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The appendix follows the organization of the paper. Appendix B describes the data
sources and the cleaning process, Appendix C presents results related to the first step estima-
tor, preliminaries for the convergence results and details on RSP+C mechanisms. Appendix
D presents technical details relevant for Section 5. Appendix E details the Gibbs’ sampler

used in Section 6 and the bootstrap.

B Data Appendix

The primary data for the study come from Cambridge Public Schools. Under a non-disclosure
agreement, we use data from student registration records, assignment files, and data on
student characteristics.

The student registration records contain the school/program the student is registered at,
student’s grade, language spoken at home and the paid-lunch status at registration.

The assignment files include the rank-order list of the student, sibling or proximity pri-
ority at the ranked school, the randomly generated tie-breaker used in the assignment, and
the paid-lunch/free-lunch status of the student. Cambridge pre-assigns about 40% of the
students to public elementary schools via arrangements with pre-kindergarten schools. The
assignment files provide detail on whether the student is pre-assigned and if the student
participated in the school choice process (the Cambridge mechanism) studied in this paper.

We also obtained reports from the school district containing the overall capacity of each
school /program in each year and the numbers assigned through each process. We use these
reports as the primary source for computing the number of seats available at various schools

and programs in the mechanism. In rare cases, the rank order lists, the random tie-breaker
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and the priority codes indicated an inconsistency in the capacity data. We used the knowl-
edge of the mechanism to adjust these capacities and were able to compute the correct
assignment for almost all students with these modified capacities.

The student characteristics file duplicates several of the variables in the registration and
school choice ranking and assignment file. Importantly, it also includes the home address of
the student. The Network Analyst Toolbox in ArcGIS and information in ESRI’s Datamaps
10.1 on the US road network was used to compute the distance by road between the student’s
home and the school address based on brochures from the relevant years. This computation
ignores one-way restrictions because Cambridge uses walking distance to compute proximity
priority.

These files were merged using a unique student identifier.! Schools and programs are also

uniquely identified in the dataset.

C Theory: Mechanisms, Convergence and Equilibrium

This section presents results related to the large sample properties of our estimator for
Lr; in the class of Report-Specific Priority and Cutoff (RSP+C) Mechanisms. Section C.1
presents examples of RSP+C mechanisms. Section C.2 provides preliminaries for Theorem
A3, which shows consistency and asymptotic normality of our estimator. The result requires
that the limit economy has a unique market clearing cutoff. Section C.3 derives conditions
under which a market-clearing cutoff exists in an economy and shows that the limit econ-
omy (generically) has a unique market-clearing cutoff. Section C.4 shows that equilibrium

strategies in a large market approximate equilibria in the limit game.

C.1 Report-Specific Priority and Cutoff Mechanisms

This section formally shows that several school choice mechanisms belong to the class of
Report-Specific Priorities + Cutoff (RSP+C) mechanisms. For simplicity, we assume that
each school has only one program and that there are no priorities. These examples can be
easily modified to accomodate these details.

In the interest of completeness, we start by formally defining the two most commonly used
mechanisms, the Student Proposing Deferred Acceptance mechanism, and the Immediate
Acceptance mechanism (also known as the Boston mechanism).

The Student Proposing Deferred Acceptance mechanism: For reports Ry, ..., Ry

and priorities tq,...,ty,
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Step 1: Students apply to their first ranked choice and their applications are tentatively
held in order of priority and a tie-breaker until the capacity has been reached. Schools

reject the remaining students.

Step k: Students that are rejected in the previous round apply to their highest ranked
choice that has not rejected them. Schools pool new applications with those held from
previous steps and tentatively hold applications in order of priority and a tie-breaker
until the school’s capacity has been reached. The remaining students are rejected. The
algorithm continues if any rejected student has not been considered at all of her listed
schools. Otherwise, each student is assigned to the school that currently holds her

application.

This mechanism is strategy-proof for the students if the students can rank all J schools
(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if
students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer
and Klijn, 2009, for details).

The Immediate Acceptance mechanism: For reports Ry, ..., Ry and priorities tq, ..., ty,

Step 1: Assign students to their first choice in order of priority and a random tie-breaker

until the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order
of priority and a random tie-breaker until the capacity has been reached. Schools reject
the remaining students. Continue if any rejected student has not been considered at
all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students
(Abdulkadiroglu et al., 2006). Our next result shows that all mechanisms in table I except

the TTC is report-specific priority + cutoffs mechanisms.

Proposition C.1. The Deferred Acceptance mechanism, the Immediate Acceptance mech-
anism, Serial Dictatorship, First Preferences First, Chinese Parallel Mechanism, the Pan
London Admissions scheme and the New Haven Mechanism with tie-breakers are RSP+C

mechanisms.

Proof. We assume that there are no priority types for simplicity, though the proof can
be easily rewritten to incorporate finitely many priority types as done for the Cambridge
Controlled Choice Plan.



Deferred Acceptance:
We show that Deferred Acceptance is equivalent to a report-specific priority + cutoff mech-

anisms with
€j = fj(RiaVi) = Vjj.

Let v; be supremum of the priority scores of the rejected students in school j. We claim that
p" = v are the cutoffs with the desired properties (if a school does not reject any students,
set p7 = 0).

Let v} be the supremum the priority scores of students that were rejected in round r. Set
v; =0 if no students are rejected. Observe that for each school, v; < y§+1. If the algorithm
terminates in round k, then g;? = v;. Note that the algorithm terminates in finitely many
rounds for every n because there are finitely many students and schools and no student
applies to the same school twice.

Assume that student 7 is assigned to school j" and consider any school j with jR;j". Let
r be round in which student ¢ was rejected by j. By definition, it must be that v;; < v7.
Therefore, v;; < v; and we have that each student is assigned to DWEavi) (pr),

Finally, the aggregate demand cannot exceed g; by construction of p”.

Immediate Acceptance mechanism:
We show that the Immediate Acceptance mechanism is report-specific priority + cutoff
mechanisms for

€ij :fj(Rial/i) = 7 { }

by constructing market cutoffs p” for each profile ((Ry,v1),...,(Ry,vy)) such that (i) the

assignment of each agent is given by D) (pm) and (ii) p" clears the market.
Note that if a school rejects a student in round k, then it rejects students in all further
rounds since it is full at the end of round k. Let k; denote the pivotal round for school j,

and let v; be supremum of the random priorities of the rejected students in round k;. We

claim that p} =1 — u are the cutoffs with the desired properties (if a school does not
reject any students, set k; = J and p; = 0).

We first show that the assignment of each student in the Immediate Acceptance mech-
anism is given by D®:)(pm). Assume that student i is assigned to school j' and consider
any school 7 with jR;j’. Since jR;j’, it must be that the student was rejected at j, and
could not have applied to j before round k;. If student applied to j after round k;, then
vij — #{k  kRij} < v;—kj since |v; —v,| < 1. If #{k : kR;j} = kj, then v;; < v,. In either
case, f;(Ri,v;) < p;. Therefore, the student is assigned to D@ (pn).

Next, we show that p" clears the market for economy ((Ry,v1),..., (RN, vn)). As noted



earlier, each agent is assigned to D) (p™). By construction of p”, the aggregate demand

must be less than ¢;, and p} = 0 if aggregate demand is strictly less than g;.

