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This paper contains supplemental material to Barwick and Pathak (2012), which we refer to

hereafter as BP1. The contents are summarized as follows. Section 1 describes how we classify

markets and construct variables used in BP1. Section 2 presents alternative specifications of the

revenue function and state variable transition process not reported in BP1. Section 3 provides

additional details of the counterfactual analyses. Section 4 compares the value function approxi-

mation with two other approaches commonly used in the dynamic discrete-choice literature, and

presents Monte-Carlo evidence of the magnitude of parameter bias generated by value function

approximation in our application.
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1 Data

This section briefly explains how we define a market and calculate state variables. Table A1 presents

the summary statistics for all variables used in the estimation.

1.1 Data sources

The main data source is the MLS Property Information Network (MLSPIN) from New England.

We collected all available information on the MLSPIN system for each property listing in any town

within a 15 mile radius of downtown Boston (City Hall) through December 2007. The data include

detailed property characteristics for each listed house such as the number of bedrooms, bathrooms,

and lot size, the name and ID of the listing agent and listing office, and the initial list date and

price. If a property is sold, then the name and ID of the buying agent and the buying office as well

as the sale date and price are recorded. It appears that the MLS does not have complete coverage

of transactions for early years of the dataset, so we begin our sample in 1998 and keep all properties

that are listed and sold through December 2007. We omit properties that are active listings at the

end of our sample.

1.2 Market definition and the Timing Convention

There are 59 cities in the MLS dataset (excluding Boston). Twenty-eight cities are small with

fewer than 600 agent-year observations. We group them into contiguous markets as follows: Avon

is grouped with Stoughton; Bedford with Lexington; Belmont with Watertown; Braintree with

Weymouth; Burlington with Wilmington; Canton with Stoughton; Chelsea with Revere, Cohasset

with Hingham; Dover with Wellesley; Everett with Malden; Holbrook with Randolph; Hull with

Weymouth; Lincoln with Concord; Lynnfiled with Peabody; Medfield with Walpole; Melrose with

Wakefield; Milton with Quincy; Nahant with Swampscott; North Reading with Reading; Norwood

with Walpole; Saugus with Lynn; Sharon with Stoughton; Stoneham with Wakefield; Swampscott

with Marblehead; Wayland with Wellesley; Weston with Wellesley; Westwood with Dedham; and

Winthrop with Revere. The rest of the markets are the same as an MLS city. We group cities

that are adjacent, with similar median household income, and have significant amount of cross-city

listings by agents.

An agent is an entrant in year t if he is not observed in our sample in or before year t − 1,

but is observed in year t. An agent is active in year t if he is observed in year t. An agent is an

incumbent in year t if he is active in year t and entered in previous years. An agent exits in year t

if he is observed in year t− 1, but not in year t.

1.3 Market-level state variables

The aggregate number of listings Hmt in market m and year t is the total number of listings between

January and December of year t in market m. The average housing price index Pmt is an equally-

weighted average of the sold price over all listings sold in market m and year t. (Results are nearly
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identical if we average over all sold listings that were listed in year t in market m.) HPmt is the

product of Hmt and Pmt.

To calculate the market tightness measure, the “inventory-sales ratio” (denoted Inv), we pro-

ceed as follows. For each month/year/market, we calculate the total number of new listings, the

total number of houses taken off the market in this month (which includes sold properties, unsold

properties that are withdrawn or whose contract expires in that month). Then we calculate the

cumulated sum of listings for each month/year/market, as well as the cumulated sum of properties

taken off the market for each month/year/market. Inventory is cumulated listings minus cumulated

properties-off-market in the previous month. For example, the inventory is calculated as follows:

Month Listing Sold Inventory

1 100 50 100

2 80 60 100+80-50

3 70 40 100+80+70-50-60

...

We take the ratio of the current month inventory to total number of listings sold in the previous

year in market m, and average over twelve months to derive the annual inventory-sales ratio for

each market in each year.

1.4 Agent characteristics

An agent’s experience is measured by his number of years as a broker. This variable is generated by

merging our MLS data with Massachusetts’ license data. The Massachusetts Division of Professional

Licensure maintains a database of all real-estate-broker and salesperson licenses issued in the past.

We match these records with our MLS data by agent names.

For an agent who first appears in our sample in 1999 or after, we use the year he is first observed

as the year he becomes an agent. This accounts for 6,248 agents, or 62% of our sample. For the

rest of 3,840 agents who first appear in our sample in 1998 or before, we use their license year if

their name is unique in both MLS and the license database. We are able to locate a license record

for 2,644 of these agents, a match rate of 69%. For the remaining 1,196 agents (12% of the sample)

whom we could not locate in the license database or whose names are not unique, we use the year

they are first observed in MLS as the year they become an agent.

Information on agents’ gender is provided by List Services Corporation, which links names to

gender based on historical census tabulations. For the few agents who work at multiple offices in

any given year, we use the office with which he conducted the largest number of transactions as his

office affiliation.

We measure an agent skill by his total number of transactions in the previous year. This

variable, sit, is highly skewed and varies between 0 to 87, with a median of 6. We truncate it at

20, which is the 90% percentile of the distribution, and normalize it to have zero mean and 0.5

standard deviation to prevents overflowing or underflowing errors.
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2 Empirical Analysis

In this section, we present alternative specifications of the revenue function and state variable

transition process not reported in BP1, as well as the structural parameters {β1, β2m}
31
m=1 associated

with different sets of spline functions.

