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Abstract

This article studies experimental design in settings where the experimental units are
large aggregate entities (e.g., markets), and only one or a small number of units can
be exposed to the treatment. In such settings, randomization of the treatment may
induce large estimation biases under many or all possible treatment assignments.
We propose a variety of synthetic control designs (Abadie et al., 2010, Abadie and
Gardeazabal, 2003) as experimental designs to select treated units in non-randomized
experiments with large aggregate units, as well as the untreated units to be used as
a control group. Average potential outcomes are estimated as weighted averages of
treated units for potential outcomes with treatment, and control units for poten-
tial outcomes without treatment. We analyze the properties of such estimators and
propose inferential techniques.

1. Introduction

Consider the problem of a ride-sharing company choosing between two compensation plans for

drivers (Doudchenko et al., n.d.; Jones and Barrows, 2019). The company can either keep the

current compensation plan or adopt a new one with higher incentives. In order to estimate the

effect of a change in compensation plans on profits, the company’s data science unit designs and

implements an experimental evaluation where the new plan is deployed at a small scale, say, in

one of the local markets (cities) in the US. In this setting, a randomized control trial — or A/B

test, where drivers in a local market are randomized into the new plan (active treatment arm) or

the status-quo (control treatment arm) — is problematic. On the one hand, such an experiment

raises equity concerns, as drivers in different treatment arms obtain different compensations for

the same jobs. On the other hand, if drivers in the active treatment arm respond to higher

incentives by working longer hours, they will effectively steal business from drivers in the control
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arm of the experiment, which will result in biased experimental estimates.

A possible approach to this problem is to assign an entire local market to treatment, and

use the rest of the local markets, which remain under the current compensation plan during the

experimental window, as potential comparison units. In this setting, using randomization to

assign the active treatment allows ex-ante (i.e., pre-randomization) unbiased estimation of the

effect of the active treatment. However, ex-post (i.e., post-randomization) biases can be large

if, at baseline, the treated unit is different from the untreated units in the values of the features

that affect the outcomes of interest.

As in the ride-sharing example where there is only one treated local market, large biases may

arise more generally in randomized studies when either the treatment arm or the control arm

contains a small number of units, so randomized treatment assignment may not produce treated

and control groups that are similar in their features. In those cases, the fact that estimation

biases would have averaged out over alternative treatment assignments is of little comfort to a

researcher who, in practice, is limited to one assignment only.

To address these challenges, we propose the use of the synthetic control method (Abadie

et al., 2010, Abadie and Gardeazabal, 2003) as an experimental design to select treated units in

non-randomized experiments, as well as the untreated units to be used as a comparison group.

We use the name synthetic control designs to refer to the resulting experimental designs.1,2

In our framework, the choice of the treated unit (or treated units, if multiple treated units are

desired) aims to accomplish two goals. First, it is often useful to select the treated units such that

their features are representative of the features of an aggregate of interest, like an entire country

market. The treatment effect for the treated units selected in this way may more accurately

reflect the effect of the treatment on the entire aggregate of interest. Second, the treated units

should not be idiosyncratic in the sense that their features cannot be closely approximated by the

units in the control arm. Otherwise, the reliability of the estimate of the effect on the treated

1While we leave the “experimental” qualifier implicit in “synthetic control design”, it should be noted that the
synthetic control designs proposed in this article differ from observational synthetic control designs (e.g., Abadie
et al., 2010, Abadie and Gardeazabal, 2003, Doudchenko and Imbens, 2016), for which the identity of the treated
unit(s) is taken as given.

2See, e.g., Abadie (2021), Amjad et al. (2018), Arkhangelsky et al. (2019), Doudchenko and Imbens (2016) for
background material on synthetic controls and related methods.
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unit may be questionable. We show how to achieve these two objectives, whenever they are

possible to achieve, using synthetic control techniques.

While we are aware of the extensive use of synthetic control techniques for experimental

design in business analytics units, especially in the tech industry,3 the academic literature on

this subject is at a nascent stage. There are, however, three publicly available studies that are

connected to this article. To our knowledge, Doudchenko et al. (n.d.) is the first (and only)

publicly available study on the topic of experimental design with synthetic controls, and it is

closely related to the present article. The focus of Doudchenko et al. (n.d.) is on statistical

power, which they calculate by simulation of the estimated effects of placebo interventions on

historical (pre-experimental) data. That is, the selection of treated units is based on a measure

of statistical power implied by the distribution of the placebo estimates for each unit. As a

result, estimates based on the procedure in Doudchenko et al. (n.d.) target the effect of the

treatment for the unit or units that are most closely tracked in the placebo distribution. In

the present article, we aim to take a different perspective on the problem of unit selection in

experiments with synthetic controls; one that takes into account the extent to which different sets

of treated and control units approximate an aggregate causal effect of interest. Agarwal et al.

(2021) propose synthetic interventions, a framework related to synthetic controls, and apply

it to estimate treatment effect heterogeneity in experimental setting with multiple treatments.

Bottmer et al. (2021) is also related to the present article in the sense that they study synthetic

control estimation in an experimental setting. Their article, however, considers only the case

when the treatment is randomized, and is not concerned with issues of experimental design.

2. Synthetic Control Designs

We consider a setting with T time periods and J units, which may represent J local markets

as in the example in the previous section. Let T0 be the number of pre-experimental periods,

with 1 ≤ T0 < T , and let T1 be the length of the experimental window, with T1 = T − T0. We

consider the following problem. At the end of period T0, an analyst plans out an experiment

3See, in particular, Jones and Barrows (2019), which also provides the basis for the ride-sharing example
above.

3



to conduct during periods T0 + 1, T0 + 2, . . . , T . Using information available at T0, the analyst

aims to select the set of units that will be administered treatment (intervention) during the

experimental periods.

To define causal parameters, we formally adopt a potential outcomes framework. For any

j ∈ {1, . . . , J} and any t ∈ {T0 + 1, . . . , T}, let Y I
jt be the potential outcome for unit j at time t

when the unit is exposed to treatment starting at T0 + 1. Similarly, for any j ∈ {1, . . . , J} and

any t ∈ {1, . . . , T}, let Y N
jt be the potential outcome for unit j at time t under no treatment. We

assume that the outcome variable of interest is scaled so that it does not depend on the size of

the unit. In the ride-sharing example, Y I
jt and Y N

jt could measure net income divided by market

size, under the active and the control treatment, respectively. Unit-level treatment effects are

defined as

αjt = Y I
jt − Y N

jt ,

for j = 1, . . . , J and t = T0 + 1, . . . , T . These parameters represent the effect of switching at

time T0 + 1 to the active treatment on the outcome of unit j at time t > T0. We aim to estimate

the average treatment effect

τt =
J∑
j=1

fj(Y
I
jt − Y N

jt ),

for t = T0 + 1, . . . , T . In this expression, fj represents a set of known positive weights that are

relevant to the definition of the average. In the ride-sharing example of the previous section,

fj could represent the size of local market j as a share of the national market. Without loss of

generality, and because it is the case in many applications, we can assume that the weights fj

sum to one,
J∑
j=1

fj = 1.

In the case when units are equally weighted, we set fj = 1/J for j = 1, . . . , J . We will use the

notation f for a vector that collects the values of fj for all the units, i.e., f = (f1, . . . , fJ).

At time T0, in order to estimate the treatment effect τt for t = T0 + 1, . . . , T , an experimenter
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chooses w = (w1, . . . , wJ) and v = (v1, . . . , vJ), such that

J∑
j=1

wj = 1,

J∑
j=1

vj = 1,

wj ≥ 0, vj ≥ 0, and wjvj = 0, (1)

for all j = 1, . . . , J . Units with wj > 0 are units that will be assigned to the intervention of

interest from T0 + 1 to T . These units are chosen to approximate average outcomes under the

intervention of interest. Units with wj = 0 constitute an untreated reservoir of potential control

units (a “donor pool”). Among units with wj = 0, those with vj > 0 are used to estimate average

outcomes under no intervention.

The first goal of the experimenter is to choose w1, . . . , wJ such that

J∑
j=1

wjY
I
jt =

J∑
j=1

fjY
I
jt, (2)

for t = T0 + 1, . . . , T . If equation (2) holds, a weighted average of outcomes for the units

selected for treatment reproduces the average outcome with treatment for the entire population

of J units. In practice, however, the choice of w1, . . . , wJ cannot directly rely on matching

the population average of Y I
jt, as in equation (2). The quantities Y I

jt are unobserved before time

T0 +1, and will remain unobserved in the experimental periods for the units that are not exposed

to the treatment. Instead, we will aim to approximate equation (2) using predictors observed

at T0 of the values of Y I
jt for t > T0. Notice also that it is not possible to use the solution

w1 = f1, . . . , wJ = fJ , because it would leave no units in the donor pool, making the set of units

with vj > 0 empty and violating the second condition in (1).

