Appendix B from Costinot et al., "A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation" (JPE, vol. 122, no. 1, p. 77)

In continuous time the planning problem of the home government described in Section II.B can be expressed as

$$
\begin{equation*}
\max _{c(\cdot)} \int e^{-\rho t} u(c(t)) d t \tag{C}
\end{equation*}
$$

subject to

$$
\int e^{-\rho t} u^{* \prime}(Y-c(t))[y(t)-c(t)] d t=0
$$

The objective of this appendix is to show that if time is continuous, then proposition 1 generalizes to economies in which $u^{* \prime}(Y-c)(c-y)$ is not a strictly convex function of c. The only assumptions required are those imposed in Section II.A.

ASSUMPTION 1. The functions u and u^{*} are strictly increasing, strictly concave, and twice continuously differentiable with the boundary conditions $\lim _{c \rightarrow 0} u^{\prime}(c)=\lim _{c^{*} \rightarrow 0} u^{* \prime}\left(c^{*}\right)=\infty t$.

ASSUMPTION 2. The functions $y(t)$ and $y^{*}(t)$ are bounded away from zero for all t.
Throughout this appendix, for any $\mu>0$ and any date t, we let

$$
\mathcal{C}(t, \mu) \equiv \arg \max _{c \in(0, Y)} u(c)+\mu u^{* \prime}(Y-c)[y(t)-c]
$$

To derive proposition 1 in this environment, we first establish four lemmas.
Lemma 1. Suppose that assumptions 1 and 2 hold. Then for any $\mu>0$ and any date $t, \mathcal{C}(t, \mu) \neq \varnothing$.
Proof. Fix $\mu>0$ and $t \geq 0$. By assumption 1, we know that $\lim _{c \rightarrow 0} u^{\prime}(c)=\infty$. Thus there must be $m \in(0, Y)$ such that, for all $c \in(0, m)$,

$$
\begin{equation*}
u(c)+\mu u^{* \prime}(Y-c)[y(t)-c]<u(m)+\mu u^{* \prime}(Y-m)[y(t)-m] . \tag{B1}
\end{equation*}
$$

By assumption 2, we know that foreign endowments are bounded away from zero. Thus domestic endowments are bounded away from Y. By assumption 1, we therefore have $\lim _{c \rightarrow Y} u^{* \prime}(Y-c)[y(t)-c]=-\infty$. Thus there must be $M \in(m, Y)$ such that, for all $c \in(M, Y)$,

$$
\begin{equation*}
u(c)+\mu u^{* \prime}(Y-c)[y(t)-c]<u(M)+\mu u^{* \prime}(Y-M)[y(t)-M] . \tag{B2}
\end{equation*}
$$

Since $u(c)+\mu u^{* \prime}(Y-c)[y(t)-c]$ is continuous over $[m, M]$, Weierstrass's extreme value theorem implies the existence of

$$
c(t) \in \arg \max _{c \in[m, M]} u(c)+\mu u^{* \prime}(Y-c)[y(t)-c] .
$$

By inequalities (B1) and (B2), we also have $c(t) \in \mathcal{C}(t, \mu)$. QED
Lemma 2. Suppose that assumptions 1 and 2 hold. Then for any $\mu>0$ and any pair of dates t and s, if $y(t)>y(s)$, then $c(t)>c(s)$ for all $c(t) \in \mathcal{C}(t, \mu)$ and $c(s) \in \mathcal{C}(s, \mu)$. Similarly, for any date t, if $\mu>\mu^{\prime}$, then $c(t)<c^{\prime}(t)$ for all $c(t) \in \mathcal{C}(t, \mu)$ and $c^{\prime}(t) \in \mathcal{C}\left(t, \mu^{\prime}\right)$.

Proof. Fix $\mu>0$ and consider a pair of dates t and s such that $y(t)>y(s)$. By definition, if $c(t) \in \mathcal{C}(t, \mu)$ and $c(s) \in \mathcal{C}(s, \mu)$, then

$$
\begin{aligned}
& u(c(t))+\mu u^{* \prime}(Y-c(t))[y(t)-c(t)] \geq u(c(s))+\mu u^{* \prime}(Y-c(s))[y(t)-c(s)] \\
& u(c(s))+\mu u^{* \prime}(Y-c(s))[y(s)-c(s)] \geq u(c(t))+\mu u^{* \prime}(Y-c(t))[y(s)-c(t)]
\end{aligned}
$$

