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Abstract

This Supplementary Appendix contains details of the examples and proofs of some

results given in the paper “Maximum Likelihood Inference in Weakly Identified Models,”

by Isaiah Andrews and Anna Mikusheva. We also provide several additional examples

illustrating ways in which weak identification can arise in a DSGE context.

S1 Stylized DSGE model from Section 2

S1.1 Solving the model

Here we solve the restricted linear rational expectations system:
bEtπt+1 + κxt − πt = 0,

−[rt − Etπt+1 − ρ∆at] + Etxt+1 − xt = 0,

1
b
πt + ut = rt,

(S1)

where xt and πt are observed endogenous variables. Exogenous shocks at and ut

evolve according to the system:

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t;

(εa,t, εu,t)
′ ∼ iidN(0,Σ);Σ = diag(σ2

a, σ
2
u).
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To solve the system we substitute out rt in the first two equations of (S1) and

obtain the following system: bEtπt+1 = −κxt + πt,

Etπt+1 + Etxt+1 = xt +
1
b
πt + ut − ρ∆at.

We solve for Etxt+1 and get the expectation equation:

bEtxt+1 = (b+ κ)xt + but − bρ∆at,

which we can rewrite as:

xt =
b

b+ κ
Etxt+1 −

b

b+ κ
ut +

bρ

b+ κ
∆at.

Now we solve this expectation equation by iterating forward:

xt =
∞∑
j=0

(
b

b+ κ

)j

Et

[
− b

b+ κ
ut+j +

bρ

b+ κ
∆at+j

]
.

We notice that Etut+j = δjut and Et∆at+j = ρj∆at. As a result, we have:

xt = − b

b+ κ
· 1

1− δ b
b+κ

ut +
bρ

b+ κ
· 1

1− ρ b
b+κ

∆at =

= − b

b+ κ− δb
ut +

bρ

b+ κ− bρ
∆at.

We plug the last expression into the Euler equation and solve the resulting expectation

equation for πt:

πt = bEtπt+1 + κxt =

= bEtπt+1 −
bκ

b+ κ− δb
ut +

bρκ

b+ κ− bρ
∆at =

=
∞∑
j=0

bjEt

[
− bκ

b+ κ− δb
ut+j +

bρκ

b+ κ− bρ
∆at+j

]
=

= − bκ

(b+ κ− δb)(1− δb)
ut +

bρκ

(b+ κ− bρ)(1− bρ)
∆at.

Finally we obtain the following solution to the system (S1): xt = − b
b+κ−δb

ut +
b

b+κ−ρb
ρ∆at;

πt = − bκ
(b+κ−δb)(1−δb)

ut +
bκ

(b+κ−ρb)(1−bρ)
ρ∆at.

(S2)
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S1.2 Identification of the model

In this subsection we check identification of the model (S1). We use the explicit

solution written in equation (S2). Assume that σ2
a > 0, σ2

u > 0, 0 < δ, ρ, b < 1 and

κ > 0.

First we show that the model is point identified if δ < ρ. Let A1(θ) = − b
b+κ−δb

and A2(θ) =
b

b+κ−ρb
. We have

xt = A1(θ)ut + A2(θ)ρ∆at,

and

πt =
κ

1− δb
A1(θ)ut +

κ

1− ρb
A2(θ)ρ∆at.

We can identify auto-covariances of all orders for the series xt and πt as well as all

cross-covariances. In particular, we have

V ar(xt) = A1(θ)
2 σ2

u

1− δ2
+ A2(θ)

2ρ2
σ2
a

1− ρ2
;

cov(xt, xt−k) = A1(θ)
2 σ

2
uδ

k

1− δ2
+ A2(θ)

2ρ2
σ2
aρ

k

1− ρ2
.

It is easy to see that from the auto-covariance structure of process xt one can identify

δ < ρ, A1(θ)
2σ2

u and A2(θ)
2σ2

a. We also have the following expressions for the cross-

covariances:

cov(xt, πt) = A1(θ)
2 σ2

u

1− δ2
κ

1− δb
+ A2(θ)

2ρ2
σ2
a

1− ρ2
κ

1− ρb
;

cov(xt, πt−k) = A1(θ)
2 σ

2
uδ

k

1− δ2
κ

1− δb
+ A2(θ)

2ρ2
σ2
aρ

k

1− ρ2
κ

1− ρb

From cross-covariances we can additionally identify A1(θ)
2σ2

u
κ

1−δb
and A2(θ)

2σ2
a

κ
1−ρb

.

To sum up, the auto-covariance structure of the process xt, πt allows us to identify

the following six quantities:

δ, ρ, A1(θ)
2σ2

u, A2(θ)
2σ2

a, A1(θ)
2σ2

u

κ

1− δb
, A2(θ)

2σ2
a

κ

1− ρb

We can see from the last four quantities that κ
1−δb

and κ
1−ρb

are identified, and thus

1−ρb
1−δb

is identified. Since ρ and δ are identified, we see that b is identified as well. This
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implies that κ is also identified. Finally we notice that the Ai(θ) are functions of only

b, κ, ρ and δ, and thus are identified. Looking at these six quantities, we can see that

they imply identification of σ2
u and σ2

a.

Now we examine the identification in the case δ = ρ. If δ = ρ we have that xt and

πt satisfy the following system: xt =
b

b+κ−δb
(ρ∆at − ut);

πt =
bκ

(b+κ−δb)(1−δb)
(ρ∆at − ut) =

κ
1−δb

xt

xt and πt are linearly dependent AR(1) processes with AR root δ = ρ. The only

functionally independent quantities that can be identified are the autoregressive pa-

rameter (δ = ρ), the variance of xt, and the ratio xt/πt. Hence we con only identify

four quantities:

δ = ρ,
b

b+ κ− δb

√
ρ2σ2

a + σ2
u,

κ

1− δb
,

but we have six structural parameters. As a result, there are two degrees of underi-

dentification.

