresponds to a two-stage

game, where the monopolist is the Stackelberg leader setting prices anticipating the subsequent

behavior of users. Each price vector defines a different subgame, and users play this (sub)game

taking prices as given. It is important to note that, even though users are price-takers, they have

to anticipate the amount of congestion on all routes, which they do according to the notion of

Nash Equilibrium (NE) or Wardrop Equilibrium (WE). In the NE, users take the effect of their

own flow on congestion into account, while in the WE, they ignore their own effect. Therefore, in

terms of the general equilibrium analysis in the economics literature, the WE also corresponds to

a generalized competitive equilibrium where agents are “latency takers” (i.e., they take latency on

each route as given).1 We define a Monopoly Equilibrium (ME) as the equilibrium prices set by

the monopolist and the corresponding WE. An important result of our paper is that despite the

potential non-convexities in the corresponding optimization problem, it is possible to provide an

explicit characterization of equilibrium prices.

Characterization of equilibrium prices enables us to study the performance of the ME relative

to the full-information social optimum and the WE without prices (i.e., at zero prices). We show

that the WE without prices always generates too much flow for each user relative to the social

optimum. This is because each user creates an externality on other users by making the routes

that he or she uses more congested.2 Monopoly pricing may improve the performance of the

system because the monopolist internalizes this externality (or put differently, monopoly prices

induce users to internalize this externality). In particular, a key insight of our analysis is that

1 See, for example, Debreu [Deb59], or Arrow and Hahn [ArH71] on general competitive anal-

ysis. The major difference between the analysis here and the standard models of competitive

analysis is the presence of congestion externalities. See the next footnote for a definition of an

externality.
2 An externality arises when an individual’s actions affects the utility of others through non-

market means. For example, in our framework when latency functions are not constant, by using

a particular link, an individual creates a negative externality on all other users transmitting data

through that link. The negative externality implies that individuals tend to transmit too much

data and create too much congestion.
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the monopolist realizes that a higher price for a particular route may not reduce the attraction of

this route to users by much, because, with any reduction in traffic, there will be a corresponding

decrease in congestion. We show that for the routing problem (i.e., where each user has a given

traffic rate), the ME achieves the full-information social optimum despite the selfish behavior of

both users and the monopolist for all strictly increasing latency functions. This results illustrates

a significant difference in performance of selfish routing compared to the case where there is no

service provider (see [RoT02]).

Our paper is most closely related to [BaS02] and [MRW01]. [BaS02] studies the asymptotic

user behavior of a model with a single service provider, but it considers only specific utility and

latency functions and does not investigate the efficiency properties of the ME. [MRW01] also con-

siders the profit maximization objective and studies pricing and routing in a model with constant

elasticity demand. Our paper is different from this work since it derives demand from user objec-

tives and focuses on the implications of profit maximization for network performance. Our paper

is also related to research on various strategies to cope with the inefficiency created by the selfish

behavior of the agents (e.g., taxing or artificial Stackelberg games, see [KLO97], [CDR03]). But,

except for special scenarios, these can be viewed as outside interventions in the system (e.g., by

a government regulator), whereas the presence of a service provider in the system automatically

creates a natural market mechanism and in some important cases, the right incentives to price the

effects of congestion. To the best of our knowledge, this is a new insight in the literature.

The paper is organized as follows. In Section 2, we introduce our model in detail. For a given

price vector, we define an equilibrium among the users of the network and explore the properties

of this equilibrium. In Section 3, we define and characterize the Monopoly Equilibrium (ME). In

Section 4, we compare the ME to the social optimum. In Section 5, we present a model for the

routing problem under monopoly pricing and analyze the performance of the monopolized system.

We present our conclusions and summarize future directions in Section 6.

Regarding notation, all vectors are viewed as column vectors, and a prime denotes transpo-

sition, so x′y denotes the inner product of the vectors x and y.

2. MODEL

We consider a network with I parallel links accessed by J users. Let I = {1, . . . , I} denote the set

of links and J = {1, . . . , J} denote the set of users. Let xi
j denote the flow of user j on link i and

xj = [x1
j , . . . , x

I
j ]

′ denote the vector of flows of user j. We assume that user j receives a utility of
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uj(Γj), where

Γj =
I

∑

i=1

xi
j

denotes the total flow rate of user j on all links. Each link in the network has a flow-dependent

latency function li(γi), where

γi =
J

∑

j=1

xi
j (2.1)

denotes the total flow (link load) on link i. The latency function represents the delays in trans-

mission as a function of the link load. We denote the price per unit bandwidth of link i by pi, and

we will later allow a monopolist service provider to control prices.

An important aspect of our model is our assumption that each user is “small” in the sense

that when he switches his flows from one path to another, there is no considerable change in the

link latencies. This is known as the “Wardrop’s Principle”, due to a paper by Wardrop [War52].

Wardrop’s Principle is used extensively in characterizing user behavior in transportation networks

(see [BMW56], [DaN83]) and communication networks with inelastic traffic; i.e., users have fixed

rates to transmit and only their routing choices are subject to optimization (see [RoT02], [ScS03],

[CSS03]). Here, we use this idea for the problem of combined rate control and routing. [HaM85]

show that the Wardrop Equilibrium can be obtained as the limit of a sequence of Nash Equilibria

of games as the number of users goes to infinity, a result generalized to this setup in [AcO04].

Hence, with a large number of users, the focus on WE in this context is natural.

We denote the vector of total flows on the links [cf. Eq. (2.1)] by γ = [γ1, . . . , γI ], and the

vector of prices of the links by p = [p1, . . . , pI ]. Given γ and p, each user chooses xj ≥ 0 to

maximize his payoff function vj(xj ; γ, p), given by

vj(xj ; γ, p) = uj

(

I
∑

i=1

xi
j

)

−

I
∑

i=1

li(γi)xi
j −

I
∑

i=1

pixi
j . (2.2)

The fact that user utility is additively-separable between total flow, Γj , and delay on link i, li(γi),

is a useful simplification in line with the rest of the literature. The important feature is that the

utility of each user (or alternately, the total flow allocated to each user) depends on the flows of

all the users. The notation where the utility function is conditioned on the price vector, p, and the

link load vector, γ also emphasizes that, consistent with the Wardrop’s Principle, each user acts

not only as a “price taker”, but also as a “link load taker”.