Adding up the two previous inequalities, we obtain after simplification

$$
\left[u^{* \prime}(Y-c(t))-u^{* \prime}(Y-c(s))\right][y(t)-y(s)] \geq 0
$$

This implies $u^{* \prime}(Y-c(t)) \geq u^{* \prime}(Y-c(s))$. By assumption $1, u^{*}$ is strictly concave. Thus we must have $c(t) \geq c(s)$. To conclude, let us show that we cannot have $c(t)=c(s)$. We proceed by contradiction. If $c(s) \in \mathcal{C}(t, \mu) \cap \mathcal{C}(s, \mu)$, then the following first-order conditions must be satisfied:

$$
\begin{aligned}
u^{\prime}(c(s))-\mu u^{* \prime}(Y-c(s))-\mu u^{* \prime \prime}(Y-c(s))[y(s)-c(s)] & =0, \\
u^{\prime}(c(s))-\mu u^{* \prime}(Y-c(s))-\mu u^{* \prime \prime}(Y-c(s))[y(t)-c(s)] & =0 .
\end{aligned}
$$

This implies $u^{* \prime \prime}(Y-c(s))[y(t)-y(s)]=0$, which contradicts $y(t) \neq y(s)$. This completes the first part of lemma 2. The second part of lemma 2 can be established in a similar fashion and is omitted. QED

Lemma 3. Suppose that assumptions 1 and 2 hold. Then there exists $\mu>0$ such that

$$
\begin{equation*}
\int e^{-\rho t} u^{* \prime}(Y-c(t))[y(t)-c(t)] d t=0 \tag{B3}
\end{equation*}
$$

with $c(t) \in \mathcal{C}(t, \mu)$ for all t.
Proof. We proceed in four steps.
Step 1: There exist $\underline{\mu}>0$ and $\bar{\mu}>\underline{\mu}$ such that

$$
\begin{align*}
& \int e^{-\rho t} u^{* \prime}(Y-c(t, \underline{\mu}))[y(t)-c(t, \underline{\mu})] d t<0, \tag{B4}\\
& \int e^{-\rho t} u^{* \prime}(Y-c(t, \bar{\mu}))[y(t)-c(t, \bar{\mu})]>0 \tag{B5}
\end{align*}
$$

with $c(t, \underline{\mu}) \in \mathcal{C}(t, \underline{\mu})$ and $c(t, \bar{\mu}) \in \mathcal{C}(t, \bar{\mu})$ for all t.
For any t, let us define $\mu(t) \equiv u^{\prime}(y(t)) / u^{* \prime}(Y-y(t))$. We first check that $y(t) \in \mathcal{C}(t, \mu(t))$. Since u is concave, we know that

$$
u(c) \leq u(y(t))+u^{\prime}(y(t))[c-y(t)]
$$

for all c. Since u^{*} is concave, we also know that

$$
\frac{u^{* \prime}(Y-c)}{u^{* \prime}(Y-y(t))} \geq 1
$$

if and only if $c \geq y(t)$. The two previous observations imply

$$
u(c) \leq u(y(t))+\frac{u^{\prime}(y(t)) u^{* \prime}(Y-c)}{u^{* \prime}(Y-y(t))}[c-y(t)] .
$$

Using the definition of $\mu(t)$, this can be rearranged as

$$
u(y(t)) \geq u(c)+\mu(t) u^{* \prime}(Y-c)[y(t)-c]
$$

which implies $y(t) \in \mathcal{C}(t, \mu(t))$. Now let us define $\underline{\mu} \equiv u^{\prime}(\bar{y}) / u^{* \prime}(Y-\bar{y})$ and $\bar{\mu} \equiv u^{\prime}(\underline{y}) / u^{* \prime}(Y-\underline{y})$ with $\underline{y} \equiv \inf _{t \geq 0} y(t)>0$ and $\bar{y} \equiv \sup _{t \geq 0} y(t)<Y$. Since u and u^{*} are strictly concave, we have $\mu(t) \in(\mu, \bar{\mu}) \overline{\text { for }}$ all t. By $\overline{\text { lemma }} \overline{2}, y(t) \in \mathcal{C}(t, \mu(t))$ implies that $c(t)>y(t)$ for all $c(t) \in \mathcal{C}(t, \underline{\mu})$ and $c(t)<y(t)$ for all $c(t) \in \mathcal{C}(t, \overline{\bar{\mu}})$. Since the previous inequalities hold for all t, we have found $\underline{\mu}$ and $\bar{\mu}$ such that