The second goal of the experimenter is to choose v1, . . . , vJ such that

J∑
j=1

vjY
N
jt =

J∑
j=1

fjY
N
jt , (3)

or, alternatively,

J∑
j=1

vjY
N
jt =

J∑
j=1

wjY
N
jt . (4)
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If equations (3) or (4) hold, a weighted average of outcomes for the units in the donor pool

reproduces the average outcome without treatment for the entire population of J units (equation

(3)), or for the units selected for treatment (equation (4)). As in the previous case with treated

outcomes, it is not feasible to directly choose v1, . . . , vJ so that equations (3) or (4) are satisfied.

Below we propose a variety of methods to approximate either (3) or (4) based on predictors

observed at T0 of Y N
jt for t > T0.

For the treated units, we define Yjt = Y N
jt if t = 1, . . . , T0, and Yjt = Y I

jt if t = T0 + 1, . . . , T .

For the untreated units, we define Yjt = Y N
jt , for all t = 1, . . . , T . Yjt is the outcome observed for

unit j = 1, . . . , J at time t = 1, . . . , T . We will say that

J∑
j=1

wjYjt and
J∑
j=1

vjYjt

are the synthetic treated and synthetic control outcomes, respectively. The difference between

these two quantities is

τt(w,v) =
J∑
j=1

wjYjt −
J∑
j=1

vjYjt,

for t = T0 + 1, . . . , T . Suppose that equations (2) and (3) hold. Then, τt(w,v) is equal to the

average treatment effect, τt. If equation (4) holds instead, then τt(w,v) is equal to the average

effect of the treatment on the treated,

τTt =
J∑
j=1

wj(Y
I
jt − Y N

jt ).

As discussed above, we will choose wj and vj to match the pre-intervention values of the predictors

of potential outcomes. Let Xj be a column vector of pre-intervention features of unit j. We see

the features in Xj as predictors of post-intervention values of Y N
jt and Y I

jt, in a sense that will

be made precise in Section 3. We will use the notation

X =
J∑
j=1

fjXj.

That is,X is the vector of population values for the predictors in Xj.

We will consider a variety of selectors for the weights, w1, . . . , wJ , v1, . . . , vJ . For any real

vector x, let ‖x‖ be the Euclidean norm of x, and let ‖x‖0 be the number of non-zero coordinates
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of x. Let m and m be positive integers such that 1 ≤ m ≤ m ≤ J − 1. A simple selector of

w = (w1, . . . , wJ) and v = (v1, . . . , vJ) is

min
w1,...,wJ ,
v1,...,vJ

∥∥∥∥∥X−
J∑
j=1

wjXj

∥∥∥∥∥
2

+

∥∥∥∥∥X−
J∑
j=1

vjXj

∥∥∥∥∥
2

s.t.
J∑
j=1

wj = 1,

J∑
j=1

vj = 1,

wj, vj ≥ 0, j = 1, . . . , J,

wjvj = 0, j = 1, . . . , J,

m ≤ ‖w‖0 ≤m. (5)

The two terms of the objective function in (5) measure the discrepancies between the population

average of the covariates in Xj (f -weighted) and the averages of the covariates for units assigned

to the treatment (w-weighted) and units assigned to the control group (v-weighted), respectively.

The first four constraints stipulate that the weights in w, as well as the weights in v, are non-

negative and sum to one. They also stipulate that any unit selected for treatment cannot be

utilized as a control unit — so, if wj > 0, then vj = 0. The last constraint allows a minimum and

maximum number of units assigned to treatment. This restriction is of practical importance in a

variety of contexts, especially when experimentation is costly and the experimenter is restricted

in the number of units that may receive the treatment. The values m = 1 and m = J − 1

correspond to the unconstrained case. The last constraint in (5) is not the only conceivable

restriction to the size or cost of the experiment. An explicit upper bound on the cost of an

experiment would be given by β′d ≤ b. Where the j-th coordinate of β is equal to the cost of

assigning unit j to treatment, d is a (J × 1)-vector with ones for coordinates with wj > 0, and

zeros otherwise, and b is the experimenter’s budget.

Let w∗ = (w∗1, . . . , w
∗
J), v∗ = (v∗1, . . . , v

∗
J) be a solution of the optimization problem in (5).

Suppose that units with w∗j > 0 are assigned to treatment in the experiment, and units with
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w∗j = 0 are kept untreated. A synthetic control estimator of τt is τ̂t = τt(w
∗,v∗). That is,

τ̂t =
J∑
j=1

w∗jYjt −
J∑
j=1

v∗jYjt. (6)

This estimator is based on approximations to equations (2) and (3) that rely on Xj, the observed

predictors of the potential outcomes, Y N
jt and Y I

jt.

In what follows, we take the weight selector in (5) as a starting point for synthetic control

designs, and modify it in several respects. First, notice that for every solution to (5) with

m ≤ ‖v‖0 ≤ m, there is always another solution that swaps the roles of the treated and the

untreated in the experiment. Moreover, in some applications there may not be two disjoint

sets of units that closely reproduce the values in X, or that produce the values in X without

heavily relying on interpolation between distant units. To address these two considerations, we

modify the synthetic control design in (5) in the following manner. As for (5), the analyst selects

a synthetic treated unit to match the average values of the characteristics in the population.

However, unlike in the design in (5), the analyst chooses multiple synthetic controls, one for

each unit that contributes to the synthetic treated unit. For any (J × 1)-vector of non-negative

coordinates, w = (w1, . . . , wJ), let Jw be the set of the indices with non-zero coordinates,

Jw = {j : wj > 0}. Our second version of the synthetic experiment design is:

min
w1,...,wJ ,
v1,...,vJ

∥∥∥∥∥X−
J∑
j=1

wjXj

∥∥∥∥∥
2

+ ξ
J∑
j=1

wj

∥∥∥∥∥Xj −
J∑
i=1

vijXi

∥∥∥∥∥
2

s.t.
J∑
j=1

wj = 1,

wj ≥ 0, j = 1, . . . , J,

J∑
i=1

vij = 1, ∀j ∈ Jw,

vij = 0, ∀i ∈ Jw, j = 1, . . . , J

vij ≥ 0, ∀j ∈ Jw, i = 1, . . . , J,

vij = 0, ∀j /∈ Jw, i = 1, . . . , J,

m ≤ ‖w‖0 ≤m. (7)
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The parameter ξ > 0 arbitrates potential trade-offs between selecting treated units to fit the

aggregate value of the predictors,X, and selecting control units to fit the values of the predictors

for the treated units. A small value of ξ favors experimental designs with treated units that

closely matchX. A large value of ξ, instead, favors designs where the values of the predictors for

the treated units are closely matched by their respective synthetic controls. While it is possible

to use data-driven selectors of ξ, the rule of thumb ξ = 1 provides a natural choice, which equally

weights the two terms in the objective function in (7).

Let {w∗j , v∗ij}i,j=1,...,J be one optimal solution of the optimization problem in (7). As before,

assign units with w∗j > 0 to treatment in the experiment, and keep units with w∗j = 0 untreated.

Let

v∗j =
J∑
i=1

w∗i v
∗
ji. (8)

A synthetic control estimator of τTt is

τ̂Tt =
J∑
j=1

w∗jYjt −
J∑
j=1

v∗jYjt

=
J∑
j=1

w∗j

(
Yjt −

J∑
i=1

v∗ijYit

)
. (9)

This estimator is based on an approximation to equation (4) that relies on Xj, the observed

predictors of the potential outcomes Y N
jt .

Our next adjustment to the synthetic control design is motivated by settings where the units

may be naturally divided in clusters with similar values in the predictors, X1, . . . ,XJ . For

example, weather patterns, which may be highly dependent across cities, may influence the

seasonality of the demand for ride-sharing services. In those cases, it is natural to treat each

cluster as a distinct experimental design to ameliorate interpolation biases. Figure 2 illustrates

this point. Panels (a) and (b) depict identical samples in the space of the predictors. In this

simple example, we have two predictors only, and their values for each of the units are represented

by the coordinates of the points in the figure, which are the same in the two panels. Red dots

represent units assigned to treatment. All other units are plotted as black dots. Panel (a)
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(a) (b)

Figure 1: Clustering in a synthetic control design

Note: Panels (a) and (b) plot the values of the predictors in Xj , which is bivariate in this simple example. Units
assigned to treatment are drawn in red. In panel (a) we treat the entire sample as a single cluster. In panel (b)
we divide the sample into three clusters and assign one unit in each cluster to the treatment.

visualizes the result of treating the entire sample a one cluster. Three units are assigned to

treatment. They closely reproduce the value ofX, but they all fall in the same central cluster,

far away from observations in other clusters. In panel (b), we recognize the clustered nature of the

data, and assign to treatment one unit per cluster. This provides a better approximation of the

distribution of the predictor values for the entire sample, ameliorating concerns of interpolation

biases.