An equilibrium of this game is defined as follows.
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Definition 2.1: Let x = [x′
1, . . . , x

′
J ] denote the vector of flows of all the users in the network.

For a given price vector p ≥ 0, a flow vector x is a Wardrop Equilibrium (WE) of the game where

the payoff functions of the users are given by Eq. (2.2) if

xj ∈ arg max
0≤yi

j
≤Ci, ∀ i

vj(yj ; γ, p), ∀ j ∈ J ,

where Ci denotes the capacity of link i, and

γi =
J

∑

j=1

xi
j , ∀ i ∈ I.

Note that the WE is a function of the price vector p. Whenever there is a possibility of

confusion, we write it as x(p) to make the dependence on price explicit. We also use the notation

Γj to denote the flow rate of user j, and γi to denote the load of link i at this equilibrium. We will

adopt the following assumption on the utility and latency functions throughout the paper except

Section 5.

Assumption 2.1: Assume that for each j, the utility function uj : [0,∞) 7→ [0,∞) satisfies the

following conditions:

(a) uj is strictly concave, nondecreasing, and continuously differentiable.

(b) 0 < u′
j(0) < ∞.

Also assume that for each i, the link latency function li : [0, Ci) 7→ [0,∞) satisfies the following

conditions:

(a’) li is continuous and strictly increasing.

(b’) li(0) = 0.

(c’) li(x) → ∞ as x → Ci.

Assumption 2.1 is natural in this context. Concavity of the utility function implies that we

are considering elastic traffic (i.e., traditional data applications like file transfer and e-mail, which

are tolerant of delays, see [She95]), for which transmitting more data has diminishing returns for

users. In Section 5, we will also consider non-concave utility functions. Assumption 2.1(b’) imposes

that the cost of transmitting information without any congestion is equal to 0 on all links.1 Finally,

1 We will see that this assumption is essential to guarantee that all link loads are positive at the

ME. The main equilibrium price characterization (cf. Proposition 3.7) and the results of Sections

4 and 5 remain valid, even when this assumption is relaxed.
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Assumption 2.1(c’) captures the capacity constraints on the links.1 In view of this assumption and

Assumption 2.1(b), it can be seen that at any WE, x(p), we have
∑

j∈J xi
j(p) < Ci. Therefore,

the capacity constraint in the definition of the WE can be neglected.

In the next proposition, we show that under Assumption 2.1, a WE always exists. Although

the existence of an equilibrium (WE) is a useful starting point, in many general equilibrium en-

vironments there can be multiple equilibria, making comparisons between equilibria and system

optimum difficult. Therefore the next proposition establishes the essential uniqueness of the equi-

librium. By essential uniqueness, we mean that, even though the x’s may not be unique, the flow

rate of each user and the load of each link are uniquely defined. The proof uses a classical technique

that was used for showing related uniqueness results for the Wardrop equilibrium (see [BMW56],

[Kel91]), and is therefore omitted.

Proposition 2.1: (Existence-Essential Uniqueness) Let Assumption 2.1 hold. For a given

p ≥ 0, consider the J-player game where the payoff functions of the users are given by Eq. (2.2).

Then, there exists a WE, and the flow rates and the link loads at any WE are unique.

Sensitivity to Prices

The essential uniqueness of the equilibrium enables us to examine the continuity and monotonicity

properties of the link loads and flow rates of users as functions of the link prices. These results

will be key in showing the properties of the ME in the next section. The proofs of these results

are omitted for brevity and can be found in [AcO04].

Proposition 2.2: (Continuity) Let Assumption 2.1 hold. For a given p ≥ 0, let x(p) be a

WE of the J-player game where the payoff functions of the users are given by Eq. (2.2). Denote

the corresponding link loads and flow rates by γi(p), i ∈ I, and Γj(p), j ∈ J . Then, for all i and

j, γi(p) and Γj(p) are continuous at all p ≥ 0.

The next proposition establishes the monotonicity of flow rates in prices, and captures the

intuitive notion that when prices are higher, users choose lower (no higher) flow rates.

Proposition 2.3: (Monotonicity of Flow Rates) Let Assumption 2.1 hold. Let p and p̃ be

two price vectors such that p ≥ p̃. Then, we have

Γj(p) ≤ Γj(p̃), ∀ j ∈ J ,

1 This assumption guarantees that no individual has an infinite demand or infinite willingness

to pay for data transmission. An alternative assumption could be that, for each j, there exists a

nonzero scalar Bj such that u′
j(Bj) = 0.
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where Γj(p) and Γj(p̃) are the flow rates of user j at a WE given prices p and p̃, respectively.

The next proposition shows the monotonicity of link loads in prices. It establishes that link

loads are non-increasing in their own prices and non-decreasing in the prices of other links. Both

of these are intuitive; the first implies that a higher price reduces the traffic on the link, while the

second implies that, from the point of view of users, different links are substitutes.

Proposition 2.4: (Monotonicity of Link Loads) Let Assumption 2.1 hold. For some scalar

ε > 0 and some t = 1, . . . , I, let et denote the vector whose tth component is ε and all the remaining

components are equal to 0. Then, we have

γt(p + et) ≤ γt(p), (2.3)

γs(p + et) ≥ γs(p), ∀ s 6= t. (2.4)

We next establish two lemmas which enable a sharper characterization of the WE. This

characterization will be useful in the analysis of subsequent sections. The following lemma is

immediate using the optimality conditions.

Lemma 2.1: Let Assumption 2.1 hold. For a given p ≥ 0, let γi be the load of link i at a WE.

Then, for all i with γi > 0, we have

pi + li(γi) = min
m∈I

{

pm + lm(γm)
}

.

Let us define the effective cost of link i as pi + li(γi), which is the monetary cost plus delay

cost of using the link. The lemma states that the effective costs of all links with positive flow must

be equal.

Lemma 2.2: Let Assumption 2.1 hold. For a given p ≥ 0, let x be a WE. Define the sets

I = {i | γi > 0} and J = {j | Γj > 0}.

