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SUMMARY

There are many important example of v^-consistently estimable functionals that are

interesting in econometrics, such as average derivatives and nonparametric consumer

surplus. Corresponding estimators may require undersmoothing to achieve v^-consistency,

due to first order bias in the expected influence function. We give a general bias

correction that can be added to a plug-in estimator to remove the need for undersmoothing

and improve its higher order properties. We also describe a bootstrap smoothing

correction for the nonparametric estimator that achieves analogous results for the

plug-in estimator and show that idempotent transformations of the empirical distribution

need not require undersmoothing for -/n-consistency. We find that this bias correction

can lead to large efficiency improvements and lower sensitivity to bandwidth choice.
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1. Introduction

Functionals of nonparametric estimators that can be /n-consistent have important

applications in econometrics, including average derivatives and average consumer surplus.

Most functional estimators are based on nonparametric estimation and many require

"undersmoothing" of the nonparametric estimator to achieve /n-consistency, meaning the

bias of the nonparametric estimator shrinks faster than its variance. In this paper we

show that this requirement can be removed, by either adding a bias correction term to the

functional estimator or using a smoothing correction for the nonparametric estimator,

leading to v^-consistent functional estimation without undersmoothing. These

modifications also lead to functional estimators with improved higher-order efficiency,

that may attain ^-consistency when others do not.

The source of this improvement is a reduction in the bias of the functional

estimator. Many previous functional estimators have a bias that is the same order as the

bias of the density estimator. In contrast, the estimators we develop have a bias that

is the same order as the product of the bias of the nonparametric estimator with another

bias term. The other bias term is that for the influence function of the estimator,

which is the mean-square derivative of the functional. We refer to the corresponding

reduction in bias order as a bias complementarity, with the influence function bias term

complementing the nonparametric bias term.

The properties of the influence function play a key role in our analysis. When the

influence function is smooth, in certain ways to be made precise below, the influence

function bias term will be small enough that the need for undersmoothing will be removed.

For some of the estimators we consider, the influence function will be required to be

smooth as a function of the density. This is a regularity condition that is often

satisfied. For other estimators the influence function will be required to be smooth as

a function of the data, a condition that does not hold for some functionals.

We consider two approaches to bias corrected functional estimation. Our first
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approach is to add to the functional estimator a bias correction, consisting of the

difference of integrals of an influence function estimator over the empirical

distribution and the nonparametric estimate. This additional term does not affect the

asymptotic distribution of the estimator in the Vn'-consistent case but it does . lead to

improved higher order properties. Our second approach is to do a bootstrap smoothing

correction to the nonparametric estimator before using it in functional estimation. This

correction consists of replacing a nonparametric distribution estimator F by F = F -

(G - F) = 2F - G, where G is an estimator obtained from F by the same transformation

used to obtain F from the empirical distribution. We show that using this estimator

removes the need for undersmoothing when the influence function is smooth enough. For

kernel estimators we show that this smoothing correction leads to a particular kind of

kernel, the "twicing" kernel described below. We also show that undersmoothing will not

be needed for /n-consistency when F is an idempotent transformation of the empirical

distribution, so that G = F and F = F, and the bootstrap correction is built into the

original estimator. This idempotent estimator class includes orthogonal series density

estimators, series estimators of conditional expectations, and sieve estimators, and thus

provides an explanation for the lack of an undersmoothing requirement for these

estimators.

We emphasize that the bias reduction we consider does not come from reducing the

bias of the density estimator. Such higher order bias reductions (e.g. via higher-order

kernels) do not remove the requirement that bias shrinks faster than variance for the

nonparametric estimator. That requirement can only be removed if the bias of the

functional estimator is smaller order than the bias of the nonparametric estimator. This

reduction in bias is brought about by the bias complementarity we will discuss.

The bias reduction may be accompanied by some increase in the variance of the

functional estimator. Although the variance still shrinks at the same rate, the size of

the variance will be larger. In large samples the reduction in bias will allow

adjustment of the smoothing parameters so that the variance is smaller, although the bias
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reduction could increase the small sample variance of the estimator. Bias reductions for

nonparametric estimators (like higher order kernels) have similar properties, except that

they depend on higher order properties of the nonparametric estimator whereas our

functional bias reduction depends on the properties of the influence function. We find

that in a simple example the bias correction can give a large efficiency gain and reduce

sensitivity to the choice of bandwidth.

The type of estimator we consider has antecedents in the literature. Bickel and

Ritov (1988) developed an estimator for the average density that is v^-consistent under

minimal smoothness conditions. This estimator has a similar form to the bias corrected

functional discussed here, as do estimators in Pastuchova and Hasminskii (1989). Our

contribution is to give a general version of this type of estimator and show the

improvement in its properties. Also, we show how bootstrap corrected nonparametric

estimators remove the need for undersmoothing, and hence that undersmoothing is not

needed for idempotent nonparametric estimators.

Section Two of the paper describes the general form of the bias corrected functional

we consider, and gives results for kernel estimators. Section Three describes a

nonparametric estimator with a bootstrap correction for smoothing and its use for

functional estimation. Section Four considers a special class of linear estimators where

mean-square error calculations are feasible, showing more precisely the higher order

effect of the bias correction, and giving exact MSE calculations for one case. Section

Five analyzes semiparametric m-estimators, shows that undersmoothing is not needed when

the nonparametric estimator has no effect on the limiting distribution, and derives

results for kernel estimation with a smoothing correction. Section Six concludes.
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2. Bias Corrected Functional Estimation

To focus on the essential features of the problem at hand it is useful to begin our

discussion with a linear functional fi(F) = J5(2)F(dz) where 6{z) is known and F

denotes some unsigned measure (charge) on z. Although this case is relatively simple,

the role of undersmoothing in achieving v^-consistency is easily understood here. Let F

be some nonparametric estimator of the true distribution F . For example, F could

correspond to a nonparametric density estimator f, with F(z) = Jl(u:£z)f(u)du and

/j(F) = J5(z)f(z)dz. Consider the estimator fi = ;i(F) = j5(z)F(dz) and let F(z) =

E[F(z)]. Assuming that the order of integration can be interchanged, the bias of this

estimator is

(2.1) Kill] - Mq = J'5(z)F(dz) - J'5(z)FQ(dz) = SS{z){F-F^){dz).

If the order of this bias is the same as the order of the pointwise bias of the

nonparametric density estimator, as occurs in many cases, then Vn'-consistency will

involve the pointwise bias shrinking faster than l/-/n. Furthermore, the pointwise

standard deviation of a nonparametric density estimator generally shrinks no faster than

l/'/n, so that /n-consistency will involve the pointwise bias shrinking faster than the

pointwise standard deviation. This property is referred to as undersmoothing, since less

bias is generally associated with less smoothing and the fastest shrinkage of mean square

error is generally associated with bias and standard deviation shrinking at the same

rate.

A way to reduce the bias of fi is to form an estimator of the bias term in equation

(2.1) and subtract it off. In this simplest case there is an unbiased estimator

J'5(z)F(dz) - 5]._ 5(z.)/n of the bias term, and subtracting it off gives

(2.2) M = M + I.",6(z.)/n - j5(z)F(dz) = J].",5(z.)/n,^^1=1 1 ^1=1 1
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the usual unbiased estimator.

For nonlinear functionals the same basic idea can be applied to a first-order bias

term. To describe this approach, suppose that ju(F) has some restricted domain S^ to

which both F(z) and Fp,(z) belong. For example, S^ might be restricted to have

elements that are absolutely continuous with respect to Lebesgue measure, with a density

f corresponding to each F e ?. Also suppose that there is an expansion of /i(F) on 5^

such that

(2.3) m(F) = )li(Fq) + j5(z,FQ)(F-FQ)(dz) + R(F-Fq.Fq), |R(F-Fq,Fq)| = odlF-F^II),

where IIFll denotes a function semi-norm. Let P denote the empirical distribution,

5(z) = 5(z,F ), and i/((z) = 5(z)-E[5(z)]. Then the plug-in estimator fi = ^(F)

satisfies

(2.4) Vniii - tij = y.",i//(z.)/'/n + R + B , R = \/nR(F-F^,F^), B = /Kj5(z)(F-P)(dz).
^1=1 1 n n n n

The first order bias of this estimator will be E[B ] = /nJ"5(z)(F-F„)(dz), with
n

R(F-F ,F ) including higher order terms. A bias correction can be formed by subtracting

an estimate of this first order term. If 5(z) were known, an unbiased estimate of this

first order term would be /5{z)F(dz) - y. ,5(z.)/n. A feasible version of this bias
^1=1 1

estimate can be formed by replacing 6(z) with an estimator 6(z). Then subtracting the

corresponding bias estimator gives

(2.5) M = A + Ei^^Zi^/n - j5(z)F{dz) = A + J'5(z)(P-F)(dz).

Unlike the linear functional case, this estimator will not be exactly unbiased, because

of the higher order term R(F-F ,F ) and the estimation of 5(z). Nevertheless,

because we have subtracted an estimator of the first-order bias of fi, this estimator

should have smaller bias than ji. In fact, as discussed below, it has an asymptotic

expansion that is the same as ji except one of the remainder terms is of smaller order.
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A simple example is the average density. Suppose tha. 3- is restricted to contain

only absolutely continuous elements with square integrable densities and let fi(F) =

2 "

J'f(2) dz. Let f and f denote the densities corresponding to F and F . Note that

m(F) = jj(F ) + SZT^{z)ir{z)-r^{z)]dz + J[f(z)-fQ(2)]^dz. so that equation (2.3) is

1/2 " « ^

satisfied with 6(z,F ) = 2fQ(z), and IIFII = fi(F) . Letting 5(z) = 6(z,F) = 2f(z),

a bias corrected estimator is given by

(2.6) M = Shz)'^dz + J-2f(z)(P-F)(dz) = 2j].y(z.)/n - J-f(z)^dz.

In this example the bias corrected estimator is a linear combination of two well known

2
estimators, the plug-in estimator J'f(z) dz and the average estimated density

I.",f(z.)/n.
^1=1 1

To see the effect of the bias correction in the general case we can compare

remainder terms. We have

(2.7) V^{^ - Mn) = I.",<A(z.)/v^ + R + D , D = v^J[5(z)-5(z)](F-P)(dz).
^1=1 1 n n n

The only difference between ii and ji is that the remainder term B has been replaced

by D . The remainder term D should be of smaller order than B under appropriate
•^ n n n *^^ ^

.

regularity conditions, because the fixed term 5{z) in B has been replaced by

6(z)-5(z) that is shrinking when 6(z) is consistent. Thus, /Lt has the same expansion

as fi except that one remainder term is smaller, and in this sense improves upon /i. In

particular, the remainder term D is second-order, in contrast with the first-order

remainder B , and so may have smaller order than the pointwise bias of f.

Consequently, undersmoothing may not be needed for Vn-consistency of fi.

The form of ju given in equation (2.5) is like an efficient estimator that is

obtained in one step from \i,

fl = M + l^^k-z-Vn, 0(z) = 6(z) - j5(u)F(du).
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In the semiparametric efficiency literature this procedure is used to improve asymptotic

efficiency (e.g. see Bickel et. al., 1990), in the sense of lowering the asymptotic

variance. Here it does not affect the asymptotic variance of the estimator when R ,

n

B , and D all converge in probability to zero. Instead, it lowers the size of
n n

one of the remainder terms, speeding up the convergence rate of the estimator when B

dominates, improving efficiency in this sense. Although it is difficult to derive

exact convergence rates, because of the nonlinearity of D and R , we can compare

conditions for V?i-consistency, which we do in this Section. This comparison is one

important aspect of the relative convergence rates for ii and fi. In Section Four we

consider a different class of estimators where it is possible to compare convergence

rates for the original and bias corrected estimators.