2.1 Revenue function

The first element of the revenue function is the listing share equation:

lnShLimt − lnShL·mt = (XL
imt −XL

·mt)θ
L + (ξLimt − ξL·mt) = (XL

imt −XL
·mt)θ

L + ξ̃
L
imt, (1)

where Ximt includes gender, firm affiliation, experience, and skill. About 11% of observations have

zero listing in some years, and the log of their listing shares is not defined. In addition, sit is

biased downward for entrants and the second-year agents who become a broker in the middle of

a calendar year during their first year. These observations are excluded in regressions reported in

Table A2, leaving us a total of 32,237 agent-year observations. Including these observations only

slightly reduces sit coefficient.

As discussed in BP1, sit is an important predictor of listing shares. Conditioning on sit, gender

or affiliation with the top three firms (Century 21, Coldwell Banker, and ReMax) leads to no

improvement in R2, even though these firms account for more than 40% of listings. Following the

convention of the NAR (2007), we define established agents as those with six or more years of

experience (exp6). The variable exp6 is statistically and economically significant: an experienced

agent has 14% more listings than an inexperienced one. However, it has a limited explanatory

power once sit is included, as might be expected since it is highly correlated with sit.

Analogously, we estimate the purchasing share using the following equation:

lnShBimt − lnShB·mt = (XB
imt −XB

·mt)θ
B + ξ̃

B
imt,

where XB
imt is the same as XL

imt. The results, reported in Table A3, have patterns that resemble

those in Table A2, except that the R2 is slightly lower: 0.3 vs. 0.44 in Table A2. In addition,

coefficients of exp6 and male are negative. The negative coefficient of exp6 reflects the fact that

realtors usually begin their careers as buyers’ agents, and gradually shift to working with sellers

after they become more established, a phenomenon that we documented in Table 3 in BP1. As

with
̂̃
ξ
L

imt in the listing share equation discussed in BP1, we find little persistence in
̂̃
ξ
B

imt. The

Arellano-Bond estimate of the autoregressive coefficient is -0.04.

The third element in the revenue function is the probability that agent i with a total of Limt

listings sells Timt of them:

Pr(Timt|Limt) =

(
Limt
Timt

)
Pr(sellimt)

Timt (1− Pr(sellimt))
Limt−Timt .
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We report MLE estimates of θS in Table A4. All columns share two common regressors: the

inventory-sales ratio Invmt and skill sit. Variable Invmt has a significant and sizable coefficient

that varies from -0.52 to -0.35 across different specifications. The coefficients of sit are also highly

significant and varies from 0.10 to 0.21. A standard deviation increase in the inventory-sales ratio

reduces the probability of sales by 11-16%, while a standard deviation increase in sit improves the

probability of sales by 3-6.5%.

Houses stay on the market for a longer period and become much harder to sell in the second

half of our sample (2005-2007). The average sales probability is 0.75 prior to 2005 and plunges

to 0.51 afterward. In columns (2)-(6) of Table A4, we add a trend break to allow for different

intercepts before and after year 2005. These intercepts are statistically different from each other in

all cases. In columns (3)-(6), we experiment with gender, experience, firm affiliation, and market

fixed effects. Interestingly, conditioning on skills sit, female brokers are more likely to strike a deal:

they sell 6% more of their listings than their male counterpart. Agents with 6 or more years of

experience also exhibit higher performance and are 8.7% more likely to carry through a transaction

than inexperienced agents. Brokers associated with Coldwell Banker appear to do slightly better

than those affiliated with Century 21, ReMax, or other firms. However, conditioning on Invmt,

sit, and the trend-break, gender, experience, or firm affiliation does not improve the model’s fit.

Our preferred specification is column (6), which also include market fixed effects to control for

time-invariant market-level housing conditions that affects whether a property gets sold.

2.2 State variables’ transition

There are five stochastic state variables: agent skill measure s and aggregate state variables

HP, Inv, L, and B. Estimates of AR(1) models for agent skills are reported in Table A5. The

autoregressive coefficients are similar across specifications and vary between 0.74 and 0.75. As

in the revenue regressions, agent gender and firm affiliation have little impact on R2. There is a

noticeable increase in R2 when the constant term is allowed to differ before and after 2005. Our pre-

ferred specification is column (5), where the regressors include the lag of skill as well as trend-break

dummies.

Results for aggregate state variables are documented in Table A6-A9. Market fixed effects

are included in the autoregressions because of the considerable size difference across markets: the

largest five markets have three times as many listings as the smallest five markets. As shown in the

first two columns of Table A6-A9, the autoregressive coefficient exhibits significant bias without

market fixed effects.

We estimated six different specifications for each aggregate state variable. The first four columns

are estimated by OLS. Column (1) is a simple AR(1) regression, column (2) adds market fixed

effects, column (3) and (4) introduce a separate constant before and after 2005. Column (5) and

(6) are estimated by the Arellano-Bond GMM estimator that differences out market fixed effects

and uses the levels and differences of the dependent variable in previous periods as instruments.

Column (6) is similar to column (5), except that it also contains trend-break dummies. Omission
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of fixed effects tends to over-estimate the autoregressive coefficient, while OLS with fixed effects

tends to generate a downward bias. The pattern that the Arellano-Bond estimate is in between

OLS estimates with and without fixed effects holds across all but one specification in Table A6-A9.

Our preferred specification is column (6).

We experimented with different autoregressive coefficients before and after 2005 in addition to

the trend-break dummies. There is little improvement in R2, and the slope coefficients post 2005

are unstable.

2.3 Estimates of β

We use a data dependant approach to determine the number of spline basis functions that ap-

proximate the value function. Specifically, we estimate the dynamic model several times with an

increasing number of spline functions until parameter estimates stabilize, where the element by

element difference between two sets of estimates βk and βk−1 is smaller than half of the standard

deviation:

k = min

{
k̃ : |β̂k̃j − β̂

k̃−1

j | ≤ 0.5 ∗ std

(
β̂
k̃

j

)
, ∀j

}
.