(a) Then for all i ∈ I and j ∈ J , we have

u′
j(Γj) − li(γi) − pi = 0.

(b) There exists a WE x̃ at this price vector that satisfies x̃i
j > 0 for all i ∈ I and j ∈ J .

Proof:

(a) Let i ∈ I and j ∈ J . Since Γj > 0 by assumption, it follows that there exists some link s

such that xs
j > 0, which implies by the first order conditions that

u′
j(Γj) − ls(γs) − ps = 0.
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Since γs > 0 and γi > 0, we have by Lemma 2.1 that

li(γi) + pi = ls(γs) + ps.

Substituting this in the previous equation yields the desired result.

(b) Consider the vector x̃ = [x̃i
j ] generated in the following way. Set x̃i

j = 0 if i /∈ I or j /∈ J .

Let i ∈ I and j ∈ J . If xi
j > 0, then set x̃i

j = xi
j . Assume xi

j = 0. Then, since i ∈ I and

j ∈ J , there exists some k 6= j and s 6= i such that xi
k > 0 and xs

j > 0. We set

x̃i
j = ε, x̃s

j = xs
j − ε,

x̃i
k = xi

k − ε, x̃s
k = xs

k + ε,

where ε > 0 is small enough such that all of the above terms are positive. It can be seen that

the link loads and the input flow rates of users are kept constant by this transformation (to

see this, add vertically to see the change in link loads and horizontally to see the change in

flow rates). Also, since k ∈ J and s ∈ I, it follows from part (a) that

u′
k(Γk) − ls(γs) − ps = 0.

This implies that x̃ satisfies the first order necessary and sufficient optimality conditions, and

therefore is a WE at the price vector p. Q.E.D.

The second part of this lemma exploits the fact that the allocation of the unique WE flow

rates and link loads across individuals is indeterminate, and shows that starting from any WE,

we can always construct an alternative WE, with the same individual flow rates and link loads, in

which all individual flows to all links with minimum effective cost are positive.

3. PRICE DETERMINATION BY PROFIT MAXIMIZATION

In Section 2, we characterized the flow rates and the link loads at a WE for a given price vector. In

this section, we show the existence of profit-maximizing prices for the monopolist service provider

and provide a characterization of these prices. The monopolist sets the prices as the optimal

solution of the problem, 1

maximize
∑

i∈I

piγi(p)

subject to p ≥ 0,

(3.1)

1 This formulation ignores the costs incurred by the monopolist in data transmission. It is

straightforward to add a constant for marginal cost of transmission without affecting the results.
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where γi(p) is the load of link i at a WE given price vector p.

It can be seen that, under Assumption 2.1, problem (3.1) has an optimal solution, denoted by

p∗. We will refer to p∗ as the monopoly equilibrium price. Let x(p∗) be a WE given price vector p∗.

Hence,
(

p∗, x(p∗)
)

is a subgame perfect equilibirium of the two-stage game, where the monopolist

service provider (Stackelberg leader) sets prices and each price defines a subgame among the users.

We will refer to
(

p∗, x(p∗)
)

, or more simply to
(

p∗, x∗
)

, as the monopoly equilibrium (ME) of the

overall game.

Proposition 3.5: Let Assumption 2.1 hold. Let p be a monopoly equilibrium price vector.

Then

pi > 0, ∀ i ∈ I.

Proof: Assume, to arrive at a contradiction, that ps = 0 for some s. We first show that this

implies that γs > 0. Assume the contrary, i.e., γs = 0. This implies by the first order optimality

conditions and Assumption 2.1 (uj is nondecreasing and li(0) = 0), that u′
j(Γj) = 0, for all j. But

this implies that γi = 0 for all i, and therefore, Γj = 0 for all j, which is a contradiction and shows

that we must have γs > 0.

We next consider the price vector p̃ = p + es, where es is a vector whose components are all

equal to 0, except the sth component, which is equal to some ε > 0. By Proposition 2.4, we have

γs(p̃) ≤ γs(p),

γi(p̃) ≥ γi(p), ∀ i 6= s.

We choose ε small enough such that γs(p̃) > 0. [This can be done in view of the continuity of γi

in p, cf. Proposition 2.2]. Hence, we have

∑

i∈I

piγi(p) <
∑

i∈I

p̃iγi(p̃),

contradicting the fact that (p, x) is an ME, and showing that pi > 0 for all i. Q.E.D.

This proposition shows that the monopolist will charge positive prices for all links. This

result is intuitive. A zero price for link i would hurt the monopolist in two ways; first, directly by

not generating any revenues from link i, and second, indirectly, by reducing traffic and profits on

other links, in view of our result in Proposition 2.4.
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Proposition 3.6: Let Assumption 2.1 hold. Let (p, x) be an ME. Then, the corresponding link

loads γi satisfy

γi > 0, ∀ i ∈ I.

Proof: Define I = {i | γi > 0}. Assume, to arrive at a contradiction, that γs = 0 for some s.

Using Lemma 2.1 and Assumption 2.1(b’), this implies that

K = pi + li(γi) ≤ ps + ls(0) = ps, ∀ i ∈ I,

for some K > 0. Since li(γi) > 0 for all i ∈ I, we can choose some ε > 0 such that

pi < ps − ε < pi + li(γi), ∀ i ∈ I. (3.2)

We next consider the price vector p̃ = p − es, where es is a vector whose components are all

equal to 0, except the sth component, which is equal to ε. It follows from Proposition 2.4 that if

γi(p) = 0 for some i 6= s, then γi(p̃) = 0. By Proposition 2.3, we also have

Γj(p̃) ≥ Γj(p), ∀ j, (3.3)

which, after summing over all j, yields

∑

m∈I

γm(p̃) ≥
∑

m∈I

γm(p). (3.4)

There are now two cases to consider:

Case 1: γi(p̃) = γi(p), for all i ∈ I. In this case, we have that γs(p̃) > 0. To see this, note that, if

γs(p̃) = 0, we would have by Lemma 2.1 that

ps − ε ≥ pi + li
(

γi(p̃)
)

, ∀ i ∈ I,

which contradicts Eq. (3.2). But this implies that

∑

m∈I

pmγm(p) <
∑

m∈I

p̃mγm(p̃)

thus contradicting the fact that (p, x) is an ME.

