ADDENDUM TO:
 WHAT GOODS DO COUNTRIES TRADE? A QUANTITATIVE EXPLORATION OF RICARDO'S IDEAS

ARNAUD COSTINOT, DAVE DONALDSON, AND IVANA KOMUNJER

Abstract. This addendum provides the proofs of Lemma 1, Theorem 1, Lemma 2, and Theorem 2 and the derivation of Equation (16) in Section 4.1.2 of our main paper.

Lemma 1. Suppose that Assumptions A1-A4 hold. Then for any importer, j, any pair of exporters, i and i^{\prime}, and any pair of goods, k and k^{\prime},

$$
\begin{equation*}
\ln \left(\frac{x_{i j}^{k} x_{i^{\prime} j}^{k^{\prime}}}{x_{i j}^{k^{\prime}} x_{i^{\prime} j}^{k}}\right)=\theta \ln \left(\frac{z_{i}^{k} z_{i^{\prime}}^{k^{\prime}}}{z_{i}^{k^{\prime}} z_{i^{\prime}}^{k}}\right)-\theta \ln \left(\frac{d_{i j}^{k} d_{i^{\prime} j}^{k^{\prime}}}{d_{i j}^{k^{\prime}} d_{i^{\prime} j}^{k}}\right) . \tag{A-1}
\end{equation*}
$$

Proof of Lemma 1. By Assumption A4, we know that bilateral trade flows satisfy

$$
x_{i j}^{k}=\frac{\sum_{\omega \in \Omega_{i j}^{k}}\left[p_{j}^{k}(\omega)\right]^{1-\sigma_{j}^{k}}}{\sum_{\omega \in \Omega} p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}} \cdot \alpha_{j}^{k} \mathrm{w}_{j} L_{j} .
$$

Since $\Omega_{i j}^{k} \equiv\left\{\omega \in \Omega \mid c_{i j}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}(\omega)\right\}$, this can be rearranged as

$$
x_{i j}^{k}=\frac{\sum_{\omega \in \Omega}\left[p_{j}^{k}(\omega) \mathbb{I}\left\{c_{i j}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}(\omega)\right\}\right]^{1-\sigma_{j}^{k}}}{\sum_{\omega \in \Omega} p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}} \cdot \alpha_{j}^{k} \mathrm{w}_{j} L_{j},
$$

where the function $\mathbb{I}\{\cdot\}$ is the standard indicator function. By Assumption A1, $z_{i}^{k}(\omega)$ is independent and identically distributed (i.i.d.) across varieties so the same holds for $c_{i j}^{k}(\omega)$. In addition, $z_{i}^{k}(\omega)$ is i.i.d. across countries so $\mathbb{I}\left\{c_{i j}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}(\omega)\right\}$ is i.i.d. across varieties as well. This implies that $p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}$ and $p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}} \cdot \mathbb{I}\left\{c_{i j}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}(\omega)\right\}$ are i.i.d. across varieties. Moreover, since $\sigma_{j}^{k}<1+\theta$ we have $E\left[p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}\right]<\infty$ so we can use the strong law of large numbers for i.i.d. random variables (e.g. Theorem 22.1 in Billingsley, 1995) and the continuous mapping theorem (e.g. Theorem 18.10 (i) in Davidson,
1994) to show that

$$
x_{i j}^{k}=\frac{E\left[p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}} \cdot \mathbb{I}\left\{c_{i j}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}(\omega)\right\}\right]}{E\left[p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}\right]} \cdot \alpha_{j}^{k} \mathrm{w}_{j} L_{j} .
$$

Consider $H_{i j}^{k}\left(c_{1 j}^{k}, \ldots, c_{I j}^{k}\right) \equiv E\left[p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}} \cdot \mathbb{I}\left\{c_{i j}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}(\omega)\right\}\right]$. Assumptions A1, A3 and straightforward computations yield

$$
\begin{equation*}
H_{i j}^{k}\left(c_{1 j}^{k}, \ldots, c_{I j}^{k}\right)=\Gamma\left(\frac{\theta+1-\sigma_{j}^{k}}{\theta}\right) \frac{\left(c_{i j}^{k}\right)^{-\theta}}{\left[\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} j}^{k}\right)^{-\theta}\right]^{\left(\theta+1-\sigma_{j}^{k}\right) / \theta}} \tag{A-2}
\end{equation*}
$$