As described in BP1, we use MARS and the revenue function to obtain a set of splines, and use

non-parametric bootstraps to estimate parameter standard errors.

For a given tolerance level, say 10−4, MARS generates a set of splines ranked in decreasing

importance in fitting the revenue function. We start from 24 splines and add the number of basis

functions at an increment of 3: {24, 27, 30, ...}. There are no noticeable differences in parameters

with 39 or more splines. These estimates, together with their standard errors, are reported in Table

A10.

3 Counterfactual Analyses

The core component of the counterfactual analysis in BP1 involves solving for the fixed point of

the following equation:

E
(
L′
)

=
∑
i

Pr(activei;L
′, B′) exp(XL

i θ
L). (2)

where the summation is over incumbents and potential entrants (we assume there are N̄E entrants

in each period). In our counterfactuals, all ‘shocks’ (e.g., reduction in the commission rate) are

introduced in the beginning of the sample period (year 1998), with entries and exits in period t

carrying over to all future periods. Expanding equation (2) for each year in our sample, we have:

E(L′99(S)) =
∑
i

Pr(activei,99) exp(XL
i,99θ

L),

E(L′t(S)) =
∑
i

Pr(activei,99)...Pr(activei,t) exp(XL
i,tθ

L), for t > 99. (3)
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which makes explicit the dependence of future periods’ competition intensity L′t on past entry and

exit.

Ideally, one should sum the expected skill measure Pr(activei,99)...Pr(activei,t) exp(XL
i,tθ

L) over

all agents who were active at the beginning of the sample together with all potential entrants.

However, agents who exit at period t are no longer observed afterward. In addition, we could not

directly use information on observed entrants because the set of entrants in the data is likely to

differ from that in the counterfactual. To deal with these two issues, we distribute the skill measure

of exiting agents to remaining ones, and assigns appropriate weights to entrants.1 Consider a simple

two-period example with {A,B,C} in 1999 and {A,B,D,E} in 2000. In this example, C exits in

2000 and D and E enter in 2000. We would like to compute L′99 and L′00.

We first obtain conditional choice probabilities Pr(stayi,t) and Pr(entert) for all agents in both

periods as explained in BP1 (using a new payoff function and value function consistent with the

counterfactual). Then we compute L′99 using equation (3):

L′99 =
∑

i∈{A,B,C}

Pr(stayi,99) exp(XL
i,99θ

L) + N̄E Pr(enter99) exp(XL
99θ

L)

=
∑

i∈{A,B}

Pr(stayi,99) +
Pr(stayC,99) exp(XL

C,99θ
L)

2 exp(XL
i,99θ

L)

 exp(XL
i,99θ

L)

+N̄E Pr(enter99) exp(XL
99θ

L).

Note that in the second equation, we distribute agent C’s expected skill measure, Pr(stayC,99) exp(XL
C,99θ

L),

evenly to A and B. The first term in the second equation Pr(stayi,99) +
Pr(stayC,99) exp(XL

C,99θ
L)

2 exp(XL
i,99θ

L)
is

the weight for Agent A and B that allows us to compensate for the absence of C in 2000, as shown

next.

The calculation of L′00 is slightly more complicated. First, we compute A and B’s probability

of staying active through 2000, incorporating the weights discussed above:Pr(stayi,99) +
Pr(stayC,99) exp(XL

C,99θ
L)

2 exp(XL
i,99θ

L)

 ∗ Pr(stayi,00), for i = A,B.

Second, to address the issue that the number of observed entrants (two in this example) is likely to

differ from the model’s prediction for the counterfactual (which is N̄E Pr(entry99)), we distribute

N̄E Pr(entry99) equally to entrants D and E so that the total weight they carry is consistent with

1Another solution is to fill in missing values for all exiting agents and potential entrants by simulating sit’s future
path using its transition process and its observed distribution in the initial period. This would create a balanced
panel for all agents. One criticism of this approach is that agents who exit are likely to have a different AR(1) process
from remaining incumbents. In addition, there is a large number of entries and exits in our sample. Generating a
balanced panel requires filling missing values for 60% of the sample. We do not pursue this approach given these
concerns.
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the model’s prediction. With all agents re-weighted, we calculate L′00 via the following:

L′00 =
∑
i=A,B

Pr(stayi,99) +
Pr(stayC,99) exp(XL

C,99θ
L)

2 exp(XL
i,99θ

L)

Pr(stayi,00) exp(XL
i,00θ

L) +

∑
i=D,E

N̄E Pr(entry99)

2
Pr(stayi,00) exp(XL

i,00θ
L) + N̄E Pr(entry00) exp(XL

00θ
L).

The calculation of L′ in examples with more agents and a longer period is similar.

4 Evaluating Value Function Approximation

In this section, we briefly describe the value function approximation, compare our approach with

two other commonly used methods in the dynamic estimation literature, and evaluate parameter

bias associated with the value function approximation using Monte-Carlo simulations.

4.1 Value function approximation

Recall that we approximate the value function V (S) by a series of basis functions uj(S) :

J∑
j=1

bjuj(S) ' log

1 + exp

R̄(S, β) + δ
J∑
j=1

bj ∗ Euj(S′|S)


and choose {bj}Jj=1 to best-fit this non-linear equation in “least-squared-residuals”:

{
b̂j

}J
j=1

= arg min
{bj}

∥∥∥∥∥∥
J∑
j=1

bjuj(S(n))− log

1 + exp

R̄(S(n), β) + δ
J∑
j=1

bjEuj(S
′|S(n))

∥∥∥∥∥∥
2

, (4)

where
{
S(n)

}N
n=1

denotes state values observed in the data, and ‖·‖2 is the L2 norm.

