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Abstract

We study the efficiency of inattentive but otherwise frictionless economies by augmenting the Arrow-

Debreu framework with a general form of rational inattention. An appropriate amendment of the First

Welfare Theorem holds when the model of inattention satisfies an invariance condition roughly equal

to assuming mutual-information costs. Away from this benchmark, a planner can help agents econo-

mize attention and reduce mistakes by regulating the stochastic properties of prices or replacing markets

with other means of communication and coordination. Our main result therefore links Hayek’s (1945)

argument about the informational optimality of the price system to Sims’s (2003) specification of atten-

tion costs and experimental tests thereof. Additional results address equilibrium existence, the Second

Welfare Theorem, and whether agents pay attention to objects other than prices.
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1 Introduction

People are inattentive, forgetful, impulsive, and otherwise cognitively constrained. In such circumstances,

it is natural to question the functioning of the invisible hand. Sims (2010) warns that prices “cannot play

their usual market-clearing role” in inattentive economies, or economies in which both buyers and sellers

are inattentive; and review articles by Maćkowiak, Matĕjka, and Wiederholt (2018) and Gabaix (2019) claim

that the Fundamental Welfare Theorems fail in the same context. The latter claim is of course valid if market

outcomes are judged relative to non-market alternatives that remove the friction (as implicitly or explicitly

assumed by the aforementioned authors). But can market outcomes be improved upon without undoing

people’s cognitive constraints?

A related question concerns Hayek’s (1945) classic argument about the informational optimality of the

price system. In his words:

We must look at the price system as a mechanism for communicating information if we want to

understand its real function. [...] The most significant fact about this system is the economy of

knowledge with which it operates, or how little the individual participants need to know in order

to be able to take the right action.

This argument, at least as formalized by Grossman (1981), presumes not only that markets are complete but

also that prices are observed perfectly and costlessly. But if attention to prices is costly, what exactly is the

“economy of knowledge” achieved by markets? And if people make mistakes when reacting to price changes,

do markets still provide the best means of communication and coordination?

In this paper, we show how to reduce all these inherently general-equilibrium questions to a simpler,

decision-theoretic question, whose answer can be informed by experimental evidence. Our main result,

Theorem 1, states that an appropriate version of the First Welfare Theorem, expanded to require the effi-

ciency in attention choices and the informational content of prices, holds when attention costs satisfy an

invariance condition that is tightly connected to the mutual-information specification of Sims (1998, 2003),

its axiomatization by Caplin et al. (2020), and experimental tests thereof.

This result provides an important benchmark in which inattention does not invite government interven-

tion. But there is a caveat: when the invariance condition holds, the “economy of knowledge” afforded by

markets is weak instead of strict, or the same allocation can be implemented with agents’ paying attention

to one another’s fundamentals as opposed to prices. And when our invariance condition does not hold,

markets can strictly economize attention costs, but then it is also generally possible to improve upon them

by manipulating the manner in which prices encode information. Hayek’s (1945) argument is thus turned

on its head: markets are likely to be inefficient precisely when they provide a strict economy of knowledge.

Framework and main result. Towards these lessons, we augment the Arrow-Debreu framework with a

general form of rational inattention. Following Sims (1998, 2003), Tirole (2015), Woodford (2019) and others,

we treat “attention” and “cognition” as interchangeable notions and model them as the choice of a signal

subject to a cost. For consumers, the cost is in terms of forgone utility; for firms, it is in terms of resources
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diverted away from production. We let these costs take an essentially arbitrary functional form, nesting not

only mutual information but also any other specification found in the literature.1

Two elements of this framework are worth emphasizing. The first is that it gives a new meaning to com-

plete markets, as consumers are assumed to be insured against any noise-driven variation in their marginal

utility of wealth. While unrealistic, this assumption plays a familiar role: had we ruled out such insurance

from both markets and planning alternatives, competitive equilibria would generally be inefficient for basi-

cally the same reason as that articulated in Geanakoplos and Polemarchakis (1986), the existence of pecu-

niary externalities. By muting this familiar source of inefficiency, we both give the best chance to Hayek’s

argument and isolate the role played by different assumptions on attention costs.

The second key element is that we let agents flexibly obtain information about the exogenous state of

nature and/or equilibrium prices. Even though prices will be a function of the state of nature in equilibrium,

treating them as a distinct object in the agents’ attention problem is essential for formalizing the sense in

which prices may or may not “economize knowledge.” It also allows us to capture a number of behavioral

phenomena that are well-characterized by imperfect perception of prices.2

In this context, equilibrium embeds a new function for prices, as their stochastic properties enter atten-

tion costs. This opens the door to a “cognitive” externality: one’s actions affects others’ attention costs, or

cognition, by influencing the stochastic properties of prices (e.g., their volatility, contingency, or “sparsity”).

The amended notion of Pareto optimality, on the other hand, maps to a planner who cannot undo the cogni-

tive friction itself, but can internalize the aforementioned externality and can even replace prices with other

“messages” that agents in turn may pay attention to. This allows us to formalize the question of whether

markets are an optimal means for communication and coordination, in the spirit of Hayek (1945).

Clearly, equilibria can be efficient only if the aforementioned cognitive externality is muted. Theorem 1

shows that a sufficient condition for this to be true and, more generally, for Hayek’s argument to be correct is

that attention costs are invariant to “repackaging” of information in prices. We prove this result in two steps.

We first show that there is no way to improve upon laissez-faire outcomes if we restrict the planner’s

messages to package information in exactly the same way as equilibrium prices. This intermediate result

follows from mapping the economy with fixed messages to a “twin” economy that can be readily nested

to the standard Arrow-Debreu framework. Put differently, insofar as one abstracts from the aforementioned

endogeneity and markets are complete in the sense highlighted earlier, rational inattention translates merely

to a modification of preferences and technologies that may influence observable behavior in interesting

ways but fits in the familiar conditions for the Welfare Theorems.

We next relax the aforementioned restriction on messages and check if it is beneficial to replace markets

with other means of communication and coordination. The answer is no under our invariance condition.

This condition, spelled out in Definition 8, allows attention costs to depend on the exogenous stochastic

properties of the environment but mutes their dependence on how these properties are transformed by,

1Including the full class of posterior-separable costs described by Caplin and Dean (2015) and Denti (2018), the neighborhood-
based costs of Hébert and Woodford (2020), and the costs proposed in Pomatto et al. (2018) and Denti et al. (2019).

2Chetty et al. (2009) provide evidence consistent with inattention toward prices and a supporting theoretical framework. Addi-
tional examples can be found in Section 3.2 of Sims (2010) and Section III of Gabaix (2014).
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or “repackaged” in, prices, other endogenous market outcomes (e.g., average trades, industry output, GDP,

etc.), or messages sent as part of non-market mechanisms. Under this property, our intermediate result

directly translates to efficiency of the market mechanism.

Our invariance condition is closely related to the notion of invariance in information geometry (Amari

and Nagaoka, 2000; Amari, 2016) and the axiom of invariance under compression introduced by Caplin et al.

(2020). It is naturally satisfied by Sims’s (2003) mutual-information specification, but not by different speci-

fications that appear to find support in experimental work.3

The following two examples help shed light on what a failure of invariance, and of Theorem 1, may mean

in a market economy. Suppose first that people struggle to discern small price changes. This is inconsistent

with mutual-information costs, because mutual information is scale free, but seems consistent with experi-

ments emphasizing “perceptual distance” and can be rationalized with the kind of attention costs proposed

in Hébert and Woodford (2020). In these circumstances, welfare can be improved by inducing larger vari-

ation in prices, or by requiring that prices such as $99 are rounded up to $100. Suppose next that people

struggle to track volatile or “complex” objects. This, too, can be rationalized by an appropriate departure

from mutual-information costs. And it calls for the opposite kind of intervention: welfare is now improved

by stabilizing or “simplifying” the price system, perhaps even by closing some markets.

Additional results and extensions. Our main result establishes the efficiency of equilibria presuming their

existence. But as long as invariance holds, we can establish existence and a version of the Second Welfare

Theorem by leveraging once more the aforementioned mapping to “twin” economies. In particular, we show

that, while not needed for our main result, the conventional assumption that attention costs are posterior

separable (Caplin and Dean, 2015; Denti, 2018) helps guarantee that the modified preferences and technolo-

gies of these “twin” economies are convex even even if the primitive preferences and technologies are not.

Our existence result and our Second Welfare Theorem then follow from standard arguments.

We next combine invariance with another key property of the mutual-information specification, a form

of monotonicity encoding cognitive savings from “coarsening” signals, to more sharply characterize the in-

formational structure of efficient equilibria. We show, first, that equilibrium allocations are pinned down

by fundamentals (preferences, endowments, technologies), so there is no room for sunspots or correlation

devices; and, second, that every agent pays attention only to variables that directly enter their payoffs or

budget constraint. This adds to our perspective on Hayek (1945) by clarifying the conditions under which

prices are “sufficient statistics” in people’s minds about the state of the economy.

Finally, we explain how our results readily extend to settings where agents track endogenous objects

other than prices (e.g., GDP, industry output, the trades of others), or to a more powerful planner that can

not only replace prices with other messages but also more directly manage people’s attention and cognition

(e.g., by precluding them from learning directly about fundamentals or by relabeling the state space). And

we also discuss how to accommodate behavioral frictions not directly nested in our main framework, like

narrow bracketing, bounded recall, general stochastic choice, and sparsity.

3We discuss this issue further in Section 6.3.
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Related literature. The literature on rational inattention spurred by Sims (1998, 2003) is voluminous. Some

works focus on single-agent behavior (Matĕjka, 2016; Matĕjka, Steiner, and Stewart, 2015); others study spe-

cific macroeconomic models (Maćkowiak and Wiederholt, 2009, 2015) or games (Colombo, Femminis, and

Pavan, 2014; Myatt and Wallace, 2012). Our paper’s added value is to adapt the analysis of rational inatten-

tion to the Arrow-Debreu framework, to develop the appropriate amendments of the Welfare Theorems, and

to show how equilibrium efficiency hinges on whether attention costs take Sims’s (2003) preferred specifica-

tion or other specifications proposed by an emerging experimental and decision-theoretic literature.

Letting consumers and firms choose their attention to prices in a market environment is akin to letting

players obtain information about others’ actions in a large game. This link is explored in a recent, comple-

mentary paper by Hébert and La’O (2020). These authors establish efficiency of equilibria in their class of

games under two conditions: a close cousin of our invariance condition; and a restriction on payoffs akin to

the netting-out of pecuniary externalities in our setting. Hébert and La’O (2020) push the frontier further by

showing that invariance is not only sufficient but also generically necessary for efficiency. They also provide

a result on non-fundamental volatility which, unlike our Proposition 2, requires only monotonicity and not

invariance, and therefore extends to inefficient equilibria.

Related are also Angeletos and La’O (2018), Colombo, Femminis, and Pavan (2014), Gul, Pesendorfer,

and Strzalecki (2017), and Tirole (2015). These works focus on different applied questions but share the

following feature: they study economies that trivially satisfy our invariance condition, because attention

costs are specified as a function of the joint distribution of an agent’s signal and the exogenous state of

nature alone. This explains why the conditions for (in)efficiency found in these works relate exclusively to

pecuniary or payoff externalities, as opposed to the kind of cognitive externalities identified here.

Closer to our question of how markets with inattention work, Ravid (2020) studies a bargaining game in

which a buyer can flexibly but costly pay attention to a good’s quality and a seller’s take-it-or-leave-it offer.

His model, like ours, includes inattention to the terms of trade. But by focusing on mutual-information

costs, his model’s equilibrium does not feature the cognitive externality that drives our kind of inefficiency.

Instead, it produces inefficiency from the interaction of rational inattention with market power.

At a high level, our paper’s cognitive externality is, of course, a specific form of information externality:

the information an agent has about payoff-relevant objects (most notably prices) is a function of the choices

of other agents. Along with our emphasis on markets, this brings to mind the literature on Noisy Rational

Expectations Equilibria (Grossman and Stiglitz, 1980; Laffont, 1985; Vives, 2017). But there are subtle dif-

ferences. While this literature emphasizes learning from prices about fundamentals, such learning is not

essential for our purposes (although it is allowed). Instead, the essential friction is that consumers and firms

are inattentive to prices themselves. Furthermore, in this literature the existence of information externalities

hinge on missing markets (Grossman, 1976, 1981) and the ideal policy intervention would be to complete

the markets. In our context, instead, cognitive externalities are possible despite complete markets, and un-

completing the markets can actually be welfare-improving insofar it helps “simplify” the price system,4

4One paper in the Grossman-Stiglitz tradition that comes closer to what we do is Vives and Yang (2018). These authors study an
asset market in which traders incur a cost for “interpreting” prices (i.e., extracting information about the asset’s return). We suspect
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Outline. Section 2 illustrates the main ideas with an example. Section 3 sets up our general framework.

Section 4 presents our main result regarding efficiency. Section 5 provides additional results about equilib-

rium existence, the Second Welfare Theorem, the role of prices as sufficient statistics, and efficiency under

a looser planning concept. Section 6 uses our results to discuss the link between the price system’s “econ-

omy of knowledge” and the mutual-information framework. Section 7 discusses possible extensions to other

models of behavioral frictions. And Section 8 concludes.

2 Example

In this section, we study a simple, two-good, exchange economy, designed to nest in the linear-quadratic-

Gaussian framework used in Sims (2003) and various other works. In this example, efficiency is guaranteed

with mutual information costs but not with two different specifications. This finding foreshadows our main

result of how efficiency relates to an invariance property at the core of mutual information.

2.1 Set-up

There is a continuum of agents, indexed by i ∈ [0,1], and two goods, called “coconuts” and “money.” Con-

sumer i enjoys the following utility from coconut consumption xi ∈R and money consumption yi ∈R:

u(xi , yi ) = xi − 1
2 x2

i + yi (1)

Each consumer’s endowment of coconuts is ξ ∈ R, their endowment of money is zero, and the price of co-

conuts in terms of money is p ∈R. The consumer’s budget is therefore pxi + yi ≤ pξ.

The consumer chooses their demand of coconuts under imperfect perception of both ξ and p. Formally,

we treat z = (ξ, p) ∈Z =R2 as a random variable, require that xi be measurable in the realization ωi ∈Ω=R
of a signal of z, and let the consumer design the signal’s relationship with z subject to a cost. Assuming that

all relevant distributions admit density functions, we denote the consumer’s prior about z by π ∈ Π, where

Π is a set of density functions over Z , and write the density of ω conditional on each z as φ(·|z). We then

denote the collection of such densities by φ = (φ(· | z))z∈Z ; let Φ be the admissible set of such collections;

and represent attention costs as C (φ,π), for some function C :Φ×Π→R.

Finally, we allow the consumption of money to adjust mechanically so as to meet the budget for all

realizations of uncertainty.5 Solving out for yi and suppressing the i index, we can write the consumer’s

problem as the following choice of a consumption rule x :R→R and a signal structure φ ∈Φ:

max
x,φ

∫
Z

∫
Ω

(
x(ω)− x(ω)2

2
+p(ξ−x(ω))

)
φ(ω|z)π(z) dωdz −C (φ,π) (2)

their specific assumptions about signals and costs amount, under the lens of our analysis, to a joint violation of invariance and
monotonicity. The first opens the door to inefficiency, the second to non-fundamental volatility. One of our examples, although
differently motivated, has a very similar flavor (see Online Appendix E).

5The use of a “residual” good to meet budgets is common in applications but is not needed for our main results. See Section 3.
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Remark 1. If we were to treat the consumer’s prior about z as a fixed primitive, program (2) would be similar

to those studied in a growing, decision-theoretic literature on unrestricted information acquisition (e.g.,

Caplin and Dean, 2015; Caplin et al., 2020; Denti, 2018). But, in our model, the aforementioned prior (and,

specifically, the behavior of p) is determined in equilibrium.

Remark 2. Apart from adding with tractability, the quasi-linear specification has two substantial implica-

tions. The first is that the optimal consumption of coconuts is insensitive to wealth, which in turn means

that consumers do not care to know the endowment ξ per se; they only care to know the price p.6 This high-

lights that, unlike Grossman and Stiglitz (1980), the key issue in our context is not how much agents know

about a fundamental but rather how attentive they are to prices. The second implication is that the marginal

utility of wealth is equated across realizations of the idiosyncratic noise inω. This is preserved in our general

framework, thanks to a strong notion of complete markets, and allows us to abstract from the question of

redistributing wealth from agents with “good” noise realizations to agents with “bad” noise realizations.

2.2 Equilibrium and Efficiency

Let (x,φ) be a solution to (2). We assume that a law of large numbers applies in the cross section of agents

so that the idiosyncratic noise in their signals washes out at the aggregate level. We can therefore write

market clearing as X (ξ, p) = ξ for each ξ, where X (ξ, p) ≡ ∫
Ω x(ω)φ(ω | ξ, p) dω . This suggests that, although

the decision problem in (2) may plausibly treat the pair z = (ξ, p) as an arbitrary random variable, market

clearing may impose that the second element of z is merely a transformation of its first element.

This claim is subject to the following qualifications. First, if the function X is non-monotonic, it may

be possible to construct equilibria in which p varies with a sunspot variable in addition to ξ. Second, the

existence of such sunspot-driven variation in prices may influence attention costs and thereby the entire

equilibrium. Both of these possibilities relate to the question of how rich is the exogenous state of nature.

Our general model accommodates arbitrary richness for it. Here, we simplify the exposition by restricting it

to coincide with the fundamental ξ. We thus define an equilibrium in the following way:

Definition 1. A competitive equilibrium is a combination of a demand function x : R→ R, a signal choice

φ ∈Φ, a price function P :R→R, a prior π ∈Π such that :

1. Agents optimize, or (x,φ) solves program (2).

2. The market for coconuts clears, or
∫
Ω x(ω)φ(ω | ξ, p) dω= ξ for all (ξ, p).

3. The consumers’ prior about z is consistent with the equilibrium price function, or π(ξ, p) = πξ(ξ) ·
D(P (ξ) = p) for all (ξ, p), where πξ is the density of ξ and D(·) is the Dirac delta function.

This is like a textbook definition but for two modifications. First, individual optimality is extended to

incorporate the optimal signal choice. And second, the agents’ prior about z, which matters only because

6We could have introduced an attentive supplier, who owned the coconuts but valued only money. Then, from the perspective
of the inattentive consumer, ξ would be the random supply of coconuts, with no intrinsic interest independent from the price.
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it enters attention costs, is generated by combining the exogenous prior about ξ with the equilibrium price

function. This is where Rational Inattention (RI) meets Rational Expectations Equilibrium (REE).

It is useful to re-cast this definition in the familiar metaphor of a Walrasian auctioneer, to obtain a firmer

sense of how, paraphrasing Sims (2010), prices can “play their usual market-clearing role” despite inatten-

tion to prices. Before ξ and p are realized, consumers use their knowledge of the price functional P to con-

struct their prior over z = (ξ, p) and to design their optimal signal. Then, nature chooses ξ and the auction-

eer sets p = P (ξ). Agents observe their noisy signals of p (and of ξ) and submit demands based on these

signals.This yields at the aggregate level a demand for coconuts that is a deterministic function of p, thanks

to our assumption of a continuum of agents (and an appropriate law of large numbers). Finally, the loop

closes by requiring that P is such that this demand meets supply, for on any possible realization of ξ. Clearly,

this is similar to how prices clear markets in standard, attentive economies—and this is precisely the point.

Now consider a benevolent planner that cannot eliminate the cognitive friction but can otherwise regu-

late consumers’ behavior. To fix ideas, suppose that the planner can tax any consumer as a flexible function

of the state, the consumer’s demand for coconuts, and the consumer’s choice of signal. Clearly, the planner

can induce any combination of consumption, attention, and prices with such a panoply of tax instruments.