S1.3 Assumption 1

We have that

Yt =

 xt

πt

 = C(θ)

 ut

∆at

 = C(θ)Ut,

and

Ut = ΛUt−1 + εt; Λ =

 δ 0

0 ρ

 and εt ∼ N(0,Σ).

We can write the likelihood function:

ℓT (θ) = const− 1

2

T∑
t=1

(C−1(θ)Yt − ΛC−1(θ)Yt−1)
′Σ−1(C−1(θ)Yt − ΛC−1(θ)Yt−1)−

−T
2
log |Σ| − T log |C(θ)|.

We derive the score for a similar likelihood in Section S3. Here we just note that

the score at the true parameter value is a linear combination of terms (εtε
′
t −Σ) and

εtY
′
t−1. It thus trivially satisfies Assumption 1 from the paper for sequences of models

with ρ = δ + C√
T
.
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S2 Example 1: ARMA(1,1) with nearly canceling

roots.

This section contains the details of Example 1 from the paper. Below we use the

formulation of the weak ARMA(1,1) model from Andrews and Cheng (2012).

Yt = (π + β)Yt−1 + et − πet−1, et ∼ i.i.d.N(0, 1).

The true value of parameter θ0 = (β0, π0)
′ satisfies the restrictions |π0| < 1, β0 ̸= 0

and |π0 + β0| < 1, which guarantee that the process is stationary and invertible.

For simplicity we assume that Y0 = 0 and e0 = 0, though due to stationarity and

invertibility the initial condition does not matter asymptotically. One can re-write

the model as

(1− (π + β)L)Yt = (1− πL)et, or Yt = (1− (π + β)L)−1(1− πL)et.

It is easy to see that if β = 0 the parameter π is not identified. Assume that the

model is point identified, that is β ̸= 0, but that identification is weak. This can be

modeled as β = C√
T
.

First, we write the log-likelihood function. Here we follow the derivation of An-

drews and Cheng (2012) closely:

et =
t−1∑
j=0

πj
0(Yt−j − (π0 + β0)Yt−j−1) = Yt − β0

t−1∑
j=0

πj
0Yt−j−1.

ℓ(β, π) = const− 1

2

T∑
t=1

(Yt − β

t−1∑
j=0

πjYt−j−1)
2.

Next, we introduce the following two time series:

ut =
t∑

j=0

πj
0Yt−j = (1− π0L)

−1Yt = (1− (π0 + β0)L)
−1et,

and

vt =
t∑

j=0

jπj−1
0 Yt−j = (1− π0L)

−2Yt−1 = (1− π0L)
−2(1− (π0 + β0)L)

−1(1− π0L)et−1 =

= (1− π0L)
−1(1− (π0 + β0)L)

−1et−1.
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Series ut is an AR(1) process with coefficient π0 + β0; vt is an AR(2) process with

roots π0 and π0 + β0.

One can see that the score is:

Sβ(θ) =
T∑
t=1

[
(Yt − β

t−1∑
j=0

πjYt−j−1)(
t−1∑
j=0

πjYt−j−1)

]
;

Sπ(θ) = β
T∑
t=1

[
(Yt − β

t−1∑
j=0

πjYt−j−1)(
t−1∑
j=0

jπj−1Yt−j−1)

]
.

Notice that Yt − β0
∑t−1

j=0 π
j
0Yt−j−1 = et. As a result,

ST (θ0) =

 Sβ(β0, π0)

Sπ(β0, π0)

 =

 ∑T
t=1 etut−1

β0
∑T

t=1 etvt−1

 .

We can now write the two measures of information:

JT (β0, π0) =

 ∑T
t=1 e

2
tu

2
t−1 β0

∑T
t=1 e

2
tut−1vt−1

β0
∑T

t=1 e
2
tut−1vt−1 β2

0

∑T
t=1 e

2
tv

2
t−1

 ,

IT (θ0) = − ∂2

∂θ∂θ′
ℓ =

=

 ∑T
t=1 u

2
t−1 −

∑T
t=1 etvt−1 + β0

∑T
t=1 ut−1vt−1

−
∑T

t=1 etvt−1 + β0
∑T

t=1 ut−1vt−1 β2
0

∑T
t=1 v

2
t−1 − β0

∑T
t=1 etwt−1

 ,

here wt−1 =
∑t−1

j=0 j(j − 1)πj−2
0 Yt−j−1 is a weakly stationary series.

Assume weakly canceling roots, that is, β = C/
√
T . Then for a normalizing

matrix KT = diag(1/
√
T , 1) we have

KTJT (θ0)KT →p

 E[u2t−1] C · E[ut−1vt−1]

C · E[ut−1vt−1] C2 · E[v2t−1]

 , (S3)

where we used the Law of Large Numbers.

We also can notice that

KT (JT (θ0)− IT (θ0))KT =

 0 1√
T

∑
etvt−1

1√
T

∑
etvt−1

C√
T

∑
etwt−1

+ op(1) ⇒

 0 ξ

ξ Cη

 ,

where (ξ, η)′ is a mean-zero normal vector with covariance matrix E[v2t−1] E[vt−1wt−1]

E[vt−1wt−1] E[w2
t−1]

 .
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Assumption 1 It is easy to see that Lindeberg’s condition holds for sequences

etut−1√
T

and etvt−1√
T

. We check Assumption 1(b) in equation (S3). As a result, Theorem

1 holds for the ARMA(1,1) model with near-canceling roots, and we have a robust

test for a simple hypothesis H0 : π = π0, β = β0.

Let us consider the problem of testing the weakly identified parameter π, treating

β as a nuisance parameter. The hypothesis of interest is H0 : π = π0.

Assumptions 2

(a) We showed before:

1

T
Iββ(θ0) =

1

T

T∑
t=1

u2t →p lim
1

T
Jββ(θ0).

So, J−1
ββ (θ0)Iββ(θ0) →p 1.

(b) Iββ(π0, β) does not depend on β.

