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Abstract

Microeconomic lumpiness matters for macroeconomics. According to our DSGE model,

it explains roughly 60% of the smoothing in the investment response to aggregate shocks.

The remaining 40% is explained by general equilibrium forces. The central role played by

micro frictions for aggregate dynamics results in important history dependence in busi-

ness cycles. In particular, booms feed into themselves. The longer an expansion, the larger

the response of investment to an additional positive shock. Conversely, a slowdown af-

ter a boom can lead to a long lasting investment slump, which is unresponsive to policy

stimuli. Such dynamics are consistent with US investment patterns over the last decade.

More broadly, over the 1960-2000 sample, the initial response of investment to a productiv-

ity shock with responses in the top quartile is 60% higher than the average response in the

bottom quartile. Furthermore, the reduction in the relative importance of general equilib-

rium forces for aggregate investment dynamics also facilitates matching conventional RBC

moments for consumption and employment.
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1 Introduction

Casual observation suggests that non-convexities in microeconomic capital adjustments is a

widespread pattern. Doms and Dunne (1998) corroborate this perception by documenting the

lumpy nature of equipment investment in US manufacturing establishments. The question

then arises whether or not these microeconomic frictions matter for macroeconomic behavior.

In this paper we incorporate lumpy adjustment in an otherwise standard dynamic stochastic

general equilibrium (DSGE) model and conclude that they do.

The main impact of microeconomic lumpiness is to generate impulse responses for aggre-

gate investment which are not only more persistent than in the standard RBC model, but also

history dependent. In particular, the longer an expansion, the larger the response of investment

to further shocks. Booms feed upon themselves. Conversely, a slowdown after a boom can lead

to a long lasting investment slump, which is unresponsive to policy stimuli. Such dynamics are

consistent with US investment patterns over the last decade.

Figure 1: Impules Response in Different Years
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More broadly, over the 1960-2000 sample, the initial response of investment to a produc-

tivity shock with responses in the top quartile is 60% higher than the average response in the

bottom quartile. Beyond the initial response, the left panel in Figure 1 uses our model to gener-

ate entire impulse responses from shocks taking place at selected peaks and troughs of the US

investment cycle.1 The variability of these impulse responses is apparent and large. For exam-

ple, between 1961 and 1966 the immediate response to a shock increased by more than 60%,

from 0.070 to 0.115. The contrast with the right panel of this figure, which depicts the impulse

1As discussed later in the paper, the impulse response is normalized so that it would be equal to one in the
absence of price responses and adjustment costs.
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responses for a standard RBC model, is evident: For the latter, the impulse responses vary little

over time.

Underlying our findings is an issue that is of central importance for micro-founded macroe-

conomics, beyond our particular model. Namely the answer to the question: How much of

aggregate smoothing—and impulse responses in general—is accounted for by microeconomic

features and how much by general equilibrium forces? The basic RBC model attributes all the

smoothing to the latter. In contrast, our model calibration indicates that microeconomic non-

convexities account for an important part of the smoothing in the response of investment to

aggregate shocks.

This decomposition is the key to our calibration strategy and explains our starkly differ-

ent results from recent attempts to embody lumpy adjustment models in a DSGE framework

(e.g. Veracierto (2002), Thomas (2002) and Khan and Thomas (2003, 2005)). The objective in

any macroeconomic model is to trace the impact of aggregate shocks on aggregate endogenous

variables (investment, in our context). The typical response is less than one-for-one at impact,

as a variety of microeconomic frictions and general equilibrium constraints, smooth and spread

over time the response of the endogenous variable. We refer to this process as smoothing, and

decompose it into its partial equilibrium (PE) and general equilibrium (GE) components. In

the context of nonlinear lumpy-adjustment models, PE-smoothing does not refer to the exis-

tence of microeconomic inaction and lumpiness, but to the impact these have on aggregate

smoothing. This is a key distinction in this class of models, as in many instances microeco-

nomic inaction translates into limited aggregate inertia (recall the classic Caplin and Spulber

(1987) result, where price-setters follow (S, s) rules but the aggregate price level behaves as if

there were no microeconomic frictions). In a nutshell, our key difference with the previous

literature (see the review below) is that the latter explored combinations of parameters that im-

plied microeconomic lumpiness but left almost no role for PE-smoothing. We argue below that

such parameter combinations are counterfactual.

Table 1 illustrates our model’s decomposition into PE- and GE-smoothing: The upper en-

try shows the volatility of aggregate investment rates in our model when neither smoothing

mechanism is present (in other words, when there are no adjustment costs at the microeco-

nomic level and no price adjustments in the economy). The intermediate entries incorporate

PE and GE-smoothing, one at a time, while the lower entry considers both sources of smooth-

ing simultaneously. The reduction of the standard deviation of the aggregate investment rate

achieved by PE-smoothing alone amounts to 88.7% of the reduction achieved by the combina-

tion of both smoothing mechanisms. Alternatively, the additional smoothing achieved by PE-

forces, compared with what GE-smoothing achieves by itself, is 38% of the smoothing achieved

by both sources. It is clear that both sources of smoothing do not enter additively, so some care
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Table 1: CONTRIBUTION OF PE AND GE FORCES TO SMOOTHING OF σ(I /K )

No frictions
(0.0458)

0%

↙ ↘

Only PE smoothing ↓ Only GE smoothing
(0.0093) (0.0134)

88.7% 62.0%

↘ ↙

PE and GE smoothing
(0.0074)

100%

is needed when quantifying the contribution of each source to overall smoothing. The 60%

mentioned in the abstract—slightly above the average of 63.3% of the above upper and lower

bounds—conveniently summarizes the contribution of PE factors to aggregate smoothing.2

Given its centrality in differentiating our answer from that of previous models, our calibra-

tion strategy is designed to capture the role of PE-smoothing as directly as possible. To this ef-

fect, we use sectoral data to calibrate the parameters that control the impact of micro-frictions

on aggregates, before general equilibrium forces have a chance to play a smoothing role. Specifi-

cally, we argue that the response of semi-aggregated (e.g., 3-digit) investment to corresponding

sectoral shocks is less subject to general equilibrium forces, and hence serves to identify the

relative importance of PE-smoothing. Once this step is taken, we can use the elasticity of in-

tertemporal substitution as a reduced form parameter to calibrate the extra smoothing given

by general equilibrium forces.3

2The exact expressions for the upper and lower bounds for the contribution of PE-smoothing are the following:

UB = log[σ(NONE)/σ(PE)]/ log[σ(NONE)/σ(BOTH)],

LB = 1− log[σ(NONE)/σ(GE)]/log[σ(NONE)/σ(BOTH)]

where NONE refers to the partial equilibrium the model with no microeconomic frictions, PE to the model that
only has microeconomic frictions but prices are fixed, GE to the model with only GE constraints, and BOTH to the
model with both micro frictions and GE constraints. See Appendix E for more details.

3An alternative strategy would be to use plant level data to sort out the different parameter configurations.
While much has been learned from such explorations in other contexts, this is not a robust strategy in the case
of lumpy adjustment models since the mapping from microeconomic lumpiness to aggregate data, even before
general equilibrium enters, is complex and often not robust. It depends on subtle parameters such as the drift of
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Table 2: VOLATILITY AND AGGREGATION

Model 3-digit Aggregate 3-dig. Agg. Ratio
Data 0.0186 0.0074 2.51
Frictionless: 0.3642 0.0074 49.22
This paper: 0.0186 0.0074 2.51
Khan-Thomas-Lumpy (2005): 0.2524 0.0074 34.11

The first row in Table 2 shows the observed volatility of sectoral and aggregate investment

rates, and their ratio. The second row shows the same values for a model with no microeco-

nomic frictions in investment (essentially, the standard RBC model), and the third row does the

same for our model. We reserve for later the fourth row, which reports the same statistics for

the model in Khan and Thomas (2005). It is apparent from this table that the frictionless RBC

model fails to match the sectoral data (it was never designed to do so). In contrast, by reallo-

cating smoothing from GE- to PE-forces, the lumpy investment model is able to match both

aggregate and sectoral volatility. This pins down our decomposition.

Aside from our main results characterizing the aggregate impact of microeconomic lumpi-

ness, there is an indirect benefit of adding microeconomic lumpiness to the standard model,

as it facilitates matching conventional RBC moments for consumption and employment. The

reason is that in the standard RBC model, where all the smoothing of the response of quantities

to aggregate shocks is done by general equilibrium forces, the volatility of investment relative to

that of consumption and employment is too high relative to US data (see, e.g. King and Rebelo,

1999). Thus models that fit the second moments of investment well (such as the standard RBC

model), imply consumption and employment that are too smooth. In contrast, lumpy microe-

conomic frictions smooth investment in out model, and hence the strength of general equilib-

rium forces needed to match investment volatility can be reduced. This results in consumption

and employment becoming more volatile, leading to a better fit of US data.

In our model we control the strength of the general equilibrium forces with the elasticity of

intertemporal substitution, which we interpret as a reduced form parameter to capture unmod-

elled sources of flat quasi-labor supply and capital supply to the primary sector of the economy.

We find that the EIS that matches the data best is almost 10. Whether one interprets this as a

“puzzle” or as a hint that the EIS parameter in these models is not what its microeconomic

counterpart purports it to be, as we do, is a matter of taste. However, it is important to stress

that our main findings regarding the patterns of aggregate investment survive reducing the EIS

the (micro) driving forces and, more generally, parameters that affect the cross-section distribution of agents’ state
variables.
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parameter to its conventional value of one. Moreover, if one is willing to raise it to Gruber’s

(2005) recent finding of 2, then our model also improves broader moments-matching by over

40 percent.

Relation to the literature

Our main findings are qualitatively similar to those discussed in the partial equilibrium lit-

erature on lumpy investment (see, in particular, Caballero and Engel (1999), Caballero, Engel

and Haltiwanger (1995) and Cooper, Haltiwanger and Power (1999)). However, as mentioned

above, they are in stark contrast with findings in the first wave of DSGE models, such as Ve-

racierto (2002), Thomas (2002), and Khan and Thomas (2003, 2005), who encountered a sort

of “irrelevance” result:4 Essentially, they found that embedding a model with microeconomic

irreversibility and/or lumpiness in an otherwise standard RBC model, makes no difference for

macroeconomics (relative to the implications of the frictionless RBC model). The reason for our

difference can be seen in the last row of Table 2, which shows that the Khan and Thomas model

has a decomposition of smoothing between PE and GE forces similar to that of the frictionless

RBC model. That is, their microeconomic lumpiness have almost no effect at the aggregate level

even in partial equilibrium. More precisely, a decomposition analogous to Table 1 shows that

for the Khan and Thomas model, micro frictions imply almost no additional smoothing after

GE forces have set in—they only account for somewhere between 0 and 18% of total smooth-

ing. Thus we view their work as an important methodological contribution on which we build

our analysis, but not as an adequate assessment of the equilibrium implications of lumpy mi-

croeconomic investment.

The remainder of the paper is organized as follows. In the next section we present our dy-

namic general equilibrium model. Section 3 discusses the calibration method in detail. Sec-

tions 4 and 5 present the main macroeconomic implications of the model. Section 6 concludes

and is followed by several appendices.

