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These notes are about the properties of instrumental variable (IV) estimators when
there are many instruments. We base these notes on Bekker (1994 “Alternative Approxi-
mations to the Distributions of Instrumental Variable Estimators,” Econometrica), where
more primitive references can be found. The theoretical innovation in these notes is to
allow for nonnormality of the disturbances. We show that Bekker (1994) results for LIML
still hold if joint normality is weakened to first and second moment independence.

Model:

The model we consider is given by
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Here Z and II are implicitly allowed to depend on T'. In particular, we will allow K to
grow with 7" at the same rate as T. We will consider Z as nonrandom. Alternatively,
one could interpret the following results as being conditional on Z. This model differs
somewhat from Bekker (1994), in that we assume that the reduced form is correctly
specified.

To obtain asymptotic results for the estimators it is necessary to impose some condi-
tions. We will make use of two assumptions, the first of which is used to show consistency
and the second of which is added for asymptotic normality. Let Z;,us, V; denote the t*
row of Z,u, and V respectively.

Assumption 1: (uy,Vi),...,(ur,Vr) are i.i.d. with mean zero and finite fourth
moments, the variance of (u;, V) is nonsingular, Z’Z is nonsingular, and as T — oo
there is a scalar a with 0 < a < 1 and a positive definite matrix () such that

K/T — a,I'Z'ZI1/T — Q.

This condition allows the number of instruments to grow at the same rate as the
sample size, but requires that II'Z’ZII/T converges. In this sense adding additional in-
struments does not add information. The restriction that Z’Z is nonsingular is essentially
a normalization. Alternatively, we could interpret K as the rank of Z’Z. For the second
assumption, let oy, = E[V/u, 02 = E[u?], v = ov,/02, and V = V — uy', having ¢
row V.



Assumption 2: E[w|Vi] = 0, E[u2|V;] = o2, for some p > 2, E[|u|P|V;] is bounded,
and max;<7 |[1Z!||/v/T — 0.

The vector V; consists of residuals from the population regression of V; on wu; and so
satisfies E[fftut} = 0 by construction. Under joint normality of (u;, V;), u; and V; are
independent, and so the first two conditions automatically hold. In general these two
conditions weaken the joint normality restriction to first and second moment indepen-
dence of u; from V;. The other two conditions are useful for the central limit theorem,
with the last one implying asymptotic normality of II' Z'u/ VT. It is interesting to note
that no other restrictions are imposed on Z.

Estimators:

Two important estimators for the structural coefficients § are two stage least squares
(2SLS) and limited information maximum likelihood (LIML). For P, = Z(Z'Z)~'Z’
these estimators are given by

2SLS
LIML

§ = (X'PzX)"1X'Pgy,
0 = argmin[(y — X6)'Py(y — X0)/(y — X8)'(y — X0)].

Under many instrument asymptotics 2SLS will be inconsistent but LIML will be
consistent. This result can be explained by the respective first-order conditions of the
estimators. For 2SLS the first-order condition is

1 .
—=X'Py(y — X6) = 0.
T
The reason that 2SLS is not consistent with many instruments is that X'Pzu/T does
not converge to zero. By a standard calculation,

E[X'Pyu/T) = E[V'Pyu]/T = gaw,
which does not vanish asymptotically. Thus, 2SLS is setting ¢ so that X'P;(y — X§)/T
is equal to an incorrect value
In contrast, the first-order condition for LIML can be written as
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Note that %
E[u'Pzu/T) = 03?, E/u/T) = 0%, E[X'u/T] = oy,

so that LIML is setting X' Pz(y — X4)/T equal to an estimate of its expectation. In this
way LIML adjusts for the fact that E[X’'Pu/T] does not vanish asymptotically.



One could also base consistent estimators on other corrections for nonzero expectation
of X'Pzu/T. For instance, one could use K/T in place of its estimator in the LIML first
order conditions to form an estimator ¢ as the solution to
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—X'Py(y — X)) = ==

=y — X5,
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This estimator has an explicit form as

5= (X'(Py — ?)X)-IX'(PZ _ %)y.

This estimator is similar to the Nagar (1959) bias corrected 2SLS estimator. Under
certain conditions it turns out to be less efficient than LIML under many instrument
asymptotics, as shown below. We conjecture that, under some set of conditions, LIML
is efficient in a wide class of estimators that correct for many instrument biases.

