# Imperfect Macroeconomic Expectations: Evidence and Theory

George-Marios Angeletos, Zhen Huo, and Karthik A. Sastry MIT and NBER, Yale, and MIT

University of Bocconi June 1, 2020

# State of The Art

Lots of lessons outside representative agent, rational expectations benchmark But also a "wilderness" of alternatives

- Rational inattention, sticky info, etc. (Sims, Mankiw & Reis, Mackowiak & Wiederholt)
- Higher-order uncertainty (Morris & Shin, Woodford, Nimark, Angeletos & Lian)
- Level-K thinking (Garcia-Schmidt & Woodford, Farhi & Werning, Iovino & Sergeyev)
- Cognitive discounting (Gabaix)
- Over-extrapolation (Gennaioli, Ma & Shleifer, Fuster, Laibson & Mendel, Guo & Wachter)
- Over-confidence (Kohlhas & Broer, Scheinkman & Xiong)
- Representativeness (Bordalo, Gennaioli & Shleifer)
- Undue effect of historical experiences (Malmendier & Nagel)

#### **Contributions:**

- Use a parsimonious framework to organize existing evidence and various theories
- Provide new evidence
- Identify the "right" model of expectations for business cycle context

Contributions:

- Use a parsimonious framework to organize existing evidence and various theories
- Provide new evidence
- Identify the "right" model of expectations for business cycle context

Main lessons:

- New fact: expectations under-react early but over-shoot later
- Best model: dispersed info + over-extrapolation
- Little support for FIRE, cognitive discounting, level-k thinking

Contributions:

- Use a parsimonious framework to organize existing evidence and various theories
- Provide new evidence
- Identify the "right" model of expectations for business cycle context

#### Main lessons:

- New fact: expectations under-react early but over-shoot later
- Best model: dispersed info + over-extrapolation
- Little support for FIRE, cognitive discounting, level-k thinking

Contributions:

- Use a parsimonious framework to organize existing evidence and various theories
- Provide new evidence
- Identify the "right" model of expectations for business cycle context

#### Main lessons:

- New fact: expectations under-react early but over-shoot later
- Best model: dispersed info + over-extrapolation
- Little support for FIRE, cognitive discounting, level-k thinking

# Outline

### Three Existing Facts, with Conflicting Message

An "Umbrella Theory"

A New, Unifying Fact: Delayed Over-shooting in Aggregate Forecasts

Lessons for Theory

Going GE

Conclusion

# Fact 1: <u>Under</u>-reaction in Aggregate Forecasts

Coibion and Gorodnichenko (2015)

$$\left(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}\right) = a + \mathbf{K}_{\mathsf{CG}} \cdot \left(\overline{\mathbb{E}}_t x_{t+k} - \overline{\mathbb{E}}_{t-1} x_{t+k}\right) + u_t$$

# Fact 1: Under-reaction in Aggregate Forecasts

Coibion and Gorodnichenko (2015)

$$(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}) = a + K_{CG} \cdot (\overline{\mathbb{E}}_t x_{t+k} - \overline{\mathbb{E}}_{t-1} x_{t+k}) + u_t$$

|                                          | (1)       | (2)          | (3)       | (4)       |  |
|------------------------------------------|-----------|--------------|-----------|-----------|--|
| variable                                 | Unemp     | Unemployment |           | Inflation |  |
| sample                                   | 1968-2017 | 1984-2017    | 1968-2017 | 1984-2017 |  |
| Revision <sub>t</sub> (K <sub>cc</sub> ) | 0.741     | 0.809        | 1.528     | 0.292     |  |
| R <sup>2</sup>                           | 0.111     | 0.159        | 0.278     | 0.016     |  |
| Observations                             | 191       | 136          | 190       | 135       |  |

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett ("hat") kernel and lag length equal to 4 quarters. The data used for outcomes are first-release.

# Fact 1: Under-reaction in Aggregate Forecasts

Coibion and Gorodnichenko (2015)

$$\left(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}\right) = a + \mathbf{K}_{\mathsf{CG}} \cdot \left(\overline{\mathbb{E}}_t x_{t+k} - \overline{\mathbb{E}}_{t-1} x_{t+k}\right) + u_t$$

|                                          | (1)              | (2)                           | (3)              | (4)                           |
|------------------------------------------|------------------|-------------------------------|------------------|-------------------------------|
| variable                                 | Unemployment     |                               | Inflation        |                               |
| sample                                   | 1968-2017        | 1984-2017                     | 1968-2017        | 1984-2017                     |
| Revision <sub>t</sub> (K <sub>cg</sub> ) | 0.741<br>(0.232) | <mark>0.809</mark><br>(0.305) | 1.528<br>(0.418) | <mark>0.292</mark><br>(0.191) |
| R <sup>2</sup>                           | 0.111            | 0.159                         | 0.278            | 0.016                         |
| Observations                             | 191              | 136                           | 190              | 135                           |

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett ("hat") kernel and lag length equal to 4 quarters. The data used for outcomes are first-release.

