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 UNCERTAINTY, INVESTMENT, AND INDUSTRY EVOLUTION*

 BY RICARDO J. CABALLERO AND ROBERT S. PINDYCK1

 We study the effects of industry-wide and idiosyncratic uncertainty on the
 entry of firms, total investment, and prices in a competitive industry with
 irreversible investment. We determine entry decisions and the resulting indus-

 try equilibrium and its characteristics, emphasizing effects of different sources
 of uncertainty. We stress how irreversibility affects the equilibrium distribution
 of prices, which in turn affects entry. Finally, we use four-digit U.S. manufac-
 turing data to measure the extent of uncertainty and gauge its importance for
 investment. We find that a doubling of industry-wide uncertainty raises the
 required rate of return on new capital by about 20 percent.

 1. INTRODUCTION

 Most investment expenditures are at least in part irreversible, that is, are sunk

 costs that cannot be recovered should market conditions change adversely. As a

 result, the cost of investing includes an opportunity cost of commiting resources

 rather than waiting for new information. A growing literature has shown how this

 opportunity cost can be evaluated, and demonstrated that it is very sensitive to

 uncertainty over future project values, so that changing market conditions that affect

 the riskiness of future cash flows can have a large impact on investment spending.
 These results emphasize the role of uncertainty as a determinant of investment

 spending, and suggest that policies that reduce volatility (over, say, exchange rates,
 prices, or interest rates) may lower the required cost of capital.2

 In most of the recent literature, the emphasis is on the investment decisions of an

 individual firm, rather than industry-wide investment and growth, and uncertainty is
 modelled by introducing an exogenous state variable (e.g., a demand or cost shift
 parameter, the price of the firm's output, or the interest rate) that follows some

 * Manuscript received May 1994; revised September 1995.
 1 This research was supported by M.I.T's Center for Energy and Environmental Policy Research,

 and by the National Science Foundation through Grant No. SES-8618502 to R. Pindyck and Grant

 No. SES-9208896 to R. Caballero. Caballero also acknowledges financial support from the Sloan
 Foundation and the National Bureau of Economic Research (through an Olin Fellowship). Our
 thanks to Brian Sliker for making available his dataset on U.S. manufacturing industries, to

 Yunyong Thaicharoen for his outstanding research assistance, and to Avinash Dixit, Janice Eberly,
 and two anonymous referees for helpful comments.

 2 McDonald and Siegel (1986) were among the first to demonstrate the implications of irre-

 versibility for investment decisions. Other examples of this literature include Bertola and Caballero
 (1994), Dixit (1989b), Majd and Pindyck (1987), and Pindyck (1988). For an overview, see Dixit
 (1992), Pindyck (1991), and Dixit and Pindyck (1994). The earlier literature on investment under
 uncertainty, e.g., Hartman (1972) and Abel (1983), demonstrates how uncertainty will increase the
 expected value of a marginal unit of capital if the marginal revenue product of capital is a convex
 function of the stochastic variable (an implication of Jensen's inequality), and thereby increase
 investment.
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 stochastic process. However, similar effects of uncertainty on investment can be
 found at the industry level. The reasons for these effects, however, may not be the
 same.

 What always matters for investment are the distributions of future values of the

 marginal profitability of capital-if these distributions are symmetric (and the firm

 is risk-neutral), increasing uncertainty will not affect investment. For a monopolist,
 irreversibility causes the distributions to be asymmetric because the firm cannot

 disinvest in the future if negative shocks arrive; hence the firm invests less today to
 reduce the frequency of bad outcomes in the future (i.e., the frequency of situations
 in which the firm has more capital than desired). On the other hand, in a
 competitive industry with constant returns to scale, the distribution of the future
 marginal profitability of capital is independent of the firm's current investment. But

 this distribution is not independent of industry-wide investment if the elasticity of
 demand faced by the industry is less than infinite.

 As a result, when studying irreversible investment in an industry context, it is

 important to distinguish between aggregate (industry-wide) and idiosyncratic (firm-
 level) shocks. To see this, consider idiosyncratic and aggregate shocks to productivity
 that are both symmetrically distributed. Although either type of shock might affect
 the expected future market price and hence the expected marginal profitability of
 capital, idiosyncratic shocks lead to a symmetric probability distribution for the

 marginal profitability.3 Aggregate shocks, however, do not; although negative shocks
 can reduce the market price, positive shocks are accompanied by the entry of new
 firms and/or expansion of existing firms, which limits any increases in price. Hence
 the distribution of outcomes for individual firms is truncated; negative shocks to
 productivity reduce profits more than positive shocks increase them, and irreversible

 investment is reduced accordingly.4 Thus an important objective of this paper is to

 clarify the different mechanisms through which aggregate and idiosyncratic shocks
 interact with irreversibility in a competitive industry.

 Uncertainty affects irreversible investment in two ways: first, through the effect of

 the firm's current investment on the expected path of its marginal profitability of
 capital; and second, through the effects of competitors' investment on the path of this
 marginal profitability. Caballero (1991) has shown that with constant returns to
 scale, the importance of the first effect decreases as the demand curve facing the
 firm becomes more elastic, as long as the uncertainty is firm-specific. But this does

 not mean that industry-level uncertainty will not affect industry investment and
 output in a competitive equilibrium. As shown by Pindyck (1993), irreversibility has
 the same type of effect on industry investment as it does for a monopolist once one

 allows for entry of new firms or the expansion of existing ones. The reason is that
 irreversibility combined with the possibility of entry affects the distribution of the
 marginal profitability of capital seen by each individual firm. Hence another objec-
 tive of this paper is to characterize the distribution of the marginal profitability of

 3For simplicity, we are ignoring the effect of uncertainty through the convexity of the marginal
 revenue product of capital, as stressed by Hartman (1972).