Case 2: If γi(p̃) < γi(p) for some i ∈ I, then it follows from Eq. (3.4) that γs(p̃) > 0. Then the

change in the profit can be written as
∑

m∈I

p̃mγm(p̃) −
∑

m∈I

pmγm(p) = (ps − ε)γs(p̃) +
∑

m6=s

pm
(

γm(p̃) − γm(p)
)

> (ps − ε)γs(p̃) + (ps − ε)
∑

m6=s

(

γm(p̃) − γm(p)
)

= (ps − ε)
∑

j

(

Γj(p̃) − Γj(p)
)

≥ 0,
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where the strict inequality follows from Eq. (3.2) and Proposition 2.4, and the last inequality

follows from Eq. (3.3). But this again contradicts the fact that (p, x) is an ME.

This shows that for all i, we must have γi > 0, and completes the proof. Q.E.D.

This proposition establishes that the monopolist would not choose to have zero link load

on any link. Intuitively, allowing some positive traffic on a link would provide positive profits on

that link. The proof is somewhat more complicated than this observation, however, because it

also creates the indirect effect of reducing the loads on other links, thus reducing the rest of the

monopolist’s profits. The proof amounts to showing that this indirect effect is always dominated

by the direct effect.

Note also that Assumption 2.1(b’), which imposes that li(0) = 0 for all i is important for

this result. If li(0) > 0 for some i, it would be possible for the monopolist to have zero link load

on some link.

We are now ready to provide a characterization of equilibrium prices. Before doing so,

however, it is convenient to establish a lemma which will be useful in deriving this characterization.

Lemma 3.3: Let Assumption 2.1 hold. Let (p, x) be an ME, and J =
{

j ∈ J | Γj > 0
}

.

Assume without loss of generality that 1 ∈ J . Then
(

p, γ, [Γj ]j∈J

)

is an optimal solution of the

following problem,

maximize
∑

i∈I

piγi

subject to u′
1(Γ1) − li(γi) − pi = 0, ∀ i ∈ I,

u′
j(Γj) − l1(γ1) − p1 = 0, ∀ j ∈ J − {1},

∑

i∈I

γi =
∑

j∈J

Γj ,

γi ≥ 0, Γj ≥ 0, ∀ i ∈ I, j ∈ J .

(3.5)

Proof: Assume to arrive at a contradiction that there exists some vector
(

p, γ, [Γj ]j∈J

)

feasible

for problem (3.5) such that
∑

i∈I

piγi >
∑

i∈I

piγi. (3.6)

We first show that this implies

γi ≤ γi(p), ∀ i ∈ I, (3.7)

where γi(p) is the load of link i at a WE given p. Suppose, to arrive at a contradiction, that the

preceding relation does not hold for some s, i.e., γs > γs(p). Since
(

p, γ, [Γj ]j∈J

)

is a feasible
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solution for problem (3.5), it can be seen that we have

u′
k(Γk) − ls(γs) − ps = 0, ∀ k ∈ J .

We also have using the first order optimality conditions for a WE that

u′
k

(

Γk(p)
)

− ls
(

γs(p)
)

− ps ≤ 0, ∀ k ∈ J ,

where Γk(p) is the flow rate of user k at a WE given p. Since γs > γs(p), we obtain

Γk(p) > Γk, ∀ k ∈ J . (3.8)

Moreover, we have from the feasibility of
(

p, γ, [Γj ]j∈J

)

that

li(γi) + pi = ls(γs) + ps, ∀ i ∈ I.

It also follows from Lemma 2.1 that for all i with γi(p) > 0, we have

li
(

γi(p)
)

+ pi ≤ ls
(

γs(p)
)

+ ps.

Since γs > γs(p), the preceding relations imply that

γi(p) < γi, ∀ i with γi(p) > 0,

and therefore that

γi(p) ≤ γi, ∀ i ∈ I.

Summing both sides of this relation over all i ∈ I, we obtain

∑

k∈J

Γk =
∑

i∈I

γi ≥
∑

i∈I

γi(p) =
∑

k∈J

Γk(p) ≥
∑

k∈J

Γk(p) >
∑

k∈J

Γk,

which is a contradiction [the last strict inequality uses Eq. (3.8)]. This implies that Eq. (3.7) holds

for all i ∈ I. Combining Eqs. (3.6) and (3.7), we obtain

∑

i∈I

piγi(p) >
∑

i∈I

piγi,

which contradicts the fact that (p, x) is an ME, hence proves the desired result. Q.E.D.

Using this lemma, we can prove the following result.
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Proposition 3.7 (Equilibrium Price Characterization): Let Assumption 2.1 hold. Assume

further that uj is twice continuously differentiable for each j, and li is continuously differentiable

for each i. Let (p, x) be an ME, and J = {j | Γj > 0}. Then, for all i ∈ I, we have

pi = (li)′(γi)γi +

∑

m∈I γm

−
∑

j∈J
1

u′′
j
(Γj)

.

Proof: By Lemma 3.3, it follows that
(

p, γ, [Γj ]j∈J

)

is an optimal solution of problem (3.5). To

simplify the notation, let us denote Γ = [Γj ]j∈J . One can check that, in view of the assumptions

that uj is strictly concave for all j and li is strictly increasing for all i, the constraint gradients of

this problem are linearly independent at (p, γ,Γ), i.e., (p, γ,Γ) is a regular point (for the proof, see

the Appendix). Hence, problem (3.5) admits Lagrange multipliers (see [BNO03], Chapter 5). The

Lagrangian function L(p, γ,Γ) for this problem is obtained by assigning the multipliers λi, i ∈ I,

to the first set of equality constraints in problem (3.5), the multipliers µj , j ∈ J − {1}, to the

second set of equality constraints, and µ1 to the last equality constraint; i.e.,

L(p, x, λ) =
∑

i∈I

piγi +
∑

i∈I

λi
[

u′
1(Γ1) − li(γi) − pi

]

+
∑

j∈J−{1}

µj

[

u′
j(Γj) − l1(γ1) − p1

]

+ µ1

[

∑

i∈I

γi −
∑

j∈J

Γj

]

.