2 The Model

In this section we describe our model economy. We start with the problem of the production

units, followed by a brief description of the households and the definition of equilibrium. We

conclude with a sketch of the equilibrium computation. We follow closely Kahn and Thomas

4More recently, Sim (2006) undoes Veracierto’s version of the irrelevance result by relaxing the certainty-
equivalence assumption, while Bayer (2006) finds that adjustment costs matter for aggregate investment dynamics
in a two-country extension of the Khan and Thomas model.
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(2005) both in terms of substance and notation. Aside from parametric differences, we have

three main departures from Kahn and Thomas (2005). First, production units face persistent

sector-specific productivity shocks, in addition to aggregate and idiosyncratic shocks. Second,

production units undertake some within-period maintenance investment which is necessary to

continue operation (there is fixed proportions and some parts and machines that break down

need to be replaced, see McGrattan and Schmitz (1999) for evidence on the importance of main-

tenance investment). Third, the distribution of aggregate productivity shocks is continuous

rather than a Markov discretization.5

2.1 Production Units

The economy consists of a large number of sectors, which are each populated by a continuum

of production units. Since we do not model entry and exit decisions, the mass of these continua

is fixed and normalized to one. There is one commodity in the economy that can be consumed

or invested. Each production unit produces this commodity, employing its pre-determined

capital stock (k) and labor (n), according to the following Cobb-Douglas decreasing-returns-

to-scale production function (θ+ν< 1):

yt = ztεS,tεI ,t kθt nν
t , (1)

where zt , εS and εI denote aggregate, sectoral and unit-specific (idiosyncratic) productivity

shocks. The assumption of decreasing returns captures in reduced form any market power the

production unit may have.

We denote the trend growth rate of aggregate productivity by (1−θ)(γ−1), so that y and k

grow at rate γ−1 along the balanced growth path. From now on we work with k and y (and later

C ) in efficiency units. The detrended aggregate productivity level, which we also denote by z,

evolves according to an AR(1) process, with normal innovations v with zero mean and variance

σ2
A:

log zt = ρA log zt−1 + vt . (2)

The sectoral and idiosyncratic technology processes follow Markov chains, that are approx-

imations to continuous AR(1) processes with Gaussian innovations. The latter have standard

deviations σS and σI , and autocorrelations ρS and ρI , respectively.6 Productivity innovations

at different aggregation levels are independent. Also, sectoral productivity shocks are indepen-

5This allows us to do computations that are not possible with a Markov discretization. For example, backing out
the aggregate shocks that are fed into the model to produce Figure 2.

6We use the discretization in Tauchen (1986), see Appendix C for details.
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dent across sectors and idiosyncratic productivity shocks are independent across productive

units.

In each period, each production unit draws from a time-invariant distribution, G , its cur-

rent cost of capital adjustment, ξ ≥ 0, which is denominated in units of labor. G is a uniform

distribution on [0, ξ̄], common to all units. Draws are independent across units and over time,

and employment is freely adjustable.

At the beginning of each period, a production unit is characterized by its pre-determined

capital stock, the sector it belongs to and the corresponding sectoral productivity level, its id-

iosyncratic productivity, and its capital adjustment cost. Given the aggregate state, it decides

its employment level, n, production occurs, maintenance is carried out, workers are paid, and

investment decisions are made. Then the period ends.

Upon investment the unit incurs a fixed cost of ωξ, where ω is the current real wage rate.

Capital depreciates at a rate δ, but units may find it necessary during the production process to

replace certain items.

Define ψ̄≡ γ
1−δ > 1 as the maintenance investment rate needed to compensate depreciation

and trend growth. The degree of necessary maintenance, χ, can then be conveniently defined

as a fraction of ψ̄. If χ = 0, no maintenance investment is needed; if χ = 1, all depreciation

and trend growth must be undone for a production unit to continue operation. We can now

summarize the evolution of the unit’s capital stock (in efficiency units) between two consecutive

periods, from k to k ′ after non-maintenance investment i takes place, as follows:

Fixed cost paid γk ′

i 6= 0: ωξ (1−δ)k + i

i = 0: 0
[
(1−δ)(1−χ)+χγ]

k

If χ= 0, then k ′ = (1−δ)k/γ and the table is identical to the one found in Kahn and Thomas

(2005), while if χ= 100%, then k ′ = k. In the paper, we treat χ as a primitive parameter.7

Notice that χ is obviously irrelevant for the units that actually adjust at the end of the period.

This is not to say that these units do not have to spend on maintenance within the production

period, but rather their net capital growth, conditional on incurring the fixed cost and optimal

adjustment, is independent of this expenditure. This is essentially a feature of only having fixed

adjustment costs, as opposed to more general adjustment technologies that include a compo-

nent that depends on the magnitude of capital adjustments.

7We note that this maintenance investment is quite different from what Kahn and Thomas (2005) call mainte-
nance investment in their “extended model.” For us, maintenance refers to the replacement of parts and machines
without which production cannot continue. For them, it is an extra margin of adjustment for small projects.
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Given the i.i.d. nature of the adjustment costs, it is sufficient to describe differences across

production units and their evolution by the distribution of units over (εS ,εI ,k). We denote this

distribution by µ. Thus, (z,µ) constitutes the current aggregate state and µ evolves according to

the law of motion µ′ = Γ(z,µ), which production units take as given.

Next we describe the dynamic programming problem of each production unit. We will take

two shortcuts (details can be found in Kahn and Thomas, 2005). First, we state the problem

in terms of utils of the representative household (rather than physical units), and denote by

p = p(z,µ) the marginal utility of consumption. This is the relative intertemporal price faced by

a production unit. Second, given the i.i.d. nature of the adjustment costs, continuation values

can be expressed without explicitly taking into account future adjustment costs.

It will simplify notation to define an additional parameter, ψ ∈ [1,ψ̄]:

ψ= 1+ (ψ̄−1)χ, (3)

and write maintenance investment as:8

i M = (ψ−1)(1−δ)k. (4)

Let V 1(εS ,εI ,k,ξ; z,µ) denote the expected discounted value—in utils—of a unit that is in

idiosyncratic state (εI ,k,ξ), and is in a sector with sectoral productivity εS , given the aggregate

state (z,µ). Then the expected value prior to the realization of the adjustment cost draw is given

by:

V 0(εS ,εI ,k; z,µ) =
∫ ξ̄

0
V 1(εS ,εI ,k,ξ; z,µ)G(dξ). (5)

With this notation the dynamic programming problem is given by:

V 1(εS ,εI ,k,ξ; z,µ) = max
n

[
zεSεI kθnν−ω(z,µ)n − i M + (1−δ)ψk

)
p(z,µ) +

max
{
−(1−δ)ψkp(z,µ)+βE[V 0(εS

′,εI
′,ψ

1−δ
γ

k; z ′,µ′)] ,

max
k ′

(−ξω(z,µ)p(z,µ)−γk ′p(z,µ)+βE[V 0(εS
′,εI

′,k ′; z ′,µ′)]
)}]

, (6)

where both expectation operators average over next period’s realizations of the aggregate, sec-

toral and idiosyncratic shocks, conditional on this period’s values.

The first line represents the flow value of a production unit that optimally adjusts its em-

ployment level. The second line is the continuation value, if only necessary maintenance in-

8Note that if ψ= 1, then i M = 0, and if ψ= ψ̄, then i M = (γ−1+δ)k, undoing all trend devaluation of the capital
stock.
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vestment has occurred. The third line is the continuation value, if units incur the fixed costs of

adjustment and then adjust optimally.

Taking as given intra- and intertemporal prices ω(z,µ) and p(z,µ), and the law of motion

Γ(z,µ), the production unit chooses optimally labor demand, whether to adjust its capital stock

at the end of the period, and the optimal capital stock, conditional on adjustment. This leads to

policy functions: N = N (εS ,εI ,k; z,µ) and K = K (εS ,εI ,k,ξ; z,µ). Since capital is pre-determined,

the optimal employment decision is independent of the current adjustment cost draw.

2.2 Households

We assume a continuum of identical households that have access to a complete set of state-

contingent claims. Hence, there is no heterogeneity across households. Moreover, they own

shares in the production units and are paid dividends. We do not need to model the household

side explicitly, and concentrate instead on the first-order conditions to determine the equilib-

rium wage and the intertemporal price.

Households have a felicity function in consumption and leisure of the following form:

U (C , N h) =


C 1−σc

1−σc
− AN h if σC 6= 0,

logC − AN h otherwise,

(7)

where C denotes consumption, N h the household’s supply of labor and σC is the inverse of

the elasticity of intertemporal substitution (EIS). Households maximize the expected present

discounted value of the above felicity function. By definition we have:

p(z,µ) ≡UC (C , N h) =C (z,µ)−σC , (8)

and from the intratemporal first-order condition:

ω(z,µ) =−UN (C , N h)

p(z,µ)
= A

p(z,µ)
. (9)

2.3 Recursive Equilibrium

A recursive competitive equilibrium is a set of functions(
ω, p,V 1, N ,K ,C , N h ,Γ

)
,

9



that satisfy

1. Production unit optimality: Taking ω, p and Γ as given, V 1(εS ,εI ,k; z,µ) solves (6) and the

corresponding policy functions are N (εS ,εI ,k; z,µ) and K (εS ,εI ,k,ξ; z,µ).

2. Household optimality: Taking ω and p as given, the household’s consumption and labor

supply satisfy (8) and (9).

3. Commodity market clearing:

C (z,µ) =
∫

zεSεI kθN (εS ,εI ,k; z,µ)νdµ −
∫ ∫ ξ̄

0
[γK (εS ,εI ,k,ξ; z,µ)− (1−δ)k]dGdµ.

4. Labor market clearing:

N h(z,µ) =
∫

N (εS ,εI ,k; z,µ)dµ +
∫ ∫ ξ̄

0
ξJ

(
ψ

1−δ
γ

k −K (εS ,εI ,k,ξ; z,µ)dGdµ,

where J (x) = 0, if x = 0 and 1, otherwise.

5. Model consistent dynamics: The evolution of the cross-section that characterizes the econ-

omy, µ′ = Γ(z,µ), is induced by K (εS ,εI ,k,ξ; z,µ) and the exogenous processes for z, εS

and εI .

Conditions 1, 2, 3 and 4 define an equilibrium given Γ, while step 5 specifies the equilibrium

condition for Γ.

2.4 Solution

As is well-known, (6) is not computable, since µ is infinite dimensional. Hence, we follow

Krusell and Smith (1997, 1998) and approximate the distribution µ by its first moment over

capital, and its evolution, Γ, by a simple log-linear rule. In the same vein, we approximate the

equilibrium pricing function by a log-linear rule:9

log k̄ ′ = ak +bk log k̄ + ck log z, (10)

log p = ap +bp log k̄ + cp log z, (11)

9We experimented with an interaction term between k̄ and z, but this did not yield any improvement in the fit
of the equilibrium rule.
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where k̄ denotes aggregate capital holdings. Given (9), we do not have to specify an equilib-

rium rule for the real wage. As usual with this procedure, we posit this form and verify that in

equilibrium it yields a good fit to the actual law of motion (see the Appendix C for details).

To implement the computation of sectoral data, we simplify the problem further and im-

pose two additional assumptions: 1) ρS = ρI = ρ and 2) enough sectors, so that sectoral shocks

have no aggregate effects. Both assumptions combined allow us to reduce the state space in the

production unit’s problem further to a combined technology level ε≡ εSεI . Now, logε follows an

AR(1) with first-order autocorrelation ρ and Gaussian innovations N (0,σ2), with σ2 ≡ σ2
S +σ2

I .

Since the sectoral technology level has no aggregate consequences by assumption, the produc-

tion unit cannot use it to extract any more information about the future than it has already from

the combined technology level. Finally, it is this combined productivity level that is discretized

into a 19-state Markov chain. The second assumption allows us to compute the sectoral prob-

lem independently of the aggregate general equilibrium problem.10

Combining these assumptions and substituting k̄ for µ into (6) and using (10) and (11), we

get a computable dynamic programming problem:

V 1(ε,k,ξ; z, k̄) = max
n

[
zεkθnν−ω(z, k̄)n − i M + (1−δ)ψk

)
p(z, k̄)+

max
{
−(1−δ)ψkp(z, k̄)+βE[V 0(ε′,ψ

1−δ
γ

k; z ′, k̄ ′)],

max
k ′

(−ξω(z, k̄)p(z, k̄)−γk ′p(z, k̄)+βE[V 0(ε′,k ′; z ′, k̄ ′]
)}]

, (12)

and policy functions N = N (ε,k; z, k̄) and K = K (ε,k,ξ; z, k̄). We solve this problem via value

function iteration on V 0 and Gauss-Hermitian numerical integration over log(z) (for details,

see Appendix C).

