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Abstract

Emerging market economies, which have much of their growth ahead of them, either run or

should run persistent current account deficits in order to smooth consumption intertemporally.

The counterpart of these deficits is their dependence on capital inflows, which can suddenly stop.

We make two contributions in this paper: First, we develop a quantitative global-equilibrium

model of sudden stops. Second, we use this structure to discuss practical mechanisms to insure

emerging markets against sudden stops, ranging from conventional non-contingent reserves ac-

cumulation to more sophisticated contingent instrument strategies. Depending on the source

of sudden stops, their correlation with world events, and the quality of the hedging instrument

available, the gains from these strategies can represent a substantial improvement over existing

practices.
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1 Introduction

Emerging market economies, which have much of their growth ahead of them, either run or should

run persistent current account deficits in order to smooth consumption intertemporally. The funding

of these deficits is a perennial source of fragility since it requires ongoing capital inflows which

can suddenly stop. While in many circumstances the breakdown in capital inflows just amplifies

domestic deficiencies, there is extensive evidence that in many other cases the main culprit is not

the country itself, but the international financial markets’ response to shocks only vaguely related

to the country’s actions.

The real costs of this volatility for countries that experience open crises are extremely large. Less

noticed, but at least as important in terms of their pervasiveness and cumulative impact, are the

large costs paid by prudent economies. These economies do not fall into open crises but are forced

to incur in a variety of costly precautionary measures and build large war-chests of international

reserves, a trend that has only increased in the aftermath of the capital flow crises of the late 1990s.

By now, emerging markets’ reserves often exceed 20 percent of their GDP, which contrasts with

the 4 to 5 percent held by developed open economies such as Australia or Canada. How effective

are reserves in smoothing the impact of sudden stops unrelated to a country’s actions? How much

of them should be accumulated? How fast? Are there potentially less costly financial mechanisms

to deal with capital flow volatility? Who would be the natural counterpart for these mechanisms?

How are these mechanisms limited by financial constraints?

These are among the most pressing questions for policy-makers and researchers in emerging

market economies and the international financial institutions. Unfortunately, while there has been

significant conceptual progress over the last two decades in understanding some of the limitations

of financial contracting with emerging markets, there has been much less progress in providing an

integral framework to analyze these questions quantitatively. In this paper we take one step in this

direction.

Our framework considers two representative agents, one from emerging markets (EM) and one

from the developed world (W). EM’s problem has two main ingredients: First, its future income is

significantly higher than its current income so it would like to borrow and run persistent current

account deficits. Second, it has difficulty in pledging future income to finance these deficits. The

natural lender is W, but its willingness to lend varies over time in response to shocks to its pref-
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erences, monitoring technology, and output. These shocks, when negative, lead to an equilibrium

decline in capital flows to EM, a so called sudden stop.1 Faced with this environment, EM precau-

tions against these sudden stops. We discuss a range of options as a function of the risk-sharing

markets available to EM. At a minimum, EM can accumulate noncontingent reserves, but it is

often possible to improve on this common practice by adopting a hedging strategy. The costs and

benefits of these strategies are endogenous in our framework and depend on the particular source

of sudden stops.

In our quantitative analysis we estimate a regime switching model of sudden stops in a group

of emerging markets, as implied by our theoretical framework. As part of this exercise, we also

estimate the joint incidence of sudden stops with jumps in the price of assets traded in US financial

markets. A calibrated version of the model matches the extent of capital flow reversals, the behavior

of risk premia and the size of reserves accumulation. We then use the model to quantify the potential

gains from adopting hedging strategies and conclude that, depending on the source of sudden stops,

their correlation with world events, and the quality of the hedging instrument available, the gains

from these strategies can be substantial. When compared to the welfare gains of existing practices,

they represent improvements that range between about 10 and 115 percent.

Our paper relates to several strands of literature. The main shock that concerns us here is a

sudden stop of capital inflows. The literature on sudden stops gained momentum since the Asian

and Russian crises. The work of Calvo (1998) describes the basic mechanics and implications of

sudden stops and Calvo and Reinhart (1999) document the pervasiveness of the phenomenon. The

modelling of these sudden stops as the tightening of a financial constraint is also present in the work

of Caballero and Krishnamurthy (2001), Arellano and Mendoza (2002) and Broner et al. (2003),

among others.2

As an intermediate step in developing our substantive argument and quantifying the effects we

describe, we model reserves accumulation as a buffer stock model against capital flow reversals.

The view that reserves can be used to cushion the impact of external shocks exists at least since

Heller (1966), was enhanced by the work on precautionary savings in macroeconomics during the

1See an earlier version of this paper, Caballero and Panageas (2005), for a more reduced form model, but with

three agents: EM, W, and specialists. There, sudden stops are the result of shocks to specialists which EM tries to

insure with W. Shocks to the monitoring technology play a similar role in the current model.
2See also Kiyotaki and Moore (1997) for a comprehensive model of how financial constraints are linked with cycles.

3



1980s and has recently returned to the fore with the large accumulation of reserves exhibited by

emerging markets since the crises at the end of the 1990s (see, e.g., Lee (2004)).

Importantly, the main reason for seeking insurance and hedging in our context is not income

fluctuation per-se but the potential tightening of a financial constraint. This motive parallels that

highlighted by Froot et al (1993) at the level of corporations, and by Caballero and Krishnamurthy

(2001) for emerging markets. While the substantive themes developed in those articles differ from

ours, the basic model in our paper is in many respects a dynamic global-equilibrium version of

theirs.

Closely related to our recommendations are those in the sovereign debt literature. The opti-

mality of contingent debt and the limitations to it imposed by financial frictions are also a feature

of that literature. In particular, the work of Kletzer, Newbery and Wright (1992) and Kletzer and

Wright (2000), characterize feasible financial structures consistent with different degrees of commit-

ment by a sovereign borrower and its lenders. In our model we capture financial frictions through

monitoring costs, which capture features similar to those of their richer limited enforcement frame-

work. Our paper reinforces much of the message in that literature and provides a tractable model

that can be estimated and quantified.

The interaction between precautionary savings and financial constraints is also present in the

closed economy framework of Aiyagari (1994). He calibrated such a model to estimates of US

microeconomic income processes and other parameters and concluded that eventually agents would

save enough to relax all financial constraints. In our model this does not happen because EM faces

a steeper growth rate than W. Hence, EM’s incentive to save in order to mitigate the effects of

time varying financial frictions is counterbalanced by the reluctance to save in light of a steeply

increasing endowment. The interaction of these two effects leads to a stationary level of reserves

and recurrent episodes of sudden stops and consumption drops.

There has been a significant rise in volatility trades in financial markets, including the VIX

(which is the index we use for our main example of hedging). The finance literature has studied

the impact of such trades on the performance of hedge funds and other markets participants (see,

e.g., Bondarenko (2004)). From a risk management perspective, the issues faced by these economic

agents are similar to those faced by emerging market policymakers.

We setup the model in Section 2 and describe global equilibrium under different assumptions on
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the risk-sharing options available. In Section 3 we estimate the sudden stop process and calibrate

the model. Section 4 presents our main quantitative results and Section 5 concludes. The paper

also contains several appendices.

2 A Model of Sudden Stops in Global Equilibrium

In this section we describe a model of optimal global risk-sharing in the presence of financial

constraints in emerging markets. In the model, systemic crises are caused by events in world

financial markets that lead to abrupt changes in capital flows to emerging markets. We start with a

characterization of a perfect (sudden stop) risk sharing benchmark, and conclude with a discussion

of a more realistic proxy-hedging context where available insurance instruments are only imperfectly

correlated with sudden stops.

2.1 Agents and Endowments

There are two “representative” agents in the world economy, one from emerging markets (EM) and

one from the developed world (W), who have common preferences

Et

"Z ∞

t
As
(Cj

s)1−γ

1− γ
e−ρ(s−t) ds

#
for j ∈ {W,EM} (1)

The parameter ρ represents the discount rate, γ > 1 the coefficient of relative risk aversion, Cj
s the

consumption of agent j, and As captures a taste shock, whose properties will be specified later.

The world is an endowment economy. EM’s current income is low relative to its future income

(it has yet to catch up), which we capture through a pre-development phase (which is the focus

of the paper) and a post-development phase. During the former, EM’s endowment is described by

ΛtYt, where Λt is a process that can take either the value 1 or the value Λd ≤ 1 (we shall specify
the exact dynamics of these transitions shortly), and Yt is given by

dYt
Yt

= µtdt+ σdBt. (2)

where µt, σ > 0 and dBt is a standard Brownian motion. EM (permanently) transits from the

pre- to the post-development phase at an exponentially distributed random time τG, with constant

hazard g. This catching-up transition is independent of all other sources of uncertainty in the
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model. EM’s post-development income is equal to κΛtYt, where κ > 1.W’s endowment is given by

βΛtYt, where

β ≥ κ > 1 (3)

for all t ≥ 0.

2.2 Growth-Contingent Debt and Capital Flows

Since in the pre-development phase EM’s expected growth rate is higher than that of W, it is natural

for EM to borrow from W. Moreover, given the stochastic nature of catching up in our model,

optimal debt contracts are contingent on the transition to development. Concretely, (growth-

contingent) debt contracts establish that W provides a flow of resources ftptYt to EM over the next

infinitesimal time interval dt, in exchange for receiving a promise to a stream of payments ftκYs

for all s > t, if development arrives in the interval dt and 0 otherwise. The price of these growth

contingent debt contracts is pt while ft is the number of contracts (expressed as a fraction of Yt). By

using these contracts, EM can exchange a stream of post-development for pre-development income.

In the absence of frictions, growth-contingent debt contracts are claims that complete the market

with respect to the uncertainty introduced by the random arrival of development, and ensures that

the marginal utilities of W and EM are always proportional to each other, both pre-and post

development.3

Since there is only one source of uncertainty in the model in the post-development phase,

assuming that EM and W are able to trade in W’s equities implies that W and EM face complete

markets after τG.4 To simplify the analysis, we will assume this trade is feasible (after τG) and use

3Note that these contingent contracts can be implemented through equity trades. For this, assume that there

exist two equities that give the owner an entitlement to the endowment of EM and W respectively. Let their prices

be PEM
t and PW

t respectively and their dividends be Yt and βYt pre-development and κYt and βYt post devel-

opment. To produce the payoffs of a growth contingent contract, one needs to purchase xt units of EM’s equity

financed by xtP
EM
t /PW

t units of W’s equities. The holder of such a claim delivers a stream of payments equal to

xtYt 1− PEM
t /PW

t β pre-development and receives a capital gain equal to xt PEM
τG+ − PEM

τG−/P
W
τG− PW

τG+ once

the transition to development takes place. By arbitrage PEM
τG+ = (κ/β)PW

τG+ and hence the capital gain can be ex-

pressed as xt 1− PEM
τG−/P

W
τG− (κ/β) PEM

τG+ . Since xt is arbitrary, one can let xt = 1/ 1− PEM
τG−/P

W
τG− (κ/β) .

Hence, by purchasing xt units of EM’s shares financed by xt
PEMt

PWt
units of W’s shares, one can create one unit of a

growth contingent contract. In summary, a growth contingent contract is equivalent to a carry trade in equities.
4See e.g. Duffie and Huang (1985).
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PW
t to denote the price of W’s shares and SEM

t , SW
t to denote the holdings of such shares by EM

and W respectively, with SEM
t + SW

t = 1.

2.3 Normal Times, Crises, and Sudden Stops

During the pre-development phase, there are two states of nature st: “normal” (st = 0) and “crisis”

(st = 1) times. The transition hazards from the former to the latter and vice versa are λ and eλ,
respectively. For simplicity, there are no crises after the time of development τG. (i.e., st = 0 for

all t > τG).

We assume that for each growth contingent contract ft,W pays a monitoring cost equal to itYt,

where

it =

½
i if st = 0
i+ q if st = 1

(4)

We shall assume throughout that i > 0 and q ≥ 0. These monitoring costs capture the idea that
growth contingent debt effectively represents uncollateralized lending to EM, which in practice is

subject to a series of incentive problems that are costly to overcome. For our purposes, these

monitoring costs inhibit intertemporal consumption smoothing between pre-and post-development

times. Moreover, we assume that during normal times Λt = 1, while during crises Λt = Λd ≤ 1.
Hence, crises are also times when world output may fall below the (stochastic) trend Yt.

To produce sudden stops within our framework, we assume that

Assumption 1 Either q > 0 or Λd < 1 (or both)

Assumption 1 requires that at least one of two events happens during a crisis: Either the cost

of monitoring increases, or world output declines below its trend, so that it becomes costlier to

sacrifice consumption in monitoring activities.

For the purposes of calibrating the model and performing robustness checks later on, it is also

useful to allow for two extra layers of generality. First, the growth rate µt could take different

values during crises, normal times, and development:

µt =

½
µ0 + st (µ1 − µ0) if t < τG

µG if t ≥ τG

Second, we assume that the preference shock process At in equation (1) is given by

At =
¡
A
¢Nt
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where A ≥ 1 and Nt is the number of all transitions from normal times to crises that have have

happened until time t. In the special case where A = 1, the objective (1) becomes a standard

expected utility maximization problem.