Serial Dictatorship:

The Serial Dictatorship mechanism orders the students according to a single priority and
then assigns the top student to her top ranked choice. The k-th student is then assigned to
her top ranked choice that has remaining seats. It is straightforward to show that this mech-
anism is equivalent to a Deferred Acceptance mechanism in which all students have identical

tie-breakers at all schools. Hence, it is a report-specific priority + cutoff mechanism.

First Preferences First:

The First Preferences First mechanism assigns students to their top ranked choice if seats are
available, with tie-breaking according to priorities and a random number. Rejected students
are then processed for the remaining seats according to the Deferred Acceptance mechanism.
Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

vij + W{jRij' Vj' #j}
5 )

€ij = fj(Rz‘,Vz‘) =

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in ¢ rounds, each with ¢.-subchoices. In each round,
rejected students applies to the next ¢. highest choices that have not yet rejected her. Within
each round, the algorithm implements a deferred acceptance procedure in which applications
are held tentatively until no new proposals are made. Assignments are finalized after all
t. choices have been considered. It is straightforward to show that the Chinese Parallel

mechanism is a report-specific priority 4+ cutoff mechanism for

o L#{k:le-j}J V_lJ

HaE

Pan London Admissions (Pennell et al., 2006):

The Pan London Admissions system uses the Student Proposing Deferred Acceptance mech-

[i(Ri,v) = +

anism, except that a subset of schools upgrade the priority of students that rank the school



highly. Suppose school j upgrades students that rank it first. For such schools, we set

vij + H{jRij' Vi’ # j}

fi(Ri,v;) = 5

and f;(R;,v;) = v otherwise. With this modification, the Pan London Admissions scheme is
a report-specific priority 4+ cutoff mechanism.

We use e;; = f;(R;,v;) = v;; for schools that do not modify the priority and e;; =
filBivi) = =—— +

for school that use the Immediate Acceptance rule.

New Haven Mechanism:

See Kapor et al. (2017) for description and proof.

C.2 Preliminaries for the proof of Theorem A.3

Lemma C.1. Suppose that the tie-breaker v is non-degenerate. Then, (i) for each j € J,
sup, |D;(p|n) — D;(p|n™)| and sup, | D;(pln) — D;(pln;~")| converge in probability to 0.
(ii) for any p*, we have that

ﬁ@;D@*mg-l)—D@*m)) 4 N(0,9)

where

R1)]

ElV DRV

(iii) For any p* and any sequence of 6, decreasing to 0,

sup  /nl|D(pln™) — D(p|n) + D(p*|n) — D(p*|n")|| = 0,(1).

lp—p*[|<dn

Likewise,

sup —/n[|D(p|n; ") = D(pln™) + D(p" ™) — D(p*[ny =)l = 0,(1)-

[p—p*[|<6n

Proof. Part (i): Let v,; be the set of tuples of priority types, random tie-breakers and rank
order lists, (R;,t;,v;), that are assigned to programs j under cutoffs p. This set can be

written as:

vp; = {(Ri, ti,vi)  fi(Risti,vij) > pj, JRO;Y5 Rig, fr(Ri ti, vijr) < pjr}

6



Let ¥V = {v,; : p, j} be the class of sets v,; indexed by p and j.

Since f in increasing in the last argument, for each j, R;t;, the class of sets {{v; :
fi(Ri ti,vi;) > p;} : pj} is a Vapnik-Chervonenkis (VC) class. Hence, the class B = {{v; :
[i(Ri ti,vi;) > 0}t pj, 5, R, t} is a VC class because (7, R,t) belong to a finite set. Hence,
V is a VC-class since it is a subset of finite unions and intersections of sets in B and their
complements. Therefore, V is a uniform Glivenko-Cantelli class. Part (i) follows from the
Glivenko-Cantelli Theorem.

Part (ii): We first re-write

1 *| n— *
=2 DW ™) = D' ln)
b

1 = 1 (Riy ytiy Wiy ) (o *

= B DD~ D

SO ILLRENGEE ) PRt
+ Z/DR’ ) (p*)dy, — D(pf[n).

We now derive the distribution of

Gnp ( ZDRlbtlb”lb ——Z/DR“’ d”)’zz)

conditional on the sample (Ry,t1),...,(R,,t,), and fixed b. To do this, we adapt the proof
for the bootstrap distribution of the sample mean (Theorem 23.4, van der Vaart, 2000).
Note that

E [D(sz tzb Vlb)( )

(Ry,t1),. (Rn,tn)} - E [E [D(Riwtiw)(p*)

ip) ”(Rlvtl) (antn)}
_ _ZE th/) )|Rz,t1]

:_Z/DRtV d")/y

By the law of total variance, the conditional variance of D@t i) (p*) given (Ry, 1), ..., (Rp, t,)
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B[V (Do) )

ip )

)| (Ri,th), o, (Ruty)]
+V [E (D(Rib,tlbﬂjlb (p*) . )‘ (Ri,t1), ..., (Rt >]

= —ZV DBetivi) (p*) +V</DR”( “)dv

where V ([ D) (p*)dry,, | (Ry, t1), ..., (Rn, t,)) is the sample variance of [ DFoli?) (p*)dy,.

Since D is uniformly bounded, the variance above is bounded. By the strong law of large

i

79

(Ry, 1), <Rn,tn>) |

numbers, the conditional variance of D tii) (p*) converges to

Q= E [V (DB (p (/DR“’) d%)

almost surely for sequences (Ry,t1), (Ra, t2), .. ..

Note that since DFa:4#4) is uniformly bounded, we have that for every £ > 0,

LD )

E [HD(R%,tib,wb) | > 5\/5}} - 0.

Therefore, by the Lindeberg-Feller central limit theorem (Theorem 2.27, van der Vaart,
2000), conditionally on (Ry,t1), ..., (Ra,t,), for almost every sequence (Ry,t1), (Ra,t2),- ..,

. 1 1 ~
Gnp AN (0,€2). An identical argument shows that B > Gnp AN 0, EQ condition-

ally on (Ry,t1),...,(Ry,ty,), for almost every sequence (Ry,t1), (Ra,t2),..., since 4, is in-
dependent of iy conditional on (Ry,t1),...,(Ry,,t,) for all b # b'. Therefore, we have that
conditionally on (Ry,t1),..., (Ry,t,), for almost every sequence (Ry,t1), (Ra,t2),. . .,

B n

1 *|,N— 1 irbi,V * d 1~

vn (E E D(p*lny~ ") — - E /D(R“t“ )(p )dfyl,> — N (O, EQ) .
b=1 i=1

Now consider the stacked random vector

1 B —1 1 n —
— > Dty ) — =X, [ DEL (p)dy,
\/ﬁ B b11 b n 1 f ‘ (Cl)

~ Xy [ DU (p)dy, = D(p*|n)
Conditional on (Ry,t1),. .., (Ry,t,), the second element is deterministic and the first element

1 -
converges in distribution to Z; ~ N | 0, EQ> for almost every sequence (R, t1), (Rs,t2), .. ..



By the central limit theorem, the second element converges in distribution to

Zo~ N <o, 1% (/ D(Ri’ti’”)(p*)d%)> .

Since Z; is (almost surely) independent of (Ry,ty),...,(Ry,,t,), we have that the stacked
random vector in expression (C.1) converges in distribution to (21, Zs) where Z; and Z, are

independent. Hence,

(EZ ®" [y~ D(p*!n)) 5 N(0,9).