This motivates the following notion of efficiency.7

Definition 2. A triplet (x∗,φ∗, M∗) is efficient if it solves the following program:

max
φ∈Φ,x:Ω→R+,M :Θ→RN

∫
Z

∫
Ω

(
x(ω)− x(ω)2

2

)
φ(ω|z)π(z) dωdz −C (φ,π)

s.t.
∫
Ω

x(ω)φ(ω | ξ,m) dω= ξ for all (ξ,m)∈Z

π(ξ,m) =πξ(ξ) ·D[M(ξ) = m] for all (ξ,m) ∈Z

(3)

where D(·) is the Dirac delta function. An equilibrium (x,φ,P ) is efficient if it solves the above with M = P .

An economy is efficient if all equilibria are efficient.

The change of notation from the price p and the functional P to, respectively, the variable m and the

functional M highlights the following point. As already mentioned, prices play a dual role in equilibrium:

the traditional one of affecting incentives and clearing markets; and the novel one of being a component of

the variable z that agents try to learn or understand. But in the planner’s solution, incentive compatibility

is not an issue and market clearing is replaced by resource feasibility. It follows that prices remain relevant

only because of the second role: they are merely “messages” (hence, m and M) that enter agents’ cognition.

This facilitates the following, literal interpretation of the problem defined above. First, a central planner

(in place of the Walrasian auctioneer) observes ξ and announces the message m according to rule M . Next,

the planner recommends to every agent a signal structure φ for learning about z = (ξ,m) and consumption

plan. And finally, all agents obediently follow these recommendations.8

7When writing the planner’s problem in (3) and the consumer’s problem in (2), we presume that the respective maximums exist.
The technicalities are taken care of in our general analysis. Also, our general analysis poses efficiency in terms of Pareto dominance.
The planner interpretation is used only to ease the exposition.

8As in textbook welfare analysis, our planner has no problem in either observing the state of nature or controlling agents’ strate-
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This mechanism nests “free markets” as a special case, but offers the planner two degrees of freedom: the

regulation of the agents’ consumption and attention strategies; and the use of an arbitrary message in lieu

of the price. The question of interest thus boils down to this: when are these degrees of freedom redundant?

2.3 Specialization: Gaussian Structure

For the rest of the example, we assume that ξ ∼ N (0,1) and that agents can only choose signals ωi that are

jointly Gaussian with z, or else they face an infinite cost. This buys us the following simplifications. First, we

can represent any feasible signal as

ωi = a1z1 +a2z2 +a3ηi (4)

where z1 stands for ξ, z2 stands for p or m, ηi ∼ N (0,1) is idiosyncratic noise, and a = (a1, a2, a3) ∈ R3 is a

vector of coefficients. Second, we can infer that in any equilibrium p is linear in ξ, or else z would fail to

be Gaussian, agents would be unable to comprehend z (i.e., choose any signal about it), and an equilibrium

would not exist. We can therefore write P (ξ) = ψ0 −ψ1ξ for some scalars ψ0 and ψ1; and since we have

normalized the mean and variance of ξ, we can also characterize the joint distribution of (ξ, p) by only these

scalars. A similar point applies to the rule M and the joint distribution of (ξ,m) in the planner’s problem.

Combining these observations, we infer thatφ and π, the consumer’s signal choice and prior, are param-

eterized by the vectors a and (ψ0,ψ1), respectively. For the rest of this section, we therefore write attention

costs as C (a;ψ0,ψ1). The dependence of C on (ψ0,ψ1) underscores how the “translation” of fundamentals

via prices or other messages may influence attention costs. We next show how this effect is muted, and

efficiency is obtained, with mutual-information costs but not with two other specifications.

2.4 An Efficient Economy

Let attention costs be a function K of the mutual information between ω and z, where K :R+ →R is increas-

ing, convex, and differentiable, with K ′(0) = 0. Because p is a function of ξ, the mutual information between

ω and z = (ξ, p) is the same as that between ω and ξ. Attention costs thus reduce to

C (a;ψ0,ψ1) = c(δ) ≡ K (− log(1−δ)), where δ= d(a;ψ1) ≡ (a1 −ψ1a2)2

a2
3 + (a1 −ψ1a2)2

. (5)

See that δ is the correlation between ω and ξ (or, equivalently, between ω and p whenever ψ1 6= 0). Hence,

in the present context, δ offers a simple measure of attention and c(δ) gives the corresponding cost.

To compute the benefits of attention, proceed as follows. Suppose that other agents, j 6= i , choose some

ae = (ae
1, ae

2, ae
3) and let δe = d(ae ;ψ1). Suppose further that they choose their demands optimally, which

means that x j (ω) = 1−E[p |ω j ] = 1−δe p. It follows that the equilibrium price is given by P (ξ) = 1− ξ
δe . Using

this fact along with the fact that i ’s own optimal demand satisfies xi (ω) = 1−δp, we can calculate her ex ante

gies. Needless to say, this is far from real-world applications, where governments have access to a limited set of policy tools and
contingencies.
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utility from consumption as follows (detailed derivations can be found in Online Appendix C):

b(δ,δe ) ≡ max
x

E

[
x(ω)− x(ω)2

2
+P (ξ)(ξ−x(ω))

]
= δ−2δe

2(δe )2 (6)

This makes clear not only that attention is privately valuable (b1 > 0) but also that the gains from attention

are most significant when prices are more volatile or, equivalently, others are more inattentive (b12 < 0)

Combining the above expressions of the costs and benefits of attention, we conclude that any equilib-

rium boils down to a solution of the following fixed-point problem:

δe ∈ argmax
δ

{
b(δ,δe )− c(δ)

}
. (7)

Under the assumed conditions on K (or c), the above has a unique solution and this solution is characterized

by the consumer’s first-order condition, namely b1(δe ,δe ) = c ′(δe ).

We can similarly reduce the planner’s problem to the following:

δ∗ ∈ argmax
δ

{b(δ,δ)− c(δ)} , (8)

or equivalently b1(δ∗,δ∗)+b2(δ∗,δ∗) = c ′(δ∗). Comparing this to the equilibrium counterpart, we see the

following key properties. On the benefits side, the planner internalizes the pecuniary externality whereby

increasing one agent’s attention affects others’ budgets and utility. On the costs side, the planner’s trade-off

is the same as the agents’ despite the planner’s flexibility to send an arbitrary message.

A direct calculation from (6) yields b2(δ,δ) = 0 for any δ. This reflects the fact that pecuniary externalities

are muted, thanks to the linearity of preferences to money. It follows that δe = δ∗, or that the economy’s

unique equilibrium coincides with the planner’s solution. Summing up:

Proposition 1. With mutual-information costs, an equilibrium exists, is unique, and is efficient.

2.5 Two Inefficient Economies

The economy studied above was efficient because externalities were muted on both the benefits and the

costs of attention. We already explained why this was true on the benefit side. We now show that the absence

of an externality on the cost side depended critically on the mutual-information assumption. Away from this

assumption, inefficiency is possible via what we call cognitive externalities.

Consider first a case in which agents can only obtain signals of the form ω = p + a3η and must pay in

proportion to the signal’s precision about prices. That is,

C (a;ψ0,ψ1) =

a−2
3 if a1 = 0, a2 = 1

∞ otherwise
(9)

We take this class of costs to represent imperfect observation/cognition in the physically relevant units of
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prices. In particular, such a cost implies that it is more difficult to perceive price changes from $1.99 to

$2.00 than price changes from $2.00 to $2.10. As discussed in Section 6.2, such scale-dependent cognition

relates loosely to the decision-theoretic work of Hébert and Woodford (2020) on “perceptual distance” and

“neighborhood-based” costs of information acquisition.

We can still express the benefits of attention by b(δ,δe ), where b is defined as in (6) and (δ,δe ) is the pair

of the correlations between ξ and, respectively, one’s own signal and others’ signal. But once expressed in

these units, the cost of attention is different than in the mutual-information benchmark. In particular, using

δ=ψ2
1/(a2

3 +ψ2
1), solving the latter for a3, and replacing the outcome into (9), we get C (a;ψ0,ψ1) = δ

1−δψ
−2
1 .

Using the fact that equilibrium price function has ψ1 = 1/δe , we get

C (a;ψ0,ψ1) = c(δ,δe ) ≡
(

δ

1−δ
)

(δe )2

The cost of achieving a given signal-to-noise ratio regarding ξ, which is the relevant notion of signal “quality”

in terms of expected utility gains, increases with others’ signal-to-noise ratio. Why? When others are more

attentive, and their demands are more elastic, equilibrium prices are less dispersed across states of nature.

Under the present model, these less dispersed prices are harder to tell apart from one another.

As a second example, we consider an opposite scenario in which it is relatively easier for agents to track

prices (or messages) when the latter are less dispersed. Agents are again restricted to obtain signals of the

form ω= p +a3η but now incur a cost in proportion to the signal’s variance:

C (a;ψ0,ψ1) =

C0 − (a2
3 +ψ2

1) if a1 = 0, a2 = 1

∞ otherwise
(10)

for some constant C0 > 0. One may interpret this as a continuous analogue for the idea put forth in Gabaix

(2014) that agents prefer to keep track of fewer possible realizations of ω (or concentrate probability on a

smaller measure of realizations). Following similar steps as above, these costs can be re-expressed as

C (a;ψ0,ψ1) = c(δ,δe ) ≡−
1+

√
1−δ
δ

 (δe )2

The cognitive externality is now the opposite: higher attention from others raises price volatility, which

makes it less costly to obtain any given value for δ.

What does this mean for efficiency? In both of the above cases, the equilibrium is characterized by

b1(δe ,δe ) = c1(δe ,δe ). And while we still have b2(δ,δ) = 0, meaning that pecuniary externalities are muted,

we now have c2(δ,δ) 6= 0, or there is a cognitive externality creating a wedge between equilibrium and effi-

cient attention. What changes is the direction of this externality, as summarized below.

Proposition 2. With the costs described in (9) or (10), the economy is inefficient. Attention is inefficiently high

and prices are insufficiently volatile in the first case, and the opposite is true in the second case.

10



2.6 Summary

The analysis in this section hints that the efficiency of inattentive economies hinges on whether the cog-

nitive process, as represented by the attention cost specification, are suitably invariant to the stochastic

properties of prices, or any other “messages” society could potentially use in their place. But it does not

fully clarify the precise form of invariance needed for efficiency. In particular, the examples presented above

seem to emphasize how steep or flat the mapping from ξ to p is. But what does this mean in a world where

there are multiple prices and these are non-linear and possibly non-monotone transformations of multiple

fundamental variables, or even of non-fundamental variables?

We address these questions in the rest of the paper. We shall show that the required property encodes in-

variance not only to rescaling but also to more complicated transformations, including “simplifying” prices

or making them “sparser” by removing certain contingencies from them, or perhaps adding noise in them.9

And we will draw a sharper link between the general-equilibrium questions of interest and the decision-

theoretic literature on rational inattention.

3 General Model

This section introduces our general framework, which augments a standard Arrow-Debreu economy with

rational inattention. We also define our paper’s notions of invariance and monotonicity for attention costs.

3.1 Goods, State of Nature, and Cognition State

Let the state of nature be a random variable θ, drawn from a finite setΘ according to probability distribution

πθ ∈ 4(Θ), with πθ(θ) > 0 for all θ ∈ Θ. This encodes not only any shocks to fundamentals (endowments,

preferences and technologies) but also any available correlation device (sunspots). Next, let there be a finite

set of primitive, non-contingent goods, indexed by n ∈ {1, ..., N }. The corresponding price vector is denoted

by p ∈RN+ . This, too, is a random variable, whose distribution will be determined in equilibrium.10

To introduce rational inattention, we must first take a stand on what objects an agent can possibly collect

signals on. We denote the collection of such objects by z and refer to it is that agent’s cognition state.11 In

Section 5.3, we discuss how to accommodate a flexible specification of z, which allows us to capture the

possibility that agents may pay attention not only to fundamentals, sunspots, and prices but also to taxes,

macroeconomic statistics, blogs, or twits. For our main analysis, however, we confine attention to z = (θ, p).

We then introduce rational inattention by (i) restricting agents to condition their behavior on a noisy signal

of z and (ii) letting them design this signal subject to a cost.

9See Online Appendix E for an example in which the use of a sunspot to add noise in prices helps economize attention costs. In
this example, the form of invariance needed for efficiency (Theorem 1) breaks in a subtle way, despite the apparent use of mutual
information—and so does the form of monotonicity invoked in our result about fundamental equilibria (Theorem 2).

10The assumptions that the state space Θ is finite (made here) and that the signal space Ω is also finite (made shortly) are purely
technical: they allow us to work with probability distributions instead of more complicated measures.

11It is straightforward to let z differ across j so as to capture heterogeneity in what agents can possibly learn or think about.
Alternatively, such heterogeneity can be embedded in the attention cost functional below, while preserving the symmetry in z.
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It may appear that z double counts θ, because in equilibrium p will have to be a function of θ. But this

is an equilibrium property and, in the decision problem of the typical consumer or firm, θ and p appear as

two conceptually distinct variables. In other words, the probability of rain and the price of umbrellas may

loom differently in people’s cognition, even if they end up being tightly connected in equilibrium. A similar

point applies to the “messages” that replace prices in our upcoming notions of feasibility and efficiency.

We describe the stochastic properties of z as follows. We let π be a probability mass function over re-

alizations of z = (θ, p) and require that it belongs in the set P defined by the compositions of πθ, the prior

about the state of nature, with arbitrary functions fromΘ to RN+ :

P ≡
{
π :Θ×RN

+ → [0,1] s.t. π(θ, p) =πθ(θ) I[ f (θ) = p], for some f :Θ→RN
+

}
. (11)

This restriction is without loss of generality once we recognize that p is a function of θ in equilibrium and

only serves a technical purpose: to ease the upcoming description of attention cost functionals. Along the

same lines, we also define, for every π ∈ P , the π-indexed set Zπ ≡ {(θ, p) : π(θ, p) > 0} ⊂Θ×RN+ and the π-

indexed function fπ : θ→Θ×RN+ with fπ(θ) = {(θ, p) :π(θ, p) > 0} for any θ ∈Θ; the first gives the (necessarily

finite) support of any π ∈P , the second reverse-engineers the mapping from (11) associated with π.

3.2 Inattentive Consumers

There is a unit-measure continuum of households, split into a finite number of types j ∈ {1, ..., J }. The mass

of type j is given by µ j ∈ (0,1), with
∑J

j=1µ
j = 1. Each consumer, irrespective of type, can consume goods

within a set X ⊂ RN . For technical reasons, we assume X is a closed rectangle in RN+ , or X =∏N
n=1[0, xmax

n ]

for a vector (xmax
n )N

n=1 À 0; but we make these bounds arbitrarily large so as to make their value irrelevant.12

Consumers have two income sources. The first is a state-dependent endowment, denoted by e j (θ) for

some fixed e j : Θ→ RN+ . The second is a fraction a j of aggregate firm profits, with
∑J

j=1 a j = 1. The profits

are denoted byΠ(θ) and, like prices, will be determined as part of the equilibrium.

Consumers choose two variables: a signal about z, and a plan for how much to consume of each good

for each signal realization. Denote the realization of the signal by ω and let the signal space (i.e., the set

of possible ω values) be a fixed, finite set Ω. The choice of a consumption plan is then represented by the

choice of a mapping x : Ω→ X . The choice of a signal, on the other hand, is represented by the choice

of a probability distribution over Ω for every z ∈ Zπ, where Zπ was previously defined as the set of all z

which occur with positive probability under prior π. When there is no confusion, we refer to this collection

of “likelihood distributions” (φ(·|z))z∈Zπ
with the short-hand notation φ.

As long as π ∈ P , φ is necessarily an element of Φ ≡ ∆(Ω)|Θ|. We thus restrict attention to pairs (φ,π)

belonging to the set Φ×P , refer to any such pair as an information structure, and assign it a cost C j
[
φ,π

]
12These bounds help guarantee existence of a solution to the consumer’s problem. But since endowments are finite, the produc-

tion set is compact, and µ j > 0 for all j , it is straightforward to let, for all n, xmax
n be greater than 1/min j µ

j times the maximum
conceivable amount of the respective good, so no consumer type can reach the bound in a feasible allocation.

12



measured in utils, for some function C j :Φ×P →R+. This defines the cost of attention, or cognition.13,14

We then represent the consumer’s preferences over the joint of consumption plans and attention choices

by the expected utility of consumption net of this cost:

U (x,φ;π) ≡ ∑
ω∈Ω,z∈Zπ

u j (x(ω),θ) φ(ω | z) π(z)−C j [φ,π],

where u j : X ×Θ→ R is the consumer’s Bernoulli utility function over goods. We assume that, conditional

on each state θ, this Bernoulli utility function is (i) continuous in x and (ii) represents weakly monotone

preferences over goods, or satisfies u j (x ′,θ) > u j (x,θ) for each x, x ′ ∈ X such that x ′ À x and each θ ∈ Θ
(where we use À to denote strict inequality for each element).

We close the consumer’s problem by assuming complete markets over not only θ but also ω. This is

analogous to our assumption of quasi-linear preferences in Section 2, insofar as it allows the consumer to

equalize marginal utility over realizations of the signalω. As mentioned in the Introduction, this makes sure

that pecuniary externalities are muted. But it does not eliminate the mistakes due to rational inattention,

nor does it equalize marginal utility across consumer types. For example, “less sophisticated” consumers

(i.e., those with higher attention costs) will naturally fare worse in the absence of compensating transfers.

Taken together, the consumer’s behavior can be expressed as the solution to the following program:15

max
x,φ

∑
ω∈Ω,z∈Zπ

u j (x(ω),θ) φ(ω | z) π(z)−C j [φ,π]

s.t.
∑

ω∈Ω,z∈Zπ

(
p · x(ω)−p ·e j (θ)−a jΠ(θ)

)
φ(ω | z) π(z) ≤ 0

x :Ω→X ; φ(· | z) ∈∆(Ω), ∀z ∈ Zπ

(12)

This formulation accommodates a wide range of attention costs, like the ubiquitous posterior-separable

class (as studied by Caplin and Dean, 2015; Denti, 2018). But for now, we do not need to impose posterior

separability or any other substantial restriction. We only assume that C j is continuous in its first argument

conditional on the second, to help guarantee that the decision problem stated above is well posed.16

Finally, note that we have let attention costs enter linearly in preferences. This is standard in the literature

but is not essential for our main result: we could interpret c j =C j [φ,π] as a “bad” and let it enter u j in a non-

linear way alongside the other goods. We follow such an approach in the firm’s problem below.

13Let K ≡ |Θ|. Our formulation presumes that C j knows how to “read” from any pair (φ,π) ∈Φ×P which of the K components of
φ corresponds to which of the K values in the support of z implied by π. To make sure this is the case, we proceed as follows. First,
we order Θ in an arbitrary way, so that we can write Θ = {θ1, ....,θK }. Next, for any π ∈ P , we order Zπ in a way that preserves the
order over Θ, that is, we let Zπ = {z1, ...., zK } with zk ≡ (θk , fπ(θk )). We also write the typical element of Φ as φ = (φ1, ...,φK ), with
φk ∈ ∆(Ω) for all k ∈ {1, ...,K }. And finally, we interpret φk as the distribution of ω conditional on z taking the value zk ≡ fπ(θk ). In
simple words, for any π and φ, we always associate the k-th component of φ with the k-th value in the support of z implied by π.