Bad news for: RE + common information

Good news for: (i) RE + dispersed noisy information

(ii) under-extrapolation, cognitive discounting, level-K

### Fact 2: Over-reaction in Individual Forecasts

Bordalo, Gennaioli, Ma, and Shleifer (2018); Kohlhas and Broer (2018); Fuhrer (2018)

$$(x_{t+k} - \mathbb{E}_{i,t}x_{t+k}) = a + \mathcal{K}_{\mathsf{BGMS}} \cdot (\mathbb{E}_{i,t}x_{t+k} - \mathbb{E}_{i,t-1}x_{t+k}) + u_t$$

### Fact 2: Over-reaction in Individual Forecasts

Bordalo, Gennaioli, Ma, and Shleifer (2018); Kohlhas and Broer (2018); Fuhrer (2018)

$$(x_{t+k} - \mathbb{E}_{i,t}x_{t+k}) = a + \mathcal{K}_{\mathsf{BGMS}} \cdot (\mathbb{E}_{i,t}x_{t+k} - \mathbb{E}_{i,t-1}x_{t+k}) + u_t$$

|                                              | (1)              | (2)                           | (3)                           | (4)                             |  |
|----------------------------------------------|------------------|-------------------------------|-------------------------------|---------------------------------|--|
| variable                                     | Unemp            | Unemployment                  |                               | Inflation                       |  |
| sample                                       | 1968-2017        | 1984-2017                     | 1968-2017                     | 1984-2017                       |  |
| Revision <sub>i,t</sub> (K <sub>BGMS</sub> ) | 0.321<br>(0.107) | <mark>0.398</mark><br>(0.149) | <mark>0.143</mark><br>(0.123) | - <mark>0.263</mark><br>(0.054) |  |
| R <sup>2</sup>                               | 0.028            | 0.052                         | 0.005                         | 0.025                           |  |
| Observations                                 | 5383             | 3769                          | 5147                          | 3643                            |  |

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are clustered two-way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 times the inter-quartile range away from the median. The data used for outcomes are first-release.

BGMS argue that  $K_{BGMS} < 0$  is more prevalent in other forecasts. If so, then:

Bad news for: under-extrapolation, cognitive discounting, and level-K thinking

Good news for: over-extrapolation and over-confidence (or "representativeness")

# Facts 1 + 2 $\Rightarrow$ Dispersed Info

| variable                  | Unempl    | oyment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inflation |           |  |
|---------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--|
| sample                    | 1968-2017 | 1984-2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1968-2017 | 1984-2017 |  |
| K <sub>cg</sub>           | 0.741     | 0.809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.528     | 0.292     |  |
| К <sub>вбмs</sub>         | 0.321     | 0.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.143     | -0.263    |  |
| $K_{_{CG}} > K_{_{BGMS}}$ | 1         | <ul> <li>Image: A second s</li></ul> | 1         | ✓         |  |

#### Q: What does $K_{CG} > K_{BGMS}$ mean?

A: My forecast revision today predicts your forecast error tomorrow

Evidence of dispersed private information

combined regression

# Fact 3: Over-reaction in Aggregate Forecasts

Kohlhas and Walther (2019)

$$(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}) = a + \mathbf{K}_{\mathsf{KW}} \cdot x_t + u_t$$

# Fact 3: Over-reaction in Aggregate Forecasts

Kohlhas and Walther (2019)

$$(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}) = a + \mathbf{K}_{\mathsf{KW}} \cdot x_t + u_t$$

|                                   | (1)                             | (2)                            | (3)                           | (4)                             |
|-----------------------------------|---------------------------------|--------------------------------|-------------------------------|---------------------------------|
| variable                          | Unemployment                    |                                | Inflation                     |                                 |
| sample                            | 1968-2017                       | 1984-2017                      | 1968-2017                     | 1984-2017                       |
| x <sub>t</sub> (K <sub>KW</sub> ) | - <mark>0.061</mark><br>(0.056) | <mark>-0.036</mark><br>(0.038) | <mark>0.111</mark><br>(0.075) | - <mark>0.068</mark><br>(0.068) |
| R <sup>2</sup>                    | 0.016                           | 0.007                          | 0.058                         | 0.012                           |
| Observations                      | 194                             | 136                            | 193                           | 135                             |

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett ("hat") kernel and lag length equal to 4 quarters. The data used for outcomes are first-release.