where $\Gamma(\cdot)$ is the Gamma function, $\Gamma(t) \equiv \int_{0}^{+\infty} v^{t-1} \exp (-v) d v$ for any $t>0$. Note that

$$
E\left[p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}\right]=\sum_{i=1}^{I} H_{i j}^{k}\left(c_{1 j}^{k}, \ldots, c_{I j}^{k}\right),
$$

so that by using Equation (A-2) we get

$$
\begin{equation*}
E\left[p_{j}^{k}(\omega)^{1-\sigma_{j}^{k}}\right]=\Gamma\left(\frac{\theta+1-\sigma_{j}^{k}}{\theta}\right) \frac{1}{\left[\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} j}^{k}\right)^{-\theta}\right]^{\left(1-\sigma_{j}^{k}\right) / \theta}}, \tag{A-3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
x_{i j}^{k}=\frac{\left(c_{i j}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} j}^{k}\right)^{-\theta}} \cdot \alpha_{j}^{k} \mathrm{w}_{j} L_{j} . \tag{A-4}
\end{equation*}
$$

With iceberg trade costs, Assumption A2, we have $c_{i j}^{k}=d_{i j}^{k} \mathrm{~W}_{i} / z_{i}^{k}$. Combining the previous expression with Equation (A-4) gives the result of Lemma 1.

Theorem 1. Suppose that Assumptions A1-A4 hold. Then for any importer, j, any pair of exporters, i and i^{\prime}, and any pair of goods, k and k^{\prime},

$$
\begin{equation*}
\ln \left(\frac{\widetilde{x}_{i j}^{k} \widetilde{x}_{i^{\prime} j}^{k^{\prime}}}{\widetilde{x}_{i j}^{k^{\prime}} \widetilde{x}_{i^{\prime} j}^{k}}\right)=\theta \ln \left(\frac{\widetilde{z}_{i}^{k} \widetilde{z}_{i^{\prime}}^{k^{\prime}}}{\widetilde{z}_{i}^{k^{\prime}} \widetilde{z}_{i^{\prime}}^{k}}\right)-\theta \ln \left(\frac{d_{i j}^{k} d_{i^{\prime} j}^{k^{\prime}}}{d_{i j}^{k^{\prime}} d_{i^{\prime} j}^{k}}\right), \tag{A-5}
\end{equation*}
$$

where $\widetilde{x}_{i j}^{k} \equiv x_{i j}^{k} / \pi_{i i}^{k}$.
Proof of Theorem 1. We make use of the following Lemma.

Lemma 3. Suppose that Assumption A2 holds. Then, for all countries i and goods k,

$$
\begin{equation*}
\Omega_{i}^{k}=\left\{\omega \mid c_{i i}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} i}^{k}(\omega)\right\} . \tag{A-6}
\end{equation*}
$$

Proof of Lemma 3. We proceed by contradiction. Fix an exporter j, and suppose there exists a variety ω_{0} of good k and a country $l \neq j$ such that:

$$
\left\{\begin{array}{l}
c_{j l}^{k}\left(\omega_{0}\right)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} l}^{k}\left(\omega_{0}\right) \\
c_{j j}^{k}\left(\omega_{0}\right) \neq \min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} j}^{k}\left(\omega_{0}\right)
\end{array}\right.
$$

Then, there must be an exporter $i \neq j$ such that

$$
\left\{\begin{array}{l}
d_{j l}^{k} \cdot \mathrm{w}_{j} / z_{j}^{k}\left(\omega_{0}\right) \leq d_{i l}^{k} \cdot \mathrm{w}_{i} / z_{i}^{k}\left(\omega_{0}\right) ; \\
d_{i j}^{k} \cdot \mathrm{w}_{i} / z_{i}^{k}\left(\omega_{0}\right)<d_{j j}^{k} \cdot \mathrm{w}_{j} / z_{j}^{k}\left(\omega_{0}\right) .
\end{array}\right.
$$

Since $d_{j j}^{k}=1$, multiplying the two inequalities above gives

$$
d_{i j}^{k} \cdot d_{j l}^{k}<d_{i l}^{k}
$$

which contradicts Assumption A2. This completes the proof of Lemma 3.

