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The appendix follows the organization of the paper. Appendix B describes the data

sources and the cleaning process, Appendix C presents results related to the first step estima-

tor, preliminaries for the convergence results and details on RSP+C mechanisms. Appendix

D presents technical details relevant for Section 5. Appendix E details the Gibbs’ sampler

used in Section 6 and the bootstrap.

B Data Appendix

The primary data for the study come from Cambridge Public Schools. Under a non-disclosure

agreement, we use data from student registration records, assignment files, and data on

student characteristics.

The student registration records contain the school/program the student is registered at,

student’s grade, language spoken at home and the paid-lunch status at registration.

The assignment files include the rank-order list of the student, sibling or proximity pri-

ority at the ranked school, the randomly generated tie-breaker used in the assignment, and

the paid-lunch/free-lunch status of the student. Cambridge pre-assigns about 40% of the

students to public elementary schools via arrangements with pre-kindergarten schools. The

assignment files provide detail on whether the student is pre-assigned and if the student

participated in the school choice process (the Cambridge mechanism) studied in this paper.

We also obtained reports from the school district containing the overall capacity of each

school/program in each year and the numbers assigned through each process. We use these

reports as the primary source for computing the number of seats available at various schools

and programs in the mechanism. In rare cases, the rank order lists, the random tie-breaker
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and the priority codes indicated an inconsistency in the capacity data. We used the knowl-

edge of the mechanism to adjust these capacities and were able to compute the correct

assignment for almost all students with these modified capacities.

The student characteristics file duplicates several of the variables in the registration and

school choice ranking and assignment file. Importantly, it also includes the home address of

the student. The Network Analyst Toolbox in ArcGIS and information in ESRI’s Datamaps

10.1 on the US road network was used to compute the distance by road between the student’s

home and the school address based on brochures from the relevant years. This computation

ignores one-way restrictions because Cambridge uses walking distance to compute proximity

priority.

These files were merged using a unique student identifier.1 Schools and programs are also

uniquely identified in the dataset.

C Theory: Mechanisms, Convergence and Equilibrium

This section presents results related to the large sample properties of our estimator for

LR,t in the class of Report-Specific Priority and Cutoff (RSP+C) Mechanisms. Section C.1

presents examples of RSP+C mechanisms. Section C.2 provides preliminaries for Theorem

A.3, which shows consistency and asymptotic normality of our estimator. The result requires

that the limit economy has a unique market clearing cutoff. Section C.3 derives conditions

under which a market-clearing cutoff exists in an economy and shows that the limit econ-

omy (generically) has a unique market-clearing cutoff. Section C.4 shows that equilibrium

strategies in a large market approximate equilibria in the limit game.

C.1 Report-Specific Priority and Cutoff Mechanisms

This section formally shows that several school choice mechanisms belong to the class of

Report-Specific Priorities + Cutoff (RSP+C) mechanisms. For simplicity, we assume that

each school has only one program and that there are no priorities. These examples can be

easily modified to accomodate these details.

In the interest of completeness, we start by formally defining the two most commonly used

mechanisms, the Student Proposing Deferred Acceptance mechanism, and the Immediate

Acceptance mechanism (also known as the Boston mechanism).

The Student Proposing Deferred Acceptance mechanism: For reports R1, . . . , RN

and priorities t1, . . . , tN ,

1We are grateful to Parag Pathak for sharing the dataset for this project.
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Step 1: Students apply to their first ranked choice and their applications are tentatively

held in order of priority and a tie-breaker until the capacity has been reached. Schools

reject the remaining students.

Step k: Students that are rejected in the previous round apply to their highest ranked

choice that has not rejected them. Schools pool new applications with those held from

previous steps and tentatively hold applications in order of priority and a tie-breaker

until the school’s capacity has been reached. The remaining students are rejected. The

algorithm continues if any rejected student has not been considered at all of her listed

schools. Otherwise, each student is assigned to the school that currently holds her

application.

This mechanism is strategy-proof for the students if the students can rank all J schools

(Dubins and Freedman, 1981; Roth, 1982), but provides strategic incentives for students if

students are constrained to list K < J schools (see Abdulkadiroglu et al., 2009; Haeringer

and Klijn, 2009, for details).

The Immediate Acceptance mechanism: For reportsR1, . . . , RN and priorities t1, . . . , tN ,

Step 1: Assign students to their first choice in order of priority and a random tie-breaker

until the capacity has been reached. Reject the remaining students.

Step k: Assign students that are rejected in the previous round to their k-th choice in order

of priority and a random tie-breaker until the capacity has been reached. Schools reject

the remaining students. Continue if any rejected student has not been considered at

all their listed schools.

This mechanism is a canonical example for one that provides strategic incentives to students

(Abdulkadiroglu et al., 2006). Our next result shows that all mechanisms in table I except

the TTC is report-specific priority + cutoffs mechanisms.

Proposition C.1. The Deferred Acceptance mechanism, the Immediate Acceptance mech-

anism, Serial Dictatorship, First Preferences First, Chinese Parallel Mechanism, the Pan

London Admissions scheme and the New Haven Mechanism with tie-breakers are RSP+C

mechanisms.

Proof. We assume that there are no priority types for simplicity, though the proof can

be easily rewritten to incorporate finitely many priority types as done for the Cambridge

Controlled Choice Plan.
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Deferred Acceptance:

We show that Deferred Acceptance is equivalent to a report-specific priority + cutoff mech-

anisms with

ej = fj(Ri, νi) = νij.

Let νj be supremum of the priority scores of the rejected students in school j. We claim that

pn = ν are the cutoffs with the desired properties (if a school does not reject any students,

set pnj = 0).

Let νrj be the supremum the priority scores of students that were rejected in round r. Set

νrj = 0 if no students are rejected. Observe that for each school, νrj ≤ νr+1
j . If the algorithm

terminates in round k, then νkj = νj. Note that the algorithm terminates in finitely many

rounds for every n because there are finitely many students and schools and no student

applies to the same school twice.

Assume that student i is assigned to school j′ and consider any school j with jRjj
′. Let

r be round in which student i was rejected by j. By definition, it must be that νij < νrj .

Therefore, νij < νj and we have that each student is assigned to D(Ri,νi)(pn).

Finally, the aggregate demand cannot exceed qj by construction of pn.

Immediate Acceptance mechanism:

We show that the Immediate Acceptance mechanism is report-specific priority + cutoff

mechanisms for

eij = fj(Ri, νi) =
νij + J − 1−#{k : kRij}

J

by constructing market cutoffs pn for each profile ((R1, ν1), . . . , (RN , νN)) such that (i) the

assignment of each agent is given by D(Ri,νi)(pn) and (ii) pn clears the market.

Note that if a school rejects a student in round k, then it rejects students in all further

rounds since it is full at the end of round k. Let kj denote the pivotal round for school j,

and let νj be supremum of the random priorities of the rejected students in round kj. We

claim that pnj = 1−
kj − νj
J

are the cutoffs with the desired properties (if a school does not

reject any students, set kj = J and pj = 0).

We first show that the assignment of each student in the Immediate Acceptance mech-

anism is given by D(Ri,νi)(pn). Assume that student i is assigned to school j′ and consider

any school j with jRij
′. Since jRij

′, it must be that the student was rejected at j, and

could not have applied to j before round kj. If student applied to j after round kj, then

νij−#{k : kRij} < νj−kj since |νij− νj| ≤ 1. If #{k : kRij} = kj, then νij < νj. In either

case, fj(Ri, νi) < pj. Therefore, the student is assigned to D(Ri,νi)(pn).

Next, we show that pn clears the market for economy ((R1, ν1), . . . , (RN , νN)). As noted
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earlier, each agent is assigned to D(Ri,νi)(pn). By construction of pn, the aggregate demand

must be less than qj, and pnj = 0 if aggregate demand is strictly less than qj.

Serial Dictatorship:

The Serial Dictatorship mechanism orders the students according to a single priority and

then assigns the top student to her top ranked choice. The k-th student is then assigned to

her top ranked choice that has remaining seats. It is straightforward to show that this mech-

anism is equivalent to a Deferred Acceptance mechanism in which all students have identical

tie-breakers at all schools. Hence, it is a report-specific priority + cutoff mechanism.

First Preferences First:

The First Preferences First mechanism assigns students to their top ranked choice if seats are

available, with tie-breaking according to priorities and a random number. Rejected students

are then processed for the remaining seats according to the Deferred Acceptance mechanism.

Arguments identical to the ones above show that the First Priority First mechanism is a

report-specific priority + cutoff mechanism for

eij = fj(Ri, νi) =
νij + 1{jRij

′ ∀j′ 6= j}
2

.

Chinese Parallel (Chen and Kesten, 2013):

The chinese parallel mechanism operates in t rounds, each with tc-subchoices. In each round,

rejected students applies to the next tc highest choices that have not yet rejected her. Within

each round, the algorithm implements a deferred acceptance procedure in which applications

are held tentatively until no new proposals are made. Assignments are finalized after all

tc choices have been considered. It is straightforward to show that the Chinese Parallel

mechanism is a report-specific priority + cutoff mechanism for

fj(Ri, νi) =

νij −
⌊

#{k : kRij}
tc

⌋
⌊
J

tc

⌋ +

⌊
J − 1

tc

⌋
⌊
J

tc

⌋ .