 4This is an example of the bad news principle discussed by Bernanke (1983).
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 capital and its evolution, and show how it affects entry, investment, and the price
 level itself.

 This paper extends and complements recent work by Dixit (1989b), Leahy (1993),
 and others. Dixit characterizes industry evolution in the presence of aggregate
 uncertainty by using dynamic programming methods to determine the entry and exit
 decisions of individual firms of discrete size. Leahy models an industry equilibrium
 in which price is endogenous, and shows that under reasonable assumptions, it is

 optimal for individual firms to make their investment decisions under the myopic
 assumption that price follows an exogenous lognormal random walk. Other related

 work includes the discrete-time models of Hopenhayn (1992a,b) and Lambson
 (1991). Hopenhayn examines industry equilibrium allowing for endogenous exit and
 firm heterogeneity, but restricts uncertainty to be firm-specific. Lambson develops a
 model similar to ours in that it allows for industry-wide as well as firm-specific

 shocks, but he focuses on the effects of evolving market conditions on technology
 selection.5 In the first part of this paper we use a continuous-time approach similar
 to that used by Dixit (1989b) and Leahy (1993), but we emphasize the effects of
 different sources of uncertainty on entry. We then go on to show how the distribu-

 tion of prices, conditional on the time elapsed since entry, can be used as an

 alternative way to characterize firms' behavior and industry equilibrium. This helps
 to clarify how investment is affected by the interaction of irreversibility with
 different forms of uncertainty in an equilibrium setting.

 We examine the effects of idiosyncratic and aggregate uncertainty using a simple
 model of a competitive market in which firms have constant returns to scale and
 there is a sunk cost of entry. In the next section, we cast the model as a dynamic
 programming problem, and we obtain a solution and examine its properties. In

 Section 3 we re-cast the problem in terms of the conditional distribution of the
 marginal profitability of capital. We calculate the time path for this distribution, and

 show how it provides additional insight into the effects of uncertainty on investment
 and industry evolution. In Section 4 we use four-digit U.S. manufacturing data to
 measure the extent of uncertainty and gauge its importance for industry investment.
 Section 5 concludes, and discusses possible extensions of our work.

 2. A STYLIZED MODEL

 We begin with a highly stylized model in which the value of a marginal unit of
 capital is stochastic and exogenous. For simplicity, our formulation eliminates the
 conventional positive Jensen's inequality effect of uncertainty on the value of a
 marginal unit of capital that arises from the endogenous response of variable factors
 to exogenous shocks. This lets us focus on the way in which the effects of
 uncertainty are mediated through the equilibrium behavior of all firms.

 5In related studies, Lippman and Rumelt (1985) model a competitive industry equilibrium with
 free entry and exit, Dixit (1991) characterizes the equilibrium for a competitive industry with
 irreversible investment and a price ceiling, and Lambson (1992) examines the long-run determinants
 of average profit rates in a model of industry equilibrium with sunk costs.
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 We consider a market with a large number of productive units. Each productive
 unit might be a single firm, or individual firms might each own several units. These
 units are industry specific, so that their installation involves a sunk cost. Entry
 occurs when new productive units are added, either because new firms invest and
 enter the market, or existing firms invest in new capacity. What matters is that
 idiosyncratic shocks apply to these units individually, that is the units all have the
 same expected productivity, but will have randomly differing realized productivities.
 To clarify the ways in which uncertainty affects investment, we assume that the
 owners and managers of these units are risk-neutral. (Hence the investment rules we
 derive maximize firms' values in a competitive financial market, whether or not
 idiosyncratic or aggregate shocks are spanned by the set of traded assets in the
 economy.)

 We assume that these productive units are small enough and the number of them
 is large enough so that we can represent them as a continuum whose mass at time t
 is N(t). Total industry output, Q(t), is given by:

 (1) Q(t) = N(t)A(t) di

 where Ai(t) is the output of productive unit i at time t. The Ai's are assumed to
 follow arbitrary and possibly correlated exogenous stochastic processes. We decom-

 pose these individual productivity variables into two parts, their average (the
 aggregate) and the remainders:

 Ai(t) =A(t)ai(t), such that fN(t)ai(t) di = N(t).

 Here A(t) is the average productivity of the industry, so that Q(t) =A(t)N(t), and

 ai(t) is the productivity of unit i relative to that of the industry as a whole.
 We allow for one idiosyncratic and two aggregate sources of uncertainty. First, we

 let ai(t) and A(t) follow separate stochastic processes, so that productivity has both
 an idiosyncratic and an aggregate component. Second, we introduce another source
 of aggregate uncertainty through the industry demand curve. Industry demand is
 taken to be isoelastic:

 (2) P(t) =M(t)Q(t)'07,

 where M(t) is an exogenous stochastic process that captures aggregate shocks. We
 will assume that M(t) follows a diffusion.

 The measure of industry size, N(t), increases with entry and decreases with
 failures, the (involuntary) removal of productive units. We assume that the latter
 occurs at an exogenous proportional rate y. At the level of an individual unit, a
 failure is a Poisson arrival, and the intensity of the Poisson process is y.6 Alterna-
 tively, we could have assumed a deterministic depreciation rate y that applies to all
 units; our results (from (4) below onwards) would be the same.

 6 It would be more realistic, of course, to make the Poisson arrival rate depend on the age of the
 specific unit. However, that complicates the model but adds little additional insight.
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 To introduce irreversibility, we assume that entry of a productive unit requires a
 sunk cost F. Free entry determines that there are no profits to be made by adding
 another productive unit to the industry, so that:

 (3) F>E 2Es(o P(t)Aj(t)e-8dt])

 which holds with equality at all times in which there is entry. The parameter 8 is the

 discount rate. Note that the expectation Ej is over all unit-specific uncertainty,
 which includes the stochastic productivity process ai(t) as well as the Poisson failure
 process for each unit. The expectation E0 is over the distribution of the future

 marginal revenue product of capital, P(t)Aj(t), and therefore accounts for the
 possible (irreversible) entry of new productive units. As will become evident, the
 ability to enter the industry reduces the probability of good outcomes by truncating

 the upper part of the distribution for the aggregate component of P(t)Aj(t), namely
 P(t)A(t).

