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 Investment is often irreversible: once installed, capital has little or no value unless used in
 production. This paper proposes and solves a model of sequential irreversible investment and
 characterizes the aggregate implications of microeconomic irreversibility and idiosyncratic uncer-
 tainty. If a large amount of idiosyncratic uncertainty is allowed for, the distributional dynamics
 induced by the nonlinear character of irreversible investment policies are capable of smoothing
 the dynamics of aggregate investment (relative to those of its forcing processes) to the extent
 required by U.S. data.

 1. INTRODUCTION AND RELATED LITERATURE

 Capital accumulation and investment decisions have an essential role both in the theory
 of production and in the study of macroeconomic fluctuations. Early models of individual
 firms' and aggregate investment were based on the static relationship between the marginal
 revenue product of capital and its user cost, as defined by Jorgenson (1963). Subsequent
 research recognized that technology and market structure make it costly for firms to
 adjust their capital stock, so that investment can only be studied in an explicitly dynamic
 framework. Standard investment models assume variations in capital input to entail convex
 adjustment costs, either internal to the firm and due to increasing costs of installing more
 capital in shorter intervals of time, or external to it and due to decreasing returns in
 the production of capital goods. Further assumptions are typically necessary to obtain
 analytically and empirically tractable investment models: firms may be assumed to be
 perfectly competitive and to operate under constant returns to scale (e.g. Lucas and
 Prescott (1971), Hayashi (1982)), or linear-quadratic functional forms may be assumed
 to obtain certainty equivalence (e.g. Sargent (1987)). Models of investment based on these
 assumptions do not provide a convincing interpretation of empirical evidence (Abel and
 Blanchard (1986)), and it is fair to doubt the realism of smooth adjustment costs as the
 source of investment dynamics. From a microeconomic point of view, in fact, the unit
 cost of additions to an individual firm's capital stock may well be constant in the rate of
 investment, or even decreasing if lump-sum adjustment costs are present. Rather, the
 forward-looking nature of investment decisions is often due to their (at least partly)
 irreversible character. Many facilities are specific to a particular production process;
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 224 REVIEW OF ECONOMIC STUDIES

 conversion of industrial real estate is difficult; and sale of used machinery faces thin
 markets and heavy discounts. Installed capital is therefore valuable only to the extent that
 it is used in production, and firms' investment decisions must take into account future
 cost and demand conditions, as was recognized early on by Arrow (1968) and Nickell
 (1974) in non-stochastic partial-equilibrium models of investment.'

 This paper discusses the relevance of uncertainty and irreversibilities to firms' invest-
 ment decisions on the one hand and, on the other, to aggregate dynamic relationships
 between capital accumulation and its driving processes. At the microeconomic level, irrev-
 ersible investment under uncertainty can be studied by dynamic programming or option
 pricing techniques (see e.g. McDonald and Siegel (1986), Demers (1991), and their refer-
 ences). Since an irreversible investment decision forsakes the option to wait for some of
 the uncertainty to be resolved, the project will be adopted only when the expected dis-
 counted payoff from investment exceeds the cost by an amount that can be impressively
 large for plausible parameter values. The insight has been developed by a burgeoning
 literature (see the surveys by Pindyck (1991) and Dixit (1992)). Pindyck (1988) applies
 option pricing techniques to marginal irreversible investment choices, and Bertola (1988)
 shows that the solution to problems of this type can be derived by dynamic programming
 as well as by option evaluation methods; formally similar problems of "singular" stochastic
 control have been studied in operations research by probabilistic and/or analytical
 methods (see e.g. Chow et al. (1985), Karatzas and Shreve (1984, 1988) and Kobila
 (1991)).

 Section 2 below presents a simple microeconomic model of irreversible investment,
 where the irreversibility constraint generates an intermittent investment process at the
 firm level and drives a variable wedge between capital's marginal revenue product and
 Jorgensonian "user cost". We then proceed to study the relevance of irreversibility to
 empirical work on aggregate investment series.

 Irreversibility is especially realistic at the aggregate level, as the direct consumption
 value of existing productive facilities is clearly very low; Sargent (1979) and Olson (1989)
 have implemented irreversibility constraints in the representative agent, single good frame-
 work of stochastic growth models. However, the dynamics of aggregate production and
 investment are not variable enough (at least in industrialized countries) for irreversibility
 constraints to be binding at the aggregate level. We argue instead that mic-oeconomic
 irreversibilities are relevant to aggregate dynamics in the presence of important sources of
 idiosyncratic uncertainty.

 In Section 3 we exploit the simplicity of our microeconomic model (and the similarity
 of its functional-form to those of previous empirical investment models) to study the
 implications of microeconomic irreversibilities for aggregate investment. We discuss a
 model of stochastic aggregation similar to those considered by Caballero and Engel (1991)
 and Bertola and Caballero (1990). In Section 4 we assess the empirical relevance of our
 modeling assumptions and results with an application to postwar U.S. investment series.
 Idiosyncratic uncertainty gives empirical relevance to irreversibility constraints in spite of
 the relatively low volatility of aggregate variables and, inasmuch as it implies that times
 of positive gross investment are imperfectly synchronized across firms, it also makes it
 possible to interpret the persistent (but smooth) dynamics of aggregate investment series.

 1. Under certainty, the marginal revenue product of capital equals the neoclassical user cost of capital
 only when gross investment is strictly positive. Investment is not necessarily always positive, if it is irreversible:
 it ceases before a cyclical peak is reached, and starts again after the cyclical trough. At the individual firm's
 level, then, irreversibility drives a wedge (negative during booms, and positive during pronounced troughs)
 between the cost of capital and its marginal contribution to profits.
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 2. OPTIMAL SEQUENTIAL INVESTMENT UNDER UNCERTAINTY

 We consider a firm whose operating cash flows are a constant elasticity function Y(K, Z)
 of K, the installed capital stock, and Z, an index of business conditions:

 Y(K(ir), Z(T))=K(T)aZ(T), O<a < 1. (1)

 This functional form may be taken to represent a log-linear approximation to more general

 ones. Of course, the approximation is exact if the firm's production and demand functions
 have constant elasticity, and the accuracy of the approximation might in principle be

 evaluated empirically (in Section 4 below we find no evidence against this reduced form).
 In general, the business conditions process {Z(ir)} depends positively on the strength of

 demand for the firm's product and on productivity, and negatively on the cost of factors
 other than capital.

 Let {Z(r)} follow the process

 dZ(ir) = Z(z)( 9 1 di + old W(ir)) (2)

 where S9 Iis a constant scalar, a I is a 2 x 1 constant vector, and { W(r)} is a two-dimensional
 Wiener process (the presence of two sources of uncertainty allows for randomness in the
 purchase price of capital below, and the matrix notation makes it possible to do so at
 little or no cost in terms of complexity). As a univariate process, the business-conditions
 index Z follows a geometric Brownian motion. This modeling assumption may again be
 viewed as a simple and reasonably realistic representation of uncertainty, or it may be
 given a more structural interpretation. Under constant elasticity demand and production

 functions, the multiplicative disturbance {Z(ir)} follows the process in (2) if demand,
 productivity, and the cost of flexible factors of production grow at some constant mean
 rate which is perturbed in continuous time by normally distributed random variables,
 independent over time and possibly contemporaneously correlated.