(c) Function ℓ(π0, β) is quadratic in β, as a result β̂(π0) is the OLS estimator in a

regression of Yt on ut. The assumption trivially holds.

This means that Assumption 2 is satisfied, and thus the restricted ML estimate of β

is asymptotically normal under the null.

Assumption 3 We have to check the conditions for the CLT for a pair ST (θ0) and

Aβπ(θ0) = Jβπ(θ0)− Iβπ(θ0) = β0

T∑
t=1

(e2t − 1)ut−1vt−1 +
T∑
t=1

etvt−1.

It is easy to see that for β0 = C/
√
T and Kβπ = 1√

T
, Assumption 3 is satisfied, and

KβπAβπ ⇒ N(0, Ev2t ).

Assumption 4

(a) We have Kβ,T = Kβπ,T = 1√
T
and Kπ,T = 1. Assumption 4(a) holds trivially.
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(b) Note that ∂3

∂2β∂π
ℓ = −2

∑
ut−1vt−1. We may try to calculate Λββπ from the

third information equality, but it is enough to notice that K2
β,TKπ,T

∂3

∂2β∂π
ℓ =

− 2
T

∑
ut−1vt−1 satisfies the Law of Large Numbers, and that all terms in the

third information equality are normalized to converge to their expectations.

This implies that K2
β,TKπ,TΛββπ converges to its expectation (which is zero,

since Λ is a martingale);

(c) The argument here is exactly the same as in (b), with the additional observation

that ∂4

∂3β∂π
ℓ = 0.

Since Assumptions 2, 3 and 4 are satisfied, according to Theorem 2 the two score

test statistics L̃M o(π0) and L̃M e(π0) for testing hypothesis H0 : π = π0 have an

asymptotic χ2
1 distribution despite the weak identification of π.

S3 An additional example of weak identification:

nearly reduced dynamics

This section contains an additional example showing how weak identification can

arise in DSGE models. Specifically, we consider an example in which insufficiently

rich dynamics for the observed variables gives rise to weak identification.

Assume that we observe a sample of 2×1 random vectors Yt, t = 1, ..., T generated

from the following model: 
A(θ̃)Yt = Ut,

Ut = ΛUt−1 + εt,

εt ∼ i.i.d.N(0,Σ),

which is the form typically taken by log-linearized DSGE models. Here Ut and εt are

2× 1 unobserved random vectors. Assume that the matrix of persistence parameters

Λ = diag(ρ, δ) and the matrix of variances Σ = diag(σ2
1, σ

2
2) are both diagonal. The

vector θ = (θ̃, σ2
1, σ

2
2, ρ, δ) contains the unknown parameters. We will show that if the

elements of Λ are equal, the parameter θ̃ may become locally under-identified.
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S3.1 Identification when δ ̸= ρ

According to Komunjer and Ng (2011), two parameter values θ0 and θ1 are observa-

tionally equivalent if and only if there exists matrix P such that
PΛ0P

−1 = Λ1;

PA(θ̃0) = A(θ̃1);

PΣ0P
′ = Σ1.

Assume that ρ ̸= δ. If there exists a matrix P such that for some diagonal

matrices Λ1 and Σ1 we have PΛ0P
−1 = Λ1 and PΣ0P

′ = Σ1, then matrix the

P must be of the form

 c1 0

0 c2

 or

 0 c1

c2 0

 for some non-zero constants c1

and c2. Thus the model is locally identified at θ0 if and only if the transformation

f : (c1, c2, θ̃) → vec


 c1 0

0 c2

A(θ̃)

 is locally injective at (c1, c2, θ̃) = (1, 1, θ̃0).

The sufficient condition for this is that the derivative of f with respect to (c1, c2, θ̃)

have full rank at (1, 1, θ̃0). The above mentioned matrix derivative is written below:
A11(θ̃0) 0

0 A21(θ̃0)

A12(θ̃0) 0

0 A22(θ̃0)

;
∂

∂θ̃
vec(A(θ̃))

 .

If this matrix has full rank, then parameter θ is locally identified at θ0. As we can

see, for θ̃ to be point-identified it must be of dimension at most two, which makes

the dimension of θ = (θ̃, σ2
1, σ

2
2, ρ, δ) equal to six. From now on we assume that θ̃ is

2-dimensional and that the model is point identified for ρ ̸= δ.

S3.2 Identification at ρ = δ

In order to show that identification fails at δ = ρ we write the likelihood for the model

ℓ(θ;Y1, ..., YT ). Let ∆ℓt(θ) = ℓ(θ;Y1, ..., Yt)− ℓ(θ;Y1, ..., Yt−1) be the increment of the

likelihood in period t:

∆ℓt = −1

2
(A(θ̃)Yt − ΛA(θ̃)Yt−1)

′Σ−1(A(θ̃)Yt − ΛA(θ̃)Yt−1)−
1

2
log |Σ|+ log |A(θ̃)|.
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Consider the score. First take the score with respect to the variances:

2
∂∆ℓt
∂σ2

i

(θ0) =
1

σ4
i

(ε2i,t − σ2
i ).

Next, let s be a part of θ̃. We have:

−∂∆ℓt
∂s

(θ0) = (A(θ̃)Yt − ΛA(θ̃)Yt−1)
′Σ−1(

∂A

∂s
Yt − Λ

∂A

∂s
Yt−1)− trace(

∂A

∂s
A−1) =

= ε′tΣ
−1(

∂A

∂s
A−1(ΛUt−1 + εt)− Λ

∂A

∂s
A−1Ut−1)− trace(

∂A

∂s
A−1).

If ρ = δ then Λ = δId2 and ∂A
∂s
A−1Λ = Λ∂A

∂s
A−1. As a result

−∂∆ℓt
∂s

(θ0) = trace

(
(εtε

′
t − Σ)Σ−1∂A

∂s
A−1

)
.