Pan London Admissions (Pennell et al., 2006):

The Pan London Admissions system uses the Student Proposing Deferred Acceptance mech-

anism, except that a subset of schools upgrade the priority of students that rank the school
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highly. Suppose school j upgrades students that rank it first. For such schools, we set

fj(Ri, νi) =
νij + 1{jRij

′ ∀j′ 6= j}
2

,

and fj(Ri, νi) = ν otherwise. With this modification, the Pan London Admissions scheme is

a report-specific priority + cutoff mechanism.

We use eij = fj(Ri, νi) = νij for schools that do not modify the priority and eij =

fj(Ri, νi) =
νij −#{k : kRij}

J
+
J − 1

J
for school that use the Immediate Acceptance rule.

New Haven Mechanism:

See Kapor et al. (2017) for description and proof.

C.2 Preliminaries for the proof of Theorem A.3

Lemma C.1. Suppose that the tie-breaker ν is non-degenerate. Then, (i) for each j ∈ J ,

supp |Dj(p|η)−Dj(p|ηn)| and supp |Dj(p|η)−Dj(p|ηn−1
b )| converge in probability to 0.

(ii) for any p∗, we have that

√
n

(
1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

)
d→ N (0,Ω)

where

Ω =

(
1 +

1

B

)
V

(∫
D(R,t,ν)(p∗)dγν

)
+
E
[
V
(
D(R,t,ν)(p∗)

∣∣R, t)]
B

.

(iii) For any p∗ and any sequence of δn decreasing to 0,

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|ηn)‖ = op(1).

Likewise,

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn−1

b )−D(p|ηn) +D(p∗|ηn)−D(p∗|ηn−1
b )‖ = op(1).

Proof. Part (i): Let vpj be the set of tuples of priority types, random tie-breakers and rank

order lists, (Ri, ti, νi), that are assigned to programs j under cutoffs p. This set can be

written as:

vpj = {(Ri, ti, νi) : fj(Ri, ti, νij) ≥ pj, jRi0;∀j′Rij, fj′(Ri, ti, νij′) < pj′}.
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Let V = {vpj : p, j} be the class of sets vpj indexed by p and j.

Since f in increasing in the last argument, for each j, Ri, ti, the class of sets {{νi :

fj(Ri, ti, νij) ≥ pj} : pj} is a Vapnik-Chervonenkis (VC) class. Hence, the class B = {{νi :

fj(Ri, ti, νij) ≥ pj} : pj, j, R, t} is a VC class because (j, R, t) belong to a finite set. Hence,

V is a VC-class since it is a subset of finite unions and intersections of sets in B and their

complements. Therefore, V is a uniform Glivenko-Cantelli class. Part (i) follows from the

Glivenko-Cantelli Theorem.

Part (ii): We first re-write

1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

=
1

B

B∑
b=1

1

n

∑
ib

D(Rib
,tib ,νib )(p∗)−D(p∗|η)

=
1

B

B∑
b=1

1

n

∑
ib

D(Rib
,tib ,νib )(p∗)− 1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν

+
1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν −D(p∗|η).

We now derive the distribution of

Gn,b =
√
n

(
1

n

∑
ib

D(Rib
,tib ,νib )(p∗)− 1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν

)

conditional on the sample (R1, t1), . . . , (Rn, tn), and fixed b. To do this, we adapt the proof

for the bootstrap distribution of the sample mean (Theorem 23.4, van der Vaart, 2000).

Note that

E
[
D(Rib

,tib ,νib )(p∗)
∣∣ (R1, t1), . . . , (Rn, tn)

]
= E

[
E
[
D(Rib

,tib ,ν)(p∗)
∣∣Rib , tib

]∣∣ (R1, t1), . . . , (Rn, tn)
]

=
1

n

n∑
i=1

E[D(Ri,ti,ν)(p∗)|Ri, ti]

=
1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν .

By the law of total variance, the conditional variance ofD(Rib
,tib ,νib )(p∗) given (R1, t1), . . . , (Rn, tn)
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is

E
[
V
(
D(Rib

,tib ,νib )(p∗)
∣∣Rib , tib

)∣∣ (R1, t1), . . . , (Rn, tn)
]

+V
[
E
(
D(Rib

,tib ,νib )(p∗)
∣∣Rib , tib

)∣∣ (R1, t1), . . . , (Rn, tn)
]

=
1

n

n∑
i=1

V
(
D(Ri,ti,νi)(p∗)

∣∣Ri, ti
)

+ V

(∫
D(Ri,ti,ν)(p∗)dγν

∣∣∣∣ (R1, t1), . . . , (Rn, tn)

)
,

where V
(∫

D(Ri,ti,ν)(p∗)dγν
∣∣ (R1, t1), . . . , (Rn, tn)

)
is the sample variance of

∫
D(Ri,ti,ν)(p∗)dγν .

Since D is uniformly bounded, the variance above is bounded. By the strong law of large

numbers, the conditional variance of D(Rib
,tib ,νib )(p∗) converges to

Ω̃ = E
[
V
(
D(Ri,ti,νi)(p∗)

)]
+ V

(∫
D(Ri,ti,ν)(p∗)dγν

)
almost surely for sequences (R1, t1), (R2, t2), . . ..

Note that since D(Rib
,tib ,νib ) is uniformly bounded, we have that for every ε > 0,

E
[
‖D(Rib

,tib ,νib )‖21{‖D(Rib
,tib ,νib )‖ > ε

√
n}
]
→ 0.

Therefore, by the Lindeberg-Feller central limit theorem (Theorem 2.27, van der Vaart,

2000), conditionally on (R1, t1), . . . , (Rn, tn), for almost every sequence (R1, t1), (R2, t2), . . . ,

Gn,b
d→ N (0, Ω̃). An identical argument shows that

1

B

∑
bGn,b

d→ N

(
0,

1

B
Ω̃

)
condition-

ally on (R1, t1), . . . , (Rn, tn), for almost every sequence (R1, t1), (R2, t2), . . . , since ib is in-

dependent of ib′ conditional on (R1, t1), . . . , (Rn, tn) for all b 6= b′. Therefore, we have that

conditionally on (R1, t1), . . . , (Rn, tn), for almost every sequence (R1, t1), (R2, t2), . . .,

√
n

(
1

B

B∑
b=1

D(p∗|ηn−1
b )− 1

n

n∑
i=1

∫
D(Ri,ti,ν)(p∗)dγν

)
d→ N

(
0,

1

B
Ω̃

)
.

Now consider the stacked random vector

√
n

 1

B

∑B
b=1D(p∗|ηn−1

b )− 1

n

∑n
i=1

∫
D(Ri,ti,ν)(p∗)dγν

1

n

∑n
i=1

∫
D(Ri,ti,ν)(p∗)dγν −D(p∗|η)

 . (C.1)

Conditional on (R1, t1), . . . , (Rn, tn), the second element is deterministic and the first element

converges in distribution to Z1 ∼ N

(
0,

1

B
Ω̃

)
for almost every sequence (R1, t1), (R2, t2), . . ..
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By the central limit theorem, the second element converges in distribution to

Z2 ∼ N

(
0, V

(∫
D(Ri,ti,ν)(p∗)dγν

))
.

Since Z1 is (almost surely) independent of (R1, t1), . . . , (Rn, tn), we have that the stacked

random vector in expression (C.1) converges in distribution to (Z1, Z2) where Z1 and Z2 are

independent. Hence,

√
n

(
1

B

B∑
b=1

D(p∗|ηn−1
b )−D(p∗|η)

)
d→ N (0,Ω).

Part (iii): Note that

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|ηn)‖

≤ J |
√
n (ηn(vp∧p∗,p∨p∗)− η(vp∧p∗,p∨p∗)) |,

where vp,p′ = {ν : p ≤ f(R, T, ν) ≤ p′}. We now bound the variance of the right-hand side.

For any p, p′ with p ≤ p′,

V (ηn(vp,p′)− η(vp,p′)) = V

(
1

n

∑
i

1{f(Ri, Ti, νi) ∈ vp,p′} − η(vp,p′)

)
=

1

n
η(vp,p′)(1− η(vp,p′)).

Therefore, V (J |
√
n (ηn(vp∧p∗,p∨p∗)− η(vp∧p∗,p∨p∗))) |) is at most Jη(vp∧p∗,p∨p∗). By Cheby-

chev’s inequality, for any ε > 0,

P
(
J |
√
n (ηn(vp∧p∗,p∨p∗)− η(vp∧p∗,p∨p∗)) | > ε

)
≤ J2η(vp∧p∗,p∨p∗)

2

ε2
.

Since η(vp∧p∗,p∨p∗) ≤ κ‖p ∧ p∗ − p ∨ p∗‖∞, we therefore have that for any ε > 0,

P

(
sup

‖p−p∗‖≤δn

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|ηn)‖ > ε

)
≤ κ2δ2

nJ
2

ε2
.

