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Weak identification commonly refers to
the failure of classical asymptotics to pro-
vide a good approximation to the finite
sample distribution of estimates and ¢- and
Wald statistics in point-identified models
where the data contains little information.
There are several commonly accepted ways
of modeling this situation, which include
the drifting objective function approach of
Stock and Wright (2000) and the drift-
ing parameter approach used in D. Andrews
and Cheng (2012). Unfortunately there are
empirically relevant contexts, for example
many Dynamic Stochastic General Equilib-
rium (DSGE) models, where simulation ev-
idence strongly suggests weak identification
but it is unclear how to cast the model
into either of these frameworks. Concerns
about weak identification in DSGE mod-
els were raised in a number of papers (see
for example Canova and Sala (2009) and
Schorfheide (2013)). At the same time,
due in part to the analytical intractabil-
ity of these models, the sources and na-
ture of weak identification and the routes
through which weak identification distorts
non-robust approaches to inference are not
yet clear.

Here we highlight a previously overlooked
feature common to many weakly identified
models which plays an important role in
the behavior of the maximum likelihood es-
timator (MLE). The usual approximations
for the MLE rely critically on the assump-
tion that two approaches to estimating
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Fisher information, through the quadratic
variation of the score and the negative Hes-
sian of the log-likelihood, provide nearly
identical answers. We show that in many
weakly identified contexts the appropriately
normalized quadratic variation of the score
converges to the normalized Fisher informa-
tion, but that the normalized negative Hes-
sian remains volatile even in large samples.
To capture this effect, we introduce a mea-
sure of the disparity between the two esti-
mators of information, which will converge
to zero in strongly identified contexts but
can otherwise distort the distribution of the
MLE. Using simulations in a stylized DSGE
model we show that this discrepancy be-
tween information measures becomes large
precisely when the classical asymptotic ap-
proximations are especially unreliable.

This paper is closely related to Andrews
and Mikusheva (2013) (henceforth AM),
where we provide additional examples and
discuss tests which are insensitive to the
disparity between the two estimates of in-
formation and are robust to weak identifi-
cation.

I. Likelihood Theory

Let X7 = (x1,...,x7) be the data avail-
able at time T, and let Fr be the sigma-
algebra generated by Xr. We consider
parametric models where the log-likelihood
0(X7;0) =log f(Xr;0) is known up to the
k-dimensional parameter 6 which has true
value 6p. We further assume that ¢(Xr;6)
is twice continuously differentiable with re-
spect to 6. If we have correctly specified
the model, the score Sr(0) = 2,4(Xr,0),
evaluated at the true parameter value 6,
is a martingale with respect to filtration F;
under mild conditions.

We consider two measures of information
based on observed quantities. The first
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one, observed information, equals the nega-
tive Hessian of the log-likelihood Ir(0) =
_3967;9/£(XT39)- The second, incremental
observed information, equals the quadratic

variation of the score,

Jr(0) = [S(0)]r = Zst(G)SQ(G),

where s:(0) = S;(0) — S;—1(0). In what fol-
lows we will take I and Jp, written with-
out arguments, to denote Ir(6y) and Jr(6y).
If the model is correctly specified both I
and Jp may serve as estimates of the (the-
oretical) Fisher information for the whole
sample, and by the second informational
equality E (Ir) = E (Jr).

In the classical context Iy and Jp are
asymptotically equivalent, which plays a
key role in the asymptotics of maximum
likelihood. The asymptotic normality of the
MLE is driven by two key assumptions: (i)
that the log-likelihood is asymptotically lo-
cally quadratic and (ii) that the difference
between the two measures of information I
and Jr is small asymptotically (see Geyer
(2013)). Specifically, using the first order
condition for likelihood maximization one
can show that for § the MLE,

Ji2(0 — 00) = J; ' Sp(00)+
I P (I — I (07)) J7 202 (0 — 60)+
1) I P — Ip) I PR (0 - 6,),

where 6* is a point in between 6 and 6,
which may differ across rows of Ir(6%).
The first term, J;'/*S7(6,), is asymptot-
ically standard normal under quite gen-
eral conditions as discussed in AM. Pro-
vided J3/ (6 — 6,) is stochastically bounded
the second term in (1) is small so long as
the log-likelihood is close to quadratic on a
neighborhood containing both 6, and 6. In
this paper we will focus on the third term
in (1), and in particular on the standard-
ized difference between information mea-
sures J;'/*(Jy — Ip)Jy "%, which can ren-
der the usual asymptotic approximations to
the behavior of the MLE quite poor if it is
large. We argue that in weakly identified
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models the difference between the two ob-
served measures of information may not be
negligible compared to observed incremen-
tal information Jr and that the third term
in (1) thus plays an important role in the
behavior of the MLE under weak identifica-
tion.

II. Two Estimates of Information

Here we highlight the importance of the
standardized difference between informa-
tion measures, J; "/ (Jr — Ir)J;/?, under
weak identification. We begin by noting
that this term is asymptotically non-trivial
in a number of weakly identified examples,
including a simple linear instrumental vari-
ables model.