We can see that the score with respect to the four parameters (θ̃, σ2
1, σ

2
2) is a linear

function of the three-dimensional random variable
∑T

t=1(εtε
′
t −Σ). This implies that

the Fisher information for parameters θ̃, σ2
1, σ

2
2, which is equal to covariance matrix

of score, is degenerate and has rank at most three (which makes the rank for the full

parameter vector θ at most five). Thus we lose one degree of identification compared

with the case of ρ ̸= δ.

S3.3 Weak identification

We model weak identification as Λ = δId2 +
1√
T
µ, where µ =

 C 0

0 0

 . Consider

the score. First take the score with respect to the variances:

2
∂∆ℓt
∂σ2

i

(θ0) =
1

σ4
i

(ε2i,t − σ2
i ).

Next let s be a part of θ̃. We have:

−∂∆ℓt
∂s

(θ0) = trace

(
(εtε

′
t − Σ)Σ−1∂A

∂s
A−1

)
+

1√
T
trace

(
Ut−1εtΣ

−1

(
∂A

∂s
A−1µ− µ

∂A

∂s
A−1

))
. (S4)

Consider the following variables:

ξT =
1√
T

T∑
t=1

(ε21,t − σ2
1, ε

2
2,t − σ2

2, ε1,tε2,t)
′;

ηT =
1√
T

T∑
t=1

vec(Ut−1εt).
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Both ξT and ηT converge to mean-zero normal vectors (which are three and four

dimensional respectively), all components of which are independent. We then see

that

− 1√
T

∂ℓt
∂s

(θ0) = γ′sξT +
1√
T
γ∗′s ηT . (S5)

Here γs and γ
∗
s are fixed vectors.

Let θ∗ = (θ̃, σ2
1, σ

2
2) be the subset of parameters excluding ρ and δ. What we have

shown is that:

− 1√
T

∂ℓT
∂θ∗

(θ0) = ΓξT +
1√
T
Γ∗ηT ,

where the score − 1√
T

∂ℓt
∂θ∗

(θ0) is 4× 1 vector, Γ is 4× 3 matrix, and Γ∗ is 4× 4 matrix.

As a result, the 4×4 block of the normalized Fisher information matrix corresponding

to the parameters θ∗ has rank three asymptotically:

1

T
Iθ∗,T = ΓV ar(ξt)Γ

′ +
1

T
Γ∗V ar(ηT )(Γ

∗)′ → ΓV ar(ξt)Γ
′.

Now let us look at the components of the score corresponding to δ and ρ:

∂∆ℓt
∂δ

(θ0) = ε′tΣ
−1

 0 0

0 1

Ut−1 = trace

Ut−1ε
′
tΣ

−1

 0 0

0 1

 ,

∂∆ℓt
∂ρ

(θ0) = trace

Ut−1ε
′
tΣ

−1

 1 0

0 0

 .

As a result
1√
T

∂ℓT
∂(ρ, δ)

(θ0) = Γ̃ηT ,

where Γ̃ is 2×4 matrix of full rank. We see that the part of the normalized information

matrix corresponding to the block of parameters ρ and δ has rank two asymptotically,

and that the information matrix is asymptotically block-diagonal.

S3.3.1 Asymptotic behavior of Hessian

In the previous section we showed that the normalized (per observation) Fisher in-

formation for the 4-dimensional parameter θ∗ is of rank three asymptotically, and as

11



a result there is a direction α along which this matrix is degenerate. We show that

the normalized (per observation) Hessian of the log-likelihood is NOT asymptotically

degenerate along this direction.

For simplicity of notation denote by I the limit of the normalized (per observation)

theoretical Fisher information for the block of parameters θ∗, that is,

I = lim
T→∞

1

T
Iθ∗,T = lim

T→∞

1

T
E

T∑
t=1

(
∂∆ℓt
∂θ∗

)(
∂∆ℓt
∂θ∗

)′

= − lim
T→∞

1

T
E

∂2ℓT
∂θ∗∂θ∗′

.

Let us also denote by Is,s̃ the entry of I corresponding to parameters s and s̃.

First consider two parameters s, s̃ ∈ θ̃ and let As = ∂A
∂s
A−1, Bs = ∂A

∂s
A−1µ −

µ∂A
∂s
A−1, As,s̃ =

∂2A
∂s∂s̃

A−1, Bs,s̃ =
∂2A
∂s∂s̃

A−1µ− µ ∂2A
∂s∂s̃

A−1. We have the following:

iT,t = −∂
2∆ℓt
∂s∂s̃

(θ0) =

(
Asεt +

1√
T
BsUt−1

)′

Σ−1

(
As̃εt +

1√
T
Bs̃Ut−1

)
+

+ε′tΣ
−1

(
Ass̃εt +

1√
T
Bss̃Ut−1

)
+ trace(AsAs̃)− trace(As,s̃) =

=
{
ε′tA

′
sΣ

−1As̃εt + trace(AsAs̃)
}
+ trace

[
(εtε

′
t − Σ)Σ−1Ass̃

]
+Op(1/T ). (S6)

As a result we have

Iss̃ = E
{
ε′tA

′
sΣ

−1As̃εt + trace(AsAs̃)
}
= trace(ΣA′

s̃Σ
−1As) + trace(AsAs̃).

Let us define Cs = Σ−1/2AsΣ
1/2, then

Iss̃ = trace(C ′
s̃Cs) + trace(Cs̃Cs) = trace(DsDs̃),

where Ds =
1√
2
(Cs + C ′

s) is a symmetric matrix.

In fact, all entries of the limit of the normalized Fisher information matrix I have

this form. Consider the entry corresponding to s ∈ θ̃ and a variance σ2
i :

−∂2∆ℓt
∂s∂σ2

i

(θ0) = −εit
σ4
i

(Asεt +
1√
T
BsUt−1)i

where the sub-index i stands for the i-th component. As a result,

Is,i = trace(ΣMiΣ
−1As)

where Mi is matrix that has all entries equal to zero except entry ii which is − 1
σ2
i
.