Hence, for any sequence of δn decreasing to zero, we have that

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn)−D(p|η) +D(p∗|η)−D(p∗|η)‖ = op(1).
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By a similar argument, we have that

P

(
sup

‖p−p∗‖<δn

√
n‖D(p|ηn−1

b )−D(p|ηn) +D(p∗|ηn)−D(p∗|ηn−1
b )‖ > ε

)
<
J2V (ηn−1

b (vp,p′)− ηn(vp,p′))

ε2
.

Since E[ηn−1
b (vp,p′)|ηn] = ηn(vp,p′), by the law of total variance,

V (ηn−1
b (vp,p′)− ηn(vp,p′)) = E

[
V (ηn−1

b (vp,p′)− ηn(vp,p′)|ηn)
]

= E [ηn(vp,p′)(1− ηn(vp,p′))]

≤ E [ηn(vp,p′)] = η(vp,p′).

Hence, we have that

P

(
sup

‖p−p∗‖<δn

√
n‖D(p|ηn−1

b )−D(p|ηn) +D(p∗|ηn)−D(p∗|ηn−1
b )‖ > ε

)
<
k2J2δ2

n

ε2
.

Lemma C.2. Suppose there is a unique p∗ such that for all k ∈ J ∪S, Dk(p
∗|η)−qk ≤ 0 with

equality if p∗k > 0. Also assume that there exists pn such that Dk(p
n|ηn)−qnk ≤ 0 with equality

if pnk > 0. and likewise assume that there exists pn−1
b such that Dk(p

n−1
b |ηn−1

b )− qnk ≤ 0 with

equality if pn−1
b,k > 0.

1. If (i) |D(p|ηn−1
b )−D(p|η)| p→ 0 and |D(p|ηn)−D(p|η)| p→ 0 uniformly in p, (ii) qn → q,

(iii) D(p|η) is continuous in p, then supj∈J |pn−1
b,j − p∗j |

p→ 0 and supj∈J |pnj − p∗j |
p→ 0.

2. Further, if the hypotheses of part 1 hold, (iv) E[D(p∗|ηn)] = D(p∗|η), (v) for any p∗

√
n

(
1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

)
d→ Z

(vi) For any p∗ and any sequence of δn decreasing to 0,

sup
‖p−p∗‖≤δn

√
n‖D(p|ηn−1

b )−D(p|η) +D(p∗|η)−D(p∗|ηn−1
b )‖ = op(1).

(vii) ∇p∗+
D+(p∗|η) exists and is invertible at p∗, and (viii) qn − q = op(n

−1/2), then

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)
d→ ∇DZ
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where ∇D =

[
(∇p∗+

D+(p∗|η))−1 0

0 0

]
.

Proof. Part 1: The result is similar in spirit to Azevedo and Leshno (2016), theorem 2,

though the techniques are different and generalized to mechanisms.

We only show the result for pn since the argument for pn−1
b is identical. Let

Qn(p) =

∥∥∥∥∥
[

max {z (p |ηn, qn ) , 0}
p ∗ z (p |ηn, qn )

]∥∥∥∥∥ ,
where ∗ represents the Hadamard product and z(p|η, q) = D(p|η, q)− q. Note that pn solves

Qn(p) = 0. Let Q0 be the limiting objective function,

Q0(p) =

∥∥∥∥∥
[

max {z(p|η, q), 0}
p ∗ z(p|η, q)

]∥∥∥∥∥ .
By the continuous mapping theorem, supp |Qn(p) − Q0(p)| p→ 0. Also, Q0(p) is continuous

since D(p|η) is continuous. Further, Q0(p) is uniquely minimized at p∗. For ε > 0, let δε =

infp:‖p−p∗‖>εQ0(p). Since Q0 is continuous, p is an element of a compact space and Q0(p) = 0

only at p∗, δε > 0. Pick N such that for all n > N , P(supp |Q0(p) − Qn(p)| > δε) < ε. For

pn, we have that Qn(pn) = 0. Note that

|Q0(pn)−Q0(p∗)|

≤ |Q0(pn)−Qn(pn)|+ |Qn(pn)−Q0(p∗)|

≤ sup
p
|Q0(p)−Qn(p)|+ 0. (C.2)

Hence, we have that for all n > N ,

P
(

sup
k∈J∪S

|pnk − p∗k| > ε

)
≤ P (|Q0(pn)−Q0(p∗)| > δε)

≤ P
(

sup
p
|Q0(p)−Qn(p)| > δε

)
< ε

where the first inequality follows from set inclusion, the second from equation (C.2), and the

third by our choice of N .

Part 2: We can re-write

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)
=
√
n

(
1

B

∑
b

pn−1
b − p∗

)
+
√
n(p∗ − E[pn]).
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We first derive the limit distribution of
√
n

(
1

B

∑
b p

n−1
b − p∗

)
.

Let K0 be the set of k such that p∗k = 0, i.e. Dk(p
∗|η) < qk, and let δ = mink∈K0{qk −

Dk(p
∗|η)}. Since Dk(p|η) is continuous, there exists κ > 0 such that for all ‖p− p∗‖ < κ and

all k ∈ K0, we have that Dk(p|η)− qk < −
δ

3
. For any ε > 0, pick N such that for all n > N ,

P(‖pn−1
b − p∗‖ < κ) < ε and ‖qnk − qk‖ <

δ

3
. Such an N exists since pn−1

b

p→ p∗ and qnk → qk.

For all n > N , we have that

Dk(p
n−1
b |ηn−1

b )− qnk < Dk(p
n−1
b |ηn−1

b )− qk +
δ

3

< |Dk(p
n−1
b |ηn−1

b )−Dk(p
∗|η)|+Dk(p

∗|η)− qk +
δ

3

< |Dk(p
n−1
b |ηn−1

b )−Dk(p
∗|η)| − 2δ

3

=⇒ P
(
Dk(p

n−1
b |ηn−1

b )− qnk > −
δ

3

)
< P

(
|Dk(p

n−1
b |ηn−1

b )−Dk(p
∗|η)| > δ

3

)
< P

(
‖pn−1

b − p∗‖ > κ
)
< ε

where the second last inequality follows from set inclusion and the choice of κ. Since pn−1
b = 0

if Dk(p
n−1
b |ηn−1

b ) − qnk < 0, we have that for all n > N , P(pn−1
b,k > 0) < ε. Therefore,

√
n|pn−1

b,k − p∗k|
p→ 0 for all k ∈ K0.

The limit distribution of
√
n(pn−1

b,+ − p∗+) is a consequence of the Delta Method. For

simplicity of notation, we omit the subscript + and treat pnk = 0 if p∗k = 0 since pnk = op(n
−1/2).

Note that for all k 6∈ K0, we have that Dk(p
∗|η) − qk = 0. Let δ = mink 6∈K0 p∗k. Since

‖pn−1
b − p∗‖ p→ 0, we have that for any ε > 0, there exists N such that for all n > N ,

P(pn−1
b,k = 0 for any k 6∈ K0) < ε. Since pn−1

b,k > 0 implies that Dk(p
n−1
b |ηn−1

b ) − qnk = 0,

for all n > N , pn−1
b solves 0 = Dk(p|ηn−1

b ) − qnk with probability at least 1 − ε. Therefore,

Dk(p
n−1
b |ηn−1

b )− qnk = op(n
−1/2) for all k 6∈ K0.

Since ‖pn−1
b −p∗‖ p→ 0, condition (v) implies that there exists a sequence of δn decreasing

to 0, such that

D(pn−1
b |ηn−1

b )−D(pn−1
b |η) +D(p∗|η)−D(p∗|ηn−1

b ) = op(n
−1/2).

Together with D(pn−1
b |ηn−1

b )− qn = op(n
−1/2), condition (v) implies that

q − qn +D(p∗|ηn−1
b )− q +D(pn−1

b |η)−D(p∗|η) = op(n
−1/2).

12



Since ‖q − qn‖ = op(n
−1/2), and D(p∗|η) = q, we have that

D(p∗|ηn−1
b )−D(p∗|η) +D(pn−1

b |η)−D(p∗|η) = op(n
−1/2)

=⇒
√
n(D(p∗|ηn−1

b )−D(p∗|η)) +∇p∗D(p∗|η)
√
n(pn−1

b − p∗) + op(‖pn−1
b − p∗‖) = op(1),

where the implication results form the Delta Method. Since, op(‖pn−1
b − p∗‖) = op(1), and

∇p∗D(p∗|η) is invertible, we have that

√
n(pn−1

b − p∗) =
√
n(∇p∗D(p∗|η))−1(D(p∗|ηn−1

b )−D(p∗|η)) + op(1).

Since E[D(p∗|ηn)] = D(p∗|η), by a similar argument,

√
n(E[pn]− p∗) =

√
n(∇p∗D(p∗|η))−1(E[D(p∗|ηn)]−D(p∗|η)) + op(1) = op(1).

