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Abstract

I propose a methodology for constructing counterfactuals with respect to changes in pol-
icy rules which does not require fully specifying a particular model, yet is not subject to
Lucas Critique. It applies to a class of dynamic stochastic models whose equilibria are well
approximated by a linear representation. It rests on the insight that many such models sat-
isfy a principle of counterfactual equivalence: they are observationally equivalent under a
benchmark policy and yield an identical counterfactual equilibrium under an alternative one.
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1 Introduction

Economists follow either structural or reduced-form (and semi-structural) approaches to answer
counterfactual questions. The former relies on specifying primitives of a particular model. This
is a daunting task whenever researchers are uncertain about features of alternative models that
are hard to distinguish with available data and reasonable a-priori. If counterfactuals differ un-
der these alternative models, their credibility is undermined. The latter approaches require less
commitment to a particular model and have proven useful to evaluate observed policy changes,
as in Sims (1980). However, the structural approach is the leading paradigm for studying un-
observed, potential changes in policy rules because the analysis is not subject to the critique in
Lucas (1976). Are there then reasonable circumstances when we can analyze the effects of a
counterfactual policy rule change without having to commit to a particular model?

In this paper, I propose a semi-structural methodology for constructing counterfactuals with
respect to policy rule changes. It is useful in circumstances when a linearization approach is
reasonable and we do not wish to fully specify a model’s microfoundations, yet we are worried
about using approaches that contain too little information for the analysis to be immune to Lucas
Critique — like those based on structural VARs.1 The method hinges on an insight about dynamic
stochastic models with equilibria that are well approximated by a linear representation, like the
ones in Uhlig (1995). The insight is that many models that can match an economy’s reduced-
form equilibrium under a benchmark policy rule — observationally equivalent models — will
also generate an identical counterfactual equilibrium under an alternative policy rule. Regardless
of their microfoundations, these models thus satisfy a principle of counterfactual equivalence.

The method has three steps. The first is using data from an economy under a benchmark
policy rule to estimate a recursive law of motion of the equilibrium of dynamic stochastic mod-
els — a reduced form model. The second is imposing restrictions on these models’ equilibrium
equations. They need to be enough to identify all coefficients in such equations — the structural
model — given the reduced form model. The last step is solving for the counterfactual equilib-
rium under an alternative policy rule, given the identified structural model. As such, the method
is in the spirit of ideas advanced at the Cowles Commission (e.g., Hurwicz, 1962; Marschak,
1974) as well as more recently by the literature on sufficient statistics (e.g., Chetty, 2009).2

2 Illustrative example: Interest rate rules in New Keynesian models

The goal of this section is to illustrate the semi-structural methodology in a simple example. I
consider counterfactuals with respect to changes in interest rate policy rules in the context of 3-
equation New Keynesian models. I begin by describing notation and language that will be used

1Bernanke, Gertler, and Watson (1997) and Sims and Zha (2006) evaluate counterfactual policy rules by “zeroing-
out” policy responses in SVARs. Policy institutions use this method as well as macroeconometric models like FRB/US.

2Marschak’s Maxim says that for many policy questions it may not be necessary to fully identify all model param-
eters, but only combinations of subsets of parameters. Hurwicz (1962) noted that these should be policy invariant.
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throughout. I then show that different models are counterfactually equivalent. Finally, I show
how to construct counterfactuals without having to specify a particular New Keynesian model.

The canonical New Keynesian model describes the equilibrium behavior of output yt, infla-
tion πt, and the nominal interest rate it in log-deviations from a zero inflation steady state in
terms of three equations. In matrix form, the equilibrium conditions include the Euler equation
and the New Keynesian Phillips Curve (NKPC)
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and the interest rate policy rule
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where 1/σ is the intertemporal elasticity of substitution, β is the discount factor, κ is a combina-
tion of subsets of parameters (e.g., the frequency of price changes), and {θπ, θy, θi} are policy rule
parameters. Moreover, {bt, at, mt} are assumed to be independent AR(1) processes described by
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where N is a diagonal matrix of parameters governing persistence, and {εb
t , εa

t , εm
t } are respec-

tively a demand shock, a cost-push shock, and a monetary policy shock.
From now on, let ξ denote the collection of matrices with structural parameters in (Euler) and

(NKPC), and Θ denote the collection of matrices with policy parameters in (Rule). I will say that
µ ≡ {ξ, Θ} is the structural model described by the structure ξ and the policy Θ.

Suppose that there is a unique and stable recursive law of motion of the equilibrium
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From here on, I will say that Γ ≡ {P, Q, N} is the reduced form model, where P and Q are the
(stable) solution to the non-linear system of matrix equations
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For example, the structural model µ0 described by structure ξ0 and policy Θ0 below

ξ0 =

[
1 1

2 0 −1 0 − 1
2 0 0 0 1 0 0

0 0.9 0 0.3 −1 0 0 0 0 0 1 0

]

Θ0 =
[
0 0.7 0 0.5 0 −1 0 0 0.6 0 0 1

]

has the reduced form model Γ0

P0 =




0 0 −0.35
0 0 −0.16
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
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1.46 3.24 −0.27
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
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0.9 0 0
0 0.9 0
0 0 0


 .

Observational equivalence. Many models have the same reduced form under policy Θ0: they
are observationally equivalent. To see this, consider two models with a different NKPC. The first
one is from Gabaix (2020) where firms are inattentive. The NKPC in this “behavioral model” is
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where M f and m f govern inattention to future economic conditions. The second model is from
Christiano, Trabandt, and Walentin (2010) where firms need to borrow short term to finance
materials and labor inputs. The NKPC in this “working-capital model” is
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where χ and γ are combinations of parameters, and account for financing and materials needs.
The behavioral model has reduced form Γ0 because it has structure ξ0 when βM f = 0.9 and

κm f = 0.3. The working-capital model has reduced form Γ0 even if it has a different structure ξ1

ξ1 =

[
1 1

2 0 −1 0 − 1
2 0 0 0 1 0 0

0 0.70 0 0.38 −1 0.04 0 0 0 0 1.5 0

]
.

The common feature of these models is that their structures satisfy exactly 6 restrictions per
line — see the structure in (Restrictions) below. As Lemma A.1 in the Online Appendix shows in
the general case, this feature makes them observationally equivalent.

Counterfactual equivalence. Consider a policy change from Θ0 to Θ1. There are models that
have the same reduced form Γ0 under policy Θ0 that also have the same reduced form Γ1 under
policy Θ1: they are counterfactually equivalent. But not all observationally equivalent models
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satisfy such principle of counterfactually equivalence.
For instance, consider a more “hawkish” interest rate rule with θy = 0 instead of θy = 0.4.

Then, both the canonical model and behavioral models associated with structural model {ξ0, Θ1}
have the same reduced form Γ1, but the working-capital model associated with structural model
{ξ1, Θ1} has a different reduced form Γ̃1. In particular, the two counterfactuals are

P1 =




0 0 −0.63
0 0 −0.34
0 0 0.48


 Q1 =




5.32 −1.56 −0.84
5.86 1.95 −0.38
3.32 1.11 0.90


 ; P̃1 =




0 0 −0.63
0 0 −0.33
0 0 0.49


 Q̃1 =




5.72 −1.67 −0.84
5.36 2.10 −0.38
3.03 1.19 0.90


 .

The example shows that the principle of counterfactual equivalence is intimately related to
Lucas Critique. If the data generating process is the structural model µ0, a model with structure
ξ1 would match the reduced form Γ0 under policy Θ0 but would lead to the “wrong" counterfac-
tual Γ1 under policy Θ1. Such counterfactual analysis would not be immune to Lucas Critique.