Consistency:
Some intermediate properties lead to the consistency results. Let Q2 = E[V/V,].
LEMMA 1: If Assumption 1 is satisfied and § — &y then for & =y — X8,
4'5/T 2 02, X'0/T 2 oy, X' X/T 25 Q + 9,
@' Pza)T 2 ao?, X'Pzu/T 2= oy, X' Pz X/T 2 Q + of,

The inconsistency of 2SLS can be seen from the usual calculation (applying the con-
tinuous mapping theorem),

d =8+ (X' Pz X/T) X' Pyu/T -2 8o + (Q + aQ) " aov, # bo.

The consistency of the explicit bias corrected estimator $ can be shown similarly. We
have

¢
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6o + (X' (Pz — %I)X/T)*X’(PZ - %)u/T

o + (Q + a2 — a[Q + Q) Haoy, — aoyy) + 0p(1)
= 50 + OP(]‘)'

Consistency of LIML is harder to show, because it does not have an explicit formula.
However, we can use the usual methods for nonlinear estimators to explain its consistency
by showing that the LIML objective function converges to a function that is uniquely
minimized at dg. As usual, the probability limit of the minimum will be the minimum of
the probability limit. Specifically,

§ = argmin 5(6), 5(8) = A(6)/B(6),



where
A(6) = (y— X6 Pz(y— X0)/T = u'Pzu/T — 2u' Pz X (6 — 60)/T
+(8 — 60)' X' Pz X (6 — 80)/T
L5 A(S) = ao? —2a0},(6 — &) + (6 — 80) (Q + a)(8 — o)
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(y — X6) Pz(y — X0)/T = v'u/T — 2u' X (6 — 8o)/T
+(6 — 80)' X' X (6 — 80)/T
£ B(8) = ol —201,(8 — do) + (6 — 80)'(Q + )(6 — &)

Note that A(6) = aB(8)+ (1 —a)(d —dp)'Q(d — dp). By the continuous mapping theorem,
5(8) £ A(8)/B(6) = a + (1 - a)(6 — 60)'Q(6 — 60)/ B(9)-

It is straightforward to show that B(d) will be nonzero for all § (by nonsingularity of the
variance matrix of (u;, V;)) so that A(§)/B(d) is uniquely minimized at do.

An actual proof of consistency using this approach is a little more complicated, but
can be done, and is in the proof of the following result:

THEOREM 1: If Assumption 1 is satisfied then & 25 6.

Asymptotic Normality

Under the large K asymptotics the LIML estimator is asymptotically normal, with
an asymptotic variance that is larger than the usual one. Also, this larger asymptotic
variance can be consistently estimated under the large K asymptotics. The importance of
these results is that by using the consistent variance estimator we can construct standard
normal confidence intervals under large K asymptotics. Since asymptotic theory is used
as an approximation, this approach should provide improved inference over the usual
method when there are many instruments.

The asymptotic normality of LIML can be shown using an expansion of the first-order
conditions. For u(d) = y — X4, consider the function

_X'qu(5) + u(5)’PZu(5) X’u(&)

D(o) = T w(®)u(®) T

The first-order conditions for 6 can be written as

A

0= D(4)

Then to show asymptotic normality and derive the asymptotic variance matrix it suffices
to show that for a nonsingular matrix H, a matrix ¥, and any § = &,
9D() »

VTD(8) % N(0,5), —5 D H.



It will then follow in the usual way that
VT(5 —8) 3 N(0,A),A=H 'SH'.

Also for consistent estimators H and ¥, a consistent estimator A = H1SH~Y can be
constructed and inference carried out in the usual way.

The first thing we show is convergence in probability of dD(8)/dd. Let @ = u(8) =
y — X4. Then differentiating gives
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From Lemma 1 it then follows by D(8) 2 0 that

8D(@3) ,

55 5HQ+a0-a(Q+0Q)=(1-a)Q=H.