Suppose we divide the set of J available units into K clusters. Let Ik be the set of indices

for the units in cluster k. The cluster means are

Xk =
∑
j∈Ik

fjXj

/∑
j∈Ik

fj,

for k = 1, . . . , K. For j = 1, . . . , J , let k(j) be the index of the cluster to which unit j belongs.

A clustered version of the synthetic control design task is given by the following optimization
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problem:

min
K,I1,...,IK ,
w1,...,wJ ,
v1,...,vJ

K∑
k=1

(∑
j∈Ik

fj

){∥∥∥∥∥Xk −
∑
j∈Ik

wjXj

∥∥∥∥∥
2

+ ξ
∑
j∈Ik

wj

∥∥∥∥∥Xj −
∑
i,j∈Ik

vijXi

∥∥∥∥∥
2}

s.t.
∑
j∈Ik

wj = 1, k = 1, . . . , K,

wj ≥ 0, j = 1, . . . , J,

J∑
i=1

vij = 1, ∀j ∈ Jw

vij ≥ 0, ∀j ∈ Jw, i = 1, . . . , J,

vij = 0, ∀j /∈ Jw, i = 1, . . . , J,

vij = 0, ∀i ∈ Jw, j = 1, . . . , J,

vij = 0, k(i) 6= k(j),

m ≤ ‖w‖0 ≤m. (10)

Although we state the clustered case in (10) as a one-step estimator, computational complexity

can be substantially reduced by estimating the composition of the clusters in a first step (e.g.,

using K-means).

We conclude this section by introducing two additional modifications to the synthetic control

design.

First, it is well known that synthetic control estimators may not be unique. Lack of uniqueness

is typical in settings where the values of the predictors that a synthetic control is targeting (i.e.,

X in equation (5), or Xj for a treated unit in equation (7)) fall inside the convex hull of the

values of Xj for the units in the donor pool. To address this issue we adapt the penalized

estimator of Abadie and L’Hour (2021) to the synthetic control designs proposed in this article.

The penalized synthetic control estimator of Abadie and L’Hour (2021) is known to be unique

as long as predictor values for the units in the donor pool are in general quadratic position (see

Abadie and L’Hour, 2021, for details). Moreover, penalized synthetic controls favor solutions

where the synthetic control is composed of units that have predictor values, Xj, similar to the

target values. Applying the penalized synthetic control of Abadie and L’Hour (2021) to the
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objective function of (5), we obtain

min
w1,...,wJ ,
v1,...,vJ

∥∥∥∥∥X−
J∑
j=1

wjXj

∥∥∥∥∥
2

+

∥∥∥∥∥X−
J∑
j=1

vjXj

∥∥∥∥∥
2

+ λ1

J∑
j=1

wj‖X−Xj‖2 + λ2

J∑
j=1

vj‖X−Xj‖2

s.t.
J∑
j=1

wj = 1,

J∑
j=1

vj = 1,

wj, vj ≥ 0, j = 1, . . . , J,

wjvj = 0, j = 1, . . . , J,

m ≤ ‖w‖0 ≤m. (11)

Here, λ1 and λ2 are positive constants that penalize discrepancies between the target values of

the predictorX and the values of the predictors for the units that contribute to their synthetic

counterparts.4

Finally, Abadie and L’Hour (2021), Arkhangelsky et al. (2019), and Ben-Michael et al. (2021)

have proposed bias-correction techniques for synthetic control methods. Appendix A provides

details on how to apply bias correction techniques in a synthetic control design.

3. Formal Results

We first introduce an extension of the linear factor model commonly employed in the synthetic

control literature, which we will use to analyze the properties of estimators that are based on a

synthetic control design.

Assumption 1 Potential outcomes follow a linear factor model,

Y N
jt = δt + θ′tZj + λ′tµj + εjt, (12a)

Y I
jt = υt + γ ′tZj + η′tµj + ξjt, (12b)

4See Abadie and L’Hour (2021) for details on penalized synthetic control estimators. For simplicity, we have
discussed design (5) only. Appendix A discusses how to apply the Abadie and L’Hour penalty to the other
synthetic designs proposed in this article.
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where Zj is a (r × 1) vector of observed covariates; θt and γt are (r × 1) vectors of unknown

parameters; µj is a (F × 1) vector of unobserved covariates; λt and ηt are (F × 1) vectors of

unknown parameters; εjt and ξjt are unobserved random shocks.

Equation (12a) is the linear factor model for potential outcomes under no treatment that is

commonly employed in the literature as a benchmark model to analyze the properties of synthetic

control estimators (see, e.g., Abadie et al., 2010, Ferman, 2020). Equation (12b) extends the

linear factor structure to potential outcomes under treatment. The reason for extending the

linear factor model to treated outcomes is that, in contrast to the usual setting of synthetic

control estimation with observational data, experimental synthetic control designs require the

choice of a treatment group in addition to the choice of a comparison group. Agarwal et al. (2021)

have also considered a linear factor model over multiple treatment arms to estimate individual

responses under different interventions.

We will employ the covariates inZj as well as pre-experimental values of the outcome variables

Yjt to construct the vectors of predictors, Xj. In particular, let E ⊆ {1, . . . , T0}, TE = |E|, and

let Y Ej be the (TE × 1) vector of m pre-intervention outcomes for unit j and times indices in E .

We will define

Xj =

(
Y Ej
Zj

)
,

for j = 1, . . . , J . That is, the vector of predictors, Xj, collects the covariates in Zj and the

pre-intervention outcome values, Yjt, for the “fitting periods” in E . In practice, the values in Xj

are often scaled to make them independent of units of measurement, or to reflect the relative

importance of each of the predictors (see, e.g., Abadie, 2021).

The next assumption gathers regularity conditions on model primitives.

Assumption 2

(i) Let λt,f and ηt,f be the f -th coordinates of λt and ηt, respectively. There exists λ̄ and η̄,

such that |λt,f | ≤ λ̄, for t = 1, . . . , T , f = 1, . . . , F and |ηt,f | ≤ η̄, for t = T0 + 1, . . . , T ,

f = 1, . . . , F .
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(ii) TE ≥ F . Moreover, let λE be the (TE ×F ) matrix with rows equal to the λt’s indexed by E.

Let ζE be the smallest eigenvalue of λ′EλE . Then, ζ = ζE/TE > 0.

(iii) For j = 1, . . . , J , t = 1, . . . , T , εjt are mean zero and i.i.d. sub-Gaussian random variables

with variance proxy σ̄2. Similarly, for j = 1, . . . , J , t = T0 + 1, . . . , T , ξjt are mean zero

and i.i.d. sub-Gaussian random variables with variance proxy σ̄2.

Assumptions 2 (i) and (ii) are regularity conditions similar to those in Abadie et al. (2010).

The restrictions in Assumption 2 (iii) are similar to those invoked in Abadie et al. (2010),

Doudchenko and Imbens (2016), Chernozhukov et al. (2021), and Arkhangelsky et al. (2019).

Sub-Gaussianity is not strictly necessary, but it simplifies the form of our results. It can be

relaxed by assuming bounded higher order moments (instead of bounding the entire moment

generating function). Sub-Gaussianity is a relatively mild assumption. It holds for any Gaussian

distribution with mean zero, as well any distribution with mean zero and bounded support.

On the other hand, distributions with heavy tails, including the Cauchy distribution, are not

sub-Gaussian.

The next assumption pertains to the quality of the synthetic control fit. For concreteness,

we focus on the base design case, where w∗ = (w∗1, . . . , w
∗
J) and v∗ = (v∗1, . . . , v

∗
J) solve (5).

Assumption 3 With probability one,

J∑
j=1

w∗jZj =
J∑
j=1

fjZj,
J∑
j=1

w∗jYjt =
J∑
j=1

fjYjt, ∀t ∈ E , (13a)

and

J∑
j=1

v∗jZj =
J∑
j=1

fjZj,
J∑
j=1

v∗jYjt =
J∑
j=1

fjYjt, ∀t ∈ E . (13b)

Assumption 3 implies that the synthetic treated and control units defined by w∗ and v∗ provide

a perfect fit forX. This assumption may only hold approximately in practice.

