Online Appendix for "Lerner Symmetry: A Modern Treatment"

Arnaud Costinot MIT Iván Werning MIT

May 2018

Abstract

This Appendix provides the proofs of Theorem 1, Theorem 2, and Proposition 1.

1 Perfect Competition

For convenience, we first repeat the definition of a competitive equilibrium as well as assumptions A1-A3. We then offer a formal proof of Theorem 1.

1.1 Equilibrium

A competitive equilibrium with taxes, $t \equiv \{t_{ij}^k(n)\}$, subsidies, $s \equiv \{s_{ij}^k(n)\}$, and lump-sum transfers, $\tau \equiv \{\tau(h)\}$ and $T \equiv \{T_{ij}\}$, corresponds to quantities $c \equiv \{c(h)\}$, $l \equiv \{l(h)\}$, $m \equiv \{m(f)\}$, $y \equiv \{y(f)\}$, and prices $p \equiv \{p_{ij}^k\}$ such that:

(i) (c(h), l(h)) solves

$$\max_{\substack{(\hat{c}(h),\hat{l}(h))\in\Gamma(h)}} u(\hat{c}(h),\hat{l}(h);h)$$
$$p(1+t(h))\cdot\hat{c}(h) = p(1+s(h))\cdot\hat{l}(h) + \pi\cdot\theta(h) + \tau(h), \text{ for all } h;$$

(ii) (m(f), y(f)) solves

$$\pi(f) \equiv \max_{(\hat{m}(f),\hat{y}(f))\in\Omega(f)} p(1+s(f)) \cdot \hat{y}(f) - p(1+t(f)) \cdot \hat{m}(f), \text{ for all } f;$$

(iii) markets clear:

$$\sum_{f} y(f) + \sum_{h} l(h) = \sum_{h} c(h) + \sum_{f} m(f);$$

(iv) government budget constraints hold:

$$\sum_{j,k} p_{ji}^{k} (\sum_{h} t_{ji}^{k}(h) c_{ji}^{k}(h) + \sum_{f} t_{ji}^{k}(f) m_{ji}^{k}(f)) + \sum_{j \neq i} T_{ji}$$

= $\sum_{j,k} p_{ij}^{k} (\sum_{h} s_{ij}^{k}(h) l_{ij}^{k}(h) + \sum_{f} s_{ij}^{k}(f) y_{ij}^{k}(f)) + \sum_{h \in H_{i}} \tau(h) + \sum_{j \neq i} T_{ij}$, for all *i*;

1.2 Assumptions

A1. For any firm f, production sets can be separated into

$$\Omega(f) = \Omega_{i_0}(f) \times \Omega_{-i_0}(f),$$

where $\Omega_{i_0}(f)$ denotes the set of feasible production plans, $\{m_{ji_0}^k(f), y_{i_0j}^k(f)\}$, in country i_0 and $\Omega_{-i_0}(f)$ denotes the set of feasible plans, $\{m_{ji}^k(f), y_{ij}^k(f)\}_{i \neq i_0}$, in other countries.

A2. For any household h, consumption sets can be separated into

$$\Gamma(h) = \Gamma_{i_0}(h) \times \Gamma_{-i_0}(h),$$

where $\Gamma_{i_0}(h)$ denotes the set of feasible consumption plans, $\{c_{ji_0}^k(f), l_{i_0j}^k(f)\}$, in country i_0 ; $\Gamma_{-i_0}(h)$ denotes the set of feasible plans, $\{c_{ji}^k(f), l_{ij}^k(f)\}_{i \neq i_0}$, in other countries; and $\Gamma_{i_0}(h)$ and $\Gamma_{-i_0}(h)$ are such that $h \in H_{i_0} \Rightarrow \Gamma_{-i_0}(h) = \{0\}$ and $h \notin H_{i_0} \Rightarrow \Gamma_{i_0}(h) = \{0\}$.

A3. For any foreign country $j \neq i_0$, the total value of assets held in country i_0 prior to the tax reform is zero, $\pi_{i_0} \cdot \sum_{h \in H_i} \theta(h) = 0$.

1.3 Lerner Symmetry

Theorem 1 (Perfect Competition). Consider a reform of trade taxes in country i₀ satisfying

$$\frac{1 + \tilde{t}_{ji_0}^k(n)}{1 + t_{ji_0}^k(n)} = \frac{1 + \tilde{s}_{i_0j}^k(n)}{1 + s_{i_0j}^k(n)} = \eta \text{ for all } j \neq i_0, k, and n,$$

for some $\eta > 0$; all other taxes are unchanged. If A1 and A2 hold, then $\mathcal{E}(t,s) = \mathcal{E}(\tilde{t},\tilde{s})$; if A1, A2, and A3 hold, then $\mathcal{E}(t,s,T) = \mathcal{E}(\tilde{t},\tilde{s},T)$.

Proof. $(\mathcal{E}(t,s) = \mathcal{E}(\tilde{t},\tilde{s}))$. It suffices to establish that $\mathcal{E}(t,s) \subseteq \mathcal{E}(\tilde{t},\tilde{s})$, since then, reversing the notation, one also has $\mathcal{E}(\tilde{t},\tilde{s}) \subseteq \mathcal{E}(t,s)$, yielding the desired equality. For any $(c,l,m,y) \in \mathcal{E}(t,s)$ with associated (p,τ,T) , we show that $(c,l,m,y) \in \mathcal{E}(\tilde{t},\tilde{s})$ by constructing a new $(\tilde{p},\tilde{\tau},\tilde{T})$ to verify the equilibrium conditions (i)-(iv).

