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1. Introduction

Sample selection models provide an approach to correcting for nonrandom sampling
that is important in econometrics. Pioneering work in this area includes Gronau (1973)
and Heckman (1974). This paper is about two-step estimation of these models without
restricting the functional form of the selection correction. The estimators are
particularly simple, using polynomial or spline approximations to correct for selection.
Asymptotic normality and consistency of an asymptotic variance estimator are shown.

Some of the estimators considered here are similar to two-step least squares
estimators with flexible correction terms previously proposed by Lee (1982) and Heckman
and Robb (1987). 'I:he theory here allows the functional form of the correction to be
entirely unknown, with the number of approximating functions growing with the sample
size to achieve vn-consistency and asymptotic normality. Also, this paper adds to the
menu of approximations by considering new types of power series, along with regression
splines that are important in statistical approximation theory (e.g. Stone, 1985).

Early work on semiparametric estimation of sample selection models inclﬁdes
Cosslett (1991) and Gallant and Nychka (1987). These papers do not have asymptotic
normality results. Powell (1987) and Ahn and Powell (1993) give distribution theory for
density weighted kernel estimators. The series estimators analyzed here have the virtue
of being extremely easy to implement. Also, some of the estimators are new, including
the regression splines. Practical experience with these estimators is given in Newey,
Powell, and Walker (1990).

Section 2 of the paper presents the model and discusses identification. The

estimators are described in Section 3, and Section 4 gives the asymptotic theory.



2. The Model and Identification

The selection model model considered here is
(2.1) y = x'BO + & y only observed if d =1, d e {0, 1}.

El€|w,d=1] = E[E|V(W,ao),d=1], Prob(d = 1|w) = n(v(w,oco)), X € w.

Here the conditional mean of the disturbance, given selection and w, depends only on
the index v = v(w,oco). This restriction is implied by other familiar conditions, such
as independence of disturbances and regressors, see Powell (1994). A basic implication

of this model is that

(2.2) Elylw,d=1] = x'BO + ho(v), ho(v) = E[£]|w,d=1]

The function ho(v) is a selection correction that is familiar. For example if d =
Hv+€ = 0), (£,€) is independent of w, & has a standard normal distribution, and
E[£I€] is linear in &, then ho(v) = ¢(v)/d(v), where &(v) and ¢(v) are the
standard normal CDF and p.d.f. respectively. This term is the correction term considered
by Heckman (1976). In this paper we allow ho(v) to have an unknown functional form.
Equation (2.2) is an additive semiparametric regression like that considered by
Robinson (1988), except that the variable v = v(w,oco) depends on unknown parameters.
Making use of this information is important for identification. Ignoring the structure

implied by equation (2.1), and regarding h. as an unknown function of variables in w,

0]
would mean that any component of x that is included in those variables would not be
identified.

The identification condition for this paper is

Assumption 1: M = E[d(x-Elx|v,d=1)(x-E[x|v,d=11)’] is nonsingular, i.e. for any A # O

there is no measurable function f(v) such that x‘A = f(v) when d = 1.



This condition was imposed by Cosslett (1991), and is the selection model version of
Robinson’s (1988) identification condition for additive semiparametric regression. As
shown by Chamberlain (1986), this condition is not necessary for identification, but it
is necessary for existence of a (regular) vn-consistent estimator. It is important to
note that this condition does not allow for a constant term in X, because it is not
separately identified from ho(v).

More primitive conditions for Assumption 1 are available in some cases. A simple
sufficient condition is that Var(x) is nonsingular and the conditional distribution of
v given x has an absolutely continuous component with conditional density that is
positive on the entire real line for almost all x. An obvious necessary condition is
that v not be a linear combination of X, requiring that something in v be excluded
from x. Such an exclusion restriction is implied by many economic models, where d is
a choice variable and v includes a price variable for another choice.

Identification of BO from equation (2.2) also requires identification of %y
Here no specific assumptions will be imposed, in order to allow flexibility in the choice
of an estimator of %y Of course, consistency of a will imply identification of %o
but different consistent estimators may correspond to different identifying

assumptions. For brevity, a menu of different assumptions is not discussed here.