Ezample. Consider a homoskedastic lin-
ear instrumental variables model

Y=0pZn+U
X=Zn+V 7

where Y and X are endogenous variables
while Z is a T X k matrix of exogenous
instruments. We assume that Z’Z/T con-
verges in probability to Q and Z'[U, V]/VT
converges in distribution to N(0,X ® Q) as
the sample size T increases, for @) a full rank
matrix and ¥ the covariance matrix of the
reduced form errors. We consider a Gaus-
sian likelihood as a function of the struc-
tural parameters 6 = (7', 3)’. Weak instru-
ments are usually modeled by considering a
sequence of models in which the correlation
between the instruments and the endoge-
nous regressor drifts towards zero as the
sample size increases, m = 7w = ¢//T, with
the consequence that information about the
value of 8 does not increase with the sam-
ple size. Under such weak sequences, for
a (k+ 1) x (k+ 1) normalization matrix
KT = dZCLg(]./\/T7 ceny 1/\/?, 1), KTJTKT
converges in probability to a non-random
positive definite matrix J while KrIrKr
converges in distribution to a random Gaus-
sian matrix with mean J. To characterize
the asymptotic disparity between the two
estimators of the Fisher information we can
consider M = J;'* (Iy — Jr) J; /%, Un-
der weak instrument asymptotics the trace
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of M converges in distribution to a mean
zero Gaussian random variable with vari-
ance equal to the inverse of the concentra-
tion parameter (which measures the infor-
mativeness of the instruments, see Staiger
and Stock (1997)) multiplied by a measure
of the degree of endogeneity. In particular,
when the instruments are nearly irrelevant
M will be (stochastically) large.

This asymptotic disparity between the
two estimates of the Fisher information also
appears in a number of other weakly iden-
tified models. In AM we showed that this
issue arises in an ARMA(1,1) model with
nearly canceling roots, VAR models with
weakly identified dynamics, weakly identi-
fied exponential family models, and weakly
identified mixture models. In all of these
models, Jr is positive-definite with prob-
ability one and, appropriately normalized,
converges in probability to a non-random
positive definite matrix. If one applies
the same normalization to I then in the
strongly identified case it converges to the
same limit as Jr but in the weakly iden-
tified case it converges in distribution to a
random matrix. This random matrix has
mean equal to the limit of the normalized
Jr, as suggested by the second informa-
tional equality, but has non-trivial variance.

We emphasize four important points.
First, the question of how to define, model,
and measure weak identification is still open
in many contexts. There are some models,
like homoskedastic weak IV, in which we
know how to directly measure identifica-
tion strength (the concentration parame-
ter). There are other models, like those
studied by Stock and Wright (2000), where
we have theoretical approaches to model
weak identification but have no way to mea-
sure whether weak identification is a prob-
lem in a given empirical application. Fi-
nally there are many contexts, like DSGE
models (see Canova and Sala (2009)), in
which we strongly suspect that weak iden-
tification is a problem but still largely lack
tools to model or measure it. We suggest
that the size of matrix

M = J; '\ (Iy — Jp) Jp 2
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is an important reflection of identification
strength in parametric models. As already
discussed M is asymptotically nontrivial
in a number of weakly identified examples
and, as we can see from expansion (1), large
values of M can introduce distortions in the
classical MLE asymptotics.

Second, while it is common to associate
weak identification with the Fisher informa-
tion EJr = Elr being nearly degenerate or
the likelihood being nearly flat along some
directions, we argue that these are mislead-
ing characterizations as neither the Fisher
information nor the Hessian of the likeli-
hood are invariant to re-parametrization.
In particular, if we linearly re-parameterize
a model in terms of 7 = % then both
measures of information scale by a factor
k?. Hence, by linear re-parametrization one
can produce a model whose Fisher informa-
tion is arbitrarily small (or large) without
changing the quality of the classical ML ap-
proximation. Consequently, any approach
which detects weak identification by assess-
ing how close the information is to degen-
eracy, for example Iskrev (2010), is mis-
leading. In our examples weak identifica-
tion is associated with the curvature of the
objective function (the negative Hessian Ir)
being different from Jr even in very large
samples, so we think it is potentially more
fruitful to associate weak identification with
a low signal-to-noise ratio, treating Jr as
the signal and Iy — Jr as noise, suggesting
the measure M = J;'/* (Iy — Jg) J /%

Third, this disparity between two esti-
mates of the Fisher information is not a
sign of mis-specification, as even in cor-
rectly specified models these two measures
may differ substantially if identification is
weak. Correct specification implies that
EJr = Elr, and it is this restriction that
is tested by the Information Matrix Test of
White (1982). In contrast, weak identifica-
tion is related to It — Jr being volatile rel-
ative to Jp, but the restriction EJr = Elp
continues to hold under correct specifica-
tion.