 Capital can be purchased and installed at unit price P(r). Installed capital has no
 resale value, however. By equations (1) and (2), Z(,r)>O for all r and the marginal
 contribution of installed capital to operating profits is always positive. Thus, scrapping is
 never profitable, investment is irreversible, and the installed capital stock process {K(r)}
 decreases only via depreciation, which we assume to take place at constant exponential
 rate 6. We shall take the purchase price of capital {P(r)} to have dynamics described by

 dP(r) = P(z)(92dr + ad W(i)), (3)

 where 92 and a2 are conformable to X, and a,.
 The firm's managers choose the investment policy so as to maximise the market value

 of the firm, defined as the present discounted value at rate r of expected future cash flows.
 By our assumptions, the sample path of { W(r)} contains all the information relevant to
 the firm's problem. By (2) and (3), the probability distribution of {P(z), Z(z)} as of time
 t is uniquely determined by P(t) and Z(t) for all r ? t. The optimal investment process
 {G(r)} is to be chosen among the class of non-decreasing processes which depend, at
 every time t, on the information contained in the sample path of {Zr} and {P,} up to
 time t: the investment process cannot predict the future.2 We then define the value of an

 2. Formally, what is required is that {G(r)} be progressively measurable with respect to the filtration
 F c( W(s); O < s t), the non-decreasing family of sigma-fields generated on the space of continuous functions
 t -R2 by observation of W(r). By the accumulation constraint (5), the installed capital stock process {K(r)}
 is also adapted to {FVw}.
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 investment programme as

 V(K(t), Z(t), P(t))- max Et{j' er(T)(K-t()Z(r)dr-P(r)dG(z))}, (4)

 subject to dK(r) =8-K(Q)dr + dG(ir), dG(z) >O, (5)
 where {G(ir)} is the cumulative gross investment process, restricted to have positive incre-

 ments, and Et {. } denotes conditional expectation taken, at time t, over the joint distribu-
 tion of the {Z(ir)}, {P(ir)}, and {K(Tr)} processes. While {Z(ir)} and {P(ir)} are exogenous
 to the firm's problem, the distribution of {K(r)} is determined endogenously by the optimal
 investment rule.

 Reversible investment

 If capital could be purchased or sold at the same price P(t), then dG(t) would be uncon-

 strained and the first-order condition for choice of capital stock at every point in time
 would be

 aKH(K(t), Z(t)) = (r + - @92)P(t), (6)

 where a,f(y) denotes a partial derivative with respect to x evaluated at x =y. This is the
 Jorgenson (1963) optimality condition, equating the marginal revenue product of capital
 to its user cost. Intuitively, if the purchase and sale price of capital were always equal to
 each other (though random over time) the expected opportunity cost of carrying a stock

 of progressively depreciating capital should equal the flow operating cash flows from its
 use in production.

 Under the assumed functional forms, (6) yields an expression for the frictionless
 capital stock,

 Kf (Z(t), P(t)) ((r+ 6-92) P(t) Vt. (7)
 a Z(t)/

 When investment is unconstrained, K(t) is not a state variable and the value of the firm's
 investment strategy is given by

 Vf(Z(t), P(t)) =Et{ er(r t) (Kf(T)aZ(T)dT - P(r)(dKf(r) + SKf(r)dr))} (8)

 Based on the information available at time t, Kf(r)aZ(r) is log-normally distributed by
 (2), (3), and (7). It is then not difficult to show that the integral in (8) converges if

 r> 9 9 a) (9) (l-a I-a 2 (I-2 a
 where -2 (a1 - c2)A(cTI - c2) is the variance per unit time in the growth rate of {Z(t)/
 P(t)}. The right-hand side of (9) is the expected rate of increase of revenues. For the
 firm's infinite-horizon value to be finite, the required rate of return r must be large relative

 to 91, the growth rate of operating profits for given capital, and -92, the expected rate
 of deflation in the capital purchase price. We shall of course assume that the parameters
 are such that (9) holds.

 It is worth remarking at this point that, insofar as the frictionless investment policies
 are concerned, the two sources of uncertainty represented by the elements of W(t) are
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 only relevant to the extent that they affect the single state variable Z(t)/P(t). It will become
 apparent in what follows that the same univariate state variable is also a sufficient statistic

 for the derivation and characterization of irreversible investment decisions, and that E as
 defined in (9) is a measure of the degree of uncertainty relevant to such decisions: if it
 were the case that col = 2, for example, the cost of capital would move one-for-one with
 its usefulness in production and, while such movements would in general affect the overall
 value of the firm, they would be irrelevant to marginal investment decisions. Our admitt-
 edly stylized functional forms afford useful flexibility in applications, by not constraining
 the ex-post cost of capital to be constant over time, without much increasing the algebraic
 complexity of the model.

 Characterization of irreversible investment

 If investment is irreversible, the installed capital stock {K(r)} may depend on the whole
 past history of {Z(r)}, P(r)}. Thus, {K(t)} is a state variable at time t. However, history
 dependence does not extend past the last time of positive gross investment. It is convenient
 to define a desired capital process Kd(P(t), Z(t)) such that K(t) ? Kd(P(t), Z(t)) for all t,
 and K(t)= Kd(P(t), Z(t)) if dG(t) >0. To see that an optimal irreversible investment
 programme can be characterized in terms of the "desired capital" construct, imagine
 momentarily lifting the irreversibility constraint at some time 7. At i, the installed capital
 stock would be unconstrained, thus not a state variable. If an optimal choice of capital
 stock at t exists, it must be a function of Z(7) and P(7). If dG(7) >0 in the optimal
 irreversible process, the irreversibility constraint is not binding at t and removing it has
 no effect: hence dG(t) > 0 implies K(t) = Kd(P(t), Z(t)). As the firm may choose to decrease
 its capital stock when given an opportunity to do so, K(t) _ K d(p(t), Z(t)) at all times.

 The desired-capital construct conveniently summarizes the firm's irreversible invest-
 ment decision rule. If the currently installed capital stock K(t) is smaller than Kd(t), the
 firm should immediately invest so as to obtain K(t) = Kd(t); otherwise K(t) should be
 allowed to depreciate. The firm's managers need to form expectations for the distant future
 when deciding when and how much to invest, because irreversible investment decisions,
 unlike reversible ones, are relevant to future cash flows: the firm may find itself stuck with
 an excessive stock of capital. The desired capital stock, however, is by definition a function
 of current observables only.

 The optimal investment rule can be computed explicitly under our functional form
 assumptions. Appendix A derives differential equations which are necessarily satisfied by
 the value function V( ) and by its derivative with respect to K, denoted v(.), along the
 optimal capital accumulation path. The investment policy that solves these functional
 relationships has a simple and intuitive form: the marginal revenue product of capital
 should never be allowed to exceed a constant proportion c of the purchase price of
 capital P,

 KH(K(t), Z(t),P(t))< ?cP(t) Vt;
 (=cP(t) Vt such that dG(t) >0 (10)

 Under our functional form assumptions, the ratio of flow marginal profits to purchase
 price of capital which triggers investment is constant and equals

 c=r+6-t92+-Z2A, (11)

This content downloaded from 18.9.61.112 on Tue, 31 Jan 2017 20:05:13 UTC
All use subject to http://about.jstor.org/terms



 228 REVIEW OF ECONOMIC STUDIES

 1.0

 0.9

 0.8

 0.7 -

 0.6 -

 0.5 9,= 0.05, 92-= -0.02, 3=0.12

 ~91 -0.0, 92-0.000, 3 =0. 12
 0.4

 0.3 ~91 =0.05, 9 2=-0-002, = 0.00

 0.1

 0.0 0.1 0.2 0.3 0.4 0.5

 FIGURE I

 where the constant A (defined in Appendix A) is strictly positive under the parametric
 restriction (9). Thus, when Z2 >0 the marginal revenue product of capital that triggers
 irreversible investment is larger than the neoclassical user cost of capital.