Matrix Σ−1/2MiΣ
1/2 is symmetric. Define Di =

1√
2
Σ−1/2MiΣ

1/2.
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Thus, for any two parameters s and s̃ out of θ∗ = (θ̃, σ2
1, σ

2
2), the entry of the

information matrix corresponding to this pair is

Is,s̃ = trace(DsDs̃),

and all matrices Ds are symmetric 2 × 2 matrices. Because these matrices are sym-

metric

trace(DsDs̃) =
∑
i,k

(Ds)ik(Ds̃)ik = (vec(Ds))
′vec(Ds̃).

Since Ds is symmetric there are two repeating entries. Let us define D∗
s to be 3 × 1

vector such that

trace(DsDs̃) = (D∗
s)

′D∗
s̃ .

If we put all the vectors D∗
s into one matrix D (of dimension 3× 4), we get

I = D′D

and so can see that I is a 4 × 4 matrix of rank three, and the degenerate direction

is the direction perpendicular to D∗
s for all s ∈ θ∗. Call this direction α. Consider a

linear combination of the parameters α′θ∗ and note that the limit of the normalized

Fisher information along this direction is Iα = α′Iα = α′D′Dα = 0.

The expression for I is obtained as the expectation of the negative second deriva-

tive. Given the second information equality I is also equal to the limit of the nor-

malized covariance matrix of the score. From the formula for the score (S4) we have

that for Ss = trace ((εtε
′
t − Σ)Σ−1As),

cov(Ss, Ss̃) = (D∗
s)

′D∗
s̃ ,

where D∗
s is a 3× 1 vector-function of As and Σ only (described above).

The Hessian is IT =
∑T

t=1 iT,t, where the explicit formula for iT,t is given in (S6).

We can see that :(
1

T
IT − I

)
s,s̃

=
1

T

T∑
t=1

trace
[
(εtε

′
t − Σ)Σ−1Ass̃

]
+Op(1/T ).
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The summands in the expression above have the same form as random variables Ss.

As a result we have:

lim
T→∞

Tcov

((
1

T
IT − I

)
s,s̃

,

(
1

T
IT − I

)
r,r̃

)
= (D∗

s,s̃)
′D∗

r,r̃,

where D∗
s,s̃ is 3 × 1 and constructed from As,s̃ in exactly the same manner as D∗

s is

constructed from As.

Consider the direction α = (αs)s∈θ such that α′Iα = 0 and note that

lim
T→∞

Tvar

(
α′
(
1

T
IT − I

)
α

)
= lim

T→∞
var

∑
s,s̃

(
1

T
IT − I

)
s,s̃

αsαs̃

 =

=
∑
s,s̃

∑
r,r̃

(D∗
s,s̃)

′D∗
r,r̃αsαs̃αrαr̃ =

∥∥∥∥∥∥
∑
s,s̃

D∗
s,s̃αsαs̃

∥∥∥∥∥∥
2

.

In general the last expression is non-zero. For example, assume that Σ is identity

matrix. Then the last expression is equal to zero if any only if the second derivative

of matrix A+A′ along direction α is equal to zero. This is obviously true if for example

A is a linear function of the parameter. In general, however, for non-linear functions

the second derivative along the special degenerate direction does not have to be zero,

and thus the stochasticity of IT along this direction is non-trivial asymptotically.

S3.4 Assumptions 1-4

Assumption 1. Given the formula of score stated in equation (S5) it is easy to see

that Assumption 1 holds.

Let us denote β = θ∗ = (θ̃, σ2
1, σ

2
2), α = (ρ, δ). Below we show that Assumptions

2-4 hold for testing H0 : β = β0 with the nuisance parameter α.

Assumption 2. Denote e1 = (1, 0)′ and e2 = (0, 1)′. Then Λ = ρe1e
′
1 + δe2e

′
2. It is

easy to see that

∂ℓT
∂ρ

=
T∑
t=1

U ′
t−1e1e

′
1Σ

−1εt;
∂ℓT
∂δ

=
T∑
t=1

U ′
t−1e2e

′
2Σ

−1εt.
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We can also note that

−∂
2ℓT
∂ρ2

=
T∑
t=1

U ′
t−1e1e

′
1Σ

−1e1e
′
1Ut−1; − ∂2ℓT

∂δ2
=

T∑
t=1

U ′
t−1e2e

′
2Σ

−1e2e
′
2Ut−1

and

− ∂2ℓT
∂ρ∂δ

=
T∑
t=1

U ′
t−1e1e

′
1Σ

−1e2e
′
2Ut−1.

It is easy to see that the Law of Large Numbers implies that 1
T

∂2ℓT
∂α∂α′ and

1
T

∑T
t=1

∂∆ℓt
∂α

(
∂∆ℓt
∂α

)′
converge to the same matrix  EU2

t−1,1

σ2
1

0

0
EU2

t−1,2

σ2
2

 .

Thus Assumption 2(a) holds. Assumption 2(b) holds trivially since the third deriva-

tive of ℓT with respect to α is zero. We also notice that estimator α̂(β0) is the usual

OLS estimator, as such Assumption 2(c) holds trivially.

Assumption 3. We need only to check that some form of the CLT holds for the

terms in the martingale Aαβ. Here we check one term, all others can be checked in

the same manner. One can easily check that for s ∈ θ̃

iρ,s,t = −∂
2∆ℓt
∂ρ∂s

= U ′
t−1Ase1e

′
1Σ

−1εt + U ′
t−1e1e

′
1Σ

−1Asεt +
1√
T
U ′
t−1e1e

′
1Σ

−1BsUt−1

while the score is

∂∆ℓt
∂ρ

= U ′
t−1e1e

′
1Σ

−1εt;

∂∆ℓt
∂s

= ε′tΣ
−1Asεt − trace(As) +

1√
T
ε′tΣ

−1BsUt−1

As a result,

1√
T
Aρ,s,T = trace

(
1√
T

T∑
t=1

εtU
′
t−1

(
Ase1e

′
1Σ

−1 + e1e
′
1Σ

−1As

))
−

− 1√
T

T∑
t=1

U ′
t−1e1e

′
1Σ

−1εttrace
(
(εtε

′
t − Σ)Σ−1As

)
+Op(1/T ).
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We can see that the CLT holds for the last expression, and Kαi,βj ,T = 1√
T
. For the

terms that involve α and σ2
i we notice that

Iρ,σ2
1 ,T

= −
T∑
t=1

U1,t−1ε1,t
σ4
1

and Iρ,σ2
2 ,T

= 0. So, 1√
T
Iρ,σ2

1 ,T
converges to a Gaussian random variable, and one can

verify that the corresponding JT entries converge in probability.