For all *h*, *i*, *j*, and *k* set

$$\tilde{p}_{ij}^{k} = \begin{cases} p_{ij}^{k} \eta & \text{if } i = j = i_{0}, \\ p_{ij}^{k} & \text{otherwise,} \end{cases}$$
(1.1)

$$\tilde{\tau}(h) = \tilde{p}(1 + \tilde{t}(h)) \cdot c(h) - \tilde{p}(1 + \tilde{s}(h)) \cdot l(h) - \tilde{\pi} \cdot \theta(h),$$
(1.2)

$$\tilde{T}_{ij} = T_{ij} + [\pi_i - \tilde{\pi}_i] \cdot \sum_{h \in H_i} \theta(h),$$
(1.3)

with $\tilde{\pi} \equiv { \tilde{\pi}(f) }$ the vector of firms' total profits under the new tax schedule and $\tilde{\pi}_i \equiv$

 $\{\tilde{\pi}_i(f)\}\$ the vector of profits derived from transactions in country *i*,

$$\begin{split} \tilde{\pi}(f) &= \sum_{i,j,k} [\tilde{p}_{ij}^k (1 + \tilde{s}_{ij}^k(f)) y_{ij}^k(f) - \tilde{p}_{ji}^k (1 + \tilde{t}_{ji}^k(f)) m_{ji}^k(f)],\\ \tilde{\pi}_i(f) &= \sum_{j,k} [\tilde{p}_{ij}^k (1 + \tilde{s}_{ij}^k(f)) y_{ij}^k(f) - \tilde{p}_{ji}^k (1 + \tilde{t}_{ji}^k(f)) m_{ji}^k(f)]. \end{split}$$

Given the change in taxes from (t, s) to (\tilde{t}, \tilde{s}) that we consider, equation (1.1) implies that all after-tax prices faced by buyers and sellers from country i_0 are multiplied by η ,

$$\tilde{p}_{ji_0}^k(1+\tilde{t}_{ji_0}^k(n)) = \eta p_{ji_0}^k(1+t_{ji_0}^k(n)), \tag{1.4}$$

$$\tilde{p}_{i_0j}^k(1+\tilde{s}_{i_0j}^k(n)) = \eta p_{i_0j}^k(1+s_{i_0j}^k(n)), \tag{1.5}$$

while other after-tax prices remain unchanged,

$$(1 + \tilde{t}_{ji}^k(n))\tilde{p}_{ji}^k = (1 + t_{ji}^k(n))p_{ji}^k,$$
(1.6)

$$(1 + \tilde{s}_{ij}^k(n))\tilde{p}_{ij}^k = (1 + s_{ij}^k(n))p_{ij}^k,$$
(1.7)

if $i \neq i_0$. In turn, profits in the proposed equilibrium satisfy

$$\tilde{\pi}_{i} = \begin{cases} \pi_{i}\eta & \text{if } i = i_{0}, \\ \pi_{i} & \text{otherwise.} \end{cases}$$
(1.8)

First, consider condition (*i*). Equation (1.2) implies that the household budget constraint still holds at the original allocation (c(h), l(h)) given the new prices, \tilde{p} , taxes, \tilde{t} and \tilde{s} , and transfers, $\tilde{\tau}$. Under A2, equations (1.4) and (1.5) are therefore sufficient for condition (*i*) to hold in country i_0 , whereas equations (1.6) and (1.7) are sufficient for it to hold in countries $i \neq i_0$. Next, consider condition (*ii*). Under A1, equations (1.4) and (1.5) are again sufficient for condition (*ii*) to hold in country i_0 , whereas equations (1.6) and (1.7) are sufficient for it to hold in countries $i \neq i_0$. Since the allocation (*c*, *l*, *m*, *y*) is unchanged in the proposed equilibrium, the good market clearing condition (*iii*) continues to hold. Finally, we verify the government budget balance condition (*iv*). Let R_i and \tilde{R}_i denote the net revenues of country *i*'s government at the original and proposed equilibria,

$$R_{i} \equiv \sum_{j,k} p_{ji}^{k} (\sum_{h} t_{ji}^{k}(h) c_{ji}^{k}(h) + \sum_{f} t_{ji}^{k}(f) m_{ji}^{k}(f)) + \sum_{j \neq i} T_{ji} - \sum_{j,k} p_{ij}^{k} (\sum_{h} s_{ij}^{k}(h) l_{ij}^{k}(h) + \sum_{f} s_{ij}^{k}(f) y_{ij}^{k}(f)) - \sum_{h \in H_{i}} \tau(h) - \sum_{j \neq i} T_{ij},$$

$$\begin{split} \tilde{R}_i &\equiv \sum_{j,k} \tilde{p}_{ji}^k (\sum_h \tilde{t}_{ji}^k(h) c_{ji}^k(h) + \sum_f \tilde{t}_{ji}^k(f) m_{ji}^k(f)) + \sum_{j \neq i} \tilde{T}_{ji} \\ &- \sum_{j,k} \tilde{p}_{ij}^k (\sum_h \tilde{s}_{ij}^k(h) l_{ij}^k(h) + \sum_f \tilde{s}_{ij}^k(f) y_{ij}^k(f)) - \sum_{h \in H_i} \tilde{\tau}(h) - \sum_{j \neq i} \tilde{T}_{ij}. \end{split}$$

