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Abstract

The purpose of this paper is to consider the third-order asymptotic properties of bias corrected
ML. We show third-order e¢ciency of bias corrected maximum likelihood (ML) with a bias correction
based on sample averages of certain functions of likelihood derivatives, or on the bootstrap, or on
the jacknife. We give an explanation of these results suggesting that any bias correced ML satisfying
certain regularity conditions should be third-order e¢cient, i.e. that the form of the bias correction
has no ezect on the higher (third) order variance for ML. We also ..nd a stronger equivalence property
for the bootstrap and jacknife bias corrected estimators, that they have the same stochastic expansion

to third-order.



1 Introduction

Asymptotic bias corrections provide useful methods for centering estimators nearer the truth. These
methods include analytical corrections such as the standard textbook expansion for functions of sample
means and the more complicated formulas required for a general maximum likelihood (ML) estimator.
They also include the jacknife and bootstrap methods. The purpose of this paper is to consider the third-
order asymptotic properties of bias corrected ML. We show third-order e¢ciency with a bias correction
based on sample averages of certain functions of likelihood derivatives, or on the bootstrap, or on the
jacknife. We give an explanation of these results suggesting that any bias correced ML satisfying certain
regularity conditions should be third-order e€cient, i.e. that the form of the bias correction has no emect
on the higher (third) order variance for ML. We also ..nd a stronger equivalence property for the bootstrap
and jacknife bias corrected estimators, that they have the same stochastic expansion to third-order.

Pfanzagl and Wefelmeyer (1978) had previously shown that the bias-corrected ML is third-order e¢-
cient, when the bias correction is based on integrals over the parametric density. Our results show that
the expectations in the bias correction formula can be replaced by sample averages without amecting
third-order e¢ciency, which simpli..es computation.

The Jackknife bias estimator goes back to Quenouille (1949). Bootstrap bias estimation was discussed
by Parr (1983), Shao (1988a,b), Hall (1992), and Horowitz (1998) in the context of nonlinear transforma-
tions of OLS estimators of linear models and nonlinear functions of the mean. Akahira (1983) considered
second-order properties of the jacknife and bootstrap. We extend the literature on the bootstrap and jack-
knife bias corrected estimator in two directions. First, we analyze genuinely nonlinear estimators rather
than nonlinear transformations of linear estimators as in Shao. Secondly, the literature on bootstrap bias
corrected estimators has been focused on analyzing bias properties without investigating the emects of
bias correction on the higher order variance. We are instead working with third rather than second order
expansions of the bias corrected estimators. This allows us to analyze the ezect bias correction has on the
higher order variance of the estimator.

In Section 2 we derive the third order stochastic expansion of the bootstrap and jacknife bias corrected
ML, showing that they are identical. In Section 3 we consider third-order e€ciency of the estimators.

Section 4 concludes.



jackknife bias corrected MLE, and argue that they are higher order equivalent. We argue that such bias
corrected estimators should have the same higher order variance as the bias corrected MLE developed by

Pfanzagl and Wefelmeyer (1978), which was shown to be third order optimal.

2.1 Higher Order Expansion of MLE

Let (-, F, P) be a probability space. Consider a standard parametric model where Z;9'_, is an iid sample
Z; » f(z,00), such that f(z,0) satis..es su¢cient smoothness conditions summarized below in Condition
1. The density f(z,0) is a member of a parametric family of distributions P, indexed by 6§ 2 £ with
£ 2 R a compact set. We consider properties of the MLE B where

X
D~ supnil  logf(Z;,0).
02£ i=1
s -
It is convenient to understand P ~ B -&; , where 6 (¢) denotes the solution
z

O(c) =sup log f (¢,0)dF. (z).
62£

Here,
a - .
- - P- 1°
F."F+e¢¢ " F+en PijF , €2 0p=
n
and F and P denote the underlying cumulative distribution function and the empirical distribution func-
P
tion P (2) 7 nit L 1FZ; - 2g.
We obtain bootstrapped estimates b’ by sampling Z7 , ..., Z identically and independently from the em-
P
pirical distribution £. We denote the empirical distributiog of Z7, ..., Z;; by PP ()=nit" " 1fZ° - 2.

Using previous notation it therefore follows that® ~ B = is the solution
Z
b () =sup log f(t.0)dP. (),
02£

where

. . .
b-pr-b+slPn PPib . 2 O,p%

s

3
Here, & is the bootstrap empirical process & ~ P P° § P . We are imposing the following technical

conditions to guarantee the validity of our stochastic expansions.



Condition 2 For each § 2 £ and for m - 7 let ™ log f (2,6) /06" be a P-measurable function of z.

Condition 3 Let F be the class of functions 9™ log f (z,6) /00™ indexed by 8 2 £ for m = 1,..,7 with
envelope M (z). Then,

Az T1/2 -

u
1

sup %IogN 3 M?dQ JF,L(Q) de < A, D
0 Q2P

z

where P is the class of probability measures on R that concentrate on a ..nite set and N is the cover

number de..ned in van der Vaart and Wellner (1996, p.90).

Condition 1 is a standard condition guaranteeing identi..cation of the model and imposing su&cient
smoothness conditions as well as existence of higher moments to allow for a higher order stochastic
expansion of the estimator. Condition 2 together with separability of the parameter space guarantees
measurability of suprema of our empirical processes. As is well known from the probability literature,
measurability conditions could be relaxed somewhat at the expense of more re..ned convergence arguments.
We are abstracting from such re..nements for the purpose of this paper.

Fom Gine and Zinn (1990, Theorem 2.4) and Conditions 1,2 and 3 it follows that, almost surely,
nt/2 f°§ £ ¥ T weakly in [T (F) where T is a Brownian Bridge Process. We use the result on the
convergence of the empirical processes to obtain an expansion of the estimators Bandb”.

Let £(¢,0) ~ Olog f (¢,0)/ 96, ¢° (¢,0) ~ 9?%log f(a,e)iaez, 0% (¢,0) ~ 93log f (¢, 9)1 963, etc. De.ne
1~ iE ée(Zi,Ho)D,Ql ® ~ E 699(Zi,9)u and Q, (9) ~ EEEW"(ZZ-,G)H. It is convenient to express the
resulting expansion in terms of U and V-statistics. We de.ne U; (8) ~ ¢(Z:,0), V;(0) ~ ¢°(Z;,0) i
EEZ(’ (Zi,e)n, W; = 099 (Z,) i EEE"”’ (Zi)u and let U () ~ nil/2 P:’lei(Q), V(9 nil/? Pf’zl V; (9),
and W (0) ~ nil/2 P?:l W; (9) . We obtain the following formal expansion of the ML estimator. Validity

of these expansions was established under additional conditions for example by Gusev (1975, 1976).

h i
Proposition 1 Under Condition 1, there exists some e 2 0,142 such that with probability tending to

one, B satis..es the expansion

3
PRbit = Q@+ P=0 )+ <207 (0) @
2 n 6n
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+a—ﬁ—m :9 (0)+m30 (0)+W‘—p=m7 MQ (E) (3)



and

0°c(0) = 154Qz (fo) U (80)® + 3115Q1 (6o)* U (80)® + 9114Q1 (8) U (60)* V (6o) (6)
+31530 (00)° W (6o) + 61 13U (60) V (6o)°.