Theorem 1 If Assumptions 1–3 hold, then for any positive integer q,

|E [τ̂t − τt] | ≤
λ̄(η̄ + λ̄)F

ζ
J1/q
√

2σ̄(qΓ(q/2))1/q 1√
TE
, (14)
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where the expectation is taken over the distributions of εjt, for j = 1, . . . , J , t = 1, . . . , T and the

distributions of ξjt, for j = 1, . . . , J , t = T0 + 1, . . . , T .

The bias bound in Theorem 1 depends on the ratio between the scale of εjt, represented

in (14) by
√

2σ̄(qΓ(q/2))1/q, and the number of fitting periods TE .
5 Intuitively, the bias of the

synthetic control estimator is small when a good fit in pre-intervention outcomes (Assumption 3)

is obtained by implicitly fitting the values of the latent variables, µj. Overfitting happens when

pre-intervention outcomes are instead fitted out of the variability in the individual transitory

shocks, εjt. A small number of fitting periods, TE , combined with enough variability in εjt

increases the risk of overfitting and, as a result, increases the bias bound. Similarly, for any

fixed value of TE , the bias bound increases with J , reflecting the increased risk of over-fitting

created by increased variability in εjt over larger donor pools. Finally, the number of unobserved

factors, F , enters the bound linearly, which highlights the importance of including the observed

predictors, Zj — other than pre-intervention outcomes — in the vector of fitting variables, Xj.

Under the factor model in equations (12a) and (12b), observed predictors not included in Zj are

shifted to µj, increasing F and the magnitude of the bias bound.

We next turn our attention to inference. We will utilize a set of “blank periods,” B ⊆

{1, . . . , T0} \ E , which comprise pre-intervention periods whose outcomes Yjt have not been used

to calculate w∗ or v∗. Because pre-intervention periods that are not in E or B could always be

discarded from the data, we can consider B = {1, . . . , T0}\E only, without loss of generality. We

will, therefore, assume that the number of elements of B is TB = |B| = T0 − TE . We aim to test

the null:

For t = T0 + 1, . . . , T , and j = 1, . . . , J ,

Y I
jt = δt + θ′tZj + λ′tµj + ξjt, (15)

where ξjt has the same distribution as εjt.

Under the null hypothesis in (15), the distribution of Y I
jt is the same as the distribution of

5Recall that if X is sub-Gaussian with variance proxy σ̄2, then (E[|X|q])1/q ≤
√

2σ̄(qΓ(q/2))1/q. See, e.g.,
Lemma 1.4 in Rigollet and Hütter (2019).
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Y N
jt , for t = T0 + 1, . . . , T , and j = 1, . . . , J .

For t ∈ B, let

ût =
J∑
j=1

w∗jYjt −
J∑
j=1

v∗jYjt.

Such ût for t ∈ B are “placebo” treatment effects estimated for the blank periods. Under the

null hypothesis in (15), these placebo treatment effects should come from the same distribution

as the estimates of the treatment effects τ̂t for all t = T0 + 1, . . . , T , as defined in (6). To make

this explicit, let t1, . . . , tTB be the set of indices of the time periods in B, and define

r̂ = (r̂1, . . . , r̂T−TE )

= (τ̂T0+1, . . . , τ̂T , ût1 , . . . , ûtTB ).

Recall that T1 = T − T0. The first T1 coordinates of r̂ are the post-intervention estimates of the

treatment effects. The last TB coordinates of r̂ are placebo treatment effects estimated for the

blank periods.

Let Π be the set of all T1-combinations of {1, . . . , T − TE}. That is, for each π ∈ Π, π is a

subset of indices from {1, . . . , T − TE}, such that |π| = T1. Then, Π is a set of such subsets with

cardinality |Π| = (T − TE)!/(T1!(T0 − TE)!). For each π ∈ Π, let π(i) be the ith smallest value in

π. We define the (T1 × 1)-vector

êπ = (r̂π(1), r̂π(2), ..., r̂π(T1)).

In addition, let ê = (r̂1, . . . , r̂T1) = (τ̂T0+1, . . . , τ̂T ). This is a vector of treatment effect estimates

from the post-intervention periods For any (T1 × 1)-vector e = (e1, . . . , eT1), define the test

statistic,

S(eπ) =
1

T1

T1∑
t=1

|et| . (16)

Other choices of test statistics are possible, such as those based on an Lp-norm of e and one-sided

versions of the resulting test statistics (e.g., with et or −et replacing |et| in equation (16)).

Define the p-value:

p̂ =
1

|Π|
∑
π∈Π

1{S(êπ) ≥ S(ê)}. (17)
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The next theorem shows that the p-value in (17) is approximately valid.

Theorem 2 Suppose that Assumptions 1–3 hold, and that for j = 1, . . . , J , t = 1, . . . , T , εjt

are continuously distributed with (a version of) the probability density function bounded by a

constant κ <∞. Then, the p-values of equation (17) are approximately valid. In particular, for

any α ∈ (0, 1], we have

α− 1

|Π|
≤ Pr(p̂ ≤ α) ≤ α

with probability equal or greater than 1− c1(TE), where

c1(TE) = 2J(T − TE) exp

(
−

ζ2

8σ̄2λ̄4F 2
(TE)

1/2

)
+ 2JT1κ |Π|2 (TE)

−1/4.

In some settings, the number of possible combinations, |Π|, could be very large, making exact

calculation of p̂ computationally expensive. In such settings, random samples of the combinations

in Π can be used to approximate the p-value in equation (17).

The inferential techniques proposed in this article are related to but distinct from the permu-

tation methods in Abadie et al. (2010), Chernozhukov et al. (2019, 2021), Firpo and Possebom

(2018), Lei and Candès (2020), and others. Inferential methods that reassign treatment across

units (e.g., Abadie et al., 2010) are unfit for the designs of Section 2, which explicitly select

treated and control units to satisfy an optimality criterion. Instead, like in Chernozhukov et al.

(2021), our methods are based on rearrangements of estimated treatment effects across time

periods, where some of the time periods correspond to the post-intervention window and some

correspond to pre-intervention blank periods that are left-out for the calculation of the synthetic

treatment and synthetic control weights. Relative to Chernozhukov et al. (2021), the generative

models of equations (12a) and (12b), which allow for unobserved factors, and the finite sample

nature of the result in Theorem 2 require both a novel testing procedure that takes advantage

of the availability of blank periods and proof techniques that are, to our knowledge, new to the

literature.
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4. Simulation Study

4.1. Base Results

We report in this section the results of a simulation study that illustrates the behavior of the

estimators proposed in this article. We consider a setting with J = 15 units, r = 7 observable

covariates and F = 11 unobservable covariates. We consider T = 30 periods in total, with

T0 = 25 pre-intervention periods, and T1 = 5 experimental or post-intervention periods. We

compute weights during the first TE = 20 periods, and leave periods t = 21, . . . , 25 as blank

periods. Periods t = 26, . . . , 30 are the experimental periods.

We use the factor model in Assumption 1 to generate potential outcomes. For t = 1, . . . , T , we

generate the series δt and υt as small-to-large re-arrangements of T i.i.d. Uniform [0, 20] random

variables. For j = 1, . . . , J , we set both Zj and µj to be random vectors of i.i.d. Uniform

[0, 1] random variables. For t = 1, . . . , T , we set θt, γt, λt, and ηt to be random vectors of

i.i.d. Uniform [0, 10] random variables. Finally, for j = 1, . . . , J , and any t = 1, . . . , T , we set εjt

and ξjt to be i.i.d. Normal (0, σ2) random variables, with σ2 = 1. In Appendix D we present

additional simulation results of alternative values of the noise parameter σ2.

Using the data generating process described above, we draw a single sample and conduct

the synthetic control design in (5), with parameters m = 1 and m = 14 (no constraint on the

number of treated units). We report the results in Figures 2 and 3. In Figure 2, the solid line

represents the synthetic treated unit (
∑J

j=1w
∗
jYjt, for t = 1, . . . , T ). The dashed line represents

the synthetic control unit (
∑J

j=1 v
∗
jYjt, for t = 1, . . . , T ). The two lines closely track each other

in the pre-experimental periods. They diverge in the experimental periods, when a treatment

effect emerges as a result of the differences in the parameters of the data generating processes

for Y N
jt and Y I

jt. Figure 3 reports the difference between the synthetic treated and the synthetic

control outcomes. The inferential procedure of Section 3 produces p-value equal to 0.0198, for

the null hypothesis of no treatment effect in (15).

4.2. A Comparison of Different Synthetic Control Designs

In this section we compare the performance of different synthetic control designs under the same

data generating process as in Section 4.1. We consider four formulations of the synthetic control
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Figure 2: Synthetic Treatment Unit and Synthetic Control Unit, when σ2 = 1.