 By Fubini's theorem and the construction of Ai(t) we can pass the expectation
 operator Ej inside the integral in eqn. (3), so that it reduces to:

 (4) F 2 EO[0 P(t)A(t)e-(8+)t dtj.

 Note that the only idiosyncratic effect that remains in (4) is the failure rate y, and
 this is now indistinguishable from an industry-wide depreciation rate. Because the
 value of the output of each unit is linear in the output-specific stochastic state
 variable, we can eliminate all other idiosyncratic elements from the right-hand side

 of (3). This is an extreme result that will help to focus and clarify our analysis. In the
 concluding section we discuss natural modifications of the model that give an

 additional role to idiosyncratic shocks. However, these modifications do not affect
 our basic conclusions.

 Since Q(t) =A(t)N(t), we can use the market demand equation to construct a
 measure of the value of output for an average productive unit. Letting B(t) denote
 the average value of output:

 (5) B(t) =P(t)A(t) =M(t)A(t)(_1 )/1nN(t) 11n.

 Because the industry size N(t) is endogenous, B(t) will follow a regulated stochastic
 process, where N(t) regulates B(t). Letting lower case letters represent the loga-
 rithm of the corresponding variable, we can write:

 (6) d log B(t) -db(t) = dm(t) + ( ' da(t) --dn(t).

 In order to obtain analytical results that can be used to illustrate the implications
 of different sources of uncertainty, we make the simplifying assumption that the
 aggregate stochastic state variables follow geometric Brownian motions. Thus, we
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 write the dynamics of m(t) and a(t) as:

 (7) dm(t) = (a,,m-o-o2n) dt + om dzm(t)

 (8) da(t) = (&a- (Oa2) dt2 + a a dZa(t).

 We also assume that the Wiener processes dzm(t) and dZa(t) are uncorrelated. (It is
 easy to relax this assumption.) Then B(t) follows a particularly simple regulated
 geometric Brownian motion. Specifically, B(t) will remain at or below a fixed upper
 boundary. This boundary, which we denote by U, is yet to be determined as part of
 an industry equilibrium. Regulation is due to entry; when this is not occurring,
 n(t) log(N(t)) will follow:

 dn(t) = -ydt,

 and b(t) is given by:

 (9) db(t) = 3 dt +o-bdz(t),

 where

 p .,r 1 2-y 7+ 1 7-1a2 2 j 2 (

 and

 O'b = + (-) a

 This model is simple enough so that we can find a closed form solution for the

 optimal investment rule, i.e., for the upper boundary U. (Later we will see how the
 entire problem can be recast in terms of the conditional distribution of marginal
 revenue product.) Let W(x) denote the value of entering the industry at t = 0 when
 b(O) = x, so that B(O) = eX:

 00

 (10) W(x) = e-(8+)t E[B(t)IB(0) =ex] dt.

 By arbitrage, over an interval dt, the total expected return from being in the

 industry must be equal to (8 + y)Wdt. This expected return has two components, an
 expected capital gain, E0 dW, and a flow of revenue B(O) dt = ex dt. By Ito's Lemma,
 E0 dW = 3 W'(x) dt + (1/2)o-,W" (x) dt, so W(x) must satisfy the following differ-
 ential equation:

 (11) - 2W" (x) +P8W'(x) - (8 + y)W(x) + ex = 0.
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 UNCERTAINTY AND INDUSTRY EVOLUTION 647

 In addition, W(x) must satisfy the following boundary conditions:

 (12) n W(x )= O,
 X -c-

 and

 (13) W'(u) = O.

 where u = log U. Boundary condition (12) follows from the fact that 0 is an

 absorbing boundary for B. Condition (13) follows from the (left) continuity of the
 value function at the trigger point u.

 The reader can check that (11) has the following simple solution that satisfies the
 associated boundary conditions:

 ex eu/A

 (14) W(x 8+s 72 8= + _e2e k(x -

 where

 -/A + p 2+2(8+y)ob2 (15) A= 2i

 A sufficient condition for the existence of this solution is that the discount rate
 be large enough so that the value of a unit remains bounded even if entry into
 the industry were prohibited throughout the future. Specifically, we require that

 8 + y -,/ - ob, >/2 >0, that is 8 > am + [(77 - 1)/71](a, - y) - [(,q - 1)/2772]o72. This
 ensures that A > 1, and simply implies that the neoclassical cost of capital is

 positive.

 We can now determine U, the upper boundary of B(t). If we had solved this as a
 central planning problem, we would determine U from the first-order condition that
 W"(U) = 0. Instead, we follow Leahy (1993) and use the free entry condition, which
 in this case is F = W(u). Hence:

 U A12
 (16) F A 1( -P-2 b)

 Because of free entry, E0fJB(t)e-(85+)tdt=F, where t=O is the time of entry.
 Since U? Eo[B(t)] for all t and U> E0[B(t)] for all t>O, we know that
 E0J'Ue - 8+7 dt > F. This is a result of irreversibility; there is an opportunity cost
 of investing now rather than waiting for new information. If firms could uninvest and
 recoup the cost F, we would instead have the standard Marshallian result that

 Eof 'Ue -(5+)t dt = F.
 For simplicity, in what follows we assume that aggregate productivity is constant,

 so that a, = oa = 0 (and hence o-b= 0m). Recall that am and orb represent the
 mean and the standard deviation of the rate of growth of revenue per productive

 unit averaged over the industry when there is no entry. With tedious calculation, one
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 DEPENDENCE OF U/F ON orb AND am

 can show that d(U/F)/dob > 0 and d(U/F)/dam < 0. A smaller value of am2 raises
 U/F because given any value of U/F, it implies a lower expected price so that less

 entry is needed to satisfy the zero profit condition. (This is discussed further below.)
 A higher value of Ub raises U/F by increasing the opportunity cost of investing,
 and thereby raising the threshold required for a firm to pay the sunk cost F. But

 note that only aggregate uncertainty matters; U/F is unaffected by idiosyncratic

 shocks. Figure 1 shows this dependence of U/F on am and Ub.