Assumption 4. Assumption (a) holds trivially since Kαi,T = 1√
T
, Kαi,βj ,T = 1√

T
,

while Kβj ,T is bounded (it is 1 for some directions while 1√
T
for the others).

For part (b) we notice that Λαi,αj ,β is a linear combination of terms which are

products of εt and Ut−1 up to order 4. As a result all terms in [Λαi,αj ,β] satisfy the

Law of Large Numbers and thus 1
T
[Λαi,αj ,β] →p const. Thus, it is easy to see that the

expression in Assumption 4(b) has too strong a normalization and converges to zero.

Assumption (c) holds trivially since Iα,α(α, β) = Iα,α(α0, β) for any α, α0 and β.

S4 Additional example of weak identification: Weak

VAR

The identification failure observed in our main example in Section 2 of the paper when

ρ = δ results from the interplay of two problems, one of which is reduced dynamics,

discussed in Section S3, while the other is that the structural VAR loses one degree of

identification due to the fact that the 2× 2 matrix C(θ) has rank 1. The example of

this section deals with the second problem, in particular, we consider structural VAR

models where part of parameter vector is weakly identified. Fernández-Villaverde et

al. (2007) discuss the relationship between linearized DGSE models and VARs. To

model weak identification in this context we follow the approach of Stock and Wright

(2000) and consider a set of drifting functions that become asymptotically flat in

some directions.
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Consider an exponential family with joint density of the form

fT (XT |θ) = h(XT ) exp

{
ηT (θ)

′
T∑
t=1

H(xt)− TA(ηT (θ))

}
. (S7)

Here η is a p−dimensional reduced-form parameter, while
∑T

t=1H(xt) is a p−dimensional

sufficient statistic. Model (S7) covers structural VAR models for η a set of reduced-

form VAR coefficients, structural variance terms, and functions thereof and xt =

(Y ′
t , ..., Y

′
t−p)

′, where Yt is a vector of data observed at time t, and the sufficient

statistics are the sample auto-covariances of the Yt.

Suppose that we can partition the structural coefficient θ into sub-vectors α and

β, θ = (α′, β′)′. For this example we consider an embedding similar to that of Stock

and Wright (2000) for weak GMM, which we use to model β as weakly identified. In

particular, we assume that

ηT (θ) = m(α) +
1√
T
m̃(α, β),

where ∂
∂α′m(α0) and

∂
∂θ′
ηT (θ0) are matrices of full rank kα and k = kα+kβ correspond-

ingly. Assume that an infinitesimality condition holds for the sequence
{

1√
T
H(xt)

}T

t=1

and a law of large numbers holds for H(xt)H(xt)
′ (i.e. 1

T

∑T
t=1H(xt)H(xt)

′ →p

E [H(xt)H(xt)
′]).

Let Ȧ and Ä denote the first and the second derivatives of A with respect to η

(they are a p × 1 vector and p × p matrix respectively). From the normalization in

the exponential family we have that E[H(xt)] = Ȧ and V ar(H(xt)) = Ä. Assume

that the parameter space for θ is compact, that θ0 lies in the interior of the parameter

space, and that the function Q(α) = m(α)Ȧ(m(α0))−A(m(α)) is uniquely maximized

at the point α0.

The score is

ST =
T∑
t=1

(
H(xt)− Ȧ

)′ ∂m(α)
∂α

+ 1√
T

∂m̃(α,β)
∂α

1√
T

∂m̃(α,β)
∂β

 .

Consider a set of normalizing matrices KT =

 1√
T
Idkα 0

0 Idkβ

. It is easy to see
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that Assumption 1 is trivially satisfied. In particular, since

1

T

T∑
t=1

(
H(xt)− Ȧ

)(
H(xt)− Ȧ

)′
→p Ä,

we have that KTJTK
′
T converges in probability to a positive definite matrix.

Now consider the behavior of the Hessian. It is easy to see that

(IT )ij = −
T∑
t=1

(
H(xt)− Ȧ

)′ ∂2ηT
∂θi∂θj

+ T

(
∂ηT
∂θi

)′

Ä
∂ηT
∂θj

. (S8)

Since V ar(H(xt)) = Ä, we have

lim
T→∞

KTT

(
∂ηT
∂θ

)′

Ä
∂ηT
∂θ

K ′
T = lim

T→∞
KTJTK

′
T = lim

T→∞
KTITK

′
T .

That is, the second term in (S8) reflects the Fisher information. The first term in

(S8) also matters asymptotically, however. In particular,

(KT (IT − JT )K
′
T )βi,βj

=
1√
T

T∑
t=1

(
H(xt)− Ȧ

)′ ∂2m̃

∂βi∂βj
⇒ ς ′

∂2m̃

∂βi∂βj
,

where ς is a Gaussian vector. Thus KT ITK
′
T and KTJTK

′
T have different asymptotic

limits and KT (IT −JT )K ′
T converges in distribution to a matrix

 0kα×kα 0kα×kβ

0kβ×kα ξ

 ,

where ξ is kβ × kβ symmetric matrix with Gaussian entries.

S4.1 Assumptions 2-4

Below we check Assumptions 2-4 for testing hypothesis H0 : β = β0 with strongly

identified nuisance parameter α.