Part (iii): Note that

V|| D(pln™) = D(pln) + D(p*|n) — D(p*|n")||
< J|\/ﬁ (Un(vp/\p*mvzu*) - 77(Up/\p*,p\/p*)) B

where v,y = {v :p < f(R,T,v) <p'}. We now bound the variance of the right-hand side.
For any p,p’ with p < p/,

)

V(" (py) = n(vpy)) =V (% Z W f(R:, Ti, vi) € vpy} — 77(%,#))

= o) (1= (o))

Therefore, V(J|v/n (0" (Vpnps pvp+) — 1(Vpap pvp))) ) 18 at most Jn(vpaps pvpr). By Cheby-
chev’s inequality, for any € > 0,

n I n(Vprpe pvpr)?
P (‘]’\/ﬁ(n (Vpnp pvp) = M(Upnp pyp)) | > 6) < 22 :

Since 7(Vpap pvpr) < Ellp A p* — pV p*lleo, we therefore have that for any ¢ > 0,

* x| N "{’26721“]2
P( sup  /n||D(p|n"™) — D(p|n) + D(p*|n) — D(p*In"™)|| > 6) <=

”pfp* Hgén

Hence, for any sequence of §,, decreasing to zero, we have that

sup v/n||D(pln") = D(pln) + D(pn) — D(p" )]l = 0,(1).

lp—p*[|<dn



By a similar argument, we have that

P ( supAIDGIE ) ~ D) + D)~ D) > ) < LY L) = "))

2
l[p—p*[|<bn €

Since E[n " (v,,0)|n"] = n™(vp,), by the law of total variance,

V(Wl?il(vp,p’) —n"(vpy)) = FE [V(m:hl(vp,p’) - n"(vp,p')m"ﬂ
= En"(vpp)(1 —n"(vpp))]
< E [77”(% p’)] = 77(“p,p’)~

Hence, we have that

k2.J252

P < sup  v/n||D(plnp~") — D(p|n™) + D(p*|n"™) — D(p*Iny~ )| > 6) <0

lp—p*[|<dn

]

Lemma C.2. Suppose there is a unique p* such that for all k € JUS, Dy(p*|n)—qx < 0 with
equality if p;, > 0. Also assume that there exists p" such that Dy(p™|n™) —q < 0 with equality
if pp > 0. and likewise assume that there exists pf‘l such that Dk(pg‘_lmg_l) —qp <0 with
equality if pg’;l > 0.

1. 1f (i) |D(plny ") = D(p|m)| = 0 and [ D(pln™) = D(pn)| = 0 uniformly inp, (i) ¢* — q,
(iii) D(pln) is continuous in p, then sup;c ; ]p{;;l — pjl 20 and sup,e 7 [P} — pjl 2 0.

2. Further, if the hypotheses of part 1 hold, (iv) E[D(p*In™)] = D(p*|n), (v) for any p*
1 *[, . n—1 * d
Vn (EED(P Iy =) — D(p \n)) - Z
(vi) For any p* and any sequence of 9, decreasing to 0,

sup  /n||D(plny~") — D(pln) + D(p*|n) — D(p* |y~ )|l = 0p(1).

”pfp*“g(sn

(vii) V2 Dy (p*[n) exists and is invertible at p*, and (viii) ¢" — q = 0,(n"1/%), then
1 n—1 n d
Vi <§;pb _ Blp 1) 4 vz

10



where VD =

(Vi Di(p*[n))~" 0
0 0

Proof. Part 1: The result is similar in spirit to Azevedo and Leshno (2016), theorem 2,
though the techniques are different and generalized to mechanisms.

We only show the result for p™ since the argument for pf‘l is identical. Let

H[max{z (pIn™,q" 0}”|

p*z(pn™, q"

where x represents the Hadamard product and z(p|n, ¢) = D(p|n, q) — q. Note that p™ solves
Qn(p) = 0. Let Qg be the limiting objective function,

|| [ max {z(p|n, q), 0} ] H

p*z(pln, q)

By the continuous mapping theorem, sup, |Q,(p) — Qo(p)| 2 0. Also, Qo(p) is continuous
since D(p|n) is continuous. Further, Qq(p) is uniquely minimized at p*. For ¢ > 0, let J. =
inf,.p—pr|>e Qo(p). Since Q) is continuous, p is an element of a compact space and Qy(p) = 0
only at p*, 6. > 0. Pick N such that for all n > N, P(sup, |Qo(p) — Qn(p)| > 0.) < €. For
p", we have that Q,(p") = 0. Note that

|Qo(p") — Qo(p")]
|Qo(p") — Qu(p™)] + |Qu(p") — Qo(p")|
< sup |Qo(p) — Qn(p)| + 0. (C.2)

IN

Hence, we have that for all n > N,

P ( sup |py — pi| > 6) < P(|Qo(p") — Qo(p")| > c)

keJus

p

< P <sup |Qo(p) — @n(p)| > 55) <e

where the first inequality follows from set inclusion, the second from equation (C.2), and the
third by our choice of V.

Part 2: We can re-write

vn (é ;pﬁl - E[p“]) =Vn (é ;pzl —p*> +/n(p* — E[p")).



1
We first derive the limit distribution of v/n (E St — p*).

Let KY be the set of k such that p; = 0, i.e. Di(p*|n) < qx, and let & = mingcgo{qy —
Dy(p*|n)}. Since Dy(p|n) is continuous, there exists k > 0 such that for all ||p — p*|| < k and

)
all k € K° we have that Dy (p|n) — g < —3 For any ¢ > 0, pick N such that for all n > IV,

)
P(|lpy" —p*|| < k) < e and ||} — qi|| < 3 Such an N exists since p; ' 2 p* and a = .
For all n > N, we have that

D < DRl —at
< IDe(o ™) — Dalom)| + Do) — e+ 5
< D ) = D)l - %
— (D - > ) <P (1008 - DIl > 5 )

<P(lpy" =pll > ) <e

where the second last inequality follows from set inclusion and the choice of k. Since pg_l =0
if Dp(py ' nt™') — ¢ < 0, we have that for all n > N, P(pggl > 0) < e. Therefore,
Valpyt = pil 5 0 for all k € K°.

The limit distribution of \/ﬁ(p}}f — p}) is a consequence of the Delta Method. For
simplicity of notation, we omit the subscript + and treat pf = 0 if p; = 0 since p} = o,(n"1/2).

Note that for all & ¢ K° we have that Dy(p*|n) — ¢ = 0. Let 6 = mingggo pj. Since
oy — p*|l 20, we have that for any ¢ > 0, there exists N such that for all n > N,
IP’(pZ;I = 0 for any k ¢ K°) < . Since pggl > 0 implies that Dy(p} '|np~") — ¢ = 0,
for all n > N, pp~ ! solves 0 = Dy(p|ny~") — ¢ with probability at least 1 —e. Therefore,
Di(py ™"y ™") — a4 = 0p(n~/?) for all k ¢ K°.

Since ||pp~" — p*|| 2 0, condition (v) implies that there exists a sequence of 6, decreasing
to 0, such that

DY np=Y) = D(prtn) + D(p*|n) — Dp*|n~") = op(n~Y?).

Together with D(p* ") — ¢" = 0,(n"'/?), condition (v) implies that
g b p

q—q"+ D) — g+ D@yt n) — D(p*ln) = op(n™/?).