Bad news for: noisy REE that generates sluggishness and inertia

Good news for: over-extrapolation

# Fact 3: Over-reaction in Aggregate Forecasts

Kohlhas and Walther (2019)

$$(x_{t+k} - \overline{\mathbb{E}}_t x_{t+k}) = a + \mathbf{K}_{\mathsf{KW}} \cdot x_t + u_t$$

|                                   | (1)                             | (2)                            | (3)                           | (4)                             |
|-----------------------------------|---------------------------------|--------------------------------|-------------------------------|---------------------------------|
| variable                          | Unemployment                    |                                | Inflation                     |                                 |
| sample                            | 1968-2017                       | 1984-2017                      | 1968-2017                     | 1984-2017                       |
| x <sub>t</sub> (K <sub>KW</sub> ) | - <mark>0.061</mark><br>(0.056) | <mark>-0.036</mark><br>(0.038) | <mark>0.111</mark><br>(0.075) | - <mark>0.068</mark><br>(0.068) |
| R <sup>2</sup>                    | 0.016                           | 0.007                          | 0.058                         | 0.012                           |
| Observations                      | 194                             | 136                            | 193                           | 135                             |

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are HAC-robust, with a Bartlett ("hat") kernel and lag length equal to 4 quarters. The data used for outcomes are first-release.

Bad news for: noisy REE that generates sluggishness and inertia

Good news for: over-extrapolation

But: hard to reconcile with Fact 1

# Outline

Three Existing Facts, with Conflicting Message

An "Umbrella Theory"

A New, Unifying Fact: Delayed Over-shooting in Aggregate Forecasts

Lessons for Theory

Going GE

Conclusion

An "Umbrella Theory"

**Physical Environment** 

Noisy signal

$$s_{i,t} = x_t + u_{i,t}/\sqrt{\tau}$$

Process for unemployment or inflation

$$x_t = \rho x_{t-1} + \epsilon_t$$

### An "Umbrella Theory"

**Physical Environment** 

**Two non-rational Ingredients** 

Perception of signal

over- or

 $s_{i,t} = x_t + u_{i,t}/\sqrt{\hat{\tau}}$  under-confidence?

Noisy signal

 $s_{i,t} = x_t + u_{i,t}/\sqrt{\tau}$ 

Process for unemployment or inflation

$$x_t = \rho x_{t-1} + \epsilon_t$$

An "Umbrella Theory"

#### **Physical Environment Two non-rational Ingredients** Noisy signal over- or Perception of signal $s_{i,t} = x_t + u_{i,t}/\sqrt{\hat{\tau}}$ under-confidence? $s_{i,t} = x_t + u_{i,t}/\sqrt{\tau}$ Process for unemployment or inflation over- or Perception of process $x_t = \hat{\rho} x_{t-1} + \eta_t$ under-extrapolation? $x_t = \rho x_{t-1} + \epsilon_t$ later: $\hat{\rho} < \rho$ in GE $\approx$ cognitive discounting, level-K thinking

**Proposition.** The theoretical counterparts of the regression coefficients are:

$$\mathcal{K}_{CG} = \kappa_1 \hat{\tau}^{-1} - \kappa_2 (\hat{\rho} - \rho) \tag{Fact 1}$$

$$K_{\text{BGMS}} = -\kappa_3(\hat{\tau} - \tau) - \kappa_4(\hat{\rho} - \rho)$$
 (Fact 2)

$$K_{\rm KW} = \kappa_5 \hat{\tau}^{-1} - \kappa_6 (\hat{\rho} - \rho) \tag{Fact 3}$$

for some positive scalars  $\kappa_1, ..., \kappa_6$  that depend on the deeper parameters.

**Proposition.** The theoretical counterparts of the regression coefficients are:

$$\mathcal{K}_{\mathsf{CG}} = \kappa_1 \hat{\tau}^{-1} - \kappa_2 (\hat{\rho} - \rho) \tag{Fact 1}$$

$$K_{\text{BGMS}} = -\kappa_3(\hat{\tau} - \tau) - \kappa_4(\hat{\rho} - \rho)$$
 (Fact 2)

$$K_{\rm KW} = \kappa_5 \hat{\tau}^{-1} - \kappa_6 (\hat{\rho} - \rho) \tag{Fact 3}$$

for some positive scalars  $\kappa_1, ..., \kappa_6$  that depend on the deeper parameters.

- Moments of average forecasts depend on perceived, not actual, precision
- Actual level of noise matters only for moments of individual forecasts
- Fact 2 conflates over-confidence and over-extrapolation
- Facts 1 and 3 conflate noise and over-extrapolation (in different ways)

**Proposition.** The theoretical counterparts of the regression coefficients are:

$$\mathcal{K}_{\mathsf{CG}} = \kappa_1 \hat{\tau}^{-1} - \kappa_2 (\hat{\rho} - \rho) \tag{Fact 1}$$

$$K_{\text{BGMS}} = -\kappa_3(\hat{\tau} - \tau) - \kappa_4(\hat{\rho} - \rho)$$
 (Fact 2)

$$K_{\rm KW} = \kappa_5 \hat{\tau}^{-1} - \kappa_6 (\hat{\rho} - \rho) \tag{Fact 3}$$

for some positive scalars  $\kappa_1, ..., \kappa_6$  that depend on the deeper parameters.