Several features facilitate the solution of the model. First, note that, as mentioned above,

the employment decision is static. In particular it is independent of the investment decision at

the end of the period. Hence we can use the production unit’s first-order condition to maximize

out the optimal employment level:

N (ε,k; z, k̄) =
(
ω(z, k̄)

νzεkθ

)1/(ν−1)

. (13)

Next, we examine the production unit’s investment decision. Let us denote the gross value of

adjusting capital net of the additional wage bill due to adjustment by Va :

Va(ε; z, k̄) ≡ max
k ′

(−γk ′p(z, k̄)+βE[V 0(ε′,k ′; z ′, k̄ ′)]
)
. (14)

10In Appendix C.3 we show that our results are robust to this simplifying assumption.
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From this, it is obvious that neither Va nor the optimal target capital level, conditional on ad-

justment, depend on current capital holdings. This reduces the number of optimization prob-

lems in the value function iteration considerably. Denote the optimal target capital level by

k∗ = k∗(ε; z, k̄). Furthermore, denote the value of inaction by:

Vi (ε,k; z, k̄) ≡−(1−δ)ψkp(z, k̄)+βE[V 0(ε′,ψ
1−δ
γ

k; z ′, k̄ ′)]. (15)

Comparing (14) with (15) shows that Va(ε; z, k̄) ≥ Vi (ε,k; z, k̄).11 It follows that there exists

an adjustment cost factor that makes a production unit indifferent between adjusting and not

adjusting:

ξ̂(ε,k; z, k̄) = Va(ε; z, k̄)−Vi (ε,k; z, k̄)

ω(z, k̄)p(z, k̄)
≥ 0. (16)

We define ξT (ε,k; z, k̄) ≡ min
(
ξ̄, ξ̂(ε,k; z, k̄)

)
. Production units with ξ ≤ ξT (ε,k; z, k̄) will adjust

their capital stock. Thus,

k ′ = K = K (ε,k,ξ; z, k̄) =


k∗(ε; z, k̄) if ξ≤ ξT (ε,k; z, k̄),

ψ(1−δ)k/γ otherwise.

(17)

We define mandated investment for a unit with current state (ε, z, k̄) and current capital k as:

x(ε; z, k̄) ≡ logγk∗(ε; z, k̄) − logψ(1−δ)k.

That is, mandated investment is the investment rate the unit would undertake, after maintain-

ing its capital, if its current adjustment cost draw were equal to zero. This concludes the compu-

tation of the production unit’s decision rules and value function, given the equilibrium pricing

and movement rules (10) and (11).

The second step of the computational procedure takes the value function V 0(ε,k; z, k̄) as

given, and pre-specifies a randomly drawn sequence of aggregate technology levels: {zt }. We

start from an arbitrary distribution µ0, implying a value k̄0. We then re-compute (12) at every

point along the sequence {zt }, and the implied sequence of aggregate capital levels {k̄t }, without

imposing the equilibrium pricing rule (11):

Ṽ 1(ε,k,ξ; zt , k̄t ; p) ≡ max
n

(
ztεkθnν− A

p
n−i M+(1−δ)ψk

)
p

+ max
{
−(1−δ)ψkp +βE[V 0(ε′,ψ

1−δ
γ

k; z ′, k̄ ′(kt ))] , max
k ′

(−ξA−γk ′p +βEε′|ε,z ′|zt [V 0(ε′,k ′; z ′, k̄ ′(kt ))]
)}

.

11The production unit can always choose k∗ =ψ 1−δ
γ k.
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This yields new “policy functions”

Ñ = Ñ (ε,k; zt , k̄t , p)

K̃ = K̃ (ε,k,ξ; zt , k̄t , p).

We then search for a p such that, given these new decision rules and after aggregation, the

goods market clears (labor market clearing is trivially satisfied). We then use this p to find the

new aggregate capital level.

This procedure generates a time series of {pt } and {k̄t } endogenously, with which assumed

rules (10) and (11) can be updated via a simple OLS regression. The procedure stops when

the updated coefficients ak , bk , ck and ap , bp , cp are sufficiently close to the previous ones.

We operationalize this by using an F-test for equality of coefficients. We show in Appendix C

that the implied R2 of these regressions are high for all model specifications, generally well

above 0.99, indicating that production units do not make large mistakes by using the rules (10)

and (11).

3 Calibration

The main idea of our calibration strategy is to focus on the relative importance of alternative

sources of smoothing. This focus is important since, as we argue below, in the case of lumpy

investment models, standard calibration strategies are likely to capture poorly the relative im-

portance of PE- and GE-smoothing.

3.1 Calibration Strategy

For most parameters of the model (β, δ, γ, ν, ρA and ρI ) we use the fairly standard values in

Kahn and Thomas (2005)—these values can be found in Appendix A. We depart from Kahn and

Thomas (2005) with respect to θ, σA, σI , as well as σC and ξ̄. The first three are relatively minor

departures,12 the second group is central to our new calibration procedure. Finally, we deter-

mine σS by a standard Solow residual calculation, while ρS is set equal to ρI for computational

feasibility (see Appendices A and B for details).

12Our production function has more curvature than the one considered in Khan and Thomas, yet note that Gou-
rio and Kashyap (2005) consider a much larger curvature than we do and are unable to completely break the irrel-
evance result. The reason, we conjecture, is that by not having idiosyncratic shocks and maintenance investment,
their cross-section distribution remains too close to a self-replicating distribution a la Caplin and Spulber (1987).
More on this below.
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Up to now in this literature, adjustment cost parameters have been calibrated to match es-

tablishment level moments. For example, Khan and Thomas (2005), henceforth KT, choose ξ̄ to

match the fraction of LRD plant-level observations with an investment rate above 20%.

There are two problems with using plant level statistics to pin down certain parameters such

as those that determine adjustment costs. First, this is usually done assuming that the basic unit

in the model corresponds to the units from which the micro investment statistics are calculated

(e.g., establishments in the LRD). There is no reason why this correspondence should be correct.

Indeed, the stark nature of capital adjustments at the unit level in DSGE models with lumpy in-

vestment possibly fits better what is observed within subunits of an establishment, rather than

at the establishment level. This explains why Abel and Eberly (2002) and Bloom (2005) match

a large number—250 or a continuum— of model-micro-units to one observed productive unit

(firm or establishment).

Second, and more important, in state dependent models the frequency of adjustment is far

from sufficient to pin down the object of primary concern, which is the aggregate impact of ad-

justment costs. Small parameter changes in other parts of the model can have substantial effect

on this statistic (even in partial equilibrium). For example, anything that changes the drift of

mandated investment (such as maintenance investment), changes the mapping from microe-

conomic adjustment costs to aggregate dynamics. An extreme example of this phenomenon,

where aggregate behavior is totally unrelated to microeconomic adjustment costs, is provided

in Caplin and Spulber’s (1987).

In Appendix D we present a simple extension of the paper’s main model, illustrating that

there are too many degrees of freedom for us to use micro-level statistics to pin down the

model’s parameters. This example shows how, by adding two micro parameters with no macroe-

conomic consequences, one can obtain a very good fit of observed micro moments. That is, the

problems of matching micro moments and matching more aggregate moments are orthogonal

in this extension.

Because of these concerns, we follow an alternative approach where we use sectoral rather

than plant level data to calibrate adjustment costs and maintenance.13 More precisely, given a

value of χ, we choose ξ̄ to match the volatility of sectoral US investment rates. Having done this,

we choose σC to match aggregate US investment. In this approach we assume that the sectors

we consider are sufficiently disaggregated so that general equilibrium effects can be ignored

while, at the same time, there are enough micro units in them to justify the computational

simplifications that can be made with a large number of units.

13Needless to say, an even better approach is to combine data at both levels of aggregation. Moreover, the time
variation in micro moments contain plenty of useful information for aggregate dynamics. Our general method-
ological point, however, is to emphasize giving relatively more weight to semi-aggregated data when interested in
understanding aggregate phenomena.
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Given a set of parameters, the sequence of sectoral investment rates is generated as follows:

the units’ optimal policies are determined as described in Section 2, working in general equi-

librium. Next, starting at the steady state, the economy is subjected to a sequence of sectoral

shocks. Since sectoral shocks are assumed to have no aggregate effects and ρI = ρS , productive

units perceive these shocks as part of their idiosyncratic shock and use their optimal policies

with a value of the aggregate shock equal to one and the value of the idiosyncratic shock equal

to the product of the sectoral and “truly” idiosyncratic shock, i.e. log(ε) = log(εS)+ log(εI ).14

The remaining parameter values are chosen as follows: θ, the output elasticity of capital,

is reduced to 0.18, in order to capture a revenue elasticity of capital, θ
1−ν , equal to 0.5, while

keeping the labor share at its 0.64-value. In reduced form, this allows us to capture the main

consequence of imperfect competition for investment decisions. The sectoral TFP calculation

results in σS = 0.0586. We fix the combined (idiosyncratic and sectoral) standard deviation, σ,

at 0.1, leaving us with a residual σI of 0.0812.

The value of sectoral volatility of investment rates we match is 0.0186. As noted in the intro-

duction, this number is one order of magnitude smaller than the one predicted by the friction-

less RBC model (or the KT model).15 This stark difference is immune to working with 4-digit

sectors, in which case the average volatility grows only slightly to 0.0254. Yet the assumption of

a large enough number of units in every sector is less tenable in the 4-digit case, which is why

we work with sectors at the 3-digit level.

Finally, to avoid biasing our comparison against the frictionless model, we recalibrate the

standard deviation of aggregate shocks so that this model—the one with higher curvature and

σC = 1—matches the volatility of the aggregate investment rate. The corresponding value forσA

turns out to be 0.0095. In what follows, we refer to this as the “frictionless model” to differentiate

it from the “standard RBC model.”

14The standard deviation of the truly unit specific component of the perceived idiosyncratic shock is set so that
the standard deviation of the idiosyncratic component that enters the unit’s policy function remains constant and
equal to the value used when calculating the policies under GE considerations. Details about the sectoral compu-
tation can be found in Appendix C.3. There we also document a robustness exercise where, instead of assuming
that sectoral shocks have no general equilibrium effects, we recompute the optimal policies when micro units con-
sider the distribution of sectoral productivity shocks—summarized by its mean—as an additional state variable.
The results we obtain confirm the validity of our assumption.

15This statement is robust to our choice of output elasticity of capital: the sectoral standard deviation of invest-
ment rates remains well above 0.20 in a frictionless model with our higher curvature, and above 0.10, using the KT
value for adjustment costs.
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3.2 Results

Table 3 presents the parameters we obtain for alternative values of the maintenance parameter

χ.16 The first column depicts the largest adjustment cost units could pay.17 Of course, the

average cost actually paid is much lower, as shown in the second column. Productive units

wait for good draws to adjust, and the adjustment cost they pay on average when adjusting is

between 6 and 7% of the mean value of the distribution of adjustment costs. Since the average

wage in the models is close to one and N = 0.33 on average, three times the second column is

approximately equal to the average cost paid when adjusting, as a fraction of the wage bill.

Table 3: CALIBRATED PARAMETERS

Model Largest adj. cost, ξ̄ Avge. ξ when adj. EIS
Frictionless: 0.000 0.0000 1.00
No maintenance: 1.551 0.0478 6.94
25% maintenance: 0.680 0.0225 7.69
50% maintenance: 0.239 0.0083 9.09
75% maintenance: 0.068 0.0025 10.99
100% maintenance: 0.046 0.0014 32.25

The last column in Table 3 shows the estimated value for the elasticity of intertemporal sub-

stitution (EIS). Since microeconomic adjustment costs substitute for general equilibrium as a

smoothing mechanism, it is not surprising that the calibrated EIS are higher in our models.