2.4 Perfect (Sudden Stop) Risk Sharing Benchmark

During normal times EM precautions against sudden stops. We assume that there are two potential

contracts that can be used for that purpose. The first kind are non-contingent bonds (reserves),

which are zero net supply claims that pay an interest rate rt per unit of time dt. Second, agents also

have access to (sudden stop) hedging contracts. For each of these contacts, EM delivers a payment

of πtYt to W per unit of time dt while st = 0, where πt is the “price” of such a contract. If st

stays at 0 over the interval dt, then W makes no transfers to EM and the contract is terminated.

However, if st jumps to 1 over the next time interval dt, EM receives a flow of Yt (per contract)

from W until st transits back to 0.

Hedging contracts are hence similar in nature to contingent debt contracts, although in this

case EM delivers the payments to W first, and W has to repay when a transition to a sudden stop

happens. We assume that W has full commitment to such contracts and hence there is no risk of

W defaulting on EM.

In summary, sudden stop contracts represent forms of insurance that can help EM hedge against

both the occurrence and the duration of sudden stops.

2.4.1 Net Asset processes

We can now describe the dynamic budget constraints for EM and W. Letting Xj
t denote j’s assets

(reserves), ft the amount of contingent debt as a share of Yt, and nt the number of sudden stop

contracts as a share of Yt, we have:

1. (Pre-development, st = 0) If t ≤ τG and st = 0, EM’s net asset process is

dXEM
t =

£
rtX

EM
t − CEM

t + (1 + ftpt − ntπt)Yt
¤
dt (5)

with rt being the prevailing interest rate, and W’s asset process is

dXW
t =

£
rtX

W
t −CW

t +
¡
β − ft

¡
pt + i

¢
+ ntπt

¢
Yt
¤
dt (6)
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2. (Pre-development, st = 1) If t ≤ τG and st = 1, EM’s net asset process is

dXEM
t =

h
rtX

EM
t − CEM

t +
³
Λd + ftpt + nτ

´
Yt

i
dt (7)

with τ being the last time at which st jumped from 0 to 1

τ = sup
u≤t
{su = 0}.

The corresponding W’s asset process is

dXW
t =

h
rtX

W
t − CW

t +
³
βΛd − ft

¡
pt + i+ q

¢− nτ

´
Yt

i
dt (8)

3. (Post-development) If t > τG then

dXEM
t =

£
rtX

EM
t − CEM

t + (1− fτG)κYt
¤
dt+ SEM

t dPW
t (9)

dXW
t =

£
rtX

W
t −CW

t + (β + κfτG)Yt
¤
dt+ SW

t dPW
t (10)

Let us now summarize our setup. Equations (5) and (6) describe the evolution of assets prior

to development (t < τG) whenever st = 0. In this regime EM has access to three markets: it

“borrows” ft units of growth-contingent debt, invests in nt hedging contracts, and also invests in

noncontingent bonds. The processes pt, πt and rt are the respective prices in these markets.

Equations (7) and (8) are similar to (5) and (6), except that the economy is in a regime where

st = 1 and hence the nτ hedging contracts that EM entered when st jumped to 1 are delivering

the promised payoffs to EM. Finally, equations (9) and (10) state that after EM’s transition into

development, EM has to deliver payoffs to W as specified by the outstanding growth contracts at

the time of transition into development (fτG).

Finally, we assume that if EM enters short positions in non-contingent bonds, then W pays

itYtmin[X
EM
t , 0] monitoring costs per unit of time dt. This assumption implies that growth con-

tingent contracts and short positions in non-contingent bonds are subject to the same monitoring

costs, since they both present forms of borrowing.

2.4.2 Global Equilibrium

We are now able to define an equilibrium in the global economy:
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Definition 1 An equilibrium is a collection of (progressively measurable) processes CW
t , CEM

t , ft,

nt, πt, pt, rt, X
EM
t , XW

t , SEM
t , SW

t , PW
t such that

1. Given the price processes rt, πt, pt,PW
t the quantity processes CEM

t ,XEM
t , ft, nt and SEM

t

maximize (1) (for j = EM) subject to (5), (7) and (9).

2. Given the price processes rt, πt, pt,PW
t the quantity processes CW

t ,XW
t , ft, nt and SW

t maximize

(1) (for j =W ) subject to (6), (8) and (10).

3. Markets clear, i.e.:

XEM
t +XW

t = 0 for all t (11)

CEM
t + CW

t =

½
Yt
£
(1 + β)

¡
1 + st(Λ

d − 1)¢− itft
¤
if t ≤ τG

Yt (κ+ β) if t > τG
(12)

SEM
t + SW

t = 1 for all t > τG (13)

Remark 1 Note that all remaining financial markets clear by construction, since equations (5)-

(10) recognize the zero net supply nature of the markets for hedging contracts and growth contingent

contracts.

The definition of equilibrium is standard. It requires that all actions should be optimal given

prices and that all markets clear. Next we construct an equilibrium and characterize its properties.

Before proceeding, it will be useful to define

xit =
Xi
t

Yt
, where i = {W,EM},

cit =
Ci
t

Yt
, where i = {W,EM}.

The following proposition constructs an equilibrium and outlines some properties of pre-development

allocations and prices. (Post-development allocations and prices are given in the appendix).

Proposition 1 For appropriate constants c0,W , f0, f1 there exists an equilibrium with the following

properties:

1. XEM
t = XW

t = 0 for all t.
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2. The consumption process for W is given by

cWt =

⎧⎨⎩ c0,W if st = 0

c1,W if st = 1
(14)

where

c1,W =
Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0
c0,W (15)

and the consumption process for EM is given by (12) after plugging in for CW
t .

3. Let the constants and ν be defined as

≡ 1

ρ+ eλ− (1− γ)
³
µ1 − γ σ2

2

´ ,
ν = ρ− (1− γ)

µ
µG − γ

σ2

2

¶
. (16)

and assume that ν < 1.When st = 0 the prices rt, pt, πt are given by the constants

r0 ≡ ρ+

µ
µ0 −

σ2

2

¶
γ − (γσ)

2

2
− λ

"
A

µ
c1,W

c0,W

¶−γ
− 1
#
− g

"µ
β + κf0

c0,W

¶−γ
− 1
#
(17)

π = λ A

Ã
Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0

!−γ
(18)

p0 = g
κ

ν

µ
β + κf0

c0,W

¶−γ
− i (19)

while in the state st = 1 the prices rt and pt are given by the constants

r1 ≡ ρ+

µ
µ1 −

σ2

2

¶
γ − (γσ)

2

2
− eλ"µc0,W

c1,W

¶−γ
− 1
#
− g

"µ
β + κf1

c1,W

¶−γ
− 1
#
(20)

p1 = g
κ

ν

¡
β + κf1

¢−γ
(c1,W )−γ

− ¡i+ q
¢

(21)

There are two results in Proposition 1 that are worth highlighting: First, in general equilibrium

there is no accumulation of noncontingent bonds (XEM
t = XW

t = 0). EM only uses contingent

contracts to precaution against the arrival of the state st = 1. Given the anticipated steep increase

in EM’s income post development, any form of pre-development consumption sacrifice to hedge

against a sudden stop is costly. Since reserves are noncontingent, they imply that EM is saving

resources for all states of the world — even states of the world where no sudden stop takes place.
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This makes reserves too costly as a hedging instrument compared to claims that only deliver payoffs

exclusively in states of the world where such payoffs are needed (i.e. during sudden stops).

Second, Proposition 1 states that unconstrained trading in hedging contracts completes markets

with respect to the arrival of state st = 1. To see this, note that (15) together with (12) implies

that Ã
CW
τ+

CW
τ−

!−γ
=

Ã
Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0

!−γ
=

Ã
CEM
τ+

CEM
τ−

!−γ
(22)

where τ− refers to an instant before the arrival of st = 1 and τ+ to the instant thereafter. (Formally,

sτ− = 0, and sτ+ = 1). The first equality in (22) follows from (15), while the second equality follows

from the goods market clearing condition (12).

A simple limit case (β →∞) When W becomes very large relative to EM, we can sharpen the

results further:

Lemma 1 As β →∞ the solution to the system (80)-(82) satisfies c0,W/β → 1 and

p0 = g
κ

ν
− i, p1 = g

κ

ν

³
Λd
´γ − ¡i+ q

¢
and π = λ A

³
Λd
´−γ

(23)

f0 is given by

f0 =

κ−
h
p0

g κ
ν

i−1/γ ∙
1 + p1 π

1+πΛd

µ
Λd −

³
p0

p1

´ 1
γ

¶¸
κ+ 1

1+πΛd

h
p0

g κ
ν

i−1/γ µ
p0 + p1π

³
p0

p1

´ 1
γ

¶ (24)

and

f1 = 1− 1

Λd

µ
p0

p1

¶ 1
γ ¡
1− f0

¢
(25)

Furthermore f0 > f1, and since both f0 and f1 have finite limits, the term
µ
(β+1)Λd−(i+q)f1

β+1−if0

¶−γ
in equation (22) converges to 1 and hence

CEM
τ+

CEM
τ−

= Λd.

Lemma 1 implies that when W is large compared to EM, the only shocks that can make EM’s

consumption drop when entering a sudden stop are world-wide cyclical shocks. Hence, the extra

drop in available resources to EM that is caused by capital flow reversals is smoothed out. To see
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this most clearly, it is instructive to focus on the special case where sudden stops are caused purely

by jumps in the monitoring costs it, and there are no cyclical variations in output, so that Λd = 1.

Then Lemma 1 implies that EM’s consumption experiences no change upon entering a sudden stop.

In order to understand this result, note that since Λd = 1,
CEM
τ+

CEM
τ−

= 1 and XEM
t = 0, equations

(5) and (7) imply that

n =

¡
f0p0 − f1p1

¢
(1 + π)

. (26)

Equation (26) states that EM buys an amount of hedging contracts that is proportional to the

decline in capital flows
¡
f0p0 − f1p1

¢
upon entry into a sudden stop. Additionally, as β → ∞,

equation (19) implies that p0 → g κν − i and equation (21) implies that p1 → g κν −
¡
i+ q

¢
, so that

p0 > p1. Since f0 > f1 it follows that n > 0. The fact that n > 0 implies that adjustments of prices

are not enough by themselves to attain consumption smoothing, and there is non-zero trading.5

One might suspect that when consumption of EM becomes perfectly smooth, then sudden stop

insurance must be actuarially fair. This is not true however. The easiest way to see this is to allow

A > 1. In this case the value (in state s = 0) of obtaining a unit of consumption once s switches

from 0 to 1 is given by

λA

Ã
CW
τ+

CW
τ−

!−γ
= λA

Ã
Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0

!−γ
When β → ∞, and Λd = 1, the above term becomes λA > λ. Hence sudden stop insurance is

not actuarially fair. Nevertheless, consumption is not affected by a sudden stop (although marginal

utility is).

More importantly for our purposes, note that EM prefers to use hedging rather than hold any

reserves, no matter how large is A (or Y d for that matter). The reason is that reserves “force”

EM to purchase insurance in all states of the world - both the states that command a high risk

premium and those that do not. By contrast, hedging always allows EM to isolate the states of the

world where it needs insurance (i.e. when a sudden stop occurs). Since EM only needs insurance

in these states of the world and wants to avoid sacrificing pre-development consumption, hedging

is always a preferred precautionary measure.

5This is in contrast to many examples of endowment economies in macroeconomics and asset pricing, where prices

adjust in such a way that agents are happy to just hold their endowments without trading. Here there is active

trading in both growth-contingent debt and sudden stop hedging contracts.
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More generally, when β is finite, even though sudden stop contracts cannot eliminate the pres-

ence of sudden stops, they can substantially mitigate their effects on consumption.

2.5 Imperfect (Sudden Stop) Risk Sharing

In practice there is a variety of impediments to perfect risk sharing, including agency, behavioral,

and liquidity problems. In this section we capture some of these by assuming that sudden stop

risk sharing is incomplete along dimensions that seem realistic. For the most part, central banks

hold their reserves entirely in US and Euro treasuries rather than investing in hedging instruments.

Thus, later on we calibrate our model using this extreme noncontingent scenario. However, in

our analysis in this section we also introduce assets whose payoffs are correlated –although not

perfectly– with sudden stop arrivals. This extension allows us to discuss practical improvements

to current central banks’ practices in emerging market economies.

Concretely, we preserve the environment developed up to now, with one exception: Perfect risk

sharing instruments no longer exist but instead there is an asset with a payoff that is imperfectly

correlated with the occurrence of sudden stops. As one would expect, the optimal portfolio of

the country will now include both, shares of this asset and noncontingent reserves. Among other

factors, the particular composition of the portfolio depends on the degree of correlation of the asset

with sudden stops, on the level of reserves, and on the sources of sudden stops and their general

equilibrium implications.

2.5.1 Danger zones and net asset processes

In order to introduce the hedging asset we decompose the arrival of sudden stops into two steps.