Proof of Theorem 1 (continued). By definition, we know that $c_{i i}^{k}(\omega)=d_{i i}^{k} \mathrm{w}_{i} / z_{i}^{k}(\omega)$. Using Lemma 3 then yields

$$
\begin{equation*}
\widetilde{z}_{i}^{k} \equiv E\left[z_{i}^{k}(\omega) \mid \omega \in \Omega_{i}^{k}\right]=\frac{G_{i i}\left(c_{1 i}^{k}, \ldots, c_{I i}^{k}\right)}{\mu_{i i}^{k}} \cdot d_{i i}^{k} \mathrm{w}_{i} \tag{A-7}
\end{equation*}
$$

where we have let

$$
\begin{aligned}
G_{i i}\left(c_{1 i}^{k}, \ldots, c_{I i}^{k}\right) & \equiv E\left[\left(c_{i i}^{k}(\omega)\right)^{-1} \mathbb{I}\left\{c_{i i}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} i}^{k}(\omega)\right\}\right] \\
\mu_{i i}^{k} & \equiv \operatorname{Pr}\left\{c_{i i}^{k}(\omega)=\min _{1 \leq i^{\prime} \leq I} c_{i^{\prime} i}^{k}(\omega)\right\}
\end{aligned}
$$

The expressions for $G_{i i}\left(c_{1 i}^{k}, \ldots, c_{I i}^{k}\right)$ and $\mu_{i i}^{k}$ can easily be computed from the expression for $H_{i i}^{k}\left(c_{1 i}^{k}, \ldots, c_{I i}^{k}\right)$ in proof of Lemma 1 when the result in Equation (A-2) is evaluated at $\sigma_{i}^{k}=2$ and $\sigma_{i}^{k}=1$, respectively. By Equation (A-2), we formally have

$$
\begin{aligned}
G_{i i}\left(c_{1 i}^{k}, \ldots, c_{I i}^{k}\right) & =\Gamma\left(\frac{\theta-1}{\theta}\right) \frac{\left(c_{i i}^{k}\right)^{-\theta}}{\left[\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} i}^{k}\right)^{-\theta}\right]^{(\theta-1) / \theta}} \\
\mu_{i i}^{k} & =\frac{\left(c_{i i}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} i}^{k}\right)^{-\theta}}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\widetilde{z}_{i}^{k}=\Gamma\left(\frac{\theta-1}{\theta}\right) \frac{1}{\left[\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} i}^{k}\right)^{-\theta}\right]^{-1 / \theta}} \cdot d_{i i}^{k} \mathrm{~W}_{i}=z_{i}^{k} \cdot \Gamma\left(\frac{\theta-1}{\theta}\right)\left[\frac{\left(c_{i i}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} i}^{k}\right)^{-\theta}}\right]^{-1 / \theta} \tag{A-8}
\end{equation*}
$$

Now, recall that we have defined $\pi_{i i}^{k} \equiv x_{i i}^{k} /\left[\sum_{i^{\prime}=1}^{I} x_{i^{\prime} i}^{k}\right]$. Using the expression for $x_{i j}^{k}$ obtained in (A-4) it then follows that

$$
\begin{equation*}
\pi_{i i}^{k}=\mu_{i i}^{k}=\frac{\left(c_{i i}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} i}^{k}\right)^{-\theta}} . \tag{A-9}
\end{equation*}
$$

Combining the two previous equations, we obtain

$$
\begin{equation*}
\widetilde{z}_{i}^{k}=z_{i}^{k} \cdot \Gamma\left(\frac{\theta-1}{\theta}\right)\left(\pi_{i i}^{k}\right)^{-1 / \theta} . \tag{A-10}
\end{equation*}
$$

Now, from Equation (A-4), we know that for every i and j,

$$
x_{i j}^{k}=\frac{\left(d_{i j}^{k} \mathrm{w}_{i} / z_{i}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(d_{i^{\prime} j}^{k} \mathrm{w}_{i^{\prime}} / z_{i^{\prime}}^{k}\right)^{-\theta}} \cdot \alpha_{j}^{k} \mathrm{w}_{j} L_{j}
$$

so combining with (A-10) and using $\widetilde{x}_{i j}^{k}=x_{i j}^{k} / \pi_{i i}^{k}$ gives

$$
\widetilde{x}_{i j}^{k}=\left[\Gamma\left(\frac{\theta-1}{\theta}\right)\right]^{-\theta} \frac{\left(d_{i j}^{k} \mathrm{w}_{i} / \widetilde{z}_{i}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(d_{i^{\prime} j}^{k} \mathrm{w}_{i^{\prime}} / z_{i^{\prime}}^{k}\right)^{-\theta}} \cdot \alpha_{j}^{k} \mathrm{w}_{j} L_{j} .
$$