Therefore,

√
n

(
1

B

∑
b

pn−1
b − E[pn]

)

=
√
n

(
1

B

∑
b

pn−1
b − p∗

)
+ op(1)

=
√
n(∇p∗D(p∗|η))−1

(
1

B

∑
b

D(p∗|ηn−1
b )−D(p∗|η)

)
+ op(1)

By condition (vi) and Slutsky’s theorem, we have that

√
n

(
1

B

∑
b p

n−1
b − E[pn]

)
d→ ∇DZ.

C.3 Existence and (Generic) Uniqueness of Cutoffs

This section shows that the cutoffs for RSP+C mechanisms have (generically) unique cutoffs.

The main results are Propositions C.2 and C.4. The former provides a general high level

condition for (generic) uniqueness in RSP+C mechanisms and the latter provides a weaker

condition for the Cambridge mechanism. To do so, we first need to introduce some notation

and definitions.

Definition C.1. The function D : [0, 1]J → [0, 1]J satisfies weak-substitutes if Dj(p) is

13



non-increasing in pj and non-decreasing in pj′, where p ∈ [0, 1]J .

The next definition is a stricter notion of substitutes in a neighborhood around a given

cutoff. This borrows from the notion of connected substitutes introduced in Berry et al.

(2013) and Berry and Haile (2010) to show conditions when demand is invertible.

Definition C.2. The function D : [0, 1]J → [0, 1]J satisfies local connected substitutes

at p∗ if there exists an ε > 0, such that for all p ∈ [0, 1]J with ‖p− p∗‖ < ε, we have that

1. for all j ∈ {0, 1, . . . , J} and k ∈ {1, . . . , J}\{j}, Dj(p) is nondecreasing in pk

2. for all non-empty subsets K ⊂ {1, . . . , J}, there exists k ∈ K and l 6∈ K such that

Dl(p) is strictly increasing in pk

Local connected substitutes is implied by strict gross substitutes, and the condition that

D(p|η) as defined in equation (11) satisfies local connected substitutes for all p ∈ [0, 1] is

testable.

Definition C.3 (Azevedo and Leshno (2016)). The function D : [0, 1]J → [0, 1]J is regular

if the image D(P̄ ), where

P̄ = {p ∈ [0, 1]J : D(p) is not continuously differentiable at p}

has Lebesgue measure 0.

For a fixed q ∈ [0, 1]J , let p∗ ∈ [0, 1]J be a solution to the problem

D(p)− q ≤ 0 and p ∗ (D(p)− q) = 0, (C.3)

where ∗ is the Hadamard product. We now observe that (generically for q ∈ [0, 1]J) there

exists a unique solution to equation (C.3) if D satisfies local connected substitutes at any

market clearing cutoff (is regular).

Proposition C.2. Let D(·|η) be defined as in equation (11). If D(·|η) satisfies weak substi-

tutes, then there exists a solution to equation (C.3) for all q.

Further, for a fixed D(·|η), let Q ⊂ [0, 1]J be the set of capacities, q, such that there are

multiple solutions to equation (C.3).

1. Q ∩ {q :
∑J

j=1 qj <
∑

j D(0|η)} has Lebesgue measure zero if Dj(·|η) is regular

2. Q is empty if D(·|η) satisfies local connected substitutes at any solution p∗ to equation

(C.3). In particular, Q is empty if D(·|η) satisfies local connected substitutes at every

cutoff p.
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Proof. Existence of cutoffs that solve equation (C.3) follows from corollary A1 and lemma 1

of Azevedo and Leshno (2016). Statement 1 is a consequence of Azevedo and Leshno (2016),

theorem 1(2) and lemma 1. Statement 2 is a strengthening of Azevedo and Leshno (2016),

theorem 1(1). By the Lattice Theorem (Azevedo and Leshno, 2016), there exist minimum

and maximum cutoffs p− ≤ p+ that solve equation (C.3). By the Rural Hospitals Theorem

(Azevedo and Leshno, 2016), for all C ⊆ S,∑
j∈C

Dj(p
+|η) =

∑
j∈C

Dj(p
−|η). (C.4)

Let p∗ be a solution to equation (C.3) such that D(·|η) satisfies local connected substitutes

at p∗. Let C+ = {j ∈ S : p∗j < p+
j } and C− = {j ∈ S : p∗j > p−j }. We will show that C+ = ∅

i.e. p+ = p∗. The proof to show that C− = ∅ is symmetric and together, these claims imply

that p+ = p− = p∗.

Towards a contradiction, assume that C+ 6= ∅. Since D(p|η) satisfies local connected

substitutes at p∗ (Definition C.2), there exist ε ∈ (0, 1), k ∈ C+, and l 6∈ C+ such that

Dl(p
∗|η) < Dl(p

ε|η),

where pεk = εp+
k + (1− ε)p∗k and pεj = p∗j for j 6= k. Hence, we have that∑

j∈S\C+

Dj(p
∗|η) <

∑
j∈S\C+

Dj(p
ε|η) ≤

∑
j∈S\C+

Dj(p
+|η),

where the implication on the summation and the second inequality are implied by weak

substitutes, which follows from the definition of D(p|η). Since this inequality contradicts

equation (C.4), it must be that C+ = ∅.

As shown in Proposition A.2, p∗ is a market clearing cutoff for D(p|η) and q if and only

if p̃∗ solves equation (C.3), where p∗ = Ãp̃∗. Below, we state uniqueness of a market clearing

cutoff in terms of the uniqueness of p̃∗.

Proposition C.3. Let D̃(p̃|η) be defined as in equation (12), and for each p̃S , define p̃∗J (p̃S)

such that Dj(p̃
∗
J (p̃S) + Ap̃S |η)− qj ≤ 0 with equality if p̃∗J ,j(p̃S) > 0.

If D(p|η) is continuous in p and satisfies weak substitutes, then for each q ∈ [0, 1]J+S,

there exists a p̃ that solves the problem in equation (C.3) for D̃(p̃|η) and q.

Further, if D∗(p̃S |η) = A′D(p̃∗J (p̃S)+Ap̃S |η) and D(p|η) satisfy local connected substitutes

at p̃∗S,s = min{p∗j : sj = s} and p∗ respectively for some market clearing cutoff, then p∗ is

unique.
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Proof. We first show existence. Since D(·|η) satisfies weak substitutes, for each p̃S , p̃∗J (p̃S)

exists. Lemma C.3 below shows that D∗(p̃S |η) satisfies weak substitutes. Therefore, by

Proposition C.2, there exists p̃∗S such that D∗s(p̃
∗
S |η)− qs ≤ 0 with strict equality if p̃∗S,s > 0.

Hence, for p̃∗ = (p̃∗
′
J , p̃

∗′
S )′ and q ∈ [0, 1]J+S, and for all k ∈ J ∪ S, D̃k(p̃

∗|η) − qk ≤ 0 with

strict equality if p̃∗k > 0.

To show uniqueness, note that D(p̃J + Ap̃∗S |η) satisfies local connected substitutes at

p̃∗J . By Proposition C.2, we have that D(p̃J + Ap̃S |η) admits a unique solution p̃∗J (p̃S) in

a neighborhood of p̃∗S . Further, since D∗(p̃S |η) satisfies local connected substitutes at p̃∗S ,

Proposition C.2 implies that p̃∗S is unique.

We now verify that if

fj(Ri, ti, νi) =
3−Ri(j) +

tij + νi
4

3
(C.5)

for νi ∈ [0, 1] as in the Cambridge mechanism, then the market clearing cutoff p∗ is unique if

Dj(p) = E

[
1{fj(Ri, ti, νi) > pj, jRi0}

∏
j′ 6=j

1{jRij
′ or fj′(Ri, ti, νi) ≤ pj′}

]
(C.6)

is strictly decreasing in pj in a neighborhood around any market-clearing cutoff p∗.

Proposition C.4. Let f and D(p) be defined as in equations (C.5) and (C.6). If for every

program j ∈ 1, ..., J , Dj (p) is strictly decreasing in pj in a neighborhood of p∗, then the

market clearing cutoff p∗ is unique. Moreover, if for every program j ∈ 1, ..., J , Dj (p) is

differentiable at p∗, then ∇p+D+ (p∗) is nonsingular.

Proof. Fix any market clearing cutoff p∗. For each j, let r∗j ∈ {1, 2, 3, 4} be the pivotal rank

for program j, i.e. fj(Ri, ti, νi) > p∗j if Ri(j) < r∗j and fj(Ri, ti, νi) < p∗j if Ri(j) > r∗j . We

use the convention that r∗j = 4 if the program cutoff is 0, and r∗0 = 5 for the outside option.

For ε > 0, define pεk = p∗k if k 6= j and pεj = p∗j + ε. By the hypothesis of the theorem,

for 0 < ε < ε1 ∈ (0, 1), Dj(p
ε) < Dj(p

∗). The definitions of f and D imply that for

ε < ε2 ∈ (0, 1), Dk(p
ε) = Dk(p

∗) if r∗j ≥ r∗k. Since
∑J

j=0Dj(p) is constant, it must be that

for ε < min{ε1, ε2}, we have that Dk(p
ε) > Dk(p

∗) for some k such that r∗k > r∗j .