To explain this estimator and its properties it is helpful to discuss the role of

the expansion in equation (2.3), how to form 5(z), and to compare conditions for

V^-consistency of /J and /j.

2.1 The Functional Expansion

The formation of this bias corrected estimator, and its properties, depend on the

expansion of equation (2.3). Equation (2.3) actually embodies two conditions; i) ^i(F)

is Frechet differentiable with respect to IIFII; ii) there is an integral representation

for the derivative. Although it is well known that Frechet differentiability does not

generally hold over a domain that includes empirical distributions, our allowance of a

restricted domain and for a choice of semi-norm makes this hypothesis quite general.

Many functionals will have Frechet derivatives when ^ and II • II are appropriately

2
specified. For example, we noted above that fi(F) = J"f(z) dz is Frechet differentiable

for ? and IIFII as previously specified.

The other condition embodied in equation (2.3), the integral representation for the

linear term, limits the scope of our results to functionals that satisfy the necessary
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conditions for v'n-consistent estimability. To see why, consider any parametric family

{F } passing tiirough F at ^r = that is regular in the sense of Bickel et al
Q U

-1/2 1/2
(1990), with score S(z) = 2f-(z) 5f (z) /Sj- (where f (z) is a density for

J' 9'

F (z)), J'6(z,F^)^F (dz) is bounded as a function of n, and IIF -F^ll = 0(11^-11)). Then
r r y

°

it follows by Bickel et. al. (1990) that aX5(z,F^)F (dz)/a9' = E[5(z,F^)S(z)], so that
O 3^

by equation (2.3), fi(F ) is differentiable and
IS

(2.8) afi(F )/d'i = E[5(z,F^)S(z)],
y

where the derivatives are evaluated at zero. As shown by Van der Vaart (1991),

satisfaction of this equation for all regular parametric families is necessary for

existence of a (regular; see Van der Vaart, 1991) v^-consistent estimator of fi(F ).

Additional regularity conditions are often needed to attain Vn'-consistency (i.e. equation

(2.8) is only a necessary condition) as discussed in Bickel and Ritov (1988). Often

these conditions come in the form of smoothness conditions for F .

The 5(z,F ) term is referred to as the influence function, motivated by the

expansion of equation (2.7) where 6(z.,F ) gives the first-order effect, or

"influence," of an observation on the estimator /i. Also, we can think of 6(z,F ) as

the first-order effect on fi(F) of changing F, with /^(z.F )(F-F )(dz) in equation

(2.3) being analogous to the differential in multivariate calculus, and the influence

function 6(z,F ) to the gradient.

Estimation of the influence function is important for the bias correction, so it is

useful to have a way to calculate it for a given functional. One way is to look for

6(z,F-) that solves equation (2.8). Often, the solution to this equation can be

determined by manipulating 5/i(F )/dz using properties of derivatives so that it has the
tf

expected product form in equation (2.8), and recovering 6(z,F ) by inspection. For

2
example, for fi(F) = Jf(z) dz, differentiating under the integral gives 5fi(F )/5y =

5jf (z)^dz/53- = J2f„(z)[af (z)/arldz = E[2f„(z)ainf {z)/d-<f] = E[2f„(z)S(z)], so 6(z,F^)
3" O y y
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= 2f (z) satisfies equation (2.8), (a known result).

2.2 Implementing the Bias Correction

Implementing this bias correction in practice requires an estimator 6(z) of the

influence function. One general approach is to find the formula 5(z,F ) and then

plug in the estimator F to form 6(z) = 5(z,F). This was the approach followed to

obtain the bias corrected estimator of the integrated squared density in equation (2.6).

If the formula 6(z,F ) is very complicated (e.g. as in Hausman and Newey, 1995), it

might be more feasible to form 6(z) by another method.

A method of forming 5(z), that bypasses an explicit formula for 5(z,F), is

available for linear density estimators, where F(z) = J'l(u:£z)f(u)du and f(z) =

y. ,K(z,z.)/n. For example, kernel estimators have this form for k(z,z.) =
^^1=1 1 1

—

r

h K((z-z.)/h), where h is a bandwidth parameter with dependence on sample size

suppressed for notational convenience, r is the dimension of z, and K(u) is a kernel

function satisfying J'K(u)du = 1 and other properties. In this case a simple derivative

calculation can be used for the bias correction. Let A (u) = J"l(t£u)K:(t,z)dt, so that
z

F(*) = E-_i'^ (O/n. Let a denote a scalar. Suppose that equation (2.3) holds

i

uniformly in F and F and replace F by F + aA and F by F. Dividing

through by a, and assuming HA II is finite with probability one, as a —> 0,

[/i(F + aA ) - ^l{F)]/a = J'6(u,F)K(u,z)du + R(aA ,F)/a
z z

|R(aA ,F)/a| = o(allA ll)/a = o(a)/a = o(l).
z z

Therefore, at a = 0, 5fx(F + aA )/da = J'5(u,F)K(u,z)du. For many choices of »c(u,z),

5(z) = J"5(u,F)K(u,z)du should be close to 6(z,F) in large samples, and so 5(z)

could be used to estimate the influence function. Then inserting this estimator in

equation (2.5) and interchanging the order of differentiation and integration gives
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il = {1 + aj/LitF + aA ){P-F)(dz)/aa| ^.

Thus, a bias corrected estimator can be calculated by differentiating the difference of

the average and integrated functionals with respect to a small increment A in F.

This derivative could even be calculated numerically.

The influence function estimator 5(z) = 5fi(F + ccA ]/da was developed in Newey

(1994) for kernel estimators and applied in Hausman and Newey (1995) to solutions to

differential equations. It generalizes the delta-method estimator of a function of

sample means, in the sense that if F is an unknown constant (rather than a function)

and A (u) did not depend on u, so that F = Y.--A ^^i is a sample mean, then 6(z)

i

[afi(F)/aF]'A .

2.3 \/n-Consistency and Undersmoothing

Sufficient conditions for V^-consistency of each estimator are that the

corresponding remainder terms in equation (2.7) are o (1). We will consider each of

these remainder terms in sequence, beginning with R . The following condition allows us

to bound the size of R .

n

Assumption 1: There is a set of functions S- and a constant C such that F , F e 5^

with probability approaching one and for all F e S',

/i(F) = m(Fq) + J'6(z,FQ)(F-FQ)(dz) + R(F-Fq,F), |R(F-Fq,Fq)| ^ CIIF-FqII^.

This condition formalizes equation (2.3) plus imposes a requirement that the size of the

2
remainder be IIF-F II , which will hold when /i(F) is twice Frechet differentiable and

F is close enough to F (e.g. see Proposition 7.3.3 of Luenberger, 1969). Under this

-1/4
condition R = o (1) will follow from IIF-F„II = o (n ), i.e. F being more than

n p Op
1/4

n -consistent. This condition helps ensure that the nonlinearity remainder term
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R(F-F ,F ) is second order.

Consider next B = j5(z)(F-P)(dz). As previously discussed, E[B ] =
n n

/nJ"5(z)(F-F )(dz) —4 may require that the bias of F shrink faster than IZ-Zn. On

the other hand, the variance of B should go to zero under weak conditions. For

2
instance, for a linear density estimator, we have Var(B ) £ E[{J"5(u)K(u,z)du - 5(z)> ],

which will go to zero when J5(u)K(u,z)du converges in mean-square to 5(z).

The remainder term D of equation (2.7) is more complicated. It is helpful to

decompose it as

D =S +t, S =1^ {5)-v (5), V (d) = SdU){P-F){dz)/V^,nnnnnn n

t = -yHj[5(z)-5(z)](F-F^)(dz).
n

The order of S depends on the order of 5(z)-6(z) and the modulus of continuity of

the empirical process v (d). Precise conditions for S = o (1) are available in the
n n p

literature on empirical processes, e.g. see Van der Vaart and Wellner (1996). Also, it

may be possible to use the structure of 6(z) to show S = o (1) directly, as in the

kernel estimator results of Newey and McFadden (1994). Generally S = o (1) will not
n p

require undersmoothing, because S is a second-order term. Also, T is a

second-order term, being Vri times the product of the remainder for 6 and F, and so

should not require undersmoothing to be o (1).

Combining this analysis for the various remainder terms leads to conditions for

- -1/4
vn-consistency of the estimators. If F converges faster than n in the norm II • II

and VnE[B ] —> then ix should be /n-consistent. When the order of E[B ] is
n n

the same as the order of the pointwise bias, these conditions will require

undersmoothing. In contrast, /i will be v^-consistent without undersmoothing if both S

-1/4
and F converge faster than n and S = o (1).

n p

To obtain more precise results we consider kernel estimators, where F has a

density f(z) = Y. ,K, (z-z.)/n for K, (u) = K(u/h)/h . We also restrict the domain of
1=1 n 1 h
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IliF) to F that are absolutely continuous with density f and specify the norm IIFII

to be a Sobolev norm in the derivatives of f. Let z be r-dimensional, let A denote

A r ^- A
a r X 1 vector of nonnegative integers, |A| = 5]._ A., z = n._ (z.) "", d f(z) =

A A ^^ ^ ^ ^

i f(z)/5 •••S "", Z denote a compact set, and

IFII = max, ^.,sup ^\d f (z)
|

,

I A I
:Sd Z€Z

where d is a nonnegative integer that specifies the highest order derivative of f

that affects the norm.

The norm depend on derivatives of f up to order d to allow for jjl{F) to depend

on derivatives of f up to this order. An example where d > would be needed is for

weighted average derivatives. We specify a supremum norm to make it relatively easy to

show the Frechet differentiability hypothesis of Assumption 1 and because uniform

convergence rates for kernel estimators are readily available, leading to rates of

convergence for the remainder terms above.

When combined with Assumption 1 the compactness condition on Z means that /li(F)

can only depend on the values of f(z) for z in a compact set. This restriction will

be satisfied if n(F) has some fixed trimming built into it, or if f(-,(z) is zero

outside some compact set and K(u) has bounded support, so that f(z) also will be zero

2
outside some (slightly larger) compact set. For example, for ;i(F) = JfCz) dz,

Assumption 1 will be satisfied with d = if ff^(z) has compact support, K{u) has

bounded support, Z is chosen to be a large enough compact set containing the support of

f (z) in its interior. We have chosen to impose these types of conditions because they

can apply to a wide variety of examples but still lead to relatively simple results that

illustrate the bias correction.

The next regularity condition concerns the kernel.
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Assumption 2: JK(u)du = 1, K(-u) = K(u), K(u) has bounded support, for s 2: 2, K(u)

is differentiable of order d witii Lipschitz d derivative, and J"K(u)u du = for

all A with |A| < s.

The symmetry condition is not needed but is convenient. The bounded support condition

for the kernel is imposed here to keep the conditions relatively simple. The last

condition requires that the kernel be a higher order (bias reducing) kernel of at least

order s. Because of this higher order kernel assumption the order of the bias in the

th s
kernel estimators of up to the d derivatives of fp,(z) will be no larger than h

,

if fp,(z) has at least s+d derivatives. The next condition imposes these smoothness

restrictions on f .

Assumption 3: ff>(z) is continuously differentiable of order s+d on IR with bounded

s+d derivatives, for some c > and all A with |A| = s, Jsup \d f(z+A)|dz <

Under Assumptions 2 and 3 the number s can be thought of as the minimum of the order of

the kernel and a degree of smoothness for f(-|(z). If K(u) is a bias reducing kernel of

order b and ff^(z) has d+a continuous derivatives then Assumptions 2 and 3 will be

satisfied with s = min{b,aK

Assumptions 1-3 are sufficient to obtain the large sample properties of the

estimator fi.

