Appendix B from Costinot et al., "A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation" (JPE, vol. 122, no. 1, p. 77)

In continuous time the planning problem of the home government described in Section II.B can be expressed as

$$\max_{c(\cdot)} \int e^{-\rho t} u(c(t)) dt \tag{P}_C$$

subject to

$$\int e^{-\rho t} u^{*\prime} (Y - c(t)) [y(t) - c(t)] dt = 0$$

The objective of this appendix is to show that if time is continuous, then proposition 1 generalizes to economies in which $u^{*'}(Y - c)(c - y)$ is not a strictly convex function of c. The only assumptions required are those imposed in Section II.A. ASSUMPTION 1. The functions u and u^* are strictly increasing, strictly concave, and twice continuously differentiable

with the boundary conditions $\lim_{c\to 0} u'(c) = \lim_{c^*\to 0} u^{*'}(c^*) = \infty t$.

Assumption 2. The functions y(t) and $y^*(t)$ are bounded away from zero for all t.

Throughout this appendix, for any $\mu > 0$ and any date *t*, we let

$$\mathcal{C}(t,\mu) \equiv \arg\max_{c \in (0,Y)} u(c) + \mu u^{*\prime} (Y-c) [y(t)-c].$$

To derive proposition 1 in this environment, we first establish four lemmas.

LEMMA 1. Suppose that assumptions 1 and 2 hold. Then for any $\mu > 0$ and any date t, $C(t, \mu) \neq \emptyset$.

Proof. Fix $\mu > 0$ and $t \ge 0$. By assumption 1, we know that $\lim_{c\to 0} u'(c) = \infty$. Thus there must be $m \in (0, Y)$ such that, for all $c \in (0, m)$,

$$u(c) + \mu u^{*'}(Y-c)[y(t)-c] < u(m) + \mu u^{*'}(Y-m)[y(t)-m].$$
(B1)

By assumption 2, we know that foreign endowments are bounded away from zero. Thus domestic endowments are bounded away from *Y*. By assumption 1, we therefore have $\lim_{c\to Y} u^{*'}(Y-c)[y(t)-c] = -\infty$. Thus there must be $M \in (m, Y)$ such that, for all $c \in (M, Y)$,

$$u(c) + \mu u^{*'}(Y-c)[y(t)-c] < u(M) + \mu u^{*'}(Y-M)[y(t)-M].$$
(B2)

Since $u(c) + \mu u^{*'}(Y - c)[y(t) - c]$ is continuous over [m, M], Weierstrass's extreme value theorem implies the existence of

$$c(t) \in \arg\max_{c \in [m,M]} u(c) + \mu u^{*\prime} (Y-c)[y(t)-c].$$

By inequalities (B1) and (B2), we also have $c(t) \in C(t, \mu)$. QED

LEMMA 2. Suppose that assumptions 1 and 2 hold. Then for any $\mu > 0$ and any pair of dates t and s, if y(t) > y(s), then c(t) > c(s) for all $c(t) \in C(t, \mu)$ and $c(s) \in C(s, \mu)$. Similarly, for any date t, if $\mu > \mu'$, then c(t) < c'(t) for all $c(t) \in C(t, \mu)$ and $c'(t) \in C(t, \mu')$.

Proof. Fix $\mu > 0$ and consider a pair of dates t and s such that y(t) > y(s). By definition, if $c(t) \in C(t, \mu)$ and $c(s) \in C(s, \mu)$, then

$$u(c(t)) + \mu u^{*'}(Y - c(t))[y(t) - c(t)] \ge u(c(s)) + \mu u^{*'}(Y - c(s))[y(t) - c(s)],$$

$$u(c(s)) + \mu u^{*'}(Y - c(s))[y(s) - c(s)] \ge u(c(t)) + \mu u^{*'}(Y - c(t))[y(s) - c(t)].$$

Adding up the two previous inequalities, we obtain after simplification

$$[u^{*'}(Y - c(t)) - u^{*'}(Y - c(s))][y(t) - y(s)] \ge 0.$$

This implies $u^{*'}(Y - c(t)) \ge u^{*'}(Y - c(s))$. By assumption 1, u^* is strictly concave. Thus we must have $c(t) \ge c(s)$. To conclude, let us show that we cannot have c(t) = c(s). We proceed by contradiction. If $c(s) \in C(t, \mu) \cap C(s, \mu)$, then the following first-order conditions must be satisfied:

$$u'(c(s)) - \mu u^{*'}(Y - c(s)) - \mu u^{*''}(Y - c(s))[y(s) - c(s)] = 0,$$

$$u'(c(s)) - \mu u^{*'}(Y - c(s)) - \mu u^{*''}(Y - c(s))[y(t) - c(s)] = 0.$$

This implies $u^{*''}(Y - c(s))[y(t) - y(s)] = 0$, which contradicts $y(t) \neq y(s)$. This completes the first part of lemma 2. The second part of lemma 2 can be established in a similar fashion and is omitted. QED

LEMMA 3. Suppose that assumptions 1 and 2 hold. Then there exists $\mu > 0$ such that

$$\int e^{-\rho t} u^{*\prime} (Y - c(t)) [y(t) - c(t)] dt = 0,$$
(B3)

with $c(t) \in C(t, \mu)$ for all *t*.