 One can also show that d(U/F)/drq > 0, and d(U/F)/dS > 0. An increase in the
 elasticity of demand, 77, implies that the potentially positive effect of the failing units
 on the price is reduced. This lowers expected revenue flow and hence raises the

 threshold required for investment. An increase in 8 likewise raises the threshold by

 directly lowering the expected present value of returns and by increasing the

 opportunity cost of investing in the unit now, rather than waiting and discounting

 the expenditure F. As for d(U/F)/d'y, the discounting effect described above again
 holds (capital depreciates faster when 'y is larger). However, there is an offsetting
 effect from the increased depreciation of the capital of other firms, which tends to

 raise the expected industry price as seen from the time of entry. The first effect

 dominates for most reasonable parameter values.

 We can now describe the behavior of industry investment, output, and price in

 equilibrium. Suppose, for example, that aggregate demand increases. Then entry of

 new productive units will occur, so that price will rise only to the point that

 P(t)A(t)= U. Figures 2A, 2B, and 2C illustrate this by showing a particular sample
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 path for industry evolution for two values of a,,,, 0.15 and 0.30. (In this simulation,
 the other parameters are rt. = 2, at = 0.02, ?a, = ma =?0 oy= 0.03, = 0.06, and
 F = 100.) The top graph shows the log of the stochastic driving force, m(t). (The
 realization for z(t) is the same for the two lines, but the values of Ub are different.)
 Figure 2B shows the log of the number of productive units, n(t). Note that when
 m(t) is falling (e.g., between t = 12 and 18), there is little or no investment, so n(t)
 falls due to failures (or depreciation). For t > 18, m(t) is generally rising, and so
 entry occurs and n(t) rises.

 Figure 2C shows the realization for the log of price, p(t). Note that p(t) appears
 stationary; that is because we have set &a = a 0 for all t, so that A(t) = 1 always.

 2.7

 2.4

 TIME

 FIGURE 2C

 LOG OF PRICE
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 (Hence price is equal to the average revenue per productive unit, which is the

 relevant state variable for the decision-making unit. In the more general case, b(t)

 would follow the same pattern as in Figure 2C, and p(t) would be the sum of b(t)

 and a Brownian motion.) As the figure illustrates, during recessions (when m(t) is

 falling) price will also fall, and will fall farther when Ub is larger. But during good

 times, p(t) is generally higher when Ub is larger. The reason is that with a larger Ub,
 there is a greater chance of deeper recessions, so during good times firms wait

 longer before entering, n is smaller, and p is higher.

 Underlying these results is a forecast of future revenues by firms that are

 considering entry. In fact, this forecast (which must take into account entry by other
 firms) completely determines the decision to enter. Hence, looking directly at the

 expected value of future revenues, and their dependence on the underlying parame-

 ters, helps to understand industry evolution. We turn to this next.

 3. THE PRICE DISTRIBUTION AND ENTRY

 In the previous section we found the optimal investment rule in the standard way

 -by using dynamic programming to calculate the firm's value function. In general,
 this approach is useful in that studying the local (in time) behavior of the value
 function allows one to fully characterize complex dynamic problems. Problems in

 which the optimal or competitive outcome consists of regulating a Brownian motion,
 as in the model developed in the previous section, are good examples of this. Value

 matching, smooth pasting and the Bellman equation are all intuitive properties
 arising from this local analysis.

 Although dynamic programming is a powerful tool, it sometimes conceals the

 economic intuition as to how changes in parameters affect optimal policies. As we

 explained in the Introduction, the combination of irreversibility and industry-wide

 uncertainty causes the threshold that triggers investment to rise because of the

 asymmetry in the distribution of the future marginal profitability of capital that the
 irreversibility constraint brings about. This is hidden in the dynamic programming
 formulation.

 For example, (10) defined the value function, W(x), as the expected present value
 of the flow of marginal revenue product. Thus, any effects of changes in the variance
 or drift parameters on the value function, and hence on the optimal investment rule,

 must come through their effects on either the path of the expected marginal

 profitability of capital or the discount rate. In this section we illustrate this

 mechanism by looking at the path of expected marginal profitability directly and

 showing how it is affected by the underlying parameters. Although this approach is

 more cumbersome than that used in the previous section, it makes the nature of the
 irreversible investment problem more apparent.

 To proceed, we need to derive the conditional probability density for b, which we

 denote by f(b, t). Since we know that a firm will enter only when b(t) = u, we can
 replace x by u in (10). Hence f(b, t) is the probability density of b after a time t has
 elapsed from the moment of entry, conditional on b(O) = u. As mentioned above,
 any effects of parameters such as ,3 and Ub on the entry point u and hence on price
 will occur through their effects on the path of the density f(b, t), and in particular

This content downloaded from 18.9.61.112 on Tue, 31 Jan 2017 20:34:12 UTC
All use subject to http://about.jstor.org/terms



 UNCERTAINTY AND INDUSTRY EVOLUTION 651

 on the function:

 E[B(t)IB(O) = U] = logUebf(b, t) db.