3. Estimation

The type of estimator we consider is a two-step estimator, where the first step is a
semiparametric estimator o of the selection parameters %q and the second step is
least squares regression on x and approximating functions of v = v(x,a) in the
selected data. These estimators are analogous to Heckman’s (1976) two-step procedure for
the Gaussian disturbances case. The difference is that o is estimated by a
distribution-free method rather than by probit and a nonparametric approximation to h(v)
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is used in the second step regression rather than the inverse Mills ratio.

There are many distribution free estimates that are available for the first step,
including those of Manski (1975), Cosslett (1983), and Ruud (1986). The first step will
need to be v¥n-consistent, like the estimator of Powell, Stock, and Stoker (1989),
Ichimura (1993), and Cavanagh and Sherman (1997). Also, the asymptotic variance of B
will be an increasing function of the asymptotic variance of «, so an efficient
estimator like that of Klein and Spady (1993) may be useful.

The second step consists of a linear regression of y on x and functions of v
that can approximate ho(v). To describe the estimator let T(v,n) denote some strictly
monotonic transformation of v, depending on parameters m. This transformation is
useful for adjustin;g the location and scale of v, as discussed below. Let pK(t) =

(t),

(t))* be a vector of functions with the property that for large K

(P (T)---oPgg

a linear combination of pK('c) can approximate an unknown function of t. Suppose that

the data are z, = (di’wi'diyi)’ (i =1, ..., n), assumed throughout to be i.i.d.. Let

n denote an estimator of 7, ‘;i = V(wi,&), %i = r(\Ari,TA)), and f)i = pK(%i), where a

K superscript for fii is suppressed for notational convenience. For x =
’ _ ’, 5 - S s N . D(D’P

[dlxl"”’dnxn] , ¥y = (dlyl""’dnyn) , P= [dlpl""’dnpn] , and Q = P(P’P)

estimator is

(3.1) B = ﬁl_lx’(I—Q)y/n, M = x’ (1-Q)x/n,

where the inverses will exist in large samples under conditions discussed below. The
estimator [§ is the coefficient of X, from the regression of y; on X and ﬁi in
the selected data.

This estimator depends on the choice of approximating functions and transformation.
Here we consider two kinds of approximating functions, power series and splines. For

power series the approximating functions are given by

(3.2) P (T) = e



Depending on the transformation +t(v,n), this power series can lead to several

different types of sample selection corrections. Three examples are a power series in
the index v, in the inverse Mills ratio ¢(+)/®(+), or in the normal CDF ®&{+). When

a nonlinear transformation of v is used (e.g. for a power series in &), it may be
appropriate to undo a location and scale normalization imposed on most semiparametric
estimators of v(w,a). To this end let 7 = (ﬁl,ﬁz)' be the coefficients from

probit estimation with regressors (1,\71), where we do not impose normality (but will
require that n be a Vn-consistent of some population parameter). Then the transformed

observations for the three examples will be

~

Vi

(3.3a) 'Aci

(3.3b) 2

¢(n1+n2vi)/¢>(n1+n2vi),
(3.3c) T, = <I>(n1+n2vi).

The power series in equation (3.3a) will have as a leading term the index Gi
itself. The one from equation (3.3b) will have leading term given by the inverse
Mills, so that the first term is the Heckman (1976) correction. This one also has
approximating functions that preserve a shape property of hO(v) that holds when d =
1(v+€20) and (£,) are independent of v, that ho(v) goes to zero as v gets large.
The last example will correspond to a power series in the selection probability for
Gaussian £.

Replacing power series by corresponding polynomials that are orthogonal with respect

to some weight function may help avoid multicollinearity. For example, for %u =

maxisn,di=1(ﬂvi’n)) and T, = mmiSn,d_=1{T(vi’n)) one could replace T by a

1
polynomial of order k that is orthogonal for the uniform weight on [-1,1], evaluated
at %i = [Zt(\';i,ﬁ)—'?:u—%e]/('?:u—%e). Of course, B is not affected by such a

replacement, since it is just a nonsingular linear transformation of the power series.