$$
\begin{aligned}
& \int e^{-\rho t} u^{* \prime}(Y-c(t, \underline{\mu}))[y(t)-c(t, \underline{\mu})] d t<0 \\
& \int e^{-\rho t} u^{* \prime}(Y-c(t, \bar{\mu}))[y(t)-c(t, \bar{\mu})]>0
\end{aligned}
$$

with $c(t, \underline{\mu}) \in \mathcal{C}(t, \underline{\mu})$ and $c(t, \bar{\mu}) \in \mathcal{C}(t, \bar{\mu})$ for all t.
Step 2: For any $\mu \in[\underline{\mu}, \bar{\mu}]$ and any t, there exist $c^{+}(t, \mu)$ and $c^{-}(t, \mu)$ such that

$$
\begin{align*}
& c^{+}(t, \mu) \in \arg \max _{c \in \mathcal{C}(t, \mu)} u^{* \prime}(Y-c)[y(t)-c], \tag{B6}\\
& c^{-}(t, \mu) \in \arg \min _{c \in \mathcal{C}(t, \mu)} u^{* \prime}(Y-c)[y(t)-c] . \tag{B7}
\end{align*}
$$

Take \underline{c} and \bar{c} such that

$$
\begin{aligned}
& \underline{c} \in \arg \max _{c \in(0, Y)} u(c)+\bar{\mu} u^{* \prime}(Y-c)(\underline{y}-c), \\
& \bar{c} \in \arg \max _{c \in(0, Y)} u(c)+\underline{\mu} u^{* \prime}(Y-c)(\bar{y}-c) .
\end{aligned}
$$

By lemma 1, we know that such \underline{c} and \bar{c} exist. By lemma 2, for any $\mu \in[\underline{\mu}, \bar{\mu}]$ and any t, we also must have

$$
\mathcal{C}(t, \mu)=\arg \max _{c \in[c, c]} u(c)+\mu u^{* \prime}(Y-c)[y(t)-c] .
$$

Since $u(c)+\mu u^{* \prime}(Y-c)\left(y_{t}-c\right)$ is continuous in (c, μ), the maximum theorem implies that $\mathcal{C}(t, \mu)$ is compact and, for future reference, upper hemicontinuous in μ. Since $u^{* \prime}(Y-c)[y(t)-c]$ is continuous in c, Weierstrass's extreme value theorem implies the existence of $c^{+}(t, \mu)$ and $c^{-}(t, \mu)$ satisfying (B6) and (B7), respectively.

Step 3: There exists $\mu_{0} \in[\underline{\mu}, \bar{\mu}]$ such that

$$
\begin{equation*}
\int e^{-\rho t} u^{* \prime}\left(Y-c^{+}\left(t, \mu_{0}\right)\right)\left[y(t)-c^{+}\left(t, \mu_{0}\right)\right] d t>0 \tag{B8}
\end{equation*}
$$

$$
\begin{equation*}
\int e^{-\rho t} u^{* \prime}\left(Y-c^{-}\left(t, \mu_{0}\right)\right)\left[y(t)-c^{-}\left(t, \mu_{0}\right)\right] d t<0 \tag{B9}
\end{equation*}
$$

By construction of $c^{+}(\cdot, \mu)$ and $c^{-}(\cdot, \mu)$, for any μ and $c(\cdot, \mu)$ such that $c(t, \mu) \in \mathcal{C}(t, \mu)$ for all t, we have

$$
\begin{aligned}
& \int e^{-\rho t} u^{* \prime}\left(Y-c^{+}(t, \mu)\right)\left[y(t)-c^{+}(t, \mu)\right] d t \\
& \geq \int e^{-\rho t} u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)] d t \\
& \geq \int e^{-\rho t} u^{* \prime}\left(Y-c^{-}(t, \mu)\right)\left[y(t)-c^{-}(t, \mu)\right] d t
\end{aligned}
$$

Thus inequalities (B4) and (B5) in step 1 imply

$$
\begin{align*}
& \int e^{-\rho t} u^{* \prime}\left(Y-c^{+}(t, \underline{\mu})\right)\left[y(t)-c^{+}(t, \underline{\mu})\right] d t>0 \tag{B10}\\
& \int e^{-\rho t} u^{* \prime}\left(Y-c^{-}(t, \bar{\mu})\right)\left[y(t)-c^{-}(t, \bar{\mu})\right] d t<0 \tag{B11}
\end{align*}
$$