For any non-empty subset K ⊂ {1, . . . , J}, let k = arg maxk′∈K r
∗
k′ . By the argument

above, there exists l ∈ {0, . . . , J} such that r∗l > r∗k such that Dl(p) is strictly increasing in

pk at p∗. Therefore, D(p) satisfies local-connected substitutes at p∗.

We now show that D∗(p̃S) = A′D(p̃∗J (p̃S) + Ap̃S) satisfies local connected substitutes at

p̃S , where p̃S,s = min{pj : sj = s}, and p̃∗J (p̃S) such that Dj(p̃
∗
J (p̃S) + Ap̃S) − qj ≤ 0 with
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equality if p̃∗J ,j(p̃S) > 0.

Lemma C.3 implies that D∗(p̃S) satisfies weak substitutes. For small enough ε > 0, define

p̃εS,s′ = p̃∗S,s′ for s′ 6= s, and p̃εS,s = p̃∗S,s + ε. Observe that this implies that p̃∗J ,j(p̃
ε
S) + p̃εS,s) >

p̃∗J ,j(p̃
∗
S) + p̃∗S,s) for some j with sj = s. Define r∗s = max{r∗j : sj = s}. For all programs

j with r∗j ≤ r∗s , Dj(p
∗) = Dj(p̃

∗
J (p̃εS) + Ap̃εS). Therefore, p̃∗J ,j(p̃S) + p̃S,sj = p̃∗J ,j(p̃

ε
S)p̃εS,sj if

r∗j ≤ r∗s . Since the
∑S

s=0 D
∗(p̃S) is constant, an identical argument to the one above implies

that for some s′ such that r∗s′ > r∗s , D
∗
s′(p̃

ε
S) > D∗s′(p̃

∗
S) for small enough ε > 0. As above,

D∗(p̃S) satisfies local connected substitutes at p̃∗S .

By Proposition C.3, the market clearing cutoff p∗ is unique. Further, part (i) of Theorem

2 in (Berry et al., 2013) ensures that ∇p+D+ (p∗) is nonsingular.

Preliminaries for Propositions C.3 and C.4

Lemma C.3. If D(·|η) is continuous in its arguments and satisfies weak substitutes, then

D∗(p̃S |η) = A′D(p̃∗J (p̃S) + Ap̃S |η) satisfies weak substitutes.

Proof. Fix p̃S , p̃J = p̃∗J (p̃S) and s ∈ S. Let Js be the set of programs in school s, J+
s be

the set of programs in school s with p̃J ,j > 0 and J0
s be the set of programs in school s with

p̃J ,j = 0. Consider p̃′S such that p̃′S,s = p̃S,s+ε for ε > 0 such that ε < min{p̃∗j(p̃S) : j ∈ J+
s },

and p̃′S,t = p̃S,t if t ∈ S\{s}.
There are two cases to consider:

Case 1 p̃∗J ,j(p̃S) > 0 for all j ∈ Js: Consider p̃′J such that p̃′J ,j = p̃J ,j for j 6∈ Js and

p̃′J ,j = pJ ,j − ε. By construction, p̃′J + Ap̃′S = p̃J + Ap̃S . Hence, p̃′J = p̃∗J (p̃′S).

Therefore, D∗(p̃S |η) = D∗(p̃′S |η), satisfying Assumption C.1.

Case 2 p̃∗J ,j(p̃S) = 0 for some j ∈ Js: We will construct a convergent sequence of cutoffs

p̃kJ , such that limk→∞ p̃
k
0 = p∗0(p̃′S), and show that D∗s(p̃S |η) is non-increasing in p̃S,s

and D∗k(p̃S |η) is non-decreasing in p̃S,s for k 6= s.

Set p̃0
J ,j = p̃J ,j for j ∈ J \J+

s and p̃0
J ,j = p̃J ,j−ε otherwise. Note that for all j ∈ J \J0

s ,

p̃0
j + p̃′S,sj = p̃J ,j + p̃S,sj and for j ∈ J0

s , p̃0
j + p̃′S,s = p̃S,s + ε. For each j ∈ J and k ∈ N,

construct the sequence p̃kJ ,j such that Dj((p̃
k
J ,j, p̃

k−1
J ,−j) +Ap̃′S |η)− qj ≤ 0 with equality

if p̃kJ ,j > 0. Since Dj((p̃
k
J ,j, p̃

k−1
J ,−j) +Ap̃′S |η) satisfies weak substitutes, if p̃kJ ,−j ≥ p̃k−1

J ,−j,

then p̃k+1
J ,j ≥ p̃kJ ,j. Therefore, p̃kJ is a monotonically increasing sequence. Since p̃kJ is

bounded above, it must be that limk→∞ p̃
k
J = p̃∞J exists. Further, since Dj(p̃J +Ap̃′S |η)

is continuous in p̃J , we have that Dj(p̃
∞
J +Ap̃′S |η) ≤ 0 with equality if p̃∞J ,j > 0. Hence,

p̃∞J = p∗J (p̃′S) ≥ p̃0
J , and we have that p̃∗J (p̃′S) + Ap̃′S ≥ p∗J (p̃S) + Ap̃S .
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We now show that Dj(p̃
∗
0(p̃′S) +Ap̃′S |η) ≥ Dj(p̃

∗
J (p̃S) +Ap̃S |η) j 6∈ Js. Fix j ∈ J \Js. If

p̃∗J ,j(p̃
′
S) > 0, then it must be that Dj(p̃

∗
J (p̃′S) +Ap̃′S |η) = qj ≥ Dj(p̃

∗
J (p̃S) +Ap̃S |η). If

p̃∗J ,j(p̃
′
S) = 0, then Dj(p̃

∗
J (p̃′S) + Ap̃′S |η) ≥ Dj(p̃

∗
J (p̃S) + Ap̃S |η) from weak substitutes,

since p̃∗J ,j(p̃S) + p̃S,sj = p̃∗J ,j(p̃S) + p̃′S,sj and p̃∗J ,k(p̃S) + p̃S,sk ≥ p̃∗J ,k(p̃S) + p̃′S,sk for all

k 6= j.

Finally, we show that
∑

j∈Js Dj(p̃
∗
0(p̃′S) + Ap̃′S |η) ≤

∑
j∈Js Dj(p̃

∗
J (p̃S) + Ap̃S |η). Note

that D0(p̃∗J (p̃′S) +Ap̃′S |η) ≥ D0(p̃∗J (p̃S) +Ap̃S |η) since p̃∗J (p̃′S) +Ap̃′S ≥ p̃∗J (p̃S) +Ap̃S .

The proof is complete by noting that
∑

j∈J∪{0}Dj(p̃
∗
J (p̃′S)+Ap̃′S |η) =

∑
j∈J∪{0}Dj(p̃

∗
J (p̃S)+

Ap̃S |η) must be constant since each student can be assigned to only one program and

Dj(p̃
∗
J (p̃′S) + Ap̃′S |η) ≥ Dj(p̃

∗
J (p̃S) + Ap̃S |η) for all j ∈ {0} ∪ (J \Js).

C.4 Convergence of Equilibrium Probabilities

In this section, we consider a sequence of n-player Bayesian games defined by a sequence

of RSP+C mechanisms Φn. Let σ(v, t) = (σR1(v, t), . . . , σR|R|(v, t)) be a (type-symmetric)

strategy for a player with utility vector v and priority type t. We allow σ(v, t) to be a mixed

strategy profile, although players generically have a pure strategy best-reponse. For each n,

the lotteries are given by

Ln,σRi,ti
= Eσ [Φn((Ri, ti), (R−i, T−i)|Ri, Ti]

=
∑

R−i,t−i

Φn((Ri, ti), (R−i, T−i)
∏
k 6=i

mσ(Rk, tk),

where mσ(Rk, tk) = fT (tk)
∫
σRk

(v; t)dFV |tk . The strategy σ∗,n a Bayesian Nash Equilibrium

if for all R such that σ∗,nR (v; t) > 0, we have that v · Lσ∗,nR,t ≥ v · Ln,σ
∗,n

R′,t for all R′ ∈ R.

Define the Large-Market Limit Mechanism in the spirit of Azevedo and Budish

(2017) as follows:

L∞,σRi,ti
= lim

n→∞

∑
R−i,t−i

Φn((Ri, ti), (R−i, T−i)
∏
k 6=i

mσ(Rk, tk), (C.7)

if it exists. Further, σ∗ is a Limit Equilibrium if σ∗R(v, t) > 0 implies that v · L∞,σ
∗

R,t ≥
v · L∞,σ

∗

R′,t for all R′ ∈ R.

We now show that Bayesian Nash Equilibria of the mechanism in a large economy ap-

proximate equilibria of the large-market limit mechanism.
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Proposition C.5. Suppose Φn is an RSP+C mechanism. Fix a strategy σ∗ such that the

limit in equation (C.7) exists, the tie-breakers ν are non-degenerate and D(p|η) and q admit

a unique market clearing cutoff, where η = mσ∗ × γν.