The semi-structural methodology. Suppose that a researcher has estimated the reduced form
Γ0 using data from an economy under the interest rate policy rule Θ0.3 Knowledge of this re-
duced form is not sufficient to identify a counterfactual with respect to a policy rule change.
However, assume that the researcher also has some a-priori knowledge about the structural
model that generated it. In particular, she knows that the structure ξ satisfies the following 6
restrictions in each of its lines

ξ =

[
ξ11 ξ12 0 ξ14 0 ξ16 ξ17 ξ18 0 1 0 0
ξ12 ξ22 0 ξ24 ξ25 0 ξ27 ξ28 0 0 1 0

]
(Restrictions)

The restrictions imply, for example, that only demand shocks shift the Euler equation — the
coefficients {ξ111, ξ112} associated with {at, mt} are set to zero — or that the interest rate does not
appear in the NKPC — the coefficients {ξ23, ξ26, ξ29} associated with {it+1, it, it−1} are set to zero.

Imposing these restrictions is enough to identify the unknown coefficients in the structure ξ,
given the reduced form model Γ0 and the policy Θ0. The reason is that, as Theorems 1 shows
in the general case, knowledge of {Γ0, Θ0} only imposes 6 restrictions per line in the structure,
whereas there are 12 unknown structural coefficients per line. Then, imposing 6 additional
restrictions per line identifies the full structure ξ0.

Finally, to construct a counterfactual equilibrium, the researcher proceeds as usual: solve a
system like (SMERLM-NK) for {P1, Q1} given the structure ξ0 and a counterfactual policy Θ1 of
interest. The counterfactual equilibrium is identical for all models described by the same struc-
ture ξ0 regardless of their microfoundations — like the canonical and behavioral New Keynesian
models in the example above. It is also robust to variations across models with different struc-
tures ξ that are nevertheless counterfactually equivalent — these are described by Lemma A.2
and Propositions A.1 and A.2 in the Online Appendix.

3Online Appendix A.3 shows how to recover the reduced form when the equilibrium has a SVAR representation.
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3 General case: Policy rules in dynamic stochastic models

In this section, I present the semi-structural methodology for policy counterfactuals. I first de-
scribe the class of dynamic stochastic models that it applies to. Then, I introduce the principle of
counterfactual equivalence and show the main result that underpins the methodology.

Consider dynamic stochastic models with equilibria that are characterized by a linear system

0 = FEt[xt+1] + Gxt + Hxt−1 + LEt[zt+1] + Mzt

0 = Θ f Et[xt+1] + Θcxt + Θpxt−1 + Θzzt (SME)

0 = −zt+1 + Nzt + εt+1,

where xt is a column vector of length ‘k’ that includes all observed endogenous variables in
deviations from the steady state — a number ‘p’ of which are policy variables — and zt is a
column vector of length ‘s’ that includes exogenous unobserved state variables. As Uhlig (1995)
and the Online Appendix show, many models’ equilibria can be approximated by such system.

Definition 1 (Structural model). A structural model µ ≡ {ξ, Θ} is described by a structure ξ col-
lecting policy-invariant matrices ξ ≡

[
F G H (LN + M)

]
and a policy Θ collecting matrices of

endogenous policy rule parameters Θ ≡
[

Θ f Θc Θp Θz

]
.

The coefficients in structure ξ are combinations of parameters derived from fully specifying
a particular model — e.g., a New Keynesian model. They often lack a direct economic interpre-
tation. Coefficients in policy Θ do have such interpretation — e.g., interest rate rule parameters.
Note that the definition implies that policy does not affect steady state values potentially in ξ.

Next, I restrict the class of models in (SME) to those that satisfy two assumptions.

Assumption 1 (Stability). {ξ, N, Θ} are such that the system (SME) is stabilizable.

Under Assumption 1, there is a stable recursive law of motion of the equilibrium

xt = Pxt−1 + Qzt (RLM)

zt = Nzt−1 + εt

where P and N have all eigenvalues inside the unit circle. In particular, using the method of
undetermined coefficients, {P, Q} solve the non-linear system of matrix equations

[
F G H LN + M

Θ f Θc Θp Θz

]

k.(3k+s)




(P)2 QN + PQ
P Q
Ik 0k

0s Is



(3k+s).(k+s)

= 0k.(k+s). (SMERLM)

Assumption 2 (Uniqueness). {ξ, N, Θ} are such that {P, Q} are unique.

The assumptions ensure that the reduced form model defined below is stable and unique.

Definition 2 (Reduced form). The structural model µ has the reduced form model Γ ≡ {P, Q, N}.
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The principle of counterfactual equivalence. The examples in Section 2 and Online Appendix
A.2 illustrate that many models are observationally equivalent: they have the same reduced form
under a given policy Θ. Lemma A.1 in the Online Appendix formally characterizes a set of
observationally equivalent models in the general case. It shows that the structural model cannot
be uniquely recovered from the reduced form model. There are 3k + s coefficients in each line of
the structure ξ, yet the reduced form Γ only imposes k + s linear restrictions per line.

Next consider a policy change from Θ0 to Θ1. Many models that have the same reduced form
under Θ0 would typically have a different counterfactual equilibrium under Θ1 — the Lucas
Critique. But are there models that have reduced form Γ0 under policy Θ0 that also have reduced
form Γ1 under policy Θ1? I will say that such models satisfy a principle of counterfactual equivalence:
they are observationally equivalent under both a benchmark and a counterfactual policy.

Section 2 and Online Appendix A.2 show examples of models that satisfy the principle (and
some that do not). Lemma A.2 together with Propositions A.1 and A.2 in the Online Appendix
characterize a set of counterfactually equivalent models in the general case. They show that there
are two “types” of counterfactually equivalent models. The first are all models with the same
structure ξ. These models are nevertheless different from each other in that they have different
microfoundations. The second type are models with different structures, but which satisfy the
conditions in the Lemma. For example, the Propositions show that a sufficient but not necessary
condition is that the lines in a model’s structure are linear combinations of the lines in another’s.

The semi-structural methodology. The central question of how to construct a counterfactual
without having to commit to a particular microfounded model can now be stated as: What
additional restrictions need to be imposed on the structural model µ so that knowledge of the
reduced form Γ0 under the observed policy Θ0 uniquely identifies a structure ξ0 and, therefore,
a unique counterfactual Γ1 under a counterfactual policy Θ1?

The theorem shows the answer: it suffices to impose 2k independent linear restrictions in each
line l = {1, ...k− p} of the structure, where k is the number of endogenous variables in (SME).

Theorem 1. (Counterfactual Identification) Let {Rl , rl} describe a set of 2k independent linear restric-
tions on the coefficients in line ‘l’ of a structure ξ. Given observed policy Θ0 and reduced form Γ0, there is
a unique structural model µ0 = {ξ0, Θ0} that:

(i) has reduced form Γ0 under policy Θ0,

(ii) has a structure ξ0 that satisfies the restrictions Rl(ξ
0
l )
′ = rl in each of its lines l = {1, ...k− p}.

Then, given ξ0 and counterfactual policy Θ1, there is a unique counterfactual reduced form Γ1.

The proof is by construction. As such, it describes a semi-structural methodology for policy
counterfactuals. We noticed before that solving for the reduced form Γ0 entailed solving the
non-linear system of equations (SMERLM), given the structural model µ0 = {ξ0, Θ0} and N0.
However, consider the reverse mapping instead. Given the reduced form Γ0, (SMERLM) implies
a linear system of equations that any structure ξ must satisfy in order to match this reduced form.
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In particular, each line l = {1, ...k− p} in a structure solves

[
(P0)2′ P0′ Ik 0k.k

(Q0N0 + P0Q0)′ Q0′ 0s.k Is

]
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= 0(k+s).1 .

This system is generally underdetermined — many structural models have the same reduced
form. There are 3k + s unknown coefficients but only k + s equations. Then, adding a set {Rl , rl}
of 2k independent linear restrictions for line ’l’, we obtain the exactly determined system




(P0)2′ P0′ Ik 0k.k

(Q0N0 + P0Q0)′ Q0′ 0s.k Is

Rl




(3k+s).(3k+s)




F′l
G′l
H′l

(LN0 + M)l
′



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=
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0(k+s).1

rl

]

(3k+s).1

.