To show that there exists $\mu_{0} \in[\underline{\mu}, \bar{\mu}]$ such that inequalities (B8) and (B9) are satisfied, we proceed by contradiction. Suppose that there does not exist $\mu_{0} \in[\underline{\mu}, \bar{\mu}]$ such that the two previous inequalities are satisfied. Then there must exist $\mu_{1} \in[\underline{\mu}, \bar{\mu}]$ and $\varepsilon_{1}>0$ such that, for any $\bar{\eta}>0$, there exists μ such that $\left|\mu_{1}-\mu\right|<\eta$ and

$$
\begin{aligned}
& \int e^{-\rho t} u^{* \prime}\left(Y-c^{-}\left(t, \mu_{1}\right)\right)\left[y(t)-c^{-}\left(t, \mu_{1}\right)\right] d t \\
- & \int e^{-\rho t} u^{* \prime}\left(Y-c^{+}(t, \mu)\right)\left[y(t)-c^{+}(t, \mu)\right] d t>\varepsilon_{1} .
\end{aligned}
$$

In step 2 , we have already argued that $\mathcal{C}(t, \mu)$ is compact-valued and upper hemicontinuous in μ. So there must be $c(t, \mu) \in \mathcal{C}(t, \mu)$ for all μ and t such that

$$
\begin{equation*}
\lim _{\mu \rightarrow \mu_{1}} c(t, \mu)=c\left(t, \mu_{1}\right) \in \mathcal{C}\left(t, \mu_{1}\right) \tag{B12}
\end{equation*}
$$

For all $t, u^{* \prime}(Y-c)[y(t)-c]$ is continuous in c and uniformly bounded by $\max _{c \in[c, \bar{c}]} u^{* \prime}(Y-c)(\bar{y}-c)$. Thus the limit condition (B12) implies

$$
\lim _{\mu \rightarrow \mu_{1}} \int e^{-\rho t} u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)] d t=\int e^{-\rho t} u^{* \prime}\left(Y-c\left(t, \mu_{1}\right)\right)\left[y(t)-c\left(t, \mu_{1}\right)\right] d t
$$

Accordingly, there must be $\varepsilon \in\left(0, \varepsilon_{1}\right)$ and $\eta_{1}>0$ such that if $\left|\mu_{1}-\mu\right|<\eta_{1}$, then

$$
\int e^{-\rho t} u^{* \prime}\left(Y-c\left(t, \mu_{1}\right)\right)\left[y(t)-c\left(t, \mu_{1}\right)\right] d t-\int e^{-\rho t} u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)] d t<\varepsilon
$$

By construction of $c^{+}(\cdot, \mu)$ and $c^{-}(\cdot, \mu)$, we know that

$$
\begin{aligned}
& \int e^{-\rho t} u^{* \prime}\left(Y-c\left(t, \mu_{1}\right)\right)\left[y(t)-c\left(t, \mu_{1}\right)\right] d t \geq \int e^{-\rho t} u^{* \prime}\left(Y-c^{-}\left(t, \mu_{1}\right)\right)\left[y(t)-c^{-}\left(t, \mu_{1}\right)\right] d t \\
& \int e^{-\rho t} u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)] d t \leq \int e^{-\rho t} u^{* \prime}\left(Y-c^{+}(t, \mu)\right)\left[y(t)-c^{+}(t, \mu)\right] d t
\end{aligned}
$$

The three previous inequalities imply the existence of $\eta_{1}>0$ such that if $\left|\mu_{1}-\mu\right|<\eta_{1}$, then

$$
\begin{aligned}
& \int e^{-\rho t} u^{* \prime}\left(Y-c^{-}\left(t, \mu_{1}\right)\right)\left[y(t)-c^{-}\left(t, \mu_{1}\right)\right] d t \\
- & \int e^{-\rho t} u^{* \prime}\left(Y-c^{+}(t, \mu)\right)\left[y(t)-c^{+}(t, \mu)\right] d t<\varepsilon_{1}
\end{aligned}
$$

a contradiction.
Step 4: There exists $c\left(\cdot, \mu_{0}\right)$ such that $c\left(t, \mu_{0}\right) \in \mathcal{C}\left(t, \mu_{0}\right)$ for all t and

$$
\begin{equation*}
\int e^{-\rho t} u^{* \prime}\left(Y-c\left(t, \mu_{0}\right)\right)\left[y(t)-c\left(t, \mu_{0}\right)\right] d t=0 \tag{B13}
\end{equation*}
$$