Using the first order necessary optimality conditions at the optimal solution (p, γ,Γ) for problem

(3.5), together with Proposition 3.5 (pi > 0 for all i), Proposition 3.6 (γi > 0 for all i), and the

fact that Γj > 0 for all j ∈ J , we obtain

γ1 = λ1 +
∑

j∈J−{1}

µj , (3.9)

γi = λi, ∀ i 6= 1, (3.10)

and

p1 − λ1(l1)′(γ1) −
(

∑

j∈J−{1}

µj

)

(l1)′(γ1) + µ1 = 0,

pi − λi(li)′(γi) + µ1 = 0, ∀ i 6= 1.

Using Eqs. (3.9) and (3.10), the preceding two relations can be rewritten as

pi − (li)′(γi)γi + µ1 = 0, ∀ i ∈ I. (3.11)
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Taking the partial derivatives of L(p, γ,Γ) with respect to Γj also yields

u′′
1(Γ1)

∑

i∈I

λi − µ1 = 0,

µju′′
j (Γj) − µ1 = 0, ∀ j ∈ J − {1}.

Adding Eqs. (3.9) and (3.10) over all i, and using the preceding, we obtain

∑

m∈I

γm = µ1

∑

j∈J

1

u′′
j (Γj)

.

Substituting the previous relation for µ1 in (3.11) yields the desired result. Q.E.D.

This proposition is the central result of this section. An important implication is that the

profit-maximizing price for the monopolist service provider consists of two markups (above the

marginal cost of the monopolist, which is equal to zero here):1 the first is (li)′(γi)γi. We will

see in the next section that this term essentially internalizes the congestion externality ignored by

the users. The second term is a further markup, similar to the monopoly markup in the standard

economic models. We will see below that this term causes a further reduction in the flow rates,

and typically creates a distortion relative to the social optimum.

4. PERFORMANCE COMPARISON WITH THE SOCIAL OPTIMUM

A network planner with full information and centralized control of the system allocates the resources

as the optimal solution of the following problem:

maximize
∑

j∈J

uj(Γj) −
∑

i∈I

li(γi)γi

subject to Γj =
∑

i∈I

xi
j , ∀ j ∈ J

γi =
∑

j∈J

xi
j , ∀ i ∈ I

xi
j ≥ 0, ∀ i ∈ I, j ∈ J .

(4.1)

We call this problem the social problem and the optimal solution of this problem (which exists

under Assumption 2.1) the social optimum. Note that the social problem is defined in terms of

link load and flow allocations, and the prices do not appear in the problem.

1 The markup is defined as the difference between price and marginal cost.
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Assuming that the objective function of the social problem is concave, an equivalent charac-

terization of the social optimum, denoted by x̃ is given by the first order conditions,

u′
j(Γ̃j) − li(γ̃i) − (li)′(γ̃i)γ̃i

{

= 0 if x̃i
j > 0,

≤ 0 if x̃i
j = 0.

It can be seen from these conditions that if each user is charged (li)′(γ̃i)γ̃i, the allocation resulting

from the corresponding WE will be the same as the allocation of the social optimum. This amount

is called the marginal congestion cost (also referred to as a Pigovian tax after the analysis of Alfred

Pigou, see [Pig20]). In a decentralized implementation, this price may be charged to the users to

internalize the congestion externalities that they ignore.

From the ME price characterization given in Proposition 3.7, we see that the ME price is the

sum of the marginal congestion cost and a further markup. Hence, even though the monopolist

is a selfish agent maximizing profits, its pricing internalizes the congestion externalities. This is

because the monopolist chooses to charge higher prices when the demand is more inelastic (i.e.,

when demand changes little in response to a change in price) and a higher marginal congestion cost

corresponds to more inelastic demand (with higher congestion costs, demand is less responsive to

price because of the countervailing effect of increased congestion).

Comparison

Proposition 4.8: Let Assumption 2.1 hold. Assume further that uj is twice continuously

differentiable for each j, li is continuously differentiable for each i, and the function l̃i, defined by

l̃i(x) = li(x)x for all x ≥ 0, is convex for each i. Let x denote the WE at 0 prices, x̃ denote the

social optimum, and x denote the ME (and Γj , Γ̃j , and Γj the corresponding flow rates of user j,

respectively). For all j ∈ J , we have,

Γj ≤ Γ̃j ≤ Γj .

Proof: See the Appendix.

This result shows that when the prices are equal to 0, the users generate too much flow relative

to the social optimum since they ignore the congestion externalities. Monopoly pricing improves

this behavior because of the presence of the (li)′(γi)γi term in the price expression. At the same

time, monopoly pricing may introduce potential distortion relative to the social optimum, because

the further markup induces users to reduce their flows below their socially optimal levels. This

comparison intuitively suggests that the presence of a monopolist should improve performance in a

network relative to the allocation without prices when congestion externalities are important. The
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next example illustrates this by comparing the performance of monopoly pricing to the performance

of WE at zero prices for different utility and latency functions.

Example 4.1

Consider a network with J identical users and a single link. Assume that the utility function of the

users u(x) and the latency function of the link l(x) are given by

u(x) = x
a
, for some 0 < a ≤ 1,

l(x) =
1

Jb
x

b
, for some b ≥ 0.

By symmetry, it can be seen that the flow rate of each user is the same at any WE. Let xW denote

the flow rate of a single user at the WE with prices set equal to 0. Similarly let xM denote the flow

rate of a single user at the ME. Using the optimality conditions, we compute xW and xM as

xW = a
1

1+b−a ,

xM =

(

a2

1 + b

) 1
1+b−a

.

Let UW and UM denote the total utility that the system gets at the WE and ME, respectively, i.e.,

UW = Ju(xW ) − l(JxW )JxW

= Ja
a

1+b−a (1 − a),

UM = Ju(xM ) − l(JxM )JxM

= J

(

a2

1 + b

) a
1+b−a

(

1 −
a2

1 + b

)

.

We denote the ratio of UM to UW by E,

E =
UM

UW

=
(

a

1 + b

) a
1+b−a 1 −

a2

1+b

1 − a
.