Fourth, the classical asymptotic approx-
imations for the MLE and Wald statistic
require that the disparity measure M be
small. By contrast, the distribution of the
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robust score (LM) tests discussed in AM is
insensitive to the behavior of M, and these
tests remain well-behaved in weakly identi-
fied settings.

III. A Small DSGE Model

In this section we examine the effects of
weak identification on estimation and infer-
ence in a simple DSGE model. Most DSGE
models must be solved numerically, and it
is typically difficult to say which parame-
ters are weakly identified and what aspects
of the model give rise to weak identifica-
tion. To overcome these difficulties, here we
study a highly stylized DSGE model which
can be solved analytically, allowing us to
explicitly model weak identification.

Assume we observe inflation 7, and a
measure of real activity x; which obey

bEtﬂ't_;,_l + KT — T = 0,
Ty — Eymign — PAat = Eyxi 41 — 4,
1
Eﬂ-t + Uy = T¢.

where E; denotes E[-|F;]. The first equation
is a linearized Euler equation while the sec-
ond is a Phillips curve. We assume that the
interest rate r; is unobserved, and that the
exogenous shocks Aa; and u; are generated
by:

Aar = pAai_1 + 445U = U1 + Eqp;
<€a,t7 Eu,t)/ ~ ’”dN(O7 Z)v Z = dia’g(o-gm Ui)

The model has six unknown scalar parame-
ters: the discount fact b, the Calvo param-
eter K, the persistence parameters p and 9,
and the standard deviations o, and o,. AM
show that the model is point identified for
k>0,02>0,02>0,and -1 <J<p<l.
By contrast, when p = § the model is not
point identified. We can think of p — §
as controlling identification strength: the
model is weakly identified when this differ-
ence is small.

To explore the effects of weak identifi-
cation in this context, we simulate data
from the model for different values of p— 4.
In particular we calibrate the parameters
(b,k,0,04,0,) to their values in the simu-
lation section of AM, (.99, .1,.1,.325,.265),
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and consider a range of values for p —
0, where for each value of this difference
we simulate samples of size 200 from the
model. To avoid issues arising from the
fact that b is close to its upper bound (b =
1), we fix this parameter at its true value
and take = (k,p,0,0,,0,) to be the un-
known structural parameter. In each sam-
ple we calculate the maximum likelihood es-
timator 0, the (non-robust) Wald statistic
(0 —0,)'I(6)(6 —6,), and the (robust) score
statistic LM, discussed by AM. The corre-
sponding tests reject when the appropriate
statistic exceeds a x2 critical value. We as-
sess the normality of the MLE by consider-
ing the normalized statistic 7 = J}/*(0 —
6y), which converges to a 5-dimensional
standard normal vector under strong identi-
fication. We calculate the simulation mean
and variance of 7 and report the devia-
tion of these quantities from zero and the
identity matrix, respectively, which should
be small if this term is approximately stan-
dard normal. Note that while the popula-
tion mean and variance of 7 need not exist,
its sample mean and variance in our simu-
lations are always well-defined. Finally, we
report some summary statistics for the dis-
parity measure M, in particular the stan-
dard deviation of trace(M) and the median
of the largest eigenvalue of M in absolute
value, both of which should be small if iden-
tification is strong. All results are reported
in Table 1.

As we can see in Table 1, the standard
normal approximation to 7 = J/*(6 — 6,)
breaks down for small values of p—9, as does
size control for Wald tests. The behavior
of M is similarly sensitive to identification
strength, and this term is large precisely
when the conventional strong-identification
approximations break down. The range
of values p — & which qualify as “small”
is surprisingly large: even for p — § equal
to 0.3 the Wald test exhibits substantial
size distortions, with rejection probability
exceeding 25%. By contrast, the LM,
test is largely insensitive to identification
strength. Thus, we can again see that the
scaled difference between the two measures
of information is (stochastically) large when
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TABLE 1—BEHAVIOR OF TESTS AND INFORMATION ESTIMATORS AS A FUNCTION OF p — § IN DSGE MODEL wITH 200
OBSERVATIONS.

p—9 0.05 0.1 0.2 0.3 0.5 0.7

E (T) 2,015 309 4.25 1.43 0.57 049

Var (T) — Ids|| 1.7-10° 85.10° 233  3.14 043 0.78

Std (tr (M)) 212 578 119 314 085 0.60

Median of [M] 129 354 717 210 082 070
Size of 5 percent

Wald Test 88.9%  79.8% 52.5% 281% 121% 9.8%
Size of 5 percent

LM, Test 5.3% 54%  51% 55% 52% 5.9%

Note: All quantities based on 10,000 simulation replications, and E (-), g;i() Var (+) are simulation mean, standard
deviation, and variance, respectively. For X a vector || X|| denotes the Euclidean norm, while for X a square matrix
|| X]| denotes the largest eigenvalue of X in absolute value.

identification is weak, and that even in this
very simple DSGE model weak identifica-
tion leads to poor behavior for classical in-
ference procedures over much of the param-
eter space.
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