12



Since ||g — ¢"|| = 0,(n"1/2), and D(p*|n) = ¢, we have that

D(p*ny~") — D(p*|n) + D(p} " |n) — D(p*[n) = o,(n'7?)
— V(D" = D(p*|n)) + V- D(p*[n)v/n(py =" —p*) + op(llph " = p*[) = 0p(1),

where the implication results form the Delta Method. Since, o,(|[py ™" — p*||) = 0,(1), and
V,«D(p*|n) is invertible, we have that

Vo(py ™ = p") = Vn(VpD(p*|n) (D@ [y~ ") — D(p*|n)) + 0p(1).

Since E[D(p*|n™)] = D(p*|n), by a similar argument,

V(E[p"] = p*) = vn(V,-D(p*|n)) " (E[D(p*|n™)] — D(p*|n)) + 0,(1) = 0,(1).

Vi (é - E[m)
= Vn (% > oot —p*> +0,(1)

= Va(V,-D(p*n))” ( ZD P |ny D(p*|77)> +0p(1)

Therefore,

By condition (vi) and Slutsky’s theorem, we have that

1
Vi (5o~ B) 4oz

C.3 Existence and (Generic) Uniqueness of Cutoffs

This section shows that the cutoffs for RSP+C mechanisms have (generically) unique cutoffs.
The main results are Propositions C.2 and C.4. The former provides a general high level
condition for (generic) uniqueness in RSP+C mechanisms and the latter provides a weaker
condition for the Cambridge mechanism. To do so, we first need to introduce some notation

and definitions.

Definition C.1. The function D : [0,1]7 — [0,1]7 satisfies weak-substitutes if D;(p) is

13



non-increasing in p; and non-decreasing in p;, where p € [0,1]7.

The next definition is a stricter notion of substitutes in a neighborhood around a given
cutoff. This borrows from the notion of connected substitutes introduced in Berry et al.
(2013) and Berry and Haile (2010) to show conditions when demand is invertible.

Definition C.2. The function D : [0,1]7 — [0,1]/ satisfies local connected substitutes
at p* if there exists an € > 0, such that for all p € [0,1]7 with ||p — p*|| < &, we have that

1. forallj € {0,1,...,J} and k € {1,...,J}\{j}, D;(p) is nondecreasing in py,
2. for all non-empty subsets K C {1,...,J}, there exists k € K and | ¢ K such that
Dy(p) is strictly increasing in py

Local connected substitutes is implied by strict gross substitutes, and the condition that
D(p|n) as defined in equation (11) satisfies local connected substitutes for all p € [0, 1] is
testable.

Definition C.3 (Azevedo and Leshno (2016)). The function D : [0,1]7 — [0,1]7 is regular

if the image D(P), where
P ={pe[0,1]7: D(p) is not continuously differentiable at p}

has Lebesque measure 0.

For a fixed ¢ € [0,1]7, let p* € [0,1]/ be a solution to the problem
D(p) —q<0and p*(D(p) —q) =0, (C.3)

where * is the Hadamard product. We now observe that (generically for ¢ € [0,1]7) there
exists a unique solution to equation (C.3) if D satisfies local connected substitutes at any

market clearing cutoff (is regular).

Proposition C.2. Let D(:|n) be defined as in equation (11). If D(-|n) satisfies weak substi-
tutes, then there exists a solution to equation (C.3) for all q.
Eurther, for a fized D(-|n), let Q C [0,1])7 be the set of capacities, q, such that there are

multiple solutions to equation (C.3).
1. QNndq: Z;.le q; < >_; D(0In)} has Lebesgue measure zero if D;(+[n) is reqular

2. Q is empty if D(:|n) satisfies local connected substitutes at any solution p* to equation

(C.3). In particular, Q is empty if D(-|n) satisfies local connected substitutes at every
cutoff p.
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Proof. Existence of cutoffs that solve equation (C.3) follows from corollary Al and lemma 1
of Azevedo and Leshno (2016). Statement 1 is a consequence of Azevedo and Leshno (2016),
theorem 1(2) and lemma 1. Statement 2 is a strengthening of Azevedo and Leshno (2016),
theorem 1(1). By the Lattice Theorem (Azevedo and Leshno, 2016), there exist minimum
and maximum cutoffs p~ < p* that solve equation (C.3). By the Rural Hospitals Theorem
(Azevedo and Leshno, 2016), for all C' C S,

> " Di(ptIn) =>_D;(pIn). (C.4)

jeC jel

Let p* be a solution to equation (C.3) such that D(-|n) satisfies local connected substitutes
at p*. Let CT ={jeS:p; <p/}and C~ ={j € S:p; > p;}. We will show that C* = {)
i.e. pt = p*. The proof to show that C~ = () is symmetric and together, these claims imply
that p* = p~ = p*.

Towards a contradiction, assume that C*T # (. Since D(p|n) satisfies local connected
substitutes at p* (Definition C.2), there exist ¢ € (0,1), k € CT, and [ € C'* such that

Di(p*|n) < Di(p®|n),

where p, = ep + (1 — €)pj, and p; = pj for j # k. Hence, we have that

Y D)< Y. Dirlm < D DiwtIn),

jesS\Cc+ jesS\Cc+ jesS\C+

where the implication on the summation and the second inequality are implied by weak
substitutes, which follows from the definition of D(p|n). Since this inequality contradicts
equation (C.4), it must be that C* = (. O

As shown in Proposition A.2, p* is a market clearing cutoff for D(p|n) and ¢ if and only
if p* solves equation (C.3), where p* = Ap*. Below, we state uniqueness of a market clearing

cutoff in terms of the uniqueness of p*.

Proposition C.3. Let D(p|n) be defined as in equation (12), and for each ps, define P (Ps)
such that D;(p% (ps) + Aps|n) — q; < 0 with equality if p% ;(Ps) > 0.

If D(pln) is continuous in p and satisfies weak substitutes, then for each q € [0,1]7+9,
there exists a p that solves the problem in equation (C.3) for D(ﬁm) and q.

Further, if D*(ps|n) = A'D(p%(ps)+Aps|n) and D(p|n) satisfy local connected substitutes
at ps ., = min{p;‘- : s, = S} and p* respectively for some market clearing cutoff, then p* is

unique.
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Proof. We first show existence. Since D(-|n) satisfies weak substitutes, for each ps, p% (Ps)
exists. Lemma C.3 below shows that D*(ps|n) satisfies weak substitutes. Therefore, by
Proposition C.2, there exists ps such that D} (ps|n) — ¢, < 0 with strict equality if ps , > 0.
Hence, for p* = (p%,p%) and ¢ € [0,1]*5, and for all k € J U S, Dy(5*n) — qx < 0 with
strict equality if p; > 0.

To show uniqueness, note that D(py + Aps|n) satisfies local connected substitutes at
p’7. By Proposition C.2, we have that D(ps + Aps|n) admits a unique solution p%(ps) in
a neighborhood of p§. Further, since D*(ps|n) satisfies local connected substitutes at p%,

Proposition C.2 implies that p% is unique. O]
We now verify that if

tij + v

3— Ri(j
)+ ©5)

3

f](Rla ti? y’i) -

for v; € [0, 1] as in the Cambridge mechanism, then the market clearing cutoff p* is unique if

Dj(p) = E | 1{f;(Ri, ti,vi) > p;, jR;0} H WjRij" or fp(Risti,vi) < pj} (C.6)
J'#3

is strictly decreasing in p; in a neighborhood around any market-clearing cutoff p*.