- Moments of average forecasts depend on perceived, not actual, precision
- Actual level of noise matters only for moments of individual forecasts
- Fact 2 conflates over-confidence and over-extrapolation
- Facts 1 and 3 conflate noise and over-extrapolation (in different ways)

**Proposition.** The theoretical counterparts of the regression coefficients are:

$$\mathcal{K}_{\mathsf{CG}} = \kappa_1 \hat{\tau}^{-1} - \kappa_2 (\hat{\rho} - \rho) \tag{Fact 1}$$

$$K_{\text{BGMS}} = -\kappa_3(\hat{\tau} - \tau) - \kappa_4(\hat{
ho} - 
ho)$$
 (Fact 2)

$$K_{\rm KW} = \kappa_5 \hat{\tau}^{-1} - \kappa_6 (\hat{\rho} - \rho) \tag{Fact 3}$$

for some positive scalars  $\kappa_1, ..., \kappa_6$  that depend on the deeper parameters.

- Moments of average forecasts depend on perceived, not actual, precision
- Actual level of noise matters only for moments of individual forecasts
- Fact 2 conflates over-confidence and over-extrapolation
- Facts 1 and 3 conflate noise and over-extrapolation (in different ways)

**Proposition.** The theoretical counterparts of the regression coefficients are:

$$\mathcal{K}_{CG} = \kappa_1 \hat{\tau}^{-1} - \kappa_2 (\hat{\rho} - \rho)$$
 (Fact 1)

$$K_{\text{BGMS}} = -\kappa_3(\hat{\tau} - \tau) - \kappa_4(\hat{\rho} - \rho)$$
 (Fact 2)

$$K_{\rm KW} = \kappa_5 \hat{\tau}^{-1} - \kappa_6 (\hat{\rho} - \rho) \tag{Fact 3}$$

for some positive scalars  $\kappa_1, ..., \kappa_6$  that depend on the deeper parameters.

- Moments of average forecasts depend on perceived, not actual, precision
- Actual level of noise matters only for moments of individual forecasts
- Fact 2 conflates over-confidence and over-extrapolation
- Facts 1 and 3 conflate noise and over-extrapolation (in different ways)

**Proposition.** The theoretical counterparts of the regression coefficients are:

$$\mathcal{K}_{\mathsf{CG}} = \kappa_1 \hat{\tau}^{-1} - \kappa_2 (\hat{\rho} - \rho) \tag{Fact 1}$$

$$K_{\text{BGMS}} = -\kappa_3(\hat{\tau} - \tau) - \kappa_4(\hat{\rho} - \rho)$$
 (Fact 2)

$$K_{\rm KW} = \kappa_5 \hat{\tau}^{-1} - \kappa_6 (\hat{\rho} - \rho) \tag{Fact 3}$$

for some positive scalars  $\kappa_1, ..., \kappa_6$  that depend on the deeper parameters.

Key lessons:

- Moments of average forecasts depend on perceived, not actual, precision
- Actual level of noise matters only for moments of individual forecasts
- Fact 2 conflates over-confidence and over-extrapolation
- Facts 1 and 3 conflate noise and over-extrapolation (in different ways)

#### Is there a better way to understand what's going on both in the theory and in the data?

## The Missing Piece: Impulse Response Functions

**Proposition.** Let  $\{\zeta_k\}_{k=1}^{\infty}$  be the IRF of the average, one-step-ahead, forecast error. (i) If  $\hat{\rho} < \rho$ , then  $\zeta_k > 0 \ \forall k$ .

(ii) If  $\hat{\rho} > \rho$  and  $\hat{\tau}$  large enough relative to  $\hat{\rho} - \rho$ , then  $\zeta_k < 0 \ \forall k$ 

(iii) If  $\hat{\rho} > \rho$  and  $\hat{\tau}$  small enough relative to  $\hat{\rho} - \rho$ , then  $\zeta_k > 0 \ \forall k < k_{\text{IRF}}$  and  $\zeta_k < 0$  for  $\forall k > k_{\text{IRF}}$ , for some  $k_{\text{IRF}} \in (1, \infty)$ .