In any country $i \neq i_0$, equations (1.1)–(1.3) imply

$$\tilde{R}_i = R_i + \sum_{j \neq i} \sum_{h \in H_i} [\pi_j - \tilde{\pi}_j] \cdot \theta(h) + \sum_{h \in H_i} [\tilde{\pi} - \pi] \cdot \theta(h) - \sum_{j \neq i} \sum_{h \in H_j} [\pi_i - \tilde{\pi}_i] \cdot \theta(h).$$

Using the government budget constraint in country *i* at the original equilibrium, $R_i = 0$, and noting that

$$\sum_{j \neq i} \sum_{h \in H_i} [\pi_j - \tilde{\pi}_j] \cdot \theta(h) = \sum_{h \in H_i} [\pi - \tilde{\pi}] \cdot \theta(h) - \sum_{h \in H_i} [\pi_i - \tilde{\pi}_i] \cdot \theta(h),$$

we therefore arrive at

$$ilde{R}_i = -\left[\pi_i - ilde{\pi}_i\right] \cdot \sum_j \sum_{h \in H_j} heta(h).$$

Together with equation (1.8), this implies government budget balance, $\tilde{R}_i = 0$, for all $i \neq i_0$.

Let us now turn to country i_0 . Equation (1.2) and A2 imply

$$\begin{split} \tilde{R}_{i_0} &= -\sum_{j,k} \tilde{p}_{ji_0}^k (\sum_h c_{ji_0}^k(h)) + \sum_{j,k} \tilde{p}_{i_0j}^k (\sum_h l_{i_0j}^k(h)) + \tilde{\pi} \cdot \sum_{h \in H_{i_0}} \theta(h) \\ &- \sum_{j,k,f} [\tilde{p}_{i_0j}^k \tilde{s}_{i_0j}^k(f) y_{i_0j}^k(f) - \tilde{p}_{ji_0}^k \tilde{t}_{ji_0}^k(f) m_{ji_0}^k(f)] + \sum_{j \neq i} \tilde{T}_{ji_0} - \sum_{j \neq i} \tilde{T}_{i_0j}. \end{split}$$

By equation (1.3), this is equivalent to

$$\begin{split} \tilde{R}_{i_0} &= -\sum_{j,k} \tilde{p}_{ji_0}^k (\sum_h c_{ji_0}^k(h)) + \sum_{j,k} \tilde{p}_{i_0j}^k (\sum_h l_{i_0j}^k(h)) + \tilde{\pi} \cdot \sum_{h \in H_{i_0}} \theta(h) \\ &- \sum_{j,k,f} [\tilde{p}_{i_0j}^k \tilde{s}_{i_0j}^k(f) y_{i_0j}^k(f) - \tilde{p}_{ji_0}^k \tilde{t}_{ji_0}^k(f) m_{ji_0}^k(f)] + \sum_{j \neq i_0} [T_{ji_0} + [\pi_j - \tilde{\pi}_j] \cdot \sum_{h \in H_{i_0}} \theta(h)] \\ &- \sum_{j \neq i_0} [T_{i_0j} + [\pi_{i_0} - \tilde{\pi}_{i_0}] \cdot \sum_{h \in H_j} \theta(h)]. \end{split}$$

Together with the households' budget constraints, the government budget constraint in

country i_0 in the original equilibrium implies

$$\sum_{j,k} p_{ji_0}^k (\sum_h c_{ji_0}^k(h)) + \sum_{j \neq i_0} T_{i_0j} = \sum_{j,k} p_{i_0j}^k (\sum_h l_{i_0j}^k(h)) + \pi \cdot \sum_{h \in H_{i_0}} \theta(h) + \sum_{j \neq i_0} T_{ji_0}$$

Combining the two previous observations, we get

$$\begin{split} \tilde{R}_{i_0} &= -\sum_{j,k} (\tilde{p}_{ji_0}^k - p_{ji_0}^k) (\sum_h c_{ji_0}^k(h)) + \sum_{j,k} (\tilde{p}_{i_0j}^k - p_{i_0j}^k) (\sum_h l_{i_0j}^k(h)) \\ &- \sum_{j,k,f} [\tilde{p}_{i_0j}^k \tilde{s}_{i_0j}^k(f) y_{i_0j}^k(f) - \tilde{p}_{ji_0}^k \tilde{t}_{ji_0}^k(f) m_{ji_0}^k(f)] + \sum_{j,k,f} [p_{i_0j}^k s_{i_0j}^k(f) y_{i_0j}^k(f) - p_{ji_0}^k t_{ji_0}^k(f) m_{ji_0}^k(f)] \\ &+ [\tilde{\pi}_{i_0} - \pi_{i_0}] \cdot \sum_j \sum_{h \in H_j} \theta(h). \end{split}$$

Using equation (1.1) and the definitions of π_{i_0} and $\tilde{\pi}_{i_0}$, this simplifies into

$$\tilde{R}_{i_0} = (1 - \eta) \sum_{k} p_{i_0 i_0}^k \left[\sum_{k} c_{i_0 i_0}^k(h) + \sum_{f} m_{i_0 i_0}^k(f) - \sum_{h} l_{i_0 i_0}^k(h) - \sum_{f} y_{i_0 i_0}^k(f) \right].$$

Together with the good market clearing condition (*iii*), this proves government budget balance $\tilde{R}_{i_0} = 0$. This concludes the proof that $(c, l, m, y) \in \mathcal{E}(\tilde{t}, \tilde{s})$.