Theorem 2.1: If Assumption 1-3 are satisfied and h = h such that nh /ln(n)

—> 00 and h —> 0, and 6('z^ is continuous with probability one and bounded,

R = (ln(n)/VRh'"^^^ + \^h^^), B = (/Rh^) + o (1).
n p n p p

Also, if ln(n)/Vnh'"*'^^ -^ and VRh^ -^ then ^/nCtl-aJ = y.'^Mz.)/VR + o (1).
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The hypotheses of this result require undersmoothing. The optimal bandwidth (minimum

mean-square error) for estimation of the d derivative of fr,(z), when f^(z) has

u J J J • *• J *u , ,
th , . ,

* l/(r+2d+2s)
d+s continuous bounded derivatives and the kernel is s order, is h = n ,

and Vnlh ) = n does not go to zero. Here h must be chosen smaller

than h to have vnh —> 0.

To obtain conditions for ^^-consistency of the bias corrected estimator, it is

essential to be specific about 5(z). Here we assume that 6(z) = 5(z,F), where 6(z,F)

satisfies certain smoothness conditions in F.

Assumption 4: There is a set of functions 5- such that F e J and for small enough

h, F e 5^, Jl(u:£z)K (u-z.)du 6 ^ with probability one. Also, there is b(z) bounded,

with b(z) = for z S Z, and D(z,F) that is linear in F such that for F e 5-,

|5(z,F)-5(z,F )-D(z,F-F )| £ b(z)IIF-F 11^, and |D(z,F)| £ b(z)IIFll.

This condition follows from second order Frechet differentiability of 5(z,F) in F,

with bounded derivative. It is helpful in deriving the order of both the stochastic

equicontinuity term S and the nonlinear term T in D . We use this assumption to

obtain the order of S , rather than empirical process methods, because a direct proof

for kernel estimators (as in Newey and McFadden, 1994) seems to allow for a wider class

of functionals. In particular, empirical process methods for showing that S -^

rely heavily on smoothness of 5(z) in z, that can be avoided by using Assumption 4.

Also, when 6(z) is linear in F (i.e. b(z) = as for the average density),

U-statistic theory gives S —^ under very weak conditions.

These conditions lead to the following result for the bias corrected estimator:
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Theorem. 2.2: If Assumptions 1-4 are satisfied, and h - h such that nh /ln(n)

—> 00 and h —> 0, then

(2.9) D = an(n)/VRh'"^^^ + VRh^^ + h^).
n p

Also, If ln(n)/VKh^'^^^ -> and VRh^^ -^ then VR(ii-yiJ = Y^Mt..)/^ + o (I).
'-'1=1 I p

The upper bound on D obtained here will be smaller than the upper bound obtained for

B in Theorem 2.1, for a range of bandwidths h. Also, if the bandwidth is chosen to be
n

the mean-square minimizing value for estimation of the d derivative of fp.(z), then

the estimator will be V^-consistent for any value of s that is large enough so that

there exists an h satisfying the conditions of this theorem. Specifically, existence

r+2d 2s
of h such that InCnj/VTih —> and \/nh —> requires s > d + r/2, and in

this case the bandwidth which is pointwise optimal for estimation of the d derivative

of fp,(z), which is n , will satisfy the conditions for /n-consistency.

This result then shows that v/n-consistency of ji does not require undersmoothing of f.

The conditions for Vn-consistency of (j are weaker than the conditions for

^n-consistency of fi, in the sense that they require less smoothness. Existence of h

satisfying the bandwidth conditions of Theorem 2.1 requires s > r + 2d, while existence

of h satisfying the conditions of Theorem 2.2 for v^-consistency requires only

(2.10) s > (r+2d)/2.

Thus, with the bias-corrected estimator f(z) is only required to have half the number

of derivatives, as for the original estimator, or alternatively if ^^.(2) has all the

derivatives that are needed, the kernel for /i need only be half the order of the kernel

for /J in order to attain Vn'-consistency. This improvement is achieved at the expense

of smoothness of 6(z,F) as a function of F, as in Assumption 4.
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3. Bootstrap Corrected Nonparametric Estimation

Another approach that also reduces the size of the bias in functional estimation and

can remove the need to undersmooth, is to plug in a nonparametric estimator that has been

corrected for smoothing. To motivate this approach, recall that the first order bias in

fi(F) is the order of E[F]-F . We could eliminate this bias if we could replace F by

the empirical distribution, vi^hich is unbiased. Often this replacement is not possible

because smoothing is required to bring F into the domain of (j(F) (e.g. when /j(F)

depends on the density of F) and smoothing induces some bias. However, we can

construct a smooth estimate of the smoothing effect and use it to partially correct for

bias. To describe this correction, suppose that F = CP for some transformation C

with domain that includes the empirical distribution P. Often C will be a smoothing

transformation, such as convolution for kernel estimators, that depends on the sample

size and gets close to the identity I as the sample size grows. Then for large samples

CF-F should be an estimate of the smoothing effect CP-P. Subtracting CF-F from F

gives

(3.1) F = F - (CF - F) = 2F - CF = 2CP - C^P = (2C-C^)P.

2
where C is the composition of C with itself. This is a bootstrap correction for

smoothing, in the sense P is replaced by F in the smoothing effect CP-P to form the

correction CF-F.

In this Section we will consider an estimator obtained by plugging in this smoothing

corrected nonparametric estimator, giving /j = ii(F). It will be shown that this

estimator may be v^-consistent without undersmoothing. This approach, of bootstrap

correcting the distribution estimator and plugging it in, allows the same nonparametric

estimator to attain the optimal nonparametric convergence rates and be plugged into

functionals that attain the optimal l/\^ rate. To achieve this simultaneous

optimality, the influence function will need to satisfy certain conditions that are
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detailed below.

To understand the effect that the bootstrap correction has on the functional

estimator, consider an expansion analogous to equation (2.4) with

(3.2) Mix - n^) = Ij^^iAlzJ/v^ ^
^n

^
^n' ^n

" ^R^F'-F'o.Fq), B^ = ^J'6(2)(F-P)(d2

This expansion is the same as for ^(F) except that F replaces F, with E[B ] being

2 '•

the first order bias term. Suppose that C is linear, with E[F] = E[{2C-C )P] =

2 *

{2C-C )F . Also, suppose that there is a transformation C 5 of 5(z) such that

• »
J'5(z)CF(dz) = SC 5(z)F(dz) for F = F and F = CF . With more structure C may be

interpreted as the adjoint of C, as in examples given below. Then if the order of

integration can be interchanged,

(3.3) E[B ] = v^J'5(z)[(2C-C^-I)F^](dz) = -ySj5(z)[(I-C)^F^](dz)
n U U

= -v^J[(I-C*)5](z)[(I-C)FQ](dz).

Here (I-C)F represents smoothing bias from the transformation C, small in large

#

samples when C is close to I. The term (I-C )6 is an analogous term that should

also be close to zero in large samples. Comparing equation (3.3) with E[B ]
=

-/nJ'5(z)[(I-C)F ](dz) for B from equation (2.4), we see that using the

bootstrap-corrected estimator F leads to the replacement of 5 by (I-C )5 in the

*
integral, reducing the first order bias when (I-C )5 is close to zero. This is the

bias complementarity effect referred to above, where the bias in F has been

*
complemented by the influence function remainder (I-C )5.

^
Kernel estimators are an important example, where F has density f(z) =

/s —

p

^

jK(z,u)P(du) for (c{z,u) = h K((z-u)/h). Plugging in F for P in the formula

for f leads to a transformation C where CF has density J"K(z,u)F{du). To describe

the bootstrap corrected estimator F = 2F-CF, let K(u) = 2K(u) - J'K(u-t)K(t)dt be the

"twicing" kernel associated with K(u). Then the density of F will be
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(3.4) f(z) = 2f(2) - jKtz.ujfCujdu = 2f(z) - JjK(z,u)K(u,t)duP(dt) = jK(z,u)P(du),

lc(z,u) = 2k(z,u) - J'K(z,t))c(t,u)dt = h~^K((z-u)/h).

That is, the smoothing correction gives a kernel estimator with a twicing kernel that is

constructed from the original kernel.

We use twicing kernel estimators to illustrate the bias correction, although they

may not be the best choice of nonparametric estimator. A twicing kernel has order that

is twice that of the original kernel and is not everywhere positive. Consequently, the

density estimator f(z) may not be everywhere positive, which may be an undesirable

feature. Also, it is known that using higher order kernels may not improve mean-square

error in most sample sizes of interest, e.g. see Marron and Wand (1992). This motivates

a search for other bootstrap corrected estimators, as considered below.

To understand the bias formula in equation (3.3) for kernel estimators we need to

* *

find a transformation C with JC 5(z)F(dz) = j5(z)CF(dz). For any F with density

f, CF has density jK(z,u)f(u)du, so that for 5(z) = J'/c(u,z)5(z)du, .

j6(z)CF(dz) = j5(z)[J'K(z,u)f(u)du]dz = J5(z)f(2)d2 = SC 5(z)F(dz).

» _ *
where C 5(z) = 5(z). Here C is the integral transform obtained by interchanging z

and u in k, which is known to be the adjoint under certain conditions (Luenberger,

1969, p. 153). This transformation is a convolution, with 5(z) = J'K(u)6(z+hu)du.

Equation (3.3) now becomes

(3.5) E[B ] = -/Sj[5(z)-5(z)][f(z)-f-(z)]dz.
n

The bias effect of the bootstrap correction is to replace the integrated convolution bias

J'6(z)[f(z)-f (z)]dz with the integral of the product of convolution biases in equation

(3.5). The magnitude of the bias reduction will depend on the convolution bias
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5(z)-5(z), which in turn depends on the smoothness of the influence function, as is well

known from the kernel estimation literature. The following result makes these conditions

precise.

Theorem 3.1: If Assumptions 1-3 are satisfied, S(z) is continuously differentiable of

order t ^ s on R with bounded derivatives, h = h such that nh /ln(n) —> oo
n

/K ~ ~ S+t t
and h —> 0, then equation (3.2) is satisfied with /a = ^i(F) and B = (Vnh +h ).

Also, if ln(n)/Vnh'"^^^ -^ and Vnh^"^^ -> then Vii(il-n) = y.'^Mz.)/VR + o (1).
^1=1 I p

The upper bound on B is smaller than the bound on B in Theorem 2.1 because Vnli^^ n n

s+t
has been replaced by Vnh . This replacement means that sufficient conditions for

\/n-consistency of /j(F) are different than for the original plug-in estimator jj. If

r+?d s+t
the bandwidth is chosen so the dominating remainder terms ln(n)/\/nh and Vnh

are asymptotically proportional then fi(F) will be \^-consistent if

(3.6) s + t > r + 2d.

This condition allows some tradeoff of smoothness of f^(z) and 5(z) for attaining

v^-consistency.

This estimator also attains V^-consistency without undersmoothing if the influence

function is smooth enough. Consider the case where fp,(z) is only s times

~ s
differentiable, so that the order of the pointwise bias in f is h . Choose the

2s -1 -r-2d
bandwidth so that the squared bias order h is proportional to the order n h

of the pointwise variance. Then the conditions for v/n-consistency are satisfied if

(3.7) t > r/2 + d.

The smoothing bias correction depends on smoothness of the influence function in z,

in contrast to the bias correction of Section 2, that depends on smoothness of the

influence function in F. The bias correction of Section 2 may still give \^-consistency
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even when 5(z) is not smooth in z. For example, the functional fi(F) =

2
Jl(a:£z:sb)f(z) dz has 6(z) = l(a:5z<b)2f (z) that is discontinuous when the density is

positive at a or b, and so does not satisfy the conditions of Theorem 3.1 for any t.