Moreover, 6°(0) = O,(1), 8 (0) = O, (1), 6 (0) = O,(1) and maxgzh0 fﬂ_i 0°““ (e) = O,(1). Finally, let
0 =00 +¥=0°(0) + 350°(0) + 73720 (0) such that

pﬁ Bio, =Ll b(9°) + o(nil).

Eso | n

where

1

- ce 1 1
b(00) = 5 oo 101 = 55 Eso 00 L,

and
1 €€ 1 €ce pe 1/2 €€
v (lo) ~ Val’g0 o)+ —E o [0CO T+ n"/"Ep, [0°0°]

Proof. See Appendix A4.

Based on Theorem (1), we can understand Mnﬂ as the higher order bias of B. Likewise, we can
understand § + % as the higher order variance of p.

In order to approximate the bias of the bootstrapped estimate D" we need a similar higher order
expansion as in the case of the ML estimator. Here, however, the reference point around which we develop
our approximation is the empirical distribution P rather than the original distribution F. The convergence
of P to F then guarantees that bootstrapped statistics are close to the original statistics.

We replace I, Q; and Q, with P=jni? P ' 09(Z:,B), B, = it P’.L L 199(Z;, Byand @, = nit P?:1 0999(Z;, B)
and de..ne bootstrapped U and V-statistics as U7 (0) ~ ¢(Z7,0), V= () ~ ¢9(Z7,0) i nit P’.L 0 (Z;,0),

P P, P,
W2~ 0% (Z%) ilg-l " 0% (Z,0)and let UR (9) = ni¥/2" " UM (6), VE(0) =nil/? , V2 (0) and
We () =nil/? =1 W7 (0) we obtain for the following result for the bootstraped estimate @ .

£ o}
Proposition 2 Under Conditions 1,2 and 3 9= 2 0,7i1/2 such that with probability tending to one

PNas., B satis..es the expansion

3
P p b
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2.2 Bootstrap Bias Correction

Bootstrap Bias estimation and Bias correction was analyzed in the context of linear models by Shao
(1988a,b). Let E° be the ex?ectatlon operator with res?ect to P. The idea benmd the Bootstrap bias
correction is to estimate £ B i 0o, if it exists, by E° ? i B. We show thaht E® ?n i B is close to b(0).
This in turn will allow us to construct theibias corrected estimate 2? E" ?u

We ..rst establish that ° = E” Pu i B estimates the higher order bias b (f) consistently.

Proposition 3 Assume Conditions 1,2 and 3 hold. Then
i ¢
b(90)+0plni1 .

n

b =

Proof. See Appendix A4.
While this result establishes that we can consistently estimate the higher order bias it is not sudcient
to guarantee good higher order properties of the bias corrected estimator. For this reason we establish

the next result.

Proposmon 4 Assume Condltlons 1,2 and 3 hold. Then

~ 1 u 1'[

b E° 9 b = TU(90)+1SE —20“(0)ib(90)
L1 1 Hy T

+ 0 0) i, B+o, = .

where B is de..ned in (44) in the Appendix.

Proof. See Appendix A4.
Because

)

E
2

i (6) =0,

we can see that the bootstrap successfully removes bias. In a similar way we can approximate the MSE.

It then follows that
'3p 3 3 - "2_, 3p 3 <7 1
E n BiE® ;b e vaVar " n B 6 iZ—E[Bee].
n

2.3 Jackknife Bias Correction



The following proposition establishes the higher order properties of the Jackknife bias corrected ML

estimator.

Proposition 5 Assume Condition 1 holds. Then the jackknife bias corrected ML estimator has a higher

order expansion as in
p- Lo k
n(0; i) = 0 + = 59 (0) i b(00)
11 11 “lﬂ

+__6€66 - __J+
6n Yo Op

where J is de..ned in (52) in the Appendix.

Proof. See Appendix A4.

It is shown in the appendix that
J =B, ™

which means that the Jackknife and Bootstrap bias corrected versions of the ML estimator are higher
order equivalent. They do not only have the same higher order variance but agree more generally in
terms of their higher order distribution at least as far as the stochastic approximation allows to make such

comparisons.

3 Higher Order E¢&ciency

In this section we obtain the higher order asymptotic properties of the bias corrected estimator of Pfanzagl
and Wefelmeyer (1978). Since that estimator was shown to be higher order e¢cient we will conclude that
our bias corrected estimator is higher order e@cient under quadratic risk if the variance of the ..rst three
terms in the stochastic expansion is the same as for the Pfanzagl and Wefelmeyer estimator.

From the expansion in Proposition 2 we have
3 - 8} 1T
— 1.1 11 1
P Bito =07 (0)+ 2P=0" (0) + 220" (0) + 0, —P= |,
2 n 6n n n

such that the highest order asymptotic bias of MLE is equal to

1 rn N NEE sAN 5



R R R
where 7 (11, t2,t3) ~ Fptatts ts T L(500 f(z,0)dzts T 07 (2,0) f (2. 0) dzts T L(20) L0 (2,60) [ (2,6) d,
1 1 -

0
and m (z,0) = €(z,0)%,0% (2,0),0(z,0) ¢ (,0) . This leads to a bias corrected estimator
5 -
b b
b.” bi )

This bias correction procedure was shown to be higher order e€cient by Pfanzagl and Wefelymeyer (1978).
Our next result shows that as long as we restrict ourselves to quadratic loss any other regular estimator

of b(#) also leads to a higher order e€cient bias corrected MLE.
33 7 -
Theorem 1 Assume Conditions 1,23and 3 hold. Assgjm3e ,thatpﬁ b B ib(8) is asymptotically a
— — ., P,
nonsingular linear combination of pn b ifo, i.e.,pn b b i b(6) = "nit/? i=1 ¥ (Z;,00) +0p, (1)
for some nonsingular =~ where v (Z;,600) ~ 1114 (Z;,00) denotes the eGcient infuence function. Suppose
. . P,
that b,, is any other regular estimator of b (6y) such that3p7_,1 (b i b(B0)) =nit/2" T 0(Zi,00) + 0, (D)
P
for some o(Z;,00) such that E[o(Z;,00)] = 0. Letd 8 = b(fo) + "nil ", ¥ (Z,00) and b, =
P
b(0o) +nit ) 0(Zi,00). Then
A A 1, A A 1,
p— . 50 . P— by,
n 0 1 — 1 0

E 0 =E "n 0i—1ib
n n
We now consider a few special cases of this result that are relevant in practice. Intstead of analytical

or numerical evaluation of the integral one can replace the integral by sample averages. For
A !

>
Bo) 7 ni' m(Z.0)

7
an alternative bias correction is then
3 -

n

b, b

i ¢ . .
We can show that 'Qa and ?c have the same mean squared error up to order O ni! by analyzing their

higher order variance. Let
z
m(0) " E[m(Z;,0)]= m(z,0)f(z00)dz ®)

e T ale Almeim el ™ /AN mm A .lani™— = /n N\ ~— a raxia 0 ar = = Oml(Zi6n) __ R om(z.00) rr AN 1



i i ¢ . ,P ¢ - ¢
where A, =7, M 13U (0p) +ni'/2"  (m(z:,00) i m) , Cp =70 (M + 1) 111U (0o) , and
£ 0@ £ @ -
E C,0°(0) =FE A,060 =7, (M+a)l -

Proof. See Appendix A.4.