Analogously to Lemma 1, the result of Theorem 1 then follows.
Lemma 2. Suppose that Assumptions A1-A5 hold. Adjustments in absolute productivity, $\left\{Z_{i}\right\}_{i \neq i_{0}}$, can be computed as the solution of the system of equations

$$
\begin{equation*}
\sum_{j=1}^{I} \sum_{k=1}^{K} \frac{\pi_{i j}^{k}\left(z_{i}^{k} / Z_{i}\right)^{-\theta} \alpha_{j}^{k} \gamma_{j}}{\sum_{i^{\prime}=1}^{I} \pi_{i^{\prime} j}^{k}\left(z_{i^{\prime}}^{k} / Z_{i^{\prime}}\right)^{-\theta}}=\gamma_{i}, \text { for all } i \neq i_{0} \tag{A-11}
\end{equation*}
$$

Proof of Lemma 2. Throughout this proof, we use labor in country i_{0} as our numeraire in the initial and counterfactual trade equilibrium: $\mathrm{w}_{i_{0}}=\left(\mathrm{w}_{i_{0}}\right)^{\prime}=1$. By definition, we know that Z_{i} is chosen for any $i \neq i_{0}$ such that the value of the relative wage $\left(\mathrm{w}_{i} / \mathrm{w}_{i_{0}}\right)^{\prime}$ in the counterfactual equilibrium is the same as in the initial equilibrium $\left(\mathrm{w}_{i} / \mathrm{w}_{i_{0}}\right)$. Thus Assumption A5 implies

$$
\begin{equation*}
\sum_{j=1}^{I} \sum_{k=1}^{K}\left(\pi_{i j}^{k}\right)^{\prime} \alpha_{j}^{k} \mathrm{w}_{j} L_{j}=\mathrm{w}_{i} L_{i} \tag{A-12}
\end{equation*}
$$

where $\left(\pi_{i j}^{k}\right)^{\prime}$ is the share of exports from country i in country j and industry k in the counterfactual equilibrium. Using Equation (A-4), one can easily check that

$$
\begin{equation*}
\pi_{i j}^{k} \equiv \frac{x_{i j}^{k}}{\sum_{i^{\prime}=1}^{I} x_{i^{\prime} j}^{k}}=\frac{\left(\mathrm{w}_{i} d_{i j}^{k} / z_{i}^{k}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left(\mathrm{w}_{i^{\prime}} d_{i^{\prime} j}^{k} / z_{i^{\prime}}^{k}\right)^{-\theta}}, \tag{A-13}
\end{equation*}
$$

and similarly that

$$
\begin{equation*}
\left(\pi_{i j}^{k}\right)^{\prime}=\frac{\left[\left(\mathrm{w}_{i}\right)^{\prime} d_{i j}^{k} /\left(z_{i}^{k}\right)^{\prime}\right]^{-\theta}}{\sum_{i^{\prime}=1}^{I}\left[\left(\mathrm{w}_{i^{\prime}}\right)^{\prime} d_{i^{\prime} j}^{k} /\left(z_{i^{\prime}}^{k}\right)^{\prime}\right]^{-\theta}} . \tag{A-14}
\end{equation*}
$$

Combining Equations (A-13) and (A-14) and using the fact that the relative wages remain unchanged in the counterfactual equilibrium, we get after rearrangements

$$
\begin{equation*}
\left(\pi_{i j}^{k}\right)^{\prime}=\frac{\pi_{i j}^{k}\left[z_{i}^{k} /\left(z_{i}^{k}\right)^{\prime}\right]^{-\theta}}{\sum_{i^{\prime}=1}^{I} \pi_{i^{\prime} j}^{k}\left[z_{i^{\prime}}^{k} /\left(z_{i^{\prime}}^{k}\right)^{\prime}\right]^{-\theta}}=\frac{\pi_{i j}^{k}\left(z_{i}^{k} / Z_{i}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I} \pi_{i^{\prime} j}^{k}\left(z_{i^{\prime}}^{k} / Z_{i^{\prime}}\right)^{-\theta}}, \tag{A-15}
\end{equation*}
$$