 $(\mathcal{E}(t,s,T) = \mathcal{E}(\tilde{t},\tilde{s},T))$. As before, it suffices to establish $\mathcal{E}(t,s,T) \subseteq \mathcal{E}(\tilde{t},\tilde{s},T)$. Equations (1.3) and (1.8) imply

$$\tilde{T}_{ij} = \begin{cases} T_{ij} & \text{if } i \neq i_0 \text{ and } j \neq i, \\ T_{ij} + (1 - \eta)\pi_i \cdot \sum_{h \in H_j} \theta(h) & \text{if } i = i_0 \text{ and } j \neq i_0. \end{cases}$$

Under A3, this simplifies into $\tilde{T}_{ij} = T_{ij}$ for all $i \neq j$. Together with the first part of our proof, this establishes that $(c, l, m, y) \in \mathcal{E}(\tilde{t}, \tilde{s}, T)$.

2 Imperfect Competition

For convenience, we repeat the definition of an equilibrium under imperfect competition as well as assumption A1'. We then offer a formal proof of Theorem 2.

2.1 Equilibrium

An equilibrium requires households to maximize utility subject to budget constraint taking prices and taxes as given (condition *i*), markets to clear (condition *iii*), and government budget constraints to hold (condition *iv*), but it no longer requires firms to be pricetakers. In place of condition (*ii*), each firm *f* chooses a correspondence $\sigma(f)$ that describes the set of quantities $(y(f), m(f)) \in \Omega(f)$ that it is willing to supply and demand at every price vector *p*. The correspondence $\sigma(f)$ must belong to a feasible set $\Sigma(f)$. For each strategy profile $\sigma \equiv {\sigma(f)}$, an auctioneer then selects a price vector $P(\sigma)$ and an allocation $C(\sigma) \equiv {C(\sigma, h)}, L(\sigma) \equiv {L(\sigma, h)}, M(\sigma) \equiv {M(\sigma, f)}, \text{ and } Y(\sigma) \equiv {Y(\sigma, f)}$ such that the equilibrium conditions (*i*), (*iii*), and (*iv*) hold. Firm *f* solves

$$\max_{\sigma(f)\in\Sigma(f)} P(\sigma)(1+s(f)) \cdot Y(\sigma,f) - P(\sigma)(1+t(f)) \cdot M(\sigma,f),$$
(2.1)

taking the correspondences of other firms $\{\sigma(f')\}_{f' \neq f}$ as given.

2.2 Assumptions

A1'. For any firm *f*, production sets can be separated into

$$\Omega(f) = \Omega_{i_0}(f) \times \Omega_{-i_0}(f),$$

where $\Omega_{i_0}(f)$ and $\Omega_{-i_0}(f)$ are such that either $\Omega_{-i_0}(f) = \{0\}$ or $\Omega_{i_0}(f) = \{0\}$.

In line with the proof of Theorem (1), we define the function ρ_{η} mapping p into \tilde{p} using (1.1), that is,

$$\rho_{\eta}(p_{ij}^{k}) = \begin{cases} p_{ij}^{k}\eta & \text{if } i = j = i_{0}, \\ p_{ij}^{k} & \text{otherwise.} \end{cases}$$
(2.2)

Its inverse ρ_{η}^{-1} is given by

$$\rho_{\eta}^{-1}(p_{ij}^{k}) = \begin{cases} p_{ij}^{k}/\eta & \text{if } i = j = i_{0}, \\ p_{ij}^{k} & \text{otherwise.} \end{cases}$$

For any $\eta > 0$, we assume that if $\sigma(f) \in \Sigma(f)$, then $\tilde{\sigma}(f) = \sigma(f) \circ \rho_{\eta}^{-1} \in \Sigma(f)$.

2.3 Lerner Symmetry

Theorem 2 (Imperfect Competition). *Consider the tax reform of Theorem 1. If A1' and A2 hold, then* $\mathcal{E}(t,s) = \mathcal{E}(\tilde{t},\tilde{s})$; *if A1', A2, and A3 hold, then* $\mathcal{E}(t,s,T) = \mathcal{E}(\tilde{t},\tilde{s},T)$.