 This expected value begins at the moment of entry at U, and then converges over
 time to the ergodic mean. In the Appendix we derive the entire path of the density

 f(b, t) and its conditional moments. In particular, its ergodic mean, which we denote
 by Bo, is given by:

 2/3
 (17) B0, lim E[B(t)IB(O)=U]= 2 U.

 t -4 00 Ub2 +2/

 If the discount and depreciation rates are small, this ergodic mean, as opposed to

 the transition path to this mean, has a relatively large weight in determining the

 response of the equilibrium entry point, U, to changes in the drift and uncertainty
 parameters. It is straightforward to see that Boo rises with 83 and falls with Ub; thus,
 by the free entry condition, U must fall with 83 and rise with Ub.

 If the discount and/or depreciation rates are large, the transition path to the

 ergodic mean carries more weight, so the problem is more complicated. In this case

 we need to account for the entire path of f(b, t). (Intuitively, we know that f(b, t)
 must start as a spike at u when t = 0, and as t increases it must converge smoothly

 to the ergodic density.) Because b(t) follows the diffusion equation (9), f(b, t) must
 satisfy the Kolmogorov forward equation:

 (18) ft(b , t) = ab2fbb(b, t)- Pfbfb, t).

 (See Karlin and Taylor 1981.) Since b(t) is regulated at u, the solution to this
 equation must satisfy the following boundary conditions for t > 0:

 2

 (19) f(ut) = MbU t),

 (20) lim f (b, t) = O,
 b- -oo

 as well as the initial condition:

 (21) 1_f(bO)db={0 X<u.

 In Appendix A we derive the solution for f(b, t). Using this, we find an expression
 for the trajectory of the expected marginal profitability of capital, conditional on its
 value at the time of entry, U. From the free entry condition, the present value of the

 flow of this expected marginal profitability must equal the cost of entry, and this
 determines U.
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 Figure 3 illustrates how the mechanisms underlying industry-wide investment are

 revealed by the conditional expectation of the marginal profitability of capital. The

 figure divides the investment problem into two steps. The first step, shown in panel

 (a), removes the effect of individual firms' optimal entry decisions by normalizing the
 path of the conditional expectation of B(t) by its value at the time of entry. Thus it

 isolates the impact on firms' expected marginal revenue of the interaction between

 industry-wide entry (optimal or otherwise) and the stochastic environment. The
 second step, shown in (b), adds back in the effect of firms' individual entry decisions.

 Panel (a) shows E[B(t)IB(0) = U]/U as a function of time for Ub = 0.10, 0.15, and

 0.20. (Other parameter values are My = 0.03, a =0.02, a a = O a= =0, 2, 8 = 0.06,
 and F = 1.) Two points should be noted. First, the asymmetry of the irreversibility
 constraint (i.e., there is free entry but no exit) implies that the expected marginal
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 profitability is largest at the time of entry, and declines monotonically thereafter.

 Second, the more uncertainty there is the faster and deeper is this decline. The

 reason is that free entry truncates the distribution from above, while larger negative
 shocks imply larger reductions in marginal profitability.

 Panel (b) shows E[B(t)IB(O) = U] for the same three values of (ob. This incorpo-
 rates the industry-wide determination of U in response to the post-entry pattern of

 the expected marginal profitability. Note first that the entry threshold U (the

 intersections of these curves with the vertical axis) is always greater than the

 frictionless neoclassical cost of capital, which is equal to 8 + y - /3 - (1/2)ob2. In
 order to recoup the initial investment with a declining path for expected marginal

 profitability, expected returns in early periods must exceed the neoclassical cost

 of capital. Second, U increases with uncertainty. This is the case because (as we
 saw above) greater uncertainty implies a steeper decline in expected marginal
 profitability.7

 4. SOME EVIDENCE FROM U.S. MANUFACTURING

 In this section we use data for two- and four-digit U.S. manufacturing industries

 to obtain measures of uncertainty over the marginal profitability of capital. We then

 use these measures to gauge the importance of uncertainty for investment.

 Given assumptions about the production technology and market structure, we

 estimate a times series for our marginal profitability variable, B(t), up to a scaling
 factor. In particular, we assume that the industry is competitive and the production

 function is Cobb-Douglas with constant returns to scale. We can thus express the
 output of a productive unit as:

 (22) Y(t) = St K aLO(l - a)Mt(l - )(1 - a),

 where St is an index of profitability, a is the share of capital, and 4 is the share of
 labor in a labor-materials composite which we will denote by H. (This might appear
 different from the model in Section 2, but it is not. Note that if the firm chooses the

 flexible factors L and M optimally, given CRTS, Yt will be proportional to Kt.)
 Given this expression for output, the marginal profitability of capital is given by:

 (23) IIK) )= a(1 - a)(la)/a(PtSt)/?aP (1a)/ a

 where Pt is the price of output, and PH,t is the price of the labor-materials
 composite. Letting At-- a(1 - a)(l-a)/1aS1/aPH(`)/a we can write the marginal

 If the discount rate 8 and depreciation rate y were zero, these curves would all converge to the
 same value, and would not cross each other. The reason is that with no discounting, only the
 long-run steady-state matters, and not the transition to that steady-state. Different values of ob
 would result in different values of U such that the resulting ergodic means for the marginal
 profitability of capital would be the same. With discounting, however, the transition matters, so that
 the curves cross.
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 profitability of capital as:

 -'K( t) = AtPt1/ .