Solving this system for every line ‘l’ uniquely identifies a structure ξ0 that (i) generates Γ0

under Θ0 and (ii) satisfies {Rl , rl}. To construct the unique counterfactual Γ1, we then solve the
usual non-linear system (SMERLM) for {P1, Q1} given structure ξ0 and counterfactual policy Θ1.

Discussion. Knowledge of the reduced form alone is not sufficient to identify a counterfactual
with respect to a policy rule change. Since Lucas (1976) it has been thought that fully specifying
a model’s microfoundations was needed to fill this gap and to ensure that the counterfactual
accounts for changes in the behavior of agents that understand that policy has changed. The
semi-structural methodology just described shows that this is not necessarily the case: we can
construct a counterfactual with sufficient knowledge about the structural model µ alone.

There are three non-trivial parts to the methodology. The first is realizing that a counterfactual
depends only on the structural model µ and not the particular microfoundations that led to it
(as Section 2 illustrates). This requires momentarily abandoning how we typically think about
models and instead thinking about them as a collection of equilibrium equations and matrices.
The second is to realize that imposing restrictions directly on equilibrium equations can identify
a structure ξ and thus a counterfactual. This requires noting that the reverse mapping from the
reduced form to the structure is linear (as the proof of Theorem 1 shows). The last is realizing
that the counterfactual is robust to variation in primitives across models with identical structures
but also more generally across all that belong to a counterfactually equivalent set. This set is
characterized by Lemma A.2 and Propositions A.1 and A.2 in the Online Appendix.

The required restrictions can be obtained in two ways in practice. The first is from inspecting
the equilibrium equations of known models. If an equation satisfies a restriction in many models,
then this is a good candidate to be part of the 2k required ones. The examples in Section 2 and in
the Online Appendix as well as Beraja (2021) follow this approach. The second way is ad-hoc. Try
different restrictions and check how the counterfactual changes — a form of sensitivity analysis.
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4 Conclusions

I have presented a semi-structural methodology to construct counterfactuals with respect to pol-
icy rule changes which does not require committing to a particular model. It rests on an insight
about widely used linear dynamic stochastic models which I have called the principle of counter-
factual equivalence. The principle says that many models which are observationally equivalent
under a given policy also yield an identical counterfactual equilibrium under an alternative one.

The examples here served to illustrate the methodology but are not enough to assess its
practical relevance. A richer application is Beraja (2021). It shows that US fiscal integration helps
stabilize regional business cycles. That paper and Section A.2.3 in the Online Appendix also
show two other uses. First, while it may not be computationally hard to compute counterfactuals
for several models, the methodology boils them down to their core essence. This can help clarify
which assumptions are important and organize previous results coming from disparate models
in a literature. Second, the methodology can guide building new models that would match
evidence from a policy change. One begins by trying different ad-hoc structural restrictions and
solving for the equilibrium after the policy change. If some restrictions were able to reproduce
the evidence, one can then think about microfoundations for a model that would satisfy them.
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A.1 The Principle of Counterfactual Equivalence

This section describes how to characterize a set of models that are counterfactually equiva-
lent with respect to a policy rule change within a class of linear models of dynamic stochastic
economies.

I begin by defining a class of models, and develop notation and language that I use through-
out. Consider a model j whose equilibrium is generically described by the non-linear conditions:

0 = Et
[

f j (xt+1, xt, xt−1, zt+1, zt)
]

0 = Et [θ (xt+1, xt, xt−1, zt+1, zt)]

0 = g(zt+1, zt) + εt+1 iid εt+1 with E[εt+1] = 0, Var(εt+1) = Σ,

where xt is a column vector of length ‘k’ that includes all observed endogenous state variables
and could include observed endogenous control variables as well, zt is a column vector of length
‘s’ that includes exogenous unobserved state variables,1 f j(.) is a vector function with codomain
Rk, and θ(.) is a policy rule with codomain Rp, where p is the number of policy variables.2

A first order approximation around the non-stochastic steady state of model j results in the
following system of equations:

0 = FjEt[xt+1] + Gjxt + H jxt−1 + LjEt[zt+1] + Mjzt

0 = Θ f Et[xt+1] + Θcxt + Θpxt−1 + Θzzt (SME)

0 = −zt+1 + Nzt + εt+1,

where, with some abuse of notation, xt and zt now represent deviations from the steady state.3

As in the paper, I next define a structural and reduced form models, and impose the assump-
tions of stability and uniqueness.

Definition A.1 (Structural model). A structural model µ ≡ {ξ, Θ} is described by a structure ξ

collecting policy-invariant matrices ξ ≡
[

F G H (LN + M)
]

and a policy Θ collecting matrices of

endogenous policy rule parameters Θ ≡
[

Θ f Θc Θp Θz

]
.

Assumption A.1 (Stability). {ξ, N, Θ} are such that the system (SME) is stabilizable.

Under Assumption A.1, we have a stable solution to (SME) that can be written as:

xt = Pxt−1 + Qzt (RLM)

zt = Nzt−1 + εt

1Note that restricting the system to only one lag is without loss of generality because we can always “stack”
equilibrium variables in models with more than one lag.

2Formally, the full description of the equilibrium conditions also includes initial conditions for endogenous and
exogenous state variables, as well as terminal conditions. Moreover, note that neither the policy nor the laws of motion
for exogenous variables are indexed by j.

3Uhlig (1995), from whom I borrow some notation, studies a very similar system of equations.
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where P and N have all eigenvalues inside the unit circle. In particular, using the method of
undetermined coefficients, {P, Q} solve the non-linear system of matrix equations

[
F G H LN + M

Θ f Θc Θp Θz

]

k.(3k+s)




(P)2 QN + PQ
P Q
Ik 0k

0s Is



(3k+s).(k+s)

= 0k.(k+s). (SMERLM)

Assumption A.2 (Uniqueness). {ξ, N, Θ} are such that {P, Q} are unique.

The assumptions ensure that the reduced form model defined below is stable and unique.

Definition A.2 (Reduced form). The structural model µ has the reduced form model Γ ≡ {P, Q, N}.

A.1.1 Observationally equivalent models under a benchmark policy Θ0

Imagine that we parameterize a model j∗, resulting in structure ξ∗. We consider a benchmark
policy Θ0 and obtain the reduced form Γ0. We now ask: what are the set of models j that
can generate Γ0? Or, in other words, which models are observationally equivalent to j∗ under the
benchmark policy Θ0?4

The first step in answering this question is realizing that, regardless of their primitives and
particular parameters, any two models j and i with an identical structure ξ = ξ j = ξ i will
generate an identical reduced form Γ for any Θ. Thus, as the following definition states, the
question of observational equivalence can be understood as one about model structures.

Definition A.3. (Observational equivalence) Given {Θ0, Γ0}, define O(Θ0, Γ0) as the set of struc-
tures ξ that generate reduced form Γ0 under benchmark policy Θ0. Model j and j∗ are observationally
equivalent if and only if model j can be parameterized so that ξ j ∈ O(Θ0, Γ0).

Because, given policy Θ0 and model j∗’s structure ξ∗, the recursive representation Γ0 solves
(SMERLM), we immediately obtain the following lemma characterizing O(Θ0, Γ0).

Lemma A.1. (Necessary and sufficient conditions for observational equivalence) A structure
ξ belongs to O(Θ0, Γ0) if and only if every line ξl for l = {1, 2, .., k − p} satisfies the following linear
system, given Γ0:

[
(P0)2

′
P0
′

Ik 0k.s

(Q0N0 + P0Q0)
′

Q0
′

0k.k Is

]

(k+s).(3k+s)

(ξl)
′
= 0(k+s).1 (Null OE)

A number of comments are in order. First, notice that a researcher solving for Γ0 needs
to solve a non-linear system (SMERLM), given a structure and policy {ξ∗, Θ0} and N0. However,
consider the reverse mapping instead. Given values for the reduced form Γ0, (SMERLM) implies a

4Note that this notion of observationally equivalence is stronger than the usual one because two models cannot be
told apart even if the impulse response matrix Q0 was known and the structural shocks could be recovered.
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linear system of equations that any structure ξ must satisfy in order to match Γ0 under policy Θ0.
This linear mapping then characterizes a set of observationally equivalent models, as stated in the
lemma above. Formally, a structure belongs to O(Θ0, Γ0) if and only if each of its lines is in the
null space of the (k + s).(3k + s) matrix above and thus solve (Null OE). Second, we can readily
see that, because 3k + s > k + s, the linear system (Null OE) is in general underdetermined. This
implies that O(Θ0, Γ0) includes multiple structures ξ. In other words, knowledge of Γ0, Θ0 alone
are not enough to uniquely identify the model (described by ξ∗) which generated such Γ0 under
Θ0.