Calculating EV involves a high-dimensional integral when there are a large number of state

variables: EV (S′|S) '
∑J

j=1 bj ∗ Euj(S′|S). Note that since uj(S) is known, we can pre-compute

Euj(S
′|S). This is a useful property, because recomputing a high-dimensional integral in each iter-

ation of the parameter estimation is time-intensive. There are many existing methods for numerical

integration. We choose a Quasi-Monte Carlo method because it is easy to implement and we can use

the number of simulations to directly control the variance of the numerical integration. Specifically,

we use randomized symmetric Richtmyer points to calculate Euj(S
′|S) = 1

R

∑R
r=1 uj(S

r|S). This

Quasi-Monte Carlo method uses carefully selected deterministic sequences of points to increase the

integration accuracy: the approximation error using N points is O( 1
N ), rather than O

(
1√
N

)
as the

standard Monte-Carlo numeric integration (for details, see Bretz and Genz (2009).) We use 20,000

Richtmyer points.
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4.2 Value function comparison

All of the Monte-Carlo simulations discussed in this section are designed to closely mimic the

empirical analysis in BP1, with the parameters in the revenue function and state transition process

similar to the estimates reported in BP1. All state variables are standardized.

We compare the value function approximated by basis functions V B(S) '
∑J

j=1 bjuj(S) with

two other value functions that are popular in the literature. The first is calculated using fixed

point iteration V F (Rust 1987), while the second is calculated via Pakes & McGuire stochastic

algorithm V S (Pakes and McGuire 2001). We have conducted extensive analysis using one to four

state variables. We are constrained to four state variables, because we ran out of memory on a

server with 32GB of RAM when we experimented with five state variables each with 10 grid points.

We focus on HP, Inv, L, and si (skill of agent i at time t), and fix state variable B at its sample

mean and the dummy variable L05 at 0. All Monte-Carlo simulations discussed below use four

state variables, as the discrepancy between V B and V F /V S increases with the number of state

variables and is the largest at four.

Both V F and V S require discretizing the state space. We use 10 grids for each of the four

state variables. To increase the accuracy of V F /V S , we adjust the end points to cover 97.5%

of the (random) state variable values, so that the grid is finer for state variables with less varia-

tion. Specifically, the end points for HP, Inv, L,and si is [−0.18, 1.49], [−1.63, 1.07], [−0.51, 0.80],

and [−1.15, 1.11], respectively. We divide them into 9 evenly-spaced intervals and use the mid-

points of these intervals (as well as ±∞) to form grids. For example, the grids for HP is:

{(− inf,−0.09], (−0.09, 0.10], ..., (1.39, inf)}. With four state variables, there are 104 grids.

Solving the value function using Rust’s fixed point iteration is straightforward. We start with

V F,0(S) = R̄(S,β)
1−δ , and iterate until the maximum absolute difference between adjacent iterations is

less than 10−6 :

|V F,k(S)− V F,k−1(S)|∞ < 10−6.

Using the relative absolute difference
∣∣∣V F,k(S)−V F,k−1(S)

V F,k(S)

∣∣∣
∞
< 10−6 as the convergence criterion leads

to very similar results.

The Pakes and McGuire stochastic algorithm is slightly more evolved. We start with an initial

draw of the state S0, as well as an initial guess of the continuation value for all state points{
w0(Sn) = EV (S′|Sn)

}104

n=1
, which we set to R̄(Sn,β)

1−δ . Then we draw a vector of normals η1 and

compute the state of the following period: S1 = T ∗ S0 + η1. To update w(S0), the continuation

value function at S0, we first evaluate the value function at the state of the following period S1 :

V (S1) = log
(
1 + exp

[
R̄(S1, β) + δw0(S1)

])
.

Then we update w(S0) via the following:

w1(S0) =
h(S0)

1 + h(S0)
w0(S0) +

1

1 + h(S0)
V (S1),
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where h(S0) is the number of times the state S0 is visited prior to this random simulation. Essen-

tially, this formula implies that wr(Sn) is a simple average of the value function evaluated at states

that directly follow from Sn: wr(Sn) = 1
h(Sn)

∑
i V (Si|Sn), where h(Sn) is the total number of times

that Sn is visited prior to the rth random draw. We iterate this procedure for 1 billion draws. As in

Pakes and McGuire (2001), we repeat 10 shorter-runs (with 10 million draws each) before starting

the long run (with one billion draws). Some of the states are rarely updated. When we compare

V S with V F and V B, we weight the differences by the number of times a state is visited.

There are several factors that contribute to differences between V B, V F , and V S . Discretizing

the state space introduces a discretization error in V F and V S (both V F (Sn) and V F (Sn) are

averages of the value function within a high-dimensional cube that contains the grid point Sn),

the stochastic algorithm introduces simulation errors in V S , and basis functions introduce approx-

imation errors in V B. All of these errors increase with the dimensionality of the state space. To

examine the accuracy of our basis approximation, we report differences between V B and V F , V S

using four state variables in Table A11.

The results are encouraging. All three value functions are very similar, with the correlations

of all three pairs of value functions exceeding 0.9997. V B is slightly bigger than the other two,

and the weighted average absolute difference between (V B, V F ) and (V B, V S) is 0.0405 and 0.0402,

respectively. The weight is the frequency each state is visited, h(Sn), obtained in constructing V S .

The unweighted absolute difference is similar, only slightly bigger.