1. If σ∗,n is a sequence BNE such that ‖σ∗,n − σ∗‖F → 0, then ‖Ln,σ
∗,n

Ri,ti
− L∞,σ

∗

Ri,ti
‖ → 0,

where ‖σ∗,n − σ∗‖F = supR
∫
|σ∗,nR (v, t)− σ∗R(v, t)|dFV,T .

2. If σ∗,n is a sequence BNE such that ‖σ∗,n − σ∗‖F → 0, the strategy σ∗ is a limit

equilibrium.

3. If σ∗ is a limit equilibrium, then for each ε > 0, and large enough n, σ∗R(v, t) > 0

implies that for all R′ ∈ R,

v · Ln,σ
∗

R,t ≥ v · Ln,σ
∗

R′,t − ε‖v‖.

The result shows that a convergent sequence of Bayesian Nash Equilibria converge to

a limit equilibrium, and that all limit equilibria are approximate BNE for large enough n.

The result is similar in spirit to Kalai (2004), which shows that equilibria in limit games

are approximate BNE in large games. From an empirical perspective, it also shows that

equilibrium behavior in the game does not depend dramatically on the exact number of

players once there are sufficiently many players.

Proof. Part 1: By the triangle inequality,

‖Ln,σ
∗,n

Ri,ti
− L∞,σ

∗

Ri,ti
‖ ≤ ‖Ln,σ

∗,n

Ri,ti
− Ln,σ

∗

Ri,ti
‖+ ‖Ln,σ

∗

Ri,ti
− L∞,σ

∗

Ri,ti
‖.

By the assumptions of the proposition, the second term converges to 0. Now consider the

first term:

Ln,σ
∗,n

Ri,ti
− Ln,σ

∗

Ri,ti
= Eσ∗,n [Φn((Ri, ti), (R−i, t−i))|Ri, ti]− Eσ∗ [Φn((Ri, ti), (R−i, t−i))|Ri, ti] ,

where Eσ denotes the expectation taken with respect to draws of (Rk, tk) taken from mσ.

Since Φn is an RSP+C mechanism, we have that

Ln,σ
∗,n

Ri,ti
− Ln,σ

∗

Ri,ti
= Eσ∗,n

[∫
D(Ri,ti,ν)(pn)dγν

∣∣∣∣Ri, ti

]
− Eσ∗

[∫
D(Ri,ti,ν)(pn)dγν

∣∣∣∣Ri, ti

]
.(C.8)

Therefore, to complete the proof, we need to show that the right-hand side of this expression

converges to zero.
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Let η∗,n = mσ∗,n × γν and η∗ = mσ∗ × γν , and observe that

‖D(p|η∗,n)−D(p|η∗)‖ = sup
j
|Dj(p|η∗,n)−Dj(p|η∗)|

= sup
j
|η∗,n(vp,j)− η∗(vp,j)|

= sup
j

∣∣∣∣∣∣
∑

(R,t)∈R×T

(mσ∗,n(R, t)−mσ∗(R, t))γν({ν : f(R, t, ν) ∈ vp,j})

∣∣∣∣∣∣
= sup

j

∣∣∣∣∣∣
∑

(R,t)∈R×T

(∫
(σ∗,nR (v, t)− σ∗R(v, t))dFV,T

)
γν({ν : f(R, t, ν) ∈ vp,j})

∣∣∣∣∣∣
≤ ‖σ∗,n − σ∗‖F sup

j

∣∣∣∣∣∣
∑

(R,t)∈R×T

γν({ν : f(R, t, ν) ∈ vp,j})

∣∣∣∣∣∣ ≤ ‖σ∗,n − σ∗‖F
The right-hand side converges to 0 by assumption. Therefore, we have that

sup
p
‖D(p|η∗,n)−D(p|η∗)‖ p→ 0.

If ηn is a sequence of empirical measures constructed draws from η∗,n, we have that

sup
p
‖D(p|ηn)−D(p|η∗)‖ ≤ sup

p
‖D(p|ηn)−D(p|η∗,n)‖+ sup

p
‖D(p|η∗,n)−D(p|η∗)‖

≤ sup
p,j

J |ηn(vp,j)− η∗,n(vp,j)|+ sup
p
‖D(p|η∗,n)−D(p|η∗)‖ p→ 0,

since V = {vp,j : p ∈ [0, 1]J , j ∈ J} is a uniform Glivenko-Cantelli class.

By arguments identical to those made in Part 1 of Theorem A.3, if pn is a market clearing

cutoff for D(p|ηn) and qn, then pn
p→ p∗ where p∗ is the unique market clearing cutoff for

D(p|η∗) and q. By the continuous mapping theorem, for each (R, t), we have that∫
D(R,t,ν)(pn)dγν

p→
∫
D(R,t,ν)(p∗)dγν .

Since D(R,t,ν)(pn) is bounded, we have that

Eσ∗,n
[∫

D(R,t,ν)(pn)dγν

∣∣∣∣R, t]→ ∫
D(R,t,ν)(p∗)dγν . (C.9)
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By a similar argument, we have that

Eσ∗
[∫

D(R,t,ν)(pn)dγν

∣∣∣∣R, t]→ ∫
D(R,t,ν)(p∗)dγν . (C.10)

Equations (C.9) and (C.10) imply that the right hand side of equation (C.8) converges to 0.

Part 2: Consider a sequence of equilibrium strategies σ∗,n such that ‖σ∗,n − σ∗‖F → 0.

We will show that σ∗R(v, t) > 0 for all (v, t) ∈ int(suppFV,T ) only if v · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) ≥ 0

for all R′ ∈ R.

Fix (v, t) ∈ int(suppFV,T ). Towards a contradiction, suppose that σ∗R(v; t) > 0, and

v · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) < −2ε for some R′ ∈ R and ε > 0. Since (v, t) ∈ int(suppFV,T ), there

exists a δ > 0, such that for all v′ with ‖v − v′‖ < δ, we have v′ ∈ int(suppFV,T ), and

v′ · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) < −ε.

By Part 1,
∥∥∥Ln,σ∗,nR′,t − L

∞,σ∗
R′,t

∥∥∥→ 0. Since Ln,σ
∗,n

R,t is bounded, there exists an N , such that

for all n > N and all R′ ∈ R, ∥∥∥Ln,σ∗,nR′,t − L
∞,σ∗
R′,t

∥∥∥ ≤ ε

2(‖v‖+ δ)
.

Hence, for all v′ in the δ neighborhood of v, we have that

v′ · (Ln,σ
∗,n

R,t − Ln,σ
∗,n

R′,t ) ≤ v′ · (L∞,σ
∗,n

R,t − L∞,σ
∗,n

R′,t ) + 2‖v′‖‖Ln,σ
∗,n

R′,t − L
∞,σ∗
R′,t ‖

≤ v′ · (L∞,σ
∗,n

R,t − L∞,σ
∗,n

R′,t ) + ε < 0

Since σ∗,n is a Bayesian Nash Equilibrium strategy, it must be that for all n > N and v′ such

that ‖v−v′‖ < δ, σ∗,nR (v′, t) = 0. Therefore, ‖σ∗,n−σ∗‖F → 0 implies that σ∗(v′, t) = 0 for all

v′ in the δ neighborhood of v. This conclusion contradicts the hypothesis that σ∗R(v, t) > 0

for any R such that v · (L∞,σ
∗

R,t − L
∞,σ∗
R′,t ) < 0. Hence, σ∗ is a limit equilibrium.

Part 3: Consider the constant sequence σ∗,n = σ∗. By the assumptions of the proposi-

tion, for each (R, t),

‖Ln,σ
∗

R,t − L
∞,σ∗
R,t ‖ → 0.

Moreover, this convergence is uniform in (R, t) since R × T is a finite set. Fix ε > 0 and

pick n0 such that for all n > n0,

sup
R,t
‖Ln,σ

∗

R,t − L
∞,σ∗
R,t ‖ <

ε

2
.

Note that the choice of n0 did not depend on vi.
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Since σ∗ is a limit equilibrium, σ∗Ri
(vi, ti) > 0 implies that for all R′i,

vi · L∞,σ
∗

Ri,ti
≥ vi · L∞,σ

∗

R′i,ti

⇒ vi · Ln,σ
∗

Ri,ti
≥ vi · Ln,σ

∗

R′i,ti
− 2 sup

R,t
|vi · (Ln,σ

∗

R,t − L
∞,σ∗
R,t )|

for all n > n0. By the Cauchy-Schwarz inequality, supR,t |vi·(L
n,σ∗

R,t −L
∞,σ∗
R,t )| ≤ ‖vi‖ supR,t ‖L

n,σ∗

R,t −
L∞,σ

∗

R,t ‖. Therefore,

vi · Ln,σ
∗

Ri,ti
≥ vi · Ln,σ

∗

R′i,ti
− ε‖vi‖.

