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We present a task-based model in which high- and low-skill workers compete
against machines in the production of tasks. Low-skill (high-skill) automation
corresponds to tasks performed by low-skill (high-skill) labor being taken over
by capital. Automation displaces the type of labor it directly affects, depressing
its wage. Through ripple effects, automation also affects the real wage of other
workers. Counteracting these forces, automation creates a positive productivity
effect, pushing up the price of all factors. Because capital adjusts to keep the in-
terest rate constant, the productivity effect dominates in the long run. Finally, low-
skill (high-skill) automation increases (reduces) wage inequality.

I. Introduction

Much has been written on the automation of routine and manual tasks,
where machines, computers, and robots replace white-collar and blue-
collar workers, typically inmiddle- and low-wage occupations (e.g., Autor,
Levy, andMurnane 2003; Goos andManning 2007; Michaels, Natraj, and
Van Reenen 2014; Acemoglu and Restrepo 2017). In this traditional view,
high-skill workers are shielded from automation because they specialize
in more complex tasks requiring human judgment, problem solving, an-
alytical skills, or various soft skills. However, recent advances in artificial
intelligence cast doubt on this narrative. The automation of the complex
tasks in which high-skill workers specialize—what we refer to as “high-skill
automation”—is on its way to becoming a potent force in the US labor
market. The new generation of artificial-intelligence technology, in con-
junction with advances in big data and machine learning, already has
the potential to perform many tasks in which human judgment was pre-
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viously thought to be indispensable. Occupations facing (partial) auto-
mation from advances in artificial intelligence include accounting, mort-
gage origination, management consulting, financial planning, paralegal
services, and various medical specialities, including radiology, general
practice, or even surgery. A recentMcKinsey study, for instance, concludes
that “a significant percentage of the activities performed by even those
in the highest-paid occupations (for example, financial planners, physi-
cians, and senior executives) can be automated by adapting current tech-
nology” (Chui, Mayika, and Miremadi 2016).
In another of its reports, McKinsey declares the end of managers’ com-

parative advantage and gives the example of aHongKong venture-capital
firm that has appointed a decision-making algorithm to its board of di-
rectors. It points to “the most impressive examples of machine learning
substituting for human pattern recognition—such as the IBM supercom-
puter Watson’s potential to predict oncological outcomesmore accurately
than physicians by reviewing, storing, and learning from reams ofmedical-
journal articles” (Dewhurst and Willmott 2014). Silicon Valley entrepre-
neur and author Martin Ford similarly asserts, “It’s not just about lower-
skilled jobs either. People with college degrees, even professional degrees,
people like lawyers are doing things that ultimately are predictable. A lot
of those jobs are going to be susceptible over time” (quoted in McNeal
2015).
Despite this rapid and potentially transformative rise of high-skill auto-

mation, there is relatively little work studying its labor market implica-
tions. This paper is a first attempt to develop a simple framework incor-
porating both the more traditional automation of routine and manual
jobs—what we refer to as “low-skill automation”—and high-skill automa-
tion.
We extend the task-based models originally developed in Acemoglu

and Autor (2011) and Acemoglu and Restrepo (2016), which in turn
build on Zeira (1998) and Acemoglu and Zilibotti (2001). In our model,
a continuum of tasks can be performed by low-skill labor, high-skill labor,
or capital. Crucially, the range of tasks that can be performed by capital
expands as a result of two types of automation technologies. Low-skill au-
tomation expands the range of tasks that capital can perform at the low
end of the complexity distribution of tasks.1 The second, corresponding
to high-skill automation, is the new element in ourmodel and is based on
the assumption that new developments in artificial intelligence allow cap-
ital to compete against high-skill labor in complex tasks.

1 “Low-skill automation” here refers to the more traditional automation of routine and
manual jobs, even though some routine tasks often involve nontrivial skill requirements
and some basic tasks have not been much affected by automation at all (e.g., personal ser-
vices). Likewise, “low-skill labor” refers here to blue-collar and white-collar workers who
tend to specialize in the routine andmanual tasks that have beenmore prone to automation
in the past 30 years (e.g., clerks, bookkeepers, accountants, welders, assemblers). Thus, we
abstract from the role of personal-service jobs performed by low-skill workers that have not
been much affected by automation at all (Autor and Dorn 2013).
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This framework departs from existing models not only in allowing for
two types of automation but also in considering an environment in which
there is no simple “comparative advantage” (or single crossing) across
factors and tasks. In Acemoglu and Autor (2011) and Acemoglu and Re-
strepo (2016), as well as in models in the assignment literature, such as
Sattinger (1975), Teulings (1995), and Costinot and Vogel (2010), there
is a simple comparative-advantage ranking, where some workers are pro-
portionately more productive relative to others in more complex tasks.
To study high-skill automation, one needs to generalize this structure
and allow for a richer pattern of comparative advantage, where capital
has a comparative advantage not only at routine and manual tasks with
low complexity but also at complex tasks that would be produced by
high-skill labor otherwise.2 The development of a tractable framework
with a richer comparative-advantage structure for capital is one of the
main contributions of our paper.3

We start with a static economy with a given supply of capital as well as
inelastically supplied low-skill and high-skill labor. We first establish the
existence of an equilibrium in this economy and characterize the poten-
tial assignments of tasks to factors. The most novel pattern—and the one
that is a direct consequence of the richer structure of comparative advan-
tage that we introduce—is one in which capital performs both the least
complex tasks (where it directly competes with low-skill labor) and a dis-
joint range of more complex tasks (where it directly competes with high-
skill labor).

We then characterize the implications of low-skill automation, which
corresponds to an expansion in the set of tasks that can be performed
by capital at the bottom of the distribution, and high-skill automation,
which corresponds to an expansion in the set of tasks that can be per-
formed by capital toward the higher end of the distribution.We show that
both types of automation create two distinct impacts: a displacement ef-
fect and a productivity effect. The displacement effect, by taking away
tasks from the directly affected factor, harms the labor market fortunes
of that factor, while the productivity effect tends to increase the wages of
all factors. We then demonstrate that the total impact of either type of au-
tomation on the wages of low-skill and high-skill labor is given by the sum
of its displacement and productivity effects. When the displacement ef-
fect dominates, factors affected by automation experience a decline in

2 The possibility that automation takes place across a disjoint set of tasks is important to
model the possibility that fairly complex functions involved in financial planning, account-
ing, management, or medical occupations can be automated while other tasks of middle
complexity (including various functions in manufacturing, construction, and personal
communication) remain nonautomated.

3 A recent paper by Feng and Graetz (2016) also makes a related contribution. They ar-
gue that human labor has a comparative advantage not only in nonroutine tasks but also in
intuitive tasks with few training requirements—a phenomenon known as Moravec’s para-
dox. Relatedly, Hémous and Olsen (2016) model the interplay between automation and
horizontal innovations in the context of endogenous growth.
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their wages. Most interestingly, the displacement caused by automation
also creates ripple effects. High-skill automation displaces high-skill la-
bor, which may then compete with low-skill labor in other tasks and dis-
place this latter group. Because of these ripple effects, automation could
depress the wages not just of the affected factor but of both factors. For
instance, high-skill automation can reduce the real wages of both low-skill
and high-skill labor. Nevertheless, the displacement effect on the directly
affected group is always greater, and thus low-skill automation increases
the inequality between high-skill and low-skill labor, while high-skill auto-
mation has the opposite effect.4

After this analysis, we turn to the “long-run” implications of automa-
tion and allow for capital accumulation to restore the price of capital
to its long-run level.5 In the long run, the productivity effect becomes
stronger. This is for the intuitive reason that automation, by increasing
the demand for capital, increases the price of capital in the short run,
which dampens the potential productivity gains that can be obtained
by substituting the cheaper capital for the more expensive labor in the
automated tasks. In the long run, the price of capital remains constant,
and thus there will be greater productivity gains. It is for this reason that,
in Acemoglu and Restrepo (2016), automation was found to always in-
crease wages in the long run. Here, with two types of labor and two types
of automation, we find that automation increases the wage bill in the long
run but might still have a negative impact on the wages of the type of la-
bor that it directly displaces.
In addition to the theoretical literature on task-based models and as-

signment models, which we have already discussed, our paper is related
to the empirical literature on the effects of automation and robotics on
the labor market. Autor, Levy, and Murnane (2003) documented the de-
cline of employment in jobs comprising routine tasks and argue that
these shifts reflect the computerization of such tasks. Michaels, Natraj,
and Van Reenen (2014) show that the replacement of routine tasks by in-
formation and communication technologies caused a decline in employ-
ment opportunities for middle-skill workers.6 In Acemoglu and Restrepo
(2017), we document that, from 1990 to 2007, US commuting zones that
harbored industries more exposed to the use of industrial robots experi-

4 This result echoes the work of Ehrlich and Kim (2015), who explore howmigrants com-
pete not only against low-skill natives in some segments of the market but also against high-
skill natives in others. In their setting, immigrants displace workers in some industries and,
depending on which workers they directly substitute for, increase or reduce inequality. As in
our context, skilled immigrants also create a productivity effect.