This result has an intuitive explanation. Consider any two bias corrrected estimators
9=0+5/n0=0+1%/n.

Suppose that 9, 5, and b are joint asymptotically normal estimators of 8q, b(6g), and b(6p) respectively, so
that ® and & j b are joint asymptotically normal estimators of 85 and 0 respectively. Asymptotic e¢ciency
of the ML means that & must be asymptotically uncorrelated with b j b; otherwise, some linear combination
of @ and  § & would be an estimator with smaller asymptotic variance than 9. Consquently, & must have
the same asymptotic covariance with both 5 and b. Then, since the presence of the bias correction arects
the third-order variance only through the asymptotic covariance of 0 with the bias correction (because
the bias correction is O,(n%/2)) it follows that the bias corrected ML has the same third-order variance
for both % and 4.1

This result seems to depend on the ecciency of the ML, so that for other estimators the form of
the bias correction may a=ect the third-order variance. It would be interesting to extend this result to
estimators that are e€cient within some class, to see whether bias correction would ezect the third-order
variance of these estimators. This extension is beyond the scope of this paper.

Given the preceding discussion, it is perhaps not surprising that the Bootstrap and Jackknife bias

corrected Maximum Likelihood estimators have the same approximate MSE as ?C:
Theorem 3 Assume Conditions 1,2 and 3 hold. Then,
1 € 1 € il
EE[BO )] = EE[JG Ol=rp (M+a) i~
Proof. See Appendix A.4.

Remark 1 Theorems 2 and 3 are irrelevant when the relevant loss function is not approximate MSE. On
the other hand, equation (7) indicates that the higher order equivalence of Bootstrap and Jackknife goes

beyond the MSE comparison.



bootstrap and jackknife procedures can be used to remove bias terms of stochastic order ni* from a ML
estimator without emecting higher-order e¢ciency. Furthermore, we found that the third-order stochastic
expansion of the bootstrap and jackknife bias corrected ML are identical, so that they should have the same
higher-order properties. These results show that analytical bias corrections are not needed for achieving

full third-order e¢ciency of the ML.

A Proofs

A.1 Some Preliminary Lemmas

£ o

Lemma 1 Assume that W, are iid with E[W;] =0and E W2* < 1. Then,
hp i

E (o W) = CR)nk +o(m®)

for some constant C'(k).

Proof. By adopting an argument in the proof of Lemma 5.1 in Lahiri (1992), we have
hp 2 PP P '@ -
E (= W)™ = Cloa,..,a;) E Wi, ©
=1 a I s=1
p
where for each ..xed j 2 f1,...,2kg, _ extends over all j-tuples of positive integers (a4, ..., ;) such that
P
a1+ ...+a; =2k and | extends over all ordered j-tuples (i1, ...,4;) of integers such that 1 - ¢; - n.
Also, C(axu, ..., o) stands for a bounded constant. Note, that if j > & then at least one of the indices
a; = 1. By independence and the fact that EW,; = 0 it follows that EQi=1 ¢ = 0 whenever j > k.

P
This shows that £ (|, Wi)2* = C(k)n* + o(n*) for some constant C(k).

Lemma 2 Surhpose tlhat f¢,,i=1,2,...9 is a sequence of zero mean i.i.d. random variables. We also

assume that £ jgij16 < 1. We then have

S ¢
12X - i

Pr= ¢isn =0'ni®
n’i:l

for every n > 0.

Proof. Using Lemma 1, we obtain
2- - 2



Lemma 3 Suppose that, for each i, ¢ (¢),i =1,2,...9 is a sequence of zero mean i.i.d. random
variables indexed by some parameter ¢ 2 ©. We also assume thﬁlt sup¢i2©j£i(¢)j - B, for some sequence

of random variables B; that is i.i.d. Finally, we assume that £ jB,L»j16 < 1. We then have

- #

-1 X - ) - ¢
Pr _-p= 51 (¢n)‘ > TLE‘IZ- - o) lnl1+16v
n

=1

L L
for every v such that v < 7¢. For v < ;5 we have

u: : #
-1 X - ) )
Pr 113—?—1 & (@,)-> niv = o(n! l).
i=1

1=

Here, ¢,, is an arbitrary sequence in ©.

Proof. By Markov’s inequality, we have

vz z # v z #
1 X T i X Tz
Prosup-P= & (¢)->nt2! = Pr sup- & (¢,)- >ni2!
$20 N ._, $20 ;= .
P, 16"
E supyoe (=1 €, ()
i 28§ 160,16
"hp i
P, 16
_SUPe B (i E(9)
B n%i16v)16 ’
where the last equality is based on dominated convergence. By Lemma 1, we have
ZA 1. 3
> =16
E4  &(e) O-ond

i=1

where C > 0 is a constant. Therefore, we have

R # . . .
Pr supZ-p%: Cn = pi4E+iy

.
) “>npizit? L — — — =
$20 n i:lg'L (¢) n28/31 167),,716

P
Lemma4 Let & (9) ~ L ", log f(Z;,0). Suppose that Condition 1 holds. We then have for all > 0

n

that

22



Lemma 5 Under Condition 1, we have
" oo,

. . - 23
Pr 0@9%19(6) ifj.n =0 n'3

for every n > 0.

Proof. Let n be given, and let ¢ = G (6o) i SUPsg:jo ; 00j>ng G (0) > 0. Letting g(2,0) ~ log f (2,0),

we have

Z
p

GO dF. ()= "1 n GO)+ nd (o)

and

-Z -, z -z -
S g dE ()i GO - 15 PR O i Gy - 00 i GO

Here, the last inequality is based on the fact that 0 - € - 'é; By Lemma 4, we have
# -

-Z

- 3
Pr max sup: g(z,0)dF.(2) i G(H):b n =o ni%s
0-5-'&;’ 9
2 -
Therefore, for every 0 - € - 1&% with probability equal to 1 j o ni% | we have
z 1
max 0)dF, - max G (@) + =
01 00j>n 9(=0) ) §0 1 00j >n © 3°
< G0 i 2e
7 3
1
< g(z,00)dFc(2) i 3¢
We also have
z z
max g (z0)dF.(z) . g(z.60)dF.(2)
by de..nition. It follows that
YA z 1
_max  g(z,0)dF.(z) <max g(z0)dF.(z) i Z¢
j0iboj>n 0 3
h i 3 -

forevery 0 - ¢ - 13: We therefore obtain that Pr maxy. .. g=jd(e) i 6oj . m = o ni%s |



Also,
~7 z #

- - _ .
Promax - K (50(c)de > Cn®H =o' pilti6y
0-€-

n

i ¢
for some constant C' > 0 and for every v such that v < 1—16 If v < %8 then the above order is o 'nil .