Assumption 2. Assumption 2(a) has been checked above. For the Assumption

2(b) we assume that non-stochastic functions m(α), m̃(α, β0) and A(ηT (α, β0)) have

third derivatives with respect to α that are bounded in absolute value over the whole

parameter space for α. Indeed,

Kα,T Iαi,αj ,T (α, β0)Kα,T = −

(
1

T

T∑
t=1

H(xt)

)
∂2ηT
∂αi∂αj

− Ä
∂2ηT
∂αi∂αj

+

(
∂ηT
∂αi

)′

Ä
∂ηT
∂αj
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The last two terms are non-stochastic as well as term ∂2ηT
∂αi∂αj

, the change in these terms

when they evaluated at α0 and α such that K−1
α,T |α − α0| ≤ δ is of order O(Kα,T ) =

O( 1√
T
). The stochastic part of the first term 1

T

∑T
t=1H(xt) does not depend on

α and converges to a constant by the Law of Large Numbers. Assumption 2(c)

trivially follows from classical results, since Q̂(α) = 1
T
ℓT (α, β0) uniformly converges

to Q(α) = m(α)Ȧ(m(α0))− A(m(α)).

Assumption 3. It is easy to see that

Aαi,βj
= −

(
1√
T

T∑
t=1

(H(xt)− Ȧ)

)′
∂2

∂αi∂βj
−

−
(
∂ηT
α

)′
(

1√
T

T∑
t=1

((H(xt)− Ȧ)(H(xt)− Ȧ)− Ä)

)
∂m̃

∂βj

Assume that the Law of Large Numbers holds for the fourth power of H(xt), then

Assumption 3 holds with Kαi,βj ,T = 1.

Assumption 4. Assumption 4 (a) holds trivially. For Assumption 4(b) we assume

that the Law of Large Numbers holds for any products of any up to 6 components

of stochastic vectors H(xt), in such a case 4(b) holds due to the fact that 1
T
[Λαi,αj ,βn ]

converges to a constant, while Kαi,TKαj ,TKβn,T = 1
T
. For Assumption 4(c) we assume

that ∂3m̃(α,β0)
∂α2∂β

is bounded everywhere.

S5 Additional Example: regime switching model

So far we have discussed only log-linearized DSGE models, which have been the

primary focus of the DSGE literature to date. However, the robust tests we propose

are applicable to non-linear models as well.

One class of non-linear DSGE models in the literature is that of models with

regime switching, for example, Schorfheide (2005) whose model includes an exogenous

state variable that determines the target inflation rate and the variance of Taylor-rule

shocks. Such regime-switching mechanisms can produce additional weak identification
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issues: for example, if the two regimes produce similar behavior for the observable

variables, then the regime-switching probabilities will be weakly identified.

One difficulty of working with non-linear DSGE models is that it is often chal-

lenging to calculate the likelihood function and its derivatives, which we will need to

evaluate our tests. For example, the frequently-used particle filter does not typically

allow us to approximate derivatives to a sufficient level of accuracy. Nonetheless,

there are some nonlinear models where the likelihood can be approximated using

other methods which allow us to calculate derivatives. For examples, we refer the

reader to Schorfheide (2005) as well as Amisano and Tristani (2011), who derive the

exact likelihood of a second-order approximation for a class of models with regime-

switching.

Below, we use a toy example to illustrate how regime switching models can gener-

ate weak identification, where to simplify the treatment we abstract from time-series

behavior and consider an i.i.d. model.

We assume that we have a sampleXt, t = 1, ..., T drawn i.i.d. from the distribution

f(·;φ1, φ2, δ) = δf(·;φ1) + (1− δ)f(·;φ2),

where the one-dimensional parameters φ1 and φ2 belong to an open set Ω. To resolve

the “label-switching” problem, assume that 0 < δ < 1/2. Consider a weak identifi-

cation embedding in which the parameters φ1 and δ are fixed while the parameter

φ2,T = φ1 +
C√
T
is drifting to the point of non-identification (φ1 = φ2).

Assume that for almost every realization of Xt the cdf f(Xt;φ) is four times

continuously differentiable in φ ∈ Ω. Assume further that there exists a random

variable η with the finite second moment such that almost surely

max
i=1,...,4

{∣∣∣∣ f(Xt, φ)

f(Xt, φ1)

∣∣∣∣ , ∣∣∣∣f (i)(Xt, φ)

f(Xt, φ1)

∣∣∣∣} ≤ η

for all φ ∈ Ω, where f (i) stands for i-th derivative with respect to φ. We also assume

that f (i)(Xt, φ1) for i ∈ {1, 2, 3} are linearly independent random variables under

f(Xt, φ1).
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S5.1 Assumption 1.

The score is

ST =
T∑
t=1

1

δf(Xt;φ1) + (1− δ)f(Xt;φ2)


δf (1)(Xt;φ1)

(1− δ)f (1)(Xt;φ2)

f(Xt;φ1)− f(Xt;φ2)

 =

=
T∑
t=1

1

ωt


δf (1)(Xt;φ1)

(1− δ)
(
f (1)(Xt;φ1) + f (2)(Xt;φ1)

C√
T
+ 1

2
f (3)(Xt;φ1)

C2

T
+Op(T

−3/2)
)

−f (1)(Xt;φ1)
C√
T
− f (2)(Xt;φ1)

C2

2T
− 1

6
f (3)(Xt;φ1)

C3

T 3/2 +Op(T
−2)

 ,

where ωt = δf(Xt;φ1) + (1− δ)f(Xt;φ2). We may notice that
1

δ
√
T

0 0

2
δ

1
1−δ

3
√
T

C

C
√
T

2δ
C
√
T

2(1−δ)
T

ST =
1√
T

T∑
t=1

1

ωt


f (1)(Xt;φ1)

−C
2
f (2)(Xt;φ1) +Op(T

−1/2)

C3

12
f (3)(Xt;φ1) +Op(T

−1/2)

 .