Note: The solid line represents the synthetic treated outcome (w∗-weighted). The dashed line represents the
synthetic control outcome (v∗-weighted).

design:

1. Unconstrained synthetic control: This is the design in (5) without a cardinality constraint,

so m = 1 and m= J − 1 = 14.

2. Constrained synthetic control: Same as the design in (5), but with m = 1 andm= 1, . . . , 7.

3. Penalized synthetic control: This is the design in (11), with λ = λ1 = λ2. We will vary λ

from 10−4 to 103.

4. Unit-level synthetic control: This is the design in (7), which fits a different synthetic control

to each of the units assigned to treatment. We will vary ξ from 10−4 to 103.

4.2.1. Estimated Average Treatment Effects

The first panel of Table 1 reports true average treatment effects, τt. The first five columns in the

second panel report estimated average treatment effects, τ̂t, for periods (T0 + 1) = 26 through

T = 30, under different synthetic control designs. The last column in the second panel reports
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Figure 3: Treatment Effect Estimate, when σ2 = 1.

Note: This figure reports the difference between the synthetic treated and synthetic control outcomes of Figure 2.
For the experimental periods, this is the treatment effect estimate.

mean absolute error (MAE), defined as

MAE =
1

T1

T∑
t=T0+1

|τ̂t − τt|.

Because Table 1 reports outcomes for a single simulation only, the results in this table may not

be reflective of general patterns across many simulations, even for the particular data generating

process employed to produce the data. However, we use this table to illustrate patterns in the

estimates that are induced directly by the features of their respective estimators. In particular,

the results of Table 1 suggest that exceedingly large values of λ or ξ damper the performance

of synthetic control designs. Large values of λ encourage synthetic control and synthetic treated

units that put their entire weights in only one of the sample units (see Section 4.2.2 below),

worsening performance relative to designs with larger number of units in the treated and control

groups. Large values of ξ have the same effect for the synthetic treated unit. On the other hand,

however, exceedingly small values of ξ produce designs that ignore the quality of the fit of the
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unit-level synthetic controls for each of the treated units, resulting in a negative performance of

the estimator.

Table 1: Average Treatment Effects Estimates

τt
t = 26 t = 27 t = 28 t = 29 t = 30

-15.55 -17.76 2.52 -4.92 -3.27

τ̂t MAE
t = 26 t = 27 t = 28 t = 29 t = 30

Unconstrained -17.54 -18.70 0.46 -4.47 -2.02 1.34

Constrained m= 1 -19.14 -18.47 2.14 0.76 0.88 2.90
m= 2 -19.16 -18.31 3.73 -0.22 1.58 2.98
m= 3 -13.88 -17.72 3.13 -6.56 -4.23 0.98
m= 4 -14.31 -18.51 2.46 -5.94 -5.05 0.97
m= 5 -13.43 -18.16 2.54 -5.77 -4.52 0.93
m= 6 -18.11 -19.50 0.38 -4.54 -2.01 1.62
m= 7 -17.54 -18.70 0.46 -4.47 -2.02 1.34

Penalized λ = 10−4 -17.53 -18.69 0.46 -4.46 -2.01 1.34
λ = 10−3 -17.48 -18.64 0.50 -4.43 -1.98 1.32
λ = 10−2 -16.83 -17.94 1.11 -3.95 -1.44 1.13
λ = 10−1 -17.40 -19.28 1.74 -2.53 -0.37 1.89
λ = 1 -20.30 -18.36 2.78 0.67 -0.47 2.80
λ = 10 -19.50 -20.15 0.31 1.80 -2.07 3.29
λ = 102 -18.06 -21.37 -1.00 5.62 -2.86 4.12
λ = 103 -18.06 -21.37 -1.00 5.62 -2.86 4.12

Unit-level ξ = 10−4 -10.36 -12.96 7.66 -4.18 3.64 4.55
ξ = 10−3 -13.34 -16.47 4.02 -2.95 0.25 2.10
ξ = 10−2 -14.23 -18.20 3.25 -3.50 0.93 1.62
ξ = 10−1 -15.62 -17.15 4.43 -4.28 1.08 1.51
ξ = 1 -16.65 -18.15 3.91 -2.09 -0.09 1.78
ξ = 10 -17.65 -19.71 2.04 0.81 3.01 3.31
ξ = 102 -17.65 -19.71 2.04 0.81 3.01 3.31
ξ = 103 -17.65 -19.71 2.04 0.81 3.01 3.31

Note: Unless otherwise noted, all designs use m = 1 and m= 14.
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4.2.2. Synthetic Treated and Synthetic Control Weights

Tables 2 and 3 report the synthetic treated and synthetic control weights (w∗ and v∗, respec-

tively) for the same designs as in Table 1. For the Unit-level design, synthetic control weights are

aggregated as in (8). Unconstrained, Constrained and Penalized synthetic treated and synthetic

control weights can always be switched without changing the value of the objective functions for

their respective designs. We choose between switches to minimize the number of treated units.

The Constrained design imposes sparsity in the synthetic treatment weights through a hard

cardinality constraint: the density of synthetic treatment weights for this design cannot be larger

than m. For m = 7, the Constrained and the Unconstrained weights coincide. For large values

of λ, the matching discrepancies between X and Xj dominate the objective function of the

Penalized design. As a result, for large values of λ, the Penalized design behaves like a one-to-

one matching design, assigning all the weight to one treated and one control unit. For small

values of λ, the Penalized design weights are close to the Unconstrained design weights. For

the Unit-level design, the synthetic treated weights become sparse for large ξ. Large values of

ξ encourage assignment to treatment of units that can be closely fitted by a synthetic control,

even if the resulting treated units are not able to closely fit the population average X. As ξ

becomes large, the Unit-level design assigns to treatment units with values of Xj that can be

closely fitted by a synthetic control.

5. Conclusions

Experimental design methods have largely been concerned with settings where a large number

of experimental units are randomly assigned to a treatment arm, and a similarly large number of

experimental units are assigned to a control arm. This focus on large samples and randomization

has proven to be enormously useful in large classes of problems, but becomes inadequate when

treating more than a few units is unfeasible, which is often the case in experimental studies with

large aggregate units (e.g., markets). In that case, randomized designs may produce estimators

that are substantially biased (post-randomization) relative to the average treatment effect or

to the average treatment effect on the treated. Large biases can be expected when the unit or

units assigned to treatment fail to approximate average outcomes under treatment for the entire
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population, or when the units in the control arm fail to approximate the outcomes that treated

units would be experienced without treatment.

In this article we have applied synthetic control techniques, widely used in observational

studies, to the design of experiments when treatment can only be applied to a small number

of experimental units. The synthetic control design optimizes jointly over the identities of the

units assigned to the treatment and the control arms, and over the weights that determine

the relative contribution of those units to reproduce the counterfactuals of interest. We propose

various designs aimed to estimate average treatment effects, analyze the properties of such designs

and the resulting estimators, and devise inferential methods to test a null hypothesis of no

treatment effects. In addition, we report simulation results that demonstrate the applicability

and computational feasibility of the methods proposed in this article.

Corporate research units and academic investigators are often confronted with settings where

interventions at the level of micro-units (i.e., customers, workers, or families) are unfeasible,

impractical or ineffective (see, e.g., Duflo et al., 2007, Jones and Barrows, 2019). There is, in

consequence, a wide range of potential applications of experimental design methods for large

aggregate entities, like the ones proposed in this article.
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A. Designs based on penalized and bias-corrected synthetic control methods

Consider the design problem in (7),∥∥∥∥∥X−
J∑
j=1

wjXj

∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

+ξ
J∑
j=1

wj

∥∥∥∥∥Xj −
J∑
i=1

vijXi

∥∥∥∥∥
2

︸ ︷︷ ︸
(b)

. (A.1)

To apply the penalized synthetic control method of Abadie and L’Hour (2021) to this design, we

replace the term (a) in (A.1) with∥∥∥∥∥X−
J∑
j=1

wjXj

∥∥∥∥∥
2

+ λ1

J∑
j=1

wj‖X−Xj‖2, (A.2)

and the terms (b) with ∥∥∥∥∥Xj −
J∑
i=1

vijXi

∥∥∥∥∥
2

+ λ2

J∑
i=1

vij‖Xj −Xi‖2. (A.3)

Here, λ1 and λ2 are positive constants that penalize discrepancies between the target values of

the predictors (X in (A.2) and Xj in (A.3)) and the values of the predictors for the units that

contribute to their synthetic counterparts.

All designs of Section 2 depend on terms akin to (a) and (b) in (A.1). These terms can be

adapted as in (A.2) and (A.3) to implement the penalized synthetic control design of Abadie and

L’Hour (2021).