Nevertheless, 5(z) = l(a:£z:£b)2f(z) is an influence function estimator that would

satisfy the conditions of Theorem 2.2, so that the bias corrected estimator of equation

(2.5) could attain v^-consistency without undersmoothing.

It is interesting to compare the properties of a plug-in estimator based on a

twicing kernel with one based on another kernel of the same order as the twicing kernel.

For simplicity suppose that d = 0. Consider a plug-in estimator with an ordinary kernel

where s > r and the bandwidth is chosen to give /n-consistency. The plug-in estimator

with a twicing kernel of the same order will also be Vn-consistent for the same bandwidth

choice, if t = s > r/2. That is, \/n-consistency with a twicing kernel only requires

f (z) to be half as smooth, if 5(z) also is smooth enough. Also, the same bandwidth

no longer has to involve undersmoothing, because only half as many derivatives of the

density are needed to exist, and the optimal bandwidth for estimating a density with

fewer derivatives will be smaller.

There are other nonparametric estimators that have the same functional bias

reduction property as twicing kernel estimators. A particularly important class are

those where the smoothing transformation is idempotent, with CF = F. Here F = 2F - CF

= 2F-F = F, so the bootstrap smoothing correction is "built into" F. Our results then

indicate that undersmoothing may not be needed in this case.

One idempotent nonparametric estimator is an orthogonal series density estimator.

Let (p.(u), j = 1, 2, ...) be a sequence of functions that are orthonormal with respect

to Lebesgue measure on (R , i.e. Jp.Culp, (u)du = 1 if j = k and equal to zero
J k

otherwise. Let p (u) = (p (u),..., p,(u))' and a = X-_iP (z-)/n. Then an orthogonal

series estimator is
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f(z) = p-^(z)'a = jK(z,u)P(du), k(z,u) = p-'(z)' p-^lu).

Like the kernel estimator f has the linear form jK(z,u)P(du), but k(z,u) is now an

inner product of orthonormal functions rather than a kernel. To see the effect of the

bootstrap correction, plug in F for P in the density formula to obtain

jK(z,u)f(u)du = J'[jK(z,u)»c(u.t)du]P(dt)

= V(z)'[J"p"^(u)p"^(u)'du]p-'(t)P(dt) = jK(z,t)P(dt) = f(z),

so that the transformation C is idempotent. Note that f(z) = E[f(z)] =

p (zj'Jp (u)f (u)du is the minimum integrated squared error (ISE) approximation to

f (z) and 5(z) = j6(u)K(u,z)du = p (z)'J"5(u)p (u)du is the minimum ISE approximation

to 6(z). Then by jSlzJif^Cz)-?(z)]dz = 0,

E[B ] = V^SSU)[fiz]-fAz)]dz = -/Kj[5(z)-5(z)][f(z)-f^(z)]dz.
n U U

Here the bias term that appears to be first order is actually second order, a result of

the bias correction being built into f. Consequently, the bias of the functional

estimator can shrink faster than the pointwise bias, removing the need to undersmooth.

This example can be made precise by specifying an ISE rate of approximation

for ff^(z) and 5(z), leading to the following result:

— 2 1/2
Theorem 3.2: If Assumption 1 is satisfied, frf^) ^^ hounded, {S[S(z)-5(z)] dz) =

0(J~^^'~), and {Slf(z)-f^(z)fdz)^^^ = 0(J~^'^^) then equation (2.4) is satisfied and

B = Y..'^Jd(z.)-d(z.)}/Vn = (J
*''''

+ VnJ
^^'' *'^0.

Furthermore, if y/nJ -^ and VnWF-F^W -^ 0, then VnCju-ju^; = I-^/Cz^VvTi +

o (V.
P
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The hypotheses of this result are not very primitive, but are consistent with the known

rate s/r for approximation by orthogonal polynomials, where s is the number of

continuous derivatives that exist. The conditions are specific enough to see that

undersmoothing will not be required for /n-consistency. Specifically, VnllFrF II —^
-1/4

will hold if f converges slightly faster than n , which will not require

-s/r
undersmoothing. Also, the mean-square bias of f is 0{J ) by hypothesis, but the

conditions only require that Vni —> 0. Therefore if t is large enough the

bias could be allowed to shrink at the same rate as the standard deviation without

1/4 -s/r
affecting consistency. For instance, if t 2: s then n J —> 0, meaning the bias

—1/4 /—> —s/r—t/r
shrinks faster than n , will suffice for vnJ —> 0, and should be implied by

-1/4
f converging faster than n . We can obtain more primitive conditions in the case of

2
specific functionals. For example, the average density estimator fi(f) = J"f(z) dz is

— ? I /? -t;/r -?c:/r
/K-consistent if {/[flzl-f^lz)] dz> = 0{J ) and v^(J/n + J ) ^ 0.

So far we have only considered the case where the smoothing transformation C is

linear. When C is nonlinear analogous results should also hold: A bootstrap smoothing

correction may remove the need for undersmoothing when the influence function has enough

derivatives, and this correction will be built into estimators that are idempotent

transformations of the empirical distribution. These results could be shown by including

an expansion of C in the analysis. However, this would greatly complicate the

analysis, so we content ourselves with pointing out some existing examples of nonlinear,

idempotent transformations where it is known that undersmoothing is not needed.

Newey (1994) showed that undersmoothing is not needed for functionals of a series

estimator of a conditional expectation. This occurs because series estimators of

conditional expectations are idempotent, leading to a corresponding idempotent

distribution estimator. For brevity, we omit details. Shen (1997) has also shown that

undersmoothing may not be needed for sieve density estimators when the influence function

is smooth enough. This also corresponds to an idempotent transformation. We can

describe a sieve estimator as the solution to
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f = argmax ^Y.---,^^^^^-^^'"- = argmax Jlnf(z)P(dz),

where B is some restricted class of densities. Sieve estimators are of this form,

where B is some parametric family that also imposes other restrictions, such as

boundedness of higher order derivatives. It follows from the information inequality that

f = argmax^^gj[lnf(z)]f(z)dz,

i.e. if we replace P by F in the transformation that gives F we obtain F again.

Thus, CF is idempotent, so the smoothing correction is built into a sieve estimator.

Higher order bootstrap smoothing corrections could also be carried out. Consider

F^ = [I-(I-C)^]P,

where L is a positive integer. We have F = F and F = F, while L > 2 correspond

to higher order bootstrap corrections. The estimator ;-i(F ) will have an expansion like

equation (3.2), with F replacing F. Assuming C is linear as before, and letting j

be any integer, £ j :£ L, the first-order bias term will be

This represents a higher-order bias complementarity, where some of the smoothing bias is

shifted from F to 5. Of course, if C is idempotent these higher-order bootstrap

corrections are built into the estimator, i.e. F = F.

We also note that it is possible to bootstrap correct the functional, forming an

estimator as

fi = li(F) - [fi(CF)-fi(F)] = 2m(F) - (j(CF).

If the functional were linear then /j = ii{F), i.e. the estimator is the same
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whether we bootstrap correct the functional or the density. In the general nonlinear

case the first-order linear terms in the expansion of equation (2.3) would be the same

for both estimators, so that (jl and )u should have the same first-order bias.

4. Linear Kernel Averages

Many important estimators are averages of functions of nonparametric estimators and

data observations. Examples include the well known average density estimator

X|._,f(x.)/n and the weighted average derivative estimator of Powell, Stock, and Stoker

(1989). The bias corrected estimation results can be extended to cover this case, and we

do so in this Section and the following one.

Consider a parameter of interest

^Xq = E[g(2,FQ)] = Jg(z,FQ)FQ(dz),

where g(z,F) is some known function, that may have a restricted domain as a function of

F. One way to estimate fi is to plug a nonparametric estimator F into g(z,F) and

integrate over the empirical distribution to obtain

(4.1) 11 = J'g(z,F)P(dz) = Xj^^g(Zj,F)/n.

One could also use F in place of P, although the estimator fi is often

computationally simpler.
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To understand how a bias correction should be constructed for this estimator, let

m(F) = E[g(z,F)] = J'g(z,F)FQ(dz). Then

(4.2) A = J-g(z.FQ)P(dz) + {liFhiiiF^) + S^, S^ = J[g{z,F)-g(z,FQ)](P-FQ)(dz).

Here S is a stochastic equicontinuity term that is second order, so to first order u
n

is Jg(z,F )P(dz) + m(F)-m(Fq). The term J'g(z,FQ)P(dz) is unbiased for (n but the

expectation of fi(F)-/i(F ) may depart from zero due to smoothing inherent in F and to

nonlinearity in F. Therefore, to bias correct y. we need to bias correct for the

functional /i(F). This correction can be constructed by applying the analysis of Section

2. Suppose that (i{F) = i"g(z,F)F (dz) satisfies equation (2.3) and has influence

function 5(z) = 5(z,F ) and let 5(z) denote an estimator of 5(z). The bias

correction is then J'3(z)(P-F)(dz) and the corresponding estimator is

(4.3) il = M + l5(z)(P-F)(dz) = ii + X;.",5(z.)/n - i"5(z)F(dz).

This correction is the same as in Section 2 except that 6(z) estimates the influence

function of J'g(z,F)F (dz).

It is also possible to form a bias corrected estimator by applying the analysis of

Section 3. Plugging in a bootstrap corrected nonparametric estimator F in g(z,F)

gives

(4.4) ji = Jg(z.F)P(dz) = X."^g(z.,F)/n.

It can be shown by results analogous to those of Section 2 and Section 3 that the need

for undersmoothing can be removed by both approaches to bias correction. For brevity we

omit this general analysis, that is a special case of Section 5. We focus here on the

linear case, where g(z,F) is linear in F and F is linear, where we can derive

asymptotic mean-square error results. This allows us to quantify the variance effect of

the bias reduction, and includes several interesting examples.
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We consider g(z,F) = v3 {E [y|x]f(x)} where v and y are not elements of x.

One example is the average density, where v = y = I and A = 0. Another is a density

weighted average derivative, where A is a unit vector and y = I, so that by

integration by parts n^ = Elvd^T^U)] = E[E[v|x]5\q(x)] = -E[fQ(x)a'^E[v|x]]/2. A

third example is a density weighted conditional covariance, where fi = E[vE[y|x]f (x)].

The estimators are obtained by substituting a kernel estimator for d {E [y|x]f(x)>
r

and averaging over z.. They have the form

(4.5) A = i:.'^,v.[a'^j: ",K, (x.-x.)y./n]/n = ^."T.'^flV (x.-x.)v.y ./n^.
^1=1 1 ^j=l h 1 J J ^i=l^j=l hi J 1 J

These types of estimators have been considered by Hall and Marron (1987), Hardle and

Tsybakov (1993), Powell and Stoker (1997), and others. Our contribution is to show how

the bias complementarity affects the mean-square error of these estimators.

The estimator fi has precisely the form in equation (4.1) for a certain F. To

describe this form suppose that z = (x,w) where w includes y and v, and let

(4.6) F(z) = n~V.",l(w.<w)Jl(x<x)K, (x-x.)dx.
^1=1 1 h 1

The corresponding marginal density of x is the kernel estimator f(x) = 5]._ K (x-x.)/n.

Also, for any function a(w) the estimator of E[a(w)|x] is n Y. ,a(w.)K, (x-x.)/f(x).
^1=1 1 h 1

Therefore, the estimator of d (E [y|x]f(x)} is d V ._ K (x-x.)y ./n, so that
1" J-l h J J

J'g(z,F)P(dz) is equal to fi in equation (4.5).