Proof. We proceed in four steps.

Step 1: There exist $\mu > 0$ and $\overline{\mu} > \mu$ such that

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \underline{\mu})) [y(t) - c(t, \underline{\mu})] dt < 0,$$
(B4)

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \bar{\mu})) [y(t) - c(t, \bar{\mu})] > 0,$$
(B5)

with $c(t,\mu) \in C(t,\mu)$ and $c(t,\bar{\mu}) \in C(t,\bar{\mu})$ for all *t*.

For any t, let us define $\mu(t) \equiv u'(y(t))/u^{*'}(Y - y(t))$. We first check that $y(t) \in C(t, \mu(t))$. Since u is concave, we know that

$$u(c) \le u(y(t)) + u'(y(t))[c - y(t)]$$

for all c. Since u^* is concave, we also know that

$$\frac{u^{*'}(Y-c)}{u^{*'}(Y-y(t))} \ge 1$$

if and only if $c \ge y(t)$. The two previous observations imply

$$u(c) \le u(y(t)) + \frac{u'(y(t))u^{*'}(Y-c)}{u^{*'}(Y-y(t))}[c-y(t)].$$

Using the definition of $\mu(t)$, this can be rearranged as

$$u(y(t)) \ge u(c) + \mu(t)u^{*'}(Y - c)[y(t) - c]$$

which implies $y(t) \in C(t, \mu(t))$. Now let us define $\underline{\mu} \equiv u'(\overline{y})/u^{*'}(Y - \overline{y})$ and $\overline{\mu} \equiv u'(\underline{y})/u^{*'}(Y - \underline{y})$ with $\underline{y} \equiv \inf_{t \ge 0} y(t) > 0$ and $\overline{y} \equiv \sup_{t \ge 0} y(t) < Y$. Since *u* and u^* are strictly concave, we have $\mu(t) \in (\mu, \overline{\mu})$ for all *t*. By lemma 2, $y(t) \in C(t, \mu(t))$ implies that c(t) > y(t) for all $c(t) \in C(t, \underline{\mu})$ and c(t) < y(t) for all $c(t) \in C(t, \overline{\mu})$. Since the previous inequalities hold for all *t*, we have found μ and $\overline{\mu}$ such that

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \underline{\mu})) [y(t) - c(t, \underline{\mu})] dt < 0,$$

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \overline{\mu})) [y(t) - c(t, \overline{\mu})] > 0,$$

with $c(t,\mu) \in C(t,\mu)$ and $c(t,\bar{\mu}) \in C(t,\bar{\mu})$ for all *t*.

Step 2: For any $\mu \in [\mu, \bar{\mu}]$ and any t, there exist $c^+(t, \mu)$ and $c^-(t, \mu)$ such that

$$c^{+}(t,\mu) \in \arg\max_{c \in \mathcal{C}(t,\mu)} u^{*\prime}(Y-c)[y(t)-c],$$
 (B6)

$$c^{-}(t,\mu) \in \arg\min_{c \in \mathcal{C}(t,\mu)} u^{*'}(Y-c)[y(t)-c].$$
 (B7)

Take \underline{c} and \overline{c} such that

$$\underline{c} \in \arg \max_{c \in (0,Y)} u(c) + \overline{\mu} u^{*'} (Y - c) (\underline{y} - c),$$

$$\overline{c} \in \arg \max_{c \in (0,Y)} u(c) + \underline{\mu} u^{*'} (Y - c) (\overline{y} - c).$$

By lemma 1, we know that such <u>c</u> and \bar{c} exist. By lemma 2, for any $\mu \in [\mu, \bar{\mu}]$ and any t, we also must have

$$\mathcal{C}(t,\mu) = \arg\max_{c \in [\underline{c},\overline{c}]} u(c) + \mu u^{*\prime} (Y-c) [y(t)-c].$$

Since $u(c) + \mu u^{*'}(Y - c)(y_t - c)$ is continuous in (c, μ) , the maximum theorem implies that $C(t, \mu)$ is compact and, for future reference, upper hemicontinuous in μ . Since $u^{*'}(Y - c)[y(t) - c]$ is continuous in c, Weierstrass's extreme value theorem implies the existence of $c^+(t, \mu)$ and $c^-(t, \mu)$ satisfying (B6) and (B7), respectively.