14Our formulation leaves the “degenerate” likelihoods, φ(·|z) for any z ∉ Zπ, undefined. This is not a problem, because these
likelihoods never appear in the decision problems we write below. But one may normalize φ(· | z) = 1

|Ω| for all z ∉ Zπ.
15In the sums appearing in the consumer’s problem (12), z is of course the same variable as the pair (θ, p). The same applies to

the firm’s problem (13) below.
16Since our probability distributions are finite, it is sufficient to think of continuity in the vector space [0,1]|Ω|×|Θ|. If the signal

space were continuous, we would need to define continuity with respect to the appropriate weak topology.
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3.3 Inattentive Firms

There is a unit-measure continuum of identical firms.17 Firms, like consumers, choose two objects. The first

is a signal parameterized again by a collection φ= (φ(· | z))z∈Zπ
∈Φ≡∆(Ω)|Θ|. The second is a ω-contingent

production plan, y : Ω→ Y , where Y ⊂ RN is non-empty, is closed, and contains the zero vector (no pro-

duction). Firms maximize expected profits subject to a technological constraint, which embeds attention

costs. Formally, an output vector y ∈Y is feasible for the firm in state θ if and only if it satisfies H
(
y,c,θ

)≤ 0,

where H : RN+1 ×Θ→ R is continuous and increasing in its first N +1 elements and c measures the cost of

cognition. The latter is specified as c = C F [φ,π], where C F : Φ×P → R is defined analogously to the con-

sumers’ cost function. Finally, we introduce normalizations such that the firm can always “shut down.” That

is, we let C F (φ,π) = 0 whenever φ is such that φ(ω|z) = 1
|Ω| for all ω and all z ∈ Zπ and assume H(0,0,θ) < 0.

Putting everything together, firm behavior is summarized in the following program:

max
y,φ

∑
ω∈Ω,z∈Zπ

(p · y(ω)) φ(ω | z) π(z)

s.t. H
(
y(ω),C F [φ,π],θ

)≤ 0,∀ (ω,θ) :φ(ω | fπ(θ)) > 0

y :Ω→Y ; φ(· | z) ∈∆(Ω), ∀z ∈ Zπ

(13)

This formulation treats firm cognition as a non-tradable, “in-house” production activity that diverts re-

sources from production (insofar as it increases C F and, thereby, reduces H), but also lets production plans

respond more efficiently to demand and supply shocks (insofar as it allows ω to be more informative of z).

Note that this readily nests the scenario in which attention costs emerge as a linear penalty in profits by

letting H(y,c,θ) = H̃(y + vc,θ) for some function H̃ and some constant v ∈R+.

3.4 Equilibrium

Throughout, we focus on equilibria in which strategies are symmetric within types. This is without seri-

ous loss of generality, because we can always partition types into sub-types with the opportunity to make

different decisions. We thus define equilibrium as follows:

Definition 3. An equilibrium is a profile of consumption and production strategies,
(
(x j )J

j=1, y
)
, attention

choices,
(
(φ j )J

j=1,φF
)
, a price function P :Θ→RN+ , and a prior π ∈P such that

1. Consumers and firms optimize, respectively solving programs (12) and (13), taking as given π.

2. Markets clear, or for all θ ∈Θ,
J∑

j=1
µ j x j (θ) =

J∑
j=1

µ j e j (θ)+ y(θ) (14)

where

x j (θ) ≡ ∑
ω∈Ω

x j (ω)φ j (ω | fπ(θ)) and y(θ) ≡ ∑
ω∈Ω

y(ω)φF (ω | fπ(θ)) (15)

17It would be straightforward to add types of firms as well, but we abstract from this for simplicity.
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are, respectively, the average demand of type- j consumers and the average supply of firms in state θ.

3. Profits are rebated to consumers, orΠ(θ) = p(θ) · y(θ) for all θ ∈Θ.

4. The prior π about z is consistent with the equilibrium price functional, or fπ(θ) = (θ,P (θ)) for all θ ∈Θ.

The following two properties carry over from the equilibrium definition in the example (Definition 1).

First, the prior about z, which enters each agent’s cognitive cost, is an endogenous object required to be

consistent with the equilibrium price functional—this is, again, where “RI meets REE.” And second, because

of a law of large numbers applied to idiosyncratic realizations of ω, all aggregate quantities and prices are

functions of θ in equilibrium—but now θ may contain a multitude of fundamentals as well as sunspots.

Remark 3. While the distinction between states of nature and “true,” non-contingent goods is immaterial

in the standard Arrow-Debreu framework, it was necessary in our context in order to introduce rational

inattention. Still, this distinction disappears once we reach Definition 3, thanks to the following two ba-

sic properties: aggregate demands/supplies and market clearing are defined at the good-by-state level; and

attention choices are subsumed in aggregate demands/supplies. This anticipates our mapping from inat-

tentive economies to “twin” attentive economies developed in Section 4.

Remark 4. The above discussion also invites the following intuition for what rational inattention “means” in

more standard GE language: “confusing θ and θ′” is tantamount to submitting similar demands for “apples-

in-θ” and “apples-in-θ′.” From this perspective, an complete-markets economy with rational inattention

may look like one with “endogenously incomplete markets,” in the sense that agents choose in equilibrium

to ignore certain contingencies that are not valuable to learn about relative to attention costs.

3.5 Feasibility and Efficiency

We now define efficiency. This is the same as Pareto optimality under an amended version of feasibility

that takes into account the cognitive friction. As in the example, this involves the replacement of the price

variable p in the cognition state of the agents’ cognitive process with a message m. We require that this

message, like the equilibrium price, be representable as a function M : Θ→ RN+ . The consumer and firm

problems are adjusted to re-define the cognition state as z = (θ,m), which has a prior π ∈ P which must

now be consistent with the message function M . We can then define feasibility and efficiency as follows:

Definition 4. A feasible arrangement is a profile of consumption and production strategies,
(
(x j )J

j=1, y
)
,

attention choices,
(
(φ j )J

j=1,φF
)
, a message rule M :Θ→RN+ , and a prior π ∈P such that

1. Consumption and production are informationally feasible, or x j :Ω→X for all j and y :Ω→Y .

2. Consumption and production are technologically feasible, or (14)-(15) hold along with

H
(
y(ω),C F [φF ,π],θ

)≤ 0,∀ (ω,θ) :φF (ω | fπ(θ)) > 0 (16)

3. The prior π about z is consistent with the message rule, or fπ(θ) = (θ, M(θ)) for all θ ∈Θ.
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Definition 5. An equilibrium is efficient if there does not exist a feasible alternative such that (i) all agents

are weakly better off and (ii) a positive measure of agents is strictly better off.

As discussed in Section 2.2, replacing prices with messages allows our question about the “economy of

knowledge” to be well-posed. Such messages are herein restricted to live in the same space as prices. This

simplifies the exposition by making sure that z itself remains in the same space as we move back and forth

between equilibria and planning alternatives. In Section 5.3, however, we discuss how to accommodate

two related extensions: to enrich the messages sent by a planner, and to let endogenous objects other than

prices, such as aggregate trades or taxes, enter the cognitive process as distinct elements of z.

3.6 Invariance and Monotonicity of Costs

In this subsection we define two properties of attention costs that we invoke in our subsequent results. The

first is the form of invariance alluded to at the end of Section 2.6. The second is a form of monotonicity that,

while distinct in principle, is also satisfied in the leading example of mutual-information costs.

We start by fixing language and notation. Recall that we refer to any pair (φ,π), describing a signal choice

and a prior about z, as an information structure; and that z is a random variable with domain Θ×RN+ . Let

G ≡ {g : (Θ×RN+ ) → (Θ×RN+ )} and, for any g ∈ G , consider the transformation z 7→ z̃ = g (z). Informally, we

can say that such transformations either “relabel” states if they are bijective (“one-to-one”) or “relabel and

merge” states if they are surjective (“one-to-many”). And we define the corresponding transformations of

information structures in the following way.

Definition 6 (Transformations of Information Structures). Consider two information structures (π,φ) and

(π̃, φ̃) and a function g ∈G . We say that (φ̃, π̃) is the transformation of (φ,π) under g if

π̃(z) =∑
z ′
π(z ′)I[g (z ′) = z] ∀z ∈ Zπ (17)

φ̃(ω|z) =
∑

z ′∈Zπ
φ(ω|z ′)π(z ′)I[g (z ′) = z]

π̃(z)
∀ω ∈Ω, z ∈ Zπ̃ (18)

Such transformations amount to a “change of variables” in the following sense. Consider a random vari-

able z and replace it with the random variable z̃ = g (z), for some g ∈G . If the former’s distribution is π ∈P ,

then the latter’s is π̃ ∈P constructed as in (17). Furthermore, if the agent had chosen a signal φ for the origi-

nal random variable and wishes to preserve the informational content of that original signal with respect to

the new random variable z̃, then the new signal φ̃ would be constructed according to (18).

We next define a sufficiency relationship between information structures, recasting the familiar defini-

tion of a sufficient statistic in our language:

Definition 7. Consider two information structures (φ,π) and (φ̃, π̃) such that (φ̃, π̃) is the transformation of

(φ,π) under g for some g ∈G . We say that π̃ is sufficient for π with respect to φ if φ(ω | z) = φ̃(ω | g (z)) for all

ω and all z such that π(z) > 0.
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This definition is equivalent to saying, in slightly different language, that the random variable z̃ = g (z)

is a sufficient statistic for the random variable z with respect to the signal ω, or that the distribution of z

conditional on z̃ does not depend onω.18 More informally, under the sufficient statistic condition, the signal

ω does not contain any information about z other than the one it contains about z̃. See that this is trivial if

g is bijective, or merely “relabels” states, and a meaningful restriction when g is surjective, or both “relabels

and combines” states. In particular, if the original signal structure allowed one to learn the relative likelihood

of two states z 6= z ′ such that g (z) = g (z ′), then the sufficiency property does not hold.

With these definitions in hand, we now state the invariance and monotonicity properties of interest, both

defined with respect to an arbitrary subset G of the universe G of possible transformations:

Definition 8. Fix a set G ⊆ G . Consider any function g ∈ G and any two information structures (φ,π) and

(φ̃, π̃) such that (φ̃, π̃) is the transformation of (φ,π) under g . A cost functional C is

1. invariant with respect to G if C [φ,π] =C [φ̃, π̃] whenever π̃ is sufficient for π with respect to φ.

2. monotone with respect to G if C [φ,π] >C [φ̃, π̃] whenever π̃ is not sufficient for π with respect to φ

Invariance requires that rescaling or relabeling the states does not affect attention costs, while merg-

ing particular states has no effect provided the signal did not originally distinguish between those states.

Monotonicity requires additionally that combining states that were originally distinguished from one an-

other strictly decreases costs. The first property will alone be the key for efficiency (Theorem 1). The second

property will guarantee that efficient equilibria are sunspot-free and, in addition, that agents pay attention

only to prices and not to one another’s fundamentals (Proposition 2).

In Section 6.2 and Appendix B, we connect our invariance and monotonicity notions to related notions

from the economic literature on flexible information acquisition (Caplin et al., 2020) and the statistics litera-

ture on information geometry (Amari, 2016). We also clarify that mutual information costs are invariant and

monotone with respect to the entire G . Below, we use a simple example to illustrate the particular invariance

property that is relevant in the proof of Theorem 1. This amounts to allowing arbitrary transformations of

prices (or their replacement with arbitrary messages) but ruling out transformations of the state of nature. In

Section 5.3, on the other hand, we explain why “full” invariance must be invoked once we consider plausible

expansions of our planner’s powers or the definition of z.

Remark. In earlier drafts, we had combined our invariance and monotonicity notions in a single condition

(Assumption 3 in Angeletos and Sastry, 2019), thus also blending Theorems 1 and 2 together. The separation

of these notions and of their implications in the present draft mirrors that in Hébert and La’O (2020).

Illustration. A consumer lives in a world with two states of nature with equal prior probabilities: θ ∈ Θ =
{A,B}, with πθ(A) = πθ(B) = 1

2 . There is a single price, p, taking values in [0,∞). The cognition state is

18This equivalence follows from an elementary calculation combining the transformation of Definition 6 with Bayes’ rule. This
calculation is contained in the proof of Lemma 4. Also, the reason that in this draft, unlike an earlier one, we opt to use the language
of distributions (e.g., π and π̃) instead of that of random variables (respectively, z and z̃) is merely that this facilitates a cleaner
connection to the decision-theoretic literature on flexible information acquisition. This connection is spelled out in Section 6.2.
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Figure 1: Visualization of a Non-Invariant Cost Functional
(1) (2) (3)
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Notes: Blue corresponds with state A and orange with state B . The first row of diagrams visualizes the agent’s signal "technology"

and the second plots, in a two-color bar graph, their likelihood distributions.

z = (θ, p) ∈ {A,B}×R. There are two possible price functionals, denoted by P and P̃ . The first maps {A,B} to

{3,5}, the second to {4,5}. These mappings correspond to two possible distributions for z, denoted by π and

π̃, with respective supports Zπ = {(A,3), (B ,5)} and Zπ̃ = {(A,3), (B ,5)}. The signal space isΩ= {a,b}.

Our question is how costs do (or do not) change as we move from price functional P to price functional P̃ ,

or equivalently from priorπ and prior π̃. Note that this amounts to a transformation of the original z to a new

z̃ by a function g that preserves the first element of z but changes the second. Namely, g maps {(A,3), (B ,5)}

to {(A,4), (B ,5)}. It is this kind of “partial” transformation of z that will be relevant for understanding the

efficiency of the equilibrium below.

We first construct a cost that is neither monotone nor invariant and that captures the idea of having

difficulty distinguishing nearby prices; this is like the cost assumed in equation (9) for one of our earlier

examples of inefficiency. The agent has no way to directly learn θ; perhaps they do not even understand

what “A” and “B” mean. But they can try to learn p. In particular, they can choose among a continuum

of “experiments,” indexed by η ≥ 0.19 Running experiment η costs 1/(η+1) and returns an outcome that is

distributed uniformly on the interval [p−η, p+η]. The agent then applies the following (Bayesian) algorithm

to map experiments to signals. If the outcome of the experiment is uniquely consistent with the price in A

(respectively, the price in B), the agent assigns probability 1 to ω = a (respectively, ω = b). Otherwise, the

agent attaches probability 1
2 to each value of ω. See that the choice of an experiment corresponds to the

choice of a φ, or the distribution for ω conditional on z, and that we can define C [φ,π] in this context as the

lowest cost experiment generating a given φ.

Imagine that, when the price mapping is P , or (p A , pB ) = (3,5), the consumer picks η= 1 at cost C = 1/2

and perfectly distinguishes the two states at the lowest possible cost. This is demonstrated in Column 1 of

Figure 1, which visualizes the signal technology and plots the likelihood distributions. Next, see that when

the price mapping is P̃ , or (p A , pB ) = (3,4), the same experiment of η = 1 yields a different and strictly less

19We use “experiment” informally here, and not in the precise sense of Blackwell (1951).
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informative signal (Column 2). Finally, see that the cheapest method of preserving the informational content

of the original signal under the new price functional requires a lower η and therefore a strictly higher cost

(Column 3). This cost functional is therefore neither monotone nor invariant in the sense of Definition 8.

On the other hand, any cost functional which depended only on the signal distributions visualized in

the fourth row of Figure 1, without reference to the “names” or values of the states, would take an equal

value in columns (1) and (3) and therefore be invariant with respect to this transformation. The mutual

information of ω and (θ, p), or any increasing function thereof, is one such cost functional.20 This connects

with our observation in Section 2.6 that mutual information costs were somehow “invariant” to changes in

the stochastic properties of prices.

4 Main Result: Efficiency of Inattentive Economies

We now state our main result:

Theorem 1 (First Welfare Theorem). Let Gp ⊂ G be the class of functions (Θ×RN+ ) → (Θ×RN+ ) that can be

written as g (θ, p) = (θ,h(p)) for some h : RN+ → RN+ ; and assume that all consumers and firms have attention

costs that are invariant with respect to G p . Then, all equilibria are efficient.

The stated assumption (“invariance within Gp ”) specializes the properties of Definition 8 in two dimen-

sions. First, it requires only invariance, not monotonicity. Second, it requires invariance in only one par-

ticular dimension: that of manipulating the informational content of prices or replacing them with other

messages. In the rest of this section, we sketch the proof of Theorem 1 in three steps, which help clarify both

how our result leverages the standard argument underpinning the First Welfare Theorem and why exactly

invariance is the key for extending this theorem to inattentive economies.21

4.1 Proof

While there are multiple proof strategies for Theorem 1, we will pursue one that most clearly maps to text-

book treatments (e.g., Chapter 16 of Mas-Colell et al., 1995). Here, we describe the main logic up to a few

supporting results proved in the Appendix.22

Step One: An Equivalent Economy

We first define a notion of preferences and technology at the level of type-specific aggregate quantities, x j (θ)

and y(θ). This representation subsumes the attention choice to the preferences and technology of a friction-

20It is simple to calculate that the mutual information in each case is 0.69, 0.13, and 0.69.
21The statement and proof of the standard First Welfare Theorem requires neither the existence of an equilibrium nor its com-

parison to the solution of a planning problem. Instead, it presumes the existence of an equilibrium and proceeds to rule out Pareto
improvements. The same applies to Theorem 1 here and its proof below. The study of equilibrium existence and Pareto optima is
therefore not needed for our main result and is postponed to Section 5.1.

22We followed a different proof strategy in an earlier draft (Angeletos and Sastry, 2019), by comparing “state-tracking economies”
(in which agents received signals only of θ) and “price tracking economies” (in which agents received signals of both θ and p, as in
the current draft). The efficiency of the former class of economies, stated in Theorem 1 of our earlier draft, follows from Proposition 3
below. The efficiency of the latter class, stated as Theorem 4 of the earlier draft, is the content of Theorem 1 here.
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less “twin economy,” and clarifies what is and is not standard about our problem.23

Let x ∈ X |Θ| be a shorthand for (x(θ))θ∈Θ. We define the following program for each consumer type j

that solves for an optimal consumption plan and an optimal signal structure subject the constraint that the

average consumption across realizations of signals should not exceed an available basket x ; and returns type

j ′s expected utility net of attention costs:

u j (x ,π) ≡ max
x,φ

∑
ω,θ

u j (x(ω),θ) φ(ω | fπ(θ)) πθ(θ)−C j [φ,π]

s.t.
∑
ω

x(ω)φ(ω | fπ(θ)) ≤ x(θ), ∀θ ∈Θ

x :Ω→X ; φ(· | fπ(θ)) ∈∆(Ω), ∀θ ∈Θ

(19)

See that, under the maintained assumptions that (i) Ω is finite, (ii) X is compact, and (iii) u j (·,θ) and

C j [·,π] are continuous, Weierstrauss’ theorem guarantees that this program has a solution and therefore

u j ((x(θ))θ∈Θ,π) is well-defined. We refer to the value function u j (x ,π) as a reduced preference for the basket

of state-contingent commodities x , which depends on the prior π as an auxiliary parameter.

The consumer program (12), owing to complete markets over ω, can now be re-written as a more stan-

dard consumer optimization with the altered preferences defined above:

max
x

u j ((x(θ))θ∈Θ,π)

s.t.
∑
θ

(P (θ) · x(θ)−P (θ) ·e j (θ)−a jΠ(θ))πθ(θ) ≤ 0
(20)

Two specific features of this representation are important. First reduced preferences inherit monotonicity in

the goods space from the primitive utility function u j .24 This is formalized as Lemma 5 stated and proven

in the Appendix, using a simple constructive argument in Program 19. Second, prices affect preferences

directly via the prior π (and, more fundamentally, their influence on the learning problem in Program 19).

This feature embodies the cognitive externality on the consumer side of the economy

For firms, we analogously define, for each prior π, the following reduced production set:

F (π) ≡
{

y = (y(θ))θ∈Θ ∈Y |Θ| : ∃ (y,φ) s.t.:
∑
ω

y(ω)φ(ω | fπ(θ)) ≤ y(θ),∀θ ∈Θ

H
(
y(ω),C F [φ,π],θ

)≤ 0,∀ (ω,θ) :φ(ω | fπ(θ)) > 0

y :Ω→Y ; φ(· | fπ(θ)) ∈∆(Ω), ∀θ ∈Θ
} (21)

This set describes the combinations, across goods and states of nature, of the aggregate production levels

that are both technologically and cognitively feasible: that is, they can be disaggregated with at least one

23Close readers may note that, while this twin economy is well-defined under our simplifying assumptions like a finite state and
signal space and continuous payoffs, the offered representation could be bypassed in our formal argument. We follow this strategy
because it provides the sharpest possible understanding of our main result and it is also useful for proving the additional results in
Section 5.