For all the designs in Section 2, the bias-corrected estimator of Abadie and L’Hour (2021) is

τ̂BCt =
J∑
j=1

w∗j (Yjt − µ̂0(Xj))−
J∑
j=1

v∗j (Yjt − µ̂0(Xj)),

where t ≥ T0+1 and the terms µ̂0t(Xj) are the fitted values of a regression of untreated outcomes,

Y N
jt , on units characteristics, Xj. To avoid over-fitting biases, µ̂0t(Xj) can be cross-fitted for the

untreated.

B. Proofs

Proof of Theorem 1. For any period t = T0 + 1, . . . , T we decompose τ̂t as follows,

τ̂t − τt =

(
J∑
j=1

w∗jY
I
jt −

J∑
j=1

v∗jY
N
jt

)
−

(
J∑
j=1

fjY
I
jt −

J∑
j=1

fjY
N
jt

)
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=

(
J∑
j=1

w∗jY
I
jt −

J∑
j=1

fjY
I
jt

)
−

(
J∑
j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

)
. (B.1)

The first term in (B.1) measures the difference between the synthetic treatment outcome and the

aggregated treatment outcomes. The second term measures the difference between the synthetic

control outcome and the aggregate control outcomes. We bound these two terms separately.

From (12b), we obtain

J∑
j=1

w∗jY
I
jt −

J∑
j=1

fjY
I
jt

= γ ′t

(
J∑
j=1

w∗jZj −
J∑
j=1

fjZj

)
+ η′t

(
J∑
j=1

w∗jµj −
J∑
j=1

fjµj

)
+

(
J∑
j=1

w∗j ξjt −
J∑
j=1

fjξjt

)
(B.2)

Similarly, using expression (12a), we obtain

J∑
j=1

w∗jY
E
j −

J∑
j=1

fjY
E
j

= θE

(
J∑
j=1

w∗jZj −
J∑
j=1

fjZj

)
+ λE

(
J∑
j=1

w∗jµj −
J∑
j=1

fjµj

)
+

(
J∑
j=1

w∗jε
E
j −

J∑
j=1

fjε
E
j

)
,

where θE is the (TE × r) matrix with rows equal to the θt’s indexed by E , and εEj is defined

analogously. Pre-multiplying by η′t(λ
′
EλE)

−1λ′E yields

η′t(λ
′
EλE)

−1λ′E

(
J∑
j=1

w∗jY
E
j −

J∑
j=1

fjY
E
j

)
= η′t(λ

′
EλE)

−1λ′EθE

(
J∑
j=1

w∗jZj −
J∑
j=1

fjZj

)

+ η′t

(
J∑
j=1

w∗jµj −
J∑
j=1

fjµj

)

+ η′t(λ
′
EλE)

−1λ′E

(
J∑
j=1

w∗jε
E
j −

J∑
j=1

fjε
E
j

)
. (B.3)

Subtract (B.3) from (B.2) and apply Assumption 3 to obtain

J∑
j=1

w∗jY
I
jt −

J∑
j=1

fjY
I
jt = −η′t(λ′EλE)−1λ′E

J∑
j=1

w∗jε
E
j
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+ η′t(λ
′
EλE)

−1λ′E

J∑
j=1

fjε
E
j

+

(
J∑
j=1

w∗j ξjt −
J∑
j=1

fjξjt

)
. (B.4)

Only the first term on the right-hand side of (B.4) has a non-zero mean (because the weights,

w∗j , depend on the error terms εEj ). Therefore,∣∣∣∣∣E
[

J∑
j=1

w∗jY
I
jt −

J∑
j=1

fjY
I
jt

]∣∣∣∣∣ =

∣∣∣∣∣E
[
η′t(λ

′
EλE)

−1λ′E

J∑
j=1

w∗jε
E
j

]∣∣∣∣∣ . (B.5)

Using the same line of reasoning for the second term on the right-hand side of (B.1), we obtain∣∣∣∣∣E
[

J∑
j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

]∣∣∣∣∣ =

∣∣∣∣∣E
[
λ′t(λ

′
EλE)

−1λ′E

J∑
j=1

v∗j ε
E
j

]∣∣∣∣∣ . (B.6)

For any t ≥ T0 + 1 and s ∈ TE , under Assumption 2 (ii), we apply Cauchy-Schwarz inequality

and the eigenvalue bound on the Rayleigh quotient to obtain(
η′t(λ

′
EλE)

−1λs
)2 ≤

(
η′t(λ

′
EλE)

−1ηt
) (
λ′s(λ

′
EλE)

−1λs
)

≤
(
η̄2F

TEζ

)(
λ̄2F

TEζ

)
.

Similarly,

(
λ′t(λ

′
EλE)

−1λs
)2 ≤

(
λ̄2F

TEζ

)2

.

Let

ε̄Ejt = η′t(λ
′
EλE)

−1λ′Eε
E
j

=
∑
s∈E

η′t(λ
′
EλE)

−1λsεjs.

Because ε̄Ejt is a linear combination of independent sub-Gaussians with variance proxy σ̄2, it

follows that ε̄Ejt is sub-Gaussian with variance proxy (η̄λ̄F/ζ)2σ̄2/TE . Let q ≥ 1 be any positive

integer. We obtain∣∣∣∣∣E
[

J∑
j=1

w∗jY
I
jt −

J∑
j=1

fjY
I
jt

]∣∣∣∣∣ ≤ E

[
J∑
j=1

w∗j |ε̄Ejt|

]
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≤ E

( J∑
j=1

|ε̄Ejt|q
)1/q


≤

(
E

[
J∑
j=1

|ε̄Ejt|q
])1/q

=

(
J∑
j=1

E
[
|ε̄Ejt|q

])1/q

≤
(
J(2(η̄λ̄F/ζ)2σ̄2/TE)

q/2qΓ(q/2)
)1/q

=
λ̄η̄F

ζ
J1/q
√

2σ̄(qΓ(q/2))1/q 1√
TE
. (B.7)

The first inequality is due to triangular inequality when we exchange the absolute value and

expectation; the second inequality is due to Holder’s inequality; the third is due to Jensen’s

inequality because for any q ≥ 1, x1/q is concave in x; the first equality is due to linearity of

expectations; and the last inequality is bounding the absolute moments of sub-Gaussian random

variables (see, e.g., Rigollet and Hütter, 2019, Lemma 1.4). An analogous argument yields,∣∣∣∣∣E
[

J∑
j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

]∣∣∣∣∣ ≤ λ̄2F

ζ
J1/q
√

2σ̄(qΓ(q/2))1/q 1√
TE
. (B.8)

Equations (B.7) and (B.8) directly yield the result of the theorem.

Lemma B.1 Let X be a continuously distributed random variable with a density fX . Let ΛX be

the smallest upper bound on the probability density fX .

1. The random variable |X| has a density f|X| bounded by Λ|X| ≤ 2ΛX ;

2. For any constant a 6= 0, the random variable aX has a density, faX , bounded by ΛaX ≤

ΛX/a;

3. Let X and Y be two independent continuous random variables with densities bounded by

ΛX and ΛY , respectively. Then, Z = X + Y has a density, fZ, bounded by

ΛZ ≤ min{ΛX ,ΛY }.
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4. Let A1, . . . , An be n random variables (potentially correlated, not necessarily continuous).

Let X1, . . . , Xn be n independent continuous random variables with densities bounded by

ΛX1 , . . . ,ΛXn, respectively. Let X1, . . . , Xn be independent of A1, . . . , An. Then, Z =∑n
i=1 |Ai +Xi| has a density, fZ, bounded by

ΛZ ≤ 2 min
i=1,...,n

{ΛXi
}.

Proof of Lemma B.1. To prove 1, note that for any v ≥ 0,

f|X|(v) = fX(v) + fX(−v) ≤ 2ΛX .

To prove 2, note that for any v ≥ 0,

faX(v) =
1

|a|
fX(v/a) ≤ 1

|a|
ΛX .

To prove 3, note that for any v ≥ 0,

fZ(v) =

∫ +∞

−∞
fX(x)fY (v − x)dx

≤
∫ +∞

−∞
fX(x)ΛY dx

= ΛY .

Similarly, we have fZ(v) ≤ ΛX for any v ∈ R. So Λ(Z) ≤ min{Λ(X),Λ(Y )}.

To prove 4, we use the following notations. Let Ω(·, . . . , ·) be the σ-field that defines the joint dis-

tribution of A1, . . . , An; let P(·, . . . , ·) be the probability measure of A1, . . . , An. Since X1, . . . , Xn

are independent continuous random variables, we may use the convolution formula to obtain, for

any v ≥ 0,

fZ(v)

=

∫
Ω(·,...,·)

fZ(v|A1 = a1, . . . , An = an)dP(a1, . . . , an)

=

∫
Ω(·,...,·)

(∫ +∞

−∞
. . .