Proof. Fix an equilibrium with strategy profile σ , taxes (t, s), auctioneer's choices $P(\sigma')$,

 $C(\sigma')$, $L(\sigma')$, $M(\sigma')$ and $Y(\sigma')$, and realized prices $p = P(\sigma)$. Define a new strategy profile

$$\tilde{\sigma} = \sigma \circ \rho_n^{-1}.$$

We show that $\tilde{\sigma}$ is an equilibrium strategy, with taxes (\tilde{t}, \tilde{s}) and auctioneer choices, $\tilde{P}(\tilde{\sigma}') = \rho_{\eta}(P(\tilde{\sigma}' \circ \rho_{\eta}))$, $\tilde{C}(\tilde{\sigma}') = C(\tilde{\sigma}' \circ \rho_{\eta})$, $\tilde{L}(\tilde{\sigma}') = L(\tilde{\sigma}' \circ \rho_{\eta})$, $\tilde{M}(\tilde{\sigma}') = M(\tilde{\sigma}' \circ \rho_{\eta})$, $\tilde{Y}(\tilde{\sigma}') = Y(\tilde{\sigma}' \circ \rho_{\eta})$, and realized prices $\tilde{p} = \tilde{P}(\tilde{\sigma}) = \rho_{\eta}(p)$.

We focus on the profit maximization problem of a given firm f; the rest of the proof is identical to the perfect competition case. Define the set of feasible deviation strategies for firm f at the original and proposed equilibria

$$\mathcal{D}_{f,\sigma} = \{ \sigma' \mid (\sigma'(f), \sigma(-f)) \text{ for all } \sigma'(f) \in \Sigma(f) \},$$
$$\mathcal{D}_{f,\tilde{\sigma}} = \{ \tilde{\sigma}' \mid (\tilde{\sigma}'(f), \tilde{\sigma}(-f)) \text{ for all } \tilde{\sigma}'(f) \in \Sigma(f) \},$$

where $\sigma(-f) = \{\sigma(f')\}_{f' \neq f} \in \Pi_{f' \neq f} \Sigma(f')$ and $\tilde{\sigma}(-f) = \{\tilde{\sigma}(f')\}_{f' \neq f} \in \Pi_{f' \neq f} \Sigma(f')$. By assumption, $\tilde{\sigma}(f) = \sigma(f) \circ \rho_{\eta}^{-1} \in \Sigma(f)$. We therefore need to prove that

$$\tilde{P}(\tilde{\sigma})(1+\tilde{s}(f))\cdot\tilde{Y}(\tilde{\sigma},f) - \tilde{P}(\tilde{\sigma})(1+\tilde{t}(f))\cdot\tilde{M}(\tilde{\sigma},f) \\
\geq \tilde{P}(\tilde{\sigma}')(1+\tilde{s}(f))\cdot\tilde{Y}(\tilde{\sigma}',f) - \tilde{P}(\tilde{\sigma}')(1+\tilde{t}(f))\cdot\tilde{M}(\tilde{\sigma}',f), \quad (2.3)$$

for all $\tilde{\sigma}' \in \mathcal{D}_{f,\tilde{\sigma}}$.

By condition (2.1), σ satisfies

$$P(\sigma)(1+s(f)) \cdot Y(\sigma, f) - P(\sigma)(1+t(f)) \cdot M(\sigma, f)$$

$$\geq P(\sigma')(1+s(f)) \cdot Y(\sigma', f) - P(\sigma')(1+t(f)) \cdot M(\sigma', f), \quad (2.4)$$

for all $\sigma' \in \mathcal{D}_{f,\sigma}$. Decompose

$$(M(\sigma', f), Y(\sigma', f)) = (M_{i_0}(\sigma', f), M_{-i_0}(\sigma', f), Y_{i_0}(\sigma', f), Y_{-i_0}(\sigma', f))$$

so that $(M_{i_0}(\sigma', f), Y_{i_0}(\sigma', f)) \in \Omega_{i_0}(f)$ and $(M_{-i_0}(\sigma', f), Y_{-i_0}(\sigma', f)) \in \Omega_{-i_0}(f)$. Decompose $P(\sigma'), t(f)$ and s(f) in the same manner. With this notation, A1' and (2.4) imply

$$P_{i_0}(\sigma)(1+s_{i_0}(f)) \cdot Y_{i_0}(\sigma,f) - P_{i_0}(\sigma)(1+t_{i_0}(f)) \cdot M_{i_0}(\sigma,f) \\ \ge P_{i_0}(\sigma')(1+s_{i_0}(f)) \cdot Y_{i_0}(\sigma',f) - P_{i_0}(\sigma')(1+t_{i_0}(f)) \cdot M_{i_0}(\sigma',f)$$
(2.5)

and

$$P_{-i_0}(\sigma)(1+s_{-i_0}(f)) \cdot Y_{-i_0}(\sigma,f) - P_{-i_0}(\sigma)(1+t_{-i_0}(f)) \cdot M_{-i_0}(\sigma,f)$$

$$\geq P_{-i_0}(\sigma')(1+s_{-i_0}(f)) \cdot Y_{-i_0}(\sigma',f) - P_{-i_0}(\sigma')(1+t_{-i_0}(f)) \cdot M_{-i_0}(\sigma',f), \quad (2.6)$$

as one of the two inequalities holds trivially as an equality with zero on both sides.