That is, average forecasts under-react early and overshoot later if and only if there is both over-extrapolation and sufficiently slow learning

Key idea:

- When shock hits: everything is noisy, forecasts under-react
- Many quarters after shock: noise is gone, tendency to over-extrapolate takes over







Bonus: regression coefficients deconstructed  $K_{CG} \sim Cov(errors, revisions) \sim IRF_{errors} \times IRF_{revisions}$  $K_{KW} \sim Cov(errors, outcome) \sim IRF_{errors} \times IRF_{outcome}$ 



Bonus: regression coefficients deconstructed  $K_{CG} \sim Cov(errors, revisions) \sim IRF_{errors} \times IRF_{revisions}$   $K_{KW} \sim Cov(errors, outcome) \sim IRF_{errors} \times IRF_{outcome}$ Facts 1 and 3 ( $K_{CG} > 0$  and  $K_{KW} < 0$ ) consistent with noise and over-extrapolation and so is Fact 2 ( $K_{BGMS} < 0$ )

# Outline

Three Existing Facts, with Conflicting Message

An "Umbrella Theory"

### A New, Unifying Fact: Delayed Over-shooting in Aggregate Forecasts

Lessons for Theory

Going GE

Conclusion

# **Estimation Strategy**

**Shocks:** usual suspects (e.g., Gali tech); or DSGE shocks (e.g., JPT inv); or "main business cycle shocks" (Angeletos, Collard & Dellas, 2020)

**Estimation method:** plain-vanilla linear projection; or big VARs; or ARMA-IV (novel approach) details

Moments of interest:

$$\left(\frac{\partial \mathsf{ForecastError}_{t+k}}{\partial \mathsf{BusinessCycleShock}_t}\right)_{k=0}^{K} = \mathsf{Pattern of mistakes}$$

### Fact 4: Delayed Over-Shooting in Response to Main BC Shocks



### Fact 4: Delayed Over-Shooting in Response to Main BC Shocks



### Fact 4: Delayed Over-Shooting in Response to Main BC Shocks


#### Fact 4: Same Pattern with Other Identified Shocks



Justiniano, Primiceri, and Tambalotti (2010): Investment Shock → Unemployment



#### Fact 4: Same Pattern in Structural VARs

13-Variable Model: macro "usual suspects" + unemployment and inflation forecasts (SPF) (IIII)

ACD, 2020 (max-share for BC) 0.4 0.4 0.3 n - forecast error 0.3 - forecast error outcome 0 2.0 2.0 2.0 2.0 0.3 forecast n 0.2 unemployment: 0 0.2 0.1 0.1 0 0 forecast -0.1 outcome -0.1 -0.4 -0.1 10 20 0 10 20 0 10 20 0 10 20 0 0.6 0.8 ik; 0.6 numal inflation: 0.4 <sup>I</sup>⊧ 0.6 0.4 0.2 0.2 0 0 -0.2 -0.2 0 10 20 0 10 20 0 10 20 0 10 20

Cholesky (one-step-ahead Error)

#### Corroborating Evidence: Over-extrapolation in the "Term Structure"

$$\overline{\mathbb{E}}_t[x_{t+k}] = \alpha_k + \beta_k^f \cdot \epsilon_t + \gamma' W_t + u_{t+k}$$
$$x_{t+k} = \alpha_k + \beta_k^o \cdot \epsilon_t + \gamma' W_t + u_{t+k}$$

Expectation from t = 0Reality from t = 0



# Outline

Three Existing Facts, with Conflicting Message

An "Umbrella Theory"

A New, Unifying Fact: Delayed Over-shooting in Aggregate Forecasts

Lessons for Theory

Going GE

Conclusion

# Need to Combine Frictions to Explain Facts

|             | Models                                                     | Facts |       |     |     |
|-------------|------------------------------------------------------------|-------|-------|-----|-----|
|             |                                                            | 1     | 2     | 3   | 4   |
| Information | Noisy common information                                   | No    | No*   | Yes | No  |
|             | Noisy dispersed information                                | Yes   | No*   | Yes | Yes |
| Confidence  | Over-confidence or representative-<br>ness heuristic       | No    | Maybe | No  | No  |
|             | Under-confidence or "timidness"                            | No    | Maybe | No  | No  |
| Foresight   | Over-extrapolation                                         | No    | Maybe | Yes | Yes |
|             | Under-extrapolation or cognitive<br>discounting or level-K | Yes   | Maybe | No  | No  |

# Need to Combine Frictions to Explain Facts: A Winning Combination

|             | Models                                                     | Facts |       |     |     |
|-------------|------------------------------------------------------------|-------|-------|-----|-----|
|             |                                                            | 1     | 2     | 3   | 4   |
| Information | Noisy common information                                   | No    | No*   | Yes | No  |
|             | Noisy dispersed information                                | Yes   | No*   | Yes | Yes |
| Confidence  | Over-confidence or representative-<br>ness heuristic       | No    | Maybe | No  | No  |
|             | Under-confidence or "timidness"                            | No    | Maybe | No  | No  |
| Foresight   | Over-extrapolation                                         | No    | Maybe | Yes | Yes |
|             | Under-extrapolation or cognitive<br>discounting or level-K | Yes   | Maybe | No  | No  |