It turns out that with a symmetric kernel and a certain 5(z), the bias corrected

estimator of equation (4.3) is identical to the bootstrap corrected estimator of equation

(4.4) based on the corresponding twicing kernel. To describe this result, apply Newey

(1994) to |^(F) = E[vS {E„[y|x]f(x)}] to obtain the influence function formula
r

(4.7) 5(z) = 5(z,Fq), 5(z,F) = £(x,F)y, «x,F) = (-1)
' ^' sNEj,[v|x]f(x)}.

An estimator of this 6(z) obtained by plugging in the F from equation (4.5) is
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5(z) = 5(z,F) = Ux,F]y = (-1)
'

^
'5^{^.",K, (x-x.)v./n>y = a'^i^.^.K, (x.-x)v./n}y,

•^ ^1=1 h 11 ^1=1 hi 1

where the last equality follows by symmetry of the kernel. Using this equality the bias

corrected estimator of equation (4.3) will be

(4.8) M = M + Ij"^3Nj:."^K^(x.-x.)v./n}y./n - J£(x,F)yF(dz)

= 2m - n~V.",yJ£(x,F)K, (x-x.)dx - 2/^ - n~V.",y.j5'*{y;.",K. (x.-x)v./n>K^(x-x.)dx
'-'1=1 1 hi ^1=1 1 ^j=l h J J h 1

= 2m - E."T.",5^J-K, (x.-u)K, (u-x.)du]y.v./n^ = ^."^T ",3'^K, (x.-x.)v.y ./n^.^ ^i=l^j=l h J h 1 1 J '^i=l'-'j=l hi J ij

where K(u) - 2K(u) - J'K(u-t)K(t)dt is the twicing kernel corresponding to K(u). This

estimator has the same form as in equation (4.5), except K is replaced by K. As noted

before, equation (4.5) is the same as equation (4.1) for F in equation (4.6), so

equation (4.8) will be the same as equation (4.4) when F is as given in equation (4.6)

with the twicing kernel K used in place of K. Thus, equation (4.8) shows that the

bias corrected estimator of equation (4.3) is the same as the bootstrap corrected

estimator of equation (4.4) obtained by using a twicing kernel.

We could proceed to derive asymptotic mean-square error expressions for the

estimator in equation (4.8), but it turns out that a mean-square error improvement can be

obtained by deleting the "own observation" terms in fx and normalizing by the total

number of terms in the sum (see Jones and Sheather, 1991). This modification leads to

the estimator

(4.9) M = I.^.S'^K, (x.-x.)v.y./n(n-l).
"^c H*j hi J rj

We will focus on results for this estimator because its "cross-validated" form is common

in the literature and it has smaller asymptotic mean square error than /i- Inclusion of

the own observation would affect the results by adding a term
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a'^K^(0)y:.",y.v./n(n-l) = [a^WOMnh'^^ ' ^ ' )](j:.",y.v./(n-l)).
h ^1=1 1 1 ^i=ri 1

The order of this term will be l/(nh ), which is larger than the terms that appear

in the asymptotic mean-square error derived below for ^l .

Some additional assumptions are useful in the mean-square error calculations. Let

fx (x) = E[y^|x]f^(x), M (x) = E[v^|x]f-(x), and ^i (x) = E[vy |xlf^(x).
^yy ' WW wy

Assumption 5: ii (x) and u (x) are continuous and for some c > 0,^ WW wy

J"sup„.,, /i (x+A)fi {x)dx and Jsup,, ... \fi (x+A)/j (x)|dx are finite.
IIAII^c yy WW IIAII:£c wy ^wy

This hypothesis is useful for controlling the variance of the estimator. The next two

conditions help to determine the bias.

Assumption 6: a(x) = 5 {E[y|x]f (x)} and b(x) = E[v|x]f (x) exist and are

continuously differentiable of order s and t :£ s respectively, and for all

multi-indices A and A with | A |
= s and | A |

= t, there is a c > such that

'''^"P|IAII<c'^ ^'""^^^'^"PlIAll-c'^
b(x+A)|dx < CO.

When combined with Assumption 2 this means s is the minimum of the number of

derivatives of a(x) that exist and the order of the kernel.

The next assumption imposes some further useful smoothness and moment conditions.

Assumption 7: Ux) = (-1) d b(x) exists and is continuous and a(x) and £(x) are

2 2
bounded, E[y ] < oo, and E[v ] < oo.

Under these conditions we can obtain the asymptotic mean-square error of the estimator

/J . Let i//(z) = a(x)v + £(x)y - E[a(x)v+£(x)y] be the influence function of

J'g(z,F)F{dz), C^ = jK(u)u'^du.

(4.10) Q = {J[a'^K(u)]^du}J'{fx (x)m (x)+(-l)''^'fx (x)^}dx,
yy ^ww '^wy
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B = IiM ,=r, ,C^C^J'a'^a(>:)3'^b(x)dx/(s!t!).
^1 A|=s, I A

I
=t A A

Theorem 4.1: If Assumptions 2 and 5-7 are satisfied then as n —> oo and h —^ 0,

....s .,^r^^~ ^ -hr r,, ^7 -2^-r-2\X\ ^ ^2s+2t 2 ,2s+2t -2-r-2\X\ -U
(4.11) MSE(n ) = n Var[(jj(z)] + n h Q + h B + o(h +n h +n ;.

The first term in this expression is the usual asymptotic variance under v^-consistency

that will dominate if the other terms go to zero. The other two terms are variance and

bias terms from kernel estimation. The estimator will be Vn'-consistent, with the

usual asymptotic variance term dominating, if n h —
> and nh —> 0,

meaning the pointwise variance of the kernel estimator goes to zero and the product of

pointwise biases for a{x) and b(x) shrink faster than i/Vn. If the bandwidth is

chosen to balance the variance and bias terms, so that n h and h are

asymptotically proportional, (i will be v^-consistent if

(4.12) s + t > r/2 + |A|.

This condition is weaker than the requirement of Sections 2 and 3 that is made possible

by the linearity of g(z,F) in F and the absence of the own observation term.

Equation (4.12) allows equality rather than the strict inequality of equations

(2.10) and (3.6), that is possible because uniform convergence rates for f are not used

here. However s + t = r/2 +
I A | is a knife edge case where the variance remainder term

in equation (4.11) will be Qn , the same size as the leading term. In this case

Vniyt -|j ) will not be asymptotically normal with variance Var(i//(z)), so the usual

functional asymptotic theory does not apply.

We can compare the MSE in Theorem 4.1 to the MSE for the estimator based on

the original kernel to evaluate the effect of the bias correction. Let B =

El-it- C..Sb{x)d a(x)dx/(s!). Then by Powell and Stoker (1997), the estimator /i

I
A 1 —S A C
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obtained from equation (4.9) by replacing K(u) by K(u) has

(4.13) MSE(A ) = n"Var[0(z)] + n^V'^"^' ^ ' {J[a^K(u)]^du/J[a^K(u)]^du}Q

^2s-^2 ,,2s -2^-r-2|A| -1,
+ h B + o(h + n h + n ).

The comparison of the MSE of fi and n is partly analogous to a comparison between

the pointwise MSE of the corresponding kernel estimators. The ratio of kernel variance

~ A 2 A ~ 2
terms for fi and /i is Sid K(u)] du/J"[5 K(u)] du, which is exactly the same as the

A A~ 2
ratio of pointwise variance terms for estimation S f^(x) at a point, with Sid K(u)] du

A 2
known to be larger than Sid K(u)] du. On the other hand, because of the bias

complementarity, the bias term is not reduced in exactly the same way as for pointwise

estimation. The constant in the bias term depends on the t derivatives of b(x)

rather than the 2s order derivatives of a(x). This bias reduction is better in some

ways than the pointwise bias reduction from a higher order kernel. In particular, it may

require no additional derivatives to exist when smoothness of a{x) implies smoothness

of b(x) (e.g. as for the average density).

The asymptotic mean-square error (MSE) given in Theorem 4.1 can be used to obtain an

optimal bandwidth formula for estimation of fi , when t = s and the kernel is order

s, with B * 0. Minimizing the sum of the second and third terms in equation (4.13)

over h gives

(4.14) h = [Q(r+2|A|)/(B24sn2)]l/(4s+r-.2|A|)_

This bandwidth is optimal, in the sense of minimizing the leading terms in the MSE of the

estimator.

It is interesting to note that although undersmoothing is not required for

\/n-consistency, undersmoothing is still optimal for ji. The optimal bandwidth converges

faster to zero than a bandwidth that minimizes the asymptotic mean-square error of a(x).

This feature seems to be specific to linear functional estimators with the own
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observation deleted. If the own observation were included then there would be an

n h term in the MSE, which dominates the n h term, and will make the

rate for the optimal bandwidth for functional estimation the same as for nonparametric

estimation. Also, when the functional is nonlinear there is an additional remainder term

~ 2
R(F-F ,F ) as discussed in Section 3, which is of order IIF-F II under Assumption 1.

This should make the MSE of no smaller order than IIF-F_II = (max{n h ,h >),

p

where undersmoothing would not be optimal.

The optimal bandwidth formula in equation (4.14) is potentially useful for choosing

the bandwidth in practice. The constants Q and B are unknown, but could be estimated

by replacing the unknown nonparametric terms in their formulae by kernel estimates to

obtain Q and B, which could then be used in place of Q and B in the optimal

bandwidth formula to form an estimate.

An interesting example is the density weighted average derivative estimator

described above, where |A| =1 and y = 1. Here the influence function for fi will

be i//(z) = 8 f (x){v-E[v|x]} - f (x)3 E[v|x] - fi as derived in Powell, Stock, and

Stoker (1989). Suppose that fp,(x) is s+1 times differentiable and E[v|x] is t

times differentiable, that the original kernel has order at least s, and all the

following integrals exist, and let

Q = a[a^K(u)]^du}JVar(v|x)fQ(x)^dx

B =
1,^,^3^ |^,^^CxCx/s't3\(x)]aV[v|x]fo(x)}dx/s!t!.

Then, the conclusion of Theorem 4.1 implies that as n —> m and h —> 0,

(4.15) MSE(mJ = Var[iA(z)]/n + n"\"''"^Q + h^^^^^B^ + o(n~-^+n~V^~^+h^^*^^).

In this example the optimal bandwidth with s = t is
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^r^r oi/ro2. 2,,l/(4s+r+2)
h = [Q{r+2)/(B 4sn )]

For example, with a normal kernel, s = t = 2, r < 6, and the bandwidth chosen

optimally, the bias corrected weighted average derivative will be v^-consistent with the

asymptotic variance Var(0(z)). If r = 6 then the estimator would still be

v^-consistent but the leading term in equation (4.15) would not dominate, so that the

limiting distribution would not be the usual one for a semiparametric estimator. In

comparison with Powell, Stock, and Stoker (1989) this result imposes weaker conditions on

the smoothness of the density at the expense of requiring some smoothness of the

regression E[v|x].

The use of a twicing kernel can lead to an improvement even when the density is not

differentiable. To illustrate, consider the case where A = and a(x) = E[y|x]f (x)

and b(x) = £(x) = E[w|x]f (x) satisfy a Holder condition:

Assumption 8: There are P, t > 0, C (x), and C, (x) such that JC (x)C, (x)dx < oo

a b a b

and for all llx-xll small enough, |a(x)-a(x)| ^ C (x)llx-xll and |b(x)-b(x)| s

C(x) llx-xll^.
b

With this condition replacing Assumption 6 the following result holds.

Theorem 4.2: If Assumptions 2, 5, 7, and 8 are satisfied then as n —> oo and h —>

MSE(^ ) = Var[ip(z)]/n + 0(n~^h~^) + 0(h^^^^^).