where the second equality uses $\left(z_{i}^{k}\right)^{\prime} \equiv Z_{i} \cdot z_{i_{0}}^{k}$. Equations (A-12) and (A-15) imply

$$
\sum_{j=1}^{I} \sum_{k=1}^{K} \frac{\pi_{i j}^{k}\left(z_{i}^{k} / Z_{i}\right)^{-\theta} \alpha_{j}^{k} \gamma_{j}}{\sum_{i^{\prime}=1}^{I} \pi_{i^{\prime} j}^{k}\left(z_{i^{\prime}}^{k} / Z_{i^{\prime}}\right)^{-\theta}}=\gamma_{i}
$$

where $\gamma_{i} \equiv \mathrm{w}_{i} L_{i} / \sum_{j=1}^{I} \mathrm{w}_{j} L_{j}$ is the share of country i in world income.
Theorem 2. Suppose that Assumptions A1-A5 hold. If we remove country i_{0} 's Ricardian comparative advantage, then:
(1) Counterfactual changes in bilateral trade flows, $x_{i j}^{k}$, satisfy

$$
\begin{equation*}
\widehat{x}_{i j}^{k}=\frac{\left(z_{i}^{k} / Z_{i}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I} \pi_{i^{\prime} j}^{k}\left(z_{i^{\prime}}^{k} / Z_{i^{\prime}}\right)^{-\theta}} \text {, for all } i, j, k . \tag{A-16}
\end{equation*}
$$

(2) Counterfactual changes in country i_{0} 's welfare, $W_{i_{0}} \equiv w_{i_{0}} / p_{i_{0}}$, satisfy

$$
\begin{equation*}
\widehat{W}_{i_{0}}=\prod_{k=1}^{K}\left[\sum_{i=1}^{I} \pi_{i i_{0}}^{k}\left(\frac{z_{i}^{k}}{z_{i_{0}}^{k} Z_{i}}\right)^{-\theta}\right]^{\alpha_{i_{0}}^{k} / \theta} . \tag{A-17}
\end{equation*}
$$

Proof of Theorem 2. Similar to previously and throughout this proof, we use labor in country i_{0} as our numeraire in the initial and counterfactual trade equilibrium: $\mathrm{w}_{i_{0}}=\left(\mathrm{w}_{i_{0}}\right)^{\prime}=1$.

1. Counterfactual changes in bilateral trade flows, $x_{i j}^{k}$.

Since the relative wages are unchanged in the counterfactual equilibrium, we must have

$$
\hat{x}_{i j}^{k}=\left(x_{i j}^{k}\right)^{\prime} / x_{i j}^{k}=\left(\pi_{i j}^{k}\right)^{\prime} / \pi_{i j}^{k} .
$$

Combining this observation with Equation (A-15), we obtain

$$
\hat{x}_{i j}^{k}=\frac{\left(z_{i}^{k} / Z_{i}\right)^{-\theta}}{\sum_{i^{\prime}=1}^{I} \pi_{i^{\prime} j}^{k}\left(z_{i^{\prime}}^{k} / Z_{i^{\prime}}\right)^{-\theta}} .
$$

2. Counterfactual changes in country i_{0} 's welfare, $W_{i_{0}} \equiv \mathrm{w}_{i_{0}} / p_{i_{0}}$.

By definition, we know that

$$
\widehat{p}_{i_{0}}^{k}=\left(p_{i_{0}}^{k}\right)^{\prime} / p_{i_{0}}^{k}=\left[\frac{\sum_{\omega \in \Omega}\left[p_{i_{0}}^{k}(\omega)\right]^{\prime\left(1-\sigma_{i_{0}}^{k}\right)}}{\sum_{\omega \in \Omega} p_{i_{0}}^{k}(\omega)^{1-\sigma_{i_{0}}^{k}}}\right]^{1 /\left(1-\sigma_{i_{0}}^{k}\right)} .
$$