# Outline

Three Existing Facts, with Conflicting Message

An "Umbrella Theory"

A New, Unifying Fact: Delayed Over-shooting in Aggregate Forecasts

Lessons for Theory

#### Going GE

Conclusion

#### **Familiar Ingredients**

 $\mathsf{Euler}\ \mathsf{equation}/\mathsf{DIS}$ 

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

#### Market clearing

 $c_t = y_t$ 

#### Demand shock

$$\xi_t \equiv -\varsigma r_t + \epsilon_t = \rho \xi_t + \epsilon_t$$

#### **Familiar Ingredients**

New Ingredients: noise + irrationality

Euler equation/DIS

$$c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$$

Market clearing

 $c_t = y_t$ 

Demand shock

 $\xi_t \equiv -\varsigma r_t + \epsilon_t = \rho \xi_t + \epsilon_t$ 

**Familiar Ingredients** 

Euler equation/DIS

Noisy signal

 $c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$ 

$$s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$$

**New Ingredients**: noise + irrationality

Market clearing

 $c_t = y_t$ 

Demand shock

 $\xi_t \equiv -\varsigma r_t + \epsilon_t = \rho \xi_t + \epsilon_t$ 

Familiar IngredientsNew Ingredients: noise + irrationalityEuler equation/DISNoisy signal $c_t = \mathbb{E}_t^*[c_{t+1}] - \varsigma r_t + \epsilon_t$  $s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$ Market clearingPerception of signal $c_t = y_t$  $s_{i,t} = \xi_t + u_{i,t}/\sqrt{\tau}$ 

Demand shock

 $\xi_t \equiv -\varsigma r_t + \epsilon_t = \rho \xi_t + \epsilon_t$ 





#### Transparent Mapping between Data and Theory

# Proposition: Mapping to Forecast Data Closed-form expressions: F1. $K_{CG} = \mathcal{K}_{CG}(\hat{\tau}, \rho, \hat{\rho}; mpc)$ F2. $K_{BGMS} = \mathcal{K}_{BGMS}(\tau, \hat{\tau}, \rho, \hat{\rho}; mpc)$ F3. $K_{KW} = \mathcal{K}_{KW}(\hat{\tau}, \rho, \hat{\rho}; mpc)$ F4. $\left\{ \frac{\partial \overline{\text{Error}_{t+k}}}{\partial \eta_t} \right\}_{k \ge 1} = F(\hat{\tau}, \rho, \hat{\rho}; mpc)$

Proposition: Equilibrium Outcomes

As-if representative, rational agent with

$$c_t = -r_t + \frac{\omega_f}{\mathbb{E}}_t^* [c_{t+1}] + \frac{\omega_b}{c_{t-1}} c_{t-1}$$

 $(\omega_f, \omega_b) = \Omega(\hat{\tau}, \rho, \hat{
ho}, \mathsf{mpc})$ 

myopia and anchoring

#### Transparent Mapping between Data and Theory

| Proposition: Mapping to Forecast Data                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------|
| Closed-form expressions:                                                                                                      |
| F1. $K_{CG} = \mathcal{K}_{CG}(\hat{\tau}, \rho, \hat{\rho}; \mathbf{mpc})$                                                   |
| F2. $\mathcal{K}_{BGMS} = \mathcal{K}_{BGMS}(	au, \hat{	au},  ho, \hat{ ho}; \mathbf{mpc})$                                   |
| F3. $\mathcal{K}_{KW} = \mathcal{K}_{KW}(\hat{	au},  ho, \hat{ ho}; mpc)$                                                     |
| F4. $\left\{\frac{\partial \overline{Error}_{t+k}}{\partial \eta_t}\right\}_{k\geq 1} = F(\hat{\tau}, \rho, \hat{\rho}; mpc)$ |

Proposition: Equilibrium Outcomes

As-if representative, rational agent with

$$c_t = -r_t + \omega_f \mathbb{E}_t^* [c_{t+1}] + \omega_b c_{t-1}$$

$$(\omega_f, \omega_b) = \Omega(\hat{\tau}, \rho, \hat{\rho}, \mathsf{mpc})$$

myopia and anchoring

- General equilibrium matters through mpc = slope of Keynesian cross
- Key behavior pinned down by  $(\hat{\tau}, \rho, \hat{\rho})$ 
  - Moments of average forecasts are key; moments of individual forecasts (BGMS) less so
  - Our evidence helps pin down  $\omega_b, \omega_f$  and resulting dynamics