Let

$$
\begin{aligned}
H(T) \equiv & \int^{T} e^{-\rho t} u^{* \prime}\left(Y-c^{-}\left(t, \mu_{0}\right)\right)\left[y(t)-c^{-}\left(t, \mu_{0}\right)\right] d t \\
& +\int_{T} e^{-\rho t} u^{* \prime}\left(Y-c^{+}\left(t, \mu_{0}\right)\right)\left[y(t)-c^{+}\left(t, \mu_{0}\right)\right] d t
\end{aligned}
$$

By step 3, there must exist $\underline{T}<\bar{T}$ such that $H(\underline{T})>0>H(\bar{T})$. Since H is continuous in T, the intermediate value theorem implies the existence of T_{0} such that $H\left(T_{0}\right)=0$. Now let us construct $c\left(\cdot, \mu_{0}\right)$ such that $c\left(t, \mu_{0}\right) \equiv c^{-}\left(t, \mu_{0}\right)$ for all $t<T_{0}$ and $c\left(t, \mu_{0}\right) \equiv c^{+}\left(t, \mu_{0}\right)$ for all $t \geq T_{0}$. By construction, $c\left(\cdot, \mu_{0}\right)$ satisfies equation (B13) with $c\left(t, \mu_{0}\right) \in \mathcal{C}\left(t, \mu_{0}\right)$. QED

Lemma 4. Suppose that there exist $\mu>0$ and $c(\cdot, \mu)$ such that
i. $c(t, \mu) \in \mathcal{C}(t, \mu)$ for all t,
ii. $\int e^{-\rho t}\left\{u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)]\right\} d t=0$.

Then any solution $c^{0}(\cdot)$ of $\left(\mathrm{P}_{C}\right)$ must be such that $c^{0}(t) \in \mathcal{C}(t, \mu)$ for almost all t.
Proof. Suppose that $c^{0}(\cdot)$ is a solution of

$$
\max _{c(\cdot)} \int e^{-\rho t} u(c(t)) d t
$$

subject to

$$
\int e^{-\rho t}\left\{u^{* \prime}(Y-c(t))[y(t)-c(t)]\right\} d t=0
$$

By condition ii, we must therefore have

$$
\int e^{-\rho t} u\left(c^{0}(t)\right) d t \geq \int e^{-\rho t} u(c(t, \mu)) d t
$$

Since

$$
\int e^{-\rho t}\left\{u^{* \prime}\left(Y-c^{0}(t)\right)\left[y(t)-c^{0}(t)\right]\right\} d t=\int e^{-\rho t}\left\{u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)]\right\} d t=0
$$

this further implies

$$
\begin{aligned}
& \int e^{-\rho t}\left\{u\left(c^{0}(t)\right)+\mu u^{*^{\prime}}\left(Y-c^{0}(t)\right)\left[y(t)-c^{0}(t)\right]\right\} d t \\
\geq & \int e^{-\rho t}\left\{u(c(t, \mu))+\mu u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)]\right\} d t .
\end{aligned}
$$

By condition i, we know that

$$
\begin{aligned}
& \int e^{-\rho t}\left\{u(c(t, \mu))+\mu u^{* \prime}(Y-c(t, \mu))[y(t)-c(t, \mu)]\right\} d t \\
& =\max _{c(\cdot)} \int e^{-\rho t}\left\{u(c(t))+\mu u^{* \prime}(Y-c(t))[y(t)-c(t)]\right\} d t
\end{aligned}
$$

Thus the previous inequality implies

$$
c^{0}(\cdot) \in \arg \max \int e^{-\rho t}\left\{u(c(t))+\mu u^{* \prime}(Y-c(t))[y(t)-c(t)]\right\} d t,
$$

which requires $c^{0}(t) \in \mathcal{C}(t, \mu)$ for almost all t. QED
We are now ready to establish proposition 1 .
Proposition 1 (Procyclical consumption). Suppose that assumptions 1 and 2 hold. Then for any solution $c(\cdot)$ of $\left(\mathrm{P}_{C}\right)$ and almost all pairs of dates t and s, if $y(t)>y(s)$, then $c(t)>c(s)$.

Proof. By lemmas 1 and 3, the conditions of lemma 4 are satisfied. Thus if $c(\cdot)$ is a solution of the planning problem $\left(\mathrm{P}_{C}\right)$, we must have $c(t) \in \mathcal{C}(t, \mu)$ for almost all t. By lemma 2, we know that $y(t)>y(s)$ implies $c(t)>c(s)$ for all $c(t) \in \mathcal{C}(t, \mu)$ and $c(s) \in \mathcal{C}(s, \mu)$. Proposition 1 derives from the two previous observations. QED