 Inverting the marginal condition (10), we obtain an expression for the firm's desired
 capital stock as a function of the current values of Z(t) and P(t):

 Kd(Z(t), P(t)) =(c (t) ) (12)

 Under the assumed functional forms, the features of the {Z(t)} and {P(t)} stochastic
 processes which are relevant to the firm's problem can be summarized by the scalar

 constant c. It can be shown that c/(r + - 92) is decreasing in @ , increasing in 92, 3,
 and Z2. Intuitively, current decisions are likely to make the irreversibility constraint binding
 over the relevant planning horizon, determined by the discount rate r, if the rate of increase
 of desired capital is expected to be lower (relative to the depreciation rate of installed
 capital), or if it is more volatile.

 Figure 1 plots the ratio of desired to frictionless capital stocks against Z2 for several
 values of the other parameters. As long as 2 > 0, the "desired" irreversible capital stock
 Kd(Z(t), P(t)) is smaller than the frictionless capital stock Kf (Z(t), P(t)) of equation (7).
 It does not follow, however, that the installed stock of capital should generally be smaller

 when investment is irreversible than when it is reversible. In fact, the risk-neutral firm

 under consideration is ex-ante reluctant to undertake irreversible investment only because
 adverse realizations in the process it takes as exogenous may ex-post leave it stuck with
 excess capital. Thus, although K(t) < Kf(t) at times of positive gross investment, we should
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 observe K(t) > Kf(t) when the realizations of {Z(t)} and {P(t)} are such as to make the
 firm regret having invested in the past.3

 3. AGGREGATE INVESTMENT

 No real firm's investment problem corresponds exactly to that solved in Section 2, of
 course. Still, our stylized model of homogeneous capital accumulation yields a closed-
 form investment rule under reasonable functional form assumptions, and the simplicity
 of the solution makes it possible to discuss the aggregate implications of firm-level irrevers-
 ibility constraints. This is a difficult problem, and several simplifying assumptions are
 necessary. We focus on investment in new capital goods, and we model aggregate invest-
 ment in terms of stochastic aggregation of a very large number (approximated by a
 continuum) of individual units indexed by is [0, 1]. Each "unit" may be taken to represent
 a specific type of homogeneous capital, owned by a specific economic agent. Real-life
 investment decisions are not taken in isolation: different firms' decisions to purchase
 similar equipment depend on each other through market interactions; capital equipment
 is in general heterogeneous even within the same productive process, with different types
 of capital being substitutable or complementary to each other; and it may be possible to
 reconvert capital on hand to new use, or to sell it to other users (at a price, of course,
 which reflects the equipment's current profitability and replacement cost). We shall model
 all linkages across investment decisions-those due to common ownership of heterogene-
 ous types of capital, and those deriving from market interactions among distinct decision
 makers-in terms of cross-sectional correlation of innovations in the unit-specific stochas-
 tic processes. We assume each unit to provide its owner with net cash flows approximated
 by the constant-elasticity function of equation (1), disturbed by a process Z,(t), and we
 let the capital stock installed in it be (irreversibly) accumulated by paying a stochastic

 price Pi(t). The process indexed by i are unit-specific, but their increments may be cross-
 sectionally correlated; the extent to which this is the case will be crucial to the character
 of aggregate investment dynamics.

 As in the microeconomic section, we proceed in two steps. We first discuss the path
 of the aggregate stock of capital in the absence of irreversibility constraints, and we note
 that its dynamic properties are the same as those of the aggregate "desired" stock of
 capital. In the second step we describe aggregate investment in the presence of irreversibility
 constraints.

 Aggregation of reversible investment

 The parameters of the individual unit's problem could all be indexed by i without

 substantially affecting the results. For simplicity, however, let a, r, 1, 9 2, CO and C2
 be the same for all units. Given the log-linearity of the microeconomic model, reversible
 investment policies are easily aggregated, even allowing for cross-sectional heterogeneity
 in the realizations of unit-specific stochastic processes. Consider the logarithm of unit

 3. On average, the capital intensity of production under investment irreversibility is actually highter than
 it would be if equation (7) applied at all times. This can be verified by the long-run average expressions derived
 in the next section, and is due to the discounting effects discussed in Bertola (1988) and Bentolila and Bertola
 (1990). We disregard these level effects in this paper, to focus on the dynamic implications of irreversibility for
 the investment series.
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 i's revenue-maximizing capital stock in the absence of irreversibility constraints, from
 equation (7):

 k{~(t)l= n K a-it ~ In (rSt9) )(13)
 1 ~ a-1 I a Zi(t))(3

 If Zi(t) and Pi (t) follow geometric Brownian motion processes (equations (2) and (3)),
 then an application of Ito's lemma yields

 dk {(t) =0dt+ adWi(t) (14)

 where Wi(t) is a univariate Brownian motion process constructed as a combination of the

 processes driving Pi(t) and Zi(t), and

 e 0 - 92-2(OfIcTl-O2cT2) U

 1-a 1-a

 Consider next the process followed by aggregate investment, which we define as a
 weighted integral on the interval [0, 1] (approximately a large number of finitely-sized
 units by a continuum of infinitesimal units): with d1(t) denoting the rate of growth of
 aggregate capital, we have

 (t)= W W)dki0(t)di9

 if unit i's share in aggregate capital is wi(t). Aggregating (14),

 d/f (t) = 0dt + TAd W(t) (15)

 where

 cAdW(t X wi(t)ad Wi(t)di

 is the aggregate component of individual units' investment processes. This definition

 induces a decomposition adWi(t)=UAdW'(t)+audW1,(t) for unit-specific innovations,
 whose idiosyncratic component dW1i(t) aggregates to zero identically. If investment were
 reversible, then idiosyncratic uncertainty would wash out in aggregate capital dynamics
 as well as in its aggregate forcing processes, and microeconomic relationships like (13)
 would translate exactly to aggregate data.

 Irreversible investment

 Investment functions derived from equations like (13), however, perform poorly when
 confronted with actual data, at all levels of aggregation. In particular, their error terms
 are strongly serially correlated, prompting researchers to include lags in their investment
 equations and to rationalize them by ad hoc adjustment cost functions. We prefer to
 interpret the empirical shortcomings of equations like (13) in terms of unit-level irrevers-
 ibility. Each unit's irreversible capital accumulation path is determined by unit-specific

 Zi(t) and Pi(t) processes through its desired capital stock process as defined in equation
 (12). Since the desired and reversible capital stocks differ only by a constant of proportion-
 ality, the dynamics of kid(t) -In K,'(t) coincide with those of k{(t). Aggregating, we obtain

 dJJ(t) = edt + aAd W (t). (16)
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 Since binding irreversibility constrain'ts destroy the convenient log-linearity of indi-
 vidual units' policies, aggregation of actual investment processes is not as easy. Roughly
 speaking, we have dki(t) = dk(t) at times when unit i is investing, and dki(t) =-Sdt at all
 other times.4 Investment by each individual unit responds fully to exogenous shocks if its
 capital stock is the "desired" one-but is completely insensitive to them if the irreversibility
 constraint is currently binding. To aggregate such nonlinear policy functions, we need to
 know how many of the microeconomic units are in the former or in the latter situation,
 and theory must then address distributional issues. It will be convenient to work with the
 cross-sectional distribution of si(t) =ki(t) - k(t), the log-deviation of each unit's actual
 capital stock from its desired one. Clearly,

 J- idt -dki(t) when dG i (t) = 0,
 dSit l otherwise.