5 To economize on space, we do this without explicitly allowing for dynamics, though do-
ing this is straightforward, as in Acemoglu and Restrepo (2016). Note, however, that in con-
trast to that paper, we do not endogenize technological change or the speed of automation
(or the creation of new tasks).

6 Other empirical studies on the impact of the automation and computerization of rou-
tine tasks include Goos andManning (2007), Acemoglu and Autor (2011), Autor andDorn
(2013), Foote and Ryan (2014), Goos, Manning, and Salomons (2014), Jaimovic and Siu
(2014), Autor, Dorn, and Hanson (2015), and Gregory, Salomons, and Zierahn (2016).
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enced a significant decline in employment and real wages. The negative
effects concentrate on blue-collar workers in the lower end of the skill dis-
tribution. Relatedly, using a panel of industries in 17 countries from 1993
to 2007, Graetz and Michaels (2015) show that investments in industrial
robots were associated with faster productivity growth and higher wages
but also created some negative effects on employment for low-skill and
middle-skill workers. Overall, the evidence on the impact of the automa-
tion of routine tasks and the use of industrial robots is in line with the the-
oretical implications of our model regarding “low-skill” automation.

The rest of the paper is organized as follows. Section II introduces our
model. Section III characterizes the short-run equilibrium (where the
supply of capital is taken as given) and highlights the different types of
configurations that can arise. Of those, we focus on a situation in which
capital competes directly both against low-skill and high-skill labor. Sec-
tion IV characterizes the impact of automation on factor prices and in-
equality. In Section V, we study the long-run equilibrium of this model.
Themain difference in this case is that the productivity effect is amplified
by the induced accumulation of capital following automation. As a result,
automation cannot reduce the wages of both types of labor in the long
run, though it can still depress the wage of the directly affected factor.
Section VI returns to the other types of equilibria of themodel and shows
that they do not permit the simultaneous impact of automation on both
low-skill and high-skill labor. Section VII concludes, while the appendix
contains the proofs omitted from the text.

II. A Model of Low-Skill and High-Skill Automation

We consider a static economy with a unique final good Y, produced by
combining a continuum1of tasks y(i) with an elasticity of substitution j ∈
ð0,∞Þ:

Y 5

ð1

0

y ið Þ j21ð Þ=jdi

� �j= j21ð Þ
: (1)

The final good is produced competitively. Consumer utility is defined
over the unique final good, and we normalize its price to 1.

Final-goodproducers canproduce each taskwithmachines (capital) or
labor, and there are two types of labor, high- and low-skill. All tasks can be
producedbyboth types of labor, though theyhave different productivities
in each task. In particular, one unit of high-skill labor can produce gH(i)
units of task i, and one unit of low-skill labor can produce gL(i) units of
task i. Throughout, we assume that these productivities satisfy the follow-
ing (strict) comparative-advantage structure.

Assumption 1 (Comparative-advantage assumption). The functions
gH(i), gL(i), and gH(i)/gL(i) are continuous and strictly increasing.

Combined with the pattern of productivity of machines across tasks
specified in the next paragraph, the feature that gH and gL are increasing
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enables us to determine the allocation of tasks between capital and labor
in a tractable manner.7 That their ratio is strictly increasing implies that
high-skill labor has (strict) comparative advantage relative to low-skill
labor in higher-indexed tasks, which is a feature shared with Sattinger
(1975), Teulings (1995), Costinot andVogel (2010), Acemoglu andAutor
(2011), and Acemoglu and Restrepo (2016), among others. Continuity is
imposed for simplicity.
In contrast to these papers, however, we depart from the “super-

modular” comparative-advantage structure across all factors. Namely, in
these papers the productivities of any two factors across tasks satisfy an
increasing-differences (or single-crossing) assumption.8 Yet such a struc-
ture implies that capital could not effectively compete against both types
of labor, and this would not allow an interesting analysis of simulta-
neously ongoing low-skill and high-skill automation. We therefore aban-
don the supermodular comparative-advantage structure across all factors
and tasks by assuming that there exists J ∈ ð0, 1Þ such that, when auto-
mated, tasks i < J can be produced with capital with productivity 1, while
tasks i ≥ J can be produced with capital with productivity gK ≥ 1. (Look-
ing from the viewpoint of capital, we sometimes refer to tasks i < J as
“simple” tasks and to i ≥ J as “complex” tasks.) We think of the tasks i <
J as routine tasks that have been automated in the past 30 years through
the use of information-processing technologies or industrial robots. Tasks
i ≥ J , on the other hand, are complex tasks that are in the early stages of
automation via artificial intelligence, big data, and a new phase of robot-
ics. When gK > 1, capital will be able to compete simultaneously against
high-skill labor in some complex tasks and against low-skill labor in sim-
pler tasks.
Not all tasks can be automated, however. As in Acemoglu and Restrepo

(2016), we distinguish between technologically automated tasks, which
can be automated if profitable, and tasks automated in equilibrium.
We assume that there exists a pair of thresholds IL ∈ ð0, J Þ and i ∈
½ J , IH� such that the tasks i ∈ ½0, IL� and i ∈ ½ J , IH� are “technologically au-
tomated.” They will be automated in equilibrium if it is profitable for
them to be produced with capital at the prevailing factor prices. Regard-
less of factor prices, the tasks in (IL, J ) and (IH, 1] must be produced with
labor.

7 Nothing fundamental changes if we make these schedules decreasing and also assume
that the productivity of machines is decreasing even more steeply. The structure with the
productivity ofmachines taking the form of a step function and gH and gL increasing greatly
simplifies the exposition.

8 This is true of Acemoglu and Restrepo’s (2016) model with two types of labor and cap-
ital; of Sattinger’s (1975), Teulings’s (1995), and Costinot and Vogel’s (2010) assignment
models with a continuum of tasks and skills; and of Acemoglu and Autor’s (2011) baseline
model with three types of labor. The latter paper then introduces automation of “middling”
tasks, but in doing so assumes that there are no other tasks in which capital can be used and
that it is sufficiently cheap to take over all the tasks that are technologically automated.
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We summarize the above discussion by writing the technologically fea-
sible combinations of factors to produce different tasks, given by

y ið Þ 5

gH ið Þh ið Þ 1 gL ið Þl ið Þ 1 k ið Þ if  i ∈ 0, IL½ �,
gH ið Þh ið Þ 1 gL ið Þl ið Þ if  i ∈ IL, Jð Þ,
gH ið Þh ið Þ 1 gL ið Þl ið Þ 1 gKk ið Þ if  i ∈ J , IH½ �,
gH ið Þh ið Þ 1 gL ið Þl ið Þ if  i ∈ IH, 1ð � :

8>>>>>><
>>>>>>:

(2)

Here, h(i), l(i), and k(i) denote the total quantities of high-skill labor, low-
skill labor, and capital utilized in the production of task i, respectively.

We start by assuming that all factors are supplied inelastically, and we
denote the supply of high-skill labor by H, that of low-skill labor by L,
and that of capital by K.