#### Transparent Mapping between Data and Theory



Proposition: Equilibrium Outcomes

As-if representative, rational agent with

$$c_t = -r_t + \omega_f \mathbb{E}_t^* [c_{t+1}] + \omega_b c_{t-1}$$

$$(\omega_f, \omega_b) = \Omega(\hat{\boldsymbol{ au}}, \boldsymbol{
ho}, \hat{\boldsymbol{
ho}}, \mathsf{mpc})$$

myopia and anchoring

- General equilibrium matters through mpc = slope of Keynesian cross
- Key behavior pinned down by  $(\hat{\tau}, \rho, \hat{\rho})$ 
  - Moments of average forecasts are key; moments of individual forecasts (BGMS) less so
  - Our evidence helps pin down  $\omega_b, \omega_f$  and resulting dynamics

#### New Keynesian Model Calibrated to Expectations Evidence

Full model: add NKPC (with imperfect expectations) and Taylor rule



Good fit for demand shock, mediocre for supply shock

Right qualitative ingredients but no abundance of free parameters

### **Counterfactuals: Interaction of Forces Matters**



#### **Counterfactuals: Interaction of Forces Matters**





# Noise smooths and dampens IRF ("stickiness/inertia and myopia")

#### **Counterfactuals: Interaction of Forces Matters**





# Outline

Three Existing Facts, with Conflicting Message

An "Umbrella Theory"

A New, Unifying Fact: Delayed Over-shooting in Aggregate Forecasts

Lessons for Theory

Going GE

Conclusion

#### Conclusion

#### **Contributions:**

- Developed a simple framework to organize diverse theories and evidence
- Found little support for certain theories (FIRE, cognitive discounting, level-K)
- Argued that the "right" model combines dispersed info and over-extrapolation
- Clarified which moments of forecasts are most relevant in the theory
- Illustrated GE implications

### Conclusion

Contributions:

- Developed a simple framework to organize diverse theories and evidence
- Found little support for certain theories (FIRE, cognitive discounting, level-K)
- Argued that the "right" model combines dispersed info and over-extrapolation
- Clarified which moments of forecasts are most relevant in the theory
- Illustrated GE implications

#### Limitations/Future Work:

- Context: "regular business cycles" vs. crises or specific policy experiments
- *Forecast data*: ideally we would like expectations of firms and consumers, and for the objects that matter the most for their choices

#### Facts 1 + 2: Showing Under-reaction and Dispersion

 $\mathsf{Error}_{i,t,k} = a - \mathcal{K}_{\mathsf{noise}} \cdot (\mathsf{Revision}_{i,t,k} - \mathsf{Revision}_{t,k}) + \mathcal{K}_{\mathsf{agg}} \cdot \mathsf{Revision}_{t,k} + u_{i,t,k}$ 

|                                                                        | (1)               | (2)                            | (3)                             | (4)                             |
|------------------------------------------------------------------------|-------------------|--------------------------------|---------------------------------|---------------------------------|
| variable                                                               | Unemployment      |                                | Infla                           | ation                           |
| sample                                                                 | 1968-2017         | 1984-2017                      | 1968-2017                       | 1984-2017                       |
| Revision <sub>i,t -</sub> Revision <sub>t</sub> (-K <sub>noise</sub> ) | -0.166<br>(0.043) | <mark>-0.162</mark><br>(0.053) | - <mark>0.346</mark><br>(0.042) | - <mark>0.410</mark><br>(0.041) |
| $\text{Revision}_{t}(\text{K}_{agg})$                                  | 0.745<br>(0.173)  | 0.841<br>(0.210)               | 1.550<br>(0.278)                | 0.412<br>(0.180)                |
| R <sup>2</sup>                                                         | 0.103             | 0.152                          | 0.211                           | 0.072                           |
| Observations                                                           | 5383              | 3769                           | 5147                            | 3643                            |

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. The forecast horizon is 3 quarters. Standard errors are clustered two-way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 times the interquartile range away from the median. The data used for outcomes are first-release.

#### **Estimation Strategy**

Overall goal: allow flexibility for dynamics to be "shock-specific"

**ARMA-IV**: two-stage-least-squares estimate of

$$x_t = \alpha + \sum_{p=1}^{P} \gamma_p \cdot x_{t-p}^{\mathsf{IV}} + \sum_{k=1}^{K} \beta_k \cdot \epsilon_{t-k} + u_t$$
$$X_{t-1} = \eta + \mathcal{E}'_{t-1}\Theta + e_t$$

where  $X_{t-1} \equiv (x_{t-p})_{p=1}^{P}$ ,  $\mathcal{E}_{t-1} \equiv (\epsilon_{t-K-j})_{j=1}^{J}$  and  $J \ge P$ . Main specification: P = 3, J = 6. **Projection**: OLS estimation at each horizon h of

$$x_{t+h} = \alpha_h + \beta_h \cdot \epsilon_t + \gamma' W_t + u_{t+h}$$

where the controls  $W_t$  are  $x_{t-1}$  and  $\overline{\mathbb{E}}_{t-k-1}[x_{t-1}]$ .

#### **Estimation Strategy**

Back



Figure 1: \*

Forecast error estimation with projection method (grey) and ARMA-OLS(1,1) (green).