First, there is a Poisson process with intensity bχ that puts EM at danger of a sudden stop. These

danger zones take place at random times τDi , i = 1, 2, 3...., which we generically denote by τD

instead of τDi . At these times τ
D, the country enters a sudden stop (i.e. the state sτD+ becomes

1) with probability P (sτD+
= 1) and avoids it with probability P (sτD+

= 0) = 1 − P (sτD+
= 1). To

preserve the earlier environment we require throughout that

λ = bχP (sτD+ = 1). (27)

Let us now assume that there is a financial asset with payoff Ft, that also has the potential to

14



exhibit a jump at danger times τD. Using J to denote a jump, we have that Ft exhibits jumps

according to a Poisson process with intensity:

λJ ≡ bχP (J = 1) (28)

The critical assumption in this section is that there is some correlation, although imperfect,

between sudden stops and jumps in the payoff Ft: P (J = 1, sτD+ = 1) ∈ (0, 1).
Letting Φt denote a counting process that increases by 1 at times τD, and λ∗t denote a required

rate of return (in excess of the interest rate) for holding Ft, the price of asset Ft follows the process

dFt
Ft

= rtdt+ (JdΦt − λ∗tdt) . (29)

Without loss of generality, we can condition on those times τD where we observe either a jump

(J = 1) and/or a transition into SS
³
sτD+

= 1
´
.6 Hence from now on let us define:

χ ≡ bχ(1− P (sτD+
= 0, J = 0)) (30)

which is the hazard rate for observing either a jump in J or a transition into sτD+ = 1. An obvious

corollary is that there are only three possible outcomes that can take place at those times, namely:³
sτD+

= 1, J = 1
´
, or

³
sτD+

= 0, J = 1
´
, or

³
sτD+

= 1, J = 0
´
. Let pJ=1,s=1, pJ=1,s=0 and pJ=0,s=1

denote the respective (conditional) probabilities of these three events.

We will not consider the possibility of insuring the duration of the sudden stop, and simplify

the analysis by assuming that, conditional on entering a sudden stop, the transition out of it is

independent of any jumps in J and happens with intensity eλ.
The presence of a risky asset with the above properties modifies the analysis in only two respects.

First, the evolution of XEM
t becomes:

dXEM
t =

n
rtX

EM
t − λ∗t ξtFt − CEM

t +
h
1 + (Λd − 1)st + ftpt

i
Yt

o
dt+ ξtFtJdΦt (31)

where ξt is the dollar amount invested in the risky asset Ft. Since the asset Ft is in zero net supply,

the equivalent dynamic evolution equation for XW
t is

dXW
t =

n
rtX

W
t + λ∗t ξtFt − CW

t +
h
β + (Λd − 1)st − ftpt

i
Yt − ftYt

¡
i+ stq

¢o
dt− ξtFtJdΦt (32)

6The reason is that the value function of neither agent (W or EM) experiences any change when sτD+
= 0 and

J = 0. Hence the times when sτD+
= 0 and J = 0 are irrelevant for equilibrium allocations, prices and welfare.
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As with reserves, we require that ξt ≥ 0, so that EM has to pay upfront for the Ft contracts

that it purchases.7 Finally, also note that while equations (31) and (32) hold in both states st = 0

and st = 1, in equilibrium it turns out that ξt = 0 when st = 1, since the asset Ft has no hedging

value in that state.

2.5.2 Global equilibrium with imperfect risk sharing

The equilibrium definition in the presence of asset Ft is identical to definition 1 with the obvious

modification that now the consumers optimally choose ξt instead of nt.We do not repeat it here for

brevity. The next proposition shows how to construct an equilibrium in the presence of imperfect

hedging contracts

Proposition 2 Define

xt =
XEM
t

Yt
,eξt = ξtFt

Yt
(33)

Then, for a system of differential equations K0(xt),K
1(xt) given in the appendix, there exists an

equilibrium with the following properties.

1. Pre-development, the consumption process for EM is given by

CEM
t

Yt
=

⎧⎨⎩ K0 (xt) if st = 0

K1 (xt) if st = 1
(34)

and the respective consumption process for W is given by

CW
t

Yt
=

⎧⎨⎩ Ω0 (xt) if st = 0

Ω1 (xt) if st = 1
(35)

where

Ω0 (xt) =
¡
1 + β − ift −K0 (xt)

¢
(36)

Ω1 (xt) =
³
(1 + β)Λd − ¡i+ q

¢
ft −K1 (xt)

´
(37)

7An alternative assumption that will leave our results unaffected is that short positions in asset Ft are subject to

the same monitoring costs as growth contingent contracts.
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2. The equilibrium values of p(xt) and f(xt) are given as

p0(xt) = g
κ

ν

∙
β + κf0

Ω0 (xt)

¸−γ
− i if st = 0 (38)

p1(xt) = g
κ

ν

∙
β + κf1

Ω1 (xt)

¸−γ
− (i+ q) if st = 1 (39)

where the quantities f0(xt), f1(xt) in the state st = 0, 1 respectively are given as the solution to

the equations

g
κ

ν

∙
β + κf0 − νxt
Ω1 (xt)

¸−γ
− i = g

κ

ν

"
κ
¡
1− f0

¢
+ νxt

K0 (xt)

#−γ
. (40)

and

g
κ

ν

∙
β + κf1 − νxt
Ω1 (xt)

¸−γ
− (i+ q) = g

κ

ν

"
κ
¡
1− f1

¢
+ νxt

K1 (xt)

#−γ
. (41)

3. The equilibrium value of λ∗ is given by

λ∗t = χ

"
pJ=1,S=1A

Ã
Ω1(xt + eξt)
Ω0(xt)

!−γ
+ pJ=1,S=0

Ã
Ω0(xt + eξt)
Ω0(xt)

!−γ#
(42)

and the equilibrium value of eξt solves the equation³
K0(xt+ξt)
K0(xt)

´−γ
−
³
Ω0(xt+ξt)
Ω0(xt)

´−γ
³
Ω1(xt+ξt)
Ω0(xt)

´−γ
−
³
K1(xt+ξt)
K0(xt)

´−γ = pJ=1,S=1A

pJ=1,S=0
(43)

Proposition 2 asserts that in the absence of perfect hedging instruments it is still possible to

construct an equilibrium where all the quantities depend exclusively on xt (and st). In contrast

to Proposition 1, the absence of a perfect hedging instrument implies that in general EM holds

some reserves in its portfolio to insure against the possibility that it enters a sudden stop and the

imperfect hedge does not deliver any payoffs.

For our purposes, the most illuminating equation in Proposition 2 is equation (43). This equa-

tion implies that EM always wants to hold some amount of imperfect hedges as long as pJ=1,S=1 > 0.

The easiest way to see this is to note that eξt = 0 is a root of equation (43) only when pJ=1,S=1 = 0.
Otherwise, some amount of ξt > 0 is optimal as long as W’s consumption drop upon entrance into

st = 1 is smaller than EM’s , i.e. as long as
Ω1(xt+ξt)
Ω0(xt)

< K1(xt+ξt)
K0(xt)

.8

8To see this, note that the denominator on the left hand side of (43) is negative as long as K1(xt)

K0(xt)
< Ω1(xt)

Ω0(xt)
. Hence

the numerator needs to be negative in order to make the left hand side and the right hand side equal. However, this
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3 Estimation

Before we can proceed with a quantitative analysis of the model and its implications, we need to

obtain estimates for some of the parameters of the model. In particular we are interested in the

arrival and departure rates of sudden stops, and their severity. Furthermore, in order to assess

the benefits of hedging, we also estimate the joint incidence of sudden stops and jumps in some

appropriate financial instrument. The next section explains how we obtain these estimates.

3.1 The Sudden Stop Process

The core of our analysis is the sudden stop process. In this section we estimate the main parameters

of such process: λ and eλ. We also estimate the magnitude of the average sudden stop reversal,
E(θ0t /θ

1
t ), where θt is defined as

θjt ≡ 1 + f jt p
j
t , j = {0, 1}.

To simplify notation we drop the superscript from θjt when there is no place for confusion. We

use post 1983 data for six emerging market economies for which we had complete data and behave

more or less as described by the model with no contingent instrument (see the Appendix for details

on the selection criterion): Chile, Colombia, Indonesia, Malaysia, Mexico, and Thailand.

The first step is to find empirical counterparts for the processes describing available resources

during NSS and SS. For this, we note that in the model these resources can be decomposed into

regular income, Yt, and financial flows, (θt − 1)Yt. In practice, there are several additional com-
plexities in doing such a decomposition. These stem from the existence of multiple goods whose

relative prices change during the transitions between NSS and SS and vice versa, the presence of

temporary terms of trade shocks, and endogenous domestic output declines during sudden stops.

The Data Appendix describes our methodology to deal with those issues. In a nutshell, we approx-

imate Yt with the permanent component of domestic national income, and (θt− 1)Yt with the sum
of capital flows in terms of imported goods and the transitory component of exports and terms

of trade effects. Our main left hand side variable is the ratio of these two, which can be loosely

can only happen when ξt > 0 since Ω
1 is decreasing in xt (since W’s holdings of bonds is equal to −xt), whereas K0

is increasing in xt.
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interpreted as external financing over “normal” pre-development income:

ψit ≡ θit − 1 = (θit − 1)Yit
Yit

,

where i is the country index.

Since the measurement procedure for θit can potentially produce measurement error and the

data are time aggregated as opposed to continuous, we assume that ψit is observed with (state

dependent) noise, eψit = ψit + εit(sit)

with

εit(sit) ∼ N(0, σ2ε(sit)), sit ∈ {0, 1}.

Since ψit will exhibit jumps as the economy transits from tranquil times (st = 0) to sudden

stops (st = 1) we use a standard regime-switching model a la Hamilton (1989, 1990) to estimate

the average value of ψit during tranquil times (that we call ψ
NSS
i ) and the equivalent value of

ψit during sudden stops
¡
ψSS
i

¢
. As part of this procedure, we can also obtain estimates for the

probability of transition from tranquil times (st = 0) to sudden stops (st = 1):9

pi(NSS → SS) ≡ Pr(si,t+∆ = 1|si,t = 0) = 1− e−λi∆ (44)

pi(SS → NSS) ≡ Pr(si,t+∆ = 0|si,t = 1) = 1− e−λi∆ (45)

For the calibration exercises we convert annual transition probabilities into annual frequencies by

setting:

λ = − log [1− P (NSS → SS)] /∆ (46)eλ = − log [1− P (SS → NSS)] /∆ (47)

Given the limited number of SS observations we have for each country and the highly nonlinear

nature of the hidden states model we are estimating, we use a Bayesian approach (with flat priors)

based on a Gibbs Sampler (see Kim and Nelson [1999]). We describe the precise procedure in the

Appendix. To obtain more precise estimates, we assume that the parameters pi(NSS → SS),

pi(SS → NSS) are the same across all countries, whereas ψNSS
i , ψSS

i are allowed to differ. Tables

9These equations approximate the continuous time model by its discrete analog, by implicitly assuming that there

can be at most one transition in a time interval of ∆. This approximation becomes exact as ∆→ 0.
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Average Std Dev 5% 25% 50% 75% 95%

λ 0.19 0.050141 0.11337 0.15434 0.1868 0.22153 0.27772eλ 0.14769 0.046718 0.079083 0.11403 0.14322 0.17685 0.23111

Table 1: Posterior distribution of λ, eλ.
Average Std Dev 5% 25% 50% 75% 95%

Chile -0.091 0.030 -0.132 -0.109 -0.094 -0.076 -0.041

Colombia -0.051 0.009 -0.064 -0.057 -0.052 -0.047 -0.036

Mexico -0.084 0.015 -0.106 -0.093 -0.085 -0.075 -0.059

Indonesia -0.066 0.009 -0.081 -0.072 -0.067 -0.061 -0.049

Malaysia -0.164 0.023 -0.199 -0.178 -0.164 -0.149 -0.126

Thailand -0.146 0.023 -0.179 -0.161 -0.147 -0.133 -0.107

Table 2: Posterior distribution of capital flow reversal (η) during sudden stops

1 and 2 present these estimates. Based on the posterior medians, we conclude that sudden stops are

large, leading to declines in available resources sometimes beyond 10 percent of GDP, their effects

last for about 6.5 years and they occur about every 12 years (about 5.5 years after exiting the

previous sudden stop). Our measure of sudden stop is meant to capture not only the initial spike

in interest rates and turmoil but also the effects of sudden stops that remain well after the onset

of the capital flow reversal. Our estimates suggest that these effects can be quite large: Countries

take a long time in resuming significant borrowing after experiencing severe capital flow reversals.

Finally, Figure 2 summarizes the output of the corresponding Gibbs sampler for our economies.

It illustrates the path of the share of economies with posterior probabilities of being in sudden stop

above 0.5 during a given period. It is apparent from this figure that our procedure does capture

the transitions into sudden stops that occur around major financial crises.