 The dynamic response of actual investment to aggregate shocks depends on the posi-
 tion of individual units in state space (the si's) and on the magnitude of idiosyncratic
 shocks. Integrating over i and defining s(t) = J0 wi(t)si(t)di, we obtain the dynamics of the
 aggregate installed capital stock:

 dk(t) =dk8t + ds(t). (17)

 Noting that

 dG(t) -8K-(t)dt
 dJJ(t) =dIn K(t) = K(t)

 where dG(t) and K(t) denote aggregate gross investment and aggregate capital, we can
 rewrite equation (17) in terms of gross investment ratios5

 -K(() r_ +K3(t) K= (t)

 to obtain

 F(t) = F * (t) + ds(t). (18)

 In our stochastic aggregation framework, the actual and desired gross investment/capital
 ratios differ by ds(t): the change in the average difference between installed and desired
 capital stocks at the individual units' level.

 While only the mean of the cross-sectional distribution of ki(t) - kid(t) is directly
 relevant to aggregate phenomena at a point in time, the dynamics of this mean are deter-
 mined by all moments of the distribution of s,'s in the recent past (see equation (23)
 below). To study aggregate investment, it is then necessary to track the whole cross-
 sectional density, which we denote by f(s, t).6

 4. This statement is formally correct since the processes under consideration have continuous sample paths.
 Note, however, that dki(t) is (infinitesimally) positive only on a measure-zero set of time points, reflecting the
 singular character of the optimal investment policy.

 5. For most purposes, we might equivalently work with capital stock (log) levels which, by (17), obey
 F(t) =28(t) +s (t ). We choose to work with first differences because we feel that the dynamics to be explained,
 at business-cycle frequencies, are those of the investment rate. We do make use of the (cointegrated) relationship
 in levels to check empirically our assumptions regarding the k(t) series (see Section 4 below).

 6. Since the identity of units at different points in the state space is irrelevant from the aggregate point of
 view, it is not necessary to study the joint probability distribution of individual units (a process of much higher
 dimensionality). Caballero and Engel (1991) discuss this point further.
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 In the case we are considering, microeconomic units are heterogeneous only in that
 they are affected by ongoing idiosyncratic uncertainty, and such cross-section heterogeneity
 is essential to the relationship between aggregate dynamics and the underlying microecon-
 omic adjustment processes. In the absence of idiosyncratic uncertainty, individual units'
 investment problems could only possibly differ by their initial conditions; over time, how-
 ever, whenever a firm invests its si would become closer to that of other firms, and in the
 limitf(s, t) would converge to a spike. Individual units would thereafter be homogeneous
 in the levels as well as the dynamics of si, and the aggregate investment process would
 have the intermittent character implied by the microeconomic investment rule of Section 2.

 In reality, of course, investment decisions are far from being perfectly synchronized,
 and idiosyncratic shocks prevent the cross-sectional density from degenerating into a spike.
 As a result, the aggregate investment process is a smoothed version of the nonlinear,
 discontinuous microeconomic policies. Before considering aggregate shocks, it is instruc-
 tive to describe the limit case where all uncertainty faced by firms is idiosyncratic and the
 cross-sectional density has settled into a steady state. Since the number of firms is large,
 the steady state cross sectional density corresponds to the ergodic density of a single si
 (see Billingsley (1986)). As each si behaves as a Brownian motion regulated at 0, with
 standard deviation a, and drift 9 -(0 + 3 ), the steady-state density is exponential (see
 Appendix B below):

 f(s)=4e-4s s>O, where 4m-2s9/o. (19)

 The two solid lines in Figure 2 plot cross-sectional densities for two positive values of 4.
 With positive depreciation (3>0) and a secular tendency for desired investment to be
 positive (0 >0), we have 4 >0 and every individual tends to drift towards the investment
 point, where si= 0. Hence, in steady state more units are found in the immediate neighbour-
 hood of s = 0 than farther from it; further, the stronger is the drift in desired capital and
 rate of depreciation, the steeper is the slope of the cross-sectional density and the larger
 is the measure of units investing at any point in time.

 Consider then the role of ongoing aggregate shocks in shaping the cross-sectional
 distribution of units. Accumulation over a finite time-period of abnormally positive aggre-
 gate shocks has roughly the same role as a larger mean rate of growth 0: it implies a
 tendency for the cross-sectional distribution to become steeper, so that a larger measure
 of units will be investing at every point in time. Over an interval of time of given length,
 the effect of cumulative aggregate innovations on aggregate gross investment depends on
 the initial shape of the cross-sectional distribution. Formally, consider the evolution of
 the cross-sectional density in the time inverval (t - At, t], starting at f(s, t - At), and let
 the drift of desired capital growth during this time interval be 0, (accordingly, 9, =

 -(a+@,) and 4,=-21,/1a2). The path of the cross-sectional density during this time
 interval can be obtained from the solution of the forward Kolmogorov equation:

 ahf(s, h) = 2a 25f(s, h) - 9, asf(s, h), (20)

 with boundary conditions

 cr2&sf(O h)=19,f(0, h) Vhe(t-At, t), (21)

 lim (Iff2a5f(S, h) - 19,f(S, h)) = 0 Vh E (t - At, t). (22)
 so 00
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 In Appendix B we show that the solution of the partial differential equation (20) and
 its boundary condition, for given f(s, t -At), may be expressed in the form

 f(s, h) = 4,e 4s+J A(f3; t)e(13)((A ))e 2 (COS (Ps) - -sin (Ps)) dp, (23)

 where A (f) >0 for all f B> 0 and the functional constants of integration A(;) depend
 on the entire initial cross-sectional distribution, f(x, t -At) for xe [0, oo). The dashed
 lines in Figure 2 plot some of the distributions encountered as the cross-sectional density'
 converges from the steeper ergodic distribution to the flatter one.

 This equation usefully highlights the smoothness and inertia which characterize aggre-
 gate dynamics in the presence of microeconomic irreversibility constraints. The first term
 on the right-hand side of (23) in the cross-sectional density that would result in steady
 state if the drift were constant at 0, forever. We know from Figure 2 that the cross-
 sectional density tends to concentrate a larger fraction of its mass near the investment
 barrier as this drift rises, thus lowering the limit value of cross-sectional density's mean,
 s,= 1/4,. Recalling from equation (18) that changes in s drive a wedge between the actual
 and "desired" investment ratios, we find that the model has smoothing properties: as the
 driving processes induce a stronger tendency to invest, the cross-sectional density's dynam-
 ics partially offset the change in the desired capital stocks. The integral term in equation
 (23), conversely, reflects the inertial role of history. The shape of the initial distribution
 (which determines the A(; ) functions) matters for subsequent investment dynamics,
 and its importance decreases over time since A (,B) > 0 for all P. If the initial cross-sectional
 distribution was shaped by past 0 values which were larger than the current one, a large
 measure of firms is close to the investment barrier: and many of these firms are likely to
 be led to the investment point by idiosyncratic shocks and the current (smaller) drift.
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 The formal model of the previous sections assumes Brownian motion dynamics at
 both the idiosyncratic and the aggregate level. Roughly speaking, aggregate Brownian
 shocks induce infinitely frequent changes in the drift shaping the cross-sectional distribu-
 tion. While a rigorous analysis of aggregate dynamics should take this into account, the
 formal results and economic insights obtained from the above discussion (of drift changes

 over time intervals offinite length At) will suffice for our purposes. The analytic framework
 outlined above provides a good approximation to the theoretical model if At is small, and
 no additional economic insights would be gained by explicitly considering infinite-variation
 components of aggregate shocks. Most importantly, the approximate solution readily
 lends itself to further analytical and empirical work, while a more rigorous approach
 would involve solution of stochastic partial differential equations whose solutions can be
 shown to exist (see e.g. Krylov and Rozovskii (1977)), but have no explicit analytical
 representation.