Next we consider the behavior of VT D(d). For 4 = X'u/u'u, v = ovu/ol,
V =V —uy, by E[Viu;] = 0 and the Lindberg-Levy central limit theorem, V'u/ \/T is
bounded in probability. Also, IT'X'u/ /T has bounded second moment and so is bounded
in probability. Also, by Lemma 1, v/ Pzu/u'u £ a. Therefore, by the Slutzky theorem,

’PZu _ X'u—yu'uu/Pgu (ZTL+ V)'u

VT(§ =) e~ g o).

We then have

- X'Pou  uWPzuX'u (X —u¥')YPzu
VTD(y) = -2~ =—
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= U7 +0p(1),W = —(1 — ) ZIl — (P; — al)V.

Thus, for asymptotic normality of v/T'D(8) it suffices (by the Slutzky theorem) that a
central limit theorem applies to W'u/+/T. Also, as always for the central limit theorem,
the asymptotic variance of W’u/v/T will be the limit of its variance. Assumption 2




implies that E[u]V] =0 and Var(u]f/) = ¢2Ip, so that for O = E[f/t/f/t]7

W'y Wy, ~ 2 ,
Var ( \/’T) = E[Var <_\/—T:IV>] = UUE[IjV W/T) ~
g _Q)ZH?ZH+E[V (PZT— o)V,
= o{(1-a)? H/Z,ZH + (E,;— — 2a% +a®)Q}

— {1 -a)*Q+ a(l —a)Q} =X

Combining this result with the formula for H derived above, we find that the asymptotic
variance of the LIML estimator, under these large K asymptotics, will be
A=H'SH'=02Q7' + aul ~Q” QL
The leading term 02@Q~! is the asymptotic variance when K/T' — 0, so that the as-
ymptotic variance of LIML under these many instrument asymptotics is larger than the
usual one. It is important to note that this addition can be important even when « is
small (i.e. when K/T is small). In applications the r-squared for the reduced form is
often very low, corresponding to @ being very small relative to Q. In such cases adding
the additional term can substantially raise the asymptotic variance.
The following result makes these calculations precise.

THEOREM 2: If Assumptions 1 and 2 are satisfied then

VT(8 — 65) % N(0,A),A = c2Q! +au1 Q—lsz—l.

The asymptotic variance A can be consistently estimated by combining consistent
estimators of its components. We can estimate o2 consistently in the usual way from the

residuals @ = Y — X0, as
52— W5/(T - G)
Since the matrix H is the limit of 8D(8,)/86, it can be estimated by

X'PzX wPuX'X

H=0D@)/0s = =2~ - —L-=—.

It is straightforward to show that this matrix must be positive semi-definite. Recall that
& minimizes the objective function R(6) = u(8) Pzu(6)/u(8)'w(8), so that 2R(5)/06¢'
is positive semi-definite by the necessary second-order conditions. Also, dR(6)/886 =
D(68)/u(6)u(8), so that 2R(8)/8608' = [0D(8)/86] /'@, implying that dD(8)/d8 is also
positive semi-definite.



To estimate ¥, define the positive semi-definite matrix J by
J = X'P;X/T — X' Pyt Py X/T# Pyt = X' Pz X/T — X't X[ P/ T (@'%)?),
where the second equality holds by D(6) = 0. Taking limits gives
J 5 Q+aQ — ovuol, (a)o?) = Q + of.

Let & = @ P,@i/@%. Then we can form an estimator ¥ of T as

~

A=62{(1-a)J—aH}.
By & & a it will follow that
AL o2H{(1-a)(Q+aQ)—a(l—a)Q}=2.

Therefore, a consistent estimator of the asymptotic variance of the LIML estimator under
weak instrument asymptotics is A = H-1SH1.

The asymptotic distribution of explicit bias corrected estimator 4 can be derived in
a similar way. Note that

VT(E — do) = (X'(Ps = ) X/T) X' (P~ Z)u/VT.

Similarly to the above derivations

K

X'(Pg ~ ?F—)X/T& R+a—a(Q+Q)=(1-a)Q=H.

Assume that /T(K/T — o) — 0, so that (K/T — a)X'u/v/T 2 0, we have

X'(Py — %)u/ﬁ _ X'(Py — al)u/VT + oy(1)

= (1= a)I'Z'w/VT + V(P — al)u/VT + 0,(1)
= (1-a)I'Z'w/VT +V'(Pz — al)u/VT
+7u'(Pz — al)u/VT + op(1).