Proposition C.4. Let f and D(p) be defined as in equations (C.5) and (C.6). If for every
program j € 1,....J, D;(p) is strictly decreasing in p; in a neighborhood of p*, then the
market clearing cutoff p* is unique. Moreover, if for every program j € 1,....J, D, (p) is

differentiable at p*, then V,, D, (p*) is nonsingular.

Proof. Fix any market clearing cutoff p*. For each j, let r5 € {1,2,3,4} be the pivotal rank
for program j, i.e. f;j(Riti,v;) > pj if Ri(j) <1} and fj(Ri, i, v5) < pj if Ri(j) > ;. We
use the convention that 77 = 4 if the program cutoff is 0, and r5 = 5 for the outside option.

For e > 0, define pj, = pj if k # j and p§ = pj + . By the hypothesis of the theorem,
for 0 < e < e, € (0,1), D;(p°) < D;(p*). The definitions of f and D imply that for
€ <&y € (0,1), Dp(p°) = Di(p*) if rj > r;. Since Z;}:O D;(p) is constant, it must be that
for e < min{ey, ea}, we have that Dy (p°) > Dy (p*) for some k such that r; > r7.

For any non-empty subset K C {1,...,J}, let k = argmaxyex r;,. By the argument
above, there exists [ € {0,...,J} such that } > r} such that D;(p) is strictly increasing in
pk at p*. Therefore, D(p) satisfies local-connected substitutes at p*.

We now show that D*(ps) = A'D(p’(ps) + Aps) satisfies local connected substitutes at
Ps, where ps = min{p; : s; = s}, and p%(ps) such that D;(p%(ps) + Aps) — ¢; < 0 with
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equality if p% ;(Ps) > 0.

Lemma C.3 implies that D*(ps) satisfies weak substitutes. For small enough € > 0, define
Psy = D5y for 8’ # s, and p5, = ps, +¢. Observe that this implies that p%; ;(55) + 5 ) >
p%.;(Ps) + Ps,) for some j with s; = s. Define r} = max{r} : s; = s}. For all programs
J with r; < ry, Di(p*) = D;(p57(Ps) + Aps). Therefore, % ;(ps) + Ps,s; = D7 ;(05)P5,s, if
ri < ;. Since the Zf:o D*(ps) is constant, an identical argument to the one above implies
that for some s’ such that r¥ > r¥, DI (pS) > D% (ps) for small enough € > 0. As above,
D*(ps) satisfies local connected substitutes at p.

By Proposition C.3, the market clearing cutoff p* is unique. Further, part (i) of Theorem
2 in (Berry et al., 2013) ensures that V,, D, (p*) is nonsingular.

[

Preliminaries for Propositions C.3 and C.4

Lemma C.3. If D(:|n) is continuous in its arguments and satisfies weak substitutes, then
D*(ps|n) = A'D(p%(ps) + Aps|n) satisfies weak substitutes.

Proof. Fix ps, by = p7(Ps) and s € S. Let J, be the set of programs in school s, J; be
the set of programs in school s with p7; > 0 and J? be the set of programs in school s with
p7.; = 0. Consider ps such that pls . = ps s +¢ for € > 0 such that e < min{p(ps) : j € J;},
and ps, = ps, if t € S\{s}.

There are two cases to consider:

Case 1 p% ;(ps) > 0 for all j € J,: Consider p; such that p'; ; = pg; for j € J, and
P7; = pgj — €. By construction, §'; + Aps = psy + Aps. Hence, p'; = p5(ps).
Therefore, D*(ps|n) = D*(ps|n), satisfying Assumption C.1.

Case 2 pY; ;(ps) =0 for some j € J;: We will construct a convergent sequence of cutoffs
P, such that limy_.. py = pj(Ps), and show that D(ps|n) is non-increasing in ps
and Dj(ps|n) is non-decreasing in ps s for k # s.

Set §% ; = g for j € J\JF and p% ; = Py ;—¢ otherwise. Note that for all j € J\J?,
P + P, = Dg,j+ Ps,s, and for j € JY, P} + P, = Dss +e. Foreach j € J and k € N,
construct the sequence 151"’77]- such that Dj((ﬁ";’j, ﬁ]}_ij) + Apls|n) — ¢; < 0 with equality
if ﬁ’}’j > 0. Since Dj((ﬁ‘@’j,ﬁkj’:j) + Apls|n) satisfies weak substitutes, if ﬁ’},_j > ﬁ?fij,
then ﬁ’gfjl > ﬁ'gJ. Therefore, ]5’3 is a monotonically increasing sequence. Since ]5’} is
bounded above, it must be that limy_,, p% = p% exists. Further, since D;(p7+ Ap’s|n)
is continuous in p7, we have that D;(p% + Aps|n) < 0 with equality if p% ; > 0. Hence,

% = p(ps) > p%, and we have that p% (ps) + Aps > p(Ds) + Aps.
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We now show that D; (5(75) + A7sln) > Dy (5 (7s) + Afsln) j & Jo. Fix j € T\ 1t
pY,;(Ds) > 0, then it must be that D;(p7 (Ps) + Apsn) = ¢; = D; (07 (ps) + Aps|n). I
P77.;(Ps) = 0, then D;(p%(Ps) + Aps|n) > D;(p%(Ps) + Aps|n) from weak substitutes,
since pY ;(Ps) + Ps,s; = D7, (Ps) + Ps,, and p7 (Ps) + Ps,s, = P71, (Ps) + Ds,,, for all
k7.

Finally, we show that >, D;(P;(s) + Abs|n) < > jcs Di(077(Ps) + Aps|n). Note
that Do(p7(Ps) + APsIn) = Do(p7(Ps) + Abs|n) since p7(fs) + APs = pi7(Ps) + Abs.

The proof is complete by noting that . 7 1o, D;(0% (0s5)+APsn) = X5 7000y D (07 (Ps)+

Aps|n) must be constant since each student can be assigned to only one program and
Dj(p(Ps) + Absln) = Dj(p%(ps) + Apsln) for all j € {0} U (T\J,).

C.4 Convergence of Equilibrium Probabilities

In this section, we consider a sequence of n-player Bayesian games defined by a sequence
of RSP+C mechanisms ®". Let o(v,t) = (0r,(v,t),...,0r, (v,1)) be a (type-symmetric)
strategy for a player with utility vector v and priority type t. We allow o(v,t) to be a mixed
strategy profile, although players generically have a pure strategy best-reponse. For each n,

the lotteries are given by

Ly, = E.[@"((Ri,t:),(Roi, Ti)|Ri, Ti)
= Z q)n((Ri’ti)7(R—iaT—i)HmU(Rk,tk)7

R_it_; ki

where m?(Ry, tx) = fr(ty) | or,(v;t)dFyy,. The strategy 0" a Bayesian Nash Equilibrium
if for all R such that 0" (v;t) > 0, we have that v- L%, > v - L;fz’,‘?t*’n for all R' € R.

Define the Large-Market Limit Mechanism in the spirit of Azevedo and Budish
(2017) as follows:

L%O‘Z = lim Z q)n((Rz'ati)a(R—mTﬂ')HmU(Rk,tk), (C.7)

n—oo
R_;t_; k#i
if it exists. Further, o* is a Limit Equilibrium if o}(v,t) > 0 implies that v - L?’f* >
v- LS forall R € R.
We now show that Bayesian Nash Equilibria of the mechanism in a large economy ap-

proximate equilibria of the large-market limit mechanism.
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Proposition C.5. Suppose ®" is an RSP+C mechanism. Fiz a strategy o* such that the
limit in equation (C.7) exists, the tie-breakers v are non-degenerate and D(p|n) and q admit

a unique market clearing cutoff, where n = m’ X ,.