Proof. Note that we may write

z
K (2,0 (e)) dF: (2) i E[K (Z;;00)]
z z
= K(z;0(@)dF. (2) i K (2;60) dF (2)
z z z z
= K(z0()dF. (2) i K (z:00)dF.(2)+ K (200)dF.(2) i K (20(€))dF (2)
2 9K (207 z N

= SO iR @+ KGod PiF ()

where 9° is between 6y and 6 (¢). Therefore, we have
- - A
-Z

Z _ x
- K(%0(€)dF.(2) i E[K(Z;00)F - j0(e) i bojt E[M (Z,)] +711 M (Z;)
- i=1

1 X
+35 (M (Z;) i E[M(Z))])-

i=1
where M (¢) is de..ned in Condition 1. Using Lemma 5, we can bound
Z -
max, -~ K(z;0(e))dF. (z) i E[K(Z;;60)]
0-¢€- 1:3;

2 .

in absolute value by some n > 0 with probability 1 j o ni Zsf' . ~
R Z

Using Condition 1 and Lemmas 3, we can also show that K (¢;6 (¢))d¢ can be bounded by CnEiv

for some constant C' > 0 and v such that v < 7% with probability 1 j o' pilriey” Similarly, if v < &

48’
then the statement holds with probability o(ni1).

Lemma 7 Suppose that Condition 1 holds. Then, we have
" #

i i ¢
Pr max JQE (G)J > Cn_11§ v = Olnl 1+16v
O-e-ﬂi

. #
3. 2 i ¢



Proof. From (28), we have
-Z sjl -Z >
0°(e) = i 0 (2, €)dF. (2) L@ e)de

Using Lemma 6, we can bound the denominator by some C' > 0, and the numerator by some CnEiv

. . i ¢ . . .
with probability 1 j o ni'*1®v  from which the ..rst conclusion follows. As for the second conclusion,

we note from (29) that we have
nz 11

0= E 17 (2 (0F@F + B (Zoe) 0@ +2 (7 (2,0d€ () & ()

The second conclusion follows by using Lemmas 6 along with the ..rst conclusion. The rest of the Lemmas
can be established similarly. Note that if v < 75 then we can apply the specialized result of Lemma 6 in

the same way as before.

Lemma 8 Suppose that Condition 1 holds. Let #; (6) .be as de..ned in 8. Then

PrPil =iV ()i Qubo)l U 60)+ o, (1),

Pl @ B i Qu(B) =W (00)+Qaz(b0) 172U (80) +0, (1) ,

P T b T (00) = 2E U (00) Vi (0o)]1 11U (o) + 0, (1) |

p_3_3'_ - 3 h 2i . ot '_

n ms B ims@) = E Vi(6) + E (°(Z;,00) ~+ E[U; (6o) Wi (00)] 111U (60)

R
Proof. Let mo(8) = % (2,60) f (z,00) dz. Note that
a -
L, P £ o
il = init 0 2,0 +E (2,00
=1 - pu -
1 P oy ¢ ° i1/2 3— ? -
= jnt 0°(Z;,00) i mo(Bg) +o0p nt i mo P im0 (6) ,
=1
where the last equality is based on the usual stochastic equicontinuity. Also note that dmyg (6)/ 90 =

R
099 (2,0) f (z,60) dz by dominated convergence. We therefore obtain

-~ -~

P 3 R j £ a¢ £ np_3
nPil = ini27 (2,00 i ECO(Zi0) i E (°9(Zi00) n Bty +o,(2)
=1



3 3 - - -

_ £ op 3
W B iTio) = 2B 0(Z:,60)C (Z,00) Th Bidy +o,(1)
= 2E[U;(60) Vi (60)] 1 11U (6o) + 0, (1),
3 3 ~ - 3 h i £ u'p_3 -
n ms B imao) = E °(Z,00)° +E ((Zi,00) " (Zi,00) n Bib +o,()

3 h 1 i £ a¢,
E Vi(6o)® + E ((Z;,60) ~+ E[U; (6o) W; (B0)] 17U (6o)

A.2 Lemmas for Bootstrapped Statistics

Proposition 6 Assume that Conditions 1,2 and 3 hold. Let F be the class of measurable functions
de..ned in Condition 3. Let A denote weak convergence. Let (—,F,P) be a propability_space such that
Z; i—"‘,F’\‘,P"‘¢ ¥ (-, F,P) are coordinate projections. Then, for f 2 F , P b i F fATf where
T is a tight Brownian bridge with variance covariance function F (¢ s) § F (s) F'(t). Let BL; be the set
of all function A : 1% (F) A [0,1] such that ja(z1) i R(22)j - k21 i zoke for every ziand z, where 11 (F)
is the set of uniformlx bounded real fulnctions on F and k.kg is the uniform norm for maps from F to R.
Then sup,opp, E°h ©n D= i B f i ER[TST 10, PNas,
2 .

Proof. We ..rst show that forhf 2F, pv_z P i F fATf orinother words that F is a Donsker class.
n i o

a

De.neFs= fig:f,g2FE kfiogk <6 ,Fr =Ffig:f,g2Fgand F4 :©f2:f2F1 .In
light of van der Vaart and Wellner (199?], Theor{em 2.5.2), it is enough to show that Fs and F4 are F
measurable classes for every § > 0Oand £ M (,z)2 < 1. The second requirement is satis..ed by Condition
1. Since F5 % F4 the ..rstcondition holds if for f 2 F4 and-any vector « 2 R™ and any n the function
s(Z1,..,Zn) = sup(,l,(,zz,g‘F);1 a; ié(k)(Zi,el) i (¥(Z;,05) ®~is measurable. Let £, be an increasing
sequence of countable subsets of £ whose limit is dense in £. Then

A -
- .-
$6:(Z1, . Z) = sup = a; 99(Z;,00) i (%(Z;,0,) -

01,022£

i

is measurable by Condition 2. By continuity of £¢)(Z;,6) in @ it follows that

Ninf 85 (Z1, e, Z0) = (21, e, Za)



h i
variables B; that is i.i.d. Finally, we assume that £ jB;j'*® < 1. We then have
"o - #

-1 X - i i ¢
PP = (6, > 0Bl =0, nilhier
n
i=1

for every v such that v < 75. Moreover,
" #

_ - s i
L 1 X L C ] ]
- §L (¢71)_>n112'I’U :017 nl-233
=1

1=

Here, ¢,, is an arbitrary sequence in © and P° is the conditional probability measure of Z; given Z;.

P

Proof. Note that P;L:l &(g) = P;;l (Noi i 1) 7(Z;, ¢) where N1, ..., N,,,, is multinomially distrib-
uted with parameters (n,1/n,...,1/n) = (k,p1, ..., p») and independent of Z; such that Pr \»; N,,; = n;g) =
n!/ (Qi ni!)Qini’” where p? n; = n,n; , 0.Let k., ., be the mixed higher order cumulant of
Nup1, ..., Ny of order r =y +...+1r, for r; _ 0, r; integer. Mixed higher order cumulants can be obtained
from Guldberg’s (1935) recurrence relation x,,,, r,+1..r, = @;0 (Kryrp.r,..r,) /Oa; Where a; = p; /p1. Let
b be the number of non zero indices ;. The arguments in Wishart (1949) imply that for p;, = ni' we have
Kryra...mn - cni®*1 for some constant c. For notational convenience we will represent cumulants with zero
indices as lower order cumulants of the variables with non-zero indices, i.e. Write K . .e;.. = Kriro.rn

where 7; = 0.