A.1.2 Counterfactually equivalent models when policy changes from Θ0 to Θ1

Consider an alternative policy Θ1. We again solve model j∗ and obtain the reduced form Γ1. We
now ask: from those models that were observationally equivalent to j∗ under policy Θ0, which
models would also generate the reduced form Γ1 if the policy were to change from Θ0 to Θ1?
Or in other words, which models are observationally equivalent to j∗ both under policies Θ0 and
Θ1? As the following definition states, we will call such models counterfactually equivalent.

Definition A.4. (Counterfactual equivalence) Given {Θ0, Γ0} and {Θ1, Γ1}, define C(Θ0, Γ0, Θ1, Γ1)

as the subset of structures ξ in O(Θ0, Γ0) that generate reduced form Γ1 under alternative policy Θ1. For-
mally, C(Θ0, Γ0, Θ1, Γ1) = O(Θ0, Γ0)

⋂O(Θ1, Γ1). Model j and j∗ are counterfactually equivalent if and
only if model j can be parameterized so that ξ j ∈ C(Θ0, Γ0, Θ1, Γ1).

Given the above definition and Lemma A.1, we obtain the following lemma characterizing
the counterfactually equivalent set C(Θ0, Γ0, Θ1, Γ1).5

Lemma A.2. (Necessary and sufficient conditions for counterfactual equivalence) A structure ξ

belongs to C(Θ0, Γ0, Θ1, Γ1) if and only if every line ξl for l = {1, 2, .., k − p} satisfies both (Null OE)
and the following linear system, given Γ0 and Γ1:

[
(P1)2

′
− (P0)2

′
P1
′
− P0

′

(Q1N0 + P1Q1)
′ − (Q0N0 + P0Q0)

′
Q1
′
−Q0

′

]

(k+s).2k

[
F
′
l.

G
′
l.

]

2k.1
= 0(k+s).1. (Null CE)

We have seen before that O(Θ0, Γ0) is not a singleton because (Null OE) was underdeter-
mined. Is it the case now that (Null CE) is determined and, therefore, C(Θ0, Γ0, Θ1, Γ1) is a
singleton? Propositions A.1 and A.2 show that the answer is again no, and further characterize
this counterfactually equivalent set.

Proposition A.1. (Sufficient condition for counterfactual equivalence) If (ξl)
′
= ∑

k−p
n=1 cl

n (ξ
∗
n)
′

for all l = {1, 2, .., k− p} and some constants cl
n, then ξ ∈ C(Θ0, Γ0, Θ1, Γ1).

Proof. For any line n = {1, 2, .., k− p}, we know that

[
F∗n.
′

G∗n.
′

]
from the structure of model j∗ is a

solution to (Null CE), by construction. This implies that, given constants cl
n, a linear combination

5(Null CE) is obtained by subtracting (Null OE) under policy Θ0 from the corresponding system under policy Θ1.
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[
Fl.
′

Gl.
′

]
≡ ∑

k−p
n=1 cl

n

[
F∗n.
′

G∗n.
′

]
is also a solution. Replacing any such solution into (Null OE), we

obtain the remaining elements

[
H
′
l.

(LN0 + M)
′
l.

]
in this proposed structure ξ. This shows that, if

every line in the structure ξ of a model can be written as (ξl)
′ = ∑

k−p
n=1 cl

n(ξ
∗
n)
′, then ξ solves both

(Null OE) and (Null CE) and, therefore, belongs to C(Θ0, Γ0, Θ1, Γ1). �

The proposition shows that if a model j can be parameterized so that the lines in its structure
ξ j can be written as a linear combination of the lines in ξ∗, then this is a sufficient condition
for j and j∗ to be counterfactually equivalent when the policy changes from Θ0 to Θ1. This is
because every line in ξ∗ is a solution to (Null OE) and (Null CE) and thus so are any linear
combination of them. Therefore, (Null CE) is underdetermined with rank less than 2k− (k− p)
and the counterfactually equivalent set includes more structures than ξ∗ alone.

Are these structures the only ones in C(Θ0, Γ0, Θ1, Γ1)? The next proposition shows that this is
not the case when the number of endogenous and exogenous state variables (rank(P1 − P0) + s)
is strictly smaller than k + p, where, as reminder, k is the total number of endogenous variables
(policy or not) and p is the number of policy variables. Otherwise, the sufficient condition in
Proposition A.1 may or may not be necessary as well, depending on the application.

Proposition A.2. (Sufficient condition is not necessary) If rank(P1 − P0) + s < k + p, then
C(Θ0, Γ0, Θ1, Γ1) includes structures ξ which do not satisfy the sufficient condition in Proposition A.1.

Proof. We begin by defining A(Γ0, Γ1) in system (Null CE)

A(Γ0, Γ1) ≡
[

(P1)2
′
− (P0)2

′
P1
′
− P0

′

(Q1N0 + P1Q1)
′ − (Q0N0 + P0Q0)

′
Q1
′
−Q0

′

]

(k+s).2k

We have shown above that A(Γ0, Γ1) must have incomplete rank since the span of the k− p

columns

[
F∗n.
′

G∗n.
′

]
are solutions to (Null CE). In particular, we know that it has at least k − p

linearly dependent columns and thus rank(A(Γ0, Γ1)) ≤ min{rank(P1 − P0) + s, 2k − (k − p)}.
Therefore, if the total number of endogenous and exogenous variables rank(P1− P0)+ s is strictly
less than k + p, then rank(A(Γ0, Γ1)) < 2k− (k− p). As a result, there must be other solutions

to (Null CE) than the ones in the span of the k− p columns

[
F∗n.
′

G∗n.
′

]
. Taking any such solution

and replacing it into (Null OE), we again obtain the remaining elements

[
H
′
l.

(LN0 + M)
′
l.

]
in a

structure that solves both (Null OE) and (Null CE). This shows that, if rank(P1− P0) + s < k + p,
then C(Θ0, Γ0, Θ1, Γ1) includes more structures beyond the ones whose lines can be written as
(ξl)

′ = ∑
k−p
n=1 cl

n(ξ
∗
n)
′. �

Taken together, the propositions imply that there are three “types” of counterfactually equiv-
alent models. The first type are those models j which can be parameterized so that ξ j = ξ∗,
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which is a special case of the sufficient condition in Proposition A.1. While their structures
are identical, these counterfactually models are nevertheless different to each other in the sense
that they have different microfoundations and, therefore, different nonlinear conditions 0 =

Et
[

f j (xt+1, xt, xt−1, zt+1, zt)
]

characterizing their equilibrium. The second type are those models
whose structures ξ j differ from ξ∗, but can nevertheless be parameterized so that the lines in ξ j

are linear combinations of those in ξ∗. The last type are models whose structures do not satisfy
this sufficient condition, but can still be parameterized to satisfy the necessary and sufficient
conditions in Lemma A.2.

A.2 Additional Illustrative Examples

This section presents two additional illustrative examples beyond the one in Section 2 of the
paper. The first example is on federal transfers policy rules in models of a fiscal and monetary
union. The second example is on unemployment benefits policy rules in search-theoretic models
of labor market.