1. If o™ is a sequence BNE such that ||c*™ — o*||p — 0, then HL%Utn — L?i” — 0,

where ||[o*" — o*||p = supg, [ 05" (v,t) — o (v, t)|dFy 7.

2. If o*™ is a sequence BNE such that |o™™ — o*||p — 0, the strategy o* is a limit

equilibrium.
3. If o* is a limit equilibrium, then for each € > 0, and large enough n, op(v,t) > 0
implies that for all R' € R,

v LY 2 L — <ol

The result shows that a convergent sequence of Bayesian Nash Equilibria converge to
a limit equilibrium, and that all limit equilibria are approximate BNE for large enough n.
The result is similar in spirit to Kalai (2004), which shows that equilibria in limit games
are approximate BNE in large games. From an empirical perspective, it also shows that
equilibrium behavior in the game does not depend dramatically on the exact number of

players once there are sufficiently many players.

Proof. Part 1: By the triangle inequality,
||LR, 7 L?f; H < ”LRZ (7 LZ;‘—tl” + ||LR i LE’; ||

By the assumptions of the proposition, the second term converges to 0. Now consider the

first term:
L’}"g:';’n - LT}LE’:; = EG*’" [(I)n<<Rl> tl)? (R*ia t*l))|Rla tl] - EG* [(I)n((RZJ tl)v (R*iﬂ t*Z))lRZJ tl] )

where E, denotes the expectation taken with respect to draws of (Ry,t;) taken from m?.

Since ®" is an RSP+C mechanism, we have that

Rz,t} E,+ l/D(Ri,ti,u)(pn)d%

Therefore, to complete the proof, we need to show that the right-hand side of this expression

L%’:; LR“t _ Eg*n [/D(R’L:tl’y ( )d,yl/ Rzytz:| (CS)

converges to zero.
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Let n*" = m®" x 7, and n* = m° X 7, and observe that
ID(pln™") = D(p|n")|l = sup|D;(pln™") — D;(pln*)|
J
= sup [n""(vp5) — 0" (vp5)]
J

= sup| Y (m7(Rt) = mT (Rt ({v: (R tv) € uyy})

7 (RH)ERXT

— | Y (/<a;"<v,t>—az<v,t>>dFv,T)%<{u:f(R,t,wevp,m

7 (RH)ERXT

< o =olesup| Y w{v: f(Rtv) €vpi})| <o —op
T l(RH)ERXT

The right-hand side converges to 0 by assumption. Therefore, we have that
*n * P
sup | D(pln™") = D(p|n*)|| = 0.
p
If n™ is a sequence of empirical measures constructed draws from n*", we have that

sup [ D(pln™) = D(pln")|l < sup [D(pln™) = D(pln™")I| + sup [ D(p|n™") = D(p|n)|
p p p

< sup J|n" (vp,) — 1" (vp )| +sup || D(p|y™") — D(pln*)|| = 0,
p,J p

since V = {v,; : p € [0,1]7,5 € J} is a uniform Glivenko-Cantelli class.

By arguments identical to those made in Part 1 of Theorem A.3, if p™ is a market clearing
cutoff for D(p|n™) and ¢, then p* % p* where p* is the unique market clearing cutoff for
D(p|n*) and ¢. By the continuous mapping theorem, for each (R,t), we have that

/D(R,t,u)(pn)d%/A/D(R,t,u)(p*)d%j.

Since D) (pn) is bounded, we have that

E g [/D(R’t’”) (p™)d,

R, t} - / DEL) (p*)dry,. (C.9)
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By a similar argument, we have that

E,- {/D(R’t”’)(pn)d%

R, t} — /D(R’t’”)(p*)d%. (C.10)

Equations (C.9) and (C.10) imply that the right hand side of equation (C.8) converges to 0.

Part 2: Consider a sequence of equilibrium strategies 0" such that ||[c*" — ¢*||r — 0.
We will show that o%(v,t) > 0 for all (v,t) € int(suppFy.7) only if v - (Lﬁf* — LOR?'Z) >0
for all R' € R.

Fix (v,t) € int(suppFyr). Towards a contradiction, suppose that oj(v;t) > 0, and
v - (L"Rff* - L?,’fz*) < —2¢ for some R € R and € > 0. Since (v,t) € int(suppFyr), there
exists a § > 0, such that for all v with ||[v — /|| < J, we have v/ € int(suppFyr), and
v (LORif* — LOR?‘;) < —e.

By Part 1, ‘ L?%’,‘j: - L;{i’g* H — 0. Since L%’;*’n is bounded, there exists an N, such that
for allm > N and all R' € R,

|

Hence, for all v’ in the § neighborhood of v, we have that

< £
= 2([[oll +0)

n,c™"  roo,0*
LR/,t LR’,t

U/ ) (L,,}%:ot_*,n . Lg;?.t*,n)

IN

d.@gf”_Lgfﬁ+2mwwg§”_Lgfn

< W (LRY T - Lrt ) +e<0

*,M

Since 0™ is a Bayesian Nash Equilibrium strategy, it must be that for all n > N and v’ such
that |[v—v'|| < 0, 05" (v',t) = 0. Therefore, ||c*" —0c*||p — 0 implies that o*(v', ¢) = 0 for all
v" in the § neighborhood of v. This conclusion contradicts the hypothesis that o},(v,t) > 0
for any R such that v - (L;jf* - L%O,j*) < 0. Hence, ¢* is a limit equilibrium.

Part 3: Consider the constant sequence ¢*" = ¢*. By the assumptions of the proposi-
tion, for each (R, 1),

n,o* 00,0
||LR,t - LR,t || — 0.
Moreover, this convergence is uniform in (R,t) since R x T is a finite set. Fix ¢ > 0 and

pick ng such that for all n > ny,

€

sup || L7 — Ld |l < 5
R ’ ’ 2

)

Note that the choice of ng did not depend on v;.
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Since o* is a limit equilibrium, o% (v;, t;) > 0 implies that for all R’
q ) R; 1y "1 1)
00,0 00,0*
Ui - LRi,ti 2V LR’. t;
7/7
n,o* n,o* n,o* 00,0*
= ;- Lgy, Zwvi- Ly, —2supfvi- (Lgy — Ly )|

)

for alln > ng. By the Cauchy-Schwarz inequality, supg, |vi~(L%’Z*—Lﬁf*) < ||vs|| sup g, HL%’;*—
L}’;’t"*H. Therefore,

vi - Ly = o Lty — el|uill.

D Auxilliary Results on Identification

D.1 Characterization of Partially Identified Set

Consider the collection of markets

T 2) =T = (&, Zivs tiv, Lo) = (§y 2i0) = (£, 2) }

The dependence of the set of lotteries £ on the market index b indicates that we allow
variation in this dimension to be useful in the present exercise. We will consider results
that fix (£, z) and therefore drop this from the notation. As a reminder, conditioning on
z is without loss since it is observed, but this implies that the researcher assumes that the
variation considered holds school unobservables £ fixed.