D Auxilliary Results on Identification

D.1 Characterization of Partially Identified Set

Consider the collection of markets

T (ξ, z) = {Γib = (ξb, zib, tib,Lb) : (ξb, zib) = (ξ, z)}.

The dependence of the set of lotteries L on the market index b indicates that we allow

variation in this dimension to be useful in the present exercise. We will consider results

that fix (ξ, z) and therefore drop this from the notation. As a reminder, conditioning on

z is without loss since it is observed, but this implies that the researcher assumes that the

variation considered holds school unobservables ξ fixed.

The next result characterizes what can be learned about the distribution of utilities

from observing data from several markets in T . Let NLΓ
(L) = {v ∈ RJ : v · (L − L′) ≥

0 for all L′ ∈ LΓ} be the normal cone to L ∈ LΓ corresponding to the set LΓ. (We switch

notation from using CR for lottery LR for clarity since this section uses different sets LΓ,

which are not explicitly referred to in the relatively compact notation, CR.) Further, let

N = {int(NLΓ
(L))}Γ∈T ,L∈LΓ

be the collection of (the interiors of) normal cones to lotteries

faced by agents in the markets T . For a collection of sets N , let D(N ) be the smallest

collection of subsets of RJ such that

1. RJ ∈ D(N ) and N ⊂ D(N )

2. For all N ∈ D(N ), N c ∈ D(N )

3. For all countable sequences of sets Nk ∈ D(N ) such that Nk1∩Nk2 = ∅,
⋃
kNk ∈ D(N )
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The collection D(N ) is sometimes called the minimal Dynkin system containing N .

Theorem D.1. Given P (L ∈ LΓ|Γ) for each Γ ∈ T and L ∈ LΓ, the quantity

hD =

∫
1{v ∈ D}dFV (v)

is identified for each D ∈ D(N ).

Proof. The identified set of conditional distributions FV (v) is given by

FI =

{
FV ∈ F : ∀L ∈ LΓ and Γ ∈ T , P (L ∈ LΓ|Γ) =

∫
1{v ∈ NLΓ

(L)}dFV (v)

}
.

Note that for any two distributions FV and F̃V in F , the collection of sets

L (FV , F̃V ) =

{
A ∈ F :

∫
1{v ∈ A}dFV (v) =

∫
1{v ∈ A}dF̃V (v)

}
is a Dynkin system for the Borel σ-algebra F . Since D(N ) is the minimal Dynkin system

where all elements of FI agree, D(N ) ⊆ L (FV , F̃V ) for any two elements FV and F̃V . Hence,

for all D ∈ D(N ), we have that

hD =

∫
1{v ∈ D}dFV (v) =

∫
1{v ∈ D}dF̃V (v)

is therefore identified.

The result follows from basic measure theory and characterizes the features of FV (v) that

are identified under such variation in choice environments without any further restrictions. In

particular, with the free normalization ‖vi‖ = 1, the result implies that the mass accumulated

on the projection of the sets in D(N ) on the J − 1 dimensional sphere, SJ , is identified.

Typically, this implies only partial identification of FV (v), but extensive variation in the

lotteries could result in point identification.2

D.2 Preliminaries for Theorem A.2

Lemma D.1. Let fε,C (x) = 1{x ∈ C}e−2π〈ε,x〉 for some polygonal, full-dimensional convex

cone C and let f̂ε,C (ξ) be its Fourier Transform. If C is salient and ε ∈ int(C∗) where C∗

is the dual of C, then f̂ε,C is an entire function. Further, there is no non-empty open subset

of RJ where f̂ε,C is zero.

2Specifically, the π − λ theorem implies that FV (v) is identified if and only if the Dynkin-system D(N )
contains a π-system that generates the Borel σ-algebra.
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Proof of Lemma D.1. Note that ∃ε ∈ int(C∗) because C is a salient cone. Let {C1, . . . , CQ}
be a simplicial triangulation of C. Let Aq be a matrix [aq1, aq2 , ..., aqn] with the linear

independent vectors that span cone Cq arranged as column vectors. x ∈ Cq ⇐⇒ x = Aqα

for some 0 ≤ α ∈ RJ ⇐⇒ A−1
q x ≥ 0. Normalize Aq so that |detAq| = 1. Let fε,C (x) =

1{x ∈ C}e−2π〈ε,x〉. This is an integrable function (if ε is in the dual of the cone C). Consider

its Fourier transform:

f̂ε,C (ξ) =

∫
C

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
Cq

exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

1{x : A−1
q x ≥ 0} exp (−2πi 〈ξ − iε, x〉) dx

=
∑
Q

∫
RJ

+

exp (−2πi 〈ξ − iε, Aqy〉) dy

=
∑
Q

∫
RJ

+

exp
(
−2πi

〈
A′qξ − iA′qε, y

〉)
dy

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−2πi

(
a′qjξ − ia′qjε

)
y
)
dy

=
∑
q=1..Q

∏
j=1..J

∫
R+

exp
(
−y
[
2π
(
a′qjε

)
+ 2πi

(
a′qjξ

)])
dy

=
∑
q=1..Q

∏
j=1..J

1

2π

1[(
a′qjε

)
+ i
(
a′qjξ

)] ,
where the last equality follows from the fact that −y2π(a′qjε) < 0. Note that the closed-form

expression implies that f̂ε,C (ξ) is an entire function for every ε ∈ C\ {0}. Therefore, if it is

zero in an open subset of RJ is zero everywhere.

We now show that f̂ε,C (ξ) is non-zero on a non-empty open set. Let K be a full-

dimensional simplicial convex cone such that C ⊂ K. K exists because C is salient. Let

AK be the corresponding matrix for K. κqj = A−1
K aqj > 0 for all q ∈ {1, . . . , Q} and

j ∈ {1, . . . , J}. Consider ξ =
(
A−1
K

)′
α,

f̂ε,C

((
A−1
K

)′
α
)

=

(
1

2πi

)J ∑
q=1,...,Q

∏
j=1,...,J

1[(
κ′qjα

)
− i
(
a′qjε

)]
=

(
1

2πi

)J ∑
q=1,...,Q

∏
j=1,...,J

(
κ′qjα

)
+
(
a′qjε

)
i[(

κ′qjα
)2

+
(
a′qjε

)2
]
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Each term in the summation has a positive denominator and a numerator that is a

polynomial function of α with positive coefficients. It follows that it is not zero everywhere,

and therefore there is no open subset of RJ where f̂ε,C is zero.

E Estimation Details

E.1 Gibbs’ Sampler: Implementation Details

E.1.1 Optimal Responses

We adapt the Gibbs’ Sampler for a standard discrete choice model from McCulloch and

Rossi (1994) to our case. The main difference is that we have to draw latent utility vectors

satisfying the restrictions vi · (LRi
− LR′) ≥ 0 for all R′ ∈ R instead of restrictions of the

form vij ≥ vij′ for all choices j′ where j is the chosen option.

Let Zi be a J × (K × J) block-diagonal matrix that is constructed placing the K-row

vector covariates zij = [zijk]
K
k=1 in each of the J blocks; β = vec ({βjk}), a KJ-column vector;

and Di a J × J diagonal matrix with dij in the j-th position. The system in equation (2)

can be compactly written as:

vi = Ziβ −Di + εi

The unobserved utilities vi are treated as unknown parameters along with β and Σ. We

specify independent prior distributions for β and Σ:

p(β,Σ) = p(β)p(Σ),

β ∼ N (β,A−1),

Σ ∼ IW (ν0, V0),

where IW is the inverse Wishart distribution.

The Gibbs sampler proceeds as follows:

0. Start with initial values Σ0 and v0 = {v0
i }

N
i=1 so that v0

i ∈ CRi
for all i = 1, . . . , N

where Ri is the report of student i.

Since CRi
=
{
v ∈ RJ : Γiv ≥ 0

}
where Γi = (L′Ri

− L′R1
, . . . , L′Ri

− LR′|R|)
′,3 v0

i can be

3For the specification that assumes truthful reporting, Γi, is a matrix that encodes the inequalities implied
by the rank order list Ri = (Ri(1), . . . , Ri(K)). Hence, Γivi > 0 if and only if viRi(1) > viRi(2) > . . . >
viRi(K), vi0 < viRi(K) and vij < viR(K) if j 6∈ Ri.
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found by finding a solution to the inequalities

Γikvi ≥ ε,

for each row k of Γi, and a small positive number ε. We implement this step using the

Gurobi solver.

1. Draw β1|v0,Σ0 from a N
(
β̃, V

)
,

V = (Z∗′Z∗ + A)
−1
, β̃ = V

(
Z∗′v∗ + Aβ

)
Z∗ =

 Z∗1

...

Z∗S


Z∗′i = C ′Zi, v

∗
i = C ′v0

i

Σ0 = C ′C,

where C ′C results from a Cholesky decomposition of Σ0.