By invoking the strong law of large numbers for i.i.d. random variables and the continuous mapping theorem as we did in Theorem 1, then using Equation (A-3), we can rearrange the previous expression as

$$
\begin{equation*}
\widehat{p}_{i_{0}}^{k}=\left[\frac{\sum_{i=1}^{I}\left[\left(\mathrm{w}_{i}\right)^{\prime} d_{i i_{0}}^{k} /\left(z_{i}^{k}\right)^{\prime}\right]^{-\theta}}{\sum_{i=1}^{I}\left(\mathrm{w}_{i} d_{i i_{0}}^{k} / z_{i}^{k}\right)^{-\theta}}\right]^{-1 / \theta} \tag{A-18}
\end{equation*}
$$

Combining Equations (A-13) and (A-18) and using the fact that the relative wages remain unchanged in the counterfactual equilibrium, we get after rearrangements

$$
\widehat{p}_{i_{0}}^{k}=\left[\sum_{i=1}^{I} \pi_{i i_{0}}^{k}\left(\frac{z_{i}^{k}}{z_{i_{0}}^{k} Z_{i}}\right)^{-\theta}\right]^{-1 / \theta} .
$$

By definition of $p_{i_{0}} \equiv \prod_{k=1}^{K}\left(p_{i_{0}}^{k}\right)^{\alpha_{i_{0}}^{k}}$, we therefore have

$$
\widehat{p}_{i_{0}}=\prod_{k=1}^{K}\left[\sum_{i=1}^{I} \pi_{i i_{0}}^{k}\left(\frac{z_{i}^{k}}{z_{i_{0}}^{k} Z_{i}}\right)^{-\theta}\right]^{-\alpha_{i_{0}}^{k} / \theta}
$$

which immediately implies Equation (A-17).
We conclude this online appendix by showing that for any pair of goods, k and k^{\prime}, and any pair of countries, i and i^{\prime}, Assumptions A1-A3 imply

$$
\frac{\widetilde{z}_{i}^{k} z_{i^{\prime}}^{k^{\prime}}}{{\underset{z}{i^{\prime}}}_{z^{\prime}}^{z_{i}^{k^{\prime}}}}=\frac{E\left[p_{i^{\prime}}^{k}(\omega) \mid \Omega_{i^{\prime}}^{k}\right] E\left[p_{i}^{k^{\prime}}(\omega) \mid \Omega_{i}^{k^{\prime}}\right]}{E\left[p_{i}^{k}(\omega) \mid \Omega_{i}^{k}\right] E\left[p_{i^{\prime}}^{k^{\prime}}(\omega) \mid \Omega_{i^{\prime}}^{k^{\prime}}\right]},
$$

as stated in Equation (16) of Section 4.1.2 in our main paper. $E\left[p_{i}^{k}(\omega) \mid \Omega_{i}^{k}\right]$ can be readily computed from the expression for $H_{i i}^{k}\left(c_{1 i}^{k}, \ldots, c_{I i}^{k}\right)$ in the proof of Lemma 1 when the result in Equation (A-2) is evaluated at $\sigma_{i}^{k}=0$ and $\sigma_{i}^{k}=1$, respectively. Specifically, we have

$$
E\left[p_{i}^{k}(\omega) \mid \Omega_{i}^{k}\right]=\Gamma\left(\frac{\theta+1}{\theta}\right) \frac{1}{\left[\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime} i}^{k}\right)^{-\theta}\right]^{1 / \theta}}
$$

By Equation (A-8), we also know that

$$
\widetilde{z}_{i}^{k}=\Gamma\left(\frac{\theta-1}{\theta}\right) \frac{1}{\left[\sum_{i^{\prime}=1}^{I}\left(c_{i^{\prime}}^{k}\right)^{-\theta}\right]^{-1 / \theta}} \cdot \mathrm{w}_{i},
$$

where we have used the fact that $d_{i i}^{k}=1$. Combining the two previous expressions for any pair of goods, k and k^{\prime}, we obtain

$$
\frac{\tilde{z}_{i}^{k}}{\tilde{z}_{i}^{k^{\prime}}}=\frac{E\left[p_{i}^{k^{\prime}}(\omega) \mid \Omega_{i}^{k^{\prime}}\right]}{E\left[p_{i}^{k}(\omega) \mid \Omega_{i}^{k}\right]},
$$

from which the desired result follows.

References

Billingsley, P. (1995): Probability and Measure. John Wiley \& Sons, Inc.
Davidson, J. (1994): Stochastic Limit Theory. Oxford University Press, Oxford.