∫ +∞

−∞
f|a1+X1|(x1) . . . f|an−1+Xn−1|(xn−1)f|an+Xn|(v −

n−1∑
i=1

xi)dx1 . . . dxn−1

)
dP(a1, . . . , an)

≤
∫

Ω(·,...,·)

(∫ +∞

−∞
. . .

∫ +∞

−∞
f|a1+X1|(x1) . . . f|an−1+Xn−1|(xn−1) (2ΛXn) dx1 . . . dxn−1

)
dP(a1, . . . , an)
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= 2ΛXn ,

where the inequality is due to Part 2 of Lemma B.1. Similarly, we have fZ(v) ≤ 2ΛXi
for any

i = 1, . . . , n− 1 and v ∈ R. So ΛZ ≤ 2 mini=1,...,n{ΛXi
}.

Proof of Theorem 2. Define z = (TE)
−1/4. Let

ût =
J∑
j=1

w∗jYjt −
J∑
j=1

v∗jYjt,

for t ∈ B ∪ {T0 + 1, . . . , T}. For t = T0 + 1, . . . , T , ût are the post-intervention estimates of the

treatment effects; and for t ∈ B, ût are the placebo treatment effects estimated for the blank

periods. Using this notation, r̂ = (ûT0+1, . . . , ûT , ût1 , . . . , ûtTB ). Let

ut =
J∑
j=1

w∗j εjt −
J∑
j=1

v∗j εjt (B.9)

for t ∈ B, and

ut =
J∑
j=1

w∗j εjt −
J∑
j=1

v∗j ξjt (B.10)

for t = T0 + 1, . . . , T . Under the null hypothesis in (15), the random variables ut for t ∈

B ∪ {T0 + 1, . . . , T} are i.i.d. We will compare this sequence of random variables to r̂. Notice

that

J∑
j=1

w∗jY
E
j −

J∑
j=1

v∗jY
E
j = θE

(
J∑
j=1

w∗jZj −
J∑
j=1

v∗jZj

)

+ λE

(
J∑
j=1

w∗jµj −
J∑
j=1

v∗jµj

)
+

(
J∑
j=1

w∗jε
E
j −

J∑
j=1

v∗j ε
E
j

)
.

Assumption 3 implies(
J∑
j=1

w∗jµj −
J∑
j=1

v∗jµj

)
= −(λ′EλE)

−1λ′E

(
J∑
j=1

w∗jε
E
j −

J∑
j=1

v∗j ε
E
j

)
.

It follows that

ût =
J∑
j=1

w∗jYjt −
J∑
j=1

v∗jYjt
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=− λ′t(λ′EλE)−1λ′E

(
J∑
j=1

w∗jε
E
j −

J∑
j=1

v∗j ε
E
j

)
+ ut

=− λ′t(λ′EλE)−1λ′E

J∑
j=1

(w∗j − v∗j )εEj + ut, (B.11)

for t ∈ B∪{T0+1, . . . , T}. We next find a high probability bound for
∣∣∣λ′t(λ′EλE)−1λ′E

∑J
j=1(w∗j − v∗j )εEj

∣∣∣.
Similar to the proof of Theorem 1, for t ∈ B ∪ {T0 + 1, . . . , T}, let

ε̆Ejt =
∑
s∈E

λ′t(λ
′
EλE)

−1λsεjs.

Because ε̆Ejt is a linear combination of independent sub-Gaussians with variance proxy σ̄2, ε̆Ejt is

sub-Gaussian with variance proxy (λ̄2F/ζ)2σ̄2/TE . Notice that∣∣∣∣∣λ′t(λ′EλE)−1λ′E

J∑
j=1

(w∗j − v∗j )εEj

∣∣∣∣∣ ≤
J∑
j=1

w∗j
∣∣ε̆Ejt∣∣+

J∑
j=1

v∗j
∣∣ε̆Ejt∣∣

≤ 2 max
w̆∈SJ−1

J∑
j=1

w̆j
∣∣ε̆Ejt∣∣ ,

where SJ−1 stands for a simplex with (J − 1) degrees of freedom, and w̆ is any vector that lives

in this simplex. For any z > 0 and any w̆ ∈ SJ−1,

Pr

(
2

J∑
j=1

w̆j
∣∣ε̆Ejt∣∣ ≥ z

)
≤

J∑
j=1

Pr
(∣∣ε̆Ejt∣∣ ≥ z

2

)
= J Pr

(∣∣ε̆Ejt∣∣ ≥ z

2

)
≤ 2J exp

(
−

z2ζ2

8σ̄2λ̄4F 2
TE

)
, (B.12)

where the first inequality follows Pr(
∑J

j=1 w̆jxj ≥ c) ≤
∑J

j=1 Pr(xj ≥ c), where
∑J

j=1 w̆j = 1, the

equality holds because εjt are i.i.d. random variables, and the the last inequality is the Chernoff

bound for sub-Gaussian variables. Using what we have defined for z = (TE)
−1/4, the bound in

(B.12) becomes

c2(TE) = 2J exp

(
−

ζ2

8σ̄2λ̄4F 2

√
TE

)
.

34



As a result, for any t ∈ B ∪ {T0 + 1, . . . , T}, we have |ût − ut| ≤ (TE)
−1/4 with probability at

least 1− c2(TE).

To conclude the proof of Theorem 2, we define the following two clean events. First, define the

event

C1 =

{
∀t ∈ B ∪ {T0 + 1, . . . , T},

∣∣∣∣∣λ′t(λ′EλE)−1λ′E

J∑
j=1

(w∗j − v∗j )εEj

∣∣∣∣∣ ≤ (TE)
−1/4

}

=
⋂

t∈B∪{T0+1,...,T}

{∣∣∣∣∣λ′t(λ′EλE)−1λ′E

J∑
j=1

(w∗j − v∗j )εEj

∣∣∣∣∣ ≤ (TE)
−1/4

}

=

 ⋃
t∈B∪{T0+1,...,T}

{∣∣∣∣∣λ′t(λ′EλE)−1λ′E

J∑
j=1

(w∗j − v∗j )εEj

∣∣∣∣∣ > (TE)
−1/4

}c

.

Due to union bound, the event C1 happens with probability at least

Pr(C1) ≥ 1−
∑

t∈B∪{T0+1,...,T}

Pr

(∣∣∣∣∣λ′t(λ′EλE)−1λ′E

J∑
j=1

(w∗j − v∗j )εEj

∣∣∣∣∣ > (TE)
−1/4

)
≥ 1− (T − TE)c2(TE).

Second, define the event

C2 =

{
∀π, π′ ∈ Π, |S(êπ)− S(êπ′)| > 2(TE)

−1/4

}

=

( ⋃
π,π′∈Π

{
|S(êπ)− S(êπ′)| ≤ 2(TE)

−1/4

})c

.

Due to union bound, the event C2 happens with probability at least

Pr(C2) ≥ 1−
∑
π,π′∈Π

Pr
(
|S(êπ)− S(êπ′)| ≤ 2(TE)

−1/4
)

≥ 1− |Π|2 2J(T − T0)κ(TE)
−1/4,

where the first inequality is due to union bound. The second inequality is because for any two

distinct π, π′ ∈ Π, |S(êπ) − S(êπ′)| has bounded probability density of at most 2J(T − T0)κ

so integrating over an interval of length 2(TE)
−1/4 would lead to at most 4J(T − T0)κ(TE)

−1/4

probability; and there are fewer than |Π|2 /2 distinct pairs of combinations.
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To see why |S(êπ)−S(êπ′)| has bounded density 2J(T −T0)κ, first note that, under Lemma B.1,

it suffices to show that for any π ∈ Π, S(êπ) has bounded density J(T − T0)κ.

Note that, under Lemma B.1, ut has bounded probability density of at most

Λut ≤ min
j=1,...,J

{
min

{
1

w∗j
,

1

v∗j

}}
κ ≤ J

2
κ, (B.13)

because ut is a weighted average of independent random noises, with the weights being w∗j and

v∗j for all j = 1, . . . , J (we refer to 1/0 = +∞). The worst case is when w∗j = 2/J for one half of

total units and v∗j = 2/J for the other half.

Next, conditional on any (w,v), we focus on S(êπ). Recall that r̂ = (ûT0+1, . . . , ûT , ût1 , . . . , ûtTB ).

For any π ∈ Π and any t = 1, . . . , T − T0, denote r̂π(t) = ûr(t).