For any $\tilde{\sigma}' \in \Pi_f \Sigma(f)$ and $\sigma' = \tilde{\sigma}' \circ \rho_\eta \in \Pi_f \Sigma(f)$, the new auctioneer's choices imply

$$\begin{split} \tilde{P}(\tilde{\sigma}')(1+\tilde{s}(f))\cdot\tilde{Y}(\tilde{\sigma}',f) &-\tilde{P}(\tilde{\sigma}')(1+\tilde{t}(f))\cdot\tilde{M}(\tilde{\sigma}',f) \\ &= \rho_{\eta}(P(\tilde{\sigma}'\circ\rho_{\eta}))(1+\tilde{s}(f))\cdot Y(\tilde{\sigma}'\circ\rho_{\eta},f) - \rho_{\eta}(P(\tilde{\sigma}'\circ\rho_{\eta}))(1+\tilde{t}(f))\cdot M(\tilde{\sigma}'\circ\rho_{\eta},f) \\ &= \rho_{\eta}(P(\sigma'))(1+\tilde{s}(f))\cdot Y(\sigma',f) - \rho_{\eta}(P(\sigma'))(1+\tilde{t}(f))\cdot M(\sigma',f) \end{split}$$

Equation (2.2) further implies,

$$\rho_{\eta}(P_{ij}^{k}(\sigma'))(1+\tilde{s}_{ij}^{k}(f)) = \begin{cases} \eta P_{ij}^{k}(\sigma')(1+s_{ij}^{k}(f)) & \text{for all } j \text{ and } k \text{ if } i=i_{0}, \\ P_{ij}^{k}(\sigma')(1+s_{ij}^{k}(f)) & \text{for all } j \text{ and } k \text{ if } i\neq i_{0}, \end{cases}$$

$$\rho_{\eta}(P_{ji}^{k}(\sigma'))(1+\tilde{t}_{ji}^{k}(f)) = \begin{cases} \eta P_{ji}^{k}(\sigma')(1+t_{ji}^{k}(f)) & \text{for all } j \text{ and } k \text{ if } i=i_{0}, \\ P_{ji}^{k}(\sigma')(1+t_{ji}^{k}(f)) & \text{for all } j \text{ and } k \text{ if } i\neq i_{0}. \end{cases}$$

Thus, it follows that

$$\tilde{P}_{i_0}(\tilde{\sigma}')(1+\tilde{s}_{i_0}(f)) \cdot \tilde{Y}_{i_0}(\tilde{\sigma}',f) - \tilde{P}_{i_0}(\tilde{\sigma}')(1+\tilde{t}_{i_0}(f)) \cdot \tilde{M}_{i_0}(\tilde{\sigma}',f) \\
= \eta \left(P_{i_0}(\sigma')(1+s_{i_0}(f)) \cdot Y_{i_0}(\sigma',f) - P_{i_0}(\sigma')(1+t_{i_0}(f)) \cdot M_{i_0}(\sigma',f) \right), \quad (2.7)$$

and

$$\tilde{P}_{-i_0}(\tilde{\sigma}')(1+\tilde{s}_{-i_0}(f))\cdot\tilde{Y}_{-i_0}(\tilde{\sigma}',f) - \tilde{P}_{-i_0}(\tilde{\sigma}')(1+\tilde{t}_{-i_0}(f))\cdot\tilde{M}_{-i_0}(\tilde{\sigma}',f)
= P_{-i_0}(\sigma')(1+s_{-i_0}(f))\cdot Y_{-i_0}(\sigma',f) - P_{-i_0}(\sigma')(1+t_{-i_0}(f))\cdot M_{-i_0}(\sigma',f).$$
(2.8)

Since for any $\tilde{\sigma}' \in \mathcal{D}_{f,\tilde{\sigma}}$, we have $\sigma' = \tilde{\sigma}' \circ \rho_{\eta} \in \mathcal{D}_{f,\sigma}$, (2.5)-(2.8) imply

$$\begin{split} \tilde{P}_{i_0}(\tilde{\sigma})(1+\tilde{s}_{i_0}(f)) \cdot \tilde{Y}_{i_0}(\tilde{\sigma},f) &- \tilde{P}_{i_0}(\tilde{\sigma})(1+\tilde{t}_{i_0}(f)) \cdot \tilde{M}_{i_0}(\tilde{\sigma},f) \\ &\geq \tilde{P}_{i_0}(\tilde{\sigma}')(1+\tilde{s}_{i_0}(f)) \cdot \tilde{Y}_{i_0}(\tilde{\sigma}',f) - \tilde{P}_{i_0}(\tilde{\sigma}')(1+\tilde{t}_{i_0}(f)) \cdot \tilde{M}_{i_0}(\tilde{\sigma}',f), \end{split}$$

and

$$\begin{split} \tilde{P}_{-i_0}(\tilde{\sigma})(1+\tilde{s}_{-i_0}(f))\cdot\tilde{Y}_{-i_0}(\tilde{\sigma},f) &-\tilde{P}_{-i_0}(\tilde{\sigma})(1+\tilde{t}_{-i_0}(f))\cdot\tilde{M}_{-i_0}(\tilde{\sigma},f) \\ &\geq \tilde{P}_{-i_0}(\tilde{\sigma}')(1+\tilde{s}_{-i_0}(f))\cdot\tilde{Y}_{-i_0}(\tilde{\sigma}',f) - \tilde{P}_{-i_0}(\tilde{\sigma}')(1+\tilde{t}_{-i_0}(f))\cdot\tilde{M}_{-i_0}(\tilde{\sigma}',f), \end{split}$$

for all $\tilde{\sigma}' \in \mathcal{D}_{f,\tilde{\sigma}}$. Adding up these last two inequalities gives (2.3).