There is a big difference in their computational cost, however. Rust’s fixed point iteration is fast

and takes less than a minute, but the memory requirement increases exponentially with the number

of state variables. The stochastic algorithm does not require as much memory, but it takes much

longer to estimate. In our application, it takes more than two hours to simulate one billion draws

(not including the initial burn-in time for ten shorter runs). If we need to re-compute the value

function in each iteration of the parameter estimation, it could take weeks or months to estimate

the model once. In comparison, the sieve estimation is computationally fast (less than 0.1 minute

with 4 state variables and 35 basis functions) and requires little memory. The only elements stored

in memory are the basis functions and their coefficients.

These advantages of the approximation method come with a cost. By replacing the true value

function V (S) with the approximating basis functions
∑J

j=1 bjuj(S), it introduces the approxima-

tion error. In the following section, we evaluate the magnitude of parameter bias as a result of the

approximation error.

4.3 Parameter estimates in Monte Carlo simulations

To evaluate the magnitude of parameter bias, we need to generate pseudo datasets using the true

value function V (S). This is an unknown object. For results reported in the first panel of Table

A12, we assume that the true value function is V F , and simulate data using the following equation:

Wi(S) = 1
[
R̄(S, β) + δEV F (S′|S) + εi1 > εi0

]
, i = 1, ..., 2500,
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where Wi = 1 denotes agent i is active, R̄ is the same as in BP1, and εi1 and εi0 are i.i.d. extreme

value random variables. We fix the sample size of each simulated data set at 2,500, which is

quite small compared with the dataset in BP1 that has more than 40,000 observations. Since the

empirical exercise in BP1 has five continuous state variables and one discrete state variable (i.e.,

the state space is larger), we deliberately choose a smaller sample size here so that the parameter

bias of the empirical estimation in BP1 is likely to be of the same magnitude as that reported here.

As described in BP1, we estimate β using constrained MLE:

LL(S;β, b) =
∑
i,t

1 [stay=0] ∗ log[1− Pr(stayit|β, b)] +
∑
i,t

1 [stay=1] ∗ log[Pr(stayit|β, b)], (5)

subject to the constraint that spline coefficients {bj}Jj=1 minimize the Bellman violation as specified

in equation (4). We estimate β three times, with an increasing number of spline terms going from

13 to 27. Standard errors are calculated using 100 Monte-Carlo simulations. The top panel of

Table A12 reports the mean and standard deviation of these β estimates.

We repeat this exercise in the bottom panel of Table A12, except that the data are gener-

ated using V B that is calculated using the same set of spline terms as that used in estimation.

Hence, there are no approximation error in these β estimates, which are standard constrained MLE

estimates. We use β̂ in the bottom panel as a benchmark for results in the top panel.

The Monte Carlo results reported in Table A12 suggest that the approximation error in V B leads

to little parameter bias. In the top panel, the parameter bias is around 0.003 for β2, the revenue

coefficient, when we approximate the value function using 13 spline terms. It varies between 0.002

to 0.006 with different number of basis functions. The bias for β1 is also reasonably small, around

0.01 to 0.02. In all cases, the finite sample bias is small compared to the standard deviation of these

parameter estimates, which is about 0.05-0.07. The bias in the top panel also compares favorably

with the finite sample bias exhibited in the bottom panel, which varies between 0.001 to 0.02 for

β1 and 0.003-0.013 for β2.

With a finite sample, the number of spline terms k plays an important role. In theory, more

spline terms lead to a more accurate approximation of the value function at the cost of higher

variances. In practice, too many spline terms often lead to various numerical problems, including

difficulties in minimizing high-dimensional nonlinear functions, as well as estimation problems like

collinearity and a large number of nuisance parameters. We propose a data driven method to

determine k. Let β̂
k

denote the parameter estimates associated with k spline terms. We increase

k until the difference between β̂
k

and β̂
k−1

is smaller than half of the standard deviation of β̂
k

element by element (which can be estimated using non-parametric bootstrap simulations).

We have estimated many variants of our model with one to four state variables. The estimated

parameters converge fairly quickly. With 2,500 observations, the parameters often settle down

when the number of spline terms increases to 10-20. In general, the bias is small and in most cases

smaller than parameters’ standard deviations. It is important to note that in scenarios where bias

is potentially an issue, one can use various bias reduction techniques proposed in the econometrics

11



literature. Our estimator is fast and easy to compute, and is amenable to most bias reduction

techniques that would not have been feasible with most other estimators used in the dynamic

discrete choice literature.

We take these results as evidence that approximating the value function using suitable basis

functions works well in our application. Finally, our experience suggests that using the revenue

function to obtain a set of basis functions that capture the shape of the value function seems very

important. Choosing a dense product of polynomial terms of the state variables tends to generate

noticeable bias in parameter estimates.
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Variable Obs Mean Std. Dev. Min Max

Year 41856 2003.38 2.59 1999 2007

Skill 41856 0.08 0.49 ‐0.48 1.04

Exp6 41856 0.57 0.50 0 1

Active 41856 0.88 0.32 0 1

Exit 41856 0.12 0.32 0 1

PrSld 33670 0.69 0.31 0 1

Male 41856 0.35 0.46 0 1

Century21 41856 0.18 0.39 0 1

Coldwell Banker 41856 0.20 0.40 0 1

ReMax 41856 0.09 0.28 0 1

Aggregate state variables

HP 279 0.00 1.00 ‐1.27 3.89

Inv 279 0.00 1.00 ‐1.50 3.85

L  279 0.00 1.00 ‐1.19 3.47

B 279 0.00 1.00 ‐1.17 3.63

L05 279 0.67 0.47 0 1

Ge05 279 0.33 0.47 0 1

Data source: MLS.