Let us define

KT =


1

δ
√
T

0 0

2
δ

1
1−δ

3
√
T

C

C
√
T

2δ
C
√
T

2(1−δ)
T


then by the Law of Large Numbers

KTJTK
′
T →p E


1

ω2
t


f (1)(Xt;φ1)

−C
2
f (2)(Xt;φ1)

C3

12
f (3)(Xt;φ1)




f (1)(Xt;φ1)

−C
2
f (2)(Xt;φ1)

C3

12
f (3)(Xt;φ1)


′

where the limit is a finite positive definite matrix. We also may notice that the

summands KT sT,t satisfy Lindeberg’s condition. As a result Assumption 1 of the

paper is satisfied.
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S5.2 Hessian

Now, let us look at the Hessian IT . One can show that

JT − IT =
T∑
t=1

1

ωt


δf (2)(Xt, φ1) 0 f (1)(Xt, φ1)

0 (1− δ)f (2)(Xt, φ2) −f (1)(Xt, φ2)

f (1)(Xt, φ1) −f (1)(Xt, φ2) 0

 .

From the logic of the information equality it follows that

E

(
f (1)(Xt, φ)

ωt

)
= E

(
f (2)(Xt, φ)

ωt

)
= 0

for any φ. Thus we have the following Central Limit Theorem:

1√
T

T∑
t=1

1

ωt

(f (1)(Xt, φ1), f
(2)(Xt, φ1)) ⇒ (ξ1, ξ2)

where (ξ1, ξ2) is a Gaussian vector with the covariance matrix E

 (
f (1)

f

)2
f (1)f (2)

f2

f (1)f (2)

f2

(
f (2)

f

)2
.

Further

1√
T
(JT − IT ) ⇒


δξ2 0 ξ1

0 (1− δ)ξ2 −ξ1
ξ1 −ξ1 0


from which it is easy to see that the matrixKT (JT−IT )K ′

T is asymptotically explosive,

and thus that IT and JT have asymptotically different behavior.

S6 A simplified non-linear model.

In this section we discuss an analytically solvable model with regime-switching that

may suffer from identification issues.

Schorfheide (2005) discusses a model with learning and monetary policy shifts,

whose log-linearized equilibrium conditions can be written:


xt = Etxt+1 − τ (rt − Etπt+1)− Et∆gt+1 + τEtzt+1,

πt = βEtπt+1 + κ (xt − gt) ,

rt = (1− ρr)ψπt + ρrrt−1 + (1− ρr) (1− ψ) π∗
t (st) + εr,t
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and 
εg,t

εz,t

εr,t

 ∼ N

0,


σ2
g 0 0

0 σ2
z 0

0 0 σ2
r(st)


 ,

where st ∈ {1, 2} is an unobserved state that evolves exogenously according to a first

order Markov chain with transition matrix

P =

 ϕ1 1− ϕ2

1− ϕ1 ϕ2

 .
Two parameters π∗

t (st) and σ
2
r(st) are functions of the state variable.

To solve the model analytically we make a few simplifying assumptions. In partic-

ular, we assume that π∗
t (1) = π∗

t (2) = 0, so there is no change in the target inflation

across states. Let us further assume that τ = 1, ρr = 0 and ψ = 1
β
. Under these

assumptions the model becomes
xt = Etxt+1 − rt + Etπt+1 + (1− ρg) gt + ρzzt,

πt = βEtπt+1 + κ (xt − gt) ,

rt =
1
β
πt + εr,t

where the only state-dependence is regime-switching in the variance of εr,t. We have

used the fact that Etzt+1 = ρzzt and Et∆gt+1 = Et [gt+1 − gt] = (ρg − 1) gt.

We can solve this model forward in the same manner as the DSGE example in

Section S1. We can write the solution in the following form:

Yt =


xt

πt

rt

 =


1 βρz

κ+β−βρz
− β

κ+β

0 β2κρz
(κ+β−βρz)(1−βρz)

− βκ
κ+β

0 βκρz
(κ+β−βρz)(1−βρz)

β
κ+β




gt

zt

εr,t

 .

S6.1 Identification failure

Let us impose that 0 < β, ρg, ρz < 1, κ > 0, and assume all variances are strictly

positive. Note that conditional on the state st

V ar (Yt| st) = C(θ)


σ2
g

1−ρg
0 0

0 σ2
z

1−ρz
0

0 0 σ2
r(st)

C(θ)′
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while the auto-covariance of Yt with Yt−j for j > 0 is

Cov (Yt, Yt−j| st) = C(θ)


ρjg

σ2
g

1−ρg
0 0

0 ρjz
σ2
z

1−ρz
0

0 0 0

C(θ)′.
The state st has no effect on the auto-covariance of Yt, but instead matters only

through the variance. In the special case where the variance of εr,t is the same across

the two states, σ2
r(1) = σ2

r(2), the state has no effect on the covariance structure

of {Yt}∞t=1. Since {Yt}∞t=1 is jointly normal in this case, the covariance function is

sufficient for all parameters, so this implies that for σ2
r(1) = σ2

r(2) the state transition

probabilities ϕ1 and ϕ2 are unidentified.

S7 Proof of Lemma 2 from the paper

Take any ε > 0,∣∣∣∣∣Ki,TKj,TKl,T

T∑
t=1

mi,tmj,tml,t

∣∣∣∣∣ ≤ max
t

|Ki,Tmi,t|

∣∣∣∣∣Kj,TKl,T

T∑
t=1

mj,tml,t

∣∣∣∣∣ =
= max

t
|Ki,Tmi,t| |Kj,TKl,T [Mj,Ml]T | .

Assumption 3(b) implies that Kj,TKl,T [Mj,Ml]T →p Σj,l is bounded in probability.

E
(
max

t
|Ki,Tmi,t|

)
≤ ε+ E

(
Ki,T max

t
|mi,t|I{|Ki,Tmi,t| > ε}

)
≤

≤ ε+
∑
t

E (Ki,T |mi,t|I{|Ki,Tmi,t| > ε}) .

The last term converges to 0 by Assumption 3(a). �
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