3 Nominal Rigidities

For convenience, we repeat the adjustment in prices before taxes,

$$\frac{\tilde{p}_{ij}^k}{p_{ij}^k} = \begin{cases} \eta & \text{if } i = j = i_0, \\ 1 & \text{otherwise.} \end{cases}$$
(3.1)

For parts of the proof of Proposition 1, we will use the fact that given the tax reform of Theorem 1, equation (3.1) is equivalent to

$$\frac{\tilde{p}_{ij}^k(1+\tilde{s}_{ij}^k(n))}{p_{ij}^k(1+s_{ij}^k(n))} = \frac{\tilde{p}_{ji}^k(1+\tilde{t}_{ji}^k(n))}{p_{ji}^k(1+t_{ji}^k(n))} = \begin{cases} \eta & \text{ for all } j \text{ and } k, \text{ if } i = i_0, \\ 1 & \text{ for all } j \text{ and } k, \text{ if } i \neq i_0. \end{cases}$$
(3.2)

Proposition 1. Consider the tax reform of Theorem 1 with $\eta \neq 1$. Suppose $p \in \mathcal{P}(t,s)$ and \tilde{p} satisfies (3.1). Then $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$ holds if prices are rigid in the origin country's currency after sellers' taxes or the destination country's currency after buyers' taxes, but not if they are rigid before taxes. Likewise, $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$ holds if prices are rigid in a dominant currency before taxes and country $i_0 \neq i_D$, but not if $i_0 = i_D$.

Proof. We first consider the three cases for which $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$.

Case 1: Prices are rigid in the origin country's currency after sellers' taxes,

$$\mathcal{P}(t,s) = \{\{p_{ij}^k\} | \exists \{e_l\} \text{ such that } p_{ij}^k(1+s_{ij}^k(n)) = \bar{p}_{ij}^{k,i}(1+\bar{s}_{ij}^k(n))/e_i \text{ for all } i, j, k, n\}.$$

Consider $p \in \mathcal{P}(t,s)$. Let us guess $\tilde{e}_{i_0}/e_{i_0} = 1/\eta$ and $\tilde{e}_i/e_i = 1$ if $i \neq i_0$. For any *j*, *k*, consider first $i \neq i_0$. From (3.2), we have

$$\tilde{p}_{ij}^k(1+\tilde{s}_{ij}^k(n)) = p_{ij}^k(1+s_{ij}^k(n)) = \bar{p}_{ij}^{k,i}(1+\bar{s}_{ij}^k(n))/e_i = \bar{p}_{ij}^{k,i}(1+\bar{s}_{ij}^k(n))/\tilde{e}_i.$$

Next consider $i = i_0$. From (3.2), we have

$$\tilde{p}_{i_0j}^k(1+\tilde{s}_{i_0j}^k(n)) = \eta p_{i_0j}^k(1+s_{i_0j}^k(n)) = \eta \bar{p}_{i_0j}^{k,i_0}(1+\bar{s}_{i_0j}^k(n)) / e_{i_0} = \bar{p}_{i_0j}^{k,i_0}(1+\bar{s}_{i_0j}^k(n)) / \tilde{e}_{i_0}$$

This establishes that $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$.

Case 2: Prices are rigid in the destination country's currency after buyers' taxes,

$$\mathcal{P}(t,s) = \{\{p_{ij}^k\} | \exists \{e_l\} \text{ such that } p_{ij}^k(1+t_{ij}^k(n)) = \bar{p}_{ij}^{k,j}(1+\bar{t}_{ij}^k(n))/e_j \text{ for all } i, j, k, n\}$$

Consider $p \in \mathcal{P}(t,s)$. Let us guess $\tilde{e}_{i_0}/e_{i_0} = 1/\eta$ and $\tilde{e}_i/e_i = 1$ if $i \neq i_0$. For any i, k, consider first $j \neq i_0$. From (3.2), we have

$$\tilde{p}_{ij}^k(1+\tilde{t}_{ij}^k(n)) = p_{ij}^k(1+t_{ij}^k(n)) = \bar{p}_{ij}^{k,j}(1+\bar{t}_{ij}^k(n))/e_j = \bar{p}_{ij}^{k,j}(1+\bar{t}_{ij}^k(n))/\tilde{e}_j.$$

Next consider $j = i_0$. From (3.2), we have

$$\tilde{p}_{ii_0}^k(1+\tilde{t}_{ii_0}^k(n)) = \eta p_{ii_0}^k(1+t_{ii_0}^k(n)) = \eta \bar{p}_{ii_0}^{k,i_0}(1+\bar{t}_{ii_0}^k(n))/e_{i_0} = \bar{p}_{ij}^{k,i_0}(1+\bar{t}_{ii_0}^k(n))/\tilde{e}_{i_0}.$$

This establishes that $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$.