An alternative approximation that is better in several respects than power

o



series is splines, that are piecewise polynomials. Splines are less sensitive to

outliers and to singularities in the function being approximated. Also, as discussed
below, asymptotic normality holds under weaker conditions for splines than power series.
For theoretical convenience attention is limited to splines with evenly spaced knots on
{-1,1]. For b+ = 1(b > O)*b, a spline of degree m in T with L evenly spaced

knots on [-1,1] can be based on

(3.4) (t)

I
~
Y
1A
o
IA
3
+

-

Prk

It +1 - 2(k—m—l)/(L+l)]+)m, m+2 < k = m+I+L = K.

An alternative, equivalent series that is less subject to multicollinearity problems is
B-splines; e.g. see Powell (1981).

Fixed, evenly spaced knots is restrictive, and is motivated by theoretical
convenience. Allowing the knots to be estimated may improve the approximation, but would
make computation more difficult and require substantial modification to the theory of
Section 4, which relies on linear in parameter approximations.

For inference it is important to have a consistent estimator of the asymptotic
variance of {. This can be formed by treating the approximation as if were exact and
using formulae for parametric two-step estimators such as those of Newey (1984). The
estimator will depend on a consistent estimator V(a) of the asymptotic variance of
Vﬁ(&—ao). Let B and ¥ be the estimates from the regression of diyi on dixi and
diﬁi’ éi = di(yi—x’i[}—f)’i'}) the corresponding residual, and h(v) = pK(T(v,ﬁ))"; the
estimate of h(v) obtained from this regression. Define u = (I-Q)x to be the matrix

of residuals from the regression of dixi on diﬁi’ so that x’(I-Q)x = u’u and let
@5 V@ = Mg 600807/ + @R N
A= ):izlﬁi[aﬁ(Gi)/av]av(wi,&)/aa'/n.

This estimator is the sum of two terms, the first of which is the White (1980)
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specification robust variance estimator for the second step regression and the second a
term that accounts for the first-stage estimation of the parameters of the selection
equation. It can also be interpreted as the block of a joint variance estimator for f
and ¥ corresponding to [§, where the joint estimator is formed as in Newey (1984).
This estimator will be consistent for the asymptotic variance of x/ﬂ(é—BO) under the
conditions of Section 4. Note here the normalization by the total sample size n rather
than the number of observations in the selected sample. For example, a 95 percent

asymptotic confidence interval for BJ is [I§j-—\7(l§)§§21.96/\/ﬁ, éj+V(é)§§21.96/VH].

4. Asymptotic Normality

Some regularity conditions will be used to show consistency and asymptotic

normality. The first condition is about the first stage estimator.

Assumption 2: There exists ¥(w,d) such that for l/li = !ll(wi,di), \’H(&—oco) =
Zizlwi/\/ﬁ + op(l), E[l/li] = 0, and E[l/lil/l'i] exists and is nonsingular. Also, for V(a)

£, V(o) = Elyy} 1.

This condition requires that a« be asymptotically equivalent to a sample average that
depends only on w and d. It is satisfied by many semiparametric estimators of binary
choice models, such as that of Klein and Spady (1993).

The next condition imposes some moment conditions on the second stage.

2+38

Assumption 3: For some &8 > 0, E[dlIxI ] ¢ ®w, Var(x]v,d=1) is bounded, and for =

d(y-—x'BO-—hO(v)), E[szlv,d=1] is bounded.

The bounded conditional variance assumptions are standard in the literature, and will not

be very restrictive here because v will also be assumed to be bounded.
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To control the bias of the estimator is essential to impose some smoothness

conditions on functions of v.

Assumption 4: ho(v) and El[x]v,d=1] are continuously differentiable in v, of orders

s and t respectively.

We also require that the transformation T satisfy some properties.

Assumption 5: There is with \/E(f)-‘nO) = Op(l), the distribution of r(v(w,oco),no)

!
has an absolutely continuous component with p.d.f. bounded away from zero on its support,
which is compact. Also, the first and second partial derivatives of v(wi,oc) and

t(v,m) with respect to «, v, and 7 are bounded for « and 7 in a neighborhood of

%q and Ny respectively.