Step 3: There exists $\mu_0 \in [\mu, \overline{\mu}]$ such that

$$\int e^{-\rho t} u^{*\prime} (Y - c^+(t, \mu_0)) [y(t) - c^+(t, \mu_0)] dt > 0,$$
(B8)

Appendix B from Costinot, et al., A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation

$$\int e^{-\rho t} u^{*'} (Y - c^{-}(t, \mu_0)) [y(t) - c^{-}(t, \mu_0)] dt < 0.$$
(B9)

By construction of $c^+(\cdot, \mu)$ and $c^-(\cdot, \mu)$, for any μ and $c(\cdot, \mu)$ such that $c(t, \mu) \in C(t, \mu)$ for all t, we have

$$\int e^{-\rho t} u^{*\prime} (Y - c^+(t,\mu)) [y(t) - c^+(t,\mu)] dt$$

$$\geq \int e^{-\rho t} u^{*\prime} (Y - c(t,\mu)) [y(t) - c(t,\mu)] dt$$

$$\geq \int e^{-\rho t} u^{*\prime} (Y - c^-(t,\mu)) [y(t) - c^-(t,\mu)] dt$$

Thus inequalities (B4) and (B5) in step 1 imply

$$\int e^{-\rho t} u^{*\prime} (Y - c^+(t, \underline{\mu})) [y(t) - c^+(t, \underline{\mu})] dt > 0,$$
(B10)

$$\int e^{-\rho t} u^{*\prime} (Y - c^{-}(t, \bar{\mu})) [y(t) - c^{-}(t, \bar{\mu})] dt < 0.$$
(B11)

To show that there exists $\mu_0 \in [\underline{\mu}, \overline{\mu}]$ such that inequalities (B8) and (B9) are satisfied, we proceed by contradiction. Suppose that there does not exist $\mu_0 \in [\underline{\mu}, \overline{\mu}]$ such that the two previous inequalities are satisfied. Then there must exist $\mu_1 \in [\underline{\mu}, \overline{\mu}]$ and $\varepsilon_1 > 0$ such that, for any $\overline{\eta} > 0$, there exists μ such that $|\mu_1 - \mu| < \eta$ and

$$\int e^{-\rho t} u^{*t} (Y - c^{-}(t, \mu_1)) [y(t) - c^{-}(t, \mu_1)] dt$$
$$- \int e^{-\rho t} u^{*t} (Y - c^{+}(t, \mu)) [y(t) - c^{+}(t, \mu)] dt > \varepsilon_1$$

In step 2, we have already argued that $C(t, \mu)$ is compact-valued and upper hemicontinuous in μ . So there must be $c(t, \mu) \in C(t, \mu)$ for all μ and t such that

$$\lim_{\mu \to \mu_1} c(t, \mu) = c(t, \mu_1) \in \mathcal{C}(t, \mu_1).$$
(B12)

For all t, $u^{*'}(Y-c)[y(t)-c]$ is continuous in c and uniformly bounded by $\max_{c \in [c,\bar{c}]} u^{*'}(Y-c)(\bar{y}-c)$. Thus the limit condition (B12) implies

$$\lim_{\mu \to \mu_1} \int e^{-\rho t} u^{*\prime} (Y - c(t, \mu)) [y(t) - c(t, \mu)] dt = \int e^{-\rho t} u^{*\prime} (Y - c(t, \mu_1)) [y(t) - c(t, \mu_1)] dt$$

Appendix B from Costinot, et al., A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation

Accordingly, there must be $\varepsilon \in (0, \varepsilon_1)$ and $\eta_1 > 0$ such that if $|\mu_1 - \mu| < \eta_1$, then

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \mu_1)) [y(t) - c(t, \mu_1)] dt - \int e^{-\rho t} u^{*\prime} (Y - c(t, \mu)) [y(t) - c(t, \mu)] dt < \varepsilon.$$

By construction of $c^+(\cdot, \mu)$ and $c^-(\cdot, \mu)$, we know that

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \mu_1)) [y(t) - c(t, \mu_1)] dt \ge \int e^{-\rho t} u^{*\prime} (Y - c^{-}(t, \mu_1)) [y(t) - c^{-}(t, \mu_1)] dt,$$

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \mu)) [y(t) - c(t, \mu)] dt \le \int e^{-\rho t} u^{*\prime} (Y - c^{+}(t, \mu)) [y(t) - c^{+}(t, \mu)] dt.$$

The three previous inequalities imply the existence of $\eta_1 > 0$ such that if $|\mu_1 - \mu| < \eta_1$, then

$$\int e^{-\rho t} u^{*\prime} (Y - c^{-}(t, \mu_{1})) [y(t) - c^{-}(t, \mu_{1})] dt$$
$$- \int e^{-\rho t} u^{*\prime} (Y - c^{+}(t, \mu)) [y(t) - c^{+}(t, \mu)] dt < \varepsilon_{1},$$

a contradiction.