The order of the bias is again the product of pointwise bias orders h and h . If the

bandwidth is chosen so that n h and h , are asymptotically proportional then

the estimator Vn-consistent if ^ + t a r/2. This result is similar to the condition in

equation (4.12) for the differentiable case, but only requires a Holder condition rather

than derivatives. This result shows that the bias complementarity available with the
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twicing kernel is not solely an artifact of the higher order property of the twicing

kernel.

We can illustrate the results we have derived so far by comparing different average

2
density estimators. If we regard jiiF) = J"f(z) dz as a nonlinear functional and derive

a bias correction from the influence function estimate 5(z) = 2f(2), we obtain the

estimator of equation (2.6), /i = 2^._ f(z.)/n - Jf(z) dz. Plugging in a bootstrap

corrected density estimator f(z) gives

~ 2
II = J"f(z) dz,

2
that will generally be different from fj . Regarding SfAz) dz as the expectation of

the density, where (u = E[g(z,F )] for g(z,F) = f(z), and noting that E[g{z,F)] has

influence function ff^(z) that can be estimated by f(z), the bias corrected estimator

of equation (4.3) becomes

i^T = I-",nz-)/n + J"f(z)(P-F)(dz) = 2jf(z)P(dz) - Jf(z)^dz = ji,.
3 ^1=1 1 1

Also, the bias corrected estimator of equation (4.4) will be

M4 = L^Ji^-Vn.

It follows from equation (4.8) that /i = /i if f and f are kernel estimators where

f is based on the twicing kernel corresponding to f. Here we see that three of the

bias corrected estimators are equal, with the different one being the nonlinear integral

2
J"f(z) dz of a bias corrected nonparametric estimator. The conclusion of Theorem 2.2

gives ^^-consistency of fi if the original kernel has order at least s, ff^(2;) is s

times differentiable, s > r/2, and \^ —> oo, Vnh -^ 0.

A further reduction in MSE of the bias corrected kernel estimator fi is possible

by deleting the own observation to obtain
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(4.16) IJ- = L .K^(z.-z.)/[n(n-l)].

Applying Theorem 4.1, this estimator will be \/n-consistent if s a r/4, and the

bandwidth is chosen as in equation (4.14 . Furthermore, by Theorem 4.2, if a(x) = b(x) =

f (z) satisfies Assumption 9 then /u will still be Vn-consistent if (^+t)/2 = ^ ^ r/4

and the other conditions described above are satisfied. For example, if r = 1 then for

-2 -r 46 ~
the bandwidth is chosen so that n h is proportional to h , fi is \^-consistent

if 6 2: 1/4. Here ^ = 1/4 is a knife edge case where the variance remainder term will

be the same size as the leading Var(i/((z))/n term. The condition ^ ^ 1/4 was shown by

Bickel and Ritov (1988) to be necessary for existence of a /n-consistent (regular)

estimator. Thus, the twicing kernel estimator fi attains ^^-consistency under minimal

conditions, like the more complicated sample splitting estimator of Bickel and Ritov

(1988).

To illustrate the potential efficiency gains from using twicing kernels we have done

some exact MSE comparisons for different estimators of the average density when the true

density is a standard normal and a standard normal kernel is used to construct the

estimator. Specifically, we have calculated exact MSE for the estimator in equation

(4.16) when z. are i.i.d. with N(0,I) distribution and K(u) is either the standard
1

normal density or the twicing kernel based on the standard normal. The bandwidths have

been chosen to minimize the asymptotic MSE for the respective estimators as in equation

(4.14) for the twicing kernel and the analogous equation for the standard normal kernel

(with corresponding larger bias term).

Table One gives the sample sizes at which the MSE for the twicing kernel estimator

becomes smaller than the MSE of the normal kernel.
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Table One: MSE Crossover

Dimension Sample size

1 18

2 17

3 19

4 21

5 25

6 31

7 39
8 52

Figure One graphs the ratio of MSE as a function of sample size for dimension r = 1 up

to dimension r = 4. For dimension r > 4 the standard normal kernel will not be

v^-consistent but the twicing kernel estimator will, up to dimension r = 8. We

restricted attention to the r :s 4 case because the MSE ratio would asymptote to zero

for higher dimensions. These graphs show persistent MSE gains.

Figure Two presents graphs of the MSE as a function of sample size for dimension r

= 1 and r = 3 and for sample sizes 50, 100, and 200. These graphs allow us to

compare the sensitivity of the MSE to the choice of bandwidth for the standard normal and

twicing kernel. Although the MSE of the twicing kernel can turn sharply upward at low

bandwidths, we find that it is flat, and close to its minimum, over a wide range of

bandwidths. In this sense the MSE for the twicing kernel seems less sensitive to the

choice of bandwidth than the original kernel.

5. Semiparametric M-estimation

Estimators that solve an estimating equation with a nonparametric component have

many interesting applications and include as special cases all the ones we have

considered so far. This class also includes profile likelihood estimators and many

others, e.g. see Bickel et. al. (1990). We refer to this class of estimators as

semiparametric m-estimators. In this Section we develop bias-corrected versions of these

estimators.

- 35 ~



To describe a semiparametric m-estimator, let /3 denote a q x 1 parameter vector,

F and F be as previously discussed, and m(z,/3,F) a q x 1 vector of functions. Let

P solve

(5. 1) X:-"|m(z.,|3,F)/n = 0.

This includes as special cases fi(F), where m(z,/3,F) = /3 - fi(F), and X!-_ig^z.,F)/n,

where m(z,p,F) = /3 - g(z,F).

To obtain bias corrections it is useful to begin by expanding the moment equation

around the true value of the parameter /3 . Suppose that m(z,/3,F) is differentiable in

/3. Then expanding and solving for JS gives

(5.2) V^(P-/3q) = -M"^Xi"^m(z.,F)/-/H, M = n"^^.2^3m(z.,p,F)/5/3, m(z.,F) = m(z.,/3Q,F),

where /3 is a mean-value that lies on a line joining /3 and /3 and actually differs

from element to element of m. Asymptotic normality and Vn-consistency of |3 will

follow from consistency of M for M = E[Sm(z,/3 ,F )/5/3], nonsingularity of M, and

asymptotic normality of J]._ m(z.,F)/Vn'. The consistency of M is a straightforward

property that is generally an implication of consistency of p and F and a uniform law

of large numbers. Asymptotic normality of ^._ m(z.,F)/v'n is where undersmoothing and

bias corrections may be important.

Bias corrections for /3 can be obtained by applying the analysis of Section 4 to

g(z,F) = m(z,F) and accounting for the Jacobian term. The first approach is by an

influence function correction like that of equation (4.3). Let 6(z) be the influence

function for fi(F) = J'm(z,F)F (dz), and let 6(z) be an estimator of this influence

^ ~1 n ^ y^

function. Also, let M = n
i^. dm{.z.,f3,F)/dfB. Then a bias corrected estimator is given

by

(5.3) P = P - M"^[i;.y(z.)/n - J-6(z)F(dz)] = p - M~V6(z)(P-F)(dz)
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This estimator has a form like that in equation (4.3), except that the Jacobian estimator

is included to account for the presence of M in equation (5.2).

To see how the correction affects the estimator, let i//(z) = m(z,F ) + 6(z)-E[5(2)]

be the influence function of Jm(z,F)F(dz). Then

(5.4) v/S(p - Pq) = -m"^[I."j^(z.)/v^ + ^(Rj^ + R^^ + R3^)] + R^^

R, = J[m(z,F)-m(z,F-)](P-F_)(dz), R„ = J'[6(z)-6(z)](P-F)(dz).
In u u zn

R^ = J[m(z,F)-m(z,F^)]F^(dz) - j5(z)(F-F^)(dz). R^ = •/E'(M~^-M"-^)J'5(z)(P-F)(dz).
Jn u u u 4n

The remainder terms in equation (5.4) are all second-order, so that v^n-consistency of p

should not require undersmoothing, although precise regularity conditions are difficult

to specify at the level of generality considered here.

One important property of semiparametric estimators follows immediately from

equation (5.4). Suppose that 6(z) = 0, meaning that estimation of F does not affect

the asymptotic distribution of ^. Then 6(z) = is consistent, and the bias corrected

estimator would be the original estimator. Consequently, the original estimator should

not need undersmoothing. Thus, we find that if the presence of F does not affect the

large sample distribution of p no undersmoothing will be needed.

There are many interesting semiparametric estimators where estimation of F does not

affect the asymptotic variance, and so undersmoothing may not be needed. As shown in

Newey (1994), if m(z,p,F) is the gradient of a function q(z,P,F) and F is an

estimator of the "profile" distribution that maximizes E[q(z,p,F)) then estimation of

F does not affect the asymptotic variance. Hence, undersmoothing may not be needed for

any of these estimators. Many known semiparametric estimators are special cases of this

result, including Robinson (1988), Chen and Shiau (1991), and Ichimura (1993). Also, if

m(z,p,F) is an efficient score for (3 in a semiparametric model and F is an estimator

that imposes the restrictions implied by the model then the limiting distribution of p
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is not affected by estimation of F when the model is true, as has been demonstrated in

many examples in the literature. Hence, undersmoothing may not be needed when m(z,/3,F)

is an efficient score and the model is correct.

The second approach to bias correction is to use a bootstrap corrected estimator F

in the formation of the estimator of (i, choosing p as the solution to

(5.5) 5:."^m(z.,/3,F)/n = 0.

This estimator should not need undersmoothing because in the expansion of equation (5.2)

F will replace F in the average ^._ m(z.,F)/n. As discussed in Section 3, any

estimator F that is an idempotent transformation of the empirical distribution, such as

a sieve estimator or a series estimator of a conditional expectation, has this correction

built in, so undersmoothing may not be required for Vn-consistency of p.

We could derive precise results on bias-corrected m-estimation for both the

estimators of equation (5.2) and (5.5). However, because the ideas here are basically

the same as in Sections 2 and 3, we choose to be brief, and consider only th^; estimator

of equation (5.5), focusing on conditions for VTi-consistency when F is a twicing kernel

estimator.

Newey and McFadden (1994) have already given general results on \/n-consistency of

semiparametric kernel estimators. We build on their results, deriving a corresponding

result for twicing kernels, showing that undersmoothing is not needed. We adopt their

specification for m(z,|3,F), where m depends on F only through y{x) = E [w|x]f(x),
r

where w is a vector of random variables that are not elements of x. A twicing kernel

estimator of the true function 3'p,(x) = E[w|x]f (x) would be

iix) = Y. ,K, (x-x.)w./n.
^1=1 h 1 1

Letting m(z,p,2') be a q x 1 vector of functions that depends on /3 and the function

y(-), a kernel semiparametric bootstrap corrected m-estimator would be p solving
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= Ej^^m(z.,/3,J)/n.

To specify regularity conditions we modify the norm II • II to apply to '^. Let X denote

a compact set and

llyll = sup „sup. . ,115 ^(x)ll.

This is a Sobolev norm like the one used for the kernel results of Section 2 and 3.

Assumption 9: j-tx) is continuously differentiable to order s with bounded derivatives

and for some c > and all A with |A| = s, Jsup |5 y (x+A)|dx < oo.

Let m(2,y) = m(z,/3 .^r).

Assumption 10: There are b(z) and DCz.g-) that are linear in y such that for all jr

2
with ll3--?-„ll small enough, llm(z,r)-m(z,3' )-D(z,y-2'_)ll :£ b{z)ll3--'3r II , IID(z,2')ll £

b(z)ll3'll, and E[b(z)] < oo. Also, there is a matrix i^lx) with E[D(z,3'-3' )] =

J'i/'(x){3r-2r )(dx), where l'(x) is continuously differentiable of order t with

bounded derivatives. Also, for p > 2, E[llwll ] < oo and h = h(n) with h —> and

l-(2/p),r., , ,

n h /ln(n) —> oo.