The first condition of this assumption means that the density of T; is bounded away

from zero, which is useful for series estimation, but is restrictive. For example, if v
=%+ X5 where X, and x, are continuously distributed and independent, then the
density of v, which is a convolution of the densities of x1 and x2, will be

everywhere continuous, and hence cannot have density bounded away from zero. It would be
useful to weaken this condition, but this would be difficult and is beyond the scope of

this paper.

The next assumption imposes growth rate conditions for the number of approximating

terms.

Assumption 6: K = Kn such that \/—ITK—S_t+1 -£50 and a) pK('t) is a power series, s

=z 5, and K7/n —> 0; or b) pK('r) is a spline with m =z t-1 s = 3, and K4/n — 0.

Here, splines require the minimum smoothness conditions and the least stringent growth
rate for the number of terms, with ho(v) only required to be three times continuously
differentiable. It is also of note that this assumption does not required under-
smoothing. The presence of t in the rate conditions means that smoothness in
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Elxlv,d=1] can compensate for lack of smoothness in hO(v), so that the bias of h(v)
does not have to go to zero faster than the variance. This absence of an undersmoothing
requirement is a feature of series estimators of semiparametric regression modeis that
has been previously noted in Donald and Newey (1994).

Asymptotic normality of the two-step least squares estimator and consistency of the
estimator of its asymptotic covariance matrix follow from the previous conditions. Let

u, = d.{x.-Elx.]v.,d.=1]}, Q = E[e?u.u’.], and H = Elu.{dh_(v.,)/dv.}8v(w.,a . )/8a’].
i i i1 111 i 0 i i’ o

I

Theorem 1: If Assumptions 1 - 6 are satisfied and Q is nonsingular then for V([§)

1

M + mvewon ML \/?z(é—BO) 45 NOV(R)), and T(R) B> V(R).

This result gives vn-consistency and asymptotic normality of the series estimators
considered in this paper, that are useful for large sample inference. It would also be
useful to have a way of choosing the number of functions in practice. A K that
minimizes goodness of fit criteria for the selection correction, such as cross-validation
on the equation of interest, should satisfy the rate conditions of Assumption 6. In
Newey, Powell and Walker (1990) such a criteria was used and gave reasonable results.
However, the results of Donald and Newey (1994) and Linton (1995) for the partially
linear model suggests that it may be optimal for estimation of B to undersmooth,
meaning K should be larger than the minimum of a goodness of fit criteria. Such
results are beyond the scope of this paper, but remain an important topic for future

research.
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Appendix: Proof of Theorem 1

Throughout the Appendix C will denote a positive constant that can be different in
different uses. Also, we will use repeatedly the result that if E[Ynlxn] P50 for a
sequence of positive random variables Yn and conditioning sets Xn' then Yn 25 0.
To begin the proof, note that by d8v(w,a)/8a bounded and vVn-consistency of «, and by
3t(v,m)/8v bounded, maxil%i—'ril = Op(l/\/H). Also, by the density of T bounded away
from zero, both mini'l:i and max.T, will be Vn-consistent for the boundary points of
the support of Ty and hence so will mini'?i and maxi%i. Therefore, by a location
and scale transformation for power series, which will not change the regression, it can
be assumed that I%il =1 and maxil%i—ril = Op(l/\/ﬁ). Now, it follows from Assumption
6, as in Newey (1997) that for lIAll = tr(A’A)l/z, there is a nonsingular linear

transformation of f)K('t) of pK(T) such that

~K, _~K s~K S| <
(A.1) E[dip ('ri)p ('ti) 1 =1, SuPIrlslud p (t)/dt’ll = CS(K),
¢ K2V — 0, ¢ K o,
CS(K) = CK(1+25)/2 for splines, CS(K) = CK1+25 for power series.