3.2 The VIX and the joint incidence of sudden stops and VIX jumps

To evaluate the usefulness of hedging, we need to find an instrument that exhibits jumps at times

when a country transits into a sudden stop. If such an asset exists, then it is straightforward to use
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Figure 1: ψi and posterior probability of being in a SS for 6 different countries.

a combination of short dated put and call options on the asset in order to synthetically approximate

a payoff of 1 dollar when the jump in the underlying asset occurs and 0 otherwise. (We explain in

detail how to approximate such a claim with call options shortly.)

Our goal here is not to conduct a thorough search for the optimal risky instrument for specific

countries’ portfolios. Rather, we seek to show that there exist assets with such properties and

obtain an order of magnitude of the benefits of expanding EM’s strategies to include such an asset.

Moreover, by finding an asset that delivers payoffs in states of the world with increased incidence

of sudden stops, we can use risk premia on that asset to infer the price of obtaining payoffs in such

states.

With this purpose in mind, we chose the CBOE Volatility Index (VIX). This is a traded index

formed from quoted put and call options on the S&P 500, available since the mid-1980s. The VIX
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captures traders’ anticipations of volatility in the US stock market over the next month as implied

by various puts and calls on the S&P 500.10 As we show below, sudden stops often coincide with

jumps in the VIX, making it a good candidate for our purposes.11

10For more details on the construction of the VIX, see http://www.cboe.com/micro/vix/vixwhite.pdf
11See also the recent work of, Pan and Singleton (2007) documenting the tight correlation between EM’s sovereign

CDS’ prices and the VIX.
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3.2.1 The VIX Process

Let us postulate a continuous time process of the VIX, described by an Ornstein-Uhlenbeck (i.e. a

continuous time analog of an AR(1) process) with jumps

d log(V IX) = −α
³
log(V IX)− log(V IX)

´
dt+ σV IXdZt +

£
φdΦt − λJµφdt

¤
. (48)

α is a parameter that controls the speed of mean reversion, log(V IX) is the average level of

(log) VIX, σV IX is the instantaneous volatility of the process, dZt and dΦt capture the increments

to a standard Brownian motion and a Poisson process with intensity λJ respectively. Finally, φ

captures the (potentially random) magnitude of the jump in log(V IX) and is assumed to be drawn

from a normal distribution with mean µφ and standard deviation σφ. Given these assumptions, the

second and third terms in (48) are martingale differences.

In estimation, we approximate the above process by its discrete time counterpart. Since (48) is

an Ornstein Uhlenbeck process, its discrete time observations follow an AR(1) process. Hence, the

first step is to remove this predictable component by estimating an AR(1) process for log(V IX)

and then isolating the residuals. For small time intervals, these residuals are characterized (ap-

proximately) by a mixture of normals:12

εt
d
= (1− pV IX)N(µV IX∆, σ

2
V IX∆) + pV IXN(µV IX∆+ µφ, σ

2
V IX∆+ σ2φ) (49)

where pV IX = 1− e−λJ∆, µV IX = −λJµφ∆.
In principle, estimation of this process can proceed from this point on along standard estimation

techniques (see, e.g., Caballero and Panageas [2004]). Such estimation delivers estimates of the

underlying parameters of the process for log(V IX). Given these parameters, we can also estimate

the posterior probabilities that the VIX has exhibited a jump in a given month, and we can then

also estimate the joint incidence of jumps in the VIX and the arrival of sudden stops.

Unfortunately, these estimates are not directly useful in practice, because in real markets one

can only find contracts whose payoffs are contingent on the level of the VIX (say, at the end of

the month). However, there are no contracts on whether the VIX has exhibited a jump over the

12The source of the approximation to the continuous time limit is that the discrete approximation excludes the

possibility of more than one jump in the interval ∆, which seems reasonable if we want to focus on relatively large

and infrequent jumps and relatively small time intervals ∆.
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course of a month, because such jumps are unobservable (and impossible to define) with discrete

time trades.

To measure the correlation between the arrival of sudden stops and the payoffs of a feasible

strategy, we adopt an alternative procedure.13 In particular, we first perform a Bayesian estimation

of (49) using monthly data. We then use the obtained estimates and set a cutoff value e, such that

Pr(εt > e|J = 0) < 0.01.

In a next step we let the expected level of log(V IX) after a time interval of ∆ be defined as

log(V IXe
t+∆) ≡ (1− α∆) log(V IXt)− α∆log(V IX)

and consider a contract that delivers the following payoffs:

Qt+∆ =

½
1 if log(V IXt+∆) > log(V IX

e
t+∆) + e

0 otherwise
(50)

That is, this contract delivers a payoff of 1 if the unexpected change in the log(V IX) over an

interval of ∆ is above e. It is also important to note that in the limit where ∆ becomes arbitrarily

small, this contract pays off 1 if and only if there is a jump in the V IX and 0 otherwise. Hence, for

small ∆, the payoff Qt+∆ approaches the contract described in section 2.5.1.14 Given that (50) is

a payoff that is measurable with respect to the market participants’ information set at time t+∆,

it is more useful from this point to think directly of the event Qt+∆ = 1 as a “jump”.

Furthermore, figure 3 illustrates how to approximate the payoff Qt+∆ by combining a standard

call option with strike price log(V IXe
t+∆) + e together with a short call option with strike price

log(V IXe
t+∆) + e+ δ. The resulting payoff is15

bQt+∆ =

⎧⎨⎩ δ if log(V IXt+∆) > log(V IX
e
t+∆) + e+ δ

0 if log(V IXt+∆) < log(V IX
e
t+∆) + e

(51)

As was shown by Breeden and Litzenberger (1978), when δ → 0 we obtain that limδ→0
Qt+∆

δ =

Qt+∆ a.e. Given this approximation result, and the existence of a rich set of options of various
13 If anything, this procedure biases the results toward finding a lower “correlation”, because it introduces the

potential of “over-identifying” jumps, and hence understating the benefits of hedging.
14When ∆ = 1/12 (i.e. monthly data) the probability that Qt+∆ will be 1 when no jump has occured over the

course of that month is 1%. This is so by the construction of e.
15When log(V IXt+∆) ∈ [log(V IXe

t+∆) + e, log(V IXe
t+∆) + e+ δ] then Qt+∆ = log(V IXt+∆) −

(log(V IXe
t+∆) + e).
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Figure 3: Payoffs of a long call option with strike price A = log(V IXe
t+∆)+e and a short call option

with strike price B = log(V IXe
t+∆) + e+ δ. The solid line presents the sum of the two payoffs.

strike prices, we assume directly that the payoff given by (50) is a feasible payoff given existing

securities.

Importantly for our purposes, equation (51) implies that the arbitrage free price of the payoff

Qt+∆ for small δ is given (approximately) as the price difference of two standard call options with

strike prices log(V IXe
t+∆) + e and log(V IXe

t+∆) + e+ δ respectively, divided by δ. Denoting that

price as PQt+∆ , a feasible strategy to replicate a payoff such as (29) in section 2.5.1 is given as

follows: Every time interval ∆ (say every one or two months) an EM can pay PQt+∆ and obtain a

payoff such as (50). If the (unexpected) change in the VIX is less than e , thenQt+∆ = 0. If however,

there is a discontinuity that produces an (unexpected) change larger than e, then Qt+∆ = 1. Hence,

the risk compensation λ∗ in equation (29) as16 λ∗ ' PQt+∆/∆. In the appendix we give further

details on how we used the prices of existing VIX call options to obtain an estimate for the average

16 In the limit where δ → 0 and ∆→ 0 this approximation becomes exact.
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Average Std Dev 5% 25% 50% 75% 95%

Pr(SS|J) 0.236 0.096 0.095 0.165 0.226 0.296 0.413

Pr(J) 0.159 0.032 0.109 0.137 0.158 0.180 0.215

Table 3: Posterior distribution of Pr (SS|J) and Pr(J) based on quarterly data.

value of PQt+∆ and hence λ∗. Based on that analysis our baseline value for λ∗ is 0.94.

3.2.2 Joint jumps, risk premia and implied preference shocks

It is now straightforward to measure the joint incidence of sudden stops and positive payoffs to a

claim such as the one defined in equation (50). Figure 4 gives a first visual depiction of this joint

incidence. It shows the residuals of an AR(1) model for log(V IX). The shaded areas represents

those instances when these residuals are above e and hence the times when a claim like the one

constructed in equation (50) would pay off 1 dollar. The shaded areas occur in the early 90’s (at the

onset of the gulf war) in 1997 (around the Asian crisis), in 1998 (around the Russian/LTCM crisis),

after 9/11/2001, and around the beginning of the U.S. corporate scandals and the Argentinean

default.

These large movements in the VIX at times of crisis, together with the increased incidence of

sudden stops during such times, suggest that there is some joint incidence of the two events, which

can be used for hedging purposes. We will refer to the times when the payoff of equation (50) is 1

as “jump” times and we will denote such events with J = 1 in analogy to section 2.5.1.

Conditioning on the times where J = 1, it is straightforward to use a Bayesian procedure similar

to section 3.1 in order to estimate the parameters

P (SS|J = 1) ≡ pJ=1,s=1
pJ=1,s=0 + pJ=1,s=1

and P (J) = 1− e−λJ∆

where pJ=1,s=1, pJ=1,s=0 etc. were defined in section 2.5.1. The exact procedure is described in the

appendix. The resulting posterior distributions are given in table 3.

With the estimates of P (J) from table 3 we can obtain estimates of the arrival intensity λJ in

a manner analogous to equations (46) and (47) , namely λJ = − log [1− P (J)] /∆. In turn, given

the estimates for λ (from section 3.1) and also λJ , and P (SS|J = 1) from table 3, we can identify
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Figure 4: VIX residuals. The grey areas correspond to instances where the VIX residual is above

the jump-cutoff.

all the parameters of section 2.5.1 by solving the following linear system of equations

λJ ≡ χ (pJ=1,s=1 + pJ=1,s=0) (52)

λ ≡ χ (pJ=1,s=1 + pJ=0,s=1) (53)

Pr(SS|J) =
pJ=1,s=1

pJ=1,s=0 + pJ=1,s=1
(54)

1 = pJ=1,s=1 + pJ=1,s=0 + ps=1,J=0 (55)

for the four unknowns pJ=1,s=1, ps=1,J=0, pJ=1,s=0 and χ. Based on the median posterior values

for λ, λJ , and P (SS|J = 1), the values of pJ=1,s=1, ps=1,J=0, pJ=1,s=0 and χ that solve the system

of equations (52)-(55) are χ = 0.74, pJ=1,s=1 = 0.23, ps=1,J=0 = 0.06, ps=1,J=0 = 0.71.
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4 Calibration and Results

In this section we input the estimates obtained in the previous section into a calibration exercise,

and then use the resulting quantitative model to evaluate the gains from different precautionary

strategies. Since the standard practice of central banks in emerging markets is to hold reserves

almost exclusively in the form of noncontingent assets, we calibrate the model of section 2.5.1

assuming that a country does not use any hedging instruments. This standard practice seems to

be more the result of inertia and domestic political economy factors, and hence it is reasonable

to ask how much would welfare increase if countries adopted optimal hedging strategies. All the

counterfactual exercises are done in general equilibrium, and hence take into account the endogenous

reaction of prices.

4.1 Parameters

We calibrated the model following two different approaches. In the first approach we use standard

CRRA preferences with no global preference shock (A = 1 for all t). As with all calibrations of

this kind, this approach is able to match quantity data well but not the large risk premia observed

in actual markets, especially during times of turmoil. Within this first approach, we allow for two

subcases -one where cyclical components in world output are small (case 1a) and hence sudden

stops are caused almost exclusively by changes in monitoring costs, and one where sudden stops

coincide with significant global downturns (case 1b). In the second approach (case 2) we allow for

jumps in the preference shock As in order to calibrate interest rates and fluctuations in the global

price of risk. We also allow in this case for a drop in growth rates during sudden stops, which

helps us fit the volatility of interest rates. The main difference between these cases is that W’s

willingness to insure EM varies across them.

Table 4 reports the parameters for the three cases we consider. The first twelve parameters

are common across all cases. The parameter g is set to 0.03 to approximately match the speed of

convergence estimated by Barro and Sala-i-Martin (2003). We set κ = 3, so that the expected rate

of (logarithmic) growth of income in an emerging market economy g log(κ) = 3.2% higher than that

of a developed economy. The parameter β controls the relative size of EM and W in the model.

Since we are interested in estimating the benefits of hedging for a large part of the world, such
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Case 1a Case 1b Case 2

g 0.03 0.03 0.03

κ 3 3 3

β 7 7 7eλ 0.14 0.14 0.14

χ 0.74 0.74 0.74

PS=1,J=1 0.23 0.23 0.23

PS=0,J=1 0.71 0.71 0.71

PS=1,J=0 0.06 0.06 0.06

i 0.01 0.01 0.01

q 0.35 0.35 0.35

γ 7 7 7

ρ 0.01 0.01 0.01

σ 0.027 0.02 0.02

µ0 0.018 0.018 0.03

µ1 0.018 0.018 0

µG 0.018 0.018 0.018

A 1 1 1.8

Λd 0.99 0.96 0.96

Table 4: Parameters used in the calibration exercises.
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as Latin America, we added the (PPP adjusted) GDP of US, EU countries and Japan and then

compared that to the GDP of Latin American countries.17 The parameters pJ=1,s=1, ps=1,J=0,

pJ=1,s=0 and χ are those that solve the system of equations (52)-(55) as determined in the previous

section. eλ was estimated and reported in table 1. We chose i so as to match capital flows of about
9% of GDP in tranquil times. The value of q is set high enough, so that in all three cases capital

flows become practically zero during sudden stops. We set ρ to a low number in order to reduce

the high risk-free rates that are typically obtained, when one uses CRRA preferences. Finally, we

chose γ to generate reserves accumulation in the 20− 30% range.