III. Equilibrium

A “short-run equilibrium” is defined by factor prices—wages and a capital
rental rate—of high-skill labor, low-skill labor, and capital—WH, WL, and
R, respectively—such that final-good producers minimize costs and the
three factor markets clear. Since final-good producers are competitive
and have access to a constant returns to scale production function, cost
minimization is equivalent to profit maximization.

We now characterize the equilibrium allocation of tasks to factors in
this economy. Throughout, to simplify our notation, we assume that when
indifferent between using capital or labor, a firm produces with capital.
Likewise, when indifferent between using high- or low-skill labor, a firm
produces with high-skill labor.9

Proposition 1 (Equilibrium existence). Suppose that assumption 1
holds. For any H , L, K > 0 there is a unique equilibrium.10 The equilib-
rium is characterized by thresholds I *L ∈ ½0, IL�, I *H ∈ ½ J , IH�, and M ∈
ðI *L , 1Þ such that

• capital produces the tasks in ½0, I *L � [ ½ J , I *H �;11
• high-skill labor produces the tasks in [M, 1] that are not produced
with capital; and

• low-skill labor produces the tasks in [0, M) that are not produced
with capital.

9 This choice does not affect the results because firms are indifferent between producing
with different factors in a set of tasks of measure zero.

10 Uniqueness here is under the tie-breaking assumption specified before the proposi-
tion. Without this assumption, we can instead establish “essential uniqueness,” meaning
that the equilibrium allocation will be uniquely determined except at a finite number of
threshold tasks at which firms are indifferent between using different factors.

11 Here, we adopt the convention that, when I *L 5 0, capital produces only the tasks in
[ J, I *H ]. Likewise, when I *H 5 J , capital produces only the tasks in [0, I *L ]. In equilibrium,
only one of these sets can be empty.
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Moreover, the threshold M is given by

WL

gL Mð Þ 5
WH

gH Mð Þ : (3)

For the proof, see the appendix.
The main idea of this proposition is that, to minimize the cost of pro-

duction, tasks will be allocated to factors depending on their comparative
advantage. Our structure of comparative advantage implies that capital
produces at most two disjoint sets of tasks ½0, I *L � [ ½ J , I *H � (recall that one
of these sets could be empty) and that there is a threshold M given by
equation (3) defining which of the remaining tasks are allocated to low-
skill and high-skill labor.
This result can be illustrated diagrammatically. Figure 1 plots the re-

sulting allocations of tasks to factors when capital performs two disjoint
sets of tasks. In the figure, WL=gLðiÞ and WH=gHðiÞ are the effective costs
of producing task i with low- and high-skill labor, respectively. Likewise,
R for i ≤ IL and R=gK for J ≤ i ≤ IH are the effective costs of producing
these different ranges of tasks with capital. In equilibrium, tasks will

Figure 1.—Cost-minimizing allocation of factors to tasks when capital produces two disjoint
(and nonempty) sets of tasks. The top panel depicts an equilibrium in which M ∈ ð J , I *H Þ.
The middle panel depicts an equilibrium in whichM ∈ ðI *L , J Þ. The bottom panel shows an
equilibrium in whichM ∈ ðI *H , 1Þ.
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be allocated to factors that have the lowest effective cost of producing
them.

In the top andmiddle panels, we present the cases inwhichM ∈ ð J , I *H Þ
and M ∈ ðI *L , J Þ, respectively. In these two cases, wages and the interest
rate are such that low-skill labor specializes in low-indexed tasks and
high-skill labor in high-indexed tasks. Capital performs some of the least
complex tasks in [0, I *L ] because for i ≤ J , its comparative advantage rel-
ative to low-skill labor is in lower-complexity tasks. Crucially, capital also
performs some complex tasks in [ J, I *H ]. The difference between these
two cases is merely in whether high-skill labor produces only tasks above
those allocated to capital or whether it straddles the set of complex tasks
allocated to capital. The bottom panel presents the case in which M ∈
ðI *H , 1Þ. Here, capital also produces two disjoint sets of tasks, but it is in di-
rect competition with low-skill labor in both.

In all of the above cases, the thresholds I *L and I *H , which we introduced
in proposition 1, capture the possibility that not all technologically auto-
mated tasks will be produced with capital in equilibrium. As noted above,
whether this is the case or not depends on factor prices. For instance, we
could have that I *L < IL if the price of capital is sufficiently high and, con-
sequently, firms would rather produce task IL with low-skill labor even if it
is possible to do so with capital. If this is the case, a further increase in IL,
corresponding to an expansion of the set of tasks that are technologically
automated, will have no impact on the equilibrium allocation (and thus
on prices). The same is true for an increase in IH when I *H < IH.

Throughout the paper, we center our analysis around the cases in
which capital performs two (nonempty) disjoint sets of tasks and M ∈
ðI *L , I *H Þ, shown in the top two panels of figure 1. These equilibria capture
the more interesting situation in which one form of automation directly
competes against low-skill workers and another form of automation di-
rectly competes against high-skill workers.We turn to the remaining types
of equilibrium where automation competes directly against only a single
type of labor in Section VI. Moreover, because our objective is to under-
stand how changes in automation affect wages and inequality, we focus on
the case where I *H 5 IH and I *L 5 IL. Proposition A1, in the appendix,
shows that there exists a threshold r and a threshold K ðH , LÞ that is non-
decreasing inH andL, such that, forH=L > r andK > K ðH , LÞ, the equi-
librium features M ∈ ðIL, IHÞ and I *L 5 IL and I *H 5 IH. Thus, until Sec-
tion VI, we impose the following assumption on factor supplies:

Assumption 2. The supplies of labor and capital H, L, K satisfy
H=L > r and K > K ðH , LÞ.

The condition H=L > r ensures that

WL

gL IHð Þ >
WH

gH IHð Þ , (4)

and soM < IH—high-skill labor is abundant andwill face the competition
of automation in the production of tasks near IH. In addition, for a given
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H and L, the condition K > K ðH , LÞ ensures that capital is abundant and
cheap relative to both types of labor, and so it is cheaper to produce tasks
IH and IL, respectively, with capital:

WH

gH IHð Þ >
R

gK

,

WL

gL ILð Þ > R :

(5)

Let minf J ,Mg denote the minimum threshold where either there is
a switch from simple to complex tasks or the effective costs of produc-
tion by low-skill and high-skill labor are equated. Under assumption 2,
capital performs the tasks in ½0, IL� [ ½ J , IH�, low-skill labor performs the
tasks in (IL, minf J ,Mg), and high-skill labor performs the tasks in
½minf J ,Mg, J Þ [ ðIH, 1�. (Note that when M ≥ J , the set [ minf J ,Mg,
J ) is empty.)
Given the allocation of tasks to factors derived above, we can determine

the equilibrium prices of a task as the minimum effective cost of produc-
ing it:

p ið Þ 5

R if  i ∈ 0, IL½ �,
WL

gL ið Þ if  i ∈ IL, min J ,Mf gð Þ,

WH

gH ið Þ if  i ∈ min J ,Mf g, J½ Þ,

R

gK

if  i ∈ J , IH½ �,

WH

gH ið Þ if  i ∈ IH, 1ð � :

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(6)

With these task prices p(i), the equilibrium quantity of task i can be
determined from the cost-minimization problem of final-good produc-
ers as

y ið Þ 5 Yp ið Þ2j : (7)

Equations (6) and (7) combined imply that the demand for capital in
each simple automated task is YR2j, the demand for capital in each com-
plex automated task is Ygj21

K R2j, the demand for low-skill labor in each
task performed by this factor is YgLðiÞj21W 2j

L , and the demand for
high-skill labor in each task performed by this factor is YgHðiÞj21W 2j

H . In-
tegrating these demands over the range of tasks assigned to the relevant
factor, we find that factor-market-clearing conditions take the form
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YGHW
2j
H 5 H ,

YGLW
2j
L 5 L,

YGKR
2j 5 K ,

where, to simplify notation, we have defined the “effective shares” of
high-skill labor, low-skill labor, and capital as

GH 5

ð J

min J ,Mf g
gH ið Þj21di 1

ð1

IH

gH ið Þj21di,

GL 5

ðmin J ,Mf g

IL

gL ið Þj21di,

GK 5 IL 1 IH 2 Jð Þgj21
K :

(8)

Why we refer to these objects as effective shares will be clarified below by
equation (9).