Table A1: Summary Statistics



(1) (2) (3) (4)

Skill 1.27*** 1.27*** 1.25*** 1.27***

(0.01) (0.01) (0.01) (0.01)

Male 0.03***

(0.01)

Exp6 0.14***

(0.01)

Century 21 0.02*

(0.01)

Coldwell Banker ‐0.03***

(0.01)

ReMax 0.05***

(0.01)

Preferred Specification X

Estimation Method OLS OLS OLS OLS

N 32237 32237 32237 32237

R2 adjusted 0.44 0.44 0.44 0.44

(1) (2) (3) (4)

Skill 0.90*** 0.90*** 0.91*** 0.89***

(0.01) (0.01) (0.01) (0.01)

Male ‐0.06***

(0.01)

Exp6 ‐0.10***

(0.01)

Century 21 0.04***

(0.01)

Coldwell Banker 0.08***

(0.01)

ReMax 0.11***

(0.01)

Preferred Specification X

Estimation Method OLS OLS OLS OLS

N 30986 30986 30986 30986

R2 adjusted 0.30 0.30 0.30 0.30

Table A2: Listing Share Regressions

Table A3: Buying Share Regressions

Note: '*' significant at 10% level, '**' significant at 5% level, and '***' significant at 1% level. 'Skill' is agent 

i's number of transactions in the previous year. 'Exp6' is one for agents with six or more years of 

experience.



(1) (2) (3) (4) (5) (6)

Inv ‐0.52*** ‐0.41*** ‐0.41*** ‐0.40*** ‐0.41*** ‐0.35***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Skill 0.13*** 0.13*** 0.15*** 0.10*** 0.13*** 0.21***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

L05 1.11*** 1.18*** 0.92*** 1.06*** 1.27***

(0.01) (0.01) (0.01) (0.01) (0.03)

Ge05 0.75*** 0.83*** 0.56*** 0.69*** 0.83***

(0.01) (0.01) (0.01) (0.01) (0.03)

Male ‐0.20***

(0.01)

Exp6 0.28***

(0.01)

Century 21 0.08***

(0.01)

Coldwell Banker 0.20***

(0.01)

ReMax 0.03***

(0.01)

Constant 1.00***

(0.01)

Preferred Specification X

Estimation Method MLE MLE MLE MLE MLE MLE

Market Fixed Effects No No No No No Yes

N 32237 32237 32237 32237 32237 32237

Pseudo R2 adjusted 0.16 0.17 0.17 0.17 0.17 0.18

(1) (2) (3) (4) (5) (6)

lag_Skill 0.75*** 0.75*** 0.75*** 0.75*** 0.75*** 0.74***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Male 0.00

(0.00)

Exp6 0.02***

(0.00)

Century 21 0.01

(0.01)

Coldwell Banker 0.00

(0.01)

ReMax 0.02***

(0.01)

L05 0.04*** 0.09***

(0.00) (0.01)

Ge05 0.00 0.05***

(0.00) (0.01)

Constant 0.03*** 0.03*** 0.01*** 0.02***

(0.00) (0.00) (0.00) (0.00)

Preferred Specification X

Estimation Method OLS OLS OLS OLS OLS OLS

Market Fixed Effects No No No No No Yes

N 30648 30648 30648 30648 30648 30648

R2 adjusted 0.54 0.54 0.54 0.54 0.59 0.59

Table A4: Sold Probability Regressions

Note:  '*' significant at 10% level, '**' significant at 5% level, and '***' significant at 1% level. 'Inv' is the sales‐inventory ratio; 

'L05' and 'Ge05' are indicators for year<2005 and year>=2005, respectively. See Table A3 for the explanation of Skill and Exp6. 

'R
2
 adjusted' in Table A4 is calculated by authors.

Table A5: Skill Autoregressions



(1) (2) (3) (4) (5) (6)

lag_HP 0.96*** 0.76*** 1.00*** 0.87*** 0.84*** 0.74***

(0.02) (0.03) (0.02) (0.05) (0.02) (0.05)

L05 0.15*** 0.04 0.29***

(0.02) (0.09) (0.03)

Ge05 ‐0.11*** ‐0.12 0.17***

(0.03) (0.09) (0.05)

Constant 0.06*** ‐0.06 0.06***

(0.02) (0.09) (0.01)

Preferred Specification X

Estimation Method OLS OLS OLS OLS GMM‐IV GMM‐IV

Market Fixed Effects No Yes No Yes Yes Yes

N 279 279 279 279 279 279

R2 adjusted 0.92 0.93 0.94 0.93 0.93 0.93

(1) (2) (3) (4) (5) (6)

lag_Inv 1.02*** 0.76*** 0.76*** 0.57*** 0.91*** 0.65***

(0.05) (0.06) (0.05) (0.06) (0.04) (0.05)

lag_HP 0.09** 0.73*** 0.03 0.35*** 0.38*** 0.21***

(0.04) (0.08) (0.03) (0.09) (0.05) (0.06)

L05 ‐0.10** ‐0.44** ‐0.10**

(0.04) (0.18) (0.05)

Ge05 0.74*** 0.35** 0.62***

(0.06) (0.17) (0.07)

Constant 0.23*** 0.18 0.21***

(0.04) (0.19) (0.03)

Preferred Specification X

Estimation Method OLS OLS OLS OLS GMM‐IV GMM‐IV

Market Fixed Effects No Yes No Yes Yes Yes

N 279 279 279 279 279 279

R2 adjusted 0.67 0.72 0.76 0.78 0.70 0.77

Table A6: Market Level Housing Value Autoregressions

Table A7: Sales‐Inventory Ratio Autoregressions

Note:  '*' significant at 10% level, '**' significant at 5% level, and '***' significant at 1% level. 'HP' is the product of the 

aggregate number of house listings and the average housing price index. 'Inv' is the sales‐inventory ratio. 'L05' and 'Ge05' 

are indicators for year<2005 and year>=2005, respectively.   GMM‐IV refers to the Arellano‐Bond estimator. 'R2 adjusted' in 

columns (5)‐(6) is calculated by authors.