 We consider the empirical implications of our model next. Only the mean of the
 cross-sectional distribution is directly observable in aggregate data. A mean, of course, is
 consistent with an infinite variety of shapes for the cross-sectional densityf(s, t); as noted
 above, each of these shapes has different implications for the mean's responsiveness to
 further aggregate shocks, and must in turn be consistent with the pattern of aggregate
 shocks observed in the past. The empirical problem is then one of inferring, from the
 observed dynamics of endogenous and exogenous variables, the shape of cross-sectional
 densities at every observation point-which depends on the history of aggregate shocks
 and, given the assumed probability structure, on the relative importance of aggregate and
 idiosyncratic sources of uncertainty. Appendix B below outlines how this can be done
 exploiting the discrete-time approximation introduced in this section, and the next section
 presents some results.

 4. EMPIRICAL IMPLICATIONS AND EVIDENCE

 This section interprets the behaviour of U.S. investment in light of our microeconomic
 and aggregation results. We work on the annual F(t) series constructed as the ratio of
 gross investment in non-residential capital equipment to the relevant capital stock, over

 the 1954-1986 period, as reported by the Department of Commerce of the Bureau of
 Economic Analysis. The objective is to construct a predicted aggregate (gross) investment
 path F(t), which we decompose into the sum of the paths of aggregate frictionless invest-
 ment, F*(t), and of the changes in the mean of the cross-sectional density, As(t). Once
 again, we proceed in two steps. We start by constructing a (hypothetical) frictionless
 investment series based on observables, and we proceed to match some moments of the
 predicted aggregate investment series to the corresponding ones of the actual investment
 rate F(t).

 "Desired" investment

 The hypothetical frictionless investment series F*(t) depends only on the cross-sectional
 first moments of the process taken as given by the microeconomic unit considered in

 Section 2. These are not directly observable but, under the functional form assumptions
 of Section 2, can be inferred from capital stock and production data. By equation (1), in

 fact, Z(t) = Y(t)K(t)-a: replacing this in equation (13), adding the index i, and taking

This content downloaded from 18.9.61.112 on Tue, 31 Jan 2017 20:05:13 UTC
All use subject to http://about.jstor.org/terms



 BERTOLA & CABALLERO AGGREGATE INVESTMENT 235

 0.24

 0.20

 0.12

 0.08

 0.04 Ir (desired)
 r (observed)

 --r (fttted.o,-0.6)

 0.0:0 I1 a I a
 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85

 FIGURE 3

 Desired, actual and fitted investment ratios

 logarithms, we obtain

 k{(t)- (In Y, (t) -lInrk,(t)) - ka t 1 In (a) (24)
 1-a 1-a 1-a

 where rk =_(r + 8 - 02)P, the neoclassical user cost of capital. Taking first differences and
 accounting for depreciation, the dynamic "desired gross investment" expression may thus
 be written

 1 ~~~~~a1

 1 -a 1 -a 1-a

 This relationship holds at the individual unit's as well as at the aggregate level (for the
 latter suppress the index i). Inasmuch as published data series are consistent with the
 theoretical aggregation process, they can be used in (24) to construct the frictionless capital
 stock around which the irreversible accumulation process oscillates. The line marked by
 crosses in Figure 3 plots a yearly gross investment rate series computed from (25) (the
 solid and dashed lines plot actual investment ratios and our model's fitted series, and are
 discussed below). We set a = 0- 10, as is appropriate if the share of equipment capital in
 value added is 13% and the markup coefficient is 24%/.~ Recall that Y(t) is the revenue of
 capital, thus it is proportional to Gross National Product (GNP) under Cobb-Douglas
 technology and isoelastic demand assumptions. We use the rate of GNP growth as a proxy
 for A In Y(t). We identify K(t) with the stock non-residential private equipment, and we

 7. The former corresponds to the average share of machinery in the U.S. during the period 1954-1986.
 The latter is in the low end of the estimates obtained with aggregate data (see e.g., Hall (1988)) and within the
 range of results obtained with more disaggregate data (see e.g. Domowitz et al. (1988)).
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 construct a neoclassical user-cost series rk(t) taking into account tax factors as well as
 fluctuations in the price of capital.8 The empirical counterpart of equation (25) corresponds

 to the hypothetical investment rate that would be observed if disinvestment were possible
 at the individual units' level, and demand, prices and interest rates were those actually
 observed in the U.S. economy. In our partial equilibrium exercise, such a series simply
 summarizes the aggregate component of partial equilibrium investment problems of firms,
 and does not represent counterfactual general equilibrium experiments.

 Before proceeding, we need to verify the realism of the constant drift and variance
 assumptions we made in our theoretical sections. The limited length of available time
 series make it difficult to test our assumption of homoskedastic, serially uncorrelated log-
 increments for the forcing processes. All we can say is that there is no evidence of dramat-
 ically different dynamics in the data: the estimated F*(t) series is statistically indistinguish-
 able from white noise (the t-statistic of the first order serial correlation coefficient is only

 1 3). The constant-elasticity functional form assumptions that yield (24) should of course
 be viewed as approximations to more general ones. To test the tightness of the approxima-
 tion, we regress k(t) =kf(t) +s(t) on a constant, on In Y(t), and on In rk(t). Under our
 assumptions, the coefficients of In Y(t) and In rk(t) are, respectively, unity and minus
 unity. As s(t) is stationary if our model is correctly specified (see Bertola and Caballero
 (1990)) and the observable series are all integrated of order one, this is a cointegrating
 regression. OLS estimates and test statistics are biased in small samples. However, as
 suggested by Stock and Watson (1989), these small-sample biases may be reduced if leads
 and lags of the first differences of the regressors are included so as to obtain residuals

 which are approximately orthogonal, at all leads and lags, to the integrated regressors.
 This testing procedure fails to reject the null hypothesis of interest: the coefficient of Y(t)
 is 1 19 (standard error = 0. 12), that of rk(t) is -0 87 (standard error = 0 39). These results
 indicate that the data we use are not inconsistent with our theoretical assumptions.

 Idiosyncratic uncertainty and the character of actual investment

 The actual investment/capital ratio F(t), plotted in Figure 3 as a solid line, is clearly much

 less variable than the theoretical Jorgensonian construct. The standard deviation of the

 former is 0-017, that of the latter 0-046. The contemporaneous correlation between actual
 investment and desired investment is only 0 29. The first-order serial correlation coefficient
 of the F*(t) series is significantly different from zero (0 25 with a standard deviation of
 0*19), while F(t) exhibits substantially higher (0-68 with standard deviation 0 13) first-
 order serial correlation.