Consider - - # " - - #
. e . XD =

P® supZp= §(#)->n22iY = P° sup-  § (¢,)->n22tY
920 T oy 920 =y -

i P, a 16I
E Sup¢2©( Z‘:]_gi (¢))
nZi 16v))16

P 16i
SUpsoe E° (=1 &5 (9))
n% i16v)16

b

where the last equality uses the fact that sup,,o does not involve N, ..., N,,. By adopting an argument
in the proof of Lemma 5.1 in Lahiri (1992), we have

P
@lT(ZitaQS)atEn @ (ans i 1)045’ (10)

s=1

o Pn o 2k P P
E ( =1€i (¢)) = ) C(ala"'vaj)

g 7=l a 1 t=
F)
where for each .xed j 2 f1,..,2kg, _ extends over all j-tuples of positive integers (au, ..., a;) such

P
that oy + .. + a; = 2k and | extends over all ordered j-tuples (i1, ...,i;) of integers such that 1 -



P -
where . 4., indicates the sum over all ordered sets of nonnegative integral vectors r® r® >
P
0,whose sum is «. Since the order of 10 depends both on the number of nonzero termsin | and the size

of p(a, ..., o) for each j, we analyze the term
XY . Y .
S(n,j) = m(Zi, @) E (Npie 1 1)
| t=1 s=1

foreach j. Note that _Q§:1 7(Z;,, $)**" isbounded almost surely and therefore does not acect the analysis.
Also, | is a sum over n/ terms and thus is O(n’) if all these terms are nonzero. The crucial factor in
determining the overall order is therefore E* Qg:1 Vo, i 1) . We start with j = 1. Then oy = 2k,
g = 1.2k and r(” are scalars. Consequently, R = where ¢; is some constant and S(n,1) -
c2 Pinzljr(Zit, ¢)j2]‘”’ for some other constant c,. If j - k then for ¢ = 1...2¢, »® are vectors with possibly
only one element dicerent from zero. Again, S(n,j) - c2 P, szle(Z,-t,¢)ja5 forj - k. If j _ k then
« contains at least 2(j j k) elements «; = 1. Now assume that for some p, ri(”) =1 and rgp) = 0 for
i & j. Then K@ = E (N, i 1) = 0 and thus ngl K00 @ = 0. On the other hand if ri(”) =1

®)

and T & 0 for at least one j & i then K » » . - cinil. Since there must exists p’ corresponding
y T 2

T

0 0 0
to the other ap = 1 such that either *%? = 1 and rg”) =0 for ¥ & j or r,fé’) = 1 and r§”) 60

for at least one j & ¢’, it follows that ~'_ ko @ o = can 2GR at most. It now follows that
@0 S

S(n,j) - canizUih) P, Q§:1 ir(Z;,, $)j* for all j > k. Then,
A 1
: i > Y. ; Bor 2k
EjS(n,j)j-c2 FE iT(Zi,, 9)% - con! Ejr(Z;,,9)j
I t=1
for j - k and
A 1
X Y _
EjS(n,f)j - con®9D B in(Zi, )™ - can®™ VY Er(Zi, OF" - conEjr(Z;,, )i
| t=1

for j > k. Together these results imply that

o -
EE°( ™, & @) - CIFEjr(Z,, 0%

P ,
where C (k) is a constant that depends on k. By the Markov inequality it follows that E° (" |, & (¢)*" =
O,(n*). We conclude that



Lemma 10 Under Condition 1, we have
" - - # .

3
_ i%
=17 —=0p N

p* Or?aé_n Pl

Proof. For any n > 0, there exists some ¢ > 0 such that j0 j 6oj > n/2 implies jG (0) i G (6o)j > .

Let @ (6) ~ R g(z,0)dP" (z) and @ () ~
" i S " i
P® O_n:gxﬁn‘?n(e) ib_n -pP°
Because
cBE ich = ¢ l@“(e) i @ '9 ©.
+ &0 it !9

and

)i ROy - €0 bOy.

we obtain

3 “_

Gb(e) iG b~

max
0-e-

sup o ©) i @w) +sup é’w) P Gy

+ max <§ @(e)i@

b + max
0-e-

sup‘@“ ©) i @«)) +sup @(e) P GOy

+ o max '(9 '9(6)

(9 b +max

-€-

sup‘@“ ©) i @w) + sup @(0) i G(o)‘

92£ - 02£ 4

+max‘<9 '9((—:) i 2 P+Q°b.@@ +@P.Gl9‘

2sup @“(9) i (9(9) +2sup @(9) G(O) + Jmax_ (9° @ (e)

02£

Rv | emma 9. we have

R g(z,0)dR. (2). Then,

- #

3 -

O_T?%_G(b )iG 8 >6 .

o+ @ b © @;’b“(e)
+ @6 b iG p
é b i G b‘

Qb|@@+@b|Gp_

i @ 9 - (11)



where 1 ftg denotes an indicator function. For every o > 0, we have

Pr pP° sup‘@(@)iG(G)_>é > onis
92£ 6
- Y C z Ya
= Pr1 sup @6)iGEO >= >0
. 62£ B

s

(o2 Ko}

Pr sup:@ © i G(G): > o o(1)
92£ 6

where the last equality is implied by Lemma 4. It therefore follows that
; - - 2 -

p® sup'@(@)iG(e)‘>é =0, ni%
02£ 6
Finally,
- 3 - 3 " - 3 - 3 - 3 7 3 _
max @ B () i®@ B - max @ B i® B+ max € b i& B
0-5-'&;’ 0-6-1:]"7L _O-s-'ﬂ;’

= max Ssup®° (@) i sup® @)+ max & b
O_C_ﬁ_gp @) up ()_ oM

- max Esup CHOF :~:up(§?(9)£+:(§’u b
~ 6

O-c-P= ¢

- max sup®°(0) i &) +sup&°0) i &)
0-c-7= 0 _ 0 _ _

- max sup®°(0) i &(0) +sup-&°0) i @)
0-¢ -_-rs'I; 0 _ 0 B

- sup:@“ ) i @(9):+sup :@“(9) i @(9):
0 - - 6
= 2sup ®° ) i &)
6

Here, the ..rst equality is based on the de..nitions of B” (¢) and B. Because
- - - 3 -

P* sup ®°(0) i ®() >6 =o, nis
02£

we can cqpclude that

. £ oL

3 3 7
o - o] a o Z 5 =23
P Or?ax_a_ @5 b (e) 5@6 p >§ =o0p, n's

n

The conclusion follows by combining (11) - (15).