Note that the sum of first two terms following the last equality are identical to those
that appear in the LIML derivation, so that the variance of their sum will converge to X.
Furthermore, the last term will be uncorrelated with each of those terms if third moments
of u, are zero conditional on V;. Therefore, under these conditions the asymptotic variance
of X'(P; — K/T)u/~/T will be larger than ¥, and hence the asymptotic variance of the
bias corrected estimator larger than that of LIML.

Appendix: Proofs of Theorems.

Throughout, let C denote a generic positive constant that may be different in different
uses.



Proof of Lemma 1: We first prove the results for & = §,. The first conclusion follows
from Khintchine’s law of large numbers. For the second conclusion, note that X'u/T =
II'Z'w/T + V'u/T, that V'u/T £ oy, by Khintchine’s law of large number. Also,
by E[I'Z'u/T) = 0 and Var(Il'Z'u/T) = I'Z'ZI1/T? — 0, Chebyshev’s law of large
numbers gives IT'Z'u/T ~2, 0, so the second conclusion follows by the triangle inequality.
The third conclusion follows similarly.

Next, suppose for the moment that V is a scalar. As above,

E[U’P2V/T] =tr (PzE[VUI]) /T =0vu tI‘(Pz)/T = O'VUK/T.

Let ps denote the s,t™ element of P;. Note that for the #** unit vector e; it follows by
I — P, positive semi-definite that p; = e,Pze; < ele; = 1. Then for o2 = var(V;) and
A= E[e}V?] - 20%, —~ 020?/,

E [(E,PZU/T)Q] = T2 Z E utptsV V;prquq T2 ZE 2V2]ptt T2 ZUVupttpSS
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1 ol 0%y + 0207%
= —2A Zp?t + ‘j%‘q Zpttpss + ‘% Zp?s
t,s

= Z + V“trP) +MZZ’(Z’Z)‘1Z 7(7'2)"Z,
= T2 2P T2 t shs t

t,x
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= Azptt/T +0-Vu'772_ (UVu+0 UV)Tg'
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Therefore,
var (W P,V/T) = E|(WPzV/T)"| - {EW/PzV/T]}’
= AY pi/T*+ (02, + 0202) K/T* < AT+ C/T — 0.
t
The since var (v PzV/T) converges to zero and E[u’'PzV/T] converges to ao?,,, gives the
fifth conclusion. The fourth and sixth conclusions follow similarly.
Next, for § # &y, note that X'a/T — X'u/T = (X'X/T)(6 — &) = 0, so the second

conclusion follows by the triangle inequality. The rest of the conclusions follow similarly.
Q.E.D.

Proof of Theorem 1: By @ positive definite, minja=1 {A'QA/[A(Q+)A]} = C > 0.
Further, for all A with ||A|| =1,

A(Q+a)A/(A(Q+Q)A)=a+ (1 —a)AQA/A(Q + N)A] > a+ C.
Also, by standard arguments,

”sAlﬁI_)l{[A’X’PZXA/(A’X’XA)] ~N(@Q+aA/(A(Q+ DA} 0.



Therefore, it follows that with probability approaching one, for all A with ||A|l =1,
A'X'PyXAJ(ANX'XA) > a+ C/2.

Next, note that by convergence in probability of v/ Pzu/T, ' Pz X/T, it follows that for
M large enough and all § with ||6 — dol| > M, for A = (6 — do)/||6 — oll,

(W Py T)/ |16 = Sol? + 20’ Pz X/T)(6 — 80) /1|6 — 6ol + A X' P, XA/T
(W TY/||6 — S0l + 20w X/T)(6 — d0)/ 16 — b0l + A X' XA/T
> AX'P,XA/(ANX'XA)—C/4> a+CJ4.

5(6)

Then, since S (80) == a, it follows that with probability approaching one,
S(8) > S(6o).

inf
1560l M
Also, w.p.a.1 B(8) > 0 for all §, so that 3(8) is continuous, so that § = arg minys_sj<n S(6)

exists, and hence § = 4. It also follows by standard arguments that that & £ 8§y, giving
consistency. Q.E.D.

The next result is useful for proving Theorem 2.