Figure 4.1 illustrates the values of E as a function of a for different values of b. As can be seen

from the figure, at fixed values of a, increasing b improves the performance of the ME, i.e., the more

convex the latency function of the link, the better performance we have under monopoly pricing.

Moreover, at a fixed value of b, ME performs better at higher values of a as expected, i.e., the less

concave the utility function is, the better performance we have in the ME.

This example illustrates an important point in the performance of ME. As our discussion of

pricing illustrates, monopoly pricing internalizes the congestion externality, which is the source of

inefficiency without prices. The more pronounced this externality, the more useful is monopoly
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Figure 4.1: Performance of the ME relative to the performance of the WE with zero prices.

pricing. The example illustrates this by showing that the performance of monopoly pricing improves

relative to WE with 0 prices as b increases, thus the latency function becomes more convex and

the externalities become more important.

We illustrated in this section that monopoly pricing introduces a natural market mechanism

to price congestion externalities. However, as can be seen from Proposition 3.7, monopoly pricing

also introduces a distortion related to the markup term. It can be inferred from this price charac-

terization that as the utility functions converge to linear functions, the markup term vanishes and

the ME achieves the full information social optimum. In the next section, we analyze other utility

functions for which the ME results in the socially optimal allocation.

5. ROUTING WITH PARTICIPATION CONTROL

In this section, we assume that the flow rate of each user is fixed, i.e., user j has tj units of traffic.

We are interested in analyzing the routing choices of individual users to send their traffic. In a

system with the service provider setting the prices, the users should have the option of not sending

any traffic if the prices are set too high. Otherwise, the service provider would charge infinite prices

on the links. We refer to this problem as the routing problem with participation control. It can be
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modelled by using the following utility function uj for user j,

uj(x) =

{

0 if 0 ≤ x < tj ,

tj if x ≥ tj ,
(5.1)

together with binary participation decision variables zj ; i.e., zj = 1 if user j chooses to send his tj

units of traffic and zj = 0 if user j chooses not to send any traffic.

An equilibrium of this problem can be defined as follows.

Definition 5.2: For a given price vector p ≥ 0, a vector (x∗, z∗) = (x∗
j , z

∗
j )j∈J , where x∗

j =
[

(x1
j )

∗, . . . , (xI
j )

∗
]

is a nonnegative vector and z∗j ∈ {0, 1}, is a WE of the routing problem with

participation control, if for all j ∈ J ,

(x∗
j , z

∗
j ) ∈ arg max

xj≥0, zj∈{0,1}

{

uj(Γjzj) −
∑

i∈I

(

li(γi) + pi
)

xi
j

}

, (5.2)

where uj is given by Eq. (5.1), and

γi =
∑

j∈J

x∗i
j , ∀ i ∈ I.

Using Eq. (5.1), we can rewrite condition (5.2) equivalently as

(x∗
j , z

∗
j ) ∈ arg max

xj≥0, zj∈{0,1}
∑

i∈I
xi

j
=tj , if zj=1

{

zjtj −
∑

i∈I

(

li(γi) + pi
)

xi
j

}

. (5.3)

Note that, due to non-concavity of the utility function [see Eq. (5.1)], best response correspondences

are not convex-valued, therefore one cannot use fixed point arguments to show the existence of a

WE for a given p. In fact, it can be seen through simple examples that there does not exist a WE

for every price vector p.

We next provide a different analysis of this case, establishing that there always exists a

profit-maximizing price for the monopolist, and that at this price vector there exists a WE. More

significantly, we show that in this case the ME always achieves the social optimum.

Using the linear structure of problem (5.3), we obtain the following characterization of a WE

(proof omitted for brevity).

Lemma 5.4: For a given price vector p ≥ 0, a vector (xj , zj)j∈J is a WE if and only if it

satisfies the following conditions:

(1)
∑

j∈J xi
j = γi for all i ∈ I.
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(2) If zj = 1,
∑

i∈I xi
j = tj .

(3) If zj = 0, xi
j = 0 for all i ∈ I.

Define the set I =
{

i | li(γi) + pi ≤ min
{

1,minm∈I{lm(γm) + pm
}

}

.

(4) If i /∈ I, then γi = 0.

(5) If minm∈I{lm(γm) + pm} < 1, then zj = 1 for all j ∈ J .

We next show the following lemma related to the uniqueness of link loads at a WE of the

routing problem, which is of independent interest.

Lemma 5.5 Assume that li is a continuous strictly increasing function. For a given p ≥ 0,

assume that a WE exists. Then, the resulting link loads, γ = [γ1, . . . , γI ], at any WE are unique.

Proof: Let γ and γ̃ be two distinct link load vectors at the WE (x, z) and (x̃, z̃), respectively.

By Lemma 5.4 and condition (4), we have

pi + li(γi)

{

= K if i ∈ I,

> K if i /∈ I.
(5.4)

for some constant K, where I is the set of links as defined in Lemma 5.4. We also have

pi + li(γ̃i)

{

= K̃ if i ∈ Ĩ,

> K̃ if i /∈ Ĩ.
(5.5)

for some constant K̃, where Ĩ is the set of links as defined in Lemma 5.4, with γi replaced by γ̃i.

Assume without loss of generality that there exists some s such that γ̃s > γs. This implies

that

K̃ = ps + ls(γ̃s) > ps + ls(γs) ≥ K,

from which we get K̃ > K. This implies that γ̃i ≥ γi for all i ∈ I. To see this, assume that γ̃i < γi

for some i. We see from (5.4) that

pi = K − li(γi),

and from (5.5) and K̃ > K that

pi ≥ K̃ − li(γ̃i) > K − li(γi),

yielding a contradiction. Hence, we have

∑

i∈I

γ̃i >
∑

i∈I

γi. (5.6)
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Since K̃ > K, we also have z̃j ≤ zj for all j ∈ J , from which we get

∑

i∈I

γ̃i =
∑

j∈J

z̃jtj ≤
∑

j∈J

zjtj =
∑

i∈I

γi,

contradicting Eq. (5.6), and showing that the link loads at a WE for a given p are unique. Q.E.D.