24The use of such monotonicity in the proof of Proposition 3 could be relaxed for an appropriate form of local non-satiation, as in
our earlier draft (Angeletos and Sastry, 2019).
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attention strategy φ= (φ(· | z))z∈Zπ
and a production plan y :Ω→Y . The representation further extends the

metaphor from Section 3.3 about attention as an “in-house” productive activity.

The firms’ profit maximization problem then reduces to the following program:

max
y

∑
(P (θ) · y(θ))π(θ)

s.t. (y(θ))θ∈Θ ∈ F (π)
(22)

This is like the profit-maximization problem of a standard, attentive firm, except that the production set is

allowed to depended on the prior. This embodies the cognitive externality on the firm side of the economy.

Step Two: Efficiency Ignoring Messages

We now state a restricted version of the First Welfare Theorem that removes the planner’s flexibility to replace

prices with other messages, but also holds without any specification of attention costs:

Proposition 3. For any equilibrium with price functional p = P (θ), there does not exist a Pareto dominating

allocation that is feasible with message m = P (θ)

By restricting the messages to replicate the equilibrium prices, we fix π in the reduced preferences and

production sets. The rest of the proof then reads much like the familiar, textbook argument for why compet-

itive equilibria can not be Pareto dominated (e.g., in section 16.C of Mas-Colell et al., 1995). In this respect,

Proposition 3 is quite trivial. But it contains an important lesson: barring the elimination of inattention it-

self, the only way to possibly improve upon the equilibrium of an inattentive but otherwise frictionless (i.e.,

competitive and complete-markets) economy is to manipulate the informational content of prices. This

clarifies some of the confusion in the literature about the channels via which inattention may or may not

open the door to inefficiency; it goes to the heart of Hayek’s argument; and it paves the way to the next, and

last, step of the proof of our main result.

Step Three: Using Invariance to Prove Messages Cannot Help

The translation from Proposition 3 to Theorem 1 uses informational invariance. We first establish the follow-

ing result: if attention costs are invariant to transformations of the price component of the economic state,

then preferences are production sets do not depend directly on the stochastic properties of prices. By the

same token, the cognitive externality, or the dependence of preferences and technologies on the endogenous

part of the prior π, is muted.

Lemma 1. When consumers’ attention costs are invariant with respect to G p , there exist functions ũ j such

that the reduced preferences satisfy u j (x ,π) = û j (x ,πθ) for all x and all π. Similarly, when firms’ attention

costs are invariant with respect to G p , there exists a function F̂ such that the reduced production set satisfies

F (π) = F̂ (πθ) for all π.
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The proof of this Lemma is quite simple: if costs would be the same for any transformation of the prices

in z, then the distribution of p conditional on θ cannot matter for preferences or production sets. The

proof of Theorem 1 is then completed by using this Lemma to establish that there cannot exist a Pareto

dominating allocation even with the use of arbitrary messages. Imagine there were. Lemma 1 implies that

each consumer’s payoff as well as the feasibility constraints would be identical under the message m = P (θ).

Therefore, the allocation must also be implementable with that message; but Proposition 3 implies that such

an allocation cannot exist.

4.2 Remarks

We end this section by commenting on the role played by two key assumptions—the inclusion of p in z and

the insurance over ω—and on whether invariance is necessary in addition to being sufficient for efficiency.

Restricting to signals of θ instead of z. Throughout we have allowed agents to pay attention to, or learn

about, both the exogenous state of nature and the endogenous prices (or any messages used in their place).

What if instead we had restricted agents to receive signals only about the state of nature, that is, what if we

had specified attention costs as a function of the joint distribution of ω and θ only?

This restriction is inconsistent with our motivation, the decision-theoretic literature we relate to, and

a large behavioral literature, all of which emphasize cognition about prices or other variables that may be

exogenous to the individual decision maker but certainly not to the economy as a whole. But it has been

common in applications (e.g., Angeletos and La’O, 2018; Colombo et al., 2014; Maćkowiak and Wiederholt,

2015; Tirole, 2015). Economies satisfying this restriction can be nested in our analysis by noting that the

associated cost functionals are trivially members of Gp , the class of costs invariant to transforming the price

in the cognition state, since the price does not appear in them.25 Thus any claims about efficiency or ineffi-

ciency in such prior works have abstracted from the kind of cognitive externality we have emphasized here,

and therefore did not identify informational invariance in any form as a key condition for efficiency.

Insurance overω. Our proof leveraged heavily the assumption of complete markets over the idiosyncratic

realizations of the signal in defining and using the “reduced” preferences. Without complete markets overω,

or over any other idiosyncratic uncertainty, the familiar argument applies that pecuniary externalities do not

net out and a social planner may wish to manipulate prices in order to redistribute wealth across realizations

of ω, or to mimic the missing transfers. That is, equilibrium may fail to be constrained inefficient in the

sense of Geanakoplos and Polemarchakis (1986), wherein the social planner faces a comparable restriction

on insurance as the market. 26

25In an earlier draft we referred to such economies as “state-tracking” economies; see Section 5 of Angeletos and Sastry (2019).
26In Online Appendix F, we spell out how exactly this logic can be applied to our context. Markets are complete over θ but incom-

plete over ω. Budgets nevertheless clear for all realizations of ω thanks to the existence of an “adjustment good” like “money” in the
example of Section 2. Constrained efficiency is defined similarly to Definitions 2 and 5, plus the new requirement that the planner
cannot not make transfers directly contingent on ω (as in Geanakoplos and Polemarchakis, 1986). We then show that constrained
efficiency is essentially impossible unless the adjustment good has constant marginal utility across realizations of ω, like in the ex-
ample of Section 2. The quasilinear assumption in that example equates the marginal value of wealth across realizations of ω in
spite of the lack of complete markets in this dimension, and hence is a substitute for complete markets in our main arguments.
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From this perspective, efficiency seems unlikely even if our invariance condition holds. But a policy-

maker may be excused if she can’t tell in which direction prices must be manipulated in order to mimic the

missing insurance over ω. Furthermore, if agents make the same choices repeatedly and the noise is inde-

pendent across rounds of choices, the noise may wash out over their life cycle. Loosely speaking, we think of

this as a situation in which the assumed law of large numbers over ω applies within agents, substituting for

insurance across agents, and that such an assumption may be more plausible than true complete markets.

Markets vs games. Complete, competitive markets can be understood as a special class of games, in which

players are infinitesimal and payoff externalities are muted on equilibrium. This suggests that our main

insight, regarding the role of invariance for efficiency, may extend to such games, as indeed established by

Hébert and La’O (2020). Furthermore, because our state of nature is allowed to contain correlation devices

(“sunspots”), Theorem 1 also allows for rich, non-fundamental correlation in the agents’ signals and, thereby,

for non-fundamental volatility in aggregate allocations despite efficiency. We return to this issue 5.2. But it

is also worth clarifying the following, subtler point. Our equilibrium and efficiency concepts specify the

agents’ prior about z and their associated attention choices on equilibrium but not off equilibrium. This is

innocuous here because agents are infinitesimal and off-equilibrium beliefs are immaterial. But this is not

true in settings with large players, where the threat not to pay attention to something off equilibrium could

influence what happens on equilibrium (see, e.g., Ravid, 2020). The extension of our paper’s logic to games

with non-infinitesimal players remains an open question.

Sufficiency versus necessity. Theorem 1 establishes that invariance is sufficient for efficiency but not that

it is necessary. It is of course easy to envision cost functionals that violate invariance but support efficient

equilibria. A trivial example is one in which attention costs happen to be zero when z = (θ,P∗(θ)) and P∗

is an equilibrium price function in the underlying attentive economy, and positive and sufficiently large

whenever z = (θ, g (θ)) for any g 6= P∗.

Such situations, however, seem contrived. Indeed, the following construction shows how “small” de-

partures from invariance lead to inefficiency. Suppose that C satisfies our invariance condition, pick an

equilibrium, and let P be the associated price functional. Next, consider a change in C that leaves attention

costs unchanged for all signal choices as long as z = (θ,P (θ)) but strictly reduces them by ε > 0 whenever

z = (θ, g (θ)) for g 6= P. Clearly, the original equilibrium remains an equilibrium but ceases to be efficient, no

matter how small ε is.

This logic, while well short of a formal converse to Theorem 1, invites us to think of invariance and

efficiency as “nearly” equal. Hébert and La’O (2020) corroborate this point by showing that, at least in their

setting, invariance is not only sufficient but also generically necessary for efficiency (where “generically” is

relative to utilities and attention costs).
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5 Additional Results

In this section, we provide four additional results that further characterize efficient inattentive economies.

The first provides conditions for equilibrium existence. The second is our version of the Second Welfare The-

orem. The third investigates when equilibria are “fundamental” and “price tracking.” The fourth establishes

efficiency under a more “powerful” planning concept. These results are useful but not strictly needed for

our perspectives on rational inattention and Hayek’s (1945) economy of knowledge ; readers interested on

this discussion can jump to Section 6.

5.1 Equilibrium Existence and the Second Welfare Theorem

Here we provide sufficient conditions for equilibria to exist and for Pareto optima to be implementable as

competitive equilibria with transfers.27 To this goal, we leverage heavily on the twin-economy representa-

tion developed in Section 4.1. In particular, we start by assuming that the twin economy satisfies appropri-

ate convexity and continuity conditions; we next use this assumption along with our invariance condition to

obtain our existence result and our version of the Second Welfare Theorem; and we finally discuss how the

assumed convexity and continuity of the twin economy can be derived from first principles.

The aforementioned convexity and continuity conditions are defined below.

Definition 9. Reduced preferences are

1. convex if, for every π, for every pair x , x ′ ∈ X |Θ| such that u j (x ,π) < u j (x ′,π) and every α ∈ (0,1), we

have u j (αx + (1−α)x ,π) >αu j (x ,π)+ (1−α)u j (x ′,π)

2. continuous if, for every π, u j (x ,π) is continuous for every π.

Definition 10. Reduced production sets are

1. convex if, for every π, every pair y , y ′ ∈ F (π), and every α ∈ (0,1), αy + (1−α)y ′ ∈ F (π).

2. closed if, for every π and every convergent sequence {y k }∞k=1 with y k ∈ F (π) for all k, limk→∞ y k ∈ F (π).

We then have the following two results:

Proposition 4 (Equilibrium Existence). Assume that attention costs are invariant with respect to Gp ; that

reduced preferences are convex and continuous; and that reduced production sets are convex and closed. Then,

an equilibrium exists.

Proposition 5 (Second Welfare Theorem). Under the assumptions stated above, any Pareto optimum can be

implemented as an equilibrium with transfers.

27An equilibrium with transfers in our setting is a direct extension of Definition 3 in which each consumer has a state-dependent
wealth p(θ)e j (θ)+T j (θ), where T j (θ) ∈R is a transfer that nets out across agents, that is,

∑J
j=1 T j (θ) = 0 for all θ ∈Θ.
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The proof of these results, in the Appendix, replicate the arguments in Arrow and Debreu (1954) and

Debreu (1954), respectively. The assumed properties for the reduced preferences and technologies play the

familiar role but do not suffice in our context. They must be combined with our invariance condition in

order to rule out dependence of these preferences and technologies on prices.28

Our version of the Second Welfare Theorem may be of interest for researchers looking to establish com-

parative statics in inattentive economies, which may be considerably easier to derive in the planner’s prob-

lem than in the corresponding equilibrium fixed-point.29 Our existence result, on the other hand, limits

attention to efficient economies. But it verifies that our framework passes the usual “sanity test” and that

our main result is not vacuous. Its proof strategy also complements the intuition from Section 2 about how

prices can play their usual market-clearing role even if both sides of the market are inattentive to prices.

By mapping the inattentive economy to a twin attentive economy, and by equating existence in the for-

mer to existence in the latter, we make clear that rational inattention does not pose any new difficulty for

existence than that familiar from standard general equilibrium theory, namely, the possibility of discontinu-

ity in aggregate excess demands due to non-convexities in preferences and technologies. In fact, one may

conjecture that, starting from an attentive but non-convex economy, the introduction of rational inatten-

tion may aid equilibrium existence—and thereby the Second Welfare Theorem, too—by smoothing out the

associated discontinuities in aggregate excess demands.

To check this intuition and complete the analysis of this section, we now return to the question of how

the assumptions on the reduced preferences and technologies invoked in Propositions 4 and 5 translate in

terms of primitives. Lemma 2, stated below and proved in Online Appendix D, provides an answer based

on the following logic. Continuity and closedness follow from the appropriate notions of continuity on the

primitives and application of Berge’s Theorem. Convexity, on the other hand, is related to the question of

whether agents can costlessly randomize over consumption and production plans. To use language familiar

from general equilibrium theory, the key question is whether the optimal design of a noisy signal can sub-

sume the use of lotteries over bundles of goods. The Lemma provides sufficient conditions for this to be

true.

Lemma 2. Suppose that the following properties hold:

1. the signal space is given byΩ= [0,1].

2. technology can be written as H(y,c,θ) = H̃(y+c ·v,θ), for a vector v ∈RN+ and a function H̃ :RN×Θ→R.

3. attention costs are posterior separable (in the sense of Caplin and Dean, 2015).

Then, reduced preferences are convex and continuous and reduced production sets are convex and closed.

28Naturally, invariance is as essential for our version of the Second Welfare Theorem as it is for our version of the First Welfare
Theorem. It may be possible, thought, to prove existence without invariance (and without efficiency) by appropriately adapting
techniques from the general equilibrium literature on analysis with price-dependent preferences. See, for instance, Section III in
Sonnenschein (2017) for an overview of these techniques.

29For example, one may use this approach to investigate which properties of the Neoclassical Growth Model are robust to the
introduction of rational inattention.
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Property 1 is technical, allowing enough “richness” in the signal space to accommodate different ran-

domizations at different points of primitive non-convexities. Property 2 lets the firms’ attention costs enter

as a linear penalty on its outputs or inputs. This assumption is not trivial but easy to motivate: it nests the

special case in which attention is “paid for” in the unit of a specific good (the vector v has a single non-

zero element) and therefore enters as an additive penalty in profits denominated in the price of that good.

As noted earlier, this is the case invariably assumed in macroeconomic applications. Furthermore, this as-

sumption is the mirror in the production side to a simplifying assumption already made in the consumer

side of our environment, namely that attention costs subtract linearly from the expected utility of goods.

Together, these assumptions allow us to accommodate arbitrary non-convexity in the primitive preferences

and technologies, and to derive the needed convexity for the reduced preferences and technologies by invok-

ing an appropriate convexity with respect to attention choices. Property 3 completes the picture by showing

such convexity is implied by assuming that attention costs are posterior separable. This nests mutual infor-

mation along with virtually any other specification considered in the related, decision-theoretic literature.

5.2 Fundamental Equilibria and Optimal Attention

The examples of inefficiency given in Section 2.5 emphasized a particular failure of invariance due to scale

dependence. But invariance may fail also in terms of transformations that add or remove contingencies. To

illustrate, revisit the simple economy of Section 2; expand the state of nature to include not only the coconut

endowment ξ but also a sunspot v (so θ = (ξ, v) in the notation of our general model); and suppose that

attention costs depend on the mutual information of ω with p alone, as opposed to that of ω with z = (θ, p).

Then, the original equilibrium, in which the price p and the signal ω were uncorrelated with v, remains

an equilibrium. But there are now other, Pareto superior, equilibria that let the price and agents’ signals be

correlated with v. This is because, under the aforementioned assumption about attention costs, the addition

of “noise” in the price allows agents to pay less attention to prices and, nevertheless, make consumption

choices that are better aligned with the underlying fundamental.30

This example highlights the following subtlety: mutual-information costs satisfy invariance and guar-

antee efficiency only if they are “holistic,” in the sense that they depend on the mutual information of the

signal with the entire z. Otherwise, there is a potential “free lunch” in exploiting the contingencies in z that

are cost-free. This example also raises the question of what it takes for equilibrium allocations and atten-

tion choices to be not only efficient but also non-dependent on payoff-irrelevant objects. We address this

question in Proposition below.

Towards this result, we first define notions of (i) the economy-wide fundamental and (ii) a group-specific

fundamental for each consumer type or firm. Heuristically, these concepts coarsen the state at the level at

which all or some agents’ preferences, endowments, and technologies are identical. Our specific definition

describes one such coarsening that works when Θ can be ordered (which is trivially true since Θ is finite).

We then use these definitions to describe when equilibria are fundamental and price-tracking.

30See Online Appendix E for a detailed exposition of this example.
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Definition 11. The economy-wide fundamental is a random variable θ∗ ∈Θ that can be expressed as

θ∗ =Q(θ) ≡ min
{

t ∈Θ s.t. : e j (t ) = e j (θ), ∀ j ∈ {1, . . . , J }

u j (x, t ) = u j (x,θ), ∀ j ∈ {1, . . . , J }, x ∈X

H(y,c, t ) = H(y,c,θ), ∀y ∈Y ,c ∈R+
} (23)

The group-specific fundamental for consumers of type j is a random variable θ j ∈Θ such that θ j =Q j (θ) =
min{t ∈Θ : u j (x,θ) = u j (x,θ′), ∀x ∈X ;e j (θ) = e j (t )}, and the corresponding object for the firm is a random

variable θF ∈Θ such that θF =QF (θ) = min{t ∈Θ : H(y,c,θ) = H(y,c, t ), ∀y ∈Y ,c ∈R+}.

Definition 12. An equilibrium is fundamental if x j (θ) = x j∗(θ∗) and y(θ) = y∗(θ∗), for some functions

(x j∗)J
j=1 and y∗.

Definition 13. An equilibrium is price-tracking if (θ j , p) is a sufficient statistic for (θ, p) with respect to to

(φ j ,π), for all j , and similarly (θF , p) is a sufficient statistic for (θ, p) with respect to to (φF ,π).31

In a fundamental equilibrium, allocations can not depend on sunspots; and in a price-tracking equilib-

rium, agents only pay attention to the objects that enter their decision problems, namely their own funda-

mentals and the price vector.32 Our result is that full invariance plus monotonicity guarantees that every

equilibrium is both fundamental and price-tracking:

Theorem 2. Assume that all agents’ attention costs are invariant and monotone with respect to G . Then, all

equilibria are efficient, fundamental, and price-tracking.

The proof is provided in the Appendix but the basic argument can be summarized as follows. We first

show that monotonicity alone suffices for any efficient allocation, whether this is an equilibrium or not,

to be fundamental. Intuitively, because non-fundamental volatility in aggregate allocations is never opti-

mal in standard, attentive economies, it can be optimal in inattentive economies only if helps economize

attention costs. But for this to be the case, it has to be that costs fall when agents start pay attention to non-

fundamental contingencies, which is a violation of monotonicity.33 Along with Theorem 1, this shows that

the combination of invariance and monotonicity suffice for equilibria to be both efficient and fundamental.

To show the price-tracking property, we finally use monotonicity to argue that an agent’s learning about any

other feature of the cognition state incurs strictly positive attention costs while providing no benefit relative

to a constructed alternative that “ignores” these realizations of the state.

This argument also invites the following intuition for why the invisible hand may optimally produce

non-fundamental volatility when attention costs are invariant but not monotone. In such circumstances,

consumers can enjoy lower attention costs by making their signals, and thereby also their consumption

31Here, we are using the language from the remarks immediately after Definition 7. This can be translated into the original defi-
nition of sufficiency by applying the function (θ, p) 7→ (θ j , p) for each agent type and describing the associated transformed prior.

32In fact, it is straightforward to strengthen Theorem 2 below so as to show that, when an agent enjoys utility from only a subset
of the available goods, she only pays attention to the prices of this particular subset as opposed to the entire price vector.