 $10\ usual\ suspects:$  real GDP, real investment, real consumption, labor hours, the labor share, the Federal Funds Rate, labor productivity, and utilization-adjusted TFP

**3 forecast variables**: three-period-ahead unemployment forecast, three-period annual inflation forecast, one-period-ahead quarter-to-quarter inflation forecast

Back

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \frac{\omega_f}{\mathbb{E}} \mathbb{E}_t^* [c_{t+1}] + \frac{\omega_b}{C_{t-1}} c_{t-1}
```

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}
```

Only Dispersed Info  $\Rightarrow \omega_f < 1 \omega_b > 0$ 

- ω<sub>f</sub> < 1 : captures noise plus myopia due to HOB (Angeletos & Lian, 2018)</li>
   → resolution to forward guidance puzzle etc
- $\omega_b > 0$  : captures learning, or momentum in beliefs

 $\rightsquigarrow$  resembles habit or adjustment costs

- both distortions disciplined by moments of average forecasts (CG or ours)
- both distortions increase with MPC, or Keynesian multiplier (HANK connection)

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}
```

Only Dispersed Info  $\Rightarrow \omega_f < 1 \quad \omega_b > 0$ 

- ω<sub>f</sub> < 1 : captures noise plus myopia due to HOB (Angeletos & Lian, 2018)</li>
   → resolution to forward guidance puzzle etc
- $\omega_b > 0$  : captures learning, or momentum in beliefs

 $\rightsquigarrow$  resembles habit or adjustment costs

- both distortions disciplined by moments of average forecasts (CG or ours)
- both distortions increase with MPC, or Keynesian multiplier (HANK connection)

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}
```

Only Dispersed Info  $\Rightarrow \omega_f < 1 \omega_b > 0$ 

- ω<sub>f</sub> < 1 : captures noise plus myopia due to HOB (Angeletos & Lian, 2018)</li>
   → resolution to forward guidance puzzle etc
- $\omega_b > 0$  : captures learning, or momentum in beliefs

 $\rightsquigarrow$  resembles habit or adjustment costs

- both distortions disciplined by moments of average forecasts (CG or ours)
- both distortions increase with MPC, or Keynesian multiplier (HANK connection)

#### The Role of Under/Over-Extrapolation

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}
```

```
Only Under-extrapolation \Rightarrow \omega_f < 1 \quad \omega_b = 0
```

- myopia but not habit/momentum
- consistent with CG but rejected by BGMS and our fact
- same applies for cognitive-discounting and level-K thinking

#### The Role of Under/Over-Extrapolation

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \omega_f \mathbb{E}_t^*[c_{t+1}] + \omega_b c_{t-1}
```

Only Under-extrapolation  $\Rightarrow \omega_f < 1 \omega_b = 0$ 

- myopia but not habit/momentum
- consistent with CG but rejected by BGMS and our fact
- same applies for cognitive-discounting and level-K thinking

#### The Role of Under/Over-Extrapolation

As-if Representation (builds on Angeletos & Huo, 2018):

```
c_t = -r_t + \omega_f \mathbb{E}_t^* [c_{t+1}] + \omega_b c_{t-1}
```

Only Under-extrapolation  $\Rightarrow \omega_f < 1 \quad \omega_b = 0$ 

- myopia but not habit/momentum
- consistent with CG but rejected by BGMS and our fact
- same applies for cognitive-discounting and level-K thinking

Only Over-extrapolation  $\Rightarrow \omega_f > 1 \quad \omega_b = 0$ 

- hyperopia but not habit/momentum
- consistent with BGMS but rejected by rejected by CG and our fact

As-if Representation (builds on Angeletos & Huo, 2018):

$$c_t = -r_t + \omega_f \mathbb{E}_t^* [c_{t+1}] + \omega_b c_{t-1}$$

 $\mbox{Over-extrapolation plus enough noise} \quad \Rightarrow \quad \omega_f < 1 \quad \omega_b > 0$ 

- matches all facts about expectations
- quantitative bite disciplined by our evidence

### **Model Parameters**

#### Table 1: Exogenously Set Parameters

| Parameter | Description     | Value |  |
|-----------|-----------------|-------|--|
| θ         | θ Calvo prob    |       |  |
| κ         | Slope of NKPC   | 0.02  |  |
| $\chi$    | Discount factor | 0.99  |  |
| mpc       | MPC             | 0.3   |  |
| ς         | IES             | 1.0   |  |
| $\phi$    | Monetary policy | 1.5   |  |

#### Table 2: Calibrated Parameters

|              | $\hat{ ho}$ | ρ    | au   |
|--------------|-------------|------|------|
| Demand shock | 0.94        | 0.80 | 0.38 |
| Supply shock | 0.82        | 0.57 | 0.15 |

back