A.2.1 Federal transfer rules in models of a fiscal and monetary union

Consider an economy comprised of many islands, inhabited by a representative household and
firm. The only other agent in the economy is a federal government. Households consume, work,
and save/borrow in a non-state-contingent asset—a nominal bond in zero net supply. Firms
produce final consumption goods using labor and intermediate goods. By assumption, the final
consumption good is non-tradable, intermediate goods are tradable, and labor is not mobile
across islands. Finally, each island has an exogenous endowment of intermediate goods. The
federal government sets the nominal interest rate on the nominal bond, and gives lump-sum
transfers to the islands. Assume that the nominal interest rate follows an endogenous rule that is
a function of only aggregate variables (together with a fixed nominal exchange rate, this implies
that the islands are part of a monetary union). Also, assume that federal transfers are a function
of island-level variables alone. Throughout, I assume that parameters governing preferences and
production are identical across islands and the islands only differ, potentially, in the shocks that
hit them—these shocks include a shifter of the households discount rate, a productivity shifter in
the production function of final goods, and the exogenous endowment of tradable intermediate
goods. Finally, I assume that all labor, goods and asset markets are competitive.

Firms and Households. Final goods producers use labor Ny
kt and intermediates Xkt in island k

at time t and face prices Pkt, wages Wkt, and intermediate prices Qt (equalized across all islands
because of assumed tradability). Their profits are

max
Ny

kt,Xkt

Pkteakt(Ny
kt)

α(Xkt)
1−α −WktN

y
kt −QtXkt
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where akt is a productivity shock and α : α < 1 is the labor share. Unlike the tradable goods
prices, final good prices (Pkt) vary across islands.

Households preferences are given by

E0

[
∞

∑
t=0

βte−ρkt−δkt

(
(Ckt)

1−σ

1− σ
− ν

1 + ν
N

1+ν
ν

kt

)]

where Ckt is consumption of the final good, Nkt is labor, δkt is an exogenous processes driving the
household’s discount rate. Moreover, I follow Schmitt-Grohé and Uribe (2003) and let ρkt be the
endogenous component of the discount factor that satisfies ρkt+1 = ρkt + Φ(.) for some function
Φ(.) of the average per capita variables in an island. As such, agents do not internalize this de-
pendence when making their choices. This modification induces stationarity for an appropriately
chosen function Φ(.) when assets markets are incomplete (as we assume below).

Households are able to spend their labor income WktNkt plus profits accruing from firms
Πkt and exogenous endowment of tradable goods Qteηkt , financial income Bkt−1it−1 and transfers
from the government τkt, where Bkt−1 are nominal bond holdings at the beginning of the period
and it is the nominal interest (equalized across islands given our assumption of a monetary union
where the bonds are freely traded) on consumption goods (Ckt) and savings (Bkt − Bkt−1). Thus,
they face the period-by-period budget constraint

PktCkt + Bkt ≤ Bkt−1(1 + it−1) + WktNkt + Πkt + τkt + Qtη̄eηkt

Federal government. The federal government budget constraint is

Bg
t + ∑

k
τkt + QtG = Bg

t−1(1 + it−1)

where G is some exogenous level of government spending in intermediate goods. The key feature
of a fiscally integrated economy is that the federal government has the ability to redistribute
resources across islands via transfers τkt. If the islands where fiscally independent such transfers
would not be possible.

I assume that the federal government announces a nominal interest rate rule it = i(.) as a
function of aggregate variables in the economy alone. Moreover, it announces a transfer policy
rule as a function of per-capita employment, wages and assets in an island

τkt = τ̄(W̃kt)
ϑw(Ñkt)

ϑn(B̃kt−1)
ϑb

Again, agents do not internalize this dependence when making their choices.

Exogenous shocks and processes. I assume the exogenous processes are AR(1) processes, with
an identical autoregressive coefficient across islands, and that the innovations are iid, mean zero,
random variables with an aggregate and island specific component. First, define γkt ≡ δkt− δkt−1.
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Then,

akt = ρaakt−1 + σ̃ava
t + σaεa

kt

γkt = ργγkt−1 + σ̃γvγ
t + σγε

γ
kt

ηkt = ρηηkt−1 + σ̃ηvη
t + σηε

η
kt

with ∑k εz
kt = ∑k ε

γ
kt = ∑k ε

η
kt = 0. By assumption, I assume the average of the regional shocks

sum to zero in all periods.
The "discount rate" process γkt is a shifter of a household’s discount rate, but it can be viewed

as a proxy for the tightening of household borrowing limits. The "productivity" process akt can
be interpreted as actual productivity, or a shifter of firm’s demand for labor or firm’s mark-
ups. Finally, "wealth" process ηkt is modeled as an endowment of intermediate goods but can
be interpreted as shifters of the budget constraint that agents face such as exogenous changes in
household wealth.

Equilibrium. An equilibrium is a collection of prices {Pkt, Wkt, Qt} and quantities
{Ckt, Nkt, Bkt, τkt, Ny

kt, Xkt} for each island k and time t such that, for an interest rate rule it = i(.)
and given exogenous processes {akt, ηkt, γkt}, they are consistent with household utility maxi-
mization and firm profit maximization and such that the following market clearing conditions
hold:

Ckt = eakt(Ny
kt)

α(Xkt)
β

Nkt = Ny
kt

G + ∑
k

Xkt = ∑
k

η̄eηkt

0 = ∑
k

Bkt + Bg
t

Aggregation. The first important assumption for aggregation is that all islands are identical
with respect to their underlying production and utility parameters.6 The second assumption is
that the joint distribution of island-specific shocks is such that its cross-sectional summation is
zero. If K, the number of islands, is large this holds in the limit because of the law of large
numbers. I log-linearize the model around this steady state and show that it aggregates up to
a representative economy where all aggregate variables are independent of any cross-sectional
considerations to a first order approximation.7 I denote with lowercase letters an island variable’s

6Given that the broad industrial composition at the state level does not differ much across states, the assumption
that productivity parameters are roughly similar across states is not dramatically at odds with the data.

7The model we presented has many islands subject to idiosyncratic shocks that cannot be fully hedged because
asset markets are incomplete. By log-linearizing the equilibrium we gain in tractability, but ignore these considerations
and the aggregate consequences of heterogeneity. As usual, the approximation will be a good one as long as the
underlying volatility of the idiosyncratic shocks is not too large. If our unit of study was an individual, as for example
in the precautionary savings literature with incomplete markets, the use of linear approximations would likely not be
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log-deviation from the aggregate union equilibrium. Lowercase letters with a tilde denote devi-
ations from the steady state. For example, nkt ≡ ñkt − ñt and ñt ≡ ∑k

1
K ñkt = ∑k

1
K log (Nkt/N̄).

I assume that the monetary authority announces the nominal interest rate rule in log-linearized
form: ĩt+1 = ϕπEt[π̃t+1] where π̃t is the aggregate inflation rate. Finally, I assume that the
endogenous component of the discount factor is such that Φ(.) = φnkt.

The following lemma present the aggregation result and shows that we can write the island
level equilibrium in deviations from these aggregates.

Lemma A.3. For given {akt, γkt, ηkt}, the behavior of {wkt, nkt, bkt, τkt, pkt, ckt, xkt} in the log-linearized
economy for each island in log-deviations from aggregates is identical to that of a small open economy where
the price of intermediates and the nominal interest rate are at their steady state levels, i.e. q̃t = ĩt = 0 ∀t.