Step 4: There exists $c(\cdot, \mu_0)$ such that $c(t, \mu_0) \in C(t, \mu_0)$ for all t and

$$\int e^{-\rho t} u^{*\prime} (Y - c(t, \mu_0)) [y(t) - c(t, \mu_0)] dt = 0.$$
(B13)

Let

$$H(T) \equiv \int_{-r}^{T} e^{-\rho t} u^{*\prime} (Y - c^{-}(t, \mu_{0})) [y(t) - c^{-}(t, \mu_{0})] dt + \int_{T} e^{-\rho t} u^{*\prime} (Y - c^{+}(t, \mu_{0})) [y(t) - c^{+}(t, \mu_{0})] dt.$$

By step 3, there must exist $\underline{T} < \overline{T}$ such that $H(\underline{T}) > 0 > H(\overline{T})$. Since H is continuous in T, the intermediate value theorem implies the existence of T_0 such that $H(T_0) = 0$. Now let us construct $c(\cdot, \mu_0)$ such that $c(t, \mu_0) \equiv c^-(t, \mu_0)$ for all $t < T_0$ and $c(t, \mu_0) \equiv c^+(t, \mu_0)$ for all $t \ge T_0$. By construction, $c(\cdot, \mu_0)$ satisfies equation (B13) with $c(t, \mu_0) \in C(t, \mu_0)$. QED LEMMA 4. Suppose that there exist $\mu > 0$ and $c(\cdot, \mu)$ such that

i.
$$c(t,\mu) \in C(t,\mu)$$
 for all t ,
ii. $\int e^{-\rho t} \{ u^{*\prime}(Y - c(t,\mu)) [y(t) - c(t,\mu)] \} dt = 0.$

Then any solution $c^{0}(\cdot)$ of (P_{C}) must be such that $c^{0}(t) \in C(t, \mu)$ for almost all *t*. *Proof.* Suppose that $c^{0}(\cdot)$ is a solution of

$$\max_{c(\cdot)} \int e^{-\rho t} u(c(t)) dt$$

Appendix B from Costinot, et al., A Theory of Capital Controls as Dynamic Terms-of-Trade Manipulation

subject to

$$\int e^{-\rho t} \{ u^{*\prime}(Y - c(t))[y(t) - c(t)] \} dt = 0.$$

By condition ii, we must therefore have

$$\int e^{-\rho t} u(c^0(t)) dt \ge \int e^{-\rho t} u(c(t,\mu)) dt$$

Since

$$\int e^{-\rho t} \{ u^{*\prime} (Y - c^{0}(t)) [y(t) - c^{0}(t)] \} dt = \int e^{-\rho t} \{ u^{*\prime} (Y - c(t, \mu)) [y(t) - c(t, \mu)] \} dt = 0,$$

this further implies

$$\int e^{-\rho t} \{ u(c^{0}(t)) + \mu u^{*t}(Y - c^{0}(t))[y(t) - c^{0}(t)] \} dt$$

$$\geq \int e^{-\rho t} \{ u(c(t,\mu)) + \mu u^{*t}(Y - c(t,\mu))[y(t) - c(t,\mu)] \} dt.$$

By condition i, we know that

$$\int e^{-\rho t} \{ u(c(t,\mu)) + \mu u^{*\prime} (Y - c(t,\mu)) [y(t) - c(t,\mu)] \} dt$$

= $\max_{c(\cdot)} \int e^{-\rho t} \{ u(c(t)) + \mu u^{*\prime} (Y - c(t)) [y(t) - c(t)] \} dt.$

Thus the previous inequality implies

$$c^{0}(\cdot) \in \arg \max \int e^{-\rho t} \{ u(c(t)) + \mu u^{*'}(Y - c(t))[y(t) - c(t)] \} dt,$$

which requires $c^0(t) \in C(t, \mu)$ for almost all *t*. QED

We are now ready to establish proposition 1.

PROPOSITION 1 (Procyclical consumption). Suppose that assumptions 1 and 2 hold. Then for any solution $c(\cdot)$ of (P_c) and almost all pairs of dates t and s, if y(t) > y(s), then c(t) > c(s).

Proof. By lemmas 1 and 3, the conditions of lemma 4 are satisfied. Thus if $c(\cdot)$ is a solution of the planning problem (P_c) , we must have $c(t) \in C(t, \mu)$ for almost all t. By lemma 2, we know that y(t) > y(s) implies c(t) > c(s) for all $c(t) \in C(t, \mu)$ and $c(s) \in C(s, \mu)$. Proposition 1 derives from the two previous observations. QED