Let D(x) = JK(u)y(x+hu)du, p = ln(n) //nh + h ,

B = /nJ'[y(x)-y(x)]wP(dz), R = •/nJ"[m{z,F)-m(z,F^)-D(z,F-F-)]F-(dz),
n n

S = •/Sj[m(z,F)-m(z,F^)](P-F-)(dz).
n

We first give a result that bounds the remainder terms in the expansion for the average

of m(z,f)-
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Theorem 5.1: If Assumptions 2, 9, and 10 are satisfied then for {f)(z) =

m(z,Tf ) + i'(x)w - E[v(x)w],

Y.'^Mz.,i)/^ = Y^Mz.)/VR + B + S + R ,
'-'1=1 I ^1=1 I n n n

B = (VTlh^^^ + h^), s = (VRp^ + h^), R = (VRp^).
n p n p n n p n

Furthermore, if v(x) = then this result also holds with K(u) replacing K(u).

To show a corresponding /n-consistency result for the semiparametric estimator we need to

make assumptions that ensure convergence of the Jacobian term M. The next condition

suffices.

Assumption 11: ^ —^ fS , for /3 in a neighborhood B of /3 and all y with Il3'-?'^ll

small enough, m{z,l3,'y) is continuously differentiable and for some c > 0,

liam(z,/3,9-)/ap-am(z,pQ,?-Q)/5pll < b(z)(llp-/3Qll^ + 117-^^^^), M = E[dm{z,f3^,r^)/aii] exists

and is nonsingular, ni(z,y ) has mean zero and finite second moments.

2 s+t
Theorem 5.2: If Assumptions 2 and 9-11 are satisfied, Vnp —> 0, and Vnh —>

then Vn(^-(i ) -^ N(0,M~^Var(\p(z))M~^' ). Furthermore, if v(x) = then the same

result holds with K(u) replacing K(u).

When v[x) is nonzero the conditions for ^^-consistency of this estimator are exactly

analogous to those discussed following Theorem 3.1. In particular, undersmoothing will

not be needed if t > r/2 + d. The case where v[x) = corresponds to estimation of -y

having no effect on the asymptotic variance of p. As previously discussed, no bias

correction is needed for this case: If Vnp —> and the kernel is the original

(non-twicing one) then v^-consistency follows from Theorem 5.2.
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6. Conclusion

In this paper we have shown that it is often possible to use a nonparametric

estimator where the degree of smoothing is optimal (MSE minimizing) for estimation of the

function to construct a v'n-consistent estimator of a functional. One approach involves

adding a bias correction to the estimator where the nonparametric estimate is plugged in.

Another involves a smoothing correction to the nonparametric estimator. An important

class of nonparametric estimators, that are idempotent transformations of the empirical

distribution, have this smoothing correction built in, so that undersmoothing is not

needed for /n-consistency, including orthogonal series density estimators, series

estimators of conditional expectations, and sieve estimators.

The influence function plays a key role in achieving Vn'-consistency without

undersmoothing. For the additive correction to a plug in estimator it must be possible to

construct a nonparametric estimator of the influence function that converges sufficiently

fast. For the smoothing adjustment to the nonparametric estimator the influence function

must be smooth as a function of the data. These properties may or may not be intrinsic

to the functional. A topic of future research would be to seek to identify the class of

functionals for which Vn-consistent estimation without undersmoothing is possible.

We have discussed bias correction and undersmoothing for an increasingly general

class of estimators, beginning with functionals of a density and ending with

semiparametric m-estimators. We found that for semiparametric m-estimators

undersmoothing is not needed when nonparametric estimation does not affect the asymptotic

variance of the estimator. Regularity conditions were given for "twicing" kernel

estimators. We showed that this class of kernel estimators has a special property, being

the outcome of a smoothing correction applied to the original kernel, that removes the

necessity of undersmoothing for these estimators. Our numerical results show MSE gains

for the twicing kernel at small sample sizes and less sensitivity to bandwidth choice in

estimation of the average density, indicating some potential for use in practice.
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Appendix: Proofs of Theorems

Throughout the Appendix, c and C will represent a generic positive constants,

that may be different in different uses.

Proof of Theorem 2.1: By Lemma 8.10 of Newey and McFadden (1994), it follows that

IIF-F^II^ = (ln(n)/nh'^"^^^ + h^^). Therefore, for R in equation (2.4), R =Op n ^ n

O(VnllF-F^II^) = (ln(n)/-/Hh'^''^*^ + V^h^^). Also, for B = y.",e(z.,h)/v^ for e(z,h) =Op n ^1=1 1

jK(u)[6(2+hu)-6(z)]du. By continuity of 6(z), 5(z+hu)-5(z) -^ for almost all u as

h —> 0. Also, for small enough h, by K(u) having bounded support U,

sup |K(u)[5(z+hu)-5(z)]| < l(uel/)sup |K(u)l2sup |5(z+A)| = b(z,u), that is finite

with probability one by 5(z) bounded and has finite integral over u by K

compact, so by the dominated convergence theorem e(z,h) —> as h —> with

2 2
probability one. Also, |e(z,h)| ^ [Jb(z,u)du] £ C, so by the dominated convergence

2
theorem Var(B ) = Var(e(z,h}} ^ E[e(z,h) ] —^ 0. Also, by the usual mean-value

n

expansion,

(A.l) jK(u)[fQ(z-hu)-fQ(z)]du

= JK(u){E^~}((-h)-J/j!)E,^, .uVf^(x) + {{-hf/s\)l,^, uVf^(x-hu)Mu

= (-h)^X
I
^

I

^/K(u)u'^a\Q(z-hu)du/s!,

where
I h I

£
| h | and dependence of h on z and u is suppressed for notational

convenience. Then for small enough h,

|E[e(z,h)]| = |J'jK(u)[5(z+hu)-5(z)]dufQ(z)dz| ^ J|5(z) | |
J-K(u)[fQ(z-hu)-fQ(z)]du|dz

^ Ch^I|;^,=s[^|K(u}|u^du]JsuP||^„^^la\Q(z+A)|dz = O(h^).

Then by the Markov inequality, B = (V^ + o(l)), giving the first conclusion.

Furthermore, under the stated bandwidth conditions both B -^ and R -^ 0, giving
n n
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the second conclusion. QED.

The following Lemma is useful in the proofs to follow. Let w denote a random

variable, g(z) = E[w|z], and ^-(z) denote a possible value of g(z)f (z).

Lemma A.l: If Assumption 2 is satisfied, g(z) and f^(z) are continuous, iJ-C^f) is

linear, \n(r)\ £ Cllj-ll, then for r( ' ) =^ E[wK^('-z)], E[m(wK^( --z))] = m(^).

Proof: By K(u) having bounded support and Z compact there is a compact set ^ such

that K, (z-u) = for all z e Z and u i ^. Let y,(z) = J„3r(u)K, (z-u)du and
h i G n

r„(z) = S 3-(u)K, (z-u)du. For z e Z, 2'„(z) = 0, so that llj-^ll = and |m(3r„)| ^
2 joc n Z. i. Z

Clly II = 0. Then by linearity of m(3^), m('j') = m(y +2^ ) = m(^ ). Also, by IIK (--zlH =

for all z ^ i?, m(3^(z)K (--z)) = 0, for all z g S, so by linearity of m.{is),

E[m(wK^(--z))] = E[wm(K, (--z))] = E[g(z)m(K, ( --z))] = E[m(g(z)K, ( --z))] =
h h h h

J'„m(3'(u)K, ('-uljdu. Let u, be a sequence of measures with finite support, that
b h J

converge in distribution to the uniform measure on if. Then, by continuity of ^-Cz) and

continuous differentiability of K(v) to order d and by Z compact, 9'(z)K ('-z) is

continuous in z in the semi-norm ll»ll. Hence m(3r(z)K, ('-z)) is continuous and
h

bounded in z on )?. It follows that J'„m(3'(z)K, (--zjjdu, —> J~„m(y(z)K, ( •-z))du. Also,
G h J iS^ n

Also, since each derivative of y(u)K, (z-u) with respect to z of up

to order d is bounded and continuous on S, it follows that IIJ'„'3r(u)K. ('-uldCu -u)ll —

>

is h J

0, and hence m(J'„3r(u)K, (•-u)du J —> m(X„3'(u)K. (•-u)du). Furthermore, by u, having finiteBhJGh J

support and linearity of mC^-), m(J"„9'{u)K ('-ujdu ) = J"m(3'(u)K (•-u))du . Then by the
G h J h J

triangle inequality,

m(r) = m(J„r(u)K, (--ujdu) = J„m(3'(u)K, (--ujldu = E[m(wK. (--z))]. QED.
6 h G h n

Proof of Theorem 2.2: For T from Section 2,
n
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(A.2) It I

s VES\Siz)-5{z)\\hz)-rAz)\dz
n O

£ v/Kj-blzJlfCzj-fQCzJIdzllF-FQll + v^JI D(z,F-Fq)
| | f(z)-fQ(z) |dz

< ZV^JblzJdzllF-F^II = (ln(n)/V^h + /Kh ).

p

Next, by b{z) bounded, E(b(z)] < m. Also, by Assumptions 1 and 3, |D(z,K, ('-z)) |
:£

-r-d _ » _
b{z)IIK ('-z)!! ^ Cb{z)h . Let f(z) = E[f(z)] with corresponding charge F, and note

that D(z,F-F ) = D(z,F-F) + D(z,F-F ). Also, by Lemma 8.10 of Newey and McFadden

(1994), IIF-F II = 0{h^). Then by Chebyshev's inequality,

VnjD(z,F-F^)(P-F„)(dz) = ({E[D(z,F-F-)^]}^^^) = (h^).
p p

Now let k{z,u) = D(z,K^('-u)), kAz) = J'«:(z,u)r (u)dz, and kjz) = J^(u,z)f^(u)dz.hi Z

By Lemma A. 1, ^^(z) = D(z.,F). Also, E[ |ft(z,z)
| ] ^ Ch""^"^ and {E[^(z,z)^]>^'^^ £

-r-d
Ch , so by linearity of D(z,F) and a V-statistic projection result like Lemma 8.4

of Newey and McFadden (1994),

(A.3) /SjD(z,F-F)(P-FQ){dz)

- v/K{Jfc(z,u)(PxP)(dz,du) - SlkAz)+kJz)]P(dz} + E[^,(z)]} = (n'^^V''"'^).
1 Z 1 p

The triangle inequality and linearity of D(z,F) in F then give

V^J'D(z,F-FQ)(P-FQ)(dz) = {n~^'^\~^~^ + h^). Then by Assumption 3, for h ^ 0,

(A.4) IS I
5 •/n|J'D(z,F-F^)(P-F^)(dz)| + [J"b(z)(P+F-)(dz)WllF-F-ll^

n

^' , -1/2, -r-Zd . s /-H 2s,= O (n h + h + vnn ).

P

The conclusion then follows by equation (A.Z) and the triangle inequality. QED.