What is noteworthy, nonetheless, is how much higher these are relative to the standard unitary

elasticity used in the standard RBC model. Of course, neither in the latter model nor in ours

is this parameter likely to represent what it is interpreted to be doing. Rather it is an efficient

reduced-form parameter to capture the elasticity of the supply of funds and of the quasi-labor

supply. Interpreted in this manner, our calibration suggests that these elasticities are substan-

tially higher at business cycle frequency than conventionally assumed. We return to this issue

later in the paper.

It is useful to highlight at this stage the central role of maintenance investment. Note that as

it increases, adjustment costs can be lowered and the EIS raised, and still match sectoral and ag-

gregate investment rates. In other words, it substitutes for both, PE- and GE-smoothing mecha-

nisms. The reason for this role is complex, as it follows from the effect maintenance investment

16In order to avoid computational problems associated with a very extended distribution, when computing the
model for χ= 1 we actually work with χ= 0.98.

17We also choose the parameter A that captures the relative importance of leisure in the household’s utility by
matching the fraction of time worked to 1/3. The resulting value varies between 2.20 (frictionless case) and 0.968
(χ= 1).
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has on the drift of the mandated investment process. As this drift is reduced – which happens

as maintenance investment rises – the cross-section distribution of mandated investment be-

comes less bunched near regions where the probability of adjustment is high, and hence the

economy’s response to shocks becomes more muted. We return to this issue in the next sec-

tion, when discussing the aggregate history dependence that arises in these models.

The last five lines in Table 4 report the upper and lower bounds for the contribution of PE-

smoothing, as well as their average, showing that it accounts for more than half of total smooth-

ing in all of our models. This is not surprising, since we designed our calibration to capture

the relative importance of both sources of smoothing in actual investment data, and observed

sectoral investment volatility is much lower than suggested by models where GE-forces are the

main source of smoothing. It is also apparent from Table 4 that the importance of PE-smoothing

increases with the maintenance parameter. As we discuss in the following section, this is due

to the fact that a larger value of χ leads to a cross-section that is farther away from the Caplin-

Spulber-type limit with no aggregate PE-smoothing.

Table 4: SMOOTHING DECOMPOSITION

Model PE/total smoothing

Lower bd. Upper bd. Avge.
KT-Lumpy: 0.0% 18.0% 9.0%
KT-Lumpy, our ξ̄: 6.3% 59.6% 33.0%
Our model (0 maint.), KT’s ξ̄: 3.4% 30.4% 16.9%
Our model (0 maint.): 32.2% 85.7% 59.0%
Our model (25% maint.): 34.2% 86.9% 60.6%
Our model (50% maint.): 38.0% 88.7% 63.3%
Our model (75% maint.): 42.0% 89.9% 66.0%
Our model (100% maint.): 63.6% 93.7% 78.6%

As mentioned in the introduction, the contrast between Khan and Thomas (2005) and our

models is stark: the first row in Table 4 reminds us that PE-smoothing plays almost no role in

their model.18 The second row considers the KT parameters, except for the adjustment cost

which is set to its value in our model.19 By far, among all possible parameter configurations

18Although not large, there are some differences between the statistics we obtain with our reconstruction of
the model with KT’s parameters and the statistics they report. Our computations suggest a smaller role for PE-
smoothing than those reported by KT. Thus, if anything, our computations are biased against PE-smoothing. Pos-
sible explanations for these differences are that we work with a continuous aggregate shock while KT consider a dis-
crete aggregate shock, and that KT’s discretization of idiosyncratic productivity has a grid-width of approximately
one-standard deviation of idiosyncratic productivity (see Figures 3 and 4 in their paper), while our discretization
covers 3 standard deviations.

19For ease of comparison and since KT assumed χ = 0, when we refer to “our model” in the remainder of this

17



that replace one parameter in KT by its value in our model, this is the one for which the con-

tribution of PE-smoothing increases most.20 Conversely, the third row reports the bounds on

the contribution of PE-smoothing for the parameter configuration in our model, except for the

adjustment cost parameter, which is set to the value in KT. Again, among all parameter config-

urations that replace one parameter in our model by its KT value, this is the one that leads to

the largest decrease in the contribution of PE-smoothing.21 It follows that the main difference

between the parameters in KT and in our models is the adjustment cost parameter, which is

larger in our case.

The adjustment cost paid on average in our model when χ= 0, conditional on adjusting, is

approximately forty times that in KT. This reflects the fact that adjustment costs are very small

in KT: conditional on adjusting, the adjustment cost paid by a firm on average is approximately

0.36% of the wage bill. Alternatively, total annual adjustment costs in their economy are close to

0.08% of the wage bill. In our model, by contrast, the size of adjustment costs is not identified,

since it follows from Table 3 that there is a strong negative correlation between the maintenance

parameter and the magnitude of adjustment costs. Adjustment costs paid, on average, condi-

tional on adjusting, vary from 14.4% to 0.4% of the wage bill asχ varies from 0 to 1. This negative

correlation is also related to the relation between the maintenance parameter and the shape of

the cross-section of capital, a topic we discuss in the following section.

4 Aggregate Investment Dynamics

Our model calibration indicates that microeconomic non-convexities account for an impor-

tant part of the smoothing in the response of investment to aggregate shocks. In this section we

characterize in more detail the rich aggregate features, beyond smoothing, that emerge from

lumpy microeconomic adjustment. In fact, many of the investment features highlighted in the

partial equilibrium literature also appear in our DSGE setting. In particular, here we show that,

as in Caballero and Engel (1999), lumpy adjustment models have the potential to generate his-

tory dependent aggregate impulse responses.

Unless otherwise stated, the results we present for our model in this and the following sec-

tion correspond to the case χ = 0.5.22 Figure 2 plots the evolution of the responsiveness index

section, we consider the case χ= 0.
20The second largest increase, to an average of the lower and upper bound of 11%, occurs when we replace the

output-elasticity of capital in the KT specification by the value we use in ours. Throughout these exercises we
worked with our values for the idiosyncratic variance of productivity shocks, but this difference has no bearing on
our results.

21The second largest decrease, to an average contribution of 45.8%, is when we substitute KT’s value for θ for
ours.

22This was also the case for our references to “our model” in the introduction.
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Figure 2: Responsiveness Index
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defined in Caballero and Engel (1993b), for the 1960-2000 period, both for the lumpy model and

for the frictionless model. This index captures the response of the aggregate investment rate to

an increase in the current aggregate shock. At each point in time, this index is calculated con-

ditional on the history of shocks, summarized by the current distribution of capital across units

(see Appendix F for the formal definition). That is, it corresponds to the first element of the

impulse response conditional on the cross-section of capital in the given year.23 The aggregate

shocks that are fed into the model are obtained by matching actual aggregate investment rates

over the sample period.24

As mentioned in the introduction, the initial response to an aggregate shock varies signifi-

cantly over time, taking values between 0.070 and 0.167, with a mean of 0.104 and a standard

deviation of 0.022 over the 1960-2000 period. These differences are reflected in the conditional

impulse responses at different points in time, as shown in Figure 1. By contrast, the frictionless

model’s responsiveness index and impulse responses exhibit almost no variation.

To explain how lumpy adjustment models generate time-varying impulse responses, we

consider a particular sample path that is roughly designed to mimic the boom-bust investment

episode in the US during the last decade. For this, we simulate the paths of the frictionless and

lumpy economies that result from a sequence of five consecutive two-standard deviations pos-

itive aggregate productivity shocks, followed by a long period where the innovations are equal

to zero.25 Both economies start from their respective steady states.

23The index is normalized by c ≡ 1/(1−α−θ) so that in the absence of adjustment costs, equilibrium forces and
aggregate productivity shocks the index takes the value one, see Appendix F for details.

24We initialize the process starting off the economy at its steady in 1959. The variance and autocorrelation we
obtain for the backed-out shocks are very close to the ones we used in Section 3.

25Note that the average size of the shocks we backed out for our lumpy adjustment model over the 1996-2000
period is 3.5 standard deviations. Since probably part of these shocks corresponds to a change in trend, we used
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Figure 3: Investment boom-bust episode
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Figure 3 shows the evolution of the aggregate investment rates (as log-deviations from their

steady state values) for these two economies. There are important difference between them:

While at the outset of the boom phase their response is similar, eventually the investment rate

in the lumpy economy reacts by more than the frictionless economy to further positive shocks.

The flip side of the lumpy economy’s larger boom is a more protracted decline in investment

during the bust phase. Let us discuss these two phases in turn.

Figure 4: Responsiveness Index
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Figure 4 plots the evolution of the responsiveness index, both for the lumpy model and for

the more conservative two standard deviations shocks.
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the frictionless model. Note first that the index fluctuates much less in the frictionless econ-

omy than in the lumpy economy. Recall also that the frictionless economy only has general

equilibrium forces to move this index around. Moreover, since the general equilibrium forces

are much stronger in the frictionless model than in the lumpy economy, we can safely conclude

that the contribution of the general equilibrium forces to the volatility of the index in the lumpy

economy is minor.

It then follows from this figure that it is the decline in the strength of the PE-smoothing

mechanism that is responsible for the rise in the index during the boom phase. As a result,

eventually the index of responsiveness in the lumpy economy vastly exceeds that of the fric-

tionless economy, which explains the larger investment boom observed in the lumpy economy

after a history of positive shocks.26

The reason why PE-smoothing falls as the boom progresses, and hence the index of respon-

siveness rises, can be understood in relation to the Caplin and Spulber (1987) result. In that

economy there is no aggregate price (the equivalent of our investment) smoothing regardless

of the extent of micro frictions. That is, there is no partial equilibrium smoothing mechanism,

despite the presence of micro frictions (lumpy price adjustment, in their case). This disconnect

between micro and macro frictions is due to the fact that while few agents adjust to the most

recent aggregate shock, the price increase each adjuster chooses is inversely proportional to the

fraction of adjusters, so that the aggregate responds one-for-one with the shock. More precisely,

Caplin and Spulber assume a simple (S, s) model and, crucially, also assume that the cross sec-

tion distribution of price deviations from a common target is uniform in the (S, s)-interval.27

In this context, an infinitesimal (positive) shock ∆m implies that a fraction ∆m/(S − s) of the

agents adjust by (S − s), where S is the trigger threshold and s is the target level of the (S, s)

policies followed by agents. It follows that the aggregate price response is:

∆m

S − s
× (S − s) =∆m,

and micro frictions have no aggregate implications.

In our lumpy model, the economy is not in such a limit: The product of the fraction of

adjusters and the average size of their adjustment is much less than the aggregate shock, and

hence there is substantial PE-smoothing. However, while not at the limit, the lumpy economy

does move in the direction of Caplin and Spulber’s “frictionless” limit as further positive shocks

26Note that while the frictionless economy has a a higher responsiveness index at the outset, this gap is short-
lived so while the investment rate in the frictionless economy exceeds that of the lumpy economy early on, this
difference is not noticeable in the scale of the figure.

27See Caballero and Engel (1991) for conditions under which the economy converges to the uniform distribution
in Caplin and Spulber (1987).
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accumulate (and away from this limit as these shocks cease and the investment overhang is

undone).

Figure 5: Investment boom-bust episode: Cross-section and hazard
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Figure 5 illustrates the mechanism described in the previous paragraphs. It shows the cross-

section of mandated investment (and the probability of adjusting, conditional on mandated in-

vestment) at three points in time: the beginning of the episode with the economy at its steady

state (solid line), the peak of the boom (dashed line) and the trough of the cycle (dash-doted

line).28 It is apparent that during the boom the cross-section of mandated investment moves

toward regions where the probability of adjustment is higher. The fraction of units with man-

dated investment close to zero decreases considerably during the boom, while the fraction of

micro units with mandated investment rates above 40% increases significantly. Also note that

the fraction of units in the region where mandated investment is negative decreases during the

boom, since the sequence of positive shocks moves units away from this region.