The next set of parameters varies across the different cases. For cases 1a and 1b we set the

growth rates of Y to µ0 = µ1 = µG = 0.018, so as to capture growth rates in developed economies

(see Campbell and Cochrane 1999). In case 2 we preserve (approximately) the average growth rate

but assume some variation in the growth rate of Y in order to match the observed volatility in real

riskless interest rates.18 In case 2 we calibrate A to approximately match the observed VIX’s risk

premia (assuming that originally only W participates in this market). Finally, in all cases we set

Λt to capture the standard deviation of the cyclical components in output in the US. The drop in

case 1a produces a standard deviation of the cyclical component corresponding to what is obtained

from a Beveridge-Nelson decomposition of US output.19 The drop in cases 1b and 2 produces a

model-implied standard deviation of cyclical component that corresponds to the one estimated from

a standard H-P filter decomposition for the US.20 We set σY so that in all three cases the annual

volatility of output produced by the model is about 0.028, corresponding approximately to annual

post-war US data.21

17We also estimated the model by matching the relative size of US, EU and Japan to Latin American countries

and East Asian economies (Indonesia, Korea, Singapore, Thailand and Malaysia) obtaining similar results.
18The presence of preference shocks necessarily increases the volatility of the interest rate. By allowing for some

small time variation in output growth that volatility can be reduced within reasonable levels. Since in case 2 we are

interested in matching asset prices, we allowed such time variation in the stochastic trend. However, we also simulated

the model allowing for constant growth rates and preference shocks. This did not affect the results substantively.
19See Nelson (2006), p. 12.
20See Nelson (2006), p. 12.
21Note that the total variance of output is given as E [V art (Yt+1 − Yt)] + V ar [Et (Yt+1 − Yt)] . Since in case 1a)

the variance of the predictable component V ar [Et (Yt+1 − Yt)] is smaller, we assign a larger value to σY , so that

total volatility stays the same compared to case 1b. In case 2, the variation in growth rates µ0, µ1 tends to reduce

somewhat the total volatility of output compared to case 1b, but this effect has a negligible effect on total volatility
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Model Data

Case 1a Case 1b Case 2

Mean Reserves 0.31 0.32 0.2 0.17

Mean Resource Drop 0.091 0.091 0.091 0.1

Jump Risk Intensity ratio (λ∗/λJ) 1.01 1.04 1.33 1.39

Mean Interest Rate 0.14 0.14 0.01 0.020

Volatility of the interest rate 0.008 0.04 0.04 [0-0.05]

Table 5: Comparison between model and data, assuming no hedging.

Table 5 reports several statistics generated by the model when only noncontingent reserves are

accumulated and the corresponding values in our sample of countries.22 The numbers in the data

column are based on the following: Reserves refers to the historical average levels of reserves for the

countries that we consider as reported in Table 9 in the appendix. Mean resource drop refers to the

average reversal in capital flows (as a fraction of GDP) during the sudden stop as reported in table

2. The jump risk intensity ratio is obtained by our estimates of λJ and λ∗ in the previous section

as λ∗
λJ
(assuming that only W participates in this market). The data on the average real interest

rate are from Campbell and Cochrane (1999), while the volatility of the real interest rate is from

(Jermann 1998). (In the data one can only obtain estimates about the volatility of the realized

real return on bonds. These estimates provide an upper bound on the volatility of the unobserved

anticipated real interest rate, and hence we report the volatility of the anticipated real interest rate

as an interval.) The models produce reasonable numbers for reserve accumulation and the size of

the sudden stops. However, as explained above, only case 2 is designed to match asset prices by

introducing an additional source of shocks to the marginal utility of consumption. In particular,

the jump in As is needed to generate jumps in marginal utility consistent with the rise in the “risk

premium” implicit in the VIX during crises. Jumps in As also help reduce the interest rate, since

they generate a positive drift in the marginal utility of consumption.

(about 20 basis points reduction in annual volatility).
22To obtain the stationary quantities we simulated 20000 artificial yearly data, conditioning on no transition to

development.
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4.2 Hedging

Case 1a Case 1b Case 2

Portfolio (imperfect correlation) 0.87 0.86 0.78

Portfolio (perfect correlation) 1.00 1.00 1.00

Proportional reduction in stationary reserves (imperfect correlation) 0.16 0.16 0.23

Proportional reduction in stationary reserves (perfect correlation) 0.42 0.47 0.62

Table 6: Portfolio allocated to hedging and proportional reduction in stationary non-contingent

reserves (reserves prior to hedging divided by reserves after hedging).

In this section we study the effect of hedging on portfolio decisions and welfare. Table 6

focuses on the former. The first two rows report the share of the flow of precautionary savings

spent in hedging, that is λ∗ξt/(rtXt + θtYt − Ct), for the case where only options on VIX are

available (imperfect correlation) and for an upper bound where an asset perfectly correlated with the

occurrence of a sudden stop is available (perfect correlation). We refer to this ratio as the “portfolio”

invested in hedging instruments. The portfolios are evaluated at xt = 0.23 The message of these

two rows is clear in all cases: the bulk of the precautionary resources, even when the correlation is

imperfect, should be allocated to hedging instruments rather than reserves accumulation.

We already knew from Proposition 1 that this “portfolio” notion is always 1 when there exists

sudden stop insurance that is both perfectly correlated with the sudden stop and also insures

EM against the duration of the sudden stop (“complete risk sharing”). Once the price of risk

is correctly assessed, a country always prefers a hedging instrument to non-contingent reserves,

irrespective of the magnitude of preference shocks A and the associated risk premia. Table 6 shows

that this mechanism remains intact even when there is no insurance against the duration of sudden

stops (second row). This mechanism is weakened but still remains dominant (first row) even when

hedging is limited to VIX instruments.

The third and fourth rows of 6 describe a stock rather than a flow concept. They are based on

23Evaluating the portfolio at xt = 0 is conservative. When we solve the model for all three cases and we compute

the portfolio at levels of xt that are higher than zero, the denominator rtXt + θtYt − Ct decreases faster than the

numerator λ∗ξt, making the portfolio rise toward 1.
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a simulated run of the model with and without hedging.24 The two rows report the proportional

decline in average non-contingent reserves that is achieved with various forms of hedging in the

different cases that we consider. The table shows that EM holds between 16 and 62 percent less

reserves when it can hedge.

What is the impact of these changes on welfare? We assess the gains from hedging strategies

by computing the equivalent variations in income required to compensate for the absence of a

particular form of insurance. For this, let us define the no-insurance case as one in which EM only

trades in growth contingent contracts without any access to either noncontingent bonds or any

form of hedging. In such a world EM’s utility is:

V no_ins(Y0) = E0

Z τG

0
As
(Λs + fsps)

1−γY 1−γs

1− γ
e−ρ(s−t) ds+ V dev

where

V dev ≡ E0
Z ∞

τG
As

κ1−γ(1− fτG)
1−γY 1−γs

1− γ
e−ρ(s−τ

G) ds

Correspondingly, let V res(0, Y0) and V ins(0, Y0) denote the EM’s utility in a world in which the

country is allowed to use reserves only to insure against sudden stops and hedging instrument ins

(in addition to reserves), respectively, both evaluated at zero initial reserves. Then, the income

variation is defined as the additional pre-development income that needs to be given to an EM

with no access to insurance or reserves, in order to achieve V res(0, Y0) and V ins(0, Y0) respectively.

Since utility is homogeneous of degree 1− γ with respect to the country’s income, we have that:

V res (0, Y0) = (1 + kres)1−γ E0
Z τG

0
As
(Λs + fsPs)

1−γY 1−γs

1− γ
e−ρs ds+ V dev

V ins (0, Y0) =
¡
1 + kins

¢1−γ
E0

Z τG

0
As
(Λs + fsPs)

1−γY 1−γs

1− γ
e−ρs ds+ V dev

where the k’s represent the proportional income variation. Since our goal in this section is to

evaluate the improvement over the standard practice of accumulating noncontingent reserves, we

24See footnote 22 for a description of the simulation design. Importantly, when we compute average reserves, we

also take into account states of the world when st = 1. When EM has no way to insure the duration of the sudden

stop (as in Proposition 1), it has to hold non-contingent bonds in this regime. Because of this, even when there is

perfect correlation between the arrival of the sudden stop and the payoffs of the contingent instrument, the stationary

reserves will always be non-zero, unlike in Proposition 1.
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report the welfare gains as the proportional gain over kres.25 Table 7 shows that the extra benefits

Case 1a Case 1b Case 2

Imperfect Correlation 20 15 8

Perfect Correlation 91 60 44

Complete Markets 114 81 60

Table 7: Percent increase in the relative effectiveness of hedging
¡
kins − kres

¢
/kres, for various

cases.

from enriching the precautionary strategy with hedging instruments ranges between 8 and 20%

of kres when only VIX is used, from 44 to 91% in the perfect correlation scenario, and from 60

to 114% as we move to the complete markets case. Importantly, all these are general equilibrium

results and therefore do take into consideration the endogenous changes in the price of risk. The

reason for the difference between the three cases is that in cases 1b and 2 the transition into state

st = 1 “hurts” W more than in case 1a. (In case 1b W’s income falls and in case 2 W’s marginal

utility increases). This means that the potential for risk sharing is larger in case 1a than in the

others, making the benefits of hedging larger.

5 Final Remarks

Emerging market economies hold levels of international reserves that greatly exceed the levels held

by developed economies (relative to their size). This would seem paradoxical given that, unlike the

latter, the former face significant financial constraints with much of their growth ahead of them.

The paradox disappears once these greater financial constraints also become an important source

of volatility, which countries seek to smooth. This is the context we have modelled, analyzed, and

assessed quantitatively.

25The absolute value of kres itself is rather small in line with all welfare calculations in the Lucas tradition. For

instance in cases 1a), 1b) and 2) kres is 0.26, 0.32 and 0.23 percent of GDP respectively. This is in the same order of

magnitude as Lucas’s estimates of the costs of business cycles (0.1 percent of GDP). Since the absence of heterogeneity,

and any links between temporary and permanent consumption components may be understating the magnitude of

welfare gains, we use a concept of proportional increases in welfare benefits that should be more immune to these

problems. An added advantage is that it makes our results less sensitive to assumptions about risk aversion etc.

34



The main contributions of this paper are twofold: First, we develop a quantitative global-

equilibrium model of sudden stops. Second, we use this structure to discuss practical mechanisms

to insure emerging markets against sudden stops, ranging from conventional non-contingent reserves

accumulation to more sophisticated contingent strategies. Depending on the source of sudden stops,

their correlation with world events, and the quality of the hedging instrument available, the gains

from these strategies can be substantial.

On the first contribution, the model is successful in matching the extent of capital flow reversals,

the behavior of risk premia and the size of reserves accumulation. On the second one, we estimate

that the potential gains from adopting hedging strategies are, in a worst case scenario, about 10

percent more efficient than conventional reserves management, but the gains can also reach up to

115 percent as the quality of hedging instruments improves and the correlation between sudden stop

arrivals and marginal investors’ risk attenuates. All these strategies imply a substantial reduction

in the rate of reserves accumulation and in many practical instances may free up reserves for

productive investments. For example, in our case 2 (which calibrates quantities and prices), we

compute that our representative country would need to hold between 23-62% less reserves than it

does without hedging (depending on the quality of the hedging instrument).

There are several natural extensions to our work. Our model assumes preference shocks and

frictionless trading in (imperfect) hedging instruments to explain observed risk premia. This mech-

anism allows us to reproduce variations in the marginal utility of consumption of the representative

agent in a spirit similar to Campbell and Cochrane (1999). As a first pass, this approach is use-

ful since it safeguards that welfare computations are consistent with asset prices. An interesting

extension of our model would be to assume some form of segmentation between bond markets

and hedging instruments and derive the observed risk premia from the heterogenous participants

in these markets. It is reasonable to conjecture that in such a world, increasing participation in

the markets for (imperfect) hedging instruments by agents in the developed world would make the

outcomes resemble the cases 1a) and 1b) in our model.

Furthermore, we have assumed a representative agent within each of the regions of the world.

It is quite apparent that in reality there are plenty of financial frictions within each of these regions

that clearly interact with the aggregate risk management and sharing problem we have discussed.