The following proposition provides explicit expressions for equilib-
rium factor prices as functions of the thresholds IH, IL, J, and M (where
the last one is the only endogenous threshold determined in equilibrium).

Proposition 2 (Equilibriumcharacterization). Suppose that assump-
tions 1 and 2 hold. Then, equilibrium output and factor prices as func-
tions of the thresholds can be expressed as

Y 5 G
1=j
H H j21ð Þ=j 1 G

1=j
L L j21ð Þ=j 1 G

1=j
K K j21ð Þ=j� �j= j21ð Þ

, (9)

and

WH 5 Y 1=jG
1=j
H H21=j,

WL 5 Y 1=jG
1=j
L L21=j,

R 5 Y 1=jG
1=j
K K21=j,

(10)

where GH, GL, and GK are given by equation (8). Moreover, factor prices
satisfy the ideal-price condition

GHW
12j
H 1 GLW

12j
L 1 GKR

12j 5 1, (11)

and the endogenous threshold M is given implicitly by the unique solu-
tion in the interval (IL, IH) to equation (3):

GH

GL

L

H

� �1=j

5
gH Mð Þ
gL Mð Þ : (12)

For the proof, see the appendix.
This proposition clarifies why we refer to the terms GH, GL, and GK as ef-

fective shares—they correspond to (endogenous versions of) the distri-
bution parameters in the derived constant elasticity of substitution (CES)
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aggregate production function in equation (9). Note also that the ideal-
price condition follows as an additional equilibrium condition, since we
chose the final good as numeraire.
The unique equilibrium value for M in proposition 2 is implicitly de-

fined by the solution to equation (12). As shown in figure 2, the fact that
this equation has a unique solution follows by observing that the right-
hand side is a strictly increasing function of M, while the left-hand side
is a nonincreasing function ofM, which becomes constant forM ≥ J . The
conditionH=L > r—which we assume to hold throughout—ensures that
these two curves intersect for M ∈ ðIL, IHÞ. The figure also presents the
allocation of tasks to factors, depending on whether M ≶ J .
The effective shares in the CES aggregator in equation (9) depend on

the technology parameters IH and IL. Thus, proposition 2 also shows that
the task framework provides a richer view of technology, where we are not
limited to the usual factor-augmenting technologies but we could also
think of changes in effective shares as being driven by technology. This
general conception of technology generatesmany of the new possibilities
that we explore in the next section, such as the possibility that automa-
tion may reduce all workers’ wages in the short run.

IV. The Effect of Automation on Factor Prices

In this section we explore the effects of low-skill and high-skill automa-
tion. Our analysis is simplified by a straightforward consequence of equa-
tion (10): the impact of either type of automation on factor prices (WH,
WL, and R) can be decomposed into a displacement effect and a produc-
tivity effect. To see this, we totally differentiate equation (10) to obtain

Figure 2.—Equilibrium value forM when assumption 2 holds. The left-hand panel depicts
the case in whichM ∈ ðIL, J Þ, while the right-hand panel is for the case in whichM ∈ ð J , IHÞ.
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dR
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1
dY

Y
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Here dGH=GH, dGL=GL, and dGK=GK designate the displacement effects,
while dY =Y designates the productivity effect. These expressions imply
that the impact of technological change in general, and of the two types
of automation in particular, works by changing the effective shares and
the overall level of production in the economy—through the terms
dGH=GH, dGL=GL, dGK=GK, and dY =Y .

Intuitively, the displacement effect matters because as tasks are reallo-
cated away from a factor, there is a powerful downward pressure on the
price of that factor; the reason is that such displacement pushes more
of that factor to work in the remaining tasks, running into a downward-
sloping demand for these tasks. The productivity effect arises from the
fact that automation involves substituting cheaper capital for labor (and
we know that capital has to be cheaper, since otherwise it would not have
been profitable for firms to use capital instead of labor). Such substitu-
tion increases productivity and output in the economy. Because tasks are
q -complements in theproductionof thefinal good, the increase in output
raises the demand for all tasks and hence the price of all factors.

In the next two propositions, we characterize how the two types of au-
tomation shape first the displacement effects and then the productivity
effects.

Proposition 3 (Displacement effects of technology). Suppose that
assumptions 1 and 2 hold. Let ε 5 ðg0

HðM Þ=gHðM ÞÞ 2 ðg0
LðM Þ=gLðM ÞÞ ≥

0 be the quasi elasticity of the comparative-advantage schedule. Automa-
tion has the following effects on output:12

1. An increase in IL by dIL > 0—corresponding to low-skill automa-
tion—has the following impacts on effective shares: dTK=dIL 5 1,

dGL

dIL
5

2gL ILð Þj21 < 0 if M ≥ J ,

2gL ILð Þj21 jε 1 gH Mð Þj21=GH

� �
jε 1 gH Mð Þj21=GH

� �
1 gL Mð Þj21=GL

� � < 0 if M < J ,

8><
>:

and

12 To economize on notation, we do not explicitly cover the case in which M 5 J , be-
cause the left and the right derivatives are different at this point. It can be shown that when
dIL > 0, dGL=dI L and dGH=dI L are identical in this case to the expressions forM > J and that
when dIL < 0, they are identical to the expressions for M < J . Conversely, when dIH > 0,
dGH=dI H and dGL=dI H are given by the expressions for M < J , and when dIH < 0, they are
given by the expressions for M > J .
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dGH

dIL
5

0 if M ≥ J ,

2gL ILð Þj21 gH Mð Þj21=GL

jε 1 gH Mð Þj21=GH

� �
1 gL Mð Þj21=GL

� � < 0 if M < J :

8><
>:

2. An increase in IH by dIH > 0—corresponding to high-skill automa-
tion—has the following impact on effective shares: dGK=dIH 5 gj21

K ,

dGH

dIH
5

2gH IHð Þj21 < 0 if M > J ,

2gH IHð Þj21 jε 1 gL Mð Þj21=GL

� �
jε 1 gH Mð Þj21=GH

� �
1 gL Mð Þj21=GL

� � < 0 if M ≤ J ,

8><
>:

and

dGL

dIH
5

0 if M > J ,

2gH IHð Þj21 gL Mð Þj21=GH

jε 1 gH Mð Þj21=GH

� �
1 gL Mð Þj21=GL

� � < 0 if M ≤ J :

8><
>:

Proof. The proof follows by differentiating equation (8) and then sub-
stituting the derivatives involvingM using the implicit-function theorem
applied to equation (12). The full proof is presented in the appendix.
The main takeaway from this proposition is that both types of automa-

tion displace labor and reduce the set of tasks performed by workers.
Namely, low-skill automation reduces the share of tasks performed by
low-skill labor, and high-skill automation reduces the share of tasks per-
formed by high-skill labor.
Importantly, when M < J , both types of automation create ripple ef-

fects, also reducing the effective shares of the other type of labor.13 For
example, whenM < J , low-skill automation displaces low-skill labor from
tasks it previously performed, and these workers then compete for and
take over some of the tasks previously performed by high-skill labor. Like-
wise, when M < J , high-skill automation reduces not only the effective
share of high-skill labor but also that of low-skill labor. These ripple ef-
fects do not arise whenM > J , because the two types of labor do not com-
pete directly (the sets of tasks they produce are always buffered by tasks
produced by capital). The ripple effects also disappear when ε→∞—so
that around the threshold task M, there is a very strong comparative ad-
vantage of high-skill labor in more complex tasks and of low-skill labor in
simpler tasks. Intuitively, in this case, though the two types of labor do
compete for the production of tasks aroundM, they are such poor substi-
tutes that the ripple effects evaporate. Conversely, when ε→ 0, the com-
parative advantage of one type of labor relative to the other around the
threshold task M is very small, and the ripple effects are maximized.

13 In fact, as indicated in n. 12, an increase in IH also creates ripple effects whenM 5 J .
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Proposition 4 (Productivity effect of technology). Suppose that as-
sumptions 1 and 2 hold.