The convex curves in Figure 5 depict the adjustment hazard, that is, the probability of ad-

justing conditional on the corresponding value of mandated investment. It is clear that the

probability of adjusting increases with the (absolute) value of mandated investment. This is the

‘increasing hazard property’ described in Caballero and Engel (1993a). We also note that as the

boom proceeds, the adjustment hazard shifts upward, so that aggregate investment becomes

more responsive to positive and negative shocks (see Figure 4) not only because units concen-

28See Section 2 for the formal definition of mandated investment. Also note that the scale on the left of the figure
is for the mandated investment densities, while the scale on the right is for the adjustment hazards.
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trate in a region where they adjust by more, but also because the probability of adjusting in this

region is higher.

In summary, the decline in the strength of PE-smoothing during the boom (and hence the

larger response to shocks) results mainly from the rise in the share of agents that adjust to fur-

ther shocks. This is in contrast with the frictionless (and Calvo style models) where the only

margin of adjustment is the average size of these adjustments. This is shown in Figure 6, which

decomposes the responsiveness index into two components: one that reflects the response of

the fraction of adjusters and another that captures the response of average adjustments of those

who adjust. Of course, both series add up to the overall responsiveness index in Figure 4. It is

apparent that most of the smoothing—approximately 70% in this metric—is done by variations

in the fraction of adjusters.

Figure 6: Decomposition of Responsiveness Index: Intensive and Extensive Margins
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Figure 7: Decomposition of I /K into Intensive and Extensive Margins
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The importance of fluctuations in the fraction of adjusters is even more pronounced if we

decompose the path of the aggregate investment rate into the contributions from the fluctua-

tion of the fraction of adjusters and the fluctuation of the average size of adjustments, as shown
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in Figure 7. Both series are in log-deviations from their steady state values. This is consistent

with what Doms and Dunne (1998) documented for establishment level investment in the US,

where the fraction of units undergoing major investment episodes accounts for a much higher

share of aggregate (manufacturing) investment than the average size of their investment.

Figure 8: Aggregate Capital
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Let us now turn to the bust phase. Figure 8 illustrates the “overaccumulation” of capital

resulting from the large investment boom in the lumpy economy. As a result of this boom,

once the positive shocks subside, the economy experiences an “overhang” that leads to the pro-

tracted investment slump shown in Figure 3.

Returning to Figure 5, we see the large capital accumulation during the boom leaves an

unusually large fraction of units in the region close to zero mandated investment, where units

are very unlikely to respond to a shock, due to the low values of the adjustment hazard in this

region. This explains the sharp drop in the responsiveness index shown in Figure 9.

The observation of the slump in the responsiveness index has important implications for

the economy’s ability to return to its steady state investment rate, as the latter becomes unre-

sponsive to positive stimuli, such as a positive aggregate shock or policy intervention (e.g., an

investment tax credit). Figure 9, illustrates this mechanism by plotting the impulse responses

of the frictionless and lumpy economies following a positive aggregate shock that takes place in

period 14, when the gap between index of responsiveness of the frictionless and lumpy econ-

omy is maximal.29 The more sluggish response of investment in the lumpy economy is appar-

29These impulse responses are plotted in deviation from the paths without the new shock, and—like the respon-
siveness index—normalized by the standard deviation of the aggregate shock and c ≡ 1/(1−α−θ). See footnote 23
and Appendix F for the rationale underlying the latter normalization constant.
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Figure 9: Impulse Responses at the Trough
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Figure 10: Boom-bust episode and maintenance: Investment rate
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As we showed earlier (see Figure 2), the insights we obtained from our detailed study of the

boom-bust episode apply more generally. On average, investment responds more to aggregate

shocks after a sequence of above-average-size shocks, than after a sequence of below-average-

size shocks. The response to a sequence of average-size shocks is in between both cases, corre-

sponding to the standard impulse response calculated for linear model, which fails to capture

the significant time-variation in the impulse responses in our model.
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Let us conclude this section by returning to the role of the maintenance parameter. Fig-

ure 10 illustrates the boom-bust cycle for different values of this parameter. It is apparent that

the size of the boom-bust cycle increases with the importance of maintenance. The reason,

again, is linked to the mechanism discussed above. When maintenance investment is large,

the drift of the processes for microeconomic mandated investment (defined as the investment

rate if the unit draws a zero adjustment cost) is small, since maintenance investment offsets

depreciation and trend growth. This is important in these models, as it implies that the cross

section distributions of such investment are far from the Caplin-Spulber limit, and hence there

is plenty of space for them to vary in response to shocks. As before, this variation translates into

countercyclical fluctuations in the degree of PE-smoothing, which exacerbates the magnitude

of an aggregate investment boom in the face of an unusually long string of positive aggregate

shocks.

5 Indirect Effects: Improved Conventional RBC Moment-Matching

While the frictionless RBC model fits the volatility of investment well, it falls short in terms of the

volatility of consumption, output and employment (King and Rebelo, 1999). Since microeco-

nomic frictions smooth aggregate investment in our model, they simultaneously improve the

fit of the relative volatility of investment to that of other aggregates and create space to raise

the volatility of investment through a reduction in GE-smoothing mechanisms. However, the

latter reduction also raises the volatility of consumption and employment. While we did not

use information on consumption and employment volatility in our calibration, the tables be-

low show that an indirect benefit of our procedure is a significant improvement in the fit of the

model along these dimensions as well.

We also use this section to show that our results on aggregate investment dynamics survive

maintaining the degree of GE-smoothing at conventional levels (EIS around one).

5.1 Volatility and Persistence

Table 5 reports the observed volatility of U.S. aggregates, and those implied by the frictionless

model, by the standard RBC model (from King and Rebelo (1999), which differs from frictionless

in the curvature parameter and its quarterly frequency), and by our model, both in absolute

terms (percentages) and relative to the standard deviation of output. For our model we assume

50% maintenance yet the results that follow are valid for all values of the parameter χ (for other
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Table 5: VOLATILITY OF AGGREGATES

St.dev. St.dev. rel. to σ(Y )
Y C I N C I N

Data: 2.00 1.73 5.94 2.00 0.86 2.97 1.00
Frictionless: 1.40 0.65 6.61 0.85 0.47 4.71 0.61
King-Rebelo: 1.39 0.61 4.09 0.67 0.44 2.95 0.48
This paper: 2.15 1.60 5.85 2.01 0.75 2.73 0.94

values of χ, ranging from 0 to 100%, see Appendix G).30 It is apparent from this table that our

model is successful in fitting the volatility of aggregate consumption, investment, employment

and capital, which we did not use in the calibration stage (recall that we calibrated the volatility

of sectoral and aggregate investment rates). In fact, the lumpy model does substantially better

than the frictionless and standard RBC models. Table 6 shows that our model also provides a

better match for four of the five observed persistence (first-order autocorrelation) measures.31

Table 6: PERSISTENCE OF AGGREGATES

Y C I N I /K
Data: 0.53 0.58 0.47 0.52 0.71
Frictionless: 0.42 0.61 0.36 0.35 0.57
This paper: 0.47 0.52 0.43 0.47 0.69

Figure 11 exhibits the impulse response function for consumption, employment, and the

investment rate, for the frictionless and our model.32 They corroborate the findings reported

in the previous tables. It is apparent that there are significant differences between the lumpy

model and the frictionless model for consumption and employment. Even for small shocks and

an economy that starts off at its steady state (this is what the impulse response function reports),

there are clear differences in the dynamic response of aggregate quantities. More importantly,

these differences constitute an improvement over the frictionless model in terms of the fit of

US aggregate data. The differences for the investment rate are smaller, which is not surprising

since we imposed that both models have the same volatility. Yet even in this case, the fact that

30Since, by construction, our models match the volatility of the aggregate investment rate, we do not include this
aggregate. As usual, but with the exception for the aggregate investment rate, the series are log-HP-filtered with a
smoothness parameter of 100. Also, for obvious reasons, our model’s counterpart of output is C + I .

31For χ= 0.75 the fit is better for all persistence measures, see Appendix G.
32The impulse responses are the log-deviations from the steady-state to a one-standard deviation innovation in

the aggregate productivity shock.
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Figure 11: Impulse response of C , N and I /K
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our model exhibits higher persistence than the RBC model, brings it closer to the data (see the

last column in Table 6).

Given the success of the lumpy-high EIS model, we went further and tested formally whether

it is rejected. Column (1) in Table 7 considers the variance and autocovariances of C , I , N and

Y when calculating the standard chi-square-statistic (see Ingram and Lee, 1991).33 Since the

resulting weighting matrix is very close to singular, we exclude both moments involving Y in

column (2).34 It is clear that our model also outperforms the frictionless model using this formal

approach. Furthermore, if we avoid a poorly conditioned weighting matrix by excluding one of

the moments, our model is not rejected by the data, which is a rarity for this kind of highly

over-identified structural models.

Table 7: CHI-SQUARE-STATISTICS

(1) (2)
Frictionless: 53.3 44.7
This paper: 30.5 1.9
Critical value: 11.1 7.8

5.2 On general equilibrium smoothing

The main reason for the gain in matching conventional RBC moments for consumption, em-

ployment and output, is that microeconomic lumpiness generates substantial smoothing of ag-

gregate investment, thereby reducing the burden on general equilibrium smoothing to match

investment volatility. Once the relative importance of general equilibrium smoothing is re-

duced, aggregate consumption and employment can react more aggressively to aggregate shocks.

The only parameter to control the strength of general equilibrium forces in our model is

the EIS, which needs to be raised substantially to match aggregate moments. If interpreted

literally as a microeconomic preferences parameter, our numbers for the EIS are much higher

than the standard estimates found in the literature. The most recent analysis of this matter is

Gruber (2005), who uses a careful identification strategy based on households responses to tax

movements. He finds an EIS of two, which is on the high end of previous estimates.35 Table

8 below reports the moments from our lumpy adjustment model, both when we impose the

33The chi-square statistics we obtain vary little with whether we consider the standard or the autocorrelation
robust weighting matrix. The results we report are for the latter.

34Recall that: Y =C + I . The conditioning number for the weighting matrix falls by a factor of 20.
35Also, see Hansen and Singleton (1996), who find a slightly higher value for the EIS.
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conventional EIS value of one (which is used mainly for analytical convenience) and when we

use Gruber’s estimate.

Table 8: RELATIVE VOLATILITY AND PERSISTENCE OF AGGREGATES

St.dev. rel. to σ(Y ) Persistence
C I N Y C I N I /K

Data: 0.86 2.97 1.00 0.53 0.58 0.47 0.52 0.71
Frictionless: 0.47 4.71 0.61 0.42 0.61 0.36 0.35 0.57
This paper: 0.75 2.73 0.94 0.47 0.52 0.43 0.47 0.69
EIS = 1: 0.60 3.54 0.44 0.44 0.48 0.42 0.42 0.69
EIS = 2: 0.69 3.03 0.68 0.45 0.49 0.42 0.44 0.69
Frictionless with high EIS: 0.72 5.72 0.95 0.53 0.80 0.28 0.50 0.44

The volatility results are reported normalized by the standard deviation of output, since the

overall volatility of quantities is too low now that we add more sizeable GE-smoothing to PE-

smoothing.36,37

It is apparent from this table that the lumpy model with more conventional EIS values still

does substantially better than the frictionless model in terms of relative volatility and persis-

tence. When the EIS is set to one, the lumpy model does better in six out of the eight statistics

reported in the table, and when the EIS is raised to two (as in Gruber), it does better for seven

out of eight statistics.

Conversely, the last row of the table shows that if one runs the frictionless model with our

estimate of the EIS for the χ= 0.5 case, which is around 9, the volatility of investment rises too

much and its persistence drops too much relative to US data.38

Finally, a note on the robustness of our main results. Figure 12 reports the path of the index

of responsiveness for the same experiment as in the previous section for conventional levels of

the EIS (and the frictionless model).39 Again, it is apparent that the source of history depen-

dence reported in the previous section survives the increase in GE-smoothing brought about

36Alternatively, we could recalibrate σA so as to match the aggregate investment rate. The moments reported in
the table do not vary if we take this approach—nor do the persistence measures—and overall volatility is in the
right ballpark now. The values of σA obtained this way are 0.0133 for EIS= 1 and 0.0122 for EIS= 2.