i@ b -

(13

(14

(15

Lemma 11 Assume that Condition 1 is satis..ed. Let K (¢;60 (¢)) be de..ned as in Lemma 6. Then, for

anv n > 0. we have



Proof. In the same way as in the proof of Lemma 6

Z 3 - Z
K 20 (e) dP.() i K (z00)dP (2)
z 7 3 -
K — o
- % B (o) i o dpe(z)+6pn K(=00)d P°i P (2
where 9° is between 6, and b (¢). Therefore, we have
Z z - - A !
- - - - 1 X 1 X a
- K (z0()dFc(2) i K (z00)dbP(2)- - @ (6) it — MZ)+- M)
n n
=1 —-1=1
-1 X w1 X -
+ - M(ZZ) i— M (Z;)-
n._ no_
=1 =1
P
where M (¢) is de..ned in Condition 1. Let 7 = 45" M (Z;)and yo=4 'y M (Z7). Then, for any
n and some ¢
h- . - i h- . - i £ - S
PP O @it >y -P B ()iby >nfc +P° M iEMZ)] >c =0, ni3

3 -

since P"° ]\91 E[M(Z)] > ¢ = 1 with probability equal to P M E[M(Z )] >c =o ni% by
Lemma 2 and zero otherwise for some c¢. Then, P* M E[M (z; )] > c = o0, ni Z by the same

argument as in 13 Moreover,

3 -

h - S| h- - i £ I
P* B (il M i >y -P° B ()il >nfc +P° M i M >c =0, ni3

by Lemmas 9 and 10. It thus follows that for any 7, > 0,
H. Z Z : T[ 3 -
P* - K@z0@)dF.(2) i K (z00)dPGE)y>n =o, ni3
3, -
Finally note that P® ~ K (2;600) dP(2) i EK (z;60) >n = 1 with probability

p-Z -

P - K(560)dP () i BEIK(%00) >1 =omi?)

by Lemma 2. Thus, by the same argument as in 13

LJ.EZ - ) 3 -
pP" - K(z;@o)dp(z)iEK(z;Go)->n = o, nis



where

= - 3
< Z . ¢

P4 sup - K(¢§9)d@‘>CnfEiUS:OPIniHle

joibj<s
follows directly from Lemma 9 and
" 3 - h . )
o e _ - _ 23
P O-T?Xﬂ-nb(e)lbbé_op nt3

follows from Lemma 10.

Lemma 12 Suppose that Condition 1 holds# Then, we have

_ _ 3 ~
n¢ — i 23 B !
p® max_ D () >Cn2Ziv = o, maxnis, pil+iey
O-E- n
h - - . # 3
3 3
B ~ 2
R A <, _23
pPr max @ (E) >(C niziv = op maxni 3’n|1+16v
0-¢-Px
" ~ B o )
3 3
a Tjacecece - L., 6 23 1160
P? max BT () > C iz = o0, maxniz ni

0-c-
for some constant C' > 0 and for every v such that v < 3&.
Proof. Let M, :ZR # (z,€)dP, (2) such that
P ()= iMit 0@, e)d@
and for any § > 0 some C > 0 and for every v such that v < ;‘5

h- - i -Z E .
P® B (o >CnTiV - P® osup- ((t,e) d®- > sCnTziY
.= £, o
+P° sup M. i E °(200) .96

3 € -~

- 23 -
— 1+16v
= o0, mMmaxn's3 nt

by Lemma 11. The rest of the Lemma can be established similarly.

A.3 Moments of Bootstrapped and Jackknifed Statistics

The following results are stated without proof. They can be derived with straightforward but tedious
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Lemma 14 Let X7, =7, Z°,8 for k = 1,2 be some transformation of Z°, where 7, possibly depends

on the sample £Z;9;_, through B. Then

Tr T
P P .
E® ©=  X;, = X,
=1 i=1
K T T
k> il P P
= X1,¢X2,¢+n7; = X1, = Xo
i=1 i=1 i=1

where sz = Tk(Z,;, p)
5 -
Lemma 15 Let X, = 7y Z;’,@ for K = 1,2 be some transformation of Z7, where 7, possibly depends

on the sample fZ,g;_, through B. Then
"H Th 1.

P P P
Beoee x5 oA X e X3,
=1 =1 A =1 !A

-
>
-

—_— P
Lemma 16 Let UZ(0) = €(Z2,0), VE(O) ~ ¢°(Z2,0) i (0(¢,0) ~ ¢°(Z2,0) i nit 7 0°(Z:,0),
o = 00 (7BY - 100 (¢ 0\ — 000 (79 - -1Pn 06 o -1/2Pn o
W?(6) CO(Z7) 1 %9, 0) e°(Z7) i nt e 007 (Z;,0) and let U (@) = nt =, Uz (0,
o il ZPn <] o il ZP” o
V@) =nit2" T VE@) and WO () =nit/2 T WF(0). Then (a)

h 3 7i
E° U B = o
h 3 7
Evih =
h 37
E° W= b = o
()
RS p 3 "
E® U® B = 1 ¢ z,b
h 3 7 3’i i;3 - 3 -
eruvtbvele =170 z.b e 2k
i=1
()
h 1 @n?’ ’3



Lemma 17 Let

_ 1 _ 1 X
n =1 n i 1 o
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Lemma 18 Let
A 1A 1
x e
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A.4 Proofs of Main Results

Proof of Proposition 1. Let O@) = Iog £,0)df (2) .Q.0) = Iogf(¢,9) dF. () and Q(0) =
Iogf (¢,0)dQ (2) such that Q.(0) i Q) = e n Q(é) i Q(0) . By Conditions (1), (2).and (3) and van
der Vaart and Wellner (1996, Theorem 2.4.3) it follows that sup, jQ.(0) i Q(0)j - sup, :Q(G) i Q(Q): 1
0 in probability. By van der Vaart and Wellner (1996, Corollary 3.2.3), it follows that uniformly in
€2 £i nil/2 pi 1/20, D) ¥ 0. This implies that for any compact set X % £ with 6y 2 K, P(D(c) 2
K) ¥ 1, asn B 1. Considgr the function G (e,0) ~ R £(¢,0)dF. (). If O£ is the boundary of £
then PG ¢ 9(6) &0) - P 9(6) 20 - 1jP@()2K) ¥ 0. We now condition on the event

G e,@(e) = o
By Taylor’s theorem there exists some = 2 [0 1/p_ such that@ n'l/z =6(0)+ Pkm 11 kmk/z 6™ (0)+

L0 (). By Lemmas 5 and 6 it follows that max, ., ., 112 0% (€) = 0,,(1) such that the remainder

mlin

term

2700 (¢) = 0, n'm/z for m - 6. To .nd the derivatives 6%, let

h(z,€) = £(z,0(9),

and rewrite the ..rst order condition as
Z
0= h(z,e)dF.(2)

Direrentiating repeatedly with respect to ¢, we obtain

z z

0 = %dﬂ(z)+ h(z,€) dE (2) (16)

0 = ’ %dﬂ(zwzz dhf; 429 e () (17
z z

0 = %dﬂ () + 3 %dd: ) (18)
z z

0 = %dﬂ (2) + 4 %Cm ) (19)
z z

0 = %dﬁ‘e () +5 %fm ) (20)
z z

0 = %dﬂ () + 6 %d(ﬁ ) 1)

Note that



d*h (€)

d€4 — Z0990 (06)4 + 6[099 (05)2 o€ + 3£99 (066)2 + 4[00669666 + 6096666 (25)
d°h
TS(E) — 200009 (66)5 + 1060900 (96)3 666 + 15[(90996 (066)2 (26)
+10£999 (96)2 e + 106909669666 + 56999696666 + 69966666
d®h
d_ée) — 5909909 (96)6 + 15699099 (96)4 0% + 4559099 (06)2 (966)2 (27)
€