Proof. The following equations characterize the log-linearized equilibrium

w̃kt − p̃kt =
1
ν

ñkt + σckt

w̃kt − p̃kt = (α− 1)(ñkt − x̃kt) + ãkt

q̃t − p̃kt = α(ñkt − x̃kt) + ãkt

0 = Et
(
−(m̃ukt+1 − m̃ukt+1) + ( p̃kt+1 − p̃kt) + φ(ñkt − ñt) + γkt+1 − ĩt

)

m̃ukt = −σc̃kt

c̃kt = w̃kt − p̃kt + ñkt

B̄b̃kt = B̄(1 + r)(b̃kt−1 + ĩt) + η̄ηkt − η̄(q̃t + x̃kt) + τ̄τ̃kt

∑
k

x̃kt = ∑
k

η̃kt

B̄gb̃g
t + τ̄ ∑

k
τ̃kt + Ḡq̃t = B̄g(1 + r)(b̃g

t−1 + ĩt)

τ̃kt = ϑww̃kt + ϑnñkt + ϑbb̃kt−1

ĩt+1 = φpEt[ p̃t+1 − p̃t]

After adding up, the aggregate log-linearized equilibrium evolution of {w̃t − p̃t, ñt} is character-
ized by

0 = Et(−(m̃ut+1 − m̃ut) + (1− φp)( p̃t+1 − p̃t) + γ̃t+1)

0 = σ(w̃t − p̃t + ñt) +
1
ν

ñt − (w̃t − p̃t)

w̃t − p̃t = (α− 1)ñt + ãt + (1− α)η̃t

m̃ut ≡ −σ(w̃t − p̃t + ñt)

which is equivalent to the system of equations characterizing the log-linearized equilibrium in

appropriate. However, since our unit of study is an island the size of a state I believe this is not too egregious of an
assumption. The volatilities of key economic variables of interest at the state level are orders of magnitude smaller
than the corresponding variables at the individual level.
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a representative agent economy with a production technology that utilizes labor alone with an
elasticity of α, no endogenous discounting and only 2 exogenous processes {ãt + (1− α)η̃t, γ̃t}.

Next, take log-deviations from the aggregate in the original system and replace ckt, pkt, mukt

for their corresponding expressions. When we set ργ = ρa = ρη = 0 and θw = θb = 0, this results
in the system characterizing the equilibrium of {nkt, wkt, bkt, τkt} (where we drop the ’k’ index for
convenience).

0 = Et(nt+1 − nt) +

(
α +

1
σ
(1− α)

)
Et(wt+1 − wt) + (

1
σ
− 1)at +

φ

σ
nt (Euler)

0 = −αwt +

(
(1 + ν)

(1− σ)
− 1
)

nt − at (Labor market)

0 = − B̄
τ̄

bt + (1 + r)
B̄
τ̄

bt−1 +
η̄

τ̄
(ηt − (wt + nt)) + τt (Budget Constraint)

0 = −τt + θnnt (Policy)

0 = −at+1 + εa
t+1; 0 = −ηt+1 + ε

η
t+1 (Shocks)

This system is independent of all aggregate variables and is analogous to the system charac-
terizing the equilibrium in a small open economy without movements in the terms of trade and
nominal interest rate. �

Then, to connect to the general case described by (SME), let xt ≡
[

nt wt bt τt

]′
and

zt ≡
[

at ηt

]′
. We have that the first line ξ1 in the structure (corresponding to the Euler

equation) is:

ξ1 ≡




F1.︷ ︸︸ ︷
1 α + 1

σ (1− α) 0 0

G1.︷ ︸︸ ︷
−1 + φ

σ −
(
α + 1

σ (1− α)
)

0 0

H1.︷ ︸︸ ︷
01.4

L1. N+M1.︷ ︸︸ ︷
1
σ − 1 0


 (Euler)

Next, consider a different small open economy model with a “discounted” Euler equation,
which we call model ‘1’. Gabaix (2020) presents a "discounted Euler equation" that arises when
households have behavioral biases (e.g., inattention to macroeconomic variables or cognitive
discounting). McKay, Nakamura, and Steinsson (2017) offers an alternative micro-foundation
in a model with idiosyncratic income risk and borrowing constraints. In both cases, given a
parameter δ governing discounting, the Euler equation takes the form

0 = δEt(c̃kt+1)− c̃kt +
1
σ

Et( p̃kt+1 − p̃kt)−
1
σ

ĩt.

When writing in terms of deviations from the aggregate union equilibrium and replacing ckt, pkt

(and dropping the ’k’ subscript for convenience), we obtain

0 = δEt(nt+1)− nt +

(
αδ +

1
σ
(1− α)

)
Et(wt+1)−

(
α +

1
σ
(1− α)

)
wt + (

1
σ
− 1)at. (Euler 1)
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The first line in the structure ξ1 becomes

ξ1
1 ≡

[
δ αδ + 1

σ (1− α) 0 0 −1 −
(
α + 1

σ (1− α)
)

0 0 01.4
1
σ − 1 0

]
. (Euler 1)

Alternatively, consider a model with a quadratic portfolio adjustment cost, as in Schmitt-
Grohé and Uribe (2003) — which we call model ‘2’. Given a parameter ψ governing the cost, the
Euler equation becomes

0 = Et(c̃kt+1)− c̃kt +
1
σ

Et( p̃kt+1 − p̃kt)−
1
σ

ĩt +
ψB̄
σ

b̃kt.

And, therefore, we obtain,

0 = Et(nt+1)− nt +

(
α +

1
σ
(1− α)

)
Et(wt+1 − wt) + (

1
σ
− 1)at +

ψB̄
σ

bt. (Euler 2)

The first line in the structure ξ2 becomes

ξ2
1 ≡

[
1 α + 1

σ (1− α) 0 0 −1 −
(
α + 1

σ (1− α)
) ψB̄

σ 0 01.4
1
σ − 1 0

]
. (Euler 2)

A.2.1.1 Observational Equivalence

Imagine that we have parameterized the baseline small open economy model, resulting in ξ∗ and
Γ0 under policy Θ0. We next show that, even when models ’1’ and ’2’ do not nest the baseline
model, there are parameterization of these models such that both ξ1, ξ2 ∈ O(Γ0, Θ0) for any
parameterization of the baseline, and, therefore, all models are observationally equivalent under
policy Θ0.8

Consider a parameterization of such baseline σ∗, α∗, ν∗, φ∗, B̄, τ̄, η̄ which gives rise to structure
ξ∗ and generates recursive representation Γ0 under policy θ0

n. Then, by construction, we have that
the first line in the structure corresponding to the Euler equation (ξ∗1) satisfies (Null OE). Since

8Notice that, even when δ = 1, (Euler 1) is different than (Euler) because of the endogenous discount factor
(governed by φ). Therefore, model ’1’ does not nest the baseline. The same holds for model ’2’ even when ψ = 0.
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the only state variable is bt, this is:




(P0)2
′

P0
′

Ik 0k.s

(Q0N0 + P0Q0)
′

Q0
′

0s.k Is




︷ ︸︸ ︷


0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0

p0
13 p0

33 p0
23 p0

33 (p0
33)

2 p0
43 p0

33 p0
13 p0

23 p0
33 p0

43 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

q0
31 p0

13 q0
31 p0

23 q0
31 p0

33 q0
31 p0

43 q0
11 q0

21 q0
31 q0

41 0 0 0 0 1 0
q0

32 p0
13 q0

32 p0
23 q0

32 p0
33 q0

32 p0
43 q0

12 q0
22 q0

32 q0
42 0 0 0 0 0 1




ξ∗1︷ ︸︸ ︷


1
α∗ + 1

σ∗ (1− α∗)

0
0

−1 + φ∗

σ∗

−
(
α∗ + 1

σ∗ (1− α∗)
)

0
0

04.1
1

σ∗ − 1
0




=




0
0

p0
13(p0

33 − 1 + φ∗

σ∗ ) + p0
23(p0

33 − 1)
(
α∗ + 1

σ∗ (1− α∗)
)

0
q0

31 p0
13 + (−1 + φ∗

σ∗ )q
0
11 + (q0

31 p0
23 − q0

21)
(
α∗ + 1

σ∗ (1− α∗)
)
+ 1

σ∗ − 1
q0

32 p0
13 + (−1 + φ∗

σ∗ )q
0
12 + (q0

32 p0
23 − q0

22)
(
α∗ + 1

σ∗ (1− α∗)
)




= 0

Analogously, for the second line ξ∗2 , we have that (Null OE) is,




0
0

p0
13

(
1+ν∗
1−σ∗ − 1

)
− p0

23α∗

0

q0
11

(
1+ν∗
1−σ∗ − 1

)
− q0

21α∗ − 1

q0
12

(
1+ν∗
1−σ∗ − 1

)
− q0

22α∗




= 0

Model ’1’ is observationally equivalent to the baseline. Consider a parametrization
σ1, α1, ν1, δ1, B̄, τ̄, η̄ for model ’1’ with a "discounted Euler equation." First, notice that budget
constraint is identical to the baseline model. This directly implies that (Null OE) is satisfied for
the third line in the model’s structure ξ1

3. Second, guess that α1 = α∗ and 1+ν1

1−σ1 = 1+ν∗
1−σ∗ . This

directly implies that (Null OE) is satisfied for the second line in the model’s structure ξ1
2 as well.