37The standard deviation of aggregate investment rates declines from 0.0074 to 0.0053 and 0.0058, respectively,
in the models with EIS= 1 and EIS= 2. The upper bound on the fraction of overall smoothing accounted for by the
partial equilibrium are 74% and 78%, respectively, while the lower bounds are 16 and 20%. These numbers are in
the same ballpark as those reported in Table 1 and 4. The resulting percentage standard deviations of output are
1.18% and 1.52%.

38We re-calibrate the standard deviation of aggregate technology, so that the standard deviation of aggregate
investment rates is exactly matched. This results in σA = 0.0048, and a percentage standard deviation for output
of 1.25%.

39Since now the models overall display less volatility compared to the frictionless model, we depict log-deviations
of the responsiveness index from its steady state value.
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Figure 12: Responsiveness Index and Boom-bust Episode: Robustness
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Figure 13: Aggregate Investment Rate and Boom-bust Episode: Robustness
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by the reduction in the EIS. This conclusion is confirmed by Figure 13 which shows that, for

values of the EIS equal to 1 and 2, the path of the aggregate investment rate in the model with

lumpy investment differs substantially from the corresponding trajectory for the model where

GE forces are the only source of smoothing. As before, the boom is more pronounced and the

overhang period more protracted.

6 Final Remarks

We have shown that adding realistic lumpy capital adjustment at the microeconomic level to

an otherwise standard RBC model has important macroeconomic implications. The impulse

response functions of aggregate investment, conditional on the history of shocks, varies con-

siderably during “normal” times (1960-1996) and even more so during the boom-bust episode

of the late nineties.

Relative to the standard DSGE model, in a model with realistic lumpy investment booms

feed into themselves and lead to significantly larger capital accumulation following a string of

positive shocks. Busts, on the other hand, can lead to protracted periods of depressed invest-

ment, which are largely unresponsive to policy stimuli. Furthermore, the smoothing of aggre-

gate investment stemming from the microeconomic frictions reduces the burden of smoothing

that is typically borne by general equilibrium forces. This shift in the smoothing mechanism

has the important side effect of significantly improving the fit of consumption and employment

volatility as well.

Roughly, we calibrated the strength of the partial equilibrium smoothing mechanism by fit-

ting the volatility of sectoral data, and used the elasticity of intertemporal substitution to con-

trol the additional smoothing that takes place from sectoral to aggregate data. It is apparent

that in this logic, or in that of the standard RBC model, the EIS is not a structural parameter but

a reduced form way of capturing more complex labor and capital market specifications.

The time-varying impulse responses we obtained do not depend on the high values of the

EIS that resulted from our calibration, yet the substantial improvement in matching moments

does. A higher EIS points toward labor and capital supplies that are flatter than those implied

by the standard model. On the capital supply side, there are many good reasons why even with

a true EIS around one, the effective capital supply is substantially flatter. Most prominently, the

US economy is open and receives massive capital flows. Also, capital can be reallocated across

sectors which are not perfectly synchronized in their cyclical responses. On the labor supply

side, there is a large number of theories and evidence of flat quasi-labor supplies. These are old

themes, which our model and findings only help making a stronger case for.
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Either way, whether one interprets the EIS parameter structurally or not, or whether one is

married to an EIS of one or not, this papers has shown that contrary to previous claims, the

lumpy model enriches the dynamic responses of DSGE models in important dimensions.
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A Parameter Appendix

The following table summarizes the common parameters of all the model specifications ex-

plored in the paper:

ρA σA ρ σS σI δ γ β θ ν

0.8254 0.00953 0.53 0.0583 0.0812 0.0690 1.0160 0.9770 0.1800 0.6400

The parameters ρA,δ,γ,ρ,ν and β are taken from Kahn and Thomas (2005). They are standard

values. The calibration of the other parameters is explained in Section 3.

B Data Appendix

B.1 Aggregate Data

We use yearly U.S. data on consumption, investment, employment and capital, from 1960-

1996.40 Since our model is a closed economy without government, we look at C + I rather than

GDP data. The standard moments, however, do not differ much. The data on investment and

capital include equipment and structures. They stem from the BEA: Stock of net nonresidential

fixed assets and real cost investment.41 These series are in 1996 chained dollars. Consump-

tion data are from the yearly “Personal real consumption expenditures - billions of chained

2000”-series (PCECCA), from the St. Louis FED. Employment data are from the “Total private

employment”-series (CES0500000001), from the Bureau of Labor Statistics. They exclude farm

employment, and are based on payroll data. The key statistics for aggregate investment rates

are a standard deviation of 0.0074 and a persistence of 0.71

Throughout the paper, for both real data and simulated data, we take the raw series for in-

vestment rates, since they do not exhibit an obvious trend in our time frame, but we do follow

the RBC convention of log-hp-filtering, with bandwidth parameter 100, the series for consump-

tion, investment, employment and “output”.

40We stop in 1996 because the sectoral data mentioned below is available only until that year. This has the
additional advantage of avoiding that the unlikely sequence of positive shocks from the late nineties has too much
influence on the moments we match.

41(http://www.bea.gov/bea/dn/faweb/details/).
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B.2 Sectoral Data

For lack of good industry data outside of manufacturing, the data source here is the NBER man-

ufacturing data set, publicly available on the NBER website. It contains yearly 4-digit industry

data for the manufacturing sector, according to the SIC-87 classification. We look at the years

1960-1996, later years are not available. We take out industry 3292, the asbestos products, be-

cause this sector essentially dies out in the nineties. This leaves us with 458 industries alto-

gether.

Since the sectoral model analysis has to (a) be isolated from general equilibrium effects,

and (b) contain a large number of production units, we think that the 3-digit level is the best

compromise aggregation level. This leaves us with 140 industries. Hence, we sum employment

levels, real capital, nominal investment and nominal value added onto the 3-digit level. The

deflators for investment and shipments are a weighted sum (weighted by investment and value

added, respectively). This allows us to compute series of real investment and real value added.

Since the data base does not contain separate deflators for value added (as opposed to ship-

ments), we use the one for shipments to compute a real value added series. Moreover, since the

data base does not contain implicit deflators for capital, we just sum real capital. The deflators

at the 4-digit level are generally identical or very close to each other, so that this is a justifiable

procedure.

TFP-Calculation: Since our model is essentially about value added production as opposed to

output production—we do not model utilization of materials and energy—we do not use the

TFP-series in the data set, which are based on a production function for output. Rather, we

use a production function for real value added in employment and real capital with payroll as a

fraction of value added as the employment share, and the residual as capital share, and perform

a standard Solow residual calculation for each industry separately.

Next, in order to extract the residual industry-specific and uncorrelated-with-the-aggregate

component for each industry, we regress each industry time series of logged Solow residuals

on the time series of the cross-sectional average of logged Solow residuals and a constant. The

residuals of this regression are then taken as the pure sectoral Solow residual series, by con-

struction, they are uncorrelated with the cross-sectional average series. We then estimate an

AR(1)-specification for each of these series, and set σS equal to the value-added-weighted av-

erage of the estimated standard deviations of the corresponding innovations, which results in

σS = 0.0583.42

42The value-added-weighted average of the estimated first-order autocorrelation is 0.70. Yet, as mentioned in

37



Since this computation is subject to substantial measurement error and somewhat arbitrary

choices, we perform a number of robustness checks: 1) We fix the employment share and capital

share to ν= 0.64 and θ = 0.18, as in our model parametrization for all industries. 2) We study a

production function that distinguishes between production workers and non-production work-

ers. 3) We look at raw industry-specific Solow residual series, and a series, where we simply

subtract the time series of the cross-sectional average. 4) We look at non-weighted averages to

get the final AR(1) coefficients. 5) We look at medians instead of averages. The results for σS are

fairly robust. Finally, to check how much the results are influenced by using 3-digit data, the

corresponding values for the 4-digit data are ρS = 0.69 and σS = 0.0762.

Calculation of I/K-Moments: To extract a pure sectoral component of the time series of the

industry investment rate, we perform the same regression that was used for TFP-calculation.

We do not log or filter the investment rate series. The common component is now a capital-

weighted average of the industry investment rates. Again, we perform robustness checks 3)-5)

from above, with fairly stable results. The resulting sectoral time series moments for the 3- and

4-digit level are given in the following table:

Persistence STD

3-digit 0.65 0.0186

4-digit 0.49 0.0299

For calibration, we use the 3-digit level standard deviation. Similar results would obtain if we

used the 4-digit standard deviation instead, since the standard deviation of sectoral investment

rates in the frictionless model are one order of magnitude higher than the numbers above (see

footnote 15).

C Numerical Appendix

In this appendix, we describe in detail the numerical implementation of the model computa-

tion. All codes were computed in Matlab 6.5R13.

the main text, for computational convenience we set ρS = ρI = 0.53.
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C.1 Decision Problem

Given the assumptions we made in the main paper: 1) ρS = ρI = ρ, and 2) approximating the

distribution µ by the aggregate capital stock, k̄, the dynamic programming problem has a 4-

dimensional state space: (k, k̄, z,ε). Since the employment problem has an analytical solution,

there is essentially just one continuous control, k ′. We discretize the state space in the following

ways:

1. k: nk = 30 grid points from [0,5], with a lower grid width at low capital levels, where the

curvature of the value function is highest.

2. k̄ : nk̄ = 11 grid points in [0.60,1.10], equi-spaced.

3. z : nz = 10 grid points in [0.93,1.075] with closer grid points around unity. For the Gauss-

Hermitian integration (see Judd, 1998) we use 7 integration nodes.

4. ε: nε = 19. The grid points are equi-spaced (in logs) and the total grid width is given by

3×
√

σ2

1−ρ2 , the unconditional variance of the combined technology process. For the tran-

sition matrix we use the procedure proposed in Tauchen (1986). The large state space

here slows down computation considerably, but we need it for a meaningful sectoral sim-

ulation.

We check the robustness of our computations by varying the number of grid points and

Gauss-Hermitian integration nodes.

We note that for all partial equilibrium computations the dimension of the state space col-

lapses to three, k̄ is no longer needed to compute prices and aggregate movements. Instead,

we follow Kahn and Thomas (2005) in fixing the intertemporal price and the real wage at their

average levels from the general equilibrium simulations.

Since we allow for a continuous control, k, and k̄ and z can take on any value continuously,

we can only compute the value function exactly at the grid points above and interpolate for

in-between values. This is done by using a multidimensional cubic splines procedure, with a

so-called “not-a-knot”-condition to address the large number of degrees of freedom problem,

when using splines (see Judd, 1998). We compute the solution by value function iteration, us-

ing 20 steps of policy improvement after each actual optimization procedure. The optimum

is found by using a golden section search, which is fast and robust. Due to the nature of the

non-convexity, the optimal return level does not depend on k, which reduces the number of

optimization problems to be solved at each iteration to nk̄ ×nz ×nε. Upon convergence, we

check single-peakedness of the objective function, to guarantee that the golden section search

is reasonable.

39



C.2 Equilibrium Simulation

For the calibration of the general equilibrium models we draw one random series for the ag-

gregate technology level and fix it across models. For calibration purposes we use T = 600 and

discard the first 100 observations. The statistics we report are then based on a series of T = 2600,

with the first 600 identical to those in the calibration process. We find that, generally, the statis-

tics are robust to T . We start from an arbitrary individual capital distribution and the stationary

distribution for the combined productivity level. The model economies typically settle fast into

their stochastic steady state. Since with idiosyncratic shocks, adjustment costs and necessary

maintenance some production unit may not adjust for a very long time, we take out any indi-

vidual capital stock in the distribution that has a marginal weight below 10−10, in order to save

on memory. We re-scale the remaining distribution proportionally.