By the same token, it seems important to endogenize the production side of the economy, as in
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practice real investment and employment are severely affected by sudden stops.
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6 Appendix

A Proofs

Proof of Proposition 1. We start by focusing first on development. By the results in (Karatzas and

Shreve 1998), Chapter 4, the market post development is dynamically complete and hence there exists a

stochastic discount factor Ht such that

e−ρ(t−τ
G
+)

⎛⎝CW
t

CW
τG+

⎞⎠−γ = e−ρ(t−τ
G
+)

⎛⎝CEM
t

CEM
τG+

⎞⎠−γ = Ht

HτG+

for all t ≥ τG+ (56)

The value of a claim to W’s endowment post development for any t > τG is then

PW
t = βEt

Z ∞
t

Hs

Ht
Ysds. (57)

The absence of arbitrage implies that the value of the payouts that W is collecting from EM post development

is κ
β fτGP

W
τG+
, so that W’s intertemporal budget constraint post-development isµ

1 +
κ

β
fτG

¶
PW
τG+
+XτG = EτG+

Z ∞
τG+

Ht

HτG+

CW
t dt (58)

Using (56) inside (58) and simplifying, leads to

µ
1 +

κ

β
fτG

¶
PW
τG+
+XW

τG = CW
τG+

⎡⎣EτG+

Z ∞
τG+

Ht

HτG+

CW
t

CW
τG+

dt

⎤⎦ = CW
τG+

⎡⎢⎣EτG+

Z ∞
τG+

e−ρ(t−τ
G
+)

⎛⎝CW
t

CW
τG+

⎞⎠1−γ

dt

⎤⎥⎦ (59)

The market clearing condition (12) together with (56) implies that

Ht

HτG+

= e−ρ(t−τ
G
+)

Ã
Yt
YτG+

!−γ
for all t ≥ τG+ (60)

Using (60) inside (59) and (57) allows us to compute the expectation of the integral on the right hand side

of (59) explicitly. Using the fact that Yt is lognormally distributed, allows us to compute W’s consumption

at time τG+ as
CW
τG+

YτG+
= (β + κfτG) + νxWτG . (61)

For future reference, it will also be convenient to combine (61) with (56) and (1) to obtain the value function

of W at time τG+ as A
NτGV G (XτG , YτG) where

V G (XτG , YτG) =
Y 1−γ
τG

1− γ

1

ν

£
(β + κfτG) + νxWτG

¤1−γ
. (62)
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The rest of the proof is devoted to showing that the prices and quantities of proposition 1 constitute an

equilibrium. We shall verify this directly. Verifying that markets clear is straightforward and we omit it to

save space. It remains to check if the processes for CW
t , CEM

t , it, ft, nt are optimal. We start by showing

optimality for W. Since the preference shocks enter multiplicatively in the objective, the value function is

homogenous in A
Nt and hence W’s value function can be expressed as A

Nt
V 0(Xt, Yt) when st = 0 and as

A
Nt+1

V 1(Xt, Yt) when st = 1. Specifically, the Hamilton Jacobi Bellman (HJB) equation for W when st = 0

is given by

0 = max
CW
t ,ft,nt

Ã¡
CW
t

¢1−γ
1− γ

+ V 0
X

¡
rtX

W
t − CW

t +
¡
β − ft

¡
pt + i

¢
+ ntπt

¢
Yt
¢
+ gV G

¡
XW
t , Yt; ft

¢
+ λAV 1

¡
XW
t , Yt;nt

¢!
+V 0

Y Y µ0 +
1

2
V 0
Y Y σ

2
Y Y

2 − (ρ+ λ+ g)V 0 (63)

where V G is the value function in development. Similarly, the Hamilton Jacobi Bellman equation for W

when st = 1 is given by

0 = max
CW
t ,ft

Ã¡
CW
t

¢1−γ
1− γ

+ V 1
X

¡
rtX

W
t − CW

t +
¡
βΛd − ft

¡
pt + i+ q

¢− nτ
¢
Yt
¢
+ gV G

¡
XW
t , Yt; ft

¢
+ eλV 0

¡
XW
t , Yt

¢!
+V 1

Y Y µ0 +
1

2
V 1
Y Y σ

2
Y Y

2 −
³
ρ+ eλ+ g

´
V 1 (64)

Equations (64) and (63) imply the following first order conditions for CW
t¡

CW
t

¢−γ
= V j

X , for j = 0, 1 (65)

Similarly the first order conditions for ft in the states j = 0, 1 can be written as

pjt = g
V G
f

V j
XYt

− ¡i+ jq
¢
= g

κ

ν

³
β + κf jt

´−γ
(cj,W )

−γ − ¡i+ jq
¢
for j = 0, 1 (66)

where ν is given by (16). The first equation in (66) follows by re-arranging the first order condition for ft

and the second equality follows by combining (65) with (62) and noting that in the postulated allocation

XEM
t = XW

t = 0 for all t. Note that equation (66) is identical to the equations (19) and (21). Repeating

the same steps as in equations (63), (64), (65) and (66) for EM gives

pjt = g
κ1−γ

ν

³
1− f jt

´−γ
(cj,EM )

−γ for j = 0, 1 (67)

To determine the optimal choice of nt for W in state 0, we shall first compute V 1
n

¡
XW
t , Yt;nt

¢
. Letting τ

denote the time of entry and eτ the time of exit from state st = 1, differentiating both sides of (64) with

respect to nτ and using the envelope theorem gives

0 = −V 1
XYt+V

1
nτX

¡
rtX

W
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t +
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The Feynman-Kac Theorem (see (Karatzas and Shreve 1991) and (Oksendal 1998)) implies that a solution

to the above differential equation is given by

Vnτ = −E
ÃZ τ

τ

e−ρ(t−τ)V 1
XYtdt

!
= −E

ÃZ τ

τ

e−ρ(t−τ)
¡
c1,W

¢−γ
Y 1−γ
t dt

!
= − ¡Yτc1,W ¢1−γ (68)

The second equality in (68) follows from (65) whereas the third equality follows by using lognormality of Yt

and computing explicitly the associated expectation. Having computed Vnτ we can now return to (63) and

take first order conditions with respect to nt to obtain

πt = −λ
AV 1

n

¡
XW
t , Yt;nt

¢
V 0
XYt

= λ
A
¡
c1,W

¢−γ
(c0,W )

−γ (69)

Since there are no constraints in the choice of nt for neither W nor EM, the analog of equation (69) holds

for EM as well, so that

πt = λ
A
¡
c1,EM

¢−γ
(c0,EM )

−γ . (70)

Finally since XEM
t = XW

t = 0 in the postulated equilibrium, we also know that

c0,W = β − ¡p0 + i
¢
f0 + πn (71)

c1,W = Λdβ − ¡p1 + i+ q
¢
f1 − n (72)

c0,EM = 1 + p0f0 − πn (73)

c1,EM = Λd + p1f1 + n (74)

Equations (66), (67), (69),(70), (71)-(74) form a system of ten equations in ten unknowns (pj , f j , π, n, cj,W , cj,EM )

for j = 0, 1. Plugging (73)-(74) into (69), combining (69) with (70) and using the market clearing condition

(12) leads to
c1,W

c0,W
=
Λd (β + 1)− ¡i+ q

¢
f1 − c1,W

β + 1− if0 − c0,W
(75)

Equation (75) implies that
c1,W

c0,W
=
Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0
(76)

Using (76) inside (69) we arrive at equation

π = λ
A
¡
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¢−γ
(c0,W )

−γ = λ A

Ã
Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0

!−γ
, (77)

which is precisely equation (18). Using (66) and (77) inside equation (71) leads to

c0,W = β − ¡p0 + i
¢
f0 + πn = β − g
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¡
β + κf0
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−γ f0 + λ A
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Solving for n from equation (72), and using (76) and (66) gives

n = Λdβ −

⎛⎜⎜⎜⎝g
κ

ν

¡
β + κf1

¢−γ
(c0,W )
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Λd (β + 1)− ¡i+ q

¢
f1

β + 1− if0

!
c0,W (79)

Using (79) inside (78) and rearranging, we arrive at

c0,W =

β

"
1 + λ AΛd

µ
(β+1)Λd−(i+q)f1

β+1−if0

¶−γ#
− g κν

¡
c0,W

¢γ ¡
β + κf0

¢−γ ∙
f0 + λ A

(β+κf1)−γ

(β+κf0)−γ f
1

¸
1 + λ A

µ
(β+1)Λd−(i+q)f1

β+1−if0

¶1−γ (80)

Combining (66) and (67) for j = 0, 1 leads to

g
κ

ν

£
κ
¡
1− f0

¢¤−γ¡
β + 1− if0 − c0,W

¢−γ = g
κ

ν

¡
β + κf0

¢−γ
(c0,W )

−γ − i (81)

g
κ

ν

£
κ
¡
1− f1

¢¤−γ¡
(β + 1)Λd − ¡i+ q

¢
f1 − υc0,W

¢−γ = g
κ

ν

¡
β + κf1

¢−γ
(c0,W )

−γ
υ−γ

− ¡i+ q
¢

(82)

where

υ =
(β + 1)Λd − ¡i+ q

¢
f1

β + 1− if0
.

By solving the system of equations (80), (81) and (82) for c0,W , f0, f1 we can then substitute into (79) to

obtain n, into (77) to obtain π, into (66) to obtain p0 and p1 and then inside (71)-(74) to obtain the rest of

the allocations.

To complete the verification that the postulated allocation is an equilibrium, we need to show that

the consumption processes CW
t , CEM

t and XEM
t ,XW

t are optimal for EM and W respectively. To show

optimality for W it suffices to check that the asserted allocations satisfy the familiar Euler equation:

¡
A
¢Nt

¡
CW
t

¢−γ
= Et

½
e
( T
t (ru−ρ)du) ¡

A
¢NT

¡
CW
T

¢−γ¾
for all t and T > t

Multiplying both sides of this equation with e
( t
0 (ru−ρ)du) leads to

e
( t
0 (ru−ρ)du) ¡A¢Nt

¡
CW
t

¢−γ
= Et

½
e
( T
0 (ru−ρ)du) ¡

A
¢NT

¡
CW
T

¢−γ¾
for all t and T > t.

Hence, an equivalent way to test whether the Euler equation holds is to check whether Zt, defined as

Zt = e
( t
0 (ru−ρ)du) ¡A¢Nt

¡
CW
t

¢−γ
is a martingale. Applying Ito’s Lemma in state 0 gives

dZt
Zt

=

"
r0 − ρ+ λ

"
A

µ
c1,W

c0,W

¶−γ
− 1
#
+ g

"µ
β + κf0

c0,W

¶−γ
− 1
#
−
µ
µ0 −

σ2

2

¶
γ +

(γσ)2

2

#
dt+ dMt (83)
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where dMt represents martingale increments. Using equation (17) inside (83) implies that Zt is driftless and

hence the Euler equation holds. A similar argument can be applied to show that the Euler equation holds

when st = 1.

Turning to EM, our assumption that short positions in bonds are subject to the same monitoring costs

as growth contingent contracts implies that it is sufficient to check that XEM
t = 0 is a “corner” solution for

EM. In particular, it suffices to check the following pair of Euler inequalities for all t < τG and all st ∈ {0, 1}

e
( t
0 (ru−ρ)du) ¡A¢Nt

¡
CEM
t

¢−γ ≥ Et

½
e
( T
t (ru−ρ)du) ¡

A
¢NT

¡
CEM
T

¢−γ¾
for all t and T > t. (84)

e(
t
0
(ru+iu−ρ)du) ¡A¢Nt

¡
CEM
t

¢−γ ≤ Et

n
e(

T
0
(ru+iu−ρ)du) ¡A¢NT

¡
CEM
T

¢−γo
(85)

Equation (84) asserts that EM does not want to invest in bonds at the rate rt, whereas (85) asserts that

borrowing at the rate rt + it is not optimal either. To show equation (84), let τG− denote the instant before

development and τG+ denote the instant after development. Then for states j = 0, 1 equations (81) and (82)

imply that ⎛⎝Cj,EM
τG+

Cj,EM
τG−

⎞⎠−γ + ν

gκ

¡
i+ jq

¢
=

⎛⎝Cj,W
τG+

Cj,W
τG−

⎞⎠−γ =⇒
⎛⎝Cj,EM

τG+

Cj,EM
τG−

⎞⎠−γ <
⎛⎝Cj,W

τG+

Cj,W
τG−

⎞⎠−γ (86)

For times prior to development (t < τG) and any T > t we obtain

¡
A
¢Nt

¡
CEM
t

¢−γ
=

¡
CEM
t

¢−γ¡
CW
t

¢−γ ¡
A
¢Nt

¡
CW
t

¢−γ
=

¡
CEM
t

¢−γ¡
CW
t

¢−γ Et

(
e(

T
t
(ru−ρ)du) ¡A¢NT

¡
CW
T

¢−γ¡
CEM
T

¢−γ ¡CEM
T

¢−γ)
≥ Et

n
e(

T
t
(ru−ρ)du) ¡A¢NT

¡
CEM
T

¢−γo
where the first line follows from the fact that W’s Euler equation holds as an equality and the inequality

follows from the fact that ¡
CEM
t

¢−γ¡
CW
t

¢−γ ¡
CW
T

¢−γ¡
CEM
T

¢−γ
is either equal to 1 (if T < τG) or is larger than 1 (if T > τG) by equation (86). To show (85), apply Ito’s

Lemma and use (17), (20) to obtain

d
³
e−ρt

¡
A
¢Nt

¡
CEM
t

¢−γ´
e−ρt

¡
A
¢Nt

¡
CEM
t

¢−γ = −rtdt+ g

⎛⎜⎝
³
CEM
τG+

´−γ
³
CEM
τG−

´−γ −
³
CW
τG+

´−γ
³
CW
τG−

´−γ
⎞⎟⎠ dt+ dMt (87)

where dMt is a martingale increment. Equations (81) and (82) imply that

g

⎛⎜⎝
³
CEM
τG+

´−γ
³
CEM
τG−

´−γ −
³
CW
τG+

´−γ
³
CW
τG−

´−γ
⎞⎟⎠ = −it ν

κ
(88)
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Combining (88) and (87) we obtain

d
³
e(

t
0
(ru+iu−ρ)du) ¡A¢Nt

¡
CEM
t

¢−γ´
= e(

t
0
(ru+iu−ρ)du) ¡A¢Nt

¡
CEM
t

¢−γ
it

³
1− ν

κ

´
dt+ dMt

Assuming that ν < 1, if follows that e(
t
0
(ru+iu−ρ)du) ¡A¢Nt

¡
CEM
t

¢−γ
is a submartingale and hence (85)

holds. This concludes the verification that the postulated consumption process CEM
t , and the asset process

XEM
t = 0 are optimal for EM.