+20£9999 (96)3 9 + 15€099 (065)3 + 60£990960€60€6€
+15€000 (06)2 geeee 4 10£09 (0656)2 + 1569006606666 + 6£0906966665

+690€eeese

Here, 6° denotes the derivative of § with respect to e. Combining (16) - (19) with (22) - (25), we obtain

z
0=E 0.0 0@+ ((.0de () (28)
c 5 c . nz |
2
0=E. (" (Zi,e) (0°(e)) + Ec (°(Zie) 0 (e)+2  (°(z,6)dC (2) 0° (o) (29)
0 = E Ez”@(zv e)n ° () + 3E, EW (Z;., € neé(e)eée () + E ££9 Z; e)u 6° (e)
€ HZ 19 1.|. € ij_z) 1.[ € 19
43 ("(z,0)de (z) @) +3 (2,0 deE (z) 0 () (30)
0 = é”‘” (Zwe) (6 ()" +6E. 6"9"(27,6) (9 ()70 (¢) + 3E. é"" (Zz,e) O (€))°
+4F, 599(21,6) 0° () 0°“ (¢) + E. 69 (Zi, ) o () +4(0°(€)° (2, ¢) de (z)
Mz T Mz T
+120°() 0 () 9 (2,€)dC (2) + 40 (e) (% (z,€)dC (2) (31)
£ o0006 u 5 £ o 3
0 = E !/ (Ziye) (6°())” + 10E, (7% (Z;,€) (6°(€))” 0 (¢)
158,50 (2,00 () (0 () (32)

£ o0 . 2 £ o0 :
+10E: 77 (Zi,€) (0 ()" 07 (€) +10E. L7 (Z;,€) 0% (€)0 (€) Lz q

£ o £ a
+5E, 1% (Zi,€) 0°(€)0° (&) + E. (7 (Ziye) 6°“(e) +5(0°(e))* 7% (2,¢) d€ (2)



and
E 000006 o 6 £ 0600006 o 4
0 = E ¢ (Zive) (0°(e))° +15E, %% (Z: €) (6°(e))* 0 (e)

£ o £ a

+45E, (7% (Z,,€) (6° () (0° (e))* + 20E, €% (Z;,€) (°(€))° 0°“ (¢)
£ 000 o 3 E 000 q

+15E, (999 (Z;,€) (65 (e))® +60E, (% (Zi,€) 0°(€) 0% (€) 0 (€)
£ ] £ o

+15E, (9% (Z;,€) (0°(€)? 0 (€) + 10E, %% (Z;,€) (6° (¢))?
£ ] £ o

+15F, 099 (Zi,e) 0 ()0 (e)+6EEZ€99 (Z;,€) 0°(e) 0“61516 (e)

81

B2, 0 (90 @ O (g de ()
¥4 T Mz il
+60(0° ()260°°(e) (7% (z,0) dC (2) +900° (6 () €9 (2,€)dC (2)
Kz T pz bl
+60 (65 ()2 6°(6) Y (2,6 dE (2) +600° ()0 (e) 1 (2,6)d ¢ (2)
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Here, E.[¢] is de..ned such that
z

Ee [g (Z256)] . g(Z,é) dFe (Z)

Evaluating expressions (28) - (31) at e = 0, we obtain
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Proof of Proposition 2. Let §°(6) = R log f {¢,0) dF® (=), Q.(0) = R log £ (¢, 6) dF. (2) and O(6) =
; log f (;,6) df* (=) such that O.(6) § O©) = ¢-n 0°(0)i O(®) . By Conditions (1), (2) and (3) and
Giné and Zinn (1996, Theorem 2.6) it follows that sup, :QG(G) i Q(G): - supng“(e) i Q(G): Y 0in
probability, PNa.s. By standard arguments such as Arcones and Giné (1992), it follows that uniformly
ine2 £i nil/2 pi 1/20, 0" (e) § 9, PNa.s. This implies that for any compact set X % £ with 6, 2 K,
PO 2K) 1 1, PNas, asn L 1. Consider, the function & (¢, 0) ~ i 0(,0) dE (2) . If O£ s the
boundary of £ then P°(& rf,@l(e) 60 - F° (20 - 1§ P°(0°()2K) ¥ 0,.PNas. We
now condition on the event & e,@n (e =0 .By the same grgumepts as in the proof of proposition 1

£ _ o — o € Pm = k
it follows that there exists some e 2 0,ni%2 such that b7 b ib =00+ k:'llmlm?( )(0) +

m € R R
WP( )(e) PNas., where B (0) is obtained from evaluating  422gb, (2)+  h(z,¢)d@ (2) at e = 0.
We obtain

Z Z

0,(ni™2)y = 19z, 0)db ()P (0)+ ¢ z,b d& (),

where " P D)dP () ~ nit P;?:lge(zi,P) and @ (2) ~ pﬁsp“ (2) i P(2) . Similar expressions can
be f0l13nd for higher order derivatives of ?(e). These expressions depend on nit Pyzl AQ) %,? and
R (® > B 4@ (z)fork =0,1,...,6. By Condition 1and Lemma 5, it follows that 71 P?:1 (™ z. b i
EEK(k) (Zi,t90)u by a uniform law of large numbers. By Proposition 6 the class F is Donsker. By the proof
of Theorem 2.4 in Gine and Zinn (1990) it follows that the following conditional stochastic equicontinuity
property ]

A 27 '

= < -



or
z z

@ 2 b A& ()= (™ (2,60) d& (2) + 0,(1) PNas.

It now follows from Proposition 6 and Theorem 2.4 of Gine and Zinn (1990) that i %) (2, 60) d& (z) A
) (2,00)dT (z) almost surely, where T (z) is a Brownian Bridge process. We ..nally, have tg analyze

the term @;m) (¢) which contains expressions of the form R (9 (2,8 (e))dP. (2) and R @ 28 () d (2).

For R o«R) -z, Pu(e) e (z) we use the same inequality as in (40) together with Lemma 10 to show that

Z 3 - Z
9 B d8 ()= 1P (2,00)d® () + 0,(1) PVas.

Next consider )
’ O, b”(e))dP. () i (9(z,00)dF Gy

: jej_zz (®(9"(9)de (z)5+EZ €<k>(z,ep>d3F(z> y7e)

+ * he(’@ B ©) i (P, eo)i P (z)E

R a
where (@ (2,0 ())d& (») = 0,(1) PNa.s. by Propaosition 6 and supjeg = O(ni%/2). The second term is

o, (1) by a law of large numbers. Finally,

Ho Z ] i - 1
P® sup- (P 0 () i (P (2,00) dP ) >9
¢ A Zh i - 1 A - - 1
P sup - B 0) i D 0) dP()>n + P sup. B()iby 0
jOi 6oj<o 0-6-1/p_n

where the ..rst probability is zero with PN-probability tending to one by stochastic equicontinuity and the
second probability goes to zero by Lemma 10. 1t follows that ; (B (2,07 ()db. (2) § E/®(2,00) PVas.
Together, these results imply that sup, :?(k)(e): =0, PNas. for k - 6. This establishes the validity of
the expansion.