33We state and prove a stronger intermediate result of this form as Lemma 3 in the Appendix.
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choices, co-vary with sunspots. This willingness to pay for sunspots is quite literally manifest in the de-

mand functions of the “twin” economy (under this representation, the sunspots are effectively transformed

to preference shocks), and profit-maximizing firms try to exploit it.

What if both invariance and monotonicity are violated? This is precisely the scenario captured by the

example mentioned in the beginning of this section and explored further in Appendix E. In such circum-

stances, the invisible hand may fail to produce the efficient amount of non-fundamental volatility, and may

even yield multiple, Pareto-ranked equilibria. This possibility represents a form of “cognitive trap” that,

unlike that articulated in Tirole (2015), does not depend on payoff (or pecuniary) externalities, originating

instead in the properties attention costs themselves.

5.3 Expanding the Planner’s Options and the Cognition State z

Our notions of feasibility and efficiency in Definitions 4-5 allowed messages to replace prices but did not give

the planner any of the following options: to “customize” messages, sending different messages to different

agents; to relabel or merge the underlying states of nature; and to preclude all or some agents from learning

directly about the state of nature. The last option could be interpreted quite literally as the power to restrict

access to information.34The option to merge states, on the other hand, could represent the planner’s choice

to “uncomplete” the markets (remove certain contingencies in markets). We can readily show an extension

of our main result to such an expansion of the planner’s powers, provided a commensurate enlargement in

the assumed invariance of attention costs.

Toward this result, let the planner now manipulate the entire z via a collection of functions Z j : Θ→
Θ×RN+ , one for each type of consumer and firms. Next, let A all denote the set of all such collections of

functions, and let the planner choose this collection of functions from a subset A ⊆A all, which embeds the

precise ways in which the planner may or may not manipulate cognition. Our benchmark scenario is then

nested by restricting A =A p , where

A p ≡
{

(Z j ) j∈{1,...,J }∪{F }

∣∣∣ ∃m : θ→Θ×RN
+ s.t. Z j (θ) = (θ,m(θ)) ∀θ, j

}
,

And any possible expansion of the planner’s options relative to this benchmark maps to some A such that

A p ⊂A ⊆A all.35

34Under this first interpretation, our upcoming result, showing conditions under which such restrictions are not optimal, relates
also to a literature on information design with inattentive receivers (Lipnowski et al., 2019; Bloedel and Segal, 2018).

35For instance, suppose we give the planner a single option on top of replacing prices, that of precluding any direct learning about
the state. This maps to A =A p ∪A 0, where

A 0 ≡
{

Z = (Z j )
∣∣∣ ∃m :Θ×RN+ s.t. Z j (θ) = (θ0,m(θ)) ∀θ, j

}
,

for some fixed element θ0 ∈ Θ. As another example, we can capture a situation where the planner may preclude direct learning
about any aspect of the state other than that pertaining to an agent’s own fundamental by letting A =A p ∪A f , where

A f ≡
{

Z = (Z j )
∣∣∣ ∃m :Θ×RN+ s.t. Z j (θ) = (Q j (θ),m(θ)) ∀θ, j

}
and the function Q j identifies j ’s fundamental (see Definition 11).
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Our notions of equilibrium (Definition 3) and efficiency (Definition 5) are unchanged, modulo to the

following two natural adjustments. First, different types of agents are now allowed to have different priors,

henceforth denoted by π j ; and second, consistency of the prior requires π j (z) = ∑
θ′ πθ(θ′) · I[Z j (θ′) = z]

for all z ∈ Im[Z j ] and all j .36 The following version of Theorem 1 then applies provided attention costs are

invariant to the full set of transformations G :

Corollary 1. Assume that all consumers and firms have attention costs that are invariant with respect to G .

Then, equilibria are efficient with respect to the enlarged feasibility concept described above.

The proof of this result is quite trivial given the machinery developed above. The only difference from

the proof of Theorem 1 is the translation from Proposition 3 to the desired result. Because the planner can

now manage attention not only by replacing prices but also by directly relabeling the states of nature or

compressing them in fewer contingencies, we must invoke invariance with respect to the entire G as op-

posed to the subset Gp . Intuitively, while invariance with respect to Gp suffices for the planner to be unable

to improve upon equilibria when her options are limited to A p , invariance with respect to G is needed to

guarantee that this remains true even when her options are expanded to A all.37

One can push this argument in a slight different direction as follows. In our main analysis, we defined

the cognition state z as the combination of the state of nature and the price vector. This was motivated

by the sufficiency of (θ, p) to describe each agent’s decision problems in “free markets.” But if we think of

more realistic market structures, augmented with taxation or regulation, policy tools may naturally enter as

additional element in the agent’s decision problem. This invites a redefinition of the cognition state from

z = (θ, p) to z = (θ, p,τ), where τ is the tax, with the goal of formalizing how agents may be differentially able

to attend to prices and taxes.38 Alternatively, one could imagine including in z other endogenous objects

that may enter cognition even if they do not directly enter payoffs. Examples include various indicators of

others’ activity, such as the average trade x j of each type, industry output, or GDP; or even messages emitted

by agents other than a social planner (e.g., media).

In Online Appendix G, we build the machinery to study economies with such a flexible definition of

the cognition state z and even the potential for the social planner to send messages in a different space. It is

simple to see that our main result extends with the appropriately extended notion of invariance—as implied,

for example, by measuring costs by the mutual information between ω and z regardless of the space of z.

36It is also necessary to redefine the domain of attention costs when priors over z do not have a marginal distribution πθ on the
first element. In particular, we define the set of mass functions

P ′ ≡
{
π :Θ×RN+ → [0,1] s.t. π(θ, z) = ∑

θ′∈Θ
πθ(θ′) · I[ f (θ′) = z] for some f :Θ→Θ×RN+

}
(24)

and require that attention costs are well defined functions C :∆(Ω)|Θ|×P ′ →R+.
37Needless to say, invariance with respect to G is more than enough when A is a strict subset of A all : as already illustrated by

Theorem 1, the invariance requirement is naturally commensurate to what the planner can do. But if the analyst doesn’t want to
take a specific stand on this issue, then “full” invariance must be invoked.

38The behavioral literature on “tax salience” (e.g., Chetty et al., 2009) provides direct evidence that agents behave as if they perceive
the tax component of prices more noisily.
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6 Discussion: Hayek (1945) Meets Sims (2003)

We now discuss how our results relate the general-equilibrium question of whether free markets offer the

best way to economize attention to an ongoing debate in decision theory and experimental economics about

the appropriate formalization of attention costs.

6.1 Revisiting Hayek’s (1945) Economy of Knowledge

Let us circle back to our interpretation of Hayek (1945): Does the price system in complete, competitive

markets economize knowledge? And does it offer the best means of doing so relative to other mechanisms?

Our results offer affirmative answers to both questions under appropriate conditions. With regard to the

first question, Theorem 2 says that prices summarize everything that an agent needs to know about the rest

of the economy—agents need to look no further, and doing the opposite would strictly increase attention

costs and reduce welfare. And with regard to the second question. Theorem 1 says that, barring a change in

the “technology of knowledge,” there is no way to improve upon markets.

But this seemingly reassuring lesson comes with the following important caveat: under the invariance

condition used to guarantee efficiency, a social planner could implement the same outcomes by merely

announcing the state of nature and a completely degenerate message:

Corollary 2. Under the conditions of Theorem 1, any equilibrium can be replicated with a feasible mechanism

that uses the same consumption, production and attention strategies but replaces prices with an “uninforma-

tive” message rule, namely a rule M such that M(θ) = m for all θ and for arbitrary m ∈RN+ .

Formally, the result is immediate from the last step of our proof of Theorem 1. In the context of Hayek’s

economy of knowledge, the result says that the same conditions that guarantees the efficiency of markets

also implies that there is no welfare loss from scrapping market signals altogether and, instead, having agents

redirect all their attention to learning the underlying state of nature alone. It follows that the economization

of knowledge embedded in Theorem 1 is a rather weak one: it does not rely on prices’ coarsely representing

the state of nature, or repackaging the state of nature in a cognitively-friendly manner, but instead on the

agents’ ability to costlessly generate an equivalent transformation of the state of nature in their minds.

It may be instructive to return to the illustration of Section 3.6. Imagine that the state θ ∈ {A,B} repre-

sented the primitive demand shifter for another agent in the economy. Our main example cost was moti-

vated by the idea that learning about θ was prohibitively difficult, while learning about prices was feasible

but scale-dependent. This mapped to a failure of our invariance condition. Mutual information costs, on the

other hand, implied that there was no difference between learning “directly” about this taste (e.g., via direct

research) versus learning about prices. These costs were, in light of Theorem 1, compatible with efficiency.

More generally, this presents the following paradox: the idea that markets strictly economize knowledge

seems most meaningful in cases that open the door to inefficiency. Away from invariance, the invisible hand

may naturally do better than a centralized mechanism with “flat” messages; but an optimal mechanism, or
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regulated markets, can do even better.39 For example, a planner can contemplate the removal of unneces-

sarily confusing markets as strictly welfare-improving. Alternatively, the planner might internalize the value

of “improving” price data so as to contribute to better decisions. The examples in Section 2.5 embodied this

idea, with the planner preferring to adjust the variance of prices to make learning easier.

6.2 Characterizing Invariant and Monotone Cost Functionals; and Relation to Sims (2003)

Our notions of invariance and monotonicity are closely connected to related notions from the statistics liter-

ature on information geometry (Amari, 2016), which have recently been applied in information economics

by Hébert and Woodford (2019, 2020), Hébert and La’O (2020), and Caplin et al. (2020). This connection is

spelled out in Appendix B within the class of posterior-separable costs, studied by Caplin and Dean (2015)

and Denti (2018) and otherwise ubiquitous in the literature. This specialization amounts to measuring the

costs of any signal by the expected divergence (loosely speaking, the distance) between the prior and the

posterior induced by this signal. Within this class, our definition of invariance and monotonicity with re-

spect to the full set of transformations G maps directly to a notion of invariant and monotone divergences

due to Amari and Nagaoka (2000). And because Sims’s (2003) mutual-information specification corresponds

to such a divergence (namely the the Kullback-Leibler divergence), the following is a direct implication of

Theorems 1 and 2:

Corollary 3. Suppose attention costs are given by the mutual information between ω and z. Then, equilibria

are efficient, fundamental and price-tracking.

More generally, our Definition 8 is effectively a natural extension of the aforementioned information-

geometry notions outside the posterior-separable class. This in turn allows us to clarify which decision-

theoretic properties drive different equilibrium properties. In particular, Theorems 1 and 2 clarify that

posterior-separability is neither necessary nor sufficient for equilibria to be either efficient or fundamen-

tal. Propositions 4 and 5, on the other hand, show that posterior-separability in combination with other as-

sumptions is sufficient to prove equilibrium existence and implementation of efficient allocations, by merit

of being sufficient for appropriate continuity and convexity.

Our notion of invariance, and the discussion surrounding it, is closely related to a property of state-

dependent stochastic choice data defined by Caplin et al. (2020), invariance under compression. Loosely

speaking, this property requires that observed stochastic choice patterns be invariant to relabeling states of

nature and/or merging those that correspond with identical payoffs. Theorem 3 of Caplin et al. (2020) estab-

lishes that mutual information is the only cost that is consistent with invariance under compression among

uniformly posterior separable costs, a subset of the posterior-separable class.40 This confines attention to a

narrower class than the one allowed in our analysis, but suggests that one can loosely think of the provided

condition for efficiency as synonymous to mutual-information costs. In this sense, we justify the following

“if and only if” result:

39This conclusion is subject to the qualification made in Section 4.2 about necessity versus sufficiency: it is possible to construct
examples, albeit contrived ones, where efficiency holds despite a violation of invariance.

40See Section 4.1 and Definition 3 in Caplin et al. (2020).
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Corollary 4. Consider the class of uniformly posterior separable costs, as defined in Caplin et al. (2020). Within

this class, Hayek’s (1945) argument about the informational optimality of the price system, as formulated

herein, is valid if and only if Sims’s (2003) proposal for how to measure attention costs is also valid.

As for the broader class of posterior separable costs, Theorem 2 of Caplin et al. (2020) says that consis-

tency of stochastic choice data with invariance under compression holds if and only if the cost functional

is invariant in the sense of Amari and Nagaoka (2000). In the light of the previous discussion of how this

notion in turn relates to ours, it seems a safe guess that Theorem of Caplin et al. (2020) extends outside the

posterior-separable class with our expanded definition of invariance. We conclude that the combination of

our results with those of Caplin et al. (2020) provide a pathway for testing the validity of of Hayek’s (1945)

argument on the basis of stochastic choice data. We expand on this idea next.

6.3 Experimental Tests

The best available evidence on the validity of invariance under compression comes from perceptual exper-

iments, in which there is an objective “state of the world” (e.g., “51 of 100 balls are red”); participants in

the laboratory observe some representation of that state (e.g., a picture of the 100 colored balls) and then

subsequently make a decision the payoffs of which depend on the state (e.g., choosing a payment sched-

ule that depends on the number of red balls). Dean and Neligh (2017) design such an experiment, with the

aforementioned set-up, to test numerous axioms of state-dependent stochastic choice including invariance

under compression. Their experimental data reject invariance under compression and the authors propose

a variant of the Shannon mutual information model that can rationalize the results. In an earlier experi-

ment, Shaw and Shaw (1977) had subjects try to recall the identity of a symbol (a letter E, T, or V) which was

briefly displayed, and varied the location of the letter in the display. In their data, subjects are more able

to distinguish letters if those letters consistently appear in the same locations. Woodford (2012) interprets

this as a rejection of mutual information’s implication that the probabilities of a decision-irrelevant state,

the location of the symbol, are irrelevant for decisions.

A number of recent theoretical works studying choice under uncertainty (e.g., Pomatto et al., 2018; Mor-

ris and Yang, 2019; Hébert and Woodford, 2020) have explored the formal underpinnings for cost functionals

that embody various dependencies on the physical attributes of the state space. These latter two works, in

particular, prioritize the idea that distinguishing “closer” states in some metric may be more difficult, like in

the example of Section 2.5.

But to our knowledge there is comparatively less research on the dependence of consumer or firm deci-

sions on scale or other stochastic properties of prices, which is the exact setting of interest. While complete

invariance seems unlikely, there are plausible economic arguments for departures in both directions as il-

lustrated in Section 2.5. For the micro-economic literature, our results underscore the importance of testing

the “scale-free” properties of mutual information costs in consumer and firm choice.41

41For applied macroeconomic modelers, we would argue that mutual information (and its associated equilibrium properties) may
still be a reasonable approximation. A relevant analogy may be to assuming homothetic preferences or constant-returns-to-scale
production, each of which is easily rejected in the data but may provide a tractable platform on which to study other issues.
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6.4 Policies for a Better Economy of Knowledge

How exactly can a planner improve welfare when invariance is violated? Literally taken, our analysis invites

the replacement of markets with mechanisms that both regulate agents’ choices and replace prices with

other messages. But Proposition 1 suggests that such double deviations are not strictly needed: because

inefficiency is present only in one dimension (the informational content of prices), improvements may be

possible even if the planner hands are tied by a limited set of policy instruments.

Suppose in particular that the planner has to work inside the market mechanism: she cannot outright re-

place prices with other messages and that she is limited to allocations implemented as competitive equilib-

ria with taxes.42 Suppose further that the planner can only tax consumption choices, not attention choices.

By Proposition 1, we know that a small tax will only have a second-order welfare loss in terms of distorting

consumption and attention choices. But as long as our invariance condition fail, the implied change in the

stochastic properties of prices may well have a first-order welfare gain via attention costs.

This can be illustrated in the example of Section 2 by the planner imposing a flat, non-contingent tax

τ on coconut expenditure. The consumer’s demand is then given by x = 1− (1+ τ)E[p|ω], and as a result

the equilibrium price satisfies p = 1− 1
(1+τ)δξ. For given δ, a positive tax makes demands more elastic and,

hence, prices less dispersed across states of nature. A small tax therefore reduces attention costs when C has

the “precision cost” form of Equation 9 and a small subsidy does the same under the “variance cost” form of

Equation 10, at an arbitrarily small cost in terms of allocative efficiency.43 And of course, as implied a fortiori

by efficiency in our standard definition, no such taxes are desirable with mutual information costs.

7 Alternative Behavioral Frictions

In this section we discuss how two straightforward extensions of our main result can shed light on the effi-

ciency properties of a disparate set of behavioral frictions that are not nested in our main model, including

narrow bracketing, bounded recall, general stochastic choice, and sparsity.

7.1 Narrow Bracketing and Bounded Recall

Our main analysis assumed that an agent’s consumption of all goods is conditioned on the same informa-

tion. This assumption is in line with the Arrow-Debreu formulation, which has the consumption of all goods

be conditioned on the same, and complete, set of prices. But it may be natural to relax this result to capture

phenomena like narrow bracketing and bounded recall within the rational inattention framework.

To see what we have in mind, let the signal variable have N sub-components, indexed as ω = (ωn)N
n=1,

and require that xn is measurable in ωn for all n. This defines ωn as the information set upon which the

42It is straightforward to extend the formulations of the consumer and firm problems and the equilibrium definition to the pres-
ence of taxes, provided that ones maintains z = (θ, p). We could alternatively expand z to include taxes as in Section 5.3.

43Is this merely a theoretical possibility or a practical issue? Our framework is not geared to answer this question—it is just too
abstract. But going back to our real-world example of how consumers may disproportionately associate $1.99 with $1 than with $2,
it may not be too far fetched to envision a regulation that requires that posted prices are rounded up or down.
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consumption of good n must be conditioned on, but does not by itself put any restriction on how correlated

this information may be across n. Our main analysis can now be nested by assuming that there is neither

a gain nor a loss, in terms of C , from making ωn have the same information for all n. But if we let that

information to differ across goods, we can nest the model of “narrow thinking” proposed by Lian (2018)

and, by extension, the type of narrow bracketing captured therein. And if interpret the index of goods, n, as

different time periods, we can capture bounded recall.

Observe that there is no obstacle to proving an extension of Theorem 1 that carries the restriction that xn

be measurable inωn .44 Thus we can accommodate fairly broad notions of asymmetric cognitive constraints

across different goods choices or different time periods without necessarily opening the door to government

intervention. In fact, this is possible even in the “vanilla” model from our main analysis. This follows from

combining the results of Kőszegi and Matějka (2020), which show how narrow bracketing can arise as the

optimal solution to multi-dimensional tracking problems with mutual information costs, with our result

that the invariance property of such costs guarantees efficiency.

On the other hand, it may be reasonable to let narrow bracketing arise because of a failure of invariance.

In particular, the core assumption in Lian (2018) is that it is primitively cheaper forωn to contain information

about pn than about pr for r 6= n. This assumption captures the natural idea that “the price of apples is less

salient than the price of bananas when choosing how many bananas to buy, and vice versa.” But under the

lenses of our analysis, this assumption also amounts to a violation of invariance. Similarly, if bounded recall

means it is less costly for ωn to contain information about current prices than about the past ones, then

it, too, amounts to a violation of our invariance condition. In such cases, our results suggest that it may

be possible to improve welfare by manipulating the informational content of prices or other endogenous

objects that attract people’s attention. Put differently, if “What You See is All There Is” in the pithy phrasing

of Kahneman (2011), a social planner may be motivated to make “What You See” especially informative.

7.2 Stochastic Choice, Default Points, and Sparsity

Models of rational inattention are nested within the broader class of models of state-dependent stochastic

choice. The converse is not true: there are models of state-dependent stochastic choice which cannot be

micro-founded as models of information acquisition. Such models can directly be motivated as models of

costly control or trembling hands (see, e.g., Morris and Yang, 2019; Flynn and Sastry, 2020). We now illustrate

how our results can be extended to these contexts.