(1) (2) (3) (4) (5) (6)

lag_L 0.97*** 0.56*** 0.97*** 0.56*** 0.79*** 0.79***

(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

lag_HP 0.10*** 0.45*** 0.10*** 0.44*** 0.36*** 0.35***

(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

lag_Inv ‐0.07*** ‐0.05*** ‐0.08*** ‐0.09*** ‐0.09*** ‐0.13***

(0.02) (0.01) (0.02) (0.02) (0.01) (0.02)

L05 0.08*** ‐0.03 0.03*

(0.02) (0.07) (0.02)

Ge05 0.09** 0.08 0.12***

(0.04) (0.06) (0.03)

Constant 0.08*** 0.05 0.06***

(0.02) (0.06) (0.01)

Preferred Specification X

Estimation Method OLS OLS OLS OLS GMM‐IV GMM‐IV

Market Fixed Effects No Yes No Yes Yes Yes

N 279 279 279 279 279 279

R2 adjusted 0.93 0.97 0.93 0.97 0.96 0.96

(1) (2) (3) (4) (5) (6)

lag_B 0.95*** 0.48*** 0.95*** 0.47*** 0.76*** 0.76***

(0.02) (0.03) (0.02) (0.03) (0.02) (0.02)

lag_HP 0.10*** 0.53*** 0.10*** 0.52*** 0.36*** 0.35***

(0.02) (0.04) (0.02) (0.04) (0.02) (0.02)

lag_Inv ‐0.09*** ‐0.07*** ‐0.08*** ‐0.09*** ‐0.11*** ‐0.13***

(0.02) (0.01) (0.02) (0.02) (0.01) (0.02)

L05 0.08*** ‐0.08 0.04**

(0.02) (0.07) (0.02)

Ge05 0.04 ‐0.03 0.09***

(0.04) (0.06) (0.03)

Constant 0.07*** ‐0.05 0.05***

(0.02) (0.06) (0.01)

Preferred Specification X

Estimation Method OLS OLS OLS OLS GMM‐IV GMM‐IV

Market Fixed Effects No Yes No Yes Yes Yes

N 279 279 279 279 279 279

R2 adjusted 0.93 0.97 0.93 0.97 0.96 0.96

Table A8: Listing Share Inclusive Value Autoregressions

Table A9: Buying Share Inclusive Value Autoregressions

Note:  '*' significant at 10% level, '**' significant at 5% level, and '***' significant at 1% level. 'L' is the listing share 

inclusive value, and 'B' is the buying share inclusive value. 'L05' and 'Ge05' are indicators for year<2005 and year>=2005, 

respectively. See Table A7 for the definition of 'HP' and 'Inv'.  GMM‐IV refers to the Arellano‐Bond estimator. 'R2 

adjusted' in columns (5)‐(6) is calculated by authors.



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Revenue coefficient β1
2.21 2.22 2.23 2.11 2.12 2.12 2.13 2.13 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04

Market specific constant β2
ARLINGTON ‐0.98 ‐0.98 ‐0.96 ‐0.90 ‐0.91 ‐0.90 ‐0.77 ‐0.78 0.12 0.12 0.12 0.11 0.12 0.11 0.11 0.11

BROOKLINE ‐1.56 ‐1.54 ‐1.45 ‐1.38 ‐1.38 ‐1.38 ‐1.38 ‐1.38 0.09 0.09 0.04 0.04 0.04 0.04 0.04 0.04

CAMBRIDGE ‐1.66 ‐1.67 ‐1.67 ‐1.46 ‐1.46 ‐1.46 ‐1.45 ‐1.45 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

CONCORD ‐1.73 ‐1.75 ‐1.78 ‐1.76 ‐1.76 ‐1.77 ‐1.78 ‐1.78 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

DANVERS ‐0.66 ‐0.66 ‐0.65 ‐0.67 ‐0.66 ‐0.66 ‐0.62 ‐0.63 0.11 0.11 0.11 0.11 0.10 0.10 0.12 0.12

DEDHAM ‐1.03 ‐1.02 ‐1.01 ‐0.99 ‐0.99 ‐0.98 ‐1.14 ‐1.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09

HINGHAM ‐1.03 ‐1.03 ‐1.20 ‐1.17 ‐1.19 ‐1.19 ‐1.21 ‐1.21 0.09 0.09 0.03 0.03 0.03 0.03 0.03 0.03

LEXINGTON ‐1.07 ‐1.07 ‐1.34 ‐1.28 ‐1.28 ‐1.28 ‐1.28 ‐1.28 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03

LYNN ‐0.97 ‐0.96 ‐0.95 ‐0.80 ‐0.80 ‐0.80 ‐0.80 ‐0.81 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06

MALDEN ‐1.01 ‐0.97 ‐0.96 ‐0.85 ‐0.86 ‐0.86 ‐0.83 ‐0.83 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05

MARBLEHEAD ‐1.03 ‐1.03 ‐1.02 ‐0.96 ‐0.95 ‐0.94 ‐0.90 ‐0.91 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13

MEDFORD ‐1.09 ‐1.08 ‐1.07 ‐1.05 ‐1.05 ‐1.04 ‐1.04 ‐1.05 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