Consider next the monopoly problem for the routing problem with participation constraint,

maximize
∑

i∈I

piγi

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

(x, z) ∈ G(p), p ≥ 0,

(5.7)

where G(p) denotes the set of (x, z) that satisfies conditions (1)-(5) stated in Lemma 5.4. We

call the optimal solution of problem (5.7)
(

p, (x, z)
)

the monopoly equilibrium (ME) and p as the

monopoly equilibrium price.

Lemma 5.6: Let
(

p, (x, z)
)

be an ME. Let γi =
∑

j∈J xi
j . Then for all i with γi > 0, we have

pi = 1 − li(γi).

Proof: Since γi > 0, it follows by condition (4) in Lemma 5.4 that i ∈ I, which implies that

pi + li(γi) ≤ 1.

We next show that pi + li(γi) = 1. Assume, to arrive at a contradiction, that pi + li(γi) < 1. This

implies that

pk + lk(γk) < min
{

1, min
m/∈I

pm
}

, ∀ k ∈ I.

Hence, there exists some ε > 0 such that

pk + ε + lk(γk) < min
{

1, min
m/∈I

pm
}

, ∀ k ∈ I.

Hence, (x, z) satisfies conditions (1)-(5) at the price vector p̃ = p+ ei, where ei is an I-dimensional

vector, whose ith component is ε if i ∈ I, and 0 otherwise. But this shows that (x, z) ∈ G(p̃),

i.e.,
(

p̃, (x, z)
)

is feasible for problem (5.7), and has strictly higher objective function value. This

contradicts the fact the
(

p, (x, z)
)

is an ME, showing that pi + li(γi) = 1. Q.E.D.
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Using the preceding proposition, we can rewrite problem (5.7) as

maximize xi
j
≥0, zj∈{0,1}

∑

i∈I

(

1 − li(γi)
)

γi

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1,

xi
j = 0, ∀ i ∈ I, if zj = 0,

which can be equivalently written as

maximize xi
j
≥0, zj∈{0,1}

∑

j∈J

{

zjtj −
∑

i∈I

li(γi)xi
j

}

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1.

(5.8)

This problem has an optimal solution; i.e., at each z ∈ {0, 1}I , there exists an optimal solution

x (since the objective function is continuous and the constraint set is compact). This shows the

existence of an ME of the routing problem with participation control, ensuring that at the profit

maximizing price vector, there exists a WE.

Moreover, note that the social problem for the routing problem with participation control is

the following optimization problem that maximizes the aggregate social surplus,

maximize xi
j
≥0, zj∈{0,1}

∑

j∈J

{

zjtj −
∑

i∈I

li(γi)xi
j

}

subject to γi =
∑

j∈J

xi
j , ∀ i ∈ I,

∑

i∈I

xi
j = tj , if zj = 1,

[cf. Eq. (5.3)]. This problem is identical to problem (5.8). Hence, we establish the following result.

Proposition 5.9: A vector (x, z) is a social optimum if and only if there exists a price vector

p such that
(

p, (x, z)
)

is an ME.

Although the ME with pure routing achieves the same load as the social optimum for each link,

it provides different levels of utilities to users than the choice of a fully-informed network planner

who would implement the same allocation without charging users. In fact, in the ME, users pay

a considerable amount to the monopolist (all the consumer surplus is taken by the monopolist).
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In ongoing work, we study a similar model with multiple providers controlling various links, and

show that, under certain circumstances, the corresponding Oligopoly Equilibrium also achieves the

social optimum, but in addition, transfers the consumer surplus to the users.

6. CONCLUSIONS

A central objective of data network analysis is to characterize and implement relatively effi-

cient flows of data in large networks. Although much of the literature approaches this problem as a

network optimization problem, the practice is often different. First, most networks lack centralized

regulation: individual users often have control over their flow and routing decisions, while net-

work planners typically lack detailed knowledge about the needs and preferences of users. Second,

most networks are for-profit entities, whose objectives are not efficiency or user welfare, but profit

maximization. While a recent literature has investigated implications of the unregulated nature of

modern data networks, particularly emphasizing the potential inefficiencies that result from this

feature, there has been no systematic attempt to incorporate the second feature into models of

data networks.

This paper provides a systematic analysis of decentralized data networks with many users that

control their own flow and routing decisions, and service provider(s) charging prices for bandwidth

and data transmission to maximize their own profits. Such an analysis first necessitates a unified

approach to flow control and routing in the presence of prices, and a characterization of the

response of link loads to changes in prices. After developing such a unified approach, this paper

provides a characterization of prices, flow rates and link loads in the presence of a profit-maximizing

monopolist service provider.

The most important feature of the monopoly equilibrium is that, despite its profit-maximizing

objective, the monopolist may induce an allocation that is socially optimal. In particular, in the

absence of the monopoly pricing, flow and routing decisions are inefficient, because users ignore

the congestion externality that they create on others by their data transmission. The monopolist

recognizes that, in the presence of the congestion externality, higher prices do not diminish the

attractiveness of its product by as much, because the reduction in data transmission reduces

congestion. Consequently, monopoly price for each link consists of two terms; the first exactly

internalizing the congestion externality, and the second a further markup to increase profits. We

show that in some important special cases, such as a model with only routing decisions, the

monopoly equilibrium achieves the social optimum that the network planner with full information

and complete control over flow and routing decisions would have implemented.
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7. APPENDIX

Proof of Proposition 3.7: We prove that the constraint gradients of problem (3.5) are linearly

independent at (p, γ,Γ), where (p, x) is the ME, γi =
∑

j∈J xi
j , for each i ∈ I, and Γj =

∑

i∈I xi
j ,

for each j ∈ J . Let J = |J | and assume without loss of generality that J = {1, . . . , J}. Denote

the set of I + J equality constraints of problem (3.5) by

f(p, γ,Γ) = 0.

We show that ∇(γ,Γ)f(p, γ,Γ) is nonsingular under Assumption 2.1. If it were not, there would

be some nonzero I +J-dimensional vector (y′, t′)′ that belongs to the nullspace of ∇(γ,Γ)f(p, γ,Γ),

i.e.,

∇γ,Γf(p, γ,Γ)(y′, t′)′ = 0.