For the sake of simplifying the argument, let the consumption space X be discrete.45 Next, let ψ(x|z) ∈
∆(X ) denote the probability of consuming x when the cognition state is z. Keeping with previous notation,

we use the shorthand notation ψ = (ψ(· | z))z∈Zπ
∈ (∆(X ))|Θ|. Let attention costs be given by some function

44This was actually the version of this result proved in an earlier draft (Angeletos and Sastry, 2019), because the specification with
choice-specific signals described here was that paper’s main model.

45Otherwise, we could extend our notation and continuity notion to handle distributions on a continuous commodity space,
similar to what we do in Appendix D for a continuous signal space.
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K j : (∆(X ))|Θ|×P →R. The consumer’s problem is as follows:

max
ψ

∑
x,z

u j (x,θ) ψ(x | z)π(z)−K j
x [ψ,π]

s.t.
∑
x,z

(p · x −p ·e j (θ)−a jΠ(θ)) ψ(x | z) π(z) ≤ 0
(25)

The definitions of equilibrium, efficiency and invariance are similarly adapted. The arguments in Lemma 1

and hence also Theorem 1 then follow from the same premises. What changes is only the interpretation of

our invariance condition: invariance now refers to whether the costs of random plans of action, as opposed

to signals, are sensitive or not to a specific labeling of the state space.

When cost functionals satisfy Infeasible Perfect Discrimination (IPD) as proposed by Morris and Yang

(2019), which is loosely speaking a notion of “continuous stochastic choice,” invariance is necessarily vi-

olated. Concretely, if the grocery store randomly switches which of two substitutable products are $1.99

versus $2.00, an IPD consumer struggles to shift consumption decisively from one to the other, and a plan-

ner would do better to move those prices further apart. Conversely, the likelihood-separable costs motivated

by Flynn and Sastry (2020), to study trembling hands conditional on observing the state, are invariant in the

required ways. Inattentive economies with such a friction would therefore be efficient as per our results.

The formulation developed above can also capture the role of “default points,” as studied in a long tra-

dition of behavioral economics (e.g., Tversky and Kahneman, 1991). To illustrate, suppose that, on top of or

in place of any penalty for deterministic choice, K j
X [ψ,π] contains a penalty for picking x away from x j ,d ,

where x j ,d is a type-specific default point.46 The latter could be a deterministic variable that depends on π,

or a random variable that depends on both z and p. The dependence onπ allows the default point to depend

on “average” properties of the environment, such as what is “usually” optimal. The dependence on z, on the

other hand, allows the default point to vary across different realizations of the relevant prices, or the actions

of others. If either dependence is flexible enough, invariance is almost certainly a lost cause.

Gabaix’s (2014) model of “sparsity” naturally fits in this discussion. This model amounts to a set of as-

sumptions about the default point and the aforementioned penalty. Importantly, the default point is con-

nected to what it would have been optimal in the absence of sparsity, which is endogenous to prices. We

therefore agree with the author that sparsity opens the door to government intervention, but with a differ-

ent interpretation of what this means. Proposition 8 of Gabaix (2014), which claims that the First Welfare

Theorem generally fails in sparse economies, uses the standard notion of efficiency. That is, Gabaix’s result

presumes that the planner could entirely eliminate the mistakes due to inattention and concludes that the

planner should of course do that. But this result may be of limited value for guiding policy, unless we imag-

ine a planner that literally takes over people’s lives. If, instead, we think of markets augmented with taxes

or regulation, the appropriate notion of efficiency may be the one developed here, which treats inattention

as an inevitable fact of life. Our results then say that government intervention can improve welfare only by

exploiting the endogeneity of default points.

46For example, let this penalty be
∑

x,z ‖x − x j ,d (z,π)‖ψ(x | z)π(z) where the norm is the standard Euclidean one. This penalty

gives the agent an incentive to “anchor” toward x j ,d (z,π).
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8 Conclusion

Cognitive frictions cause people to make mistakes. And these mistakes can propagate in markets, causing

other people to change their behavior and the economy as a whole to malfunction relative to the textbook

scenario where agents are fully rational and fully attentive. But unless a social planner has the power to

“cure” the cognitive friction itself, it is not obvious why the planner should try to regulate these mistakes or

manipulate market outcomes.

Our main result formalized the conditions under which such intervention may or may not be desirable.

If attention costs are invariant in the sense defined in this paper, then there is no way to improve upon

market outcomes, outside the elimination or bypassing of the primitive friction itself. If, instead, invariance

fails, there is room for policies that manipulate or “simplify” the stochastic properties of prices, or even

shut down certain “confusing” markets. Additional results provided conditions for existence of equilibria,

for implementation of Pareto optima, and for equilibrium attention to be concentrated on “fundamental”

objects. Last but not least, we discussed how to map other behavioral notions of imperfect optimization,

such as general stochastic choice and sparsity, into our framework.

All in all, our analysis drew a link between two seemingly disparate issues in information economics:

the validity of Hayek’s (1945) argument about the “economy of knowledge” afforded by the price system

was shown to hinge on the appropriateness of Sims’s (2003) mutual information specification for attention

costs. This reinforces the value of an active decision-theoretic and experimental literature that departs from

mutual-information costs within the rational-inattention framework. Such departures offer the promise of

understanding jointly individual behavior (the focus of this literature) and equilibrium properties including

efficiency (the focus of our paper), without either a violation of individual rationality or the presumption of

a policy maker that can cure, bypass, or ignore people’s cognitive constraints.

Finally, our analysis committed to the interpretation of signals as a representation of inattention, cogni-

tion, or stochastic choice. This interpretation was most suitable for the connections we built to the related

advances in decision theory and experimental economics (e.g., Caplin et al., 2020; Dean and Neligh, 2017;

Hébert and Woodford, 2020). A literal interpretation in terms of collecting and processing market data is

also possible. Our results then apply to the extent that such information represents primarily a private good,

as in the case of a monopolist learning about demand or costs. How reasonable invariance is in this context

is an open question.
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Appendix

A Proofs of Main Results

In this Appendix, we first prove Lemma 1, which along with Proposition 3 completes the proof of Theorem 1.

We then provide the proofs of Theorem 2 and Corollary 1, which complete our perspective on Hayek (1945).

The proofs of the remaining results are in Online Appendix C.

Proof of Lemma 1

Select an arbitrary element p ∈ RN+ . See that gp : (θ, p) 7→ (θ, p), the transformation that “eliminates” the

variation of prices from the cognition state, is a member of Gp . Thus attention costs are invariant to any

such transformation. We will use this construction to prove parts of the claim.

Reduced Preferences. We first show that, for any π ∈P , u j ((x(θ))θ∈Θ,π) = u j ((x(θ))θ∈Θ,πθ, p), where

u j ((x(θ))θ∈Θ,πθ, p) ≡ max
x,θ

∑
ω,θ

u j (x(ω),θ)ψ(ω | θ, p)πθ(θ)−C j [ψ,πp ]

s.t.
∑
ω,θ

x(ω)ψ(ω | θ) ≤ x(θ), ∀θ ∈Θ

x :Ω→X ; ψ(· | θ, p) ∈∆(Ω), ∀θ ∈Θ

(26)

in which πp (θ, p) = πθ(θ) · I{p = p}. Note that, by the same argument given in the main text for (19) (e.g.,

Weierstrauss’ Theorem), a solution to this program exists.

We first show u j ((x(θ))θ∈Θ,πθ, p) ≥ u j ((x(θ))θ∈Θ,π). Suppose the opposite is true. Let (x,φ) denote the

arg max of the program defining u j ((x(θ))θ∈Θ,π). Construct ψ(ω|θ, p) =φ(ω| fπ(θ)) via the standard change

of variables formula. We now consider the bundle (x,ψ) in (26). See that expected utility is unchanged

by “relabeling” states fπ(θ). Next, informational invariance with respect to Gp guarantees that C j [ψ,πp ] =
C j [φ,π]. These facts together imply that the payoff from (x,ψ) in (26) equals u j ((x(θ))θ∈Θ,π) and therefore

exceeds u j ((x(θ))θ∈Θ,πθ, p). But this contradicts the definition of the maximum implicit in the last.

To establish u j ((x(θ))θ∈Θ,πθ, p) ≤ u j ((x(θ))θ∈Θ,π), we apply an essentially identical argument in reverse

using the transformation (θ, p) 7→ fπ(θ). We omit this for brevity. Combining the two arguments, we con-

clude that u j ((x(θ))θ∈Θ,π) = u j ((x(θ))θ∈Θ,πθ, p).

The equivalent arguments above replicated for a different choice p ′ shows that u j ((x(θ))θ∈Θ,πθ, p) =
u j ((x(θ))θ∈Θ,πθ, p ′) for any pair (p, p ′), which means that that “prices do not enter reduced preferences,”

that is, the representation u j ((x(θ))θ∈Θ,π) = û j ((x(θ))θ∈Θ,πθ) is valid.

Reduced Production Sets. We use essentially the same argument for the firms’ constraint. Let
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F (πθ, p) ≡
{

y = (y(θ))θ∈Θ ∈Y |Θ| : ∃ (y,ψ) s.t. :
∑
ω

y(ω)ψ(ω | θ, p) ≤ y(θ),∀θ ∈Θ

H
(
y(ω),C F [ψ,πp ],θ

)≤ 0,∀ (ω,θ) :ψ(ω | θ, p) > 0

y :Ω→Y ; ψ(· | θ, p) ∈∆(Ω), ∀θ ∈Θ
} (27)

We first show F (π) ⊆ F (πθ, p). Take any element (y(θ))θ∈Θ of the former and the associated (y(ω),φ). Con-

struct ψ(ω | θ, p) ≡φ(ω | fπ(θ)) and consider the bundle (y(ω),ψ). See that

∑
ω

y(ω)ψ(ω | θ, p) =∑
ω

y(ω)φ(ω | fπ(θ)) ≤πθ(θ)y(θ) (28)

Next, see thatφ(ω | fπ(θ)) > 0 implies thatψ(ω | θ, p) > 0. Moreover, informational invariance with respect to

Gp guarantees that C F [ψ,πp ] =C F [φ,π]. Combining these observations shows that H
(
y(ω), ,C F [ψ,πp ],θ

)≤
0 for all (ω,θ) such thatψ(ω | θ, p) > 0. Therefore (y(θ))θ∈Θ ∈F (πθ, p). We again omit the reverse argument for

brevity as it is essentially identical, using the transformation (θ, p) 7→ fπ(θ). We finally replicate the argument

for any two distinct p, p ′ ∈RN+ to drop the dependence on p.

Proof of Theorem 2

The claim that the equilibrium is efficient follows from Theorem 1. To prove the remaining two claims, we

first state and prove an intermediate Lemma showing the consumer’s strict preference for, and the firm’s

ability to produce, bundles that average over states of nature irrelevant to preferences, endowments and

technologies. This result is the core of both remaining parts of the proof.

Step 1: Intermediate Result

Define for each consumer type j the set of functions W j ⊆ {w :Θ→Θ} that do not separate any two states

corresponding to the same payoffs and do not alter prices. That is, w(θ) = w(θ′) =⇒ u j (x,θ) = u j (x,θ′), ∀x ∈
X . For firms we similarly define the transformations that keep intact the state-dependent component of the

feasibility constraint: W F includes all functions such that w(θ) = w(θ′) =⇒ H(y,c,θ) = H(y,c,θ′), ∀y ∈ Y .

The intermediate result is the following:

Lemma 3. Let attention costs be invariant and monotone with respect to G . The following properties hold:

1. Fix a (x(θ))θ and a w ∈W j , and construct (x ′(θ))θ such that

x ′(θ) =
∑
θ′ x(θ′)πθ(θ′)I[w(θ′) = θ]∑

θ′ πθ(θ′)I[w(θ′) = θ]
(29)

for each θ ∈Θ. Then u j ((x ′(θ))θ,π) ≥ u j ((x(θ))θ,π) with equality if and only if x(θ) = x ′(θ) for all θ.
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2. Fix a (y(θ))θ ∈ F (π) and a w ∈W F , and construct (y ′(θ))θ such that

y ′(θ) =
∑
θ′ y(θ′)πθ(θ′)I[w(θ′) = θ]∑

θ′ πθ(θ′)I[w(θ′) = θ]
(30)

for each θ ∈Θ. Then (y ′(θ))θ ∈ F (π).

Proof. We start with part 1. Let us denote by (x,φ) and (x ′,φ′) any selection of the solutions to the program

(19) corresponding respectively to the parameters (x(θ))θ and ((x ′(θ))θ. See that x(θ) 6= x ′(θ) for at least one

θ ∈Θ implies that
∑

p φ(ω | θ, p) 6=∑
p φ(ω | θ′, p) for at least some pair some (θ,θ′) such that g (θ) = g (θ′).

Let us now construct a lower bound for u j ((x ′(θ))θ,π). To do this, we define a transformation as in Defi-

nition 6, for some g = (θ, p) 7→ (w(θ), p) for some p ∈RN+ , which defines φ′′ and π′′. We then define the signal

structure function (φ′′′,π) such that, for all ω, z,

φ′′′(ω | z) =φ′′(ω | g (z)) (31)

We then propose the allocation (x,φ′′′) in program (19) corresponding to the parameters ((x ′(θ))θ. See

that expected utility for the agent is the same under the proposed allocation and under (x,φ):

∑
ω,θ

u j (x(ω),θ) φ(ω | fπ(θ))πθ(θ) = ∑
ω,θ

∑
θ′

u j (x(ω),θ′)φ(ω | fπ(θ′)) πθ(θ′) I[w(θ′) = θ]

= ∑
ω,θ

u j (x(ω),θ)
∑
θ′
φ(ω | fπ(θ′)) πθ(θ′) I[w(θ′) = θ]

= ∑
ω,θ

u j (x(ω),θ) φ′′′(ω | fπ(θ)) πθ(θ)

where the first line re-writes the sum; the second uses the definition of W j and in particular that u(·,θ) =
u(·,θ′) whenever w(θ′) = w(θ); and the third substitutes the definition of φ′′′.

We will next show the cognitive cost is strictly lower under the proposed signal technology than under

the technology described by φ. See first that C [φ′′,π′′] <C [φ,π], by monotonicity of the cost function, since

g ⊂ G ; and, second, that C [φ′′′,π] = C [φ′′,π′′] by informational invariance, as (31) immediately implies the

sufficiency relationship. Therefore, C [φ′′′,π] <C [φ,π]. Putting this together with the previous observation,

∑
ω,θ

u j (x(ω),θ) φ′′′(ω | fπ′′′(θ)) πθ(θ)−C [φ′′′,π] > u j ((x(θ))θ,π) (32)

Observe now that the allocation (x,φ′′′) is feasible in program (19) with parameter ((x ′(θ))θ by the following
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direct calculation for each state θ ∈Θ:

∑
ω

x(ω) φ′′′(ω | fπ(θ)) =∑
ω

x(ω)

∑
θ′φ(ω | fπ(θ′)) ·πθ(θ′) · I[w(θ′) = w(θ)]∑

θ′′ πθ(θ′′) · I[w(θ′′) = w(θ)]

=∑
θ′

πθ(θ)I[w(θ′) = w(θ)]∑
θ′′ πθ(θ′′)I[w(θ′′) = θ]

∑
ω

x(ω) φ(ω | fπ(θ′)) πθ(θ′)

≤∑
θ′

x(θ′)
πθ(θ′)I[g (θ′) = θ]∑
θ′′ πθ(θ′′)I[g (θ′′) = θ]

= x ′(θ)

(33)

where the first line uses the definition of φ′′′; the second re-arranges terms; and the third uses the feasibility

of the original strategy (x,φ) in each state of the world.

Since (x,φ′′′), is feasible, and u j ((x ′(θ))θ,π) is the maximized value of the program, we must have

u j ((x ′(θ))θ,π) ≥ ∑
ω,θ

u j (x(ω),θ) φ′′′(ω | fπ(θ)) πθ(θ)−C [φ′′′,π] (34)

This combined with (32) gives u j ((x ′(θ))θ,π) > u j ((x(θ))θ,π) as desired.

We now establish the second part of the result, for firms. Let (y,φ) denote the original production plan

that exists, satisfies the constraints in (21), and satisfies

∑
ω

y(ω)φ(ω | fπ(θ)) = y(θ), ∀θ ∈Θ (35)

construct φ′′, φ′′′ and π′′ just as above, via the change of variables associated with g = (θ, p) 7→ (w(θ), p). By

an analogue of the same argument used for consumers, C [φ′′′,π] <C [φ,π]. We now consider the production

constraints. See that a necessary condition for φ′′′(ω | fπ(θ)) > 0 is that φ(ω | fπ(θ′)) > 0 for some θ′ such that

w(θ′) = w(θ). Feasibility of the original allocation plan implies that

H
(
y(ω),C F [φ,π],θ′

)≤ 0 (36)

The definition of W F implies that H(y(ω),c,θ′) = H(y(ω),c,θ). Moreover, monotonicity of the production

possibilities function in its second argument means that H(y(ω),c ′,θ′) < H(y(ω),c,θ′) for any c ′ < c. Putting

this together with the strict inequality for costs gives

H(y(ω),C F [φ′′′,π],θ) < H(y(ω),C F [φ,π],θ) = H(y(ω),C F [φ,π],θ′) ≤ 0 (37)

so production satisfies the technological constraint. Finally a calculation identical to (33) shows that

∑
ω

y(ω)φ′′′(ω | fπ(θ)) =
∑
θ′ y(θ′)πθ(θ′)I[w(θ′) = θ]∑

θ′ πθ(θ′)I[w(θ′) = θ]
= y ′(θ) (38)

for all θ ∈Θ. Therefore (y ′(θ))θ∈Θ ∈ F [π] as desired. �

43



Step 2: Equilibrium is Price-tracking

We now continue with the proof of Theorem 2. We now verify the equilibrium is price-tracking.

Assume otherwise. Imagine first that there is at least one consumer type j such that Q j (θ) is not a suffi-

cient statistic for θ. Apply the construction in the proof of Lemma 3 with respect to w(θ) =Q j (θ) to generate

a new information structure (φ j ′,π′) and consumer bundle (x j ,φ j ′).47 See that, because we have assumed

that Q j (θ) is not a sufficient statistic for θ in the conditional density, this transformation produces a strict

improvement in payoffs. Additionally, under the construction, we have φ j ′(ω | θ, p) =φ j ′(ω |Q(θ), p) which

implies that (Q(θ), p) is sufficient for (θ, p).48

See next that the new bundle is feasible. By the following elementary calculation, which uses the law of

large numbers, the new bundle has the same cost as the original bundle

∑
ω,z

(x j (ω) ·p)φ j (ω | θ, p)π(θ, p) =∑
p

p ·
(∑
ω

x j (ω)
∑
θ

φ j (ω | θ, p)π(θ, p)

)

=∑
p

p ·
(∑
ω

x j (ω)
∑
θ

φ j ′(ω | θ, p)π(θ, p)

)
= ∑
ω,z

(x j (ω) ·p)φ j ′(ω | θ, p)π(θ, p)

(39)

Therefore the feasibility of the original bundle implies the feasibility of the one. The existence of a feasible

bundle with strictly higher payoffs contradicts consumer optimality, as we have found something that is

higher payoff and feasible. So the proposed equilibrium cannot exist.

Imagine next that, for the firms, QF (θ) is not a sufficient statistic for θ. Apply the construction in the

proof of Lemma 3 with respect to w(θ) = QF (θ) to generate a new production bundle (y,φ′). Observe that,

according to (37), there is strict slack in the production constraint or

H(y(ω),C F [φ′,π],θ) < 0 (40)

in allω,θ such thatφ′(ω | fπ(θ)) > 0. Because H is continuous and strictly increasing in its first N arguments,

there exists an ε> 0 such that

H(y(ω)+εe,C F [φ′,π],θ) < 0 (41)

where e is an N × 1 vector of ones. Hence (in some abuse of notation) the production plan (y + εe,φ′) is

also feasible.49 Producing this plan increases profits by ε(p · e) > 0. Hence the existence of this deviation

contradicts profit maximization. So the proposed equilibrium cannot exist.