NEEDHAM ‐0.96 ‐1.27 ‐1.28 ‐1.24 ‐1.25 ‐1.34 ‐1.36 ‐1.36 0.13 0.04 0.04 0.04 0.04 0.04 0.04 0.04

NEWTON ‐1.31 ‐1.32 ‐1.33 ‐1.31 ‐1.31 ‐1.31 ‐1.30 ‐1.31 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

PEABODY ‐0.82 ‐0.83 ‐0.82 ‐0.78 ‐0.79 ‐0.79 ‐0.82 ‐0.80 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.07

QUINCY ‐0.87 ‐0.86 ‐0.86 ‐0.68 ‐0.67 ‐0.67 ‐0.64 ‐0.65 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06

RANDOLPH ‐1.01 ‐1.01 ‐1.00 ‐1.00 ‐1.01 ‐1.00 ‐1.00 ‐1.01 0.12 0.12 0.12 0.12 0.11 0.12 0.12 0.12

READING ‐0.87 ‐0.88 ‐0.87 ‐0.88 ‐0.88 ‐0.87 ‐0.89 ‐0.90 0.10 0.09 0.10 0.09 0.09 0.09 0.10 0.10

REVERE ‐0.89 ‐0.90 ‐0.90 ‐0.63 ‐0.65 ‐0.64 ‐0.71 ‐0.72 0.06 0.06 0.05 0.07 0.06 0.06 0.06 0.06

SALEM ‐0.83 ‐0.83 ‐0.82 ‐0.78 ‐0.79 ‐0.78 ‐0.88 ‐0.83 0.10 0.09 0.10 0.09 0.09 0.09 0.09 0.06

SOMERVILLE ‐1.31 ‐1.31 ‐1.30 ‐1.24 ‐1.25 ‐1.24 ‐1.41 ‐1.42 0.11 0.11 0.11 0.10 0.11 0.10 0.09 0.09

STOUGHTON ‐0.88 ‐0.87 ‐0.86 ‐0.83 ‐0.78 ‐0.78 ‐0.81 ‐0.82 0.07 0.08 0.08 0.08 0.07 0.08 0.08 0.08

WAKEFIELD ‐1.04 ‐1.04 ‐1.03 ‐0.94 ‐0.94 ‐0.93 ‐0.90 ‐0.91 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07

WALPOLE ‐0.92 ‐0.92 ‐0.90 ‐0.89 ‐0.89 ‐0.89 ‐0.89 ‐0.90 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.07

WALTHAM ‐0.96 ‐0.97 ‐0.96 ‐0.92 ‐0.93 ‐0.92 ‐0.95 ‐0.96 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

WATERTOWN ‐0.99 ‐0.99 ‐0.98 ‐0.93 ‐1.07 ‐1.07 ‐1.07 ‐1.07 0.11 0.11 0.11 0.11 0.03 0.03 0.03 0.03

WELLESLEY ‐1.24 ‐1.27 ‐1.30 ‐1.83 ‐1.84 ‐1.84 ‐1.86 ‐1.86 0.07 0.07 0.06 0.04 0.04 0.04 0.04 0.04

WEYMOUTH ‐0.81 ‐0.80 ‐0.78 ‐0.74 ‐0.73 ‐0.73 ‐0.74 ‐0.70 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.03

WILMINGTON ‐0.95 ‐0.95 ‐0.93 ‐0.85 ‐0.86 ‐0.86 ‐0.90 ‐0.90 0.11 0.11 0.11 0.12 0.12 0.12 0.13 0.13

WINCHESTER ‐1.28 ‐1.37 ‐1.38 ‐1.34 ‐1.34 ‐1.47 ‐1.47 ‐1.47 0.13 0.04 0.04 0.04 0.04 0.04 0.04 0.04

WOBURN ‐0.93 ‐0.93 ‐0.92 ‐0.80 ‐0.81 ‐0.81 ‐0.84 ‐0.84 0.13 0.13 0.13 0.15 0.15 0.15 0.16 0.17

Number of Splines 24 27 30 33 36 39 42 45

Table A10: Parameter Estimates for Eight Sets of Spline Basis Functions

Coefficient Estimates Standard Errors

Note: columns (1)‐(8) report parameter estimates, and columns (9)‐(16) present corresponding standard errors. All standard errors are calculated via 100 

bootstraps. The last row is the number of spline terms used in approximating the value function.



VB VF VS Error
VB 1 0.9998 0.9997 0.023 35 0.10

VF 0.9998 1 0.99999 8.17E‐07 10000 0.26

VS 0.9997 0.99999 1 0.001 10000 125.20

Ave. Abs. Difference

VF VS Mean(V) Std(V) Min(V) Max(V)
VB 0.040 0.040 1.41 1.07 0.50 7.03

Note: four continuous state variables.

Simulate Data w/ VF β0 Mean Std Mean Std Mean Std
beta1 1 0.990 0.07 0.982 0.07 0.984 0.07

beta2 ‐1 ‐1.003 0.05 ‐0.994 0.05 ‐0.998 0.06

Num. of basis terms 13 19 27

Simulate Data w/ VB β0
beta1 1 0.999 0.10 1.017 0.06 1.020 0.08

beta2 ‐1 ‐0.987 0.08 ‐1.003 0.05 ‐1.008 0.06
Num. of basis terms 13 19 27

Note: results of all 6 sets are calculated using 100 monte‐carlo simulations. 2500 observations.

3rd Set

Table A12: Structural Parameter Estimates

Correlation

Table A11: Comparison between V
B, VF, and VS

Num. of 

Elements

Computing

Time (min)

1st Set 2nd Set
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