Proof of Lemma 1. Dividing both sides of (80) by β and letting β →∞ shows that c0,W /β → 1.

Then equation (76) implies that c1,W /β → Λd. Using these facts inside (19), (21) and (18) gives (23). Since
c1,W /c0,W = Λd = c1,EM/c0,EM , equations (73), (74) imply that

n =

¡
f0p0 − f1p1

¢
Λd

(1 + πΛd)
. (89)

Furthermore, applying equation (67) for j = 0, 1 and using Λd = c1,EM/c0,EM implies that

1

Λd

µ
p0

p1

¶ 1
γ

=
1− f1

1− f0

Since 1
Λd

³
p0

p1

´ 1
γ

> 1, it follows that f0 > f1. Rearranging the above equation yields (25). Finally, combining

(89) with (25), (73) and (81) yields (24) after straightforward, but tedious manipulations.

Proof of Proposition 2. Verifying that the proposed allocations and prices constitute an equi-

librium pre-development follows similar steps to the proof of proposition 1. Post development, the value

function of both EM and W are the same as in proposition 1. This implies that the value function of agent

W is given by equation (62), while the value function of EM is

V G (XτG , YτG) =
Y 1−γ
τG

1− γ

1

ν
[κ (1− fτG) + νxτG ]

1−γ (90)

Since in the proposed equilibrium all the pre-development equilibrium prices depend exclusively on XEM
t

Yt
=

−XW
t

Yt
, the value function of both agents can still be expressed as a function of Yt, st, and Xj

t where

j = {EM,W}. For instance, the Bellman equation for the value function V of agent W in state st = 0 is

0 = max
CW
t ,ft,ξt

(¡
CW
t

¢1−γ
1− γ

+ V 0
X

³
rtX

W
t − CW

t +
³
β − ft

¡
pt + i

¢
+ eξtλ∗t´Yt´+ gV G

¡
XW
t , Yt; ft

¢
(91)

+χ
h
pJ=1,S=1AV

1
³
XW
t − eξtYt, Yt´+ pJ=1,S=0V

0
³
XW
t − eξtYt, Yt´+ pJ=0,S=1AV

0
¡
XW
t , Yt

¢i
+V 0

Y Y µY,0 +
1

2
V 0
Y Y σ

2
Y Y

2 − (ρ+ χ+ g)V 0

¾
Computing the first order condition for eξt leads to

V 0
Xλ
∗
tYt = χ

h
pJ=1,S=1AV

1
X

³
XW
t − eξtYt, Yt´+ pJ=1,S=0V

0
X

³
XW
t − eξtYt, Yt´iYt (92)
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By combining (92) with the first order condition for consumption (V 0
X =

¡
CW
t

¢−γ
), using (35), noting that

XEM
t = −XW

t and using the definition of xt in equation (33) we arrive at (42). The analogous first order

condition for EM is

λ∗t = χ

⎡⎣pJ=1,S=1AÃK1(xt + eξt)
K0(xt)

!−γ
+ pJ=1,S=0

Ã
K0(xt + eξt)
K0(xt)

!−γ⎤⎦ (93)

By combining (42) and (93) we arrive at (43). As we also explain in the text, equation (43) implies that

when pJ=1,S=1 = 0, then eξt = 0. Hence, unless there are joint jumps in the marginal utility of consumption
and the arrival of jumps in the asset Ft, the optimal holdings of Ft are eξt = 0. By assumption, in state st = 1
there are no joint jumps in the marginal utility of consumption and the jumps in Ft and therefore eξt = 0

when st = 1.

We next turn to the determination of the optimal f0 and the equilibrium price p0. Differentiating (91)

with respect to f0, using (35) and (34) and repeating the same steps as in Proposition 1, leads to the first

order conditions (38) and (39). Deriving the analogous first order conditions for EM and combining them

with (38) and (39) leads to (40) when st = 0 and to (41) when st = 1. To simplify notation, we shall denote

the solution to (40) as f0 instead of the more lengthy f0(K0(xt)). We will also apply the same shorthand

notation to f1, p0, p1, λ∗ and eξ. Sofar we have derived all the quantities of interest (f0, f1, p0, p1, λ∗ and eξ)
as functions of K0 (xt) and K1(xt).

To complete the equilibrium verification, it remains to derive these functions K0,K1. We do this by

utilizing the Euler equation. Formally, define τ0 to be the smallest time after time t such that Xτ0 = 0 :

τ0 = inf
s>t
{Xs = 0}

Using similar steps as in Proposition 1, we obtain that for any time t ≤ T ≤ τ0, the following Euler equation

must characterize EM’s consumption

A
Nt
¡
CEM
t

¢−γ
= Et

n
e(rt−ρ)(T−t)A

NT
¡
CEM
T

¢−γo
(94)

An identical equation needs to hold for W

A
Nt
¡
CW
t

¢−γ
= Et

n
e(rt−ρ)(T−t)A

NT
¡
CW
T

¢−γo
(95)

Following identical steps to the proof of Proposition 1, one can show that equations (94) and (95) when

st = 0 imply that e(rt−ρ)tA
Nt
¡
CW
t

¢−γ
and e(rt−ρ)tA

Nt
¡
CEM
t

¢−γ
are both (local) martingales when xt> 0.

Applying Ito’s Lemma to xt gives

dxt = d

µ
Xt

Yt

¶
=

dXt

Yt
+Xtd

µ
1

Yt

¶
= α(xt)dt− xtσdBt (96)
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where α(xt) is defined as

α(xt) ≡
¡
r0(xt)− µ0 + σ2

¢
xt −K0(xt)− λ∗teξt + 1 + f0t p

0
t (97)

Using (96) and applying Ito’s Lemma to e(rt−ρ)tA
st ¡

CEM
t

¢−γ
when st = 0 gives

d
h
e(rt−ρ)tA

Nt
¡
CEM
t

¢−γi
e(rt−ρ)tA

Nt
¡
CEM
t

¢−γ =

=

(
r0(xt)− ρ− γ

µ
µ0 −

σ2

2

¶
+

γ2σ2

2
+ g

"µ
κ (1− fτG) + vxt

K0 (xt)

¶−γ
− 1
#

(98)

+χ
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³
xt + eξt´

K0 (xt)
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⎛⎝K0
³
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K0 (xt)

⎞⎠−γ + pJ=0,S=1A

µ
K1 (xt)

K0 (xt)

¶−γ
− 1

⎤⎥⎦
−γ

⎛⎝ dK0

dxt

K0

¡
α(xt)− γxtσ

2
¢
+

σ2x2t
2

d2K0

(dxt)
2

K0
− (γ + 1) σ

2x2t
2

Ã
dK0

dxt

K0

!2⎞⎠⎫⎬⎭ dt+ dMEM
t

where dMEM
t is a (local) martingale. Since e(rt−ρ)tA

Nt
¡
CEM
t

¢−γ
is a local martingale, the term inside

the curly brackets in equation (98) must be zero. Combining the definition of α (equation [97]) with the

observation that the term inside the curly brackets of (98) is zero allows us to solve for r0(xt) as a function

of K0,K1, dK
0

dxt
, d2K0

(dxt)
2 and xt. We shall denote this function as r0(xt) = r

³
K0,K1, dK

0

dxt
, d2K0

(dxt)
2 , xt

´
. Finally

to determine K0,K1, we observe that an expression analogous to (98) must also hold for W, namely

d
h
e(rt−ρ)tA

Nt
¡
CW
t

¢−γi
e(rt−ρ)tA

Nt
¡
CW
t

¢−γ =

=

(
r0(xt)− ρ− γ

µ
µ0 −

σ2

2

¶
+

γ2σ2

2
+ g

"µ
κfτG + β − vxτG

Ω0 (xt)

¶−γ
− 1
#

(99)

+χ

⎡⎢⎣pJ=1,S=1A
⎛⎝Ω1

³
xt + eξt´
Ω0 (xt)

⎞⎠−γ + pJ=1,S=0

⎛⎝Ω0
³
xt + eξt´
Ω0 (xt)

⎞⎠−γ + pJ=0,S=1A

µ
Ω1 (xt)

Ω0 (xt)

¶−γ
− 1

⎤⎥⎦
−γ

⎛⎝ dΩ0

dxt

Ω0
¡
α(xt)− γxtσ

2
¢
+

σ2x2t
2

d2Ω0

(dxt)
2

Ω0
− (γ + 1) σ

2x2t
2

Ã
dΩ0

dxt

Ω0

!2⎞⎠⎫⎬⎭ dt+ dMW
t

where dMW
t is a local martingale. Since e(rt−ρ)tA

Nt
¡
CW
t

¢−γ
is a local martingale, the term inside the curly

brackets in equation (99) must be zero. The terms inside the curly brackets of (98) and (99) are both zero,

so we can set them equal and use equations (40), (41), and (42), (93) to obtain

gi
ν

κ
+ χpJ=0,S=1A

"µ
Ω1 (xt)

Ω0 (xt)

¶−γ
−
µ
K1 (xt)

K0 (xt)

¶−γ#
= (100)
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= γ

⎡⎣Ã dΩ0

dxt

Ω0
−

dK0

dxt

K0

!¡
α(xt)− γxtσ

2
¢
+

σ2x2t
2

⎛⎝ d2Ω0

(dxt)
2

Ω0
−

d2K0

(dxt)
2

K0

⎞⎠− (γ + 1) σ2x2t
2

⎛⎝Ã dΩ0

dxt

Ω0

!2
−
Ã

dK0

dxt

K0

!2⎞⎠⎤⎦
Using equation (36) we obtain

dΩ0

dxt
= − ¡1 + if0K

¢ dK0

dxt
− f0x (101)

and
d2Ω0

(dxt)
2 = −if0xK

dK0

dxt
− ¡1 + i(f0K + f0KK)

¢ d2K0

(dxt)
2 − f0xx (102)

By using (36), (101) and (102) inside (100) allows us to obtain an ordinary differential equation involving26

K0,K1, dK
0

dxt
, d2K0

(dxt)
2 and xt. A similar line of derivations allows us to obtain a differential equation in state

st = 1, namely

g
¡
i+ q

¢ ν
κ
+ eλ"µΩ0 (xt)

Ω1 (xt)

¶−γ
−
µ
K0 (xt)

K1 (xt)

¶−γ#
= (103)
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dK1
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¢
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σ2x2t
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2
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⎞⎠− (γ + 1) σ2x2t
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⎛⎝Ã dΩ1
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Ω1

!2
−
Ã

dK1

dxt

K1

!2⎞⎠⎤⎦
where eα(xt) = ¡r1(xt)− µ1 + σ2

¢
xt −K1(xt) + Λ

d + f1t p
1
t . Proving that EM will not choose to borrow in

non-contingent bonds when xt = 0 follows similar steps to the proof of Proposition 1.

B Data

For the construction of ψit, we used data from the World Bank’s World Development Indicators Database,

and from the International Monetary Fund’s International Financial Statistics (IFS). Table 8 presents a list

of the variables and corresponding sources.