47Specifically, φ j ′(ω | z) =φ′′′(ω | z) where the right-hand-side is in the Lemma’s terminology.
48To translate to Definition 7, we would state this as a property of π′ defined by (17) with g (θ, p) = (Q(θ), p), with respect to π.
49For simplicity, we ignore the issue of y(ω)+ εe ∉ Y for some ω. To “fix” this, we would apply the exact same reasoning as in

the proof of Lemma 5: we can restrict attention away from allocations at a “corner” of Y by making that set sufficiently large, and
otherwise construct our deviation to increase y(ω) only on the (necessarily positive measure subset) of ω in which it is possible.
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Step 3: Equilibrium is Fundamental

Assume there exists a non-fundamental equilibrium. Since invariance and monotonicity with respect to G

implies invariance with respect to Gp , the equilibrium is not Pareto dominated by any allocation supported

by an arbitrary message (Theorem 1).

We now show a contradiction to Pareto optimality: the social planner could remove the non-fundamental

contingency in the allocation to achieve a Pareto improvement. We start by showing that at least one con-

sumer conditions their aggregate demand or production on the non-fundamental state in the equilibrium.

Assume not. The market clearing condition is

J∑
j=1

µ j x j (θ) =
J∑

j=1
µ j e j (θ)+ y(θ) (42)

for all θ ∈Θ. Take any two states θ,θ′ such that Q(θ) =Q(θ′). Under the conjecture,
∑J

j=1µ
j x j (θ)−∑

µ j e j (θ) =∑J
j=1µ

j x j (θ′)−∑
µ j e j (θ′). But this violates the implication of market clearing that y(θ) 6= y(θ′). Therefore at

least one consumer type conditions on non-fundamental volatility.

We now propose the following allocation. For each consumer, set the allocation constructed in the proof

of Lemma 3 using w(θ) =Q(θ), which is by construction in W j for each type j . For each producer, also set the

allocation constructed in the proof of Lemma 3 using w(θ) =Q(θ), which is by construction in W F . Lemma 3

guarantees this allocation is strictly preferred by at least one agent type, whose allocation has changed, and

is weakly preferred by all others.

We finally show that it is resource feasible. The feasibility constraint for state θ is

J∑
j=1

µ j x j ′(θ) ≤
J∑

j=1
µ j e j (θ)+ y ′(θ) (43)

which is, using the law of large numbers,

J∑
j=1

µ j
∑
θ′ x j (θ′) ·πθ(θ′) · I[Q(θ′) =Q(θ)]∑

θ′ πθ(θ′) · I[Q(θ′) =Q(θ)]
≤

J∑
j=1

µ j E j (θ)+
∑
θ′ y(θ′) ·πθ(θ′) · I[Q(θ′) =Q(θ)]∑

θ′ πθ(θ′) · I[Q(θ′) =Q(θ)]
(44)

Next see that, because e j (θ) = e j (θ′) for all θ,θ′ : Q(θ) =Q(θ′), we can write

e j (θ) =
∑
θ′ e j (θ′) ·πθ(θ′) · I[Q(θ′) =Q(θ)]∑

θ′ πθ(θ′) · I[Q(θ′) =Q(θ)]
(45)

But we know from the feasibility of the original allocation that, for all θ′,

J∑
j=1

µ j x j (θ′) ≤
J∑

j=1
µ j e j (θ′)+ y(θ′) (46)

Multiplying both sides by I[Q(θ′) =Q(θ)] ·πθ(θ′), then dividing by
∑
θ′ πθ(θ′) · I[Q(θ′) =Q(θ)], gives (44).

Therefore we have shown the existence of a feasible allocation that Pareto dominates the original alloca-
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tion. This is a contradiction. Therefore there cannot exist a non-fundamental equilibrium.

Proof of Corollary 1

We proceed in the following two steps. Consider any possible Pareto-dominating allocation. If the proposed

message M(θ) is invertible in θ, then a twin of the argument from the proof of Theorem 1 shows it must be

feasible and payoff-equivalent with the message (θ,P (θ)) and therefore cannot Pareto dominate the equilib-

rium. In particular, we can apply a map M(θ) 7→ (θ,P (θ)) and use the full invariance condition to prove an

equivalent of Lemma 1.

If the proposed message is not invertible in θ, we claim (and prove at the end of this section) that a

payoff-equivalent arrangement is possible with the message (θ,P (θ)). Therefore, were a Pareto-dominating

allocation to exist with message M(θ) , our construction has provided a Pareto-dominating allocation with

message (θ,P (θ)) and contradicted the result of Proposition 3.

We now prove the intermediate step. Denote the consumer choices in the proposed arrangement via

x j ,φ j for each type j ; and the proposed prior distribution, compatible with the message M , by πM . Let us

now construct the signal structure with likelihood distributions

φ
j
P (ω | θ,P (θ)) =φ j (ω | fπM (θ)) ∀ω ∈Ω (47)

and the prior distribution

πP (θ,P (θ)) =πθ(θ) (48)

This new construction in particular “un-coarsens” and re-labels the state space, maintaining the assumption

that agents do not distinguish between the previously coarsened states of nature . See that (φ j ,πM ) is a

transformation of (φ j
P ,πP ) for a mapping (θ,P (θ)) 7→ M(θ) which is in G . Moreover, under this mapping,

πM is sufficient with respect to πP with respect to φ j
P in the sense of Definition 7. Therefore, by invariance,

C [φ j ,πM ] = C [φ j
P ,πP ]. Next, see that the consumer payoffs from program (12) are trivially the same under

both information structures when the consumption strategy is fixed at x j ; and aggregate demands x j (θ)

conditional on any θ are also the same. We then can replicate this argument for each consumer type j .

We next turn to feasibility. We use a similar constructive argument to define a new attention strategy that

is valid under πP and leads to the same costs. The feasibility constraint is similarly unaltered. Thus, with this

new arrangement, the planner can generate the same aggregate supply y(θ).

Therefore, we have constructed a new feasible arrangement that results in the same payoffs for each

agent in the economy. This ends the proof of the intermediate result.

B Invariance in the Space of Posteriors

In this Appendix, we formalize the relationship of our invariance condition with notions of invariance in the

literature on information geometry. This allows more direct comparison of our analysis with those of Caplin
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et al. (2020) and Hébert and La’O (2020).

We restrict attention to the class of posterior separable costs, which is studied by Caplin and Dean (2015)

and Denti (2018) and encompasses many specifications used in the literature.50 With our notation, this class

is defined as follows.

Definition 14. Attention costs are posterior separable if they admit the following representation:

C [φ,π] = ∑
ω∈Ω

φω(ω) ·T
[
φz|ω(·|ω);π

]−T [π;π] (49)

where φω(ω) = ∑
z φ(ω | z)π(z) ∀ω, φz|ω(z |ω) = φ(ω|z)π(z)

φω(ω) ∀ω : φω(ω) > 0 (and φz|ω(z |ω) = π(z) otherwise),

and T [·;π] : P →R is strictly convex for each π ∈P .

Loosely speaking, a posterior-separable cost functional corresponds the expected increase in a measure

of the difference between the posterior to the prior. A signal structure, represented by its induced posterior

distributions, costs more if it generally induces posteriors that differ from the prior. This makes the speci-

fication of T the key to understanding the economic properties of information costs. We therefore ask how

our notions of invariance and monotonicity of C translate to properties of T.

Consider, in particular, the following notion of invariance drawn from the literature on information ge-

ometry, which has recently been applied in economics by Hébert and Woodford (2019, 2020), Hébert and

La’O (2020), and Caplin et al. (2020).

Definition 15 (Invariance, from Amari and Nagaoka (2000) and Amari (2016)). Let π ∈P and π′ ∈P be two

distributions on Z , fix a g : Z →Z , and construct π̃ and π̃′ as in (17). The functional T satisfies invariance if

T [π′,π] ≥ T [π̃′, π̃] for any g , with equality if and only if the distributions can be written as π(z) = π̃(g (z))r (z)

and π′(z) = π̃′(g (z))r (z) for the same r : Z → [0,1].

When applying this definition to T in the posterior-separable cost (49), π and π′ are the prior and poste-

rior about a random variable z, and π̃ and π̃′ are the implied prior and posterior about the random variable

z̃ = g (z), for some g ∈G . T is invariant if the “difference” between prior and posterior weakly decreases with

any such transformation, and remains the same if and only if the prior and posterior completely agree about

the realizations of the state that have been relabeled and/or combined.

The next Lemma, proved in Online Appendix C, verifies that invariant and monotone T in a posterior

separable model implies a cost functional that is invariant and monotone per our definition:

Lemma 4. Suppose that the cost functional is posterior separable, that T is invariant in the sense of Definition

15, and that T [π;π] = 0 for any π ∈P . Then, the cost functional is invariant and monotone with respect to G

in the sense of Definition 8.

50This class include, not only the mutual-information specification proposed by Sims (2003), but also the alternatives proposed
by Pomatto et al. (2018) and Hébert and Woodford (2020).
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We can use this method to construct invariant cost functionals. Theorem 3.1 in Amari (2016) (p. 54)

demonstrates that the class of divergences defined by

T [π;π′] =∑
z
π(z) · f

(
π′(z)

π(z)

)
(50)

for a differentiable convex f (·) satisfying f (1) = 0 are invariant. When f (u) = − logu, T is the Kullback-

Leibler divergence, which verifies the following:

Corollary 5. Mutual information costs are invariant and monotone in the sense Definition 8.

Applying our Theorems 1 and 2, we then conclude that mutual information costs suffice for equilibria to

be not only efficient but also fundamental and price taking, as stated in Corollary 3 in the main text. This is

subject to the clarification made in the beginning of Section 5.2, namely that attention costs be measured by

the mutual information of the signal ω with the whole cognition state z = (θ, p), as opposed to, say, only p.

Moving from mutual information costs to the broader class of posterior separable costs, Theorem 2 of

Caplin et al. (2020) says that, within this class, consistency of choice data with invariance under compres-

sion holds if and only if the cost functional is invariant in the sense of Definition 15. Combined with our

Lemma 4, this makes invariance under compression a sufficient condition for invariance and monotonic-

ity in the sense of Definition 8, and suggests a path for testing our invariance condition in choice data, as

discussed in the main text.

Finally, Hébert and La’O (2020) work in the class of posterior separable costs and define invariance as

in Definition 15, which as already explained is basically the same as ours except for the fact that our ex-

tends outside the aforementioned class. This explains the proximity between their efficiency result and

ours. At the same time, Hébert and La’O (2020) offer a more thorough investigation of the type of mono-

tonicity needed to rule out non-fundamental volatility. Loosely speaking, what is needed is monotonicity

only with respect to the subset of transformations that discard information about non-fundamental vari-

ables. And while our Theorem 2 restricts attention to efficient equilibria, their result about the absence of

non-fundamental volatility extends to inefficient equilibria.
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Online Appendices

C Additional Proofs

In this Appendix, we fill in the details of the proofs of Propositions 1 and 2 from the example in Section 2.

We then provide the proofs of the results in the main body of the paper, except for those already included in

Appendix A

Proof of Proposition 1

The main logic of the proof is given in the main text. Here, we fill in the detailed calculations.

Consumer Problem. We first derive the optimal coconut demand of an agent conditional on receiving a

Gaussian signal of the price with signal-to-noise ratio δ (i.e., E[p |ω] = δω+ (1−δ)E[p] and E[ω | p] = p). See

that the first-order condition in the agent’s program

max
x:Ω→R

∫
Z

∫
Ω

(
x(ω)− x(ω)2

2
+p(ξ−x(ω))

)
φ(ω|z)π(z) dωdz (51)

is, for each ω,

1−x(ω) = E[p |ω] (52)

where E[p |ω] is defined in the standard way by applying Bayes’ rule to the density φ(ω|z)π(z). Throughout

this proof, we will use such “expectations notation” to ease the notational burden.

Substituting in the conjectured information structure, see that x(ω) = 1−δω−(1−δ)E[p]. We now derive

aggregate demand in the market clearing condition. Under the conjecture that p = P (ξ), and the stated

assumption that E[ω | p] = p, see that∫
Ω

x(ω)φω|z (ω | z)dω= 1−δp − (1−δ)E[p] (53)

As derived in the main text, market clearing requires that 1−δp − (1−δ)E[p] = ξ for all ξ. By taking the

expectation of both sides we derive E[p] = 1. Then, by substituting in this finding and solving algebraically,

we establish p −E[p] =−ξ/δ. Thus the unique market clearing price p = P (ξ) = 1− ξ
δ .

We next formulate agents’ reduced-form benefits as a function of the choice variable δ and the conjec-

tured price P (ξ) = 1− ξ
δ′ . See in particular that E[x(ω)] = 0; E

[−x(ω)2

2

]
− δ

2(δ′)2 ; E[pξ] = − 1
δ′ ; and E[−px(ω)] =

δ
(δ′)2 . Adding together these terms defines the reduced-form benefits function

b(δ,δ′) = δ−2δ′

2(δ′)2 (54)

as desired.

We now return to the signal acquisition problem. As established in the main text, it is without loss to

focus on signals of the form ωi = p + a3ηi . The signal to noise ratio of this signal, as a function of δ and
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ψ1 =−1/δ′, is

d(a;δ′) ≡ a−2
3

a−2
3 + (δ′)2

(55)

See that, for any δ′ ∈ (0,1], we can set a3 =
(

δ
1−δ

)− 1
2 1
δ′ to achieve any δ ∈ (0,1) as claimed. This establishes the

claim that δ′ is irrelevant for attention costs written as a function of (δ,δ′).

We finally provide a sharper characterization of the equilibrium fixed-point equation

δe ∈ argmax
δ

{
b(δ,δe )− c(δ)

}
. (56)

Note that the first-order condition

b1(δe ,δe ) = c ′(δe ) (57)

is necessary and sufficient for equilibrium because b − c is differentiable and strictly concave in (0,1), and

the corners δ= 0 or δ= 1 are ruled out by, respectively, c ′(0) = 0 and limδ→1 c ′(δ) =∞. See then that existence

is guaranteed by the continuities of b1 and c ′, and uniqueness by their monotonicity.

Social Planner’s Problem. Let us now consider the social planner’s problem, re-printed here:

max
x,(φω|z )z∈Z ,M

∫
Z

∫
Ω

(
x(ω)− x(ω)2

2

)
φ(ω|z)π(z) dωdz −C (φ,π)

s.t.
∫
Ω

x(ω)φω|z (ω | ξ,m) dω= ξ for all (ξ,m)∈Z

π(ξ,m) =πθ(θ) ·D[M(ξ) = m] for all (ξ,m) ∈Z

(58)

To complete the argument in the main text, we derive the social planner’s objective conditional on a fixed

signal structure of the formωi = ξ+a3ηi . See that the problem conditional on the signal choice and message

is globally concave and characterized by first-order conditions. Let λ̂(ξ) denote the Lagrange multiplier for

the first (continuum of) constraints and λ(ξ) = λ̂(ξ)
π(ξ) denote the Lagrange multiplier divided by the prior. The

first-order condition for the choice of x(ω), for each ω, is

1−x(ω) =
∫
Z

∫
Ωλ(ξ)φ(ω|z)π(z) dωdz∫

Z φ(ω|z)π(z) dz
(59)

We can re-write the right-hand-side more illustratively as E[λ(ξ) | ω], where the expectation is taken over

the conditional density associated with the joint density φ(ω | z)π(z). We substitute this expression into the

resource constraint to obtain the condition

1−E[E[λ(ξ) |ω] | ξ] = ξ (60)

using the simpler conditional expectation notation for the integral in the constraint. The Gaussianity of the

right-hand-side requires that the left-hand side is also Gaussian. This pins down that the normalized co-

state λ(ξ) must be Gaussian, which also restricts it to be linear in ξ. Let us then represent λ(ξ) =λ0+λ1ξ and
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use the assumed signal structure to write out the conditional expectation as

1−λ0 −λ1δξ= ξ (61)

from which we recover λ0 = 1 and λ1 = 1/δ. Next, see that optimal consumption maximizes the Lagrangian

L =
∫
Z

∫
Ω

(
x(ω)− x(ω)2

2

)
φ(ω|z)π(z) dωdz −

∫
(λ0 +λ1ξ)

(
ξ−

∫
Ω

x(ω)φω|z (ω | ξ,m) dω

)
π(ξ)dξ (62)

which can be re-expressed using the expectation notation as the following:

E

[
x(ω)− x(ω)2

2
+λ(ξ−x(ω))

]
(63)

Observe that, comparing with the consumer’s program, λ=λ(ξ) = P (ξ) and x(ω) = 1−E[λ(ξ) |ω] = 1−E[P (ξ) |
ω]. This is identical to the consumer’s program, so the same calculations apply to derive the benefits function

modulo the replacement of δ′ with δ. From this point, the analysis follows from the analysis in the main text.

Proof of Proposition 2

In the first economy, see that by the same arguments in the proof of Proposition 1 the social planner’s objec-

tive function can be written as the following function of signal quality δ and message slope ψ1:

W (δ,ψ1) = b(δ,δ)− c(δ;ψ1) = b(δ,δ)− δ

1−δψ
−2
1 (64)

See that the slope of the welfare function in ψ1 is

∂

∂ψ1
W (δ,ψ1) =− ∂

∂ψ1
c(δ;ψ1) = 2

δ

1−δψ
−3
1 (65)

and, evaluated at the equilibrium, this is

∂

∂ψ1
W (δ,ψ1)|δ=δe ,ψ1=1/δe = 2

(δe )4

1−δe > 0 (66)

The last part (6= 0) follows provided δe 6= 0, which is easily verified using the fixed-point equation character-

izing equilibrium. Therefore starting from any equilibrium, there is a first-order benefit to deviating from

the equilibrium outcome and the economy is not efficient. Relative to this first-order deviation, equilibrium

prices are insufficiently volatile, which corresponds with attention being inefficiently high.

Similarly, for the second economy, the social planner’s objective up to scale is

W (δ,ψ1) = b(δ,δ)− c(δ;ψ1) = b(δ,δ)−
1+

√
1−δ
δ

ψ−2
1 (67)
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which has the following derivative in ψ1 evaluated at the equilibrium:

∂

∂ψ1
W (δ,ψ1)|δ=δe ,ψ1=1/δe =−2

1+
√

1−δe

δe

 (δe )3 < 0 (68)

provided δe 6= 0. Thus the planner has a first-order benefit to deviate from implementing the equilibrium

outcome and the economy is inefficient. Relative to this first-order deviation, equilibrium prices are exces-

sively volatile, which corresponds with attention being inefficiently low.

Proof of Proposition 3

We prove this by contradiction, following closely the textbook proof in Chapter 16 of Mas-Colell et al. (1995).

Let the competitive equilibrium, which we assume to exist, be denoted by ((x j ,φ j )J
j=1, (y,φF ),P ), and

aggregate demands and production by ((x j (θ))J
j=1, y(θ)). Since we have assumed equilibrium exists, it must

be the case that for each consumer (x j ,φ j ) solves program (19). Let the proposed variant allocation be de-

noted by ((x j ′,φ j ′)J
j=1, (y ′,φF ′),P ), and aggregate demands and production be denoted by ((x j ′(θ))J

j=1, y ′(θ)).

It is without loss to assume that (x j ′,φ) solves (19) for parameters (x j ′(θ))J
j=1 and π. Otherwise we could

construct another feasible allocation with weakly higher payoffs for each agent, and then apply the proof

by contradiction to this variant allocation. Note finally that the message and prior are unchanged from the

price and prior in the equilibrium.

Assume that, under the variant allocation, all agents are weakly better off and some positive mass of

agents are strictly better off. Under our restriction to symmetry in allocations within types, this implies that

u j ((x j ′(θ))θ∈Θ,π) ≥ u j ((x j (θ))θ∈Θ,π) (69)

for all types j , holding strictly for at least one type.