As in the production unit’s decision problem, we use a golden section search to find the

optimal target capital level, given p. We find the market clearing intertemporal price, using

the Matlab built-in function fzero, which uses a combination of bisection, secant and inverse

quadratic interpolation methods. Precision of the market-clearing outcome is generally below

10−5 for the frictionless models, and below 10−7 for the lumpy models (these numbers are max-

ima, not averages).

To further assess the quality of the assumed log-linear equilibrium rules, we perform the

following simulation: for each point in the T = 2600 time series, we iterate for a time series of

T̃ = 100 aggregate capital and the intertemporal price forward, using only the equilibrium rules.

We then compare the aggregate capital and p after T̃ steps with the actually simulated ones,

when the equilibrium price was updated at each step. We then compute maximum absolute

percentage deviations, mean squared percentage deviations, and the correlation between the

simulated values and the out-of-sample forecasts. The following two tables summarize the nu-

merical results for each model. The rows contain: the coefficients of the log-linear regression,

its R2 and standard error, the R2 of a regression that includes the log of the standard deviation

of the capital distribution to assess the room for improvement by using higher moments,43 the

F-value for equality of coefficients in the equilibrium loop, and the three above measures that

assess the out-of-sample quality of the equilibrium rules. Tables 9 and 10 assess the log-linear

approximation for future capital and current p, respectively.

Table 9 shows that there exists a good log-linear approximation for aggregate capital as a

function of last period’s capital and the current aggregate shock. This may seem surprising

in light of the time-varying impulse response functions we described in the main text. Yet, as

we argue next, the goodness-of-fit for an equation analogous to (10), but with the aggregate

43Note that the standard deviation was not actually used in the equilibrium calculation.
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Table 9: Assessing agents’ forecasting rules for capital

FL 0% maint. 25% maint. 50% maint. 100 % maint.
ak̄ -0.0534 -0.0631 -0.0563 -0.0514 -0.0622
bk̄ 0.7361 0.7967 0.7971 0.7991 0.7546
ck̄ 0.6143 0.5795 0.5820 0.5796 0.5908
R2 1.0000 0.9991 0.9988 0.9987 0.9981
SE 0.0001 0.0010 0.0012 0.0013 0.0013

R2
std 1.0000 0.9999 0.9998 0.9997 0.9983
F 7.5e−5 1.05e−10 0 0 0

MAD(%) 0.11 0.87 0.99 1.04 1.25
MSE(%) 0.02 0.35 0.40 0.42 0.31
Correl. 0.9999 0.9954 0.9942 0.9937 0.9955

Table 10: Assessing agents’ forecasting rules for p

FL 0% maint. 25% maint. 50% maint. 100 % maint.
ap 0.7947 0.1056 0.0948 0.0801 0.0215
bp -0.3044 -0.0918 -0.0841 -0.0728 -0.0263
cp -0.6622 -0.2299 -0.2133 -0.1884 -0.0610
R2 1.000 0.9967 0.9971 0.9978 0.9983
SE 0.0000 0.0004 0.0003 0.0002 0.0000

R2
std 1.0000 0.9997 0.9997 0.9997 0.9987
F 0.0002 5.5e−12 0 0 1.1e−11

MAD(%) 0.03 0.11 0.10 0.09 0.05
MSE(%) 0.01 0.03 0.03 0.02 0.01
Correl. 0.9999 0.9991 0.9990 0.9990 0.9989
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investment rate as dependent variable, is less good, even though the poorer fit has no bearing

on aggregate investment dynamics.

Table 11: Assessing agents’ forecasting rules for I /K

Highest moment R2 Autocorrelation

all 1st quart. 2nd quart. 3rd quart 4th quart. 1st 2nd
Mean: 0.9711 0.8278 0.2958 0.4054 0.8683 0.627 0.343
St. deviation: 0.9932 0.9379 0.8877 0.9279 0.9629 0.697 0.448
Skewness: 0.9946 0.9471 0.9299 0.9494 0.9698 0.688 0.442

We simulated a series of 500 observations for our model (χ= 0.50) assuming that agents use

the first, the first two and the first three moment of capital in their forecasting rules.44 We di-

vided the simulated series into quartiles based on the magnitude of the actual investment rate,

and calculated, for each quartile, the R2-goodness-of-fit statistic between the series implied by

the forecasting rule and the “true” series (we describe how we calculated the latter below).

Table 11 shows our results. The average (across quartiles) R2 between the log-linear ap-

proximation and the true investment rate is only 0.60 (first row). This average increases to 0.93

when the log-standard-deviation of capital is added as a regressor, and to 0.95 when the skew-

ness statistic is included as well. The last two columns of Table 11 show that the estimated first

and second order autocorrelations of the investment rate also improve significantly when us-

ing higher moments in the forecasting rules: the corresponding values for the actual investment

rate series are 0.684 and 0.437, respectively.45

We also recomputed the aggregate evolution of I /K when agents use the rules that include

higher moments of capital, and found no discernible differences with what we obtained with

the log-linear forecasting rules: the R2 between the sample paths of I /K generated with fore-

casting rules with and without higher moments is above 0.9999.46 This validates our use through-

out the paper of the decisions rules computed without higher moments of capital in the fore-

casting equation. It follows that, even though higher moments provide a better forecast for the

aggregate investment rate, they have no bearing on agents’ individual investment decisions.

Caballero and Engel (1999) provide an extreme example of this phenomenon: in their model

44More precisely, the first case has the log-mean of capital holdings is a regressor, the second case adds the log-
standard deviation and the third case also incorporates the skewness of capital holdings. Of course, log zt is a
dependent variable in all cases.

45This digression raises the issue of whether the R2 statistic that is usually used to measure the quality of the
Krusell-Smith approximation is the appropriate measure. Possibly a measure looking at agents’ welfare differences
would be more appropriate.

46Based on this result, when computing the R2 mentioned in the preceding paragraph, we used the actual series
that results when agents use the first three moments of capital as the “true” series. There are no significant differ-
ences in Table 11 if we use the actual series that results when agents only use the first, or the first two moments.
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agents’ decisions depend only on the current aggregate and idiosyncratic shocks, and not at all

on the distribution of future investment rates, yet aggregate non-linearities and history depen-

dence emerge from the dynamics of the cross-section distribution of mandated investment.

C.3 Sectoral Simulation

Underlying the sectoral simulation are four assumptions: first, a large enough number of sec-

tors and, secondly, that σS is large enough relative to σA, so that we can compute the sectoral

implications of our model independently of the aggregate general equilibrium calculations.

This is also reflected in our treatment of the sectoral data as residual values, which are uncorre-

lated with aggregate components. Thirdly, we make use of the assumption that a sector is large

enough to comprise a large number of production units by invoking a law of large numbers now

for the true idiosyncratic productivity. Finally, ρS = ρI , and the independence of sectoral and

the idiosyncratic productivity, so that we can treat sectoral and truly idiosyncratic uncertainty

as one state variable in the general equilibrium problem.

We start by fixing the aggregate technology level at its average level: zSS = 1. The converged

equilibrium law of motion for aggregate capital can then be used to compute the steady state

aggregate capital level that belongs to this aggregate productivity. It is the fixed point of the

aggregate low of motion, evaluated at zSS :

k̄SS ≡ exp
ak̄

1−bk̄
. (C3.1)

This, in turn, leads to the steady state pSS ≡ exp(ap +bp log(k̄SS)).

Then we specify a separate grid for idiosyncratic and sectoral productivity in such a way

that all new grid points and any product of them will lie on the original 19-state grid for the

combined productivity, used in the general equilibrium problem. Recall that this was specified

for (ρ = 0.53,σ = 0.1). Given the equi-spaced (in logs) nature of the combined grid this is ob-

viously possible. Thus, the idiosyncratic grid comprises 11 grid points, and the sectoral grid 9

grid points, both equi-spaced and centered around unity. This naturally reflects σI > σS . The

implied grid width for the idiosyncratic grid is 2.0514 times the unconditional standard devia-

tion, and 2.2870 times the unconditional standard deviation for the sectoral grid. Both values

are well within commonly used ranges. We then use Tauchen’s method to compute transition

matrices for the Markov chain, given by the sectoral and the truly idiosyncratic grid. Parameters

used are (ρ = 0.53,σS = 0.0586) and (ρ = 0.53,σI =
√
σ2 −σ2

S = 0.0812), respectively.

We then recompute optimal target capital levels as well as gross values of investment at

zSS , k̄SS , at the 19 values for ε. By construction, these are then also the values for any (εS ,εI )-
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combination. Note that we use the value functions computed from the general equilibrium

case. We draw a random series of T = 2600 for εS , which remains fixed across all models, start

from an arbitrary capital distribution and the stationary distribution for the idiosyncratic tech-

nology level, and follow the behavior of this representative sector, using the sectoral policy rules.

The details are similar to those of the equilibrium simulation.

Finally, we test the two main assumptions on which we base our sectoral computations:

a continuum of sectors and fixing the aggregate environment at its steady state level. To this

end, we compute the equilibrium with a finite number of sectors, NS . Also, we introduce an

additional state-variable, given by: ε̄S,t ≡ ∑
i=1,...,NS log(εS,t (i )), which captures changes in the

aggregate environment, beyond the common aggregate shock. Obviously, ε̄S,t = 0,∀ t , as NS →
∞, by the law of large numbers and assuming sectoral independence. This additional aggregate

state is then integrated over by Gauss-Hermitian integration, which is facilitated by the fact that

the ε̄S,t -process is independent of the aggregate technology process (by assumption).

We choose two different values for NS . First, 400, which roughly equals the number of 3-digit

SIC-87 sectors in the U.S. (395). Since, however, sectors are of very different size and overall im-

portance, and also often correlated, we decrease, secondly, NS to 100 for robustness reasons.

The resulting residual σε̄S are 0.0030 and 0.0060, respectively. Notice that in both cases σε̄S is

considerably smaller than σA, so that we should not expect too large an effect from this addi-

tional source of aggregate uncertainty.

In order to make the computation viable, we have to scale down the numerical specification

of the computation, in particular the grid lengths: nk = 20, nk̄ = 7, and nz = 7. The grid length

for the additional aggregate shock is also 7, equi-spaced, between [−0.03,0.03] for NS = 100, and

[−0.015,0.015] for NS = 400. We use 3 nodes for both continuous aggregate shocks in the Gauss

Hermitian integration. We also check that these numerical changes do not affect the results

significantly in the original simplified computations.

The following table shows the aggregate and sectoral standard deviations for investment

rates for the frictionless model and the model for χ= 0.5. The sectoral standard deviations are

shown as a weighted average (the unweighted averages are only insignificantly different) both

for the raw sectoral investment rates and the residual sectoral investment rates (see section B.2).

Frictions: GE GE Both Both

Number of sectors: 100 400 100 400

Aggr. St.dev. 0.0095 0.0079 0.0078 0.0075

Sect. St.dev. - raw 0.2037 0.2050 0.0196 0.0196

Sect. St.dev. - res. 0.2033 0.2047 0.0180 0.0180
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The first important observation is that the numbers obtained here are not much different

from what we have obtained in the simplified computation, which is in particular true for the

χ= 0.5-model. Specifically, the frictionless model continues to fail to match observed sectoral

volatility by an order of magnitude. Secondly, the numbers deviate in the expected direction:

the aggregate standard deviation increases, because there is an additional aggregate shock, but

only slightly so; the sectoral standard deviations decrease a little bit, because now general equi-

librium forces contribute also to sectoral smoothing. And, most importantly, the numbers show

that the results obtained in the main part of the paper are biased in favor of the frictionless

model, in particular if we look at the NS = 100 case. Following our original calibration, in this

caseσA would have to be decreased below its current value to match observed aggregate volatil-

ity of investment rates, but then in the χ= 0.5-model, the calibrated σC would have to be even

lower, thus placing an even lower weight on general equilibrium forces.