Since a nonsingular transformation does not change [§, it will be convenient to just let

~K 172

5% = pX. Then, as in Newey (1997). IP’P/n - IIl = 0 (Eo(KIK'/“//R) 5 0. Also, by the

mean value theorem, mainI}A’i—Pill = CI(K)maxil%i—ril = Op(Cl(KV‘/H)' so that WP’P/n -

2

P’P/nll = IP-PI“/n + WPNIP-Pii/n = Op(CI(K)Z/n + kY ch(K)/\/H) -25 0. Hence, by the

triangle inequality,

(A.2) WP’P/n - mn B o.

It follows, as in Newey (1997), that A(P‘P/n) = C with probability approaching one,
where A(A) denotes the smallest eigenvalue of a symmetric matrix A.

Next, since r(v,no) is one-to-one, conditioning on v is equivalent to
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conditioning on T, so that, for example, ho(v) can be regarded as a function of .
Let p, = dElx/|t,d=1], p= (g, .,ul and p = Ox. So that n,l—uuz/n =

~ ~

tr(x’ Ox-2x’ Qu+p’pw)/n. By AP'P/m) =cC, § idempotent, and existence of the second

moment of X, for A = }3(13’}’5)—1

Ix’ A% = tr(x’AA’x) = op(l)tr(x'éx/n) =< Op(l)tr(x’x/n) = Op(l).

It follows similarly that IIx’All = Op(l) for A = P(P’P)—I. Also, IIx’/(P-P)/nll =

IxIWB-Pli/n = op(cl(K)/\/H) P, 5o that for Q = P(P’p)"lp',
(A.3) Ix’Qx/n - x’Qx/nll = Ix’ (P-P)A’x/nll + lix’ A(P’P-P’P)A’ x/nll + Iix’ A(P-P)’ x/nll

< IIx’ (P-P)/nil(NA xII+1A’ x1) + Ux’AlNB’ P-P'P)/nllIIA’ xIl -2 O,

It follows similarly that X’Qu/n - x’Qu/n &5 0. Therefore,

(A.4) Ilﬁ—ullz/n = tr(x’Qx-2x’ Qu+u’ u)/n + op(l) = tr(u’ Qu+u’ (I-Q)u)/n + op(l).

For T = (tl,...,rn)’ and D = (dl,...,dn)’, by independence of the observations,
Elu,|T,D] = Eld.(x,-E[x.|T.,d.=1])|7.,d.] = 0. Therefore, E[u.u.|T,D] =
i i i i ij
Elu.u.ft,7.,d.,d.] = El[u.Elu.|u,t.,t.,d. ,d.]lt.,7r.d.,d.] =
S U s Sl UG R SRS S L R R LA M S
EluElu.lt ,d llt,7.,d.,d.] = 0. Also, by Assumption 3, E[u’u.|T,D] = E[u’u.|t.,d.] =
A R S I U A A i i it

C. Therefore, with probability one,

(A.5) Efuu’ |T,D} = CI.

It follows that E[tr(u’Qu)/n|T,D] = Ctr{(Q)/n = CK/n — 0, so that tr(u’Qu)/n -5 0.
Also, by Assumption 4 and standard approximation theory results for power series and
splines (e.g. see Newey, 1997 for references), and by (I-Q)P = 0 and I-Q idempotent,
there exists TIK such that E[tr(p’ (I-Q)u)l/n = E[tr‘((u—PHI'()'(I—Q)(u—-PHI'())]/n =

1Y _ ’ — _ K ’ _ K ..
Eltr((u PHK) {(u PHK))]/n = E[di(ui HKp (ri)} (ui TIKp (ri))] — 0. Combining these

results with equation {A.4) gives
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(A.6) I~ %/n 25 0.

This implies that M —Ku’u/n 250, while u'uwn -5 M follows by the law of large
numbers. The triangle inequality then gives M -5 M.

Next, let € = (el,...,en)', and W = [w’l,...,w;ll’. It follows similarly to eq.
(A.5) that Elee’ |W,D] = CI. Then, since Q and Q are functions of W and D,

E[IIx’(Q-—Q)s/\/HIIZIW,D] = tr{x’ (Q-Q)Elee’ |W,D)(Q-Q)x}/n = Ctr(x’ (0-Q)(G-Q)x)/n.