The next result characterizes what can be learned about the distribution of utilities
from observing data from several markets in 7. Let N (L) = {v e R/ : v- (L - L") >
0 for all L’ € Lr} be the normal cone to L € Lr corresponding to the set Lr. (We switch
notation from using Cy for lottery Lp for clarity since this section uses different sets Lr,
which are not explicitly referred to in the relatively compact notation, Cg.) Further, let
N = {int(Ng. (L)) breT.Lecy be the collection of (the interiors of) normal cones to lotteries
faced by agents in the markets 7. For a collection of sets A, let D(N) be the smallest

collection of subsets of R such that
1. R’ € D(N) and N C D(N)
2. For all N € D(N), N° € D(N)

3. For all countable sequences of sets Ny, € D(N) such that Ny, NNy, = 0, J, N, € D(N)
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The collection D(N) is sometimes called the minimal Dynkin system containing N .

Theorem D.1. Given P(L € Lr|I") for each T' € T and L € Ly, the quantity

hp = / 1{v € D}dFy (v)

is identified for each D € D(N).

Proof. The identified set of conditional distributions Fy (v) is given by
3?[ = {FV €% :VL e Lrand I € T, P(L € ﬁp‘r) = /1{’(} € N£F<L)}dFv(U)} .
Note that for any two distributions Fy and FV in .%, the collection of sets

L(Fy, By) = {A cF: /l{v € AYAFy(v) = /1{1} c A}dFv(v)}

is a Dynkin system for the Borel o-algebra F. Since D(N) is the minimal Dynkin system
where all elements of .7, agree, D(N) C Z(Fy, Fy) for any two elements Fy, and Fy,. Hence,
for all D € D(N), we have that

hp = / {v € D}dFy(v) = /1{1} € D}dFy(v)

is therefore identified. O

The result follows from basic measure theory and characterizes the features of Fy (v) that
are identified under such variation in choice environments without any further restrictions. In
particular, with the free normalization ||v;|| = 1, the result implies that the mass accumulated
on the projection of the sets in D(A) on the J — 1 dimensional sphere, S”, is identified.
Typically, this implies only partial identification of Fy (v), but extensive variation in the

lotteries could result in point identification.?

D.2 Preliminaries for Theorem A.2

Lemma D.1. Let f. o (z) = 1{x € C}e 2™ for some polygonal, full-dimensional convex
cone C and let f-c (€) be its Fourier Transform. If C is salient and ¢ € int(C*) where C*
1s the dual of C, then j;c 1s an entire function. Further, there is no non-empty open subset

of R’ where fgjc 18 zero.

2Specifically, the m — X theorem implies that Fy (v) is identified if and only if the Dynkin-system D(N)
contains a m-system that generates the Borel o-algebra.
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Proof of Lemma D.1. Note that 3¢ € int(C*) because C is a salient cone. Let {C,...,Cq}
be a simplicial triangulation of C. Let A, be a matrix [a,,aq,, ..., G4, With the linear
independent vectors that span cone C; arranged as column vectors. z € C, <= = = A«
for some 0 < a € R/ <= A 'z > 0. Normalize A, so that |det Aj| = 1. Let f.c (z) =
1{z € C}e 2™ This is an integrable function (if ¢ is in the dual of the cone C'). Consider

its Fourier transform:
fuol®) = [ exp(-2milg — ie,) da

c

— ;/cq exp (—2mi (§ —ig,x)) dx

— Z/ o : Ajle > 0} exp (—2mi (€ — ie, x)) da
Q 'R

= % /Ri exp (—2mi (§ —ig, Agy)) dy

= Z/ exp (—2mi (A& —iAle,y)) dy

= Z H / exp (—2mi (al;€ — ial;e) y) dy

q=1..Qj=1..J
= T [ e (o or () + 2 (ae)])
¢=1..Q j=1..J
1
- 3 1 s aar

where the last equality follows from the fact that —y27(a;,e) < 0. Note that the closed-form
expression implies that f. o (£) is an entire function for every ¢ € C'\ {0}. Therefore, if it is
zero in an open subset of R” is zero everywhere.

We now show that fa,C’ (£) is non-zero on a non-empty open set. Let K be a full-
dimensional simplicial convex cone such that C' C K. K exists because C' is salient. Let
Ak be the corresponding matrix for K. k, = Ag'ag > 0 for all ¢ € {1,...,Q} and
je{l,...,J}. Consider £ = (A}l)/a,

Fe(ye) = () ¥ I o=
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Each term in the summation has a positive denominator and a numerator that is a
polynomial function of o with positive coefficients. It follows that it is not zero everywhere,

and therefore there is no open subset of R’ where fgyc is zero. O

E Estimation Details

E.1 Gibbs’ Sampler: Implementation Details
E.1.1 Optimal Responses

We adapt the Gibbs’ Sampler for a standard discrete choice model from McCulloch and
Rossi (1994) to our case. The main difference is that we have to draw latent utility vectors
satisfying the restrictions v; - (Lg, — Lg/) > 0 for all R’ € R instead of restrictions of the
form v;; > v;; for all choices j where j is the chosen option.

Let Z; be a J x (K x J) block-diagonal matrix that is constructed placing the K-row
vector covariates z;; = [zijk]szl in each of the J blocks; § = vec ({Bjx}), a K J-column vector;
and D; a J x J diagonal matrix with d;; in the j-th position. The system in equation (2)
can be compactly written as:

v, =2;—D;+¢

The unobserved utilities v; are treated as unknown parameters along with g and . We

specify independent prior distributions for g and :

p(3,%) = p(B)p(X),
B o~ N(BAT,
S o~ IW (0, Ve),

where IW is the inverse Wishart distribution.

The Gibbs sampler proceeds as follows:

0. Start with initial values X0 and v° = {00}, so that v? € Cg, for all i = 1,..., N

where R; is the report of student 7.

Since Cg, = {v € R” : Tyw > 0} where I'; = (L}, — L, ..., L, — LRle)’,‘3 v? can be

3For the specification that assumes truthful reporting, I';, is a matrix that encodes the inequalities implied
by the rank order list R; = (R;(1),..., R;(K)). Hence, I';v; > 0 if and only if v;p,(1) > vig,2) > ... >
ViR, (K)» Vio < Vir,(k) and vi; < vk if § € R;.
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found by finding a solution to the inequalities
Ligv; > €,

for each row k of I';, and a small positive number e. We implement this step using the

Gurobi solver.

. Draw B'v% 2% from a N <B~, V),

V o= (272" + A7 3=V (2" + AB)

Zy
A

Zg
77 = O'Z,vf=C)
¥ = C'C,

where C’C results from a Cholesky decomposition of 3°.

. Draw Xt0° B! from a ITW (vy + N, Vy + 9)

n

S = E Ei€s,
i=1
0 1

. Draw v!|8!, 3!, R iterating over students and schools.

For each school 7 = 1...J, draw

1 J
Uilj| {U’le 2:1 ) {U?k}k:j—H 7B17 Zl

from a truncated normal TN (u;;, 07, a;j, bij), where

K
pij = Zﬂ;kzijk_dij

k=1
2 1 1 1 -1¢1
Tij = Ui~ L) [E(—j)(—j)} 2= )i

v

and the truncation points a;; and b;; guarantee the draw v}j is such that

1\-1 1 0/ '
v = [{Uik}kzl » Vigo {vik}k:j+1i|
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lies in the interior of Cg,. To calculate these truncation points, define A7, be the k-th

. /
. . . i 1171 01/ 4
row of I'; with its j-th column removed and let v} = |{vj o) {vintieja
—Aj v
a; = max ——**t
ke{k:lu; >0} Likg
AT i
bij = min = ——&

ke{k:lu;<0}  Liks
where I';y,; is the (k, j)-th element of I';.