 Note that this is equivalent to our expression for B(t) in Section 2, except for the

 exponent on Pt. (In Section 2 we eliminated this standard convexity exponent for
 purely expositional reasons.) We will work with b(t) = log B(t) = log HlK(t). This is

 given by:

 (24) b(t) = at +-P
 a

 where again, lower case letters represent logs of the corresponding variables.
 We cannot measure b(t) at the individual firm or plant level. Instead we focus on

 investment and the marginal profitability of capital at two different levels of
 aggregation: 20 two-digit manufacturing industries, and 443 four-digit subsectors
 that make up these two-digit industries. While it is not clear which level of
 aggregation is more representative of what we have called an industry, shocks at the

 four-digit level are likely to have a larger idiosyncratic component. Hence it is useful
 to compare the volatility of b(t) and its implications for investment across these
 levels of aggregation. For each industry, we use data on the real value of output,
 real inputs of capital, materials, and labor, and the corresponding price deflators to

 obtain a time series for b(t) over the 29-year-period 1958 through 1986. We denote
 these series by b2(t) and b4(t) for the two-digit and four-digit industries respectively.
 The data and the calculation of the b(t)'s are discussed in the Appendix.8

 We calculated the sample standard deviations of Ab(t) for each of the 20
 two-digit industries, which we denote by SDB2, and for each of the 443 four-digit
 industries, which we denote by SDB4. If we view shocks at the four-digit level as

 idiosyncratic, then SDB4 would measure total (aggregate and idiosyncratic) uncer-
 tainty.9 Table 1 shows SDB2 and the average of the SDB4s for each of the two-digit
 industries. Observe that the average four-digit standard deviation is typically two or

 three times as large as the corresponding two-digit standard deviation. The two-digit

 standard deviations are on the order of 10 percent per year (consistent with an
 annual standard deviation of real returns on the New York Stock Exchange Index of

 20 percent per year and an average debt/equity ratio of one).
 Table 1 also shows the premia over the neoclassical cost of capital implied by our

 model, for the two- and four-digit standard deviations, assuming for both that all

 uncertainty is aggregate (the premium is U/F - (8 + y - /3 - 2 ob2), with U/F given
 by (16)). Note that for the two-digit level of aggregation, the implied premia are on

 8 We used a database assembled by Brian K. Sliker, who graciously made it available for our use.
 We included only 443 of the 450 four-digit SIC industries because of missing data in seven of the
 industries.

 9Our estimators of SDB2 and, possibly, SDB4 are biased downwards from the true standard
 deviations because b(t) is a regulated process. Equation (9) applies when it is not regulated, but our
 sample includes periods of regulation.
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 TABLE 1

 BASIC STATISTICS FOR TWO- AND FOUR-DIGIT INDUSTRIES

 Implied Mean Implied
 SIC NOB SDB2 Premium of SDB4 Premium

 20 47 0.058 0.039 0.246 0.085
 21 4 0.104 0.047 0.451 0.170
 22 30 0.118 0.050 0.366 0.130
 23 33 0.076 0.042 0.304 0.105
 24 17 0.168 0.062 0.327 0.114
 25 13 0.125 0.051 0.258 0.089
 26 17 0.113 0.049 0.217 0.076
 27 17 0.061 0.039 0.192 0.068
 28 28 0.088 0.044 0.224 0.078
 29 5 0.201 0.071 0.256 0.088
 30 6 0.127 0.052 0.242 0.084
 31 11 0.093 0.045 0.231 0.080
 32 27 0.099 0.046 0.236 0.082
 33 26 0.250 0.086 0.506 0.198
 34 32 0.123 0.051 0.277 0.095
 35 44 0.160 0.060 0.301 0.104
 36 39 0.147 0.056 0.264 0.091
 37 15 0.184 0.066 0.403 0.147
 38 12 0.105 0.047 0.220 0.077
 39 20 0.109 0.048 0.255 0.088

 NOB, number of 4-digit industries in each 2-digit industry; Mean of SDB4, cross-sectional sample
 mean of the 4-digit sample standard deviations of Ab(t) corresponding to the 2-digit industry;
 implied premium, premium over the neoclassical cost of capital resulting from uncertainty and
 irreversibility, i.e., it is U/F - (8 + y - /3 - (1/2)qb), where U/F is given by (16), with y= 0.03,
 am = 0.02, a, = or = 0, 1 = 2, and 8= 0.06.

 the order of 5 or 6 percent, while for the four-digit level they are on the order of 12

 percent. These premia are substantial, and are distinct from any premia associated

 with systematic risk, for instance, in the context of the CAPM. Finally, we also gauge

 the importance of uncertainty for investment by computing the semi-elasticity

 A log(U/F)/A 0b. For the industries in Table 1, this semi-elasticity is about 2 for

 either level of aggregation.

 Ideally we would like to estimate the semi-elasticity A log(U/F)/A 0rb using a

 direct measure of the required return U/F, rather than the one implied by the
 model. However, the threshold U is not directly observable. Instead, we compute

 proxies for this threshold, and then use them to estimate the semi-elasticity

 assuming that the model is correct. We proxy u = log U by extreme values of b(t);

 since u is the upper barrier for b(t), b(t) should be close to u when it is large

 relative to its average value. We use three variables, all computed relative to the

 industry mean of b(t), to proxy u at both the two- and four-digit levels: (i) the
 maximum of b(t) over the 29 years of data, denoted by DBMAXn, where n = 2 or 4
 for the two- and four-digit industries; (ii) the average of the top docile (three
 observations) of the 29 annual values of b(t), denoted by DBDECn; and (iii) the
 average of the top quintile (six observations), denoted by DBQUINTn. We average

 over several extreme values and use DBDEC and DBQUINT rather than just

 DBMAX because in practice b(t) may rise above u temporarily if there are lags in
 investment, if there are predictable temporary increases in b(t), or if firms do not
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 TABLE 2

 CROSS-SECTION REGRESSION RESULTS

 Dependent Variable Const. SDBn NOB R2

 DBMAX2 0.0651 2.3347 20 0.246
 (0.1290) (0.9641)

 DBDEC2 0.0072 2.3634 20 0.296
 (0.1151) (0.8598)

 DBQUINT2 0.0070 1.8928 20 0.359
 (0.0799) (0.5966)

 DBMAX4 0.2136 1.5274 443 0.580
 (0.0208) (0.0619)

 DBDEC4 0.1886 1.2038 443 0.550
 (0.0161) (0.0480)

 DBQUINT4 - 0.1677 0.9361 443 0.588
 (0.0135) (0.0403)