 In previous research, these facts have been rationalized by postulating smooth and
 convex adjustment cost functions and have led researchers to estimate partial-adjustment
 equations of doubtful microeconomic realism. Irreversibility of investment decisions, like
 more familiar forms of adjustment costs, reduces the responsiveness of endogenous vari-

 ables to exogenous shocks: at the individual unit's level gross investment is completely
 unresponsive to the forcing variables when the irreversibility constraint is binding. The
 extent to which microeconomic inaction affects aggregate dynamics depends on the degree

 8. We measure cost of capital on the basis of the perfect-foresight present value of tax saving from
 investment credits series, T(t), constructed by Auerbach and Hassett (1990). The ex-post/perfect foresight cost
 of capital measure is equal to In [(r+3)(1 - T(t))Pk(t)/((1 - r(t))P(t))] where we have assumed that (r+3)
 is constant and equal to 0-2 and Pk(t)/P(t) is the ratio of National Account investment and GNP deflators.
 The corporate tax rate, r(t), is also from Auerbach and Hassett. We construct an ex-ante counterpart to this
 cost-of-capital series by projecting it onto its currently observed components, In [1 - r(t)] and In [Pk(t)/P(t)].
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 of synchronization of individual actions, which is in turn determined by the form of the
 adjustment policy on the one hand, and on the other by the importance of aggregate
 developments relative to that of idiosyncratic uncertainty (see Bertola and Caballero (1990)
 and Caballero and Engel (1991)).

 In the problem we are considering, aggregate uncertainty is small relative to the drift:
 the sample mean of the gross investment/capital ratio, which approximates 8 + 6, is 0 16,
 almost four times as large as its standard deviation. At the aggregate level, then, the
 irreversibility constraint should almost never be binding if aggregate innovations are nor-
 mally distributed as we assumed above. In fact, desired gross investment is always strictly
 positive in our sample. If idiosyncratic uncertainty were negligible, then, all units would
 be bunched in a spike at the ki(t) =kd (t) point, and actual investment should track desired
 investment exactly. If a, is large, on the other hand, the irreversibility constraint is binding
 (for some of the units, in some of the periods), and changes in the cross-sectional distribu-
 tions tend to smooth out the response of F(t) to movements in r*(t).

 It is indeed possible to match the volatility and serial correlation of the observed
 series by an appropriate choice of cr.9 The dashed line in Figure 3 plots the aggregate
 investment path predicted by our model if ac,=0 6, an admittedly rather extreme value
 for the variability of "desired capital" across microeconomic units and over time: in this
 simple implementation of our model, all of the time-series smoothing required by aggregate
 data must result from imperfect synchronization of microeconomic investments. In reality,
 of course, some forms of investment may be smoother than the relevant forcing variables
 because of convex adjustment costs, time-to-build distributed lags, and many other mecha-
 nisms emphasized by previous research. It is nevertheless interesting to find that the distri-

 butional mechanism we focus on is capable of smoothing the dynamics of the investment
 process, and of increasing the persistence of aggregate events' effects on capital accumula-
 tion, to the extent required by U.S. aggregate data. While the fit is far from perfect (the
 model explains 36% of the investment series's variability), raising cri from zero to 0-6
 reduces the standard deviation of investment from 0-046 (the standard deviation of desired
 investment) to 0-015 (which is comparable to observed investment's standard deviation,
 0 017); and raises its first-order serial correlation from 0-25, for desired investment, to
 0-66 (comparable to the 0-68 correlation of observed investment).

 On the results

 These simple computations indicate that the smooth, persistent character of aggregate
 investment dynamics can be rationalized in terms of unit-level irreversibility constraints
 rather than in terms of ad hoc adjustment cost functions. Our model assigns to
 idiosyncratic uncertainty the crucial role of smoothing out the nonlinear, intermittent
 character of microeconomic irreversible investment decisions. The results indicate that
 volatility of desired capital at the individual unit's level would indeed have to be very
 high for the model to rationalize aggregate evidence without recourse to other sources of
 investment smoothness. With a,= 0-6, the desired capital stock at the individual unit level
 should vary by as much as 60% about two-thirds of the cases, on a year-to-year basis. In

 9. The parameter cr, is reasonably well determined in this metric. Ratios of the predicted investment series's
 standard deviation to the observed one are 1-24, 1^06, 0-80 and 0-71, at a1=0 4, 0 5, 0-7 and 0-8. We pick Ca,=
 0.6 to match this moment and the serial correlation coefficient as well. In principle, one could estimate r., by
 maximizing the fit of the rf(t) series to the observed rf(t) series. When searching over large values of a,., the R2
 improves but the predicted series becomes too smooth. Monte Carlo experiments suggest that serially uncorre-
 lated measurement errors may be responsible for this.
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 the model, symmetric shocks to other units' desired capital ensure that the degree of
 uncertainty is approximately ten times smaller at the aggregate level: in reality, investment
 does not become more intermittent and more volatile as more and more disaggregated
 data are considered. Given the rather abstract definition of "units" in our aggregative
 model, however, it is not easy to evaluate how close to 06 the proportional variability of
 desired capital might be in reality. Once again, the "desired capital" construct simply
 summarizes external influences on the firm's problem in our partial equilibrium setting,
 and its high volatility reflects the fact that much of these are specific to individual firms,
 product lines, and types of equipment. Of course, the volatility of installed capital would
 not necessarily be so high in a world without irreversibility constraints: if, counterfactually,
 capital were perfectly homogeneous and all investment decisions were reversible, the pro-
 cess followed by the price of new capital P(t) would of course be quite different.

 Since Section 2 provides a completely specified model of unit-level investment, we
 can characterize the microeconomic importance of investment irreversibility by specifying
 its parameters so as to match the observed rate of growth of capital and of capital costs

 as well as the degree of idiosyncratic uncertainty implied by the smoothness of aggregate
 investment. Aggregate data provide information for some, but not all of the parameters
 relevant to the microeconomic model of Section 2. The logarithmic rate of annual capital
 growth is 004 in the period we consider; with GNP (our proxy for Y) growing at an
 average rate of 3% per year and a = 0 1, equation (1) implies that the "business conditions"
 index Z grows at the annual rate. 91= 2- 6%. We set r + S = 0O20 in our empirical work,
 reflecting the large 0 12 depreciation rate appropriate for the capital and investment series
 we use (U.S. business equipment investment) and an 8% required rate of return.

 The mean rate of growth of the aggregate counterparts of Z and P are easily computed
 from the logarithmic variables used in our empirical work above. By equation (13), how-
 ever, these estimates depend on the variance of the idiosyncratic P and Z processes. Absent
 convex adjustment costs (or time-to-build and information lags), the smoothness
 of aggregate investment series requires large idiosyncratic uncertainty:'1 with -,=0 6,
 we haveE2 = ((1- _a) O)2= 035. While aggregate data provide information on
 Z (C1 - 92)A(U1 - 2), they do not identify al and 2 separately, as would be necessary
 for the purpose of obtaining estimates for X1, and 92 from (13) and the aggregate coun-
 terparts of P and Z. Since X91 and 92 have different roles in the microeconomic investment
 problem, two parameters remain to be chosen before aggregate evidence can be used to
 infer microeconomic investment policies: the correlation between the rates of growth of
 Pi and Zi, and the relative variance of these two rates.