4. Set X% = X! and v° = v!, store, and repeat the steps 1-3 to obtain (8%, X% v*) given
(BF 1, 2F1 v*=1) and the priors.

E.1.2 Naive-Sophisticate Mixture Model

We extend the Gibbs’ sampler described earlier to allow for two types of agents. The model
assumes that naive agents report truthfully while sophisticates pick the report that maxi-
mizes their expected utility. For a rank-order list R = (R(1), R(2), ..., R(K)) of length K, let
C'R be the region in utility space such that v; € C’R = Uir(1) > ViR(2) > --- > ViR(K) > Vij
for all j ¢ R;, and v;r(x) > vi. Note that C’R is a convex cone in R”’. Let m; be an indicator
for whether a student is naive. Therefore, the model specifies the observed report of the

agent given v; and ; as follows:

Ri:R,ﬂ‘i:O — UiGCR

R=Rm=1 — viGC'R.

The Gibbs” sampler for this model uses data augmentation on 7; in addition to v;. Let 7
be the fraction of nave agents in the economy. We let © be a vector to allow for free-lunch

and paid-lunch students to have differing proportions of naive and sophisticated agents. We

4We pre-process the matrix I'; using Gurobi to eliminate redundant linear constraints to speed up this
step. The k-th row is a redundant constraint if the solution to the problem

min ;v subject to T'ju > 0
v

is non-negative.
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specify independent prior distributions for 3, 7 and X:

p(B,X) = p(B)p(m)p(X),
~ N(B,Z7),

T ~ Beta(ag,by)

~ IW (v, Vo),

where IW is the inverse Wishart distribution and | € {Paid Lunch, Free Lunch}. The Gibbs’

sampler proceeds as follows:

0.

1-2.

Start with initial values X0, 70 = {z%}  and v = {¢0};', so that v0 € Cg, for all
i=1,... N.

Update (X, 5) according to steps 1-2 in Appendix E.1.
Update 7!|7%. For [ € {Paid Lunch, Free Lunch}, draw 7; from
Beta (ao—l— |Z;| — Zﬂg,bo—i-zﬂ?) )
€N 1€1;
where Z; is the set of students in paid/free-lunch group .

Draw v!|g, B! 7!,y iterating over students and schools. For the observed report R;

for student i, consider the cones

CYRZ. = {v eR’: UR;(1) = UR;(2) = - - > URy(K) > Vij for all j € {0,...,J}\Ri}
Cr = {UER‘]:DUZO},

1

where I'; = (L, — Ly, ..., L, — Lg, ). Let 7} = @}, for [ equal to the paid lunch

status of 7. For each school j = 1...J, draw
1 11 017 1yl =1
Ul]‘ {Uik k=1" {vik‘}k:j+1 76 ?E y T

from a mixture of two truncated normals TN (,uij, 0%, i, 13”) and TN (pij, 0, aij, bij)
with weights 7} and (1 — @}). p;, 07, a;; and by; are defined as in step 3 in Appendix
E.1. The truncation points (&ij, bij) guarantee that draws from 7N (uij, afj, jj, b¢j>

lay in the interior of Cp,.
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5. Update w!|v!, #1. For each student i, draw 7} from a binomial distribution with pa-
rameter 71} if v} € Cr, N Cr,. If v} € Cr\Cr,, set 7} = 0. If v} € Cp \Chg,, set

1_
m; = 1.

6. Repeat steps 1-5 to obtain (%, XF, vF 7F 7%) given (BF~1, Lkt oF 1 gkt zh-1),

7

We parametrize v; as in Appendix E.1 and assume identical distributions for naives are

sophisticates.

E.1.3 Priors

We use very diffuse priors to minimize their influence on our estimates and as a reflection
of our prior uncertainty about the values of the parameters of the model. We set the prior
distribution of 5 ~ N(B,X71)

S = 100 x I
and the prior of 3 ~ IW (g, V)

vg = 100
Vo = 1.

We experimented with more diffuse priors (2_1 =200 x I,yy = 50) without noticeable changes
in our main results.

For the mixture model, we set the prior of 7, = Beta (ag,by), with ag = by = 1 for [ €
{Paid Lunch, Free Lunch}.

E.1.4 Convergence Diagnostics

For each specification, the Gibbs’ sampler produces a Markov chain with the posterior dis-
tribution of the parameters as the invariant distribution. Since the chain is ergodic, it
ultimately converges to this distribution irrespective of the starting point. However, it is es-
sential to burn-in a large set of initial draws since they are influenced by the starting point,
and to check that the chains have converged. We simulate three chains of length 400,000
and burn-in the first half to ensure mixing. The three chains with different starting values
were used to assure convergence to the same parameter value. We monitored convergence by
examining the trace plots of the various co-efficients and use Geweke’s means test across and

within the chains to ensure mixing. Finally, we use the Raftery-Lewis Diagnosis Test to to
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check that the chain has been simulated for long enough. The test quantifies whether a low
quantile has been estimated precisely in order to diagnose convergence of the distribution.
We check that the 2.5th percentile of the vast majority of parameters are estimated within
a tolerance of 0.005 with 95% probability.

E.2 Bootstrap

The standard errors for i, é, and counterfactuals were estimated by a bootstrap. To con-
struct each of the S bootstrap samples we sampled n students with replacement from each
year of our sample, where n is the number of students in that year. For each bootstrap

sample s € {1,...,S}, we computed:

e Lottery estimate L*: For each of the five years in the data, we computed L using the
bootstrap sample s using the same procedure used to obtain L. ie. we resampled n—1
individuals and generated n — 1 draws of the tie-breaker B = 1,000 times. For each
simulated sample b, we computed the market clearing cutoff pggl, and for each (R, t)
calculated the vector of assignment probabilities averaging across the B simulated
samples following equation (9). The standard errors for the lotteries presented in table
E.I in the Appendix are the standard deviation of the L* across S = 1,000 bootstrap

samples.

e Parameter estimates BS, 3%: We ran a Monte Carlo Markov Chain on the bootstrap
sample s using the same procedure described in the paper and in Appendix E.1 using
the bootstrap samples. We ran one chain of 100,000 draws and burned-in the first
50,000. The last 50,000 draws were used to compute the mean of each parameter
which we denote BS, 3%, The standard errors in tables VII and E.III were estimated
by the standard deviation of the mean utilities and BS across the S = 250 bootstrap
samples. We used a smaller number of bootstrap samples, .S, in this step to reduce the

computational burden of drawing a large number of Markov chains.

e Counterfactual: We simulated the deferred acceptance counterfactual assuming param-
eters BS, 3% and computed the difference in utility for each individual in the bootstrap
sample s. For the Cambridge mechanism, we used L*. The standard errors reported in
tables X and XII were estimated by the standard deviation of the difference in utilities

across the S = 250 boostrap samples.

The same boostrap procedure was used to compute standard errors for the coarse beliefs,

adaptative expectations and mixture specifications. However, the standard errors for the
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truthful specification were not obtained by bootstrap. They were estimated directly from

the original MCMC chains.
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