Case 3: Prices are rigid in a dominant currency before taxes are imposed, and $i_0 \neq i_D$,

$$\mathcal{P}(t,s) = \{\{p_{ij}^k\} | \exists \{e_l\} \text{ such that } p_{ij}^k = \bar{p}_{ij}^{k,i_D} / e_{i_D} \text{ for all } i \neq j, k \text{ and } p_{ii}^k = \bar{p}_{ii}^{k,i} / e_i \text{ for all } k\}.$$

Consider $p \in \mathcal{P}(t,s)$. Let us guess $\tilde{e}_{i_0}/e_{i_0} = 1/\eta$ and $\tilde{e}_i/e_i = 1$ if $i \neq i_0$, including $\tilde{e}_{i_D}/e_{i_D} = 1$ since $i_0 \neq i_D$. For any k, j, consider first $i \neq j$. From (3.1), we have

$$\tilde{p}_{ij}^k = p_{ij}^k = \bar{p}_{ij}^{k,i_D} / e_{i_D} = \bar{p}_{ij}^{k,i_D} / \tilde{e}_{i_D}$$

Next consider $i = j \neq i_0$. From (3.1), we have

$$\tilde{p}_{ii}^k = p_{ii}^k = \bar{p}_{ii}^{k,i} / e_i = \bar{p}_{ii}^{k,i} / \tilde{e}_i.$$

Finally, consider $i = j = i_0$. From (3.1), we have

$$\tilde{p}_{i_0i_0}^k = \eta p_{i_0i_0}^k = \eta \bar{p}_{i_0i_0}^{k,i_0} / e_{i_0} = \bar{p}_{i_0i_0}^{k,i_0} / \tilde{e}_{i_0}.$$

This establishes that $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$.

We now turn to the three cases for which $\tilde{p} \notin \mathcal{P}(\tilde{t}, \tilde{s})$.

Case 4: Prices are rigid in the origin country's currency before sellers's taxes,

$$\mathcal{P}(t,s) = \{\{p_{ij}^k\} | \exists \{e_l\} \text{ such that } p_{ij}^k = \overline{p}_{ij}^{k,i} / e_i \text{ for all } i, j, k, n\}.$$

Consider $p \in \mathcal{P}(t, s)$. Suppose $\tilde{p} \in \mathcal{P}(\tilde{t}, \tilde{s})$. From (3.1), we have

$$\begin{split} \tilde{p}_{i_0j}^k &= p_{i_0j}^k = \bar{p}_{i_0j}^{k,i_0} / e_{i_0} = \bar{p}_{i_0j}^{k,i_0} / \tilde{e}_{i_0} \text{if } j \neq i_0, \\ \tilde{p}_{i_0i_0}^k &= \eta p_{i_0i_0}^k = \eta \bar{p}_{i_0i_0}^{k,i_0} / e_{i_0} = \bar{p}_{i_0i_0}^{k,i_0} / \tilde{e}_{i_0} \text{ otherwise.} \end{split}$$

The first equation gives $\tilde{e}_{i_0}/e_{i_0} = 1$; the second gives $\tilde{e}_{i_0}/e_{i_0} = 1/\eta$. A contradiction.

Case 5: Prices are rigid in the destination country's currency before buyers' taxes,

$$\mathcal{P}(t,s) = \{\{p_{ij}^k\} | \exists \{e_l\} \text{ such that } p_{ij}^k = \bar{p}_{ij}^{k,j} / e_j \text{ for all } i, j, k, n\}.$$

Start with $p \in \mathcal{P}(t,s)$. Suppose $\tilde{p} \in \mathcal{P}(\tilde{t},\tilde{s})$. From (3.1), we have

$$\tilde{p}_{ii_0}^k = p_{ii_0}^k = \bar{p}_{ii_0}^{k,i_0} / e_{i_0} = \bar{p}_{ii_0}^{k,i_0} / \tilde{e}_{i_0} \text{if } i \neq i_0,$$

$$\tilde{p}_{i_0i_0}^k = \eta p_{i_0i_0}^k = \eta \bar{p}_{i_0i_0}^{k,i_0} / e_{i_0} = \bar{p}_{i_0i_0}^{k,i_0} / \tilde{e}_{i_0} \text{ otherwise.}$$

The first equation gives $\tilde{e}_{i_0}/e_{i_0} = 1$; the second gives $\tilde{e}_{i_0}/e_{i_0} = 1/\eta$. A contradiction.

Case 6: Prices are rigid in a dominant currency before taxes are imposed, and $i_0 = i_D$,

$$\mathcal{P}(t,s) = \{\{p_{ij}^k\} | \exists \{e_l\} \text{ such that } p_{ij}^k = \bar{p}_{ij}^{k,i_0} / e_{i_0} \text{ for all } i \neq j, k \text{ and } p_{ii}^k = \bar{p}_{ii}^{k,i} / e_i \text{ for all } k\}.$$

Start with $p \in \mathcal{P}(t,s)$. Suppose $\tilde{p} \in \mathcal{P}(\tilde{t},\tilde{s})$. From (3.1), we have

$$\tilde{p}_{i_0j}^k = p_{i_0j}^k = \bar{p}_{i_0j}^{k,i_0} / e_{i_0} = \bar{p}_{i_0j}^{k,i_0} / \tilde{e}_{i_0} \text{ if } j \neq i_0,$$

$$\tilde{p}_{i_0i_0}^k = \eta p_{i_0i_0}^k = \eta \bar{p}_{i_0i_0}^{k,i_0} / e_{i_0} = \bar{p}_{i_0i_0}^{k,i_0} / \tilde{e}_{i_0} \text{ otherwise.}$$

The first equation gives $\tilde{e}_{i_0}/e_{i_0} = 1$; the second gives $\tilde{e}_{i_0}/e_{i_0} = 1/\eta$. A contradiction.