Multiplying the preceding out, we obtain the following set of equations,

tJ = (l1)′(γ1)





J−1
∑

k=1

tk + y1



 ,

tJ = (lm)′(γm)ym, ∀ m = 2, . . . , I,

tJ = u′′
1(Γ1)

I
∑

m=1

ym,

tJ = u′′
k(Γk)tk−1, ∀ k = 2 . . . , J.

Combining the previous relations, we obtain

tJ





∑

j∈J

1

u′′
j (Γj)

−
I

∑

i=1

1

(li)′(γi)



 = 0.

Since u′′
j (Γj) < 0 for all j and (li)′(γi) > 0 for all i, the term in the paranthesis is negative,

implying that tJ = 0. From this, we get that (y′, t′)′ = 0, hence proving that ∇(γ,Γ)f(p, γ,Γ) is

nonsingular.

Proof of Proposition 4.8: First we show that Γ̃j ≤ Γj for all j ∈ J . Partition the set of users

into two sets R and S as

R =
{

r ∈ J | Γ̃r > Γr

}

,

S =
{

s ∈ J | Γ̃s ≤ Γs

}

.
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We show that the set R is empty. Assume to arrive at a contradiction that the set R is nonempty.

Define a subset of links as

Iact =
{

i ∈ I | x̃i
j > 0, for some j ∈ R

}

.

We show that, for all i ∈ Iact, we have

γ̃i < γi, (7.1)

and

xi
s = 0, ∀ s ∈ S. (7.2)

Let i ∈ Iact. This implies that x̃i
j > 0 for some j ∈ R. The first order optimality conditions for

the social optimum and for the WE at 0 prices imply that

u′
j(Γ̃j) − li(γ̃i) − (li)′(γ̃i)γ̃i ≤ 0, if x̃i

j ≥ 0,

= 0, if x̃i
j > 0,

(7.3)

and
u′

j(Γj) − li(γi) ≤ 0, if xi
j ≥ 0,

= 0, if xi
j > 0.

(7.4)

Using the preceding, we obtain

u′
j(Γ̃j) − li(γ̃i) − (li)′(γ̃i)γ̃i ≥ u′

j(Γj) − li(γi).

Since j ∈ R and uj is strictly concave, we have u′
j(Γ̃j) < u′

j(Γj), which implies that

li(γ̃i) + (li)′(γ̃i)γ̃i < li(γi). (7.5)

Since li is strictly increasing, it follows that

γ̃i < γi,

hence proving claim (7.1). To show (7.2), suppose to arrive at a contradiction, that xi
s > 0 for

some s ∈ S. This implies by the first order optimality conditions [cf. Eqs. (7.3) and (7.4)] that

u′
s(Γs) − li(γi) ≥ u′

s(Γ̃s) − li(γ̃i) − (li)′(γ̃i)γ̃i.

Since s ∈ S and uj is concave, we have u′
s(Γs) ≤ u′

s(Γ̃s). Combining this with the preceding

equation and Eq. (7.5), we obtain

li(γi) ≤ li(γ̃i) + (li)′(γ̃i)γ̃i

< li(γi)
,
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thus yielding a contradiction and showing (7.2).

We next use Eqs. (7.1) and (7.2) to obtain

∑

i∈Iact

γi =
∑

i∈Iact

J
∑

j=1

xi
j =

∑

i∈Iact

∑

j∈R

xi
j ≤

∑

j∈R

I
∑

i=1

xi
j =

∑

j∈R

Γj .

We also have
∑

i∈Iact

γ̃i ≥
∑

i∈Iact

∑

j∈R

x̃i
j =

∑

j∈R

I
∑

i=1

x̃i
j =

∑

j∈R

Γ̃j .

The preceding sets of equations together with the definition of set R imply that

∑

i∈Iact

γ̃i ≥
∑

i∈Iact

γi.

Summing Eq. (7.1) over all i ∈ Iact yields a contradiction, thus proving that the set R is empty.

We next show that Γj ≤ Γ̃j for all j ∈ J . Partition the set of users into two sets R and S as

R =
{

r ∈ J | Γr > Γ̃r

}

,

S =
{

s ∈ J | Γs ≤ Γ̃s

}

.

We show that the set R is empty. Assume to arrive at a contradiction that the set R is nonempty.

Define a subset of links as

Iact =
{

i | xi
j > 0, for some j ∈ R

}

.

We show that, for all i ∈ Iact, we have

γi < γ̃i, (7.6)

and

x̃i
s = 0, ∀ s ∈ S. (7.7)

Let i ∈ Iact. This implies that xi
j > 0 for some j ∈ R. The first order optimality conditions for

the ME imply that

u′
j(Γj) − li(γi) − (li)′(γi)γi +

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

≤ 0, if xi
j ≥ 0,

= 0, if xi
j > 0,

(7.8)

[cf. Proposition 3.7]. Together with Eq. (7.3), we obtain

u′
j(Γj) − l

i
(γi) +

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

≥ u′
j(Γ̃j) − l

i
(γ̃i),
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where
l
i
(x) = li(x) + (li)′(x)x,

=
(

li(x)x
)′

.

Since j ∈ R and uj is strictly concave, we have u′
j(Γj) < u′

j(Γ̃j), which implies that

l
i
(γi) −

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

< l
i
(γ̃i). (7.9)

Since l
i

is nondecreasing [in view of the convexity of li(x)x] and uk is strictly concave for all k,

this implies that

γi < γ̃i,

hence proving claim (7.6). To show (7.7), assume to arrive at a contradiction, that x̃i
s > 0 for some

s ∈ S. This implies by the first order optimality conditions [cf. Eqs. (7.3) and (7.8)] that

u′
s(Γ̃s) − l

i
(γ̃i) ≥ u′

s(Γs) − l
i
(γi) +

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

.

Since s ∈ S and uj is concave, we have

u′
s(Γs) ≥ u′

s(Γ̃s),

which together with Eq. (7.9) implies that

l
i
(γ̃i) ≤ l

i
(γi) −

∑I
m=1 γm

∑

{j∈J}
1

u′′
j
(Γj)

< l
i
(γ̃i)

,

thus yielding a contradiction and showing (7.7).

The rest is a similar argument as before and proves that the set R is empty. Q.E.D.
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