Proof of Theorem 3.1: For c in the statement of the Theorem, let d-(z) =

- 44 -



^^PiiAii i-vi_ 1^ f^(z+A)|. By a mean-value expansion like that in the proof of Theorem 1

and boundedness of the t derivatives of 5(z) it follows that

IX[5(z+hu)-5(z)]K(u)du| ^ Ch for small enough h. Also, applying the same argument

with K replacing K, for 6 and f in equation (3.5), |6(z)-5(z)| :£ Ch and

|f(z)-fQ(z)| £ Ch^d^(z). Therefore, Var(B^) £ E[ |X[5(z+hu)-5(z)]K(u)du
|

^] = 0(h^^)

and, as in equation (3.5), and |E[B^]| ^ Vn'Ch^'^^Jd^(z)dz = 0(h^"^^). The first

conclusion then follows by the Markov inequality. Also, it is easy to check that K(u)

also satisfies Assumption 2, so that by Lemma 8.10 of Newey and McFadden (1994), IIF-F

= (ln(n)/nh + h ). The second conclusion then follows from Assumption 1. QED.

Proof of Theorem 3.2: Equation (2.4) is satisfied for F having Radon-Nikodym

derivative f(z) = p"^(z)'a and B = y'.",[5(z.)-5(z.)]/V^. Then Var(B ) £
n ^1=1 1 1 n

E[{6(z.)-5(z.)}^] £ Cj[5(z)-5(z)]^dz = 0(.f^^^^) by the density bounded and the11
approximation order given in the statement of the Theorem. Also, by the Cauchy-Schwartz

inequality, |E[B^]| < v^[J'{5(z)-5(z))^dz]^^^[J{f (z)-fQ(z)}^dz]^^^ = 0(v^j"^''''"'^'^^) -^ 0.

The first conclusion then follows by the Markov inequality. The second conclusion

follows by Assumption 1 and the triangle inequality. QED.

Proof of Theorem 4.1: Note that

(A.5) M = XI-^-^(z-.Z-)/[n(n-l)], fc(z.,2.) = s'^K, (x.-x.)y .v.,
f^c ^^\*j i' J i' J h 1 J

'j i'

where we suppress dependence of fc on h for notational convenience. Define a(x) =

J'K(u)a(x+hu)du and b(x) = J'K(u)b(x+hu)du. Taking expectations, and integrating by

parts, it follows similarly to equation (3.5) that for |j = Ja(x)b(x)dx,

(A.6) E[m^] - fiQ = E[^(z^.Z2)] - Mq = S{S8^K^{x^-x^)Ely\x^]r^{x^)dx^}hU^)dx^ - Mq

= JjKj^(x^-X2)a(x2)b(x^)dx^dx2 " Mq = -J[a(x)-a(x)][b(x)-b(x)]dx.
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By a mean value expansion in h like equation (A.l),

a(x)-a(x) = (hVsDV,^ ,_ jK(u)u'^S'^a(x+hu)du, |h| ^ |h|.
I
A

I
-S

For c in the statement of the theorem let d (x) =7,,, sup,,,,, \d a(x+A)|. By K(u)

having bounded support U, for small enough h, lK(u)r. ._ u d a(x+hu)| s CKuelild (x)
I
A

I
—

s

a

< 00. Then by the dominated convergence theorem, JKluju 5 a(x+hu)du —> C-v^ a(x), so that
A

h~^[a(x)-a(x)] -^ I,^, C-.5'^a(x)/s!. Similarly, h"^b(x)-b(x)] -4 E, ^ ,
_,C^5'^b(x)/t!.

I
A

I
—S A

I
A

I
—t A

Also, noting that |h~^[a(x)-a(x)] | £ Cd (x) and 1 h~^[b(x)-b(x)] |
< C for Jd (x)dx < oo

a a

-s+t
by Assumption 6, the dominated convergence theorem gives h (E[fi] - fi ) =

h^^^Jlalxl-aCxlliWxj-bCxlldx -^ B, so that

(A.7) E[il ] = Mn + h^^B + o(h^^).
c

Next, note that u is a U-statistic with kernel [k{z.,z .)+k{z .,z.)]/2. Then by
1 J J 1

Serfling (1980),

(A. 8) Var(fx^) = [(n-2)/n(n-l)]Var(E[fc(z^,Z2)+fc(z2,z^) |z^])

+ [l/n(n-l)]{Var(ft(z^,Z2)) + Cov(k{z^,z^],k{z^,z^])}

By Assumptions 2 and 5 and another application of the dominated convergence theorem,

J'J[S'^K(u)]^M (x-hu)/j (x)dudx ^ Q, = J[5'^K(u)]^duJ/j (x)/j (x)dx. Then by a change of
yy WW 1 ^yy "^ww -^ ^

variables, u = (x -x )/h, x = x ,

(A.9) E[Wz^,Z2)^] = JJ[5^K^(x^-X2)]^E[y2lx2]E[v^|x^]fQ(x2)fQ(x^)dx2dx^

= h~^~^^^^ ssid^uu)]^ (x-hu)M (xMudx = h'^^'^'^'o, + om"''"^'^').
yy WW 1

Also, since E[A:(z ,z )] converges, E[Wz ,z )] = o(h ), so

VarCftCz^.z^)) = E[k{z^,z^)h + oCh"^"^'*^' ). Therefore,
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(A.IO) [l/n(n-l)]Var(ft(z^,Z2)) = [l/n(n-l)]h '^ ^'^'q^ + o([l/n(n-l)]h ^ ^''^').

-2^-r-2|Al , -2,-r-2|A|,
= n h Q + o(n h )

Also, by a'^K(-u) = (-1)
''^

' a'^R(u), it follows similarly to eq. (A. 9) that

Therefore, analogously to equation (A.IO) it follows that

(A.ll) ll/n{n-l)]Cov{k{z^,z^),kU2,z^)) = nA"'^"^' ^ ' (Q-Q^) + otn^V"""^' ^ '

).

Next, let lix] = jK(u)£{x+hu)du and a(x) = XK(u)a(x+hu)du. By applying the dominated

convergence theorem as we have done previously it follows from Assumption 7 that 2(x) -

Ux) and a(x) —> a(x) as h —> 0, so that a(x)v + 2(x)y —> a(x)v + £(x)y as

~ 2 2 2
h —> 0. Since [a(x)v + £(x)y] ^ C(v +y ), Assumption 7 and the dominated convergence

theorem imply that Var(a(x)v+?(x)y) —> Var(i//(z)). Furthermore, by integration by parts

and interchanging the order of differentiation and integration,

Emz^,z^)+k{z^,z^)\z^] = E[S'^K^(x^-X2)y2V^|z^] + ElS'^K^Cx^-x^ly^v^lz^]

= E[S'^K, (x -x„)E[y„|x„]|z,]v, + E[a'^K. (x„-x,)E[v„ |x„] Izjy,hl2 22 11 h21 22 11

= [ja'^Kj^(x^-x)E(y|x]fQ(x)dx]v^ + (-1)
''^

' ja'^Kj^(x^-x)b(x)dx]y^ = a(x)v + 2(x)y.

Therefore,

(A.12) [(n-2)/n(n-l)]Var(E[fe(z^,Z2)+^(z2,z^)|z^]) = Var(i/>(z))/n + o(n"^).

Plugging the results from (A.10)-(A.12) into {A.8) and using MSE(jn ) = Var(fx ) +
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2
(E[/j ]-Mf^5 to combine equations (A. 7) and (A. 8) and then gives the result. QED.

Proof of Theorem 4.2: By Assumption 8 and K(u) having bounded support, hu can be

made as small as desired uniformly over the support of u by choosing h small enough.

Then for h small enough, |a(x)-a(x)| =
| JK(u)[a(x+hu)-a(x)]du| £

J|K(u)| |a(x+hu)-a(x)|du ^ J|K(u)|C (x)llhull^du = h^C (x)/] K(u) | llull^du = Ch^C (x) and

similarly, |b(x)-b(x)| s Ch C (x). It then follows by equation (A. 6) that
a

lEfjl ]-/i^| ^ T|i(x)-a(x)| |b(x)-b(x)|dx < Ch^^Vc (x)Q(x)dx.
c a b

The conclusion now follows from plugging (A.10)-(A.12) into equation (A. 8), similarly to

the proof of Theorem 4.1. QED.

Proof of Theorem 5.1: By a change of variables,

Jy(u)r(u)du = JJy(u)wK^^(u-x)duP(dz) = J"[Ji^(x+hu)K(u)du]wP(dz) = Jy(x)wP(dz).
h

Then by Assumption 9,

J"D(z,y-3- )F (dz) = Ji^(u)[9^(u)-3- (u)]du = J'i^(u)3'(u)du - E[v(x)w]

J"i}(x)wP(dz) - E[y(x)w] = B + JvMMP-FJidz).
n

The decomposition in the statement of the Theorem then follows. Next, by Lemma 8.10 of

Newey and McFadden (1994), llf-y„ll = (p ). Let S = JD(z,F-F„)(P-F„)(dz). ByOpn n 00
Markov's inequality, Jb(z)(P+F )(dz) = (1), so by Assumption 9,

(A. 12) V^IIS -S II < [Jb(z)(P+F„)(dz)Wllf-roll^ = O iVRph.
n n " °0 p n

Let -yix) = ElyCx)] = J"K (x-u)^' (u)du = JKCu)?- (x-hu)du. Then by linearity of D{z,y)

in r, D(z,J-3f^) = D(z,3-?^) + D(z,i^-ar ). Let k{z.,x.) = D(z.,w.K (--x.)), I (z) =

J"fc(u,z)FQ(du) = J'D{u,wKj^(--x))FQ(du), and kAz) = /^(z.ujdF^Cdu). By Lemma A.l, k^iz)
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= D(z,^). Then by linearity of Dtz.j-) in i(, it follows as in equation (A. 3) that

V^JD(z,y-r)(P-F^)(dz) = (h~'~~^/v/n). Also, v^JD(z,^-r^)(P-F^)(dz) - (h^), so by theOp p

triangle inequality, S = JD(z,F-F_)(P-F^)(dz) = [h'^'^^/Vn + h^). Then by the
n, 00 p

-^

triangle inequality and h //n ^ h /Vn for n large enough,

(A. 14) S = O (/np^) + O [h^'^^/yfR + h^) = [yfRp^ + h^).

Next,

(A.15) |R
I

s VnS\m{z,z)-m{z,rJ-Diz,r-7^]\Fldz) ^ E[b(z)]^/nllT-y^ll^ = iVnp^).
n Op n

Next, let vix) = JK(u)y(x+hu)du and ^-(x) = J'Ktulj'Cx+huldu. Then it follows as in

equation (3.5) that

E[B ] = VnEl{vU)-v(x)}w] = V^J'[i5(x)-i^{x)]t (x)dx = /nJ"[y(x)-i^(x)]Wx)-y-(x)]dx
n

Let d^(x) = suP||^„^^_l^l^^|S^(x+A)| and d^(x) = sup,,^,,^^
,^ I^J

5\(x+A) | . It

follows as in the proof of Theorem 3.2 that lly{x)-i'(x)ll :£ Cd (x)h , \\vix)-v[x)\\ ^

Cd (x)h , and \\-y{x)--yAx)[\ s Cd (x)h . Therefore, |E[B ]| = 0(.Vnh ) and Var(B ) £
V If n n

E[llD(x)-i^(x)ll^llwll^] = 0(h^^), so B = (Vnh^"^^ + h^) holds by the Markov inequality,

giving the first conclusion. The second conclusion follows by v(x] = 0, and hence B

~ t+s t
= 0, and the fact that the twicing kernel was only used to show B =0 (v^nh + h ).

QED.

Proof of Theorem 5.2: It follows by Lemma 6 that J^._ m(z.,y)/v/n —^ N(0,Var(^//(z))).

Also, for M = X;.^^3m(z..pQ,rQ)/5p/n, IIM-MII s [^^^bCzJ/nKllp-pQll^ + llf-yQ"^) -^ 0,

so M —^ M follows by the triangle inequality and Khintchine's law of large numbers.

Then by the continuous mapping theorem, M —^ M , so the conclusion follows by

Slutzky's theorem. QED.
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