It follows similarly to equation (A.3) that x’(Q-Q)Qx/n -&5 0 and x’(3-Q)Qx/n -&5 0,
so that lIx’(Q-Q)e/vnll -25 0, and hence x’(I-Q)e/Vn = x’ (I-Q)e/Vn + op(l). It follows

as in Donald and Newey (1994) that

(A.T) x'(1-Q)e/vVn = u’e/Vn + op(l).

For both power series and splines it follows as in Newey (1997) that there are Tk and

—- K 7 - K ’
Ty such that for hK(T) =p (T) Tk and uK(T) =p (1) T

-s+1

-s+] CK ,

{A.8) suPIrlsllhO(T)_hK(T)l = CK , SUp| .

1A

<1 | dho(r)/dr-dhK(t)/dt |

SuPITISlI“(T)_“K(T)I = CK_t.

Let by = hr)) By =hir), by = (T, by = hy(r), iy = T, iy = we(@),
Mg = HK(Ti), and let expressions without the i subscript denote corresponding
matrices over all observations multiplied by selection indicators, e.g. ﬁK =

Id Then x’(I-Q)hvh = x’ (1-Q)(h-R)/VE + (x—ﬁK)’(I—Q)(E-—EK)/\/H. Let ©

lﬁKl""’dnﬁKn]I'
= (a¢',m")", T(w,0) = tlviw,a),n), and hei = ah(r(wi,eo))/ae'. Since Br(w,eo)/an
depends only on v and E[uia(vi)] = 0 for any function a(vi) with finite

mean-square, E[uihei] = E[ui{dho(vi)/dv)av(wi,ao)/aoc',0] = [H,0]. It follows similarly
to M2 M that X’(I—Q)he/n LN E[uihe’i]. Then by a second-order expansion and

N

v¥n-consistency of 8,
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(A.9) x’ (I-Q)(h-h)/¥n = —[x'(I—Q)he/n]\/H(G—GO) + op(l) = -E[uihei]\/a(e—eo) + op(l)

= Hvnla-a.) + o (1).
0 p

Also, by eq. (A.8) and idempotent, (ﬁ—ﬁK)'(I-Q)(E—HK)/x/H = op(ﬁ's‘t”) 25 0.

1-Q
Also, (ﬁ—u)'(I-O)(E—EK)/\/ﬁ = op(K'S+1) 2,0 and v’ (I—Q)(E—EK—mhK)NH = op(K’S+1)

-B5 0. Also, it follows similarly to eq. (A.4) that for e, = h-h,, u’(Q—Q)eK/\/H =

K K

-s+1 P ’ 2 - ’ 7 ’ /
Op(cl(K)K ) — 0. Also, Elllu QEK" /n|T,D] = eKQE[uu IT,D]QEK/n = CeKQeK/n = eKeK/n

— 0, so that u’QeK/\/rT 2, 0. The triangle inequality then gives
(A.10) x' (1-QhVA = (x-i)’ -Q)(E-h ) VE 25 0.
Combining equations (A.7), (A.9), and (A.10), we obtain

(A.11) x’ (1I-Q)(e+h)/VA = u’e/Vn + HVil(a-a) + o (1) = Lo (U, + Hy )V + o, (1).

The first conclusion then follows from the Lindberg~Levy central limit theorem and
E[uieiwi] = E[uiE[eilwi,di]wi] = 0.

To show the second conclusion, note that dﬁ(\?i)/dv = [dﬁ({'i)/d'c]d'r(;/i,ﬁ)/dv, and it

follows from the Assumption 5 that sup,_ {dt(v.,7)/dv-dz(v.,)/dv] = O (1/vh). Also,
i=n i i p

f(t) = p()’5, % = A’(y-xB). Similarly to eq. (A.3), 1A' x(B-B)Il = O_(DIx(B-B )V =
op(l/\/ﬁ), HAY (h-R)Il = op(l)n(h—ﬁ)/\/ffu = op(m/r?), and uA'(H—ﬁ?/K)u =< Op(l)ll(ﬁ—lsa(K)/\/Hll
= Op(K_SH). Similarly to previous results, Ele’Qe|D,W] = CK, so that llA’ellZ = ¢g’AA’e