D Matching Establishment Statistics

One argument we used to justify the use of sectoral rather than plant level data to calibrate

micro frictions, is that there are many determinants of plant level moments which are irrel-

evant for the macro dimensions we are concerned with, and hence do not seem to be fruitful

moments to base a macro model on. In this appendix we provide support to this claim by show-

ing in a model that matches sectoral and aggregate moments, that minor modifications of the

micro underpinnings of the model can lead to a satisfactory match of establishment level mo-

ments as well. Furthermore, in the simple extension we propose, the initial match of sectoral

and aggregate moments is unaffected by the extension.

D.1 A Simple Extension

A first choice we need to make when matching the model to micro data is to decide how many

micro units in the model correspond to one establishment. Choices by other authors have cov-

ered a wide range, going from one to a number large enough—sometimes a continuum—so

that adding additional units makes no difference.47

Two additional issues arise if we choose to model an establishment as the aggregation of

many micro units. First, we must address the extent to which shocks—both productivity and

adjustment costs—are correlated across units within an establishment.48 Second, we must take

47Cooper and Haltiwanger (2005) and Khan and Thomas (2005) are examples of the former; Abel and Eberly
(2002) and Bloom (2005) of the latter.

48For tractability, all models assume that decisions are made at the micro-unit level, not the establishment level.
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a stance on the fact that establishments sell off and buy what in our model corresponds to one

or more micro units.

Next we present a simple model that incorporates the issues mentioned above. The econ-

omy is composed of sectors (indexed by s), which are composed of establishments (indexed by

e), which are composed of units (indexed by u). The log-productivity shock faced by unit u in

establishment e in sector s at time t is decomposed into aggregate, sectoral, establishment and

unit level shocks as follows:

log zuest = logεA
t + logεS

st + logεF
est + logεU

uest ,

where logεA
t ∼ AR(1;ρA,σA), logεS

st ∼ AR(1;ρS ,σS), logεF
est ∼ AR(1;ρE ,σE ) and logεU

uest ∼
AR(1;ρU ,σU ).49,50 Consistent with the assumptions we made in the paper, we assume ρS =
ρE = ρU and denote the common value by ρ.

An establishment is composed of a large number (continuum) of units. The extent to which

the behavior of units within an establishment is correlated will depend on the relative impor-

tance of σU and σE . The larger σE , the larger the correlation of productivity shocks across units

within an establishment and the more coordinated their investment decisions will be. For sim-

plicity we assume that the adjustment costs drawn by units belonging to an establishment are

independent, so that even if units’ productivity shocks are perfectly correlated, there is some

heterogeneity in units’ behavior.

The sectoral and aggregate investment series generated by this model will be the same as

those generated by the model we developed in the main text as long as σ2
E +σ2

U = σ2
I , since

all we are doing in this extension is grouping micro units into groups we call “establishments”

which has no implication for sectoral aggregates.51 We therefore can decompose σ2
I into the

sum of σ2
U and σ2

E as we please, without affecting sectoral and aggregate statistics. We define

ζ ∈ [0,1] via σ2
U = ζσ2

I , so that σ2
E = (1− ζ)σ2

I . Productivity shocks are the same across units

within an establishment when ζ= 0, their correlation decreases as ζ increases.

Regarding the sale and purchase of micro units, we assume that in every period an es-

tablishment with capital Kest suffers a sales/purchase shock τest , so that its capital becomes

(1+τest )Kest . The τ’s are i.i.d. draws from a zero mean normal distribution with standard de-

49xt ∼ AR(1;ρ,σ) means that the process xt follows an AR(1) with first order autocorrelation ρ and standard
deviation of innovations equal to σ.

50Sectoral innovations are independent across sectors and independent from the innovations of the aggregate
shock. Establishment level innovations are independent across establishments and independent from the innova-
tions of the aggregate and sectoral shocks. Finally, unit level innovations are independent across units and inde-
pendent from the innovations of the aggregate, sectoral and establishment-level shocks.

51The assumption that investment decisions are made at the unit level—and not at the establishment level—is
important here. Remember that our objective here is not to add realism to our original model, it is to show that
matching micro moments isn’t a robust way of pinning down microeconomic parameters.
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viation στ. Since the sectors in our model are composed of a continuum of establishments,

our choice of a distribution with zero mean for purchase/sales shocks ensures that sectoral and

aggregate statistics are unaffected by this extension as well. We choose a normal distribution

because it incorporates only one additional parameter (parsimony) and it is symmetric (thus

any asymmetries in the histogram of investment rates cannot be attributed to this choice).

We denote by ĩest the investment rate for a given establishment according to our model,

and by iest the corresponding investment rate recorded by the LRD. The latter differs from the

former in that it includes the sale/purchase of units from other establishments, which is ignored

in our original model. We then have:

iest = (1−τest )ĩest −τest (1−δ). (18)

Summing up, our (admittedly simple) extension introduces two parameters over which we

can optimize to fit establishment level moments without affecting the match of sectoral and

aggregate statistics. These parameters are the degree to which productivity shocks are corre-

lated across units within an establishment, and the average magnitude of sales and purchases

of micro units across establishments.

D.2 Matching Establishment Level Statistics

We work with χ= 0.5. For a fixed value of ζ, we generate a histogram with 2,500 realizations of

establishment level I /K using our model.52

Denote by fi , i = 1, ...,5 the fraction of LRD establishments that adjusted less than −20%,

between −20 and −1%, between −1% and 1%, between 1 and 20% and above 20%, respec-

tively. And denote by πi (στ) the fraction of units with adjustment in the previous bins af-

ter applying the transformation described in (18). We choose the value of στ that minimizes∑
i | fi −πi (στ)|/ fi , that is, we minimize the absolute relative error.

Table 12 presents our results. It also presents the values obtained by KT in their extension

aimed at obtaining a better match of LRD moments. As can be seen, our model does a reason-

able job matching the micro statistics which have been considered earlier in the literature. In

fact, our fit is similar to that obtained by KT. Also, the statistics we obtain vary rather little with

ζ, as long as ζ is larger than zero (say, above 0.1). We report our estimates for ζ = 1 and ζ = 0.5

(the corresponding values for στ are 0.134 and 0.133, respectively).

52We compute these investment rates using the approximation described in Appendix C.3 with σ2
S +σ2

E in the
role of σ2

S , and σ2
I −σ2

E in the role of σ2
I .
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Table 12: MATCHING LRD MOMENTS

Model |I /K | < 1% I /K > 20% I /K <−20% I /K ≥ 1% I /K ≤−1%
Data 8.2 18.7 1.9 80.9 10.9
Khan-Thomas’s extension: 4.8 18.0 1.5 72.0 23.2
Our model extension (ζ= 1): 4.8 20.1 1.9 70.7 24.5
Our model extension (ζ= 0.5): 4.8 20.3 1.9 70.6 24.6

E Decomposing PE- vs. GE-smoothing

This section describes how we decompose the relative contributions of smoothing by PE- and

GE-forces.

We first remove both PE- and GE-smoothing, by fixing the intertemporal price and the real

wage at their average values, the resulting model has no sources of smoothing (NONE). Next, we

introduce micro frictions and aggregate across units (PE), and then also include GE-smoothing

through market prices (BOTH). We also consider the case with general equilibrium smoothing

without micro frictions (GE). The first four columns in Table 13 report the standard deviation of

aggregate investment rates for all possible combinations of sources of smoothing. The last three

columns reports upper and lower bounds, UB ,LB , and their average, for the relative importance

of PE-smoothing in the various models, as measured by:

UB = log[σ(NONE)/σ(PE)]/ log[σ(NONE)/σ(BOTH)],

LB = 1− log[σ(NONE)/σ(GE)]/log[σ(NONE)/σ(BOTH)]

In the case of our model, the importance of PE-smoothing increases with χ. This is consistent

with our discussion in Section 4, since the cross-section of mandated investment for χ = 0 is

closest to that in the Caplin and Spulber (1987) setting with no PE-smoothing. Yet even for χ= 0

we have that the midpoint of the interval defined by the lower and upper bound for the fraction

explained by micro smoothing is almost 60%.
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Table 13: SMOOTHING DECOMPOSITION

Model Sources of smoothing PE/total smoothing

None PE GE PE + GE Lower bd. Upper bd.
Khan-Thomas-Lumpy (2005): 0.1050 0.0660 0.0080 0.0080 0.0% 18.0%
Our model (0 maint.): 0.0458 0.0096 0.0133 0.0074 32.2% 85.7%
Our model (25% maint.): 0.0458 0.0094 0.0138 0.0074 34.2% 86.9%
Our model (50% maint.): 0.0458 0.0091 0.0148 0.0074 38.0% 88.7%
Our model (75% maint.): 0.0458 0.0089 0.0159 0.0074 42.0% 89.9%
Our model (100% maint.): 0.0458 0.0083 0.0236 0.0074 63.6% 93.7%

F The Responsiveness Index

Given an economy characterized by a distribution µt and aggregate productivity level zt we

denote the resulting aggregate investment rate by I
K (µt , log zt ) and define

I+(µt , log zt ) ≡
[

I

K
(µt , log zt +σA) − I

K
(µt , log zt )

]
/σA,

I−(µt , log zt ) ≡
[

I

K
(µt , log zt −σA) − I

K
(µt , log zt )

]
/(−σA),

where σA is the standard deviation of the aggregate innovation.

Following Caballero and Engel (1993) we define the Responsiveness Index F (µt , log zt ) for I
K

as:

Fk,t ≡ 0.5(1−θ−ν)
[
I+(µt , log zt ) + I−(µt , log zt )

]
. (19)

The factor (1− θ−ν) is included so that the index is approximately one when no sources of

smoothing are present. More precisely, in a static, partial equilibrium setting, with no time-to-

build, micro units solve:53

max
k,n

zkθnν−ωn −k,

leading to the following optimal capital target level as a function of aggregate technology:

k∗ =C z1/(1−θ−ν),

where C is a constant that depends on the wage and the technology parameters. Taking logs

and first differences leads to

∆ logk∗ = 1

1−θ−ν∆ log z,

53For notational simplicity we leave out idiosyncratic and sectoral shocks.
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thereby justifying the normalization constant.

G Robustness to Variations in the Maintenance Parameter

In this appendix we show that the results reported for our model in Section 5 vary little with

the choice of the maintenance parameter χ. Hence our conclusions are robust to having con-

sidered only the case χ = 0.5 in that section. The tables below present the volatility measures,

persistence measures, and J-statistic for values of χ between 0 and 100%.

Table 14: VOLATILITY OF AGGREGATES AND χ

St.dev. St.dev. rel. to σ(Y )
Y C I N C I N

Data: 2.00 1.73 5.94 2.00 0.86 2.97 1.00
Frictionless: 1.40 0.65 6.61 0.85 0.47 4.71 0.61
King-Rebelo: 1.39 0.61 4.09 0.67 0.44 2.95 0.48
0% maint.: 2.06 1.51 5.91 1.91 0.73 2.87 0.93
25% maint.: 2.09 1.54 5.90 1.95 0.73 2.82 0.93
50% maint.: 2.15 1.60 5.85 2.01 0.75 2.73 0.94
75% maint.: 2.22 1.67 6.10 2.09 0.75 2.75 0.94
100%-maint.: 2.42 1.93 6.81 2.37 0.80 2.81 0.98

Table 15: PERSISTENCE OF AGGREGATES AND χ

Y C I N I /K
Data: 0.53 0.58 0.47 0.52 0.71
Frictionless: 0.42 0.61 0.36 0.35 0.57
0% maint.: 0.46 0.51 0.43 0.45 0.68
25% maint.: 0.46 0.51 0.43 0.46 0.69
50% maint.: 0.47 0.52 0.43 0.47 0.69
75% maint.: 0.48 0.56 0.40 0.47 0.65
100%-maint.: 0.50 0.62 0.36 0.50 0.56
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Table 16: J -STATISTICS AND χ

(1) (2)
Frictionless: 53.3 44.7
0% maint.: 22.2 2.0
25% maint.: 25.6 1.8
50% maint.: 30.5 1.9
75% maint.: 28.9 1.3
100%-maint.: 28.2 9.7
Critical value: 11.1 7.8
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