 SDB2, sample standard deviation of Ab(t) = A log B(t) for each 2-digit industry; SDB4, average
 sample standard deviation of Ab(t) for the 4-digit industries that comprise the 2-digit industry.
 Standard errors corrected for heteroscedasticity are shown in parentheses.

 always optimize. We compute these variables relative to the mean because b(t) is
 identified only up to a constant, which may differ across sectors.10

 Table 2 shows cross-section regressions of DBMAXn, DBDECn, and DBQUINTn

 against SDBn and a constant, for n = 2 and 4. These regressions provide alternative
 estimates of the semi-elasticity A log(U/F)/A ob.11 For the two-digit industries, we
 again find that this semi-elasticity is about 2, close to what we obtained by
 computing implied premia directly from the model (see Table 1). This implies that
 an increase in the annual standard deviation of the marginal profitability of capital
 from, say, 0.1 to 0.2 should increase the required return on investment by 20 percent

 (so that if the required return was 30 percent, it should rise to about 36 percent).
 This is a sizable effect, consistent with the simulated elasticities illustrated in Figure
 1, but less than predictions based on analyses of individual projects, such as those by
 McDonald and Siegel (1986), Majd and Pindyck (1987), and others. For the
 four-digit industries, the estimates of A log(U/F)/A o-b are about half as large. One
 interpretation of this is that the four-digit standard deviations have a much larger

 idiosyncratic component (as we would expect), which, as the model predicts, does
 not affect the required return.

 5. CONCLUSIONS

 In a competitive equilibrium, uncertainty over market demand or average produc-

 tivity affects irreversible investment through the feedback of industry-wide capacity

 10 Note from (17) that u minus the mean of b is affected by uncertainty in the same qualitative
 way as is u itself, because the mean is much less sensitive to uncertainty than is u. When the
 discount rate is zero, the mean of b is unaffected by uncertainty.

 11 These estimates should be taken with caution. Even if the model were not true, generally there
 will be a positive association between the variance of the increments of a random variable and the
 maximum of the random variable. We do not purport these results as a test of the model; they are at
 best suggestive numbers, especially when compared with the theoretical values reported in Table 1.
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 expansion and new entry on the distribution of prices. If demand increases, existing

 firms will expand or new firms will enter until the market clears. From the point of

 view of an individual firm, this limits the amount that price can rise under good

 industry outcomes. But if investment is irreversible, there is no similar mechanism to

 prevent price from falling under bad outcomes. Each firm takes price as given, but

 knows that the distribution of future prices is affected by the irreversibility of
 investment industry-wide, which leads it to raise the trigger point at which it is

 willing to invest. Idiosyncratic shocks, which affect only an individual firm, do not

 induce entry and thus should have less impact on the firm's willingness to invest.

 We have tried to clarify these channels through which aggregate and idiosyncratic

 uncertainty affect investment and industry evolution. Our model is simple enough so

 that it can be solved using standard dynamic programming methods, but we have
 emphasized the effects of uncertainty on the conditional distribution of the marginal

 profitability of capital, and shown how this distribution can be derived and used as

 an alternative means of determining and understanding the behavior of firms and

 the resulting industry equilibrium.

 It is useful to compare our model with standard NPV models of investment based

 on the CAPM. In those models, it is systematic (economy-wide) uncertainty that

 affects the discount rate. In our model, aggregate uncertainty, which is related to

 but not the same as systematic uncertainty, increases the trigger point, which

 corresponds to a higher required rate of return. Thus the mechanisms are very

 different, but the effects of different sources of uncertainty are similar as in

 NPV-CAPM models. We have ignored CAPM effects; they may magnify the effects

 of aggregate uncertainty that we have derived. However, a recent study by Leahy

 and Whited (1993) using firm-level data finds that CAPM effects are negligible,
 whereas the effects of irreversibility seem substantial.

 The model we present is highly stylized and makes a number of simplifying

 assumptions. Some are important and should be kept in mind when interpreting our

 results. First, as we noted in the empirical section, if there is a flexible factor, or if

 the firm can costlessly and temporarily shut down when price falls below variable

 cost, the marginal profit function will be convex in price and in exogenous productiv-

 ity. Then for an industry of fixed size, an increase in idiosyncratic uncertainty will

 raise the present value of an additional unit of capital, and so to preserve the

 zero-profit condition, the trigger point at which entry occurs must decline.

 Second, we have ignored abandonment. Suppose a productive unit can be

 scrapped at any time for some positive value. This puts a floor on the value of the

 unit. (The unit will be scrapped once the combination of price and its productivity
 reach the point where its value equals the scrap value.) This possibility raises the
 value of the unit for any combination of price and expected productivity, which

 lowers the entry point u, and hence reduces the effect of aggregate uncertainty

 described by our model. Also, an increase in idiosyncratic uncertainty will raise the

 value of the unit. The reason is that potential entrants cannot know what their

 relative productivity will be until they enter. However, exit is done selectively, when

 idiosyncratic productivity is low ex post. Selective exit raises the value of a unit,

 lowering the critical cutoff point for entry. Hence a scrap value reduces the negative
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 effect of aggregate uncertainty and creates a positive effect of idiosyncratic uncer-

 tainty. Also, the combination of faster entry and the incentive to exit when

 conditions are bad tends to reduce the variability of price.'2

 A price floor will have an effect similar to that of a scrap value, but only for

 aggregate uncertainty. It also reduces the negative effect of aggregate uncertainty on

 entry by limiting one of the two possible reasons for bad aggregate outcomes. (Bad
 aggregate outcomes that are due to a decline in average industry productivity are

 still possible.) However, a price floor will not alter the effect (or lack thereof) of

 idiosyncratic uncertainty.

 Obviously such extensions of the model may alter the absolute effects of aggregate

 and idiosyncratic uncertainty. However, these extensions will not alter the basic

 mechanism that generates the asymmetry in the roles of these two types of

 uncertainty.