= Op(l)e'Qs/n = Op(K/n). Then by %—'yK = f\’x(ﬁ—Bo) + A’e + A’ (h-h) + A’(ﬂ—f’arK) and the

172 -s+1

triangle inequality, II'}—arKII = Op((K/n) ) + Op(K ). Then for s =1 or 2,
Sa s .S S, - s K Syren
(A.12) SuP]ﬂﬂld h(t)/dt>-d ho(r)/dt | = suPITISII[d p (T)/dt’) (¥ 'JK)I
s, K, ., S s S| - . -s+1
+ SuPlTlfl'd {p (1) 7K]/dt d ho(r)/dr | = CS(K)"'J 'J’K" + O(K )

_ 172 s+, _
= Op(cs(K)[(K/n) +K D= op(l).
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It follows that maxi<nIdﬁ(%i)/dr—dho(%i)/dr| 25 0. Also, since the conditions require
that ho(r) be at least twice differentiable with bounded derivative,

~ _ p . . el _ P
maxiSDIdhO(ri)/dt dhO(ri)/dtl — 0, implying rnaxiSnIdh(vi)/dv dho(vi)/dvl - 0.

Then, by boundedness of av(wi,&)/aa, for H = n_lzizlﬁi[at(wi,&)/aoc’ ]dho(vi)/dv,

A~

A~ 1/2, n ~ 2, 172 ~ _ p
IIH-HIl = tr(u’u/n) (Zi=lllar(wi,a)/aall /n) maxiSnldhO(ri)/d'r dho(ti)/drl — 0.

It also follows by eq. (A.3) that for H = n—lzizluilar(wi,oco)/atx' ldh(v,)/dv, ng-Hi 2
0. Then since H -£5 H by the law of large numbers, H -25 H follows by the triangle
inequality.
Now, let Ai = xi(B—BO) + hi—hi. By eq. (A.12), maXiSnIhi—hil =
feSy (2 ~ P (B
maXiSnIh(Ti) ho(ri)l + maxiSnlhO(ri) ho(ri)l -3 0. Also, maXiSnIXi(B BO)I =

1/(2+8) 2+8 , 1/(2+8) 1/(2+8)

. ~ < n _ P
max; WX, HB-B Il = n (T 1,07 " /n) op(l/\/ﬁ) =n Op(l)Op(lA/H) — 0.

Then by the triangle inequality max, <n![\i| £ 0. Furthermore, by Assumption 3,
Elle,|IW,D] = C, so that E[Zi:1"ai"2'€i'/“|w'm = zifluﬁiuzz[leil |W,Dl/n = czizluﬁiuz/n

= 0_(1), and hence Z.n Mﬁ.llzlc.l/n = 0 _(1). Therefore,
P i=1""1i i p

~2 nan, 2 2 2 D ga 2 a2 2
(A.13) ll): uu e/n - Zi=1uiui€i/n" = Z Ilu e €] I/n = Zi=1"ui" I(s:i 4,) eil/n

n ~ 2 A ~ 2 A 2
2(2i=llluill Icil/n)maxiSnlAil + (Zizllluill /n)rnaxiSHIAiI 25 0.

Also, note that E[Zigllleiﬁi—siuillz/nIW,D] E[Z 1€ llp -l /nIW D] =

ZizlE[C?IW,D]IIﬁi—piIIZ/n = Czizluﬁi—pillz/n 25 0 by equation (A.6). Therefore,

Zizllleiﬁi-—ciuillz/n 25 0. It follows that Z.n ﬁ.ﬁ’iég/n - Elnlu u’, ez/n —£5 0. Then by

the law of large numbers, Z 1ulu sz/n £ E[u u €] ] Q, so by the triangle

inequality, Zizlﬁiﬁ’i?:%/n —£5 Q. The second conclusion then follows by consistency of

V() and the Slutzky theorem.
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