 Figure 4 is constructed letting a, = [6d, pdj' and a2 = [dfp, dfl]', where the scalar 6f
 is pinned down by the estimated variance of dk{, /3 indexes the volatility of P relative to

 that of Z, and p determines the correlation pzp between the rates of growth of Pi and Z,:
 pZ = 2p/(1 + p2). In Figure 4(a) we plot numerical values from equation (12) for the excess
 of capital's marginal revenue product over its Jorgensonian user cost when investment is
 positive at the unit level; depending on what is assumed as to the relative variability of
 Zi and Pi and as to the correlation of their increments, the excess required return varies
 between 4% and 12% per year. Figure 4(b) presents the corresponding ratio of desired

 10. Note that we have assumed all units to have the same structural parameters, and the only source of
 comovement to be exogenous aggregate shocks. In a sense, structural heterogeneity plays a role very similar to
 that of exogenous idiosyncratic uncertainty (Caballero and Engel (1991)), while strategic interactions may
 exacerbate (strategic complementarities) or dampen (strategic substitutability) the relative importance of aggre-
 gate shocks (Caballero and Engel (1992)). These factors should be taken into account in order to interpret the
 magnitude of the sources of the uncertainty faced by individual units.
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 Required excess return at the investment point

 (from equation (12)) to Jorgensonian stocks of capital at the investment points. This takes
 values between 0 2 and 0 7, to imply that if irreversibility is the only dynamic factor in
 real-life investment problems, as we assume, then the stock of capital ranges between 20%
 and 70% of the neoclassical "frictionless" construct at times when investment is positive
 at the unit level.
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 5. CONCLUSIONS

 This paper proposes a closed-form sequential irreversible investment rule, studies its impli-
 cations for aggregate investment behaviour when both idiosyncratic and aggregate sources
 of uncertainty are present, and provides some empirical evidence for the model using
 postwar U.S. private equipment investment data. We have shown that aggregate data are
 broadly consistent with a model in which microeconomic units rationally choose to install
 less capital than it would be implied by a frictionless neoclassical model when they invest,

 and allow the installed capital stock to depreciate when the irreversibility constraint
 becomes binding. In our model, microeconomic investment aims to keep installed capital
 close to a moving target which depends on the level of activity as well as on the cost of
 capital. The microeconomic irreversibility constraint, interacting with idiosyncratic sources
 of uncertainty, yields a smooth, highly persistent response of aggregate investment to

 innovations in activity and in the cost of capital.

 Underlying such smooth aggregate processes are highly volatile, intermittent invest-
 ment decisions by microeconomic "units". Such units may or may not correspond closely
 to observable sectors, firms, and types of capital: while such disaggregate empirical issues
 are beyond the scope of this paper, the notion of more nonlinear, infrequent, and volatile
 investment decisions at the microeconomic level accords well with casual empiricism and
 with the increasingly available hard evidence on plant-level data."

 Quite clearly, the results of this paper do not provide a complete interpretation of
 investment dynamics. The empirical section above shows that the combination of nonlinear
 investment policies and idiosyncratic uncertainty is capable of smoothing aggregate driving

 processes to the extent required by aggregate investment data. While the fit of our specifi-

 cation is satisfactory, a model where only this mechanism is present leaves unexplained a
 non-trivial and serially correlated error component. Future research should explore the
 role of time-to-build lags, of other non-convexities, and of quasi-fixed factors other than
 capital. Each of these realistic features complicates the three tasks tackled in this paper-

 microeconomic optimization, stochastic aggregation, and empirical inferences. Our model
 of aggregate investment addresses the three issues in a self-consistent way, with reasonably
 sound microeconomic foundations, and may form the basis for further applied work.

 APPENDIX A

 The Bellman equation for the irreversible investment problem takes the form

 rV(K(t), Z(t), P(t))dt=rmax [K(t)'Z(t)dt - P(t)dG(t) +E,{ V(K(t), Z(t), P(t))}
 dG(t)

 subject to dG (t) _ 0, (A 1)

 at all times t. Under the usual regularity conditions, Ito's change-of-variable formula yields (omitting time

 indexes and the arguments of V(-)):

 E,{dV(-)} E,{OKV(-)dK+ OzV()dZ+ OpV( )dP

 + @z0 V(-)(dZ)2 + Iapp V( )(dP)2 + Opz V( )(dZ)(dP)}

 = OK V(-)(-3Kdt+ dG) + Oz V( )Z9 ldt + Op V( )P92dt

 +t(Ozz V( )Z2asl I1dt + Ypp V( )P2s c2dt + Opz V( )PZ(I' a2+ s2 a1)dt) (A2)

 11. Ongoing work by Mark Doms and Timothy Dunne at the U.S. Census Bureau suggests that over 50
 percent of a plants' cumulative equipment-investment over a period of 15 years is concentrated in a period of
 three (contiguous) years.
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 where 8xyf(x, y) denotes the partial derivative of a function f() with respect to X and Y, evaluated at X=x,
 Y=y.

 Using (A2) in (Al), optimal irreversible investment should satisfy the complementary slackness conditions

 OK V(K(t), Z(t), P()) P(t) Vt;

 OK V(K(t), Z(t), P(t)) = P(t) Vt: dG(t) >0 (A)

 If 8KK V(') exists and is not zero, the second line of (A3) implicitly defines Kd(Zt), P(t)).
 Using (A3) in (Al) we find that

 rV() = K'Z+ OKV(-)(-S;K) +Oz V( )ZTh +P pV( )P92
 + 2(QZ V()Z2a, + 4,p V()P2acr2 + 22 P V(-)PZ(a2a2 + aC2)) (A4)

 holds identically along the optimal path, and can be differentiated term-by-term with respect to K. Defining
 v(K, Z, P) OKV(K, Z, P), we obtain

 (r+ S)v(-)=aKa 'Z+OKv(*)(-SK)+8zv( )ZTh+OPv(.)PS2
 + OzzV( )Z2c, C+ ppV( )P2I2a2 + apZ V(')PZ(Cr 2 + a2C) (A5)

 A particular solution to (A5) is

 vo(K, Z, P) aK+ a1Z

 and v( ) solutions can be written as linear combinations of vo( ) and terms in the form (aKa-Z)API-A, for A
 a solution to the characteristic equation

 2E2x2+(@+(I -a)b - 2-2 X(r+ -,92)=O (A6)

 (recall that -2 (a1 - o2)'(Cr - a2).) If the parameters satisfy condition (9) in the main text, this quadratic
 equation has two roots of opposite sign. Since Z=O is absorbing for the {Z(t)} process, it must be the case
 that limz -sv(K, Z, P) = 0, to imply that only the positive root of (A6) need be considered. Accordingly, we
 have

 v(K, Z, P) = Z + C(aKa- Z)AP -A (A7)

 for K?Kd(Z, P), where A denotes the positive root of (A6), and C is a constant of integration that does not
 depend on K, Z, or P.

 By (A3), the investment policy prevents v(K, Z, P) from ever exceeding P. Thus, v(, ,) must satisfy
 the boundary condition

 v(Kd(Z, P), Z, P) = P. (A8)

 For the differential relationship (A5) to be satisfied in the immediate neighbourhood of the locus where (A8)

 holds, the value function must be twice-differentiable there. This yields the "smooth pasting" conditions

 OK v(Kd(Z, P), Z, P) = 0,

 apv(Kd(Z, P), Z, P) = 1, (A9)

 Ozv(Kd(Z, p), Z, P) =0.

 Using (A7) in (A8) and (A9) we find

 a(K d(Z, P))a 'Z A
 - (r + aS-Th}).