1. An increase in IL by dIL > 0—corresponding to low-skill automa-
tion—increases aggregate output by

1

Y

dY

dIL
5

1

j 2 1
R 12j 2

WL

gL ILð Þ
� �12j� �

> 0:

2. An increase in IH by dIH > 0—corresponding to high-skill automa-
tion—increases aggregate output by

1

Y

dY

dIH
5

1

j 2 1

R

gK

� �12j

2
WH

gH IHð Þ
� �12j� �

> 0:

Proof. The proof follows by differentiating equation (9). The full argu-
ment is presented in the appendix.

This proposition thus shows that there are productivity gains fromboth
types of automation, helping to contribute to higher wages for both types
of labor (or higher prices for all factors). Notably, this is true regardless of
whether M ≶ J .

Another noteworthy result in proposition 4 is a quantification of the ex-
tent of productivity effects. In particular, the greater is the gapWH=gHðIHÞ 2
R=gK or the gapWL=gLðILÞ 2 R=gK, the greater are the cost savings by sub-
stituting capital for the more expensive labor factor and the greater is the
productivity effect (assumption 2 guarantees that both of these gaps are
positive). This observation also implies that asWL=gLðILÞ ↓ R , productivity
gains—and thus the productivity effect—from low-skill automation disap-
pear; likewise, asWH=gHðIHÞ ↓ R=gK, the productivity effect fromhigh-skill
automation disappears.

As observed above, the impact of automation on wages can be directly
obtained by combining the displacement and productivity effects. In gen-
eral, since these two effects go in opposite directions, we cannot unambig-
uously determine the impact of automation on all factor prices. Neverthe-
less, it is possible to characterize when one effect will dominate. Though
there are different ways of doing this, here we emphasize the role of the
gap between the effective cost of production by capital and labor inputs.
Since the price of capital (the rental rate) will be higher when capital is
more scarce, this leads to a comparison in terms of the level of capital
stock in the economy, as shown in the next proposition.

Proposition 5 (Factor prices and automation). Suppose that as-
sumptions 1 and 2 hold. Then for a fixed H, L there exist thresholds
K ðH , LÞ < K L < �KL and K ðH , LÞ < KH < �KH such that14

14 We do not give the comparative statics in the cases in which the capital stock, K, is ex-
actly equal to the thresholds, to shorten the proposition. As is evident from the rest of the
proposition, in these cases, it will have no effect on the price of one of the factors.
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1. WhenM < J , low-skill automation (an increase in IL) has the follow-
ing effects on wages:

• if K ∈ ðK ðH , LÞ, K LÞ, it reduces both WH and WL;
• if K ∈ ðK L, �KLÞ, it reduces WL and increases WH;
• if K > �KL, it increases both WH and WL.

Also, again when M < J , high-skill automation (an increase in IH) has
the following effects on wages:

• if K ∈ ðK ðH , LÞ, KHÞ, it reduces both WH and WL;
• if K ∈ ðKH, �KHÞ, it reduces WH and increases WL;
• if K > �KH, it increases both WH and WL.

2. If, on the other hand, M > J , we have that

• if K > �KL, low-skill automation increases both WH and WL, and if
K < �KL, it reduces WL and increases WH;

• similarly, if K > �KH, high-skill automation increases both WH and
WL, and if K < �KH, it reduces WH and increases WL.

3. Both types of automation always increase the rental rate of capital,
R.

For the proof, see the appendix.
This proposition is one of the main results of the paper. First, it shows

that, when the price of capital (the rental rate) is high relative to wages,
automation directed to a particular type of labor reduces the wage rate of
that type of labor—so low-skill automation reduces low-skill wages and
high-skill automationreduceshigh-skill wages.This result is reversed,how-
ever, when the productivity effect is sufficiently powerful, which, as shown
in proposition 4, happens when capital is sufficiently abundant and the
price of capital (the rental rate) is low. Second, this proposition also dem-
onstrates the implications of the ripple effect, which was noted in our dis-
cussion of proposition 3. When there is a ripple effect (M < J ) and when
the productivity effect is not too powerful, low-skill automation also re-
duces high-skill wages and high-skill automation also reduces low-skill
wages.This result,which tothebestofourknowledge isunique tothe frame-
workwith the two types of automationdevelopedhere, is important inhigh-
lighting how very specific types of automation technologies can depress
wages throughout the wage distribution.
Nevertheless, the effects of the two types of automation technologies on

inequality, which in ourmodel is given by the ratio of high-skill to low-skill
wages and is proportional to q 5 ðWH=WLÞj, always goes in the intuitive
direction, as shown in the next proposition for factor prices.
Proposition 6 (Automation and inequality). Suppose that assump-

tions 1 and 2 hold.

1. Low-skill automation increases wage inequality, that is,
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q

dq

dIL
5

gL ILð Þj21

GL

> 0 if M ≥ J ,

gL ILð Þj21

GL

jε

jε 1 gH Mð Þj21=GH

� �
1 gL Mð Þj21=GL

� � > 0 if M < J :

8>>><
>>>:

2. High-skill automation reduces wage inequality, that is,

1

q

dq

dIH
5

2
gH IHð Þj21

GH

< 0 if M > J ,

2
gH IHð Þj21

GH

jε

jε 1 gH Mð Þj21=GH

� �
1 gL Mð Þj21=GL

� � < 0 if M ≤ J :

8>>><
>>>:

Proof. The proof follows from differentiating the expression q 5
ðGH=GLÞðL=H Þ. QED

One noteworthy feature is that the effect of either type of automation
on wage inequality is lower when M < J (for jε=½jε 1 ðgHðM Þj21=GHÞ 1
ðgLðM Þj21=GLÞ� < 1), because in this case there are ripple effects on the
wages of the factor that are not directly affected by automation, and this
limits the impact on inequality. In fact, whenM < J , we can also see that as
ε→ 0, the ripple effects become so powerful (because there is little com-
parative advantage protecting the factor not directly affected by automa-
tion) that the impact of both types of automation on inequality vanishes.

Propositions3–6provideanewperspectiveonwhat toexpect fromtech-
nological developments that automate tasksperformedbyhigh-skill work-
ers. High-skill automation increases productivity and reduces inequality.
But importantly, it might indirectly hurt low-skill workers by pushing
more skilled ones to compete against them in simpler tasks. These predic-
tions resemble the reversal in thedemand for skills andcognitive tasksdoc-
umentedbyBeaudry,Green, andSand(2016).Thereversal started in2000
but has accelerated in recent years. Interestingly, the reversal has been ac-
companied by amovement of high-skill workers down the skill ladder, dis-
placing low-skill workers in less skill-intensive jobs (see also Modestino,
Shoag, and Ballance 2016). This cascading pattern is reminiscent of the
ripple effects that arise in our model when M < J .

The empirical evidence on the impact of the use of industrial robots
in manufacturing and the automation of routine tasks, described in Sec-
tion I, is broadly in line with the implications of ourmodel regarding low-
skill automation. For instance, in Acemoglu and Restrepo (2017), we doc-
ument that industrial robots tend to reduce employment andwages in the
most exposed local labor markets, but these effects are significantly more
pronounced for low-skill workers in blue-collar jobs. Nevertheless, the evi-
dence also supports the ripple effects that arise in ourmodel whenM < J ,
as we find negative effects on workers higher up the skill ladder as well.
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V. Long-Run Equilibrium