2. Draw Σ1|v0, β1 from a IW (ν0 +N, V0 + S)

S =
n∑
i=1

εiε
′
i,

εi = v0
i − Ziβ1

3. Draw v1|β1,Σ1, R iterating over students and schools.

For each school j = 1...J , draw

v1
ij|
{
v1
ik

}j−1

k=1
,
{
v0
ik

}J
k=j+1

, β1,Σ1

from a truncated normal TN
(
µij, σ

2
ij, aij, bij

)
, where

µij =
K∑
k=1

β1
jkzijk − dij

σ2
ij = Σ1

jj − Σ1
j(−j)

[
Σ1

(−j)(−j)
]−1

Σ1
(−j)j

and the truncation points aij and bij guarantee the draw v1
ij is such that

v =
[{
v1
ik

}j−1

k=1
, v1
ij,
{
v0
ik

}J
k=j+1

]′
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lies in the interior of CRi
. To calculate these truncation points, define Ajik be the k-th

row of Γi with its j-th column removed and let vji =
[
{v1

ik}
j−1
k=1 , {v0

ik}
J
k=j+1

]′
.4

aij = max
k∈{k:Γikj>0}

−Ajikv
j
i

Γikj

bij = min
k∈{k:Γikj<0}

−Ajikvj

Γikj

where Γikj is the (k, j)-th element of Γi.

4. Set Σ0 = Σ1 and v0 = v1, store, and repeat the steps 1-3 to obtain (βk,Σk, vk) given

(βk−1,Σk−1, vk−1) and the priors.

E.1.2 Näıve-Sophisticate Mixture Model

We extend the Gibbs’ sampler described earlier to allow for two types of agents. The model

assumes that näıve agents report truthfully while sophisticates pick the report that maxi-

mizes their expected utility. For a rank-order list R = (R(1), R(2), . . . , R(K)) of lengthK, let

C̃R be the region in utility space such that vi ∈ C̃R =⇒ viR(1) > viR(2) > . . . > viR(K) > vij

for all j 6∈ Ri, and viR(K) > vi0. Note that C̃R is a convex cone in RJ . Let πi be an indicator

for whether a student is näıve. Therefore, the model specifies the observed report of the

agent given vi and πi as follows:

Ri = R, πi = 0 =⇒ vi ∈ CR
Ri = R, πi = 1 =⇒ vi ∈ C̃R.

The Gibbs’ sampler for this model uses data augmentation on πi in addition to vi. Let π̄

be the fraction of nav̈e agents in the economy. We let π̄ be a vector to allow for free-lunch

and paid-lunch students to have differing proportions of näıve and sophisticated agents. We

4We pre-process the matrix Γi using Gurobi to eliminate redundant linear constraints to speed up this
step. The k-th row is a redundant constraint if the solution to the problem

min
v

Γikv subject to Γiv ≥ 0

is non-negative.

27



specify independent prior distributions for β, π̄ and Σ:

p(β,Σ) = p(β)p(π̄)p(Σ),

β ∼ N (β, Σ̄−1),

π̄l ∼ Beta (a0, b0)

Σ ∼ IW (ν0, V0),

where IW is the inverse Wishart distribution and l ∈ {Paid Lunch, Free Lunch}. The Gibbs’

sampler proceeds as follows:

0. Start with initial values Σ0, π0 = {π0
i }

N
i=1, and v0 = {v0

i }
N
i=1 so that v0

i ∈ C̃Ri
for all

i = 1, . . . , N .

1-2. Update (Σ, β) according to steps 1-2 in Appendix E.1.

3. Update π̄1|π0. For l ∈ {Paid Lunch, Free Lunch}, draw π̄l from

Beta

(
a0 + |Il| −

∑
i∈Nl

π0
i , b0 +

∑
i∈Il

π0
i

)
,

where Il is the set of students in paid/free-lunch group l.

4. Draw v1|β1,Σ1, π̄1, y iterating over students and schools. For the observed report Ri

for student i, consider the cones

C̃Ri
=

{
v ∈ RJ : vRi(1) > vRi(2) > . . . > vRi(K) > vij for all j ∈ {0, . . . , J}\Ri

}
CRi

=
{
v ∈ RJ : Γiv ≥ 0

}
,

where Γi = (L′Ri
− L′R1

, . . . , L′Ri
− LR′|R|)

′. Let π̄1
i = π̄1

l , for l equal to the paid lunch

status of i. For each school j = 1...J , draw

v1
ij|
{
v1
ik

}j−1

k=1
,
{
v0
ik

}J
k=j+1

, β1,Σ1, π̄1
i

from a mixture of two truncated normals T N
(
µij, σ

2
ij, ãij, b̃ij

)
and T N

(
µij, σ

2
ij, aij, bij

)
with weights π̄1

i and (1− π̄1
i ). µij, σ

2
ij, aij and bij are defined as in step 3 in Appendix

E.1. The truncation points
(
ãij, b̃ij

)
guarantee that draws from T N

(
µij, σ

2
ij, ãij, b̃ij

)
lay in the interior of C̃Ri

.
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5. Update π1|v1, π̄1. For each student i, draw π1
i from a binomial distribution with pa-

rameter π̄1
i if v1

i ∈ CRi
∩ C̃Ri

. If v1
i ∈ CRi

\C̃Ri
, set π1

i = 0. If v1
i ∈ C̃Ri

\CRi
, set

π1
i = 1.

6. Repeat steps 1-5 to obtain (βk,Σk, vki , π
k
i , π̄

k) given (βk−1,Σk−1, vk−1
i , πk−1

i , π̄k−1).

We parametrize vi as in Appendix E.1 and assume identical distributions for näıves are

sophisticates.

E.1.3 Priors

We use very diffuse priors to minimize their influence on our estimates and as a reflection

of our prior uncertainty about the values of the parameters of the model. We set the prior

distribution of β ∼ N (β, Σ̄−1)

β = 0

Σ̄−1 = 100× I

and the prior of Σ ∼ IW (ν0, V0)

ν0 = 100

V0 = I.

We experimented with more diffuse priors
(
Σ̄−1 = 200× I, ν0 = 50

)
without noticeable changes

in our main results.

For the mixture model, we set the prior of π̄l = Beta (a0, b0) , with a0 = b0 = 1 for l ∈
{Paid Lunch, Free Lunch}.

E.1.4 Convergence Diagnostics

For each specification, the Gibbs’ sampler produces a Markov chain with the posterior dis-

tribution of the parameters as the invariant distribution. Since the chain is ergodic, it

ultimately converges to this distribution irrespective of the starting point. However, it is es-

sential to burn-in a large set of initial draws since they are influenced by the starting point,

and to check that the chains have converged. We simulate three chains of length 400,000

and burn-in the first half to ensure mixing. The three chains with different starting values

were used to assure convergence to the same parameter value. We monitored convergence by

examining the trace plots of the various co-efficients and use Geweke’s means test across and

within the chains to ensure mixing. Finally, we use the Raftery-Lewis Diagnosis Test to to
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check that the chain has been simulated for long enough. The test quantifies whether a low

quantile has been estimated precisely in order to diagnose convergence of the distribution.

We check that the 2.5th percentile of the vast majority of parameters are estimated within

a tolerance of 0.005 with 95% probability.

E.2 Bootstrap

The standard errors for L̂, θ̂, and counterfactuals were estimated by a bootstrap. To con-

struct each of the S bootstrap samples we sampled n students with replacement from each

year of our sample, where n is the number of students in that year. For each bootstrap

sample s ∈ {1, . . . , S}, we computed:

• Lottery estimate L̂s: For each of the five years in the data, we computed L̂s using the

bootstrap sample s using the same procedure used to obtain L̂. i.e. we resampled n−1

individuals and generated n − 1 draws of the tie-breaker B = 1, 000 times. For each

simulated sample b, we computed the market clearing cutoff pn−1
b,s , and for each (R, t)

calculated the vector of assignment probabilities averaging across the B simulated

samples following equation (9). The standard errors for the lotteries presented in table

E.I in the Appendix are the standard deviation of the L̂s across S = 1, 000 bootstrap

samples.

• Parameter estimates β̂s, Σ̂s: We ran a Monte Carlo Markov Chain on the bootstrap

sample s using the same procedure described in the paper and in Appendix E.1 using

the bootstrap samples. We ran one chain of 100, 000 draws and burned-in the first

50, 000. The last 50, 000 draws were used to compute the mean of each parameter

which we denote β̂s, Σ̂s. The standard errors in tables VII and E.III were estimated

by the standard deviation of the mean utilities and β̂s across the S = 250 bootstrap

samples. We used a smaller number of bootstrap samples, S, in this step to reduce the

computational burden of drawing a large number of Markov chains.

• Counterfactual: We simulated the deferred acceptance counterfactual assuming param-

eters β̂s, Σ̂s and computed the difference in utility for each individual in the bootstrap

sample s. For the Cambridge mechanism, we used L̂s. The standard errors reported in

tables X and XII were estimated by the standard deviation of the difference in utilities

across the S = 250 boostrap samples.

The same boostrap procedure was used to compute standard errors for the coarse beliefs,

adaptative expectations and mixture specifications. However, the standard errors for the
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truthful specification were not obtained by bootstrap. They were estimated directly from

the original MCMC chains.
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