 P A -I

 Rearranging (A6), we may write

 A r+S-92+Z2A

 A-I r+a-,9,

 to imply that the desired-capital function has the form given as equations (1 1), (12) in the main text.
 It can be verified that A > 1/(1 - a) if condition (9) in the main text holds true, and that c= r+ 6 -92 only

 if X2 =0 and 91 - (I - a)5 - 92>0. This would be a degenerate special case of Arrow's (1968) non-stochastic
 model, in which disinvestment is never desirable and the irreversibility constraint is completely irrelevent.
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 APPENDIX B

 The purpose of this appendix is to describe the procedure we use to estimate the path of the cross-sectional

 density and its mean. Since continuous information is not available as to aggregate developments, we assume

 the realizations of aggregate uncertainty to be evenly spread within each observation period. Namely, if we can

 infer from aggregate data that the average desired stock of capital increases by x% between t and t + h, then we

 model aggregate dynamics as if the increase occured at a constant rate x/h in the continuous time interval
 between observations. This is only an approximation, of course. Investment being irreversible, the time-aggre-
 gated investment rate is path-dependent and the variability of desired capital at higher frequencies is, in principle,

 relevant for the observed path of installed capital. The approximation also neglects the infinite variation property
 of Brownian paths; we believe, however, that any empirical importance of these issues is overshadowed by the
 substantial simplification of the analytical and estimation problems: it reduces an intractable stochastic partial

 differential equation to a sequence of deterministic linear partial differential equations, whose solution is presented

 below.

 Specifically, let observations on desired and actual capital stocks be available at the times (to, t,, t2,...),

 with th - th I = At, h = 0, 1, 2, .... The discrete counterpart of equation (18) is then

 r(th) = r*(th) + AS(th )

 where r(th) and [-*(th) denote, respectively, the observed and desired ratios of gross investment to capital
 between th and th.

 We now find the (continuous) path of the cross-sectional density between th - X and th, momentarily omitting
 the time index for simplicity.

 We first derive the dynamic density of a Brownian motion with reflecting barriers at zero and at S> 0, and

 we then take the appropriate limit as S -* oo.

 Finite state space

 Let f(s, t) denote the probability density of a process s(t) with stochastic differential

 ds(t)=9dt+cdW(t), 9 <0, u>0

 where { W(t)} a standard Wiener process, and let {s} be reflected at 0 and at S> 0. The function f(s, t) can be

 derived by solving the forward Kolmogorov equation

 8,f(s, t) ='a 20sf(s, t) - 98J(S, t), (Bi)

 with boundary conditions

 I20T28f(O, t)-= f(O, t) Vt, B2

 I 28J(S, t) = 9f(S, t) Vt, (B3)

 and given initial condition

 f(s, 0)=g(s) g(s)ds= 1. (B4)

 Separating the variables, we write f(s, t) =g(s)h(t) and obtain a couple of ordinary differential equations.
 In the t direction,

 h'(t) + Xh(t) = 0

 has general solution h(t) = Ae-A', A a constant of integration. In the s direction,

 g"(s) + 4g'(s)-X Xg(s) = 0 (B5)
 '9

 g'(0)=-4g(0) (B6)

 g'(S) =-4g(S) (B7)

 where 4 _ -21/a 2, 4 > O.
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 Equations (B5-B7) define a Sturm-Liouville problem (see e.g. Churchill and Brown (1987)), with character-
 istic equation

 If A<-4,9/4=4 2a2/8, the roots are real and solutions taken the general form

 g(s)- = ease+ ea2s. (B8)

 Solutions in this form need to be considered only if they-can satisfy the boundary conditions with A, and/or
 A2 different from zero: (B6) and (B7) require

 A,(a, +4)+A2(a2+4)=O; A,ea's(a, +4)+A2ea2s(a2+4)=O.

 All solutions in the form (B8) are then identically zero except the one corresponding to A= 0, with a =4,
 a2=0, A2=O:

 g(s; A=0)Ae-4s.

 We then consider the solutions obtained for A> 4 2u2/8. The roots are complex, and the solution has the
 form

 _45

 g(s; A) = e 2 (A cos (JJ(A)s) + B sin (JJ(A)s)) (B9)

 where

 fJ(X)=

 Imposing (B6), we obtain

 A + i(A)B=-4A
 2

 to imply that B=-A4/2fJ; for (B7) to be satisfied, we then need

 A ( 4 -,B(A)- 4 ) sin (JJ(A)S) =0.

 Using the definition of P and simplifying, we get

 A4-sin (,f(A)S)=0.

 Thus, all solutions in the form of (B9) are identically zero except those for which sin (fl(A)S)= 0, or

 (S 4) S2 s n==1,2.
 Combining the results, we find that the general solution to (B1-B3) can be written

 f(s, t) = E A,>n(s)e
 .,=0

 Ao=0; (n = +2 ( ) n=1,2,.

 fo(s) e-S; f,,(s)=e 2(COS (Cos)s nir 2 sin ( ) n= 1,)2

 The initial condition

 00

 E A,tfn(s) = g(s) (B I10)
 n=o
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 determines the constants Ak, k = 0, 1, 2, . Multiplying both sides of (B 10) by fk(s)e4s, integrating between 0
 and S, and exploiting the fact that JSfn(s)fk(s)eWsds =0 for n k, we obtain

 Ao = 4/(l - e S)

 fosg(s)fk(s)e1sds (BI )
 Ak= ~n52~d k=0, 1, 2,. lo"(S)2 egsds

 The integral in the numerator of (B II) can be computed numerically for general g(), and the denominator has
 the closed form

 Affn(s)2e4sds =(s+s 4)

 We note at this point that as n -- oo the constants converge to zero, and the As diverge to positive infinity. Thus,
 truncation of the infinite series yields a satisfactory approximation to f (s, t).

 Unbounded state space

 Given that 4 > 0,

 lim f(S, t) = 0
 s_ -0

 and the boundary condition corresponding to (B6) is satisfied identically. All solutions in the form

 f(s; f) =e 2 (COS (Pfs) - sin (Ps))

 and therefore admissible, as well as fo(S) defined above, and the solution of the PDE takes the integral form

 f(s, t) = Aofo(s) + f A(P)e-A(?f(s; fJ)dfi,

 where A (p) = p-'(A). In the limit as S5- oo, the expressions for A(fl) and for the mean of the density take the
 form:

 A(p)= 2( + 42/4p2) { f(s, O)e 2 (COS (PS)-2p sin (ps))ds,

 and

 =4-J p2(l + 42 2 d4).

 Dynamic recursion

 We now bring back the time index. Defining

 2r*(t,)
 21,

 we can treat the cross-sectional density at the end of each period as the initial condition for the next period,

 and compute cross-sectional densities at each observation point by the following recursive relationships:

 f(s, h) = 4he-4hs + e ( 12)4hs A (JJ; h)e (Bt)t(cos (Ps) - sin (lPs)) dp (B 1 2)

 A( l; h) =7r( + =2 p2) f(s, h - I)e( /2)4v(cos (ps) - sin (fs))ds. (B 13)

 If the investment/capital ratio were constant over time, as would be the case if aA = 0, then we would have 4h
 4h- I for all h, and the recursion would track at discrete times the convergent path of the cross-sectional density
 to its stable form. If aggregate investment fluctuates over time, however, the 4h values relevant to each observation
 are different, and the recursion generates a sequence of densities linked by initial and final conditions.
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 The change in the mean of the cross-sectional density, Ag(th), is then readily computed from equation
 (B12):

 1 A(f3, h)e_A(fl' (A ' A(fl, h- 1)e""~
 ASt h o J 2(l + 42p2) df2\l _ - 2 42 42d). (B14) 4h h1 41 bI+fll 1,/4pl

 This is the expression which, in conjunction with the estimates of r*, yields an estimated path of the
 investment/capital ratio as a function of idiosyncratic uncertainty and other parameters of the model.
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