We have so far assumed that capital is in fixed supply. It is straightforward
to embed thismodel in a dynamic setting in which a representative house-
hold maximizes its intertemporal utility (e.g., as in Acemoglu and Res-
trepo 2016). An immediate implication of that setup is that a long-run,
steady-state equilibrium requires that the interest rate, and thus the rental
rate of capital, is constant.Here, to economize on space, we study the long-
run equilibrium by simply imposing that the rental rate of capital is con-
stant at some level R ‘ and that the stock of capital adjusts to maintain this
level.
More formally, a long-run equilibrium is given by high-skill and low-skill

wages,WH andWL, respectively, and a level of capital stock,K, such that the
final-goodproducersmaximize profits, the three factormarkets clear, and
R 5 R ‘. Because we now have an elastic supply of capital, the equivalent
of assumption 2 now becomes
Assumption 20. The supplies of labor,H, L, and the rental rate of cap-

ital, R ‘, satisfy H=L > r and R ‘ < �RðH , LÞ.
Here, the threshold �RðH , LÞ is nonincreasing inH, L and ensures that

the endogenous supply of capital satisfies K > K ðH , LÞ.
The analysis in this case is very similar to that for our short-run equilib-

rium, with the only difference being that the productivity effect is strength-
enedbecausetherentalrateisconstantatR ‘ andthestockofcapitalchanges
in response to changes in technology and other parameters. Consequently,
the productivity effect can now be expressed as

j
dWH

WH

5
dGH

GH

1
dY

Y

����
K fixed

1 sK
dK

K
,

j
dWL

WL

5
dGL

GL

1
dY

Y

����
K fixed

1 sK
dK

K
,

(13)

where sK ∈ ð0, 1Þ is the share of capital in national income, and
ðdY =Y ÞjK fixed denotes the fixed-capital productivity effect characterized
in the previous section. The term sKðdK=K Þ corresponds to the additional
productivity gains due to the induced change in the capital stock.
Proposition 7 (The productivity effect in the long run). Suppose

that assumptions 1 and 20 hold. In the long-run equilibrium,

1. Low-skill automation increases the capital stock by

1

K

dK

dIL
5

1

1 2 sK

1

GK

dGK

dIL
1

1

Y

dY

dIL

����
K fixed

� �
> 0:

2. High-skill automation increases the capital stock by

1

K

dK

dIH
5

1

1 2 sK

1

GK

dGK

dIH
1

1

Y

dY

dIH

����
K fixed

� �
> 0:
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Proof. The results follow by implicitly differentiating the capital-market-
clearing condition KR j

‘ 5 GKY . QED
Recalling that the increases in the capital stock multiplied by the share

of capital in national income, sK, give the additional productivity effect
in this case, we directly obtain the main result of this section in the next
proposition.

Proposition 8 (Wages in the long run). Suppose that assumptions 1
and 20 hold. In the long-run equilibrium, both types of automation raise
the total wage bill, W 5 WLL 1 WHH . In particular,

dW

dIL
5

dY

dIL

����
K fixed

> 0

and

dW

dIH
5

dY

dIH

����
K fixed

> 0:

Thus, high-skill automation always increases low-skill wages, and low-skill
automation always increases high-skill wages.Moreover, whenM < J and ε
are sufficiently high, both wages increase from either type of automation.

Proof. The appendix presents the derivation for the formulas for dW =dIL
and dW =dIH.

Because in the long run both types of automation increase the wage
bill WLL 1 WHH , automation cannot simultaneously reduce both low-
skill and high-skill wages. Thus, high-skill (low-skill) automation always
increases low-skill (high-skill) wages.

For the secondpart of the proposition, observe fromproposition 6 that
whenM < J and ε→∞, inequality does not increase, and thus for ε suffi-
ciently high, neither wage could fall as a result of automation. QED

There are several important implications of this proposition. First, it
shows that both wages cannot be reduced by automation. This result is
closely related to that in Acemoglu andRestrepo (2016), that automation
cannot reduce wages in the long run in a model with only one type of la-
bor. In fact, as we have just seen, its proof first establishes that the total
wage bill always goes up with automation. Second, more importantly for
our focus and differently from Acemoglu and Restrepo (2016), it estab-
lishes that the factor directly affected by automation can lose even in
the long run. This is because the productivity effects created by automa-
tion are shared by both types of labor, whereas the negative displacement
effects are borne only by the directly affected factor.

A third implication of this proposition is also noteworthy. Because au-
tomation at first pushes up the share of capital in national income (as it
will increase the rental rate) andmay also increase wage inequality, a nat-
uralpolicy reactionmaybe to taxcapital (e.g., Piketty 2014).Proposition8,
however, implies that this has thepotential to be counterproductive. Auto-
mation tends to have a more positive effect on wages in the long run than
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in the short run because capital accumulates in response to the increased
demand for capital. Taxing and discouraging further accumulation of
capital would stop these beneficial effects in their tracks.

VI. Equilibrium in Other Cases

In this section, we briefly describe the impact of automation on the allo-
cation of tasks to factors and factor prices. In the remaining cases, we have
one of two possible situations.
First, we could have that capital directly competes against low-skill la-

bor only. This will be the case when capital produces tasks in [0, I *L ] only
andM > I *L > 0; when capital produces tasks in [0, I *H ] only andM > I *H >
J ; or when capital produces tasks in ½0, I *L � [ ½0, I *H � only,M > I *H > J , and
I *L > 0. In all these cases, automation (an increase in IL or IH) takes away
only tasks previously assigned to low-skill labor. The analysis is essentially
identical to the one developed in Acemoglu and Restrepo (2016), where
we show that automation always increases inequality. In addition, dis-
placed low-skill workers then compete against high-skill workers assigned
tomore complex tasks; thus, ripple effects are still present. As in our anal-
ysis in Section IV, when the productivity effect is small (e.g., because cap-
ital is scarce), automation not only reduces low-skill wages but may even
depress high-skill wages. However, because automation always increases
inequality, the long-run effect of automation on high-skill wages is always
positive. To summarize, both types of automation have the exact same im-
pact as low-skill automation in Section IV, but there is no equivalent of
high-skill automation and thus no room for the simultaneous analysis
of low- and high-skill automation.
Alternatively, we could have that capital directly competes against high-

skill labor only. This will be the case when capital produces tasks in [ J, I *H ]
only and M < I *H . Here, high-skill automation has the same impact as in
our analysis in Section IV, but there is no equivalent automation of low-
skill jobs.

VII. Conclusion

This paper developed a task-based model in which high- and low-skill
workers compete against machines in the production of different tasks.
In contrast to other models in the literature, we have allowed for both low-
skill and high-skill automation. The former corresponds to tasks previ-
ously performed by low-skill labor being taken over by machines, while
the latter involves what is arguably a new phase of automation, in which
machines start competing in tasks in which high-skill workers specialize.
Our model incorporates both types of automation by departing from the
simple structure of comparative advantage adopted bymost othermodels
in this genre—so that capital might end up performing two disjoint sets
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of tasks, one competing against low-skill labor and the other one against
high-skill labor.

After characterizing the different types of equilibria that can arise in
this setup, we focus on the cases in which capital does indeed compete
against both types of labor. In these cases, improvements in automation
technology directly affect either one or the other type of labor. We show
that automation always displaces the type of labor it directly affects, de-
pressing its wage. Counteracting this, it also creates a positive productivity
effect, pushing up the price of all factors. The net impact of automation
on the directly affected factor depends on the balance between the dis-
placement and productivity effects, which are in turn shaped by the gap
between the effective cost of producing marginal tasks by labor and that
by capital. The simplest characterization of whether the displacement or
the productivity effect dominates, then, depends on how large the capital
stock is (and thus how high is the rental rate of capital). Importantly, we
also establish that both types of automation may create ripple effects, fur-
ther displacing the type of labor that is not directly affected. Themajor im-
plicationof the ripple effects for us is that automationmay reduce thewage
of not just the factor it directly affects but of other imperfectly substitutable
factors—put differently, either type of automation can depress the real
wage of both high-skill and low-skill labor. Though the effects of automa-
tion on wages are potentially ambiguous, we also establish that it always
has an unambiguous impact on inequality. In particular, low-skill automa-
tion always increases wage inequality, whereas high-skill automation always
reduces it.

Finally, we extend ourmodel to allow for the adjustment of the stock of
capital to changes in technology. In such a “long-run equilibrium,” auto-
mation induces further accumulation of capital and thus amplifies the
productivity effect. As a result, we show that automation cannot reduce
the real wage of both types of labor but may still depress the wage of the
directly affected factor.

We view our paper as a contribution to the analysis of how different
types of automation technologies, which are arguably permeating our
lives even more deeply, will affect the labor market. Many promising re-
search areas are open for future work. Here we mention a few.

1. We took one simple departure from the common, supermodular
structure of task-based or assignment models by allowing capital not
to have a strict comparative advantage relative to labor. Much richer
forms of comparative advantage can be studied beyond the one we
have utilized here. The difficulty is to obtain a tight characterization
of both the assignment of tasks to factors and factor prices.