Proof of Theorem 3. Introduce the truncation function h,,(z)where

% in® ifxz< in®
z  if joj < n® (41)
=
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Usigg the expansion for PE b° i P from Proposition (2) together with L%mma (12) it follows that
Py i Q_ >notl/2 =, (n12°/3). This shows that we can replace E° B i B with a truncated
integral £°h,, b i D . Let

B - nit/2h (0) + —;%? (0) +

1 1 €EE 1 1 EEEE
532 0) +§ﬁ@ 0).

Because jhn(z) i ha(y)i - 2n* ™Kz i_yk, we have
_ i - A .
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Fix e > 0 and 5% <6< -; arbitrary. Taking expectations with respect to the measure P leads to

" h 3. i h 3 _°iC
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" o o #

sup.. °B T (9)° > em?i?
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Use the fact that P° gokos sup,. ., P =B (€)° > e/n2i% = o, 'ni76/60806/9)5" by setting jov =

1/60 +6/5 in Lemma 12. Choose 6 2 (7/96 + (5/16) a, 1/2) . It follows that

000

" h o=_ i h o2 i 3
" h, B i i E° M, ba T - g/mP0 + 20, n 1 76/60i (16/5)0+a
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Next, we need to show that E° h, 8, i E° B, =0, n®/? . Note that
oh 37 h  i- h- . N - oi
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h- .- n- .- oi
- E* 91 B n
h n- - oi
+n®E° 1 B n®
2- 3
_@a_
- 2Er8—=4
(n*)

- “:4 N . . € €€ €€e €ece
Here, B, is a forth order polynomial in a = B (0), b = 28" (0), ¢ = 1" (0), and d = £B"™ (0).

o]
Expectations of all terms of the from E® a’b/c*d' where i,j,k,1 2 0,1,2,3,4gand i+ j+ k+ 1 = 4
£ o] o}
are bounded in probabili]ty sgch,'ghat E‘;] a’LibJ Fd' = 0,(1) where E® La* = O,(n ihz) is the Iarqest
B v o - . ¢ i ¢ .
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In order to gvalugte £° B,. we useProposition 2 by which B (0) = Pilp® b B (0)=PpPiz0, b " B +
2pizy= b v° B and
3 7 3 '3 3 ’2 3 ’3 3 7 3 ’2 3 7
(0 = Pi*d, b U" B +3PiS®, b U° b +obi‘d, b Um h Vv b
3 7 3 7 3 7 3 7
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Note that b, @1 and @2 are constants with respect to £°. It thus follows that

h ., i h ‘i
E° B =Pi'E" U B =0
. 5 - 2 -
. 2% P, 2 .
by Lemma 16(a). We consider £ U b = -f; izl ZZ-,? . By Proposition 6 and van der Waart
and Wellner (1996, Theorem 1.5.7) it follows that
A - S |

: P 2 1 P 2 _
limsup P sup 5 (Z,0) iy 0(Zi,00) > =0
n® 1 j0i 6pj< o i=1 =1
such that by Lemma 5 it follows that
. oz

2° P
E°U B =17 0(Z,60) + 0,(0).
=1

Similar results can be established for the other expressions of Lemma 16. It therefore follows that
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e P P
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It also follows that E* B (0) = O, nil/2 py the same arguments. Therefore

h i C e
g, 00 i
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which establishes the result.
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Proof of Proposition 4. First note that E° h, 8 §B =E°" B +o0, 'pi3/2 by Theorem 3.
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It follows that
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Using Lemma 8, we obtain

P

where

B 7 31'Q1(00) U (60) + 17°Qz (60) U (6o) :1- 617Q1 (o) E [U; (60) Vi (80)1 U (Bo)

nB, =B+o0,(1),

hll

(42)

(43)



Combining (42) and (43), we obtain
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from which the conclusion follows.

Proof of Proposition 5. Write 6° = 6° (0), etc, for notational simplicity. Because
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Therefore,
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for every v such that v < %. In particular, we have

_plzeeeeese (e) =o, (1) (46)

n

By Lemma 7 again, we obtain
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Here, the ..rst equality is based on the fact that Z; are i.i.d., so that 6{;y“ (¢) are identically distributed
forj=1,...,n. In particular, we have
1 X 9666666 i ¢ 1 47
—p—_ - @ = 0,
(nil no_y ) () op (1) (47)

Combining (46) and (47), we obtain
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Note that 6°°*° is a sum of V-statistic of order 4 as considered in Lemma 20. Likewise, 0°°“*“ is a sum of
V-statistic of order 5 as considered in Lemma 21. Therefore, combining (38) and (39) with Lemmas 20

and 21, we obtain
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Combining (4), (5), (6) with Lemmas 17, 18, 19, we obtain
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Combining (45) with (48), (50), (49), and (51), we obtain
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Proof of Theorem (1). Because B is an e¢ci3ent estimator of 6, it follows that b B is an
eCcient estimator of b (¢p). Denote the limit law of p7_1 b(l9) i b(6o) by L. By the convolution theorem
P (b i D(00)) A L+ W where W is independent of L and A denotes weak convergence. This can only



Now, note that we have the expansions
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Because ¢° (0) = ni/? =1 % (Z;,00), equation (53) implies that covariances of the “adjustment terms”
of order n1* with 6° (0) are equal to each other,,

Proof of Theorem 2. An expansion of b b gives
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Plugging these expansions into that for b gives
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Also,
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Proof of Theorem 3. The asymptotic bias of the MLE is equal to
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To show that éE[BH ©)] = 7o (M + 1) 11 it suCces to prove that E [BU ()] = 27,, (M + ). We
..rst note that

E[BU(00)] = 6l i3Ql (90)E£€ (Zi, 60) Ee(Zzaeo)u"'z' i3Ql (60)*

+41i3'p E(ZL,QO)Z"(ZMGO) 2 gt E(ZL,QO)ZO‘) (ZL,GO) +112Q, (fp)?
+21 -ZnE 0°(Z;,60)° I+E 0(Z;,00) % (Zl,ﬁo) +E e(Z,,eo) i (Z,,eo)lo,

where we have used Ehe(zi,eo)Sl = iEE99(2,00) i 3E50(Z.00) 0% (Z,.05)". In order to provide an

alternative characterization of 27, (M + =), we note that
3 h i7
£ o] £ o 0
M = 2B ((z,0) (Z;,00) ,E 9 (2,0) ,E (° (2,0)2+€(z,9)€99 (z,9)
2t o h 2i £ oo
= 2E ((z,0)0° (Z,00) ,Q(0),E °(20)° +E ((2,0)(" (z,0)
3 h i ¢ g h iy
o = FE ((z,0)° E09(2,0)((2,0) ,E ((z,0)* (z,0)
3 h i’y

£ 0 £ o
= iQu(0) i3E (Zi,00)° (Zi,00) ,E L(z,0) 0 (2,0) ,E ((z,0)° (z,0)

and
10

f (ZHOO) +2E é(ZL790)€9 (Zneo) N 1 - , 1 - g

o, T
E e(z 00)? 2B 0(2,00)° E ((z,00)

\]
3
|
@u O



It follows that
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