LEMMA 2: If (Ry,w),(t = 1,2,..) are i.i.d., E[|lu|”|R:] is bounded for p > 0,
Elu|R) = 0, var(w|R:) > C > 0, aer, (t =1,...,T) are random variables depending only
on (Ry, ..., Rr), with

4 4 2 p
max laer| = 0, ;atT var(u¢|R;) — ¥ > 0,

then .
3 agus -5 N(0,¥).

t=1

Proof: We proceed by verifying the hypotheses of Lemma 3 of Chamberlain (1986,
”Notes on Semiparametric Regression.”), denoted L3 henceforth. Note that var(u|R;) <
C by E[|Jw|”|R;) bounded, so that Y7, a2 var(us|R:) < C YL, a}. Therefore, with
probability approaching one, YF ,a%. > C > 0. Therefore equation 1) of L3 holds.
Equation 2) of L3 is also satisfied, since

T 2
(o )/ i < gl ©
with probability approaching one. Also, equation (3) of L3 holds, since for A > 0,
U
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which goes to zero as A — oo. Also, equation 4) of L3 is satisfied by var(u¢|R;) bounded
away from zero. Let Ir = 1if Y2, a%, > 0, Ir = 0 otherwise. Note that for o} =
var (uy| Ry)

T T 1/2
ZatTut = (1 — IT) ZatTut +
=1 t=1

T T v s 1
Ity acu/ (ZafTUf ) } (ZafTUt2>
t=1 t=1 t=1

The first term converges in probability to zero by Iy = 1 with probability approaching
1/2
one. Also (ZtT:l afTUtz) /2 2, U1/2 50 by the Slutzky theorem and the conclusion of L3,

T
3 arus 5 WYAN(0,1) = N(0,¥).Q.E.D.

t=1

Proof of Theorem 2: From the discussion in the text we see that it suffices to prove
that W'u/vT 5 N(0,%). Also, by the Cramer-Wold device it suffices to prove that

for any vector A, NW'u/vT 5 N(0,NT)), or equivalently that the conclusion holds
when G = 1. Without changing notation we will assume that X, ZIl, and V are vectors,
representing XA, ZIIX and V A respectively. Let

ar=W,=1—-a)ZI+V'Z(Z'Z2)*Z, — oV,
By hypothesis, max;<r | ZI1| / VT — 0. Also, by the Markov inequality,
Vil VT AN [ 21/4p
s VT = (a7 7)< (Sl 1) 20
Also, by the Marcinkiewicz-Zygmund inequality, for wy = Z,(Z'Z)~'Z],
» T T
E||V'z(2'2)7 2| = Bl Y. ViwalP) < CE[| Y V2w P,
s=1 s=1
As shown above, Z,(Z'Z)1Z] < 1, so that

T
> w?, ZZ (Z'Z2)'2'Z2(2'2) 2, = Z,(Z'Z) ' Z, < 1.

s=1

—p/2
Hence (Zzzl wft) v > 1, so by Jensen’s inequality,

p/2
} <
T

< Y E(Vifluwd/ Zwﬁt <cC
s=1

s=1

T p/2

Z Vfﬂ/i

s=1

E

Zv2 Z/Z,w

s=1

< B |3 (W)t Yo

s=1



Combining the last two equations gives E [|V’ Z(2'2)7 2P ] < C. Thus, by the Markov
inequality, Y7, |V'Z(Z2'Z)71Z,|" /T is bounded in probability, and

T 1/p
max V'2(2'2)" 2| VT < (tzzl v'z(z'2)" 2| /TW)

t=1

T 1/p
= <T1‘p/2 S|vizzz)yz) /T) 2 0.
Then, by the triangle inequality,
%ajglatT| /T B 0.
Next, note that by Lemma 1 and the law of large numbers,
VI(P; —a)*V)T = (1-20)V'P,V/T+o*V'V)T 5 ol —a)Q,
I'Z'(P;—a)V/T = (1—a)l'Z'w/T 5 0.
Then by the triangle inequality,
W'W/T = (1-a)XII'Z'ZI)T +2(1 — a)II'Z'(P; — aI)V/T
+V' (P — oD)*V T 5 %/02.

2

=, we have

Since var(ut[V) =0
T ~
> alvar(u|V;)/T = o2 W'W/T B £,
t=1

It then follows by the conclusion of Lemma 2 that

’ T
Wiy - Zt:1 QU d

T = S A NO,D),