2. Automation technology has been assumed to be entirely exogenous,
and we have also taken the set of tasks that labor can perform to be
given exogenously. In Acemoglu and Restrepo (2016), both of these
assumptions are relaxed, which allows for an analysis of how differ-
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ent types of technological shocks trigger further technological re-
sponses. Extending that type of analysis to our richer framework is
an interesting step for future work.

3. We have followed other task-basedmodels in assuming that tasks can
be fully unbundled. One of the important effects of new informa-
tion and communication technologies is to increase the extent to
which tasks can be unbundled, and simultaneously studying this pro-
cess together with the impact of automation technologies appears
as a fruitful area for research as well.

4. Our framework does not make any policy recommendations, be-
cause we have not modeled various labormarket imperfections that
might interact with automation, and as a result, the equilibrium in
our model is Pareto optimal. Acemoglu and Restrepo (2016) show
that when there is a gap between wages and the opportunity cost of
labor, automation may reduce welfare and even aggregate output.
A similar approach can be developed in the context of our model
here, and the welfare implications of different types of automation
would depend on the gap between the wage of affected workers and
their opportunity cost of labor. For instance, if this gap is greater for
high-skilled workers (e.g., because these workers have greater bar-
gaining power), high-skill automation may have more negative wel-
fare consequences than low-skill automation.

5. Last but not least, our analysis has been purely theoretical. How dif-
ferent types of automation technologies affect wages, unemploy-
ment, and inequality is an important area for research, and one we
are pursuing in ongoing work (Acemoglu and Restrepo 2017).

Appendix

A1. Proof of Proposition 1

The second welfare theorem applies in this competitive economy. Thus, it is suf-
ficient to focus on Pareto optimal allocations, which are those thatmaximize total
output.

We start by showing that, in every potential Pareto optimal allocation, the levels
of production of all tasks, y 5 ðyðiÞÞ1i50, are uniquely determined. In any Pareto
optimal allocation, y maximizes aggregate output, Y, subject to the constant re-
turns to scale production function (eq. [2]) and the resource constraints
(
Ð 1

0 lðiÞdi 5 L,
Ð 1

0 hðiÞdi 5 H , and
Ð 1

0 kðiÞdi 5 K ). Uniqueness of the solution, y*,
follows because the production function is strictly quasi-concave.

To see that the production function is strictly quasi-concave, let us express it as
Y 5 f ∘ g , with f ðxÞ 5 xj=ðj21Þ and

g yð Þ 5
ð1

0

y ið Þ j21ð Þ=jdi:

When j > 1, the function g is an integral of strictly concave functions and is thus
itself strictly concave. Because Y is a strictly increasing transform, f, of a strictly
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concave function, it is strictly quasi-concave in y. Likewise, when j < 1, the func-
tion g is an integral of strictly convex functions and is thus itself strictly convex.
Because in this case Y is a strictly decreasing transform of a strictly convex func-
tion, it is strictly quasi-concave in y. Finally, when j 5 1, we have that f ðxÞ 5
expðxÞ and g ðyÞ 5 Ð 1

0 lnðyðiÞÞdi, so the same argument presented above applies.
This establishes the uniqueness of y* in any Pareto optimal allocation and thus
in any equilibrium.

Let xðiÞ 5 ðlðiÞ, hðiÞ, kðiÞÞ, and x 5 ðxðiÞÞ1i50. Suppose that there are two differ-
ent Pareto optimal allocations, x and x 0. Because y* is uniquely determined, we
must have

y* ið Þ 5 l ið ÞgL ið Þ 1 h ið ÞgH ið Þ 1 k ið ÞgK ið Þ
5 l 0 ið ÞgL ið Þ 1 h0 ið ÞgH ið Þ 1 k 0 ið ÞgK ið Þ:

This equality implies that either xðiÞ 5 x 0ðiÞ or there are several combinations of
{l(i), h(i), k(i)} that yield the same output. The latter case implies that the final-
good producer of task i must be indifferent between using different factor pro-
portions to produce this task, which is not possible, given the assumption that
when indifferent between using capital or labor, a firm produces with capital,
and when indifferent between using high- or low-skill labor, a firm produces with
high-skill labor. Thus, wemust have that xðiÞ 5 x 0ðiÞ for all i ∈ ½0, 1�, and there is a
unique Pareto optimal allocation x.

Because gH(i) and gL(i) are (strictly) increasing, the set of tasks performed by
capital can take only the form ½0, I *L � [ ½ J , I *H �, with I *L ∈ ½0, IL� and I *H ∈ ½ J , IH�. As
in the main text, we adopt the convention that, when I *L 5 0, capital produces
only the tasks in [ J, I *H ]. Likewise, when I *H 5 J , capital produces only the tasks
in [0, I *L ]. Also, the market-clearing condition for capital implies that it must per-
form a range of tasks with positivemeasure. Thus, I *L 5 0 and I *H 5 J cannot hold
simultaneously.

Next, let M denote the smallest index i such that task i can be more cheaply
produced with high-skill labor than with low-skill labor. It follows that low-skill la-
bor can produce only the tasks in [0, M ) that are not produced by capital, while
high-skill labor can produce only tasks in [M, 1] that are not produced by capital.

To conclude the proof, note that low-skill labor must perform some positive
measure set of tasks (otherwise, its market-clearing condition would be violated).
Thus, we must have that M > I *L , as stated in the proposition. QED

Proposition A1. There exist a threshold r and a threshold K ðH , LÞ nonde-
creasing in H, L, such that, for H=L > r and K > K ðH , LÞ, the unique equilib-
rium features I *H 5 IH, I *L 5 IL, and M ∈ ðIL, IHÞ.

Proof. Consider an allocation of tasks to factors where capital performs the tasks
in ½0, IL� [ ½ J , IH�; low-skill labor performs the tasks in (IL, minf J ,Mg); and high-
skill labor performs the tasks in ½minf J ,Mg, J Þ [ ðIL, 1�. The factor prices that
support this allocation are given by equation (10).

This allocation minimizes the cost of production and thus corresponds to the
unique equilibrium of the model, if and only if the conditions(4) and (5) hold.

We now show that these conditions are satisfied when the supply of factors sat-
isfies the restrictions provided in the proposition.

First, we show that in this allocation, the wage-to-rental-rate ratios, WH=R and
WL=R , are decreasing in the supply of high-skill,H, and low-skill, L, labor, respec-
tively, and increasing in K. We have that
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WH

R
5

GH

H

� �1=j K

GK

� �1=j

: (A1)

IfM > J , so that GH is constant, thenWH=R is decreasing in H. Otherwise, ifM <
J , an increase in H shifts the left-hand side of equation (12) down in the second
panel of figure 2, reducingM. From equation (8), the decline inM also increases
GH and reduces GL. From equation (12), we also have

GH

H
5

gH Mð Þ
gL Mð Þ

� �j

GL

L
,

which implies that, as GL declines, GH=H also declines in response to an increase
inH in the region whereM < J . Then, from equation (A1),WH=R is also decreas-
ing in H. An analogous argument establishes that WL=R is decreasing in L.

Moreover, equation (A1) shows that the wage-to-rental-rate ratios, WH=R and
WL=R , are also increasing in the stock of capital K.

It follows that there exists a threshold K ðH , LÞ such that the inequalities in
equation (5) hold for K > K ðH , LÞ. Moreover, because the wage-to-rental-rate ra-
tios,WH=R andWL=R , are decreasing in the supply of high-skill, H, and low-skill,
L, labor, respectively, the threshold K ðH , LÞ is nondecreasing.

To establish the existence of r, we show that, in this allocation, the wage ratio
WH=WL is decreasing in H=L. From equation (10), we have

WH

WL

5
GH

GL

L

H

� �1=j

5
gH Mð Þ
gL Mð Þ :

Thus, whenM > J and GL and GH are constant, this expression shows thatWH=WL

is decreasing in H=L. When M < J , the increase in H=L shifts the left-hand side
of equation (12) down in the second panel of figure 2, once again reducing M,
establishing the desired result.