S(êπ) =
1

T − T0

T−T0∑
t=1

∣∣r̂π(t)

∣∣
=

1

T − T0

T−T0∑
t=1

∣∣∣∣−λ′r(t)(λ′EλE)−1λ′E

J∑
j=1

(wj − vj)εEj︸ ︷︷ ︸
A

+ ur(t)︸︷︷︸
X

∣∣∣∣.
Conditional on any (w,v), we know −λ′r(t)(λ′EλE)−1λ′E

∑J
j=1(wj−vj)εEj and ur(t) are independent,

and ur(t) are independent across time. Due to Lemma B.1, thinking of the first term as A term

and ur(t) as X term, we know ΛS(ê) ≤ 2(T − T0) mint∈{1,...,T−T0}{Λur(t)}. Combining with (B.13),

we know S(ê) has bounded density of at most J(T − T0)κ.

Now that we have lower bounded the probability of each event C1 and C2 happening, we know

that the probability of both events C1 and C2 happening is at least 1−(T−TE)c2(TE)−|Π|2 2J(T−

T0)κ(TE)
−1/4. More specifically, if we pick

c1(TE) = 2J(T − TE) exp

(
−

ζ2

8σ̄2λ̄4F 2
(TE)

1/2

)
+ |Π|2 2J(T − T0)κ(TE)

−1/4,

then with probability at least 1− c1(TE) the two clean events hold.

Conditional on both C1 and C2, we proceed with the following analysis. Define

r = (r1, . . . , rT−TE )

= (uT0+1, . . . , uT , ut1 , . . . , uTB).
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Based on r, for any π ∈ Π, define the following (T1 × 1) vector,

uπ = (rπ(1), . . . , rπ(T1)).

Now we focus on the rank of S(êπ) and S(uπ). First there are no ties with probability one, i.e.,

for any two distinct combinations π, π′ ∈ Π, S(êπ) 6= S(êπ′) and S(uπ) 6= S(uπ′) with probability

one. This is because S(êπ) and S(uπ) are continuous random variables.

Next, we argue that with probability 1 − c1(TE), for any two distinct combinations π, π′ ∈ Π,

S(êπ)− S(êπ′) and S(uπ)− S(uπ′) have the same sign. Without loss of generality suppose that

S(êπ) > S(êπ′). Conditional on C2, this implies

S(êπ)− S(êπ′) > 2(TE)
−1/4.

Further conditional on C1, |ût − ut| ≤ (TE)
−1/4 for any t ∈ B ∪ {T0 + 1, . . . , T}, so that for any

π, we have

|S(êπ)− S(uπ)| ≤ 1

T − T0

T−T0∑
t=1

∣∣ûπ(t) − uπ(t)

∣∣ ≤ (TE)
−1/4,

where the first inequality is due to triangular inequality. Combining both events we have that,

conditional on both C1 and C2 (which happens with probability at least 1− c1(TE)),

[S(êπ)− S(êπ′)][S(uπ)− S(uπ′)] ≥ [S(êπ)− S(êπ′)][S(êπ)− S(êπ′)− 2(TE)
−1/4] > 0 (B.14)

happens for all π, π′ ∈ Π.

To conclude the proof, note that there are |Π| many distinct combinations, which we denote

as Π = {π1, ..., π|Π|}. Define P to be any permutation, P : {1, . . . , |Π|} → {1, . . . , |Π|}. Again

conditional on both C1 and C2 (which happens with probability at least 1− c1(TE)),

Pr
(
S(êπP(1)

) > . . . > S(êπP(|Π|))
)

= Pr
(
S(uπP(1)

) > . . . > S(uπP(|Π|))
)

=
1

|Π|!
, (B.15)

where the first equality is due to (B.14) that S(êπ)− S(êπ′) and S(uπ)− S(uπ′) have the same

sign for any two distinct combinations π, π′ ∈ Π; and the second equality is because u is a

sequence of i.i.d. random variables so all the rankings happen with equal probability.
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Let S(1)(ê) > S(2)(ê) > . . . > S(|Π|)(ê) denote the decreasing rearrangement of {S(êπ)}π∈Π, which

exists with probability one. For any α ∈ (0, 1], let k(α) = b|Π|αc. We have that, conditional on

both C1 and C2 (which happens with probability at least 1− c1(TE)),

Pr(p̂ ≤ α) = Pr

(∑
π∈Π

1{S(êπ) ≥ S(ê))} ≤ α|Π|

)

= Pr

(∑
π∈Π

1{S(êπ) ≥ S(ê))} ≤ k(α)

)
= Pr

(
S(ê) ≥ S(k(α))(ê)

)
=
k(α)

|Π|
.

The first equality holds because of the definition of p-value, the second and third equalities are

implied by the definition of k(α), and the last equality holds because, by equation (B.15), all

rankings happen with the same probability. To finish the proof, note that

α− 1

|Π|
≤ k(α)

|Π|
=
b|Π|αc
|Π|

≤ α.

C. Implementation of the Optimization Method

To computationally solve (5), we propose two methods. The first method is by enumeration,

which takes advantage of the objective function of (5) being separated between w and v. If

we knew which units were to receive treatment and which units were to receive control, then

we could decompose (5) into two classical synthetic control problems and solve both of them

efficiently. We brute force enumerate all the possible combinations of the treatment units and

control units. Because the roles of treatment and control units can be switched (see Section 2),

we only enumerate combinations such that the cardinality of the treatment group is smaller or

equal to the cardinality of the control group. In cases when the cardinality constraint m̄ is small,

this brute force enumeration is very efficient.

The second method solves an unconstrained optimization problem of (5), by converting the

optimization problem into the canonical form of a Quadratic Constraint Quadratic Program

(QCQP), which we will detail below. The decision variables are wj and vj,∀ j = 1, . . . , J . For

simplicity, we write it in a vector form W̃ = (w1, w2, ..., wJ , v1, v2, ..., vJ).
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Define P 0 = {P 0
k,l}k,l=1,...,2J ∈ R2J×2J , such that P 0 has only two diagonal blocks, while the two

off-diagonal blocks are zero. Define ∀k, l = 1, . . . , 2J,

P 0
k,l =



M∑
i=1

Xi,kXi,l, k, l = 1, . . . , J ;

M∑
i=1

Xi,(k−J)Xi,(l−J), k, l = J + 1, . . . , 2J ;

0, otherwise.

Define q0 ∈ R2J , such that ∀k = 1, . . . , 2J

q0
k =


− 2

M∑
i=1

Xi,k · (
J∑
j=1

fjXi,j), k = 1, . . . , J ;

− 2
M∑
i=1

Xi,k−J · (
J∑
j=1

fjXi,j), k ∈= J + 1, . . . , 2J.

Further define e1 = (1, 1, ..., 1, 0, 0, ..., 0)′ whose first J elements are 1 and last J elements 0; and

e2 = (0, 0, ..., 0, 1, 1, ..., 1)′ whose first J elements are 0 and last J elements 1.

Finally, define P 1 = {P 1
k,l}k,l=1,...,2J ∈ R2J×2J such that P 1 only has non-zero values in the two

off-diagonal blocks, i.e., ∀ k, l = 1, . . . , 2J,

P 1
k,l =


1, k = l + J ;

1, k = l − J ;

0, otherwise.

Using the above notations we re-write the (non-convex) QCQP as follows,

min W̃ ′P 0W̃ + q0′W̃ (C.1)

s.t. e′1W̃ = 1,

e′2W̃ = 1,

W̃ ′P 1W̃ = 0,

W̃ ≥ 0.

Remark 1 The above problem (C.1) can be solved using Gurobi 9.0 solver.
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D. Additional Simulation Results

In this section we present additional simulation results that complement the results in Section 4.1.

In Section 4.1 we have prescribed the noises to be i.i.d. Normal (0, 1) variables. In this section

we change the noises to be i.i.d. Normal (0, σ2) variables, where we set σ2 ∈ {5, 10} to different

scales in this experiment. The simulation results of the synthetic treated unit and the synthetic

control unit are in Figures 4 and 5.

Figure 4: Synthetic Treatment Unit and Synthetic Control Unit, when σ2 = 5.

We also present the difference between the synthetic treatment unit and the synthetic control

unit when we change the noises to be i.i.d. Normal (0, 5) and (0, 10) variables. The simulation

results are in Figures 6 and 7. If we further compare with Figure 2, we notice that when σ2

increases from 1 to 10, the p-value also increases, indicating less power when the noise is stronger.
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Figure 5: Synthetic Treatment Unit and Synthetic Control Unit, when σ2 = 10.

Figure 6: Treatment Effect Estimate, when σ2 = 5.
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Figure 7: Treatment Effect Estimate, when σ2 = 10.
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