Then, to show that model ’1’ is observationally equivalent to the baseline, we just need to find
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σ1, δ1 such that ξ1
1 satisfies (Null OE). That is,




0
0

p0
13 p0

33δ1 − 1 + p0
23 p0

33
(
α1δ1 + 1

σ1 (1− α1)
)
− p0

23
(
α1 + 1

σ1 (1− α1)
)

0
q0

31 p0
13δ1 − q0

11 + q0
31 p0

23
(
α1δ1 + 1

σ1 (1− α1)
)
− q0

21

(
α1 + 1

σ1 (1− α1)
)
+ 1

σ1 − 1
q0

32 p0
13δ1 − q0

12 + q0
32 p0

23
(
α1δ1 + 1

σ1 (1− α1)
)
− q0

22
(
α1 + 1

σ1 (1− α1)
)




= 0

Guessing that δ1 = 1
1+ σ∗−1

1+ν∗
φ∗
σ∗

and σ1 = σ
∗

δ1 , and replacing above shows that the system is satisfied.

To conclude, we have shown that whenever the lines in ξ∗ satisfy (Null OE) — which was by
construction since Γ0 was generated by the baseline model — then there is a parameterization of
model ’1’ such that the lines in ξ1 satisfy it as well.

Model ’2’ is observationally equivalent to the baseline. Consider a parametrization
σ2, α2, ν2, ψ2, B̄, τ̄, η̄ for model ’2’ with "portfolio adjustment costs." Again, both ξ2

3 and ξ2
2 satisfy

(Null OE) when guessing that α2 = α∗ and 1+ν2

1−σ2 = 1+ν∗
1−σ∗ . Thus, we just need to find σ2, ψ2 such

that ξ2
1 satisfies (Null OE) as well. That is,




0
0

p0
13(p0

33 − 1) + p0
23(p0

33 − 1)
(
α2 + 1

σ2 (1− α∗)
)
+ ψ2 B̄

σ2 p0
33

0

q0
31 p0

13 − q0
11 + (q0

31 p0
23 − q0

21)
(
α2 + 1

σ2 (1− α2)
)
+ 1

σ∗ − 1 + ψ2 B̄
σ2 q0

31

q0
32 p0

13 − q0
12 + (q0

32 p0
23 − q0

22)
(
α2 + 1

σ2 (1− α2)
)
+ ψ2 B̄

σ2 q0
32




Guessing that σ2 = σ∗ + φ∗ σ∗−1
1+ν∗ and ψ2B̄ = φ∗p0

13, and replacing above shows that the system
is satisfied. To conclude, we have shown that whenever the lines in ξ∗ satisfy (Null OE), then
there is a parameterization of model ’2’ such that the lines in ξ2 satisfy it as well.

A.2.2 Counterfactual Equivalence

We now show that, while both models ’1’ and ’2’ are observationally equivalent to the baseline
model under policy Θ0, only model ’1’ is counterfactually equivalent to the baseline model when
policy changes from Θ0 to Θ1. Formally, for the parameterizations that make ξ1, ξ2 belong to
O(Θ0, Γ0), only ξ1 is also in C(Θ0, Γ0, Θ1, Γ1) because ξ1

1 can be written as δξ∗1 + (1− δ)ξ∗2 .

Model ’1’ is counterfactually equivalent to the baseline. For the parameterization above, we
have that ξ1

2 = ξ∗2 and ξ1
3 = ξ∗3 . We next show that, for such parameterization, there are constants

c1
1, c1

2 such that ξ1
1 = c1

1ξ∗1 + c1
2ξ∗2 so that ξ1

1 is a solution to (Null CE). In particular, guessing that
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c1
1 = δ1 and c1

2 = 1− δ1, we have that

δ1ξ∗1 + (1− δ1)ξ∗2 = δ1




1
α∗ + 1

σ∗ (1− α∗)

0
0

−1 + φ∗

σ∗

−
(
α∗ + 1

σ∗ (1− α∗)
)

0
0

04.1
1

σ∗ − 1
0




+ (1− δ1)




0
0
0
0

1+ν∗
1−σ∗ − 1
−α∗

0
0

04.1

−1
0




=




δ1

δ1α∗ + δ1

σ∗ (1− α∗)

0
0

−1 + δ1 φ∗

σ∗ + (1− δ1) 1+ν∗
1−σ∗

−
(

α∗ + δ1

σ∗ (1− α∗)
)

0
0

04.1
δ1

σ∗ − 1
0




=




δ1

δ1α1 + 1
σ1 (1− α1)

0
0
−1

−
(
α1 + 1

σ1 (1− α1)
)

0
0

04.1
1

σ1 − 1
0




= ξ1
1

where the last line follows from the fact that, for model ’1’ to be observationally equivalent
to the baseline, we have required δ1 = 1

1+ σ∗−1
1+ν∗

φ∗
σ∗

and σ1 = σ
∗

δ1 and α1 = α∗. Therefore, the

above shows that for, this same parameterization, model ’1’ is not only observationally but also
counterfactually equivalent to the baseline.

Model ’2’ is not counterfactually equivalent to the baseline. The coefficient ψ2

σ2 in (Euler 2)
associated with bt makes it such that, in order to write ξ2

1 as a linear combination of the lines in
ξ∗, we would have to combine both the (Euler) and (Budget Constraint) equations (ξ∗1 and ξ∗3)
because bt does not show up in the (Labor Market) equation (ξ∗2). However, when doing so, such
linear combination would also have non-zero coefficients associated with bt−1, τt and ηt, whereas
(Euler 2) restricts those coefficients to be zero. This implies that it is not possible to write ξ2

1 as a
linear combination of the lines in ξ∗.

Is it still the case there is some parameterization of model ’2’ that makes it counterfactually
equivalent to the baseline, even when it does not satisfy the above sufficient condition? The
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answer is no. To see this, note that the parameterization necessary so that model ’2’ is obser-
vationally equivalent to the baseline has ψ2B̄ = φ∗p0

13. When policy changes from Θ0 to Θ1, so
does p0

13 change to p1
13. Thus, model ’2’ cannot be parameterized to be observationally equivalent

under both Θ0 and Θ1, and, by definition, is not counterfactually equivalent to the baseline.

A.2.3 Unemployment Benefits in Search-Theoretic Models of the Labor Market

I start by reviewing the key equations characterizing the equilibrium wage (wt) and vacancy-to-
unemployment ratio (ϑt) in the discrete-time version of a canonical search-and-matching model
with Nash Bargaining and free entry of firms (Mortensen and Pissarides (1994); Pissarides (2000)).

0 = − 1
1− φ

wt +
φ

1− φ
yt +

φc
1− φ

ϑt + z + bt (Wage Setting (1))

0 = − c
q(ϑt)

+ βEt

[
yt+1 − wt+1 +

(1− s)c
q(ϑt+1)

]
(Job Creation (1))

The (Wage Setting (1)) equation determines how the surplus of a match is split between the
worker and the firm. Thus, it relates the wage wt to the (exogenous) productivity of the match
yt, the cost of posting a vacancy c, the vacancy-unemployment ratio ϑt, the bargaining power of
the worker φ, the utility while unemployed z and, importantly for our purposes, unemployment
benefits bt. The (Job Creation (1)) equation determines firms’ incentives to post vacancies and,
because of free-entry, equates the cost of posting a vacancy to the expected benefit of a match
which depends on the discount factor β and the vacancy-filling probability q(θt).