BecauseWH=WL is decreasing in H=L, it follows that there exists a threshold r

such that condition (4) holds. This condition ensures that M < IH, completing
the proof of the proposition. (Note that proposition 1 guarantees that M > IL.)
QED

A2. Proof of Proposition 2

Substituting for factor prices from equation (10) into the ideal-price index con-
dition, equation (11), we obtain

1 5 GHW
12j
H 1 GLW

12j
L 1 GKR

12j

5 GH

YGH

H

� � 12jð Þ=j
1 GL

YGL

L

� � 12jð Þ=j
1 GK

YGK

K

� � 12jð Þ=j

5 Y 12jð Þ=j G
1=j
H H j21ð Þ=j 1 G

1=j
L L j21ð Þ=j 1 G

1=j
K K j21ð Þ=j� �

,

which confirms equation (9). As already noted in the proof of proposition A1,
equation (12) follows immediately by combining equations (3) and (10). The fact
that equation (12) has a unique solution forM follows by observing that, from as-
sumption 1, the right-hand side is an strictly increasing function of M, while the
left-hand side is nonincreasing in M.
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The condition �x > H=L > x—which is assumed to hold throughout—ensures
that the curves intersect at some interior M ∈ ðIL, IHÞ. To see this, note that the
condition H=L > x guarantees that at IH we have

gH Mð Þ
gL Mð Þ >

GH

GL

L

H

� �1=j

:

Likewise, the condition �x > H=L guarantees that at IL we have

gH Mð Þ
gL Mð Þ <

GH

GL

L

H

� �1=j

:

Thus, the left- and right-hand sides of equation (12) cross at a unique point,M, in
the interval (IL, IH), completing the proof. QED

A3. Proof of Proposition 3

When M > J , the formulae for the displacement effects follow straightforwardly
by differentiating the expressions for GH and GL in equation (8). WhenM < J , we
also need to take into account the change inM. Differentiating equation (12), we
obtain

dGH

GH

2
dGL

GL

5 jεdM : (A2)

Moreover, whenM < J , a change of low-skill automation by dIL changes the ef-
fective labor shares by

dGL 5 2g ILð Þj21dIL 1 gL Mð Þj21dM ,

dGH 5 2gH Mð Þj21dM :
(A3)

Solving equations (A2) and (A3), we obtain the formula provided in the prop-
osition for dGL=dIL and dGH=dIL for the case whereM < J . Likewise, whenM < J ,
a change of high-skill automation by dIH changes labor shares by

dGH 5 2g IHð Þj21dIH 2 gH Mð Þj21dM ,

dGL 5 gL Mð Þj21dM :
(A4)

Solving equations (A2) and (A4), we obtain the formulae in the proposition for
dGL=dIH and dGH=dIH for the case where M < J . QED

A4. Proof of Proposition 4

We present the proof for a change in low-skill automation, dIL. The proof for a
change in high-skill automation is entirely analogous and is omitted.

Differentiating the expression for total output, we obtain

dY 5
1

j 2 1
Y 1=j G

12jð Þ=j
H H j21ð Þ=j dGH

dIL
1 G

12jð Þ=j
L L j21ð Þ=j dGL

dIL
1 G

12jð Þ=j
K K j21ð Þ=j dGK

dIL

� �

5
1

j 2 1
Y YGHð Þ 12jð Þ=jH j21ð Þ=j dGH

dIL
1 YGLð Þ 12jð Þ=jL j21ð Þ=j dGL

dIL
1 YGKð Þ 12jð Þ=jK j21ð Þ=j dGK

dIL

� �

5
1

j 2 1
Y W 12j

H

dGH

dIL
1 W 12j

L

dGL

dIL
1 R12j dGK

dIL

� �
:
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Plugging the expressions derived in proposition 3 for the terms dGH=dIL,
dGL=dIL, and dGK=dIL yields the desired expressions, completing the proof of
proposition 4. QED

A5. Proof of Proposition 5

We present the proof for low-skill automation. The argument for high-skill auto-
mation is entirely analogous and is omitted.

Consider the productivity effect PELðK Þ 5 ð1=Y ÞðdY =dILÞ, written as an im-
plicit function of the capital stock, K, and whose expression was derived in prop-
osition 4,

PEL Kð Þ 5 1

j 2 1
R 12j 2

WL

gL ILð Þ
� �12j� �

:

We now show that the productivity effect PEL(K ) increases with the capital
stock, K, and that as K becomes smaller, PEL converges to 0. To prove this, note
that an increase in capital reduces the rental rate of capital by

dR

R
5 2

1

j
1 2 sKð Þ dK

K
,

while it increases low-skill wages by

dWL

WL

5
1

j
sK

dK

K
:

Moreover, as K → 0, we have that WL=R → 0. Thus, as K declines, we necessarily
reach a point in which PELðK Þ 5 0.

To finalize the proof, we start by considering the case M < J . Proposition 3
shows that, in this case, both types of labor are affected by a strictly negative dis-
placement effect. Moreover, the proposition shows that

1

GL

dGL

dIL
<

1

GH

dGH

dIL
< 0:

Thus, the negative displacement effect on low-skill labor is stronger than the rip-
ple effect on high-skill labor.

We now make use of these properties of the function PEL(K ) to define the
thresholds �KL and K L. Because the capital stock does not change the size of the
displacement and ripple effects, it follows that there exist two thresholds �KL >
K L such that

PEL K Lð Þ 5 2
1

GH

dGH

dIL
> 0,

PEL
�KLð Þ 5 2

1

GL

dGL

dIL
> 0:

These thresholds satisfy the properties stated in proposition 5.
Finally, when M > J , proposition 3 shows that

1

GH

dGH

dIL
5 0:
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Thus, for high-skill labor we have that PELðK Þ > 2ð1=GHÞðdGH=dILÞ 5 0 for all K
and the threshold K L is not defined.

We complete the proof by noting that low-skill automation always increases R
because, in this case, the productivity and displacement effects are both strictly
positive. QED

A6. Proof of Proposition 6

The proof follows from differentiating the expression q 5 ðGH=GLÞðL=H Þ and
then using the formulas derived in proposition 3. QED

A7. Proof of Proposition 7

We present the proof for low-skill automation. The argument for high-skill auto-
mation is entirely analogous and is omitted.

The endogenous capital stock satisfies

K 5 GKYR
2j
‘ :

Totally differentiating separation, we obtain

1

K

dK

dIL
5

1

GK

GK

dIL
1

1

Y

dY

dIL

����
K fixed

1
1

Y

dY

dK

dK

dIL

5
1

GK

GK

dIL
1

1

Y

dY

dIL

����
K fixed

1 sK
1

K

dK

dIL

5
1

1 2 sK

1

GK

GK

dIL
1

1

Y

dY

dIL

����
K fixed

� �
,

which yields the desired result. QED

A8. Proof of Proposition 8

We present the derivation for low-skill automation. The argument for high-skill
automation is entirely analogous and is omitted.

Totally differentiating the ideal-price condition, equation (11), we obtain

GLW
12j
L

1

WL

dWL

dIL
1 GHW

12j
H

1

WH

dWH

dIL
5

1

j 2 1
R 12j 2

WL

gL ILð Þ
� �12j� �

:

Let sL and sH be the shares of low-skill and high-skill labor in national income,
respectively. Note that GLW 12j

L 5 sL and GHW 12j
H 5 sH. Thus, automation raises

the total wage bill by

sL
1

WL

dWL

dIL
1 sH

1

WH

dWH

dIL
5

1

j 2 1
R 12j 2

WL

gL ILð Þ
� �12j� �

> 0:

The desired result follows by noting that the left-hand side is equal to
ð1=Y ÞðdW =dILÞ and the right-hand side is equal to ð1=Y ÞðdY =dILÞjK fixed.

An alternative derivation uses the accounting identity R ‘K 1 W 5 Y . Differ-
entiating this identity, we obtain

R � dK 1 dW 5 dY jK fixed 1 R � dK ,

230 Journal of Human Capital



which implies that

dW 5 dY jK fixed,

also establishing the same result. QED
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