While in the model there is a single good, in the data the computation of ψt is more cumbersome since

there are multiple goods, exchange rate fluctuations, intermediate goods, and so on. All our steps below are

aimed at isolating in ψt the component of external resources and income which is transitory in nature. For

this, we let:

ψt =
(θt − 1)Y

Y
=

EtCFt
PM,t

+
h³

PX,tXt

PM,t
− 0.5Xt

´iCycle
[Nt]

Trend
+
h³

PX,tXt

PM,t
− 0.5Xt

´iTrend , (104)

where N and X correspond to real nontradables and exports; PX and PM to export and import prices

in local currency; and E and CF to the nominal exchange rate and capital flows. Real nontradables are

constructed from:

Nt =
1

PN,t
(GDPt − (PX,t − 0.5PM,t)Xt)

26Note also that α(xt) can be expressed as a function of K0,K1, dK
0

dxt
, d2K0

(dxt)
2 and xt since the interest rate

is a function of K0,K1, dK
0

dxt
, d2K0

(dxt)
2 and xt.
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Series Source

Nominal GDP (GDP ) World Development Indicators

(quarterly and annual)

CPI (P ) IFS

(quarterly and annual)

Nominal Exports (PXX) World Development Indicators and IFS

(local currency) (quarterly and annual)

Nominal Imports (PMM) World Development Indicators and IFS

(local currency) (quarterly and annual)

Real Exports (X) World Development Indicators

(local currency) (annual)

Real Imports (M) World Development Indicators

(local currency) (annual)

Nominal Capital Flows (CF ) IFS

(dollars) (quarterly and annual)

Nominal Exchange Rate (E) World Development Indicators and IFS

(quarterly and annual)

Net Factor Payments (NFP ) IFS

(dollars) (annual)

Table 8: Data used in the construction of ψ.
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Mean Median Min Max

Chile 20.6 21.5 15.4 22.7

Colombia 11.3 10 8.4 16.6

Mexico 5.5 5.6 2.7 7.2

Indonesia 11.3 7.4 4.7 19.8

Malaysia 29.4 28.6 19.6 42.3

Thailand 21.3 20.8 14.1 28

Table 9: Reserves for various countries as a percent of GDP for the years 1990-2003.

where GDP is the country’s GDP, PN,t is the price of nontradables approximated by the local CPI,

and the term 0.5PM,t removes a proxy for intermediate inputs in export-production. The expression³
PX,tXt

PM,t
− 0.5Xt

´
captures the terms of trade effect. We decompose between trends and cycles using a

standard Hodrick-Prescott filter, extending the series as much as we could in order to reduce the effect of the

end-of-series bias in this procedure. We applied the filter to the log of the corresponding variable. In sum-

mary, the denominator in equation (104) measures the average (trend level) of total income and resources,

while the numerator attempts to capture the cyclical component of external resources.

We work with a sample of the following developing countries/emerging markets: Chile, Colombia, In-

donesia, Malaysia, Mexico, Thailand. We chose them from the list of countries in Calvo, Izquierdo and Mejia

(2004) plus Malaysia. However, since their sample is for the 1990s only, and we needed a longer time series

dimension (we used data from 1983 to 2003), we dropped all the countries that either were closed economies

with domestic macroeconomic issues, or did not have complete data. Our marginal drop was Korea, for

which we did not have good deflators. However, when we re-estimated our model with Korea included (using

only capital flows data divided by nominal GDP for Korea ), our results remained essentially unchanged.

Finally, we constructed quarterly series for eψit using a related series approach with quarterly data on capital
flows. We restrict the average of the quarterly values to be equal to the annual figure we computed directly

using equation (104). Unfortunately, we lack quarterly data for some components of ψt for some countries in

the 1990-2003 period. To solve this problem we use a linear (or a quadratic) interpolation method to obtain

quarterly series for the years when we lack quarterly data. We used interpolation methods for the following

countries (dates are shown in parenthesis): Chile (1990), Colombia (1990-1995), and Malaysia (1990-1998).

As a reference, table 9 shows reserves for the six economies we study.
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C Details on the econometric procedure of Sections 3.1, 3.2.1, 3.2.2.

Section 3.1: To estimate the process described in this section we apply a Bayesian methodology, by using a

Gibbs Sampler. The Gibbs Sampler is by now a standard methodology in estimating models involving hidden

states (See Kim and Nelson (1999) for an introductory treatment). The basic idea is to exploit knowledge

about the conditional distribution of one parameter at a time (fixing all the others) to construct the joint

posterior distribution of all parameters. We modify the basic model that Kim and Nelson (1999) present by

pooling all the countries into a single sample. We allow all parameters of the model to differ across countries.

However, in order to obtain precise estimates we assume that the transition probabilities into and out of a

sudden stop are the same across countries. Moreover, we assume that the joint probability of a jump in the

VIX and a simultaneous transition into a sudden stop is common across countries.

The first step of the procedure is to fix a set of initial parameters Ψ = {ψNSS
i , ψSSi −ψNSS

i , σNSS
e,i , σSSe,i ,

p(NSS → SS), p(SS → NSS) } and then determine the posterior probabilities that a particular realization
of eψit for country i at time t was drawn from the first (NSS) or the second (SS) regime. To do that

we run a standard Hamilton (1989,1990) type filter as described in Kim and Nelson (1999) to determine a

sequence of posterior probabilities that a given country was in a sudden stop at a specific point in time.

We repeat this process for each country separately and obtain one sequence per country. We shall denote

this as Pr(SS = 1|eψi;Ψ). In the next step we draw an (artificial) sample of 1’s and 0’s from these posterior

probabilities. As in the text, we use the convention that 1 corresponds to a Sudden Stop and 0 to NSS.

In the next step we take these 1’s and 0’s as given. Effectively this allows us to proceed as if we knew

whether each economy is in SS or not at a given point in time. Then we use this information to determine

the posterior distributions of the parameters in Ψ. Once again we do this in steps as described in Kim and

Nelson (1999). We start with determining the posterior distribution of {ψNSS
i , ψSSi − ψNSS

i , σNSS
e,i , σSSe,i }

first: To facilitate the updating we use conjugate priors: a) a beta prior for p(NSS → SS), p(SS → NSS)

with α = β = 1 which coincides with a uniform prior on [0, 1] b) an (improper) normal prior for ψNSS
i

and an (improper) inverse gamma prior for
¡
σNSS
e,i

¢2
that lead to posteriors that depend only on the data

(see Kim and Nelson (1999)) c) a truncated (improper) normal and an inverse (improper) gamma prior

for ψSSi − ψNSS
i ,

¡
σSSe,i

¢2
as explained in Kim and Nelson (1999). Finally, we assume that all priors are

independent of each other. By well known results in Bayesian statistics the posterior distributions are in

the same class as these conjugate priors and there are simple closed form expressions for the parameters

of the posterior distributions. The updating of p(NSS → SS),and p(SS → NSS) is done by pooling the

observations for all the countries. So, for each country we count the number of transitions into and out of
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sudden stops, and the total number of periods in normal times and in sudden stops. We then add all the

episodes for all countries and find the posterior distributions as follows

p(NSS → SS) ∼ beta

Ã
1 +

X
i

aSSi , 1 +
X
i

aNSS
i

!

where aSSi is the number of observations marked as normal years that are followed by a year marked as

sudden stop. We shall refer to this as a transition to a sudden stop. Conversely, aNSS
i counts the times that

a normal year is followed by another normal year (NSS). This count is done country by country, but then

we add all them up into a single number which is used in the updating process. By restricting the transition

probabilities to be the same for all countries, we exploit the panel dimension of the data in order to obtain

precise estimates. Similarly, the posterior for the other parameter in the transition matrix is given by the

following formula

p(SS → NSS) ∼ beta

Ã
1 +

X
i

bNSS
i , 1 +

X
i

bSSi

!
where bNSS

i is the number of observations marked as sudden stops that are followed by a year marked as

"normal". Conversely, bSSi represents the other case, namely when a transition out of a sudden stop does

not occur. We record the random draws of a) the paths of 1’s and 0’s for each country, b) the country

specific parameters {ψNSS
i , ψSS

i − ψNSS
i , σNSS

e,i , σSSe,i } and c) the "pooled estimates" of p(NSS → SS),and

p(SS → NSS) . Then we repeat the above procedure several times and at each time we record the new

draw of the paths of 1’s and 0’s for each country and the parameters. By properties of the Gibbs sampler,

the posterior distribution of these random draws coincides in law with the posterior (joint) distribution of

all the parameters.

Section 3.2.2: By using the cutoff value e for the V IX we determine the months in which we observed a

“jump” in the V IX, i.e. months when the residuals of the estimated AR(1) process of the VIX exceeded the

cutoff value e. To determine a distribution of p(SS|J) we proceed as follows. First, for each country we draw
paths from the posterior distribution of the states (NSS, SS)i, as provided by the Gibbs Sampler. Given

the model, the only relevant observations for the conditional probability are the ones when the country i

is in NSS or has just transitioned to a SS. Hence, in accordance with the data generating process of the

model, we discard all the quarters in which the country is in SS, except the one that marks the beginning

of each SS. Then we look at all those times where the states switch from NSS to SS and simultaneously

there is a jump in the V IX either in that quarter or the quarter before. We allow this short window to

allow for the possibility of delayed data reporting etc. Let this number be given by niNSS→SS,J . Similarly,

we also determine all the times when there was a jump in the V IX. Let this number be niJ . Finally, define

niNSS as the numbers of observations when country i is either in NSS or just moved to a SS. We repeat
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this procedure for each country separately. After completing the above procedure for all countries we sum

niSS,J , n
i
J , and niNSS across countries. In accordance with the Bayesian methodology that we have been

using throughout, we use a beta distribution with uniform priors to obtain the posterior distributions

p (J ) ∼ beta
¡
1 + Σin

i
J , 1 +Σin

i
NSS

¢
p (SS| J) ∼ beta

¡
1 + Σin

i
NSS→SS,J , 1 +Σin

i
J

¢
In a nutshell, for each iteration of the Gibbs sampler, we determine the number of times when a jump in the

VIX coincided with a transition into a SS for each country. Then we pool across countries. This effectively

imposes the constraint that all countries have the same joint probability distributions between transitions

into a SS and jumps in the VIX. The benefit is that we can obtain more accurate estimates27.

D Estimation of Risk Premia

To estimate the risk premium λ∗ we followed an approach similar to (Ait-Sahalia and Lo 2000), which itself

builds on the ideas of (Breeden and Litzenberger 1978) and Duffie and Huang (1985). As explained in the

text, if PC (V IX,K, τ ) is the price of a call option with strike price K and τ days to expiration, when

the underlying value of the index is V IX, then the (arbitrage free) price of a payoff such as (50) is simply

−dPC(V IX,K,τ)
dK . To estimate this quantity we fit first a non-parametric function PC (V IX,K, τ) to the data.

We used quotes28 from the CBOE on VIX call options since the beginning of this market in early 2006.

Letting k = K
V IX , we then estimated the following regression:

PC (V IX,K, τ)

V IX
= 0.0306K − 1.115k + 0.34k2 − 0.0535k3 + 0.0024k4 (105)

−0.0002τK − 0.0304τk + 0.0243τk2 − 0.008τk3 + 0.001τk4 + ..

... additional controls
27As a robustness check we also computed p (J ) and p (SS| J) without imposing any prior, i.e. by just

recording the random draws of:

p(k) (J) =
Σin

i
J

ΣiniNSS

p(k) (SS| J) =
Σin

i
NSS→SS,J

ΣiniJ

at each iteration k of the Gibbs Sampler and computing the empirical mean of the corresponding stationary

distribution. The two approaches delivered very similar results, suggesting that our results are not influenced

by the assumption of a uniform prior.
28 In particular, we used the midpoint between bid and ask
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where additional controls included a 1/V IX, a constant, V IX, τ , τ2. To avoid micro-structural problems

with very short maturities,29 we focused attention on values of τ ∈ [30, 90]. Furthermore, since we are
interested in isolating the price of risk for upward jumps in the VIX we focused on k > 1. The regression

was estimated on 2476 date-price combinations. The resulting R2 of the regression was 0.83, which suggests

that the regression specification accounts well for the observed variation in call option prices. We then

differentiated the estimated PC (V IX,K, τ) in equation (105) with respect to K . Since we focus attention

on short-dated options but with expiry dates larger than 30 days, we evaluated −dPC(V IX,K,τ)
dK at τ = 40,

and at the average value of V IX over the sample in order to make sure that τ is an interior value to the

regression (105). To be consistent with the definition of “jumps” that we used in the text we set

k = e

r
τ

30
+ 0.17

τ

30

³
log (V IX)− log (V IX)

´
.

The first term in k is set so that the probability of having a jump in the VIX residuals-assuming no jump

over an interval τ - is approximately .01. The second term accounts for mean reversion in V IX by comparing

the distance between the average (log) underlying price in the call options log (V IX) = 2.54 to its long run

mean log (V IX) = 2.88 (based on data since 1986). The coefficient 0.17 accounts for the speed of mean

reversion in monthly data. Plugging in these numbers, we obtain that the value of a claim such as (50) is

0.105. As was shown in the text, this number implies that λ∗(τ/360) = 0.105. Solving for λ∗ gives 0.94.

29The data are quoted at prices with discrete increments. For the out of the money call options that we

consider, this discreteness presents a problem at very short intervals. As maturity nears to less than thirty

days a large fraction of the out of the money call options start to converge to the lowest possible increment

of bid and the next highest increment of ask. This discreteness is less of a problem for longer maturities.

This is why we leave out the very short maturities.
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