Next, imagine we are interested in evaluating the policy rule bt = b̃t +
(

ϑt
ϑ̄

)Θ
, where b̃t is

an exogenous policy shock and Θ > 0 governs how generous benefits are when labor market
slackness is above or below its long run level.9 Moreover, suppose that after estimating the
canonical model with data on wages and the vacancy-unemployment ratio alone, we conducted
a series of counterfactual exercises and found that the policy Θ have negligible effects on the
equilibrium behavior of these variables. How should we proceed if either (i) we wished to know
how robust this quantitative result is to variation in model primitives or, relatedly, (ii) we wished
to construct models that generated non-negligible effects?

I argue that the principle of counterfactual equivalence offers us some guidance. To see this,
we can log-linearize the system of equilibrium equations around the steady-state, which gives
rise to a structure with the following restrictions,10

F =

[
0 0 0
f21 f22 0

]
; G =

[
g11 g12 g13

0 g22 0

]
; H =

[
0 0 0
0 0 0

]
; L =

[
0 0
0 l22

]
; M =

[
m12 0

0 0

]

9As a motivation for this policy rule, unemployment benefits were substantially extended during the Great Reces-
sion—evidencing that its generosity may depend on the state of the business cycle.

10The wage, vacancy-unemployment ratio, and benefits in log-deviations from the steady-state correspond to the
first, second, and third columns of matrices F, G, H. Analogously, the exogenous policy and productivity shocks
correspond to the first and second columns of matrices L, M. The firs line corresponds to (Wage Setting (1)) and the
second line to (Job Creation (1))
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By noting the exclusion restrictions that this structure satisfies, we can readily observe that
the (Wage Setting (1)) equation has a rather restricted structure compared to the (Job Creation
(1)) equation. This observation, when combined with the results from Section 2 in the paper,
implies that focusing on primitives or mechanisms that change how wages are set is a promising
avenue for building models that could generate non-negligible effects of unemployment benefits
policy (in the hypothetical case that the canonical model generated negligible effects). Analo-
gously, models that do not significantly alter the (Job Creation (1)) equation (i.e., by changing
the exclusion restrictions) will likely be counterfactually equivalent to the canonical model, thus
implying that the negligible effect of changes in the unemployment benefits policy rule would be
a robust feature of models with varying micro-foundations regarding how firms post vacancies.

For example, if we replaced the assumption of Nash Bargaining with an ad-hoc wage rule ala
Hall (2005), we would obtain a wage setting equation of the form,

0 = −wt + zt + λyt + (1− λ)wt−1 (Wage Setting (2))

where λ governs how "sticky" wages are.
Or, if we replaced it with the alternating-offer-wage-bargaining protocol in Christiano, Eichen-

baum, and Trabandt (2016), we would obtain the wage setting equation,

0 = −ω2 (1− β (1− s− ϑtq(ϑt))) γ + (1 + ω1)(wt − zt)− (ω1 + ω3)(yt − zt)− cω1ϑt

+ β (1− s− ϑtq(ϑt))ω3Et [yt+1 − zt+1] (Wage Setting (3))

where γ is the cost of delay in bargaining and the ωi’s are combinations of structural parameters.
Both structures generated by these models satisfy different exclusion restrictions than the

canonical model because they include backward- and forward- looking terms. As a result, it is
easy to show that they will belong to different counterfactually equivalent sets with respect to
changes in unemployment benefits policy rule.

However, for instance, the seemingly richer model of a financial accelerator in Wasmer and
Weil (2004) generates an identical structure to the canonical model. They assume that matching
in a credit market between firms and creditors is subject to search frictions analogous to the ones
in the labor market. Then, the presence of frictional credit market adds to the cost of posting
vacancies because firms have to be matched to a creditor before they can enter the labor market.
In equilibrium, as opposed to the canonical model, the value of a vacancy in the labor market
is given by a positive constant K that depends on the search costs in the credit market and the
matching probabilities of firms and creditors. Following the the dynamic extension derivation in
Petrosky-Nadeau and Wasmer (2013), we obtain equilibrium equations,11

11They assume that firms and creditors Nash-bargain (together) with workers in the labor market and firms and
creditors Nash-bargain with each other in the credit market.
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0 = − 1
1− φ

wt +
φ

1− φ
yt +

φ

1− φ
(c + (1− β(1− q(ϑt)))K)ϑt + z + bt (Wage Setting (4))

0 = − 1
q(ϑt)

(c + (1− β(1− q(ϑt)))K) + βEt

[
yt+1 − wt+1 +

1− s
q(ϑt+1)

(c + (1− β(1− q(ϑt+1)))K)
]

(Job Creation (4))

Note that, compared to the canonical model, the effective cost to posting a vacancy is aug-
mented by the additional term (1− β(1− q(θt+1)))K which encodes the search frictions in the
credit market. However, it is easy to verify that this system of equations satisfies identical ex-
clusion restrictions than the canonical model. Thus, if the financial accelerator model and the
canonical model can match the equilibrium behavior of wages and labor market slackness, they
are also counterfactually equivalent with respect to changes in the unemployment benefits policy
rule.

The same holds in a model where firms choose recruiting intensity e. In the spirit of Gavazza,
Mongey, and Violante (2016), assume that the cost of posting a vacancy is a well-behaved function
c(e, ϑ) and the probability of filling the vacancy is q(ϑē)e, where ē is the average recruiting
intensity in the economy. Then, we obtain the following equilibrium equations when firms
optimally choose identical recruiting intensities,

0 = − 1
1− φ

wt +
φ

1− φ
yt +

φ

1− φ
ce(e(ϑt), ϑt)ϑt + zt (Wage Setting (5))

0 = − ce(e(ϑt), ϑt)

q(ϑte(ϑt))
+ βEt

[
yt+1 − wt+1 +

(1− s)ce(e(ϑt+1), ϑt+1)

q(ϑt+1e(ϑt+1))

]
(Job Creation (5))

Again, while this model behaves as if it had a matching and vacancy posting cost with extra
curvature, it has an identical structure to the canonical model. Thus, I conclude that if the canon-
ical model generates negligible effects of alternative unemployment benefits policy rules, then
this quantitative result is robust to variation in primitives regarding certain forms of financial
frictions and endogenous recruiting intensity.

A.3 Estimating the reduced form Γ from a SVAR

A necessary input in the construction of the semi-structural counterfactuals is the reduced form
Γ0 = {P0, Q0, N0} under policy Θ0. I next show how to recover this reduced-form when the
equilibrium has a SVAR representation.

Following Ravenna (2007), if Assumptions A.1 and A.2 hold and Q is a non-singular square
matrix, then there is a SVAR representation of the recursive law of motion (RLM) of the form:

xt = ρ1xt−1 + ρ2xt−2 + Qεt (SVAR)
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where ρ1 ≡ P + QNQ−1; ρ2 ≡ (P− ρ1)P and V ≡ Var(Qεt) = QΣΣ′Q′. To see this, note that
we can write zt−1 = Q−1(xt−1 − Pxt−2) and replace it and the law of motion for the exogenous
states into the law of motion for the endogenous variables to obtain the SVAR(2) representation.

Next, suppose that we have estimated the reduced-form VAR — e.g., via OLS equation by
equation — and obtained {ρ0

1, ρ0
2, V0} in an economy under policy Θ0. In addition, assume that

we have imposed restrictions on the structural model so that we have identified the impulse
response matrix Q0.12 These restrictions are generally in addition to the 2k linear restrictions in
Theorem 1 of the paper which are needed to identify a counterfactual.

We then find solutions X with all eigenvalues inside the unit circle to the quadratic equation
ρ0

2 = (X − ρ0
1)X. Under Assumptions A.1 and A.2, there are only two such solutions. The first

corresponds to P0 in the unique stable recursive law of motion. The second corresponds to
Q0N0(Q0)−1. Then, P0 is identified as the solution that results in an implied N0 =

(
Q0)−1

(P0 −
ρ0

1)Q
0 that satisfies the restrictions on the structure ξ0 in Theorem 1.
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