 Massachusetts Institute of Technology, U.S.A.

 APPENDIX

 A. The Density Function and Conditional Expectation of B(t). Let y = b - u,
 and g(y, t) be the density of y at time t, so that f(b, t) = g(b - u, t). In this setup,
 finding the path of the conditional density of b(t) amounts to solving the problem
 defined below by (A.1) to (A.6):

 1

 (A.1) gt(y, t) = -Jobgyy(y, t) - /3gy(y, t),
 2

 0ob

 (A.2) g(O, t) = 0-b (0, 0,

 (A.3) lim g(y, t) = O,
 ye- -00

 (A.4) g(y,t)2O Vy<Oandt?O,

 (A.5) f0g(yt)dy= 1 Vt>0,
 _ 00

 (A.6) |g(y,0) dy =(? xO

 A solution to a similar problem, although with a different initial condition, can be

 found in Bertola and Caballero (1994). Here we only outline the basic steps of the
 solution, which is obtained by the method of Separation of Variables.

 12 This is strictly correct only when A(t) is stationary (possibly around a deterministic trend),
 since otherwise the variance of price becomes infinite. But even if A(t) had a stochastic trend
 component, the statement would hold for finite intervals.

This content downloaded from 18.9.61.112 on Tue, 31 Jan 2017 20:34:12 UTC
All use subject to http://about.jstor.org/terms



 UNCERTAINTY AND INDUSTRY EVOLUTION 659

 Writing the solution of the homogeneous problem as g(y, t) = T(t)Y(y), we can
 decompose the problem into two ordinary differential equations:

 (A.7) T'(t) +AT(t) = 0,

 (A.8) Y"(y)- 2,/ 2A ( Y' (y) -2-Y'(y) + -2Y(y) =k

 subject to the boundary conditions above, with A a constant. The solution method
 has the following steps: First, find the values of A for which the homogenous
 problem has a solution. Second, characterize each of these solutions. And third,
 combine these solutions to satisfy the inhomogenous initial condition.

 The characteristic equation of (A.8) has real solutions for A < 013/4, where
 0 2 /ro-b2. It is easy to verify that the only real solution that satisfies the
 homogenous boundary conditions occurs when A = 0, which yields the particular
 solution:

 (A.9) Y(y; A = 0) = 0 ey.

 However, there is a continuum of solutions for values of A > 013/4, which have the
 form:

 (A.10) Y(y; qi) =B(qi)e(o/2)Y (COS By + 2q-sin qiy

 where

 G A 0 2
 +-71 23- 4 2

 13 4

 The coefficients B( qi) are identified by the initial condition, yielding:

 2 qi2u4
 (A. 11) B(qi) = - b24p

 Combining (A.9), (A.10) and (A.11) we obtain the solution for g(y, t):

 (A.12)

 2 oc qie) -+'+2X44) (
 g(y,t)-= 0 e6y+ -e-(PO/4)t+(0/2)yJ (-2024 qipcos qy +-snt dp
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 The expression for the conditional expectation is now obtained by solving the

 integral in the expression:

 E[B(t)IB(0) U] = Uf0 eyg(y, t) dy.
 _00

 Hence,

 [ 2,8 + 2/3 o20 2z/ (A.13) E[B(t)IB(0) =U] = U- +e- e /2 bf A(z) e-Tb Z{b dzj

 where

 1l/2

 (A.14) A(z) (Z + p 2/crb4)(z + p 2/0_b4 + 2p/cob2 + 1)

 We now substitute eqn. (A.13) back into (10) evaluated at x = u, which yields:

 UA( P, ob, + y)

 where

 (A.15)

 2 2(8+ y) A(z)

 A( P, Xab 8 + y ) - + 2 l b2 + p 2 / 0b2 +-(8 dz. oa,2+2p+ 7T (6+y

 The first term in the expression for A(,, ) summarizes the impact of the various
 parameters on the ergodic mean, while the second term encompasses the transition
 from the value of B(t) at entry and its unconditional (ergodic) mean. Clearly, the
 latter will be more important when firms give more weight to the short run, i.e.,

 when (8 + y) is large.
 Given A(,, the value of U can be found, as before, from the free entry

 condition:

 (A.16) U=F y U=A(P, a8+ y).

 We have again arrived at an expression for U (and thus the optimal investment
 rule), but this time by deriving the path for the expected marginal revenue product
 and utilizing the free entry condition.

 B. The Data and Calculation of b(t). Our raw database was originally devel-
 oped by Brian K. Sliker at M.I.T., and is used with his permission. We calculate b(t)
 based on (24) using two- and four-digit SIC data for the real value of output
 (ROUTPUT), real inputs of capital (RK), materials (RMAT), and labor hours
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 (TOTHRS), and the corresponding price deflators. TOTHRS is the sum of hours for

 production workers (PWHRS) and nonproduction workers (NPWHRS), where the

 latter is estimated as the product of nonproduction worker employment (NPWEMP)
 and average hours per employee for production workers (the mean of
 PWHRS/PWEMP).

 We calculate the labor and materials shares by setting aL and aM equal to the
 mean values of TLC/NOUTPUT and NMAT/NOUTPUT respectively, where TLC
 is total labor costs, NMAT is the nominal value of materials inputs, and NOUTPUT

 is the nominal value of output. Letting 4 = aLj( AL + aM), we then compute the
 Solow residual, st, as:

 St =yt - (1 - aK)ht - aKktX

 where yt = log(ROUTPUT), ht = 1it + (1 - 4k)mt, It = log(TOTHRS), mt =
 log(RAMT), and kt = log(RK). Finally, b(t) is given by:

 b(t) = log[(1 -aK) -aK)/aK aK] + (1/aK)St

 1- aK
 - [ 4(log TLC-lt) + (1- b)log PMA T-log POUTPUT].

 aK
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