We now establish that
∑
θ P (θ) · x j ′(θ)πθ(θ) ≥ ∑

θ(P (θ) · e j (θ) + a jΠ(θ))πθ(θ) for all agents j , with in-

equality for at least one type. Let us first establish the inequality. Assume instead that
∑
θ P (θ)x j ′(θ)πθ(θ) <∑

θ(P (θ)e j (θ) + a jΠ(θ)) πθ(θ). In this case, given that P (θ) ∈ RN+ for each θ, there exists an ε such that∑
θ(P (θ) · x j ′(θ))πθ(θ)+ ε∑θ(P (θ) ·e)πθ(θ) <∑

θ(P (θ)e j (θ)+a jΠ(θ))πθ(θ), where e ∈ RN is a vector of ones.

Moreover,

u j ((x j ′(θ)+εe)θ∈Θ,π) > u j ((x j ′(θ))θ∈Θ,π) ≥ u j ((x j (θ))θ∈Θ,π) (70)

where the first, strict inequality uses the monotonicity of preferences established in Lemma 5, stated and

proven at the end of this proof.51 Because this bundle is strictly preferred to (x j ,φ j ) and feasible given the

same prices (and profits), its existence would contradict consumer optimality. We use a similar argument to

establish that
∑
θ P (θ)x j ′(θ)πθ(θ) >∑

θ(P (θ)e j (θ)+a jΠ(θ))πθ(θ) for agents experiencing a strict utility gain

in the new allocation. If not, x j ′(θ) would be feasible and preferred, contradicting consumer optimality.

51We also use the fact that the original equilibrium allocation was interior to XΘ to establish that the proposed deviation lies in
XΘ. This was without loss of generality from setting the boundaries of X sufficiently large (see footnote 12).
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Adding up the previously established conditions gives

∑
j

∑
θ

(P (θ) · x j ′(θ))πθ(θ) >∑
j

∑
θ

(P (θ) ·e j (θ)+a jΠ(θ))πθ(θ) (71)

We next use
∑

a j = 1 andΠ(θ) = P (θ) · y(θ) to write

∑
j

∑
θ

(P (θ)) · x j ′(θ))πθ(θ) >∑
j

∑
θ

(P (θ) ·e j (θ))+∑
θ

(P (θ) · y(θ)) (72)

Observe that profit maximization guarantees that
∑
θ(P (θ)·y(θ)) ≥∑

θ(P (θ)·y ′′(θ)) for any (y ′′(θ))θ∈Θ in F (π).

This includes the proposed aggregate production plan (y ′(θ))θ∈Θ. Therefore, (72) can be re-written as

∑
j

∑
θ

(P (θ) · x j ′(θ))πθ(θ) >∑
j

∑
θ

(P (θ) ·e j (θ))+∑
θ

(P (θ) · y ′(θ)) (73)

But if this is true for (P (θ))θ∈Θ À 0, then it is a contradiction of feasibility. Therefore the proposed Pareto

dominating allocation cannot exist.

We now complete the argument by stating and proving the required monotonicity of preferences:

Lemma 5. For each type j , each prior π, and each pair x , x ′ ∈ X |Θ|, the following is true: if x ′ À x , then

u j (x ′,π) > u j (x ,π).

Proof. This proof is constructive. Let x and x ′ À x be two consumption vectors in X |Θ|. Necessarily, x

is in the interior of X |Θ|. Let xn(θ) denote consumption of the nth good. Define d ∈ RN+ as the point-wise

minimum increase across states in the aggregate consumption vector or d ≡ (minθ(x ′
n(θ)− xn(θ)))N

n=1. Now

let us take the optimizers (x,φ) which we assume to exist for program (19) with parameters x and π. Let

dω = (dω
n )N

n=1 = (xmax
n −xn(ω))N

n=1 be the distance to the boundary of X in each dimension; and note that for

any interior x , that the “capped” vector d̃ ≡ (min{dn ,dω
n })N

n=1 also has all strictly positive elements.

Construct x ′(ω) = x(ω)+ d̃(ω) for each ω and note that

∑
ω

x ′(ω)φ(ω | fπ(θ)) ≤ d +∑
ω

x(ω)φ(ω | fπ(θ)) ≤ d +x(θ), ∀θ ∈Θ (74)

where the third statement uses the feasibility constraint in (19). Note that d + x(θ) < x ′(θ) for all θ by con-

struction. Therefore (x ′(ω),φ) is feasible in the variant program with parameters (x ′(θ))θ∈Θ and π.

Observe next that, for a positive measure of ω, x ′(ω) > x(ω).52 Moreover, because x ′(ω) À x(ω) for a

positive measure of ω and u j (·,θ) represents weakly monotone preferences for each θ, expected utility is

also strictly ranked:

∑
ω,θ

u j (x(ω),θ)φ(ω | fπ(θ))πθ(θ) < ∑
ω,θ

u j (x ′(ω),θ)φ(ω | fπ(θ))πθ(θ) (75)

52If not, then for measure 1 of ω, we have x(ω) = (xmax
n )N

n=1. But this implies x(θ) = (xmax
n )N

n=1 for all θ and there cannot exist an
x′(θ) that is larger in every dimension.
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Therefore, ∑
ω,θ

u j (x ′(ω),θ)φ(ω | fπ(θ))πθ(θ)−C [φ,π] > u j (x ,π) (76)

Since a maximum exists to program (19) we know also that

u j (x ′,π) ≥ ∑
ω,θ

u j (x ′(ω),θ)φ(ω | fπ(θ))πθ(θ)−C [φ,π] (77)

by the definition of the maximum. Therefore, u j (x ′,π) > u j (x ,π), which completes the proof. �

Proof of Proposition 4

Since an equilibrium in the twin economy trivially maps to an equilibrium in the original economy, it is

sufficient to prove to prove existence in the twin economy.

We first prove existence of equilibrium in an economy in which all preferences are production sets are

conditioned on the “message” M(θ) = p for some arbitrary p ∈ RN+ . Let πp denote the associated prior. We

now map our analysis to the setting of Arrow and Debreu (1954) and verify conditions I-IV in that article

when preferences for each type j are represented by u j (·,πp ) and the production set is F (πp ). Condition

Ia, which requires closed and convex production sets, is assumed in our setting. Ib and Ic, which restrict

pathological outcomes like purely positive production plans, are implied by the assumed monotonicity of

H(·) and the normalization for a shut-down production of 0 is possible in any state of the world, at any

cognitive cost. Condition II, that the consumption set X is bounded from above and below, is implied by

taking X is a closed rectangle in the first quadrant. Condition III requires first that the utility function is

continuous (IIIa) and convex in the sense of Definition 9.2 (IIIc). As stated it requires also the lack of a

satiation point, but it is immediate (and remarked upon by the authors) that this can be replaced by there not

existing a satiation point that is consistent with feasibility; and this latter point is implied by our assumption

in footnote 12. Assumption IV requires that consumers hold positive claims on the firms, summing to one,

and endowments bounded above by some element of X . These are part of our environment.

Theorem I in Arrow and Debreu (1954) guarantees the existence of a competitive equilibrium under the

stated assumptions. In particular, this equilibrium is supported by some P :Θ→RN+ .53

Observe finally, from Lemma 3.6, that under invariance within Gp , preferences and production sets are

unchanged conditional on any π of the form π(z) =πθ(θ) · I[p = f (θ)] for any f :Θ→RN+ . More precisely, we

can apply Lemma 1 to show u j (·,πp ) = u j (·,πP ), where πP is the prior induced by the price functional P (·);

and F (πp ) = F (πP ). It is trivial then to show that we have obtained an equilibrium of the economy in which

preferences for each type j are represented by u j (·,πP ) and the production set is F (πP ). This concludes the

proof.

53As written, Theorem I in Arrow and Debreu (1954) guarantees the existence of a vector of state-contingent prices p ∈RN |Θ|
+ , but

this is readily transformed to the price functional under the maintained assumption that πθ(θ) > 0 for all states.
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Proof of Proposition 5

The implementation of an equilibrium with transfers, and the notion of a Pareto optimum, are trivially

equivalent between the inattentive economy and its attentive twin. It is therefore sufficient to prove the

result in the twin economy.

Consider, then, a Pareto optimum in the twin economy that can be written as (x j (θ))θ∈Θ, for each j , and

implemented with message m = M(θ). Let πM be the induced prior over θ×RN+ . We now use Theorem 2 in

Debreu (1954) to verify the existence of a price vector that supports such an equilibrium, when preferences

and production sets are conditioned on πM . To do so we verify conditions (I) to (V) in that article. Condition

I is that X is convex, which is assumed. Condition II is convexity of preferences as stated in the main text.

Condition III is a form of continuity. In particular, as written, it asks for every x, x ′, x ′′ ∈X Θ and agent j , that

{α : u j ((1−α)x ′+αx ′′,π) ≥ u j (x,π)} and {α : u j ((1−α)x ′+αx ′′,π)] ≤ u j (x,π)} are closed subsets of [0,1].54

See that this is a trivial consequence of the assumed continuity in the utility function in X Θ. Condition IV

is the convexity of the production set, which is trivial in the endowment economy. And Condition V is that

X Θ is finite dimensional, guaranteed by the finite state space.

Theorem 2 in Debreu (1954) guarantees the existence of a price function P :Θ→RN+ such that55

u j ((x ′(θ))θ∈Θ,πM ) ≥ u j ((x j (θ))θ∈Θ,πM ) =⇒ ∑
θ

πθ(θ)P (θ) · x ′(θ) ≥∑
θ

πθ(θ)P (θ) · x j (θ) (78)

This implies that (x j (θ))θ∈Θ solves program 20 when the price functional is given by P (·), the utility function

by u j ((x ′(θ))θ∈Θ,πM ), and income by
∑
θπθ(θ)P (θ) · x j (θ). See that this equilibrium can be implemented

with transfers T j (θ) = P (θ) · (x j (θ)−e j (θ)) for each θ.

We finally argue that the given allocation is a price equilibrium with transfers. To do this, we apply

invariance (Lemma 1) to show u j (·,πM ) = û j (·,πθ) = u j (·,πP ), where πP is the prior induced by the price

functional P (·); and F (πM ) = F̂ (πθ) = F (πP ). Thus we have shown how to implement the Pareto optimum as

a price equilibrium with transfers as desired.

Proof of Lemma 4

The cost of the original distribution can be written using the definition of a posterior-separable cost (49) as

C [φ,π] = ∑
ω∈Ω

φω(ω) ·T
[
φz|ω;π

]−T [π;π] (79)

Now consider the transformation for any g . We use the invariance of the marginal on ω and the normaliza-

tion T [π,π] = 0 to write

C [φ,π] = ∑
ω∈Ω

φ̃ω(ω) ·T
[
φz|ω;π

]
(80)

54This already employs two simplifications relative to the article, using the compactness of X to use the whole interval [0,1]
inclusive of endpoints and the existence of a utility representation of preferences.

55As written, the theorem guarantees the existence of a vector of state-contingent prices p ∈RN |Θ|
+ , but this is readily transformed

to the price functional under the maintained assumption that πθ(θ) > 0 for all states.
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and then note that, for each ω, T
[
φz|ω;π

]≤ T
[
φ̃z|ω; π̃

]
with equality if and only if g (z) is a sufficient statistic

for z in each posterior distribution. Therefore,

C [φ,π] = ∑
ω∈Ω

φ̃ω(ω) ·T
[
φz|ω;π

]≤ ∑
ω∈Ω

φ̃ω(ω) ·T
[
φ̃z|ω; π̃

]=C [φ̃, π̃] (81)

with strict inequality if and only if the sufficient statistic condition holds in each posterior. Therefore C is

monotone and invariant in the sense of Definition 8, provided that the two notions of sufficiency coincide.

It remains to verify directly this last point. We outline the direct calculation for convenience. Using the

construction of Definition 8 and Bayes’ rule, the posterior distributions are

φ̃z|ω(z |ω) =
∑

z ′∈Z φω|z ′(ω | z ′) ·π(z ′) · I[g (z ′) = z]

φ̃ω(ω)
(82)

The previous can be re-factored as

φ̃z|ω(z |ω) = ∑
z ′∈Z

φω|z ′(ω | z ′)π(z ′)
φ̃ω(ω)

· I[g (z ′) = z] (83)

See that the marginal distribution over ω is unchanged, or φ̃ω(ω) = φω(ω). Thus the first term of (83) is

φz|ω(z |ω), and so

φ̃z|ω(z |ω) = ∑
z ′∈Z

φz|ω(z |ω) · I[g (z ′) = z] (84)

This expression and the construction for the prior in Definition 8 therefore both fit the construction of π̃ and

π̃′ in Lemma 4, with π=φz|ω; π′ =π; π̃= φ̃z|ω; π̃′ = π̃. We now show the equivalence of the sufficient statistic

expressions. Starting with the expression in Definition 8, φω|z (ω | z) = φ̃ω|z (ω | g (z)) for all ω and z, we use

the definition of the construction to write

φz|ω(z |ω) = φ̃ω|z (ω | g (z))π(z)

φω(ω)
(85)

which we can factor further as

φz|ω(z |ω) = φ̃ω|z (ω | g (z))π̃(g (z))

φ̃ω(ω)
· π(z)

˜π(g (z))
= φ̃z|ω(g (z) |ω) · π(z)

π̃(g (z))
(86)

Set r (z) = π(z)
π̃(g (z)) . See that π̃(g (z)) ≥ π(z) and therefore r (z) ∈ [0,1], with the natural extension that r (z) = 0

if π̃(g (z)) = 0. Moreover it is trivial that π(z) = π̃(g (z)) · r (z). For the other direction, which is not strictly

needed in our proof, see that the r (z) defined above is the unique choice such that π(z) = π̃(g (z)) · r (z) and

the posteriors average to the prior. We then use the same argument in reverse. Therefore the two notions of

sufficiency are the same.

56



D Convex and Continuous Inattentive Economies

Here, we describe in more detail a version of our model economy in which the reduced preferences and

production sets defined in Section 4.1 are convex and continuous (or closed) in the ways required in Section

5.1, to guarantee equilibrium existence and the implementability of Pareto optima (Proposition 4).

To do this, we consider an enrichment of the model with a continuous state space. Without loss of gen-

erality, we set Ω = [0,1]. Define LΩ,X (`) in our context as the set of Lipschitz-continuous functions from Ω

to X with constant `, equipped with the sup norm; and LΩ,Y (`) the equivalent subset of functions mapping

Ω to Y .56 Next, let P (Ω) denote the set of all probability measures defined on Ω (equipped with the Borel

σ-algebra), and equip P (Ω) with the standard weak topology.57 We represent such probability measures by

cumulative distribution functions Φ ∈ P (Ω). We re-define the domain of the each agent’s cost functional as

(P (Ω))|Θ|×P , where P still carries its definition from Section 3.1. The richness of the state space will assist

in proving convexity of preferences, as we will see soon.

D.1 Preferences

We will first show that preferences are continuous, which requires no special features of the cost function or

state space (and indeed could have been proven, though it was not used, in our baseline environment). We

will then show how the additional assumption of posterior separable cost functionals can be used to show

convexity of preferences.

D.1.1 Problem Statement and Continuity

Let us first consider the (appropriately amended) program that defines reduced preferences:

u j ((x(θ))θ∈Θ,π) ≡ max
x,(Φ(·|z))z∈S[π]

∑
θ

∫
Ω

u j (x(ω),θ) dΦ(ω | fπ(θ)) πθ(θ)−C j [φ,π]

s.t.
∑
θ

∫
Ω

x(ω) dΦ(ω | fπ(θ)) ≤ x(θ), ∀θ ∈Θ

x ∈ LΩ,X (`); Φ(· | fπ(θ)) ∈ P (Ω), ∀θ ∈Θ

(87)

We assume now that, for fixed π, that C j [·,π] is continuous in the collection of (Φ(· | z))z∈S[π], equipped

with the weak topology.58 Observe that the whole objective function is therefore continuous in the choice

variables. Next, see that the constraint is continuous in x(θ), in particular because the integral operation∫
Ω x(ω) dΦ(ω | fπ(θ)) converges for a combined sequence of bounded functions xn(ω) → x(ω) and Φn(ω |

z) →Φ(ω | z) by definition.59 Finally, note that the respective domains for the goods choice and likelihood

56This restriction is technical and, we conjecture, not particularly restrictive given the richness of the signal space.
57Let each measure in P (Ω) be associated with a cumulative distribution function F . A sequence of measures corresponds to

a limit measure if the corresponding sequence of cumulative distribution functions Fn converge at all points of continuity to the
corresponding limit measure’s cumulative distribution, F .

58In particular, extend the previous definition to hold for all measures in the (finite) collection.
59Fixing the measure Φn , this requires use of the dominated convergence theorem; and then across the sequence of measures,

this follows from the definition of convergence in the weak topology.
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choices are compact. We can then apply Berge’s theorem to program (87) to assert the existence of a maxi-

mum and, moreover, that the value function is continuous in the parameter (x(θ))θ∈Θ. Observe that a similar

argument could be used to establish continuity of preferences in our main, discrete-signal-space case in pro-

gram (19). As stated in the main text, it is trivial to translate this into the required continuity of preferences.

D.1.2 Convexity

We now discuss the convexity of the preferences defined in (87). We first demonstrate convexity in the

posterior-separable case.60 In particular, say that we can write

C [φ,π] =
∫
Ω

T
[
φz|ω;π

]
dΦω(ω)−T [π;π] (88)

whereΦω(ω) is the marginal CDF over ω and φz|ω ∈P is the posterior distribution over z given ω.

Now imagine we have two bundles (x(θ))θ∈Θ and (x ′(θ))θ∈Θ, such that the associated solutions of (87) are

(x,φ) and (x ′,φ′). Our goal is to show that

u j ((αx(θ)+ (1−α)x ′(θ))θ∈Θ,π) ≥αu j ((x(θ))θ∈Θ,π)+ (1−α)u j ((x ′(θ))θ∈Θ,π) (89)

We do this by constructing a feasible consumption, in the program with constraints (αx(θ)+(1−α)x ′(θ))θ∈Θ,

that achieves the payoff on the left of the previous expression. The plan is an “α lottery” for these two plans.

In particular, we set

Φ′′(ω | z) =


1
2Φ(2ω | z) if ω ∈ [0,1/2]

1
2 +Φ′ (2ω− 1

2

)
if ω ∈ (1/2,1]

(90)

for all z. See that the countably infinite state space allows us to accommodate such a lottery. For consump-

tion, similarly define x ′′ such that61

x ′′(ω) =

x
(
ω
α

)
if ω ∈ [0,α]

x ′ (ω−α
1−α

)
if ω ∈ (α,1]

(91)

The combination of φ′′, x ′′ replicates the strategy x,φ with probability α and the strategy x ′,φ′ with proba-

bility 1−α.

First, see that the cost decomposes in the following calculation:

60Since our problem is specified in terms of signals and decision rules separately, our argument is much simpler (but also less
strong) than the result in Denti (2018) showing that the stochastic choice programs associated with posterior-separable cost func-
tionals are convex.

61If this construction results in a Lipschitz discontinuous x′′(ω), it can trivially be amended (alongside the construction of Φ′′) to
leave a small “gap” between the functions which is interpolated continuously.
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C [φ,π] =
∫
Ω

T
[
φ′′

z|ω;π
]

dΦ′′
ω(ω)−T [π;π]

=
∫ α

0
T

[
φ′′

z|ω;π
]

dΦ′′
ω(ω)+

∫ 1

α
T

[
φ′′

z|ω;π
]

dΦ′′
ω(ω)−T [π;π]

=α
∫
Ω

T
[
φz|ω;π

]
dΦω(ω)+ (1−α)

∫
Ω

T
[
φ′

z|ω;π
]

dΦ′
ω(ω)−T [π;π]

=αC [φ,π]+ (1−α)C [φ′,π]

(92)

This leverages the fact that the posterior-separable cost is linear in posteriors and hence in linear in the

operation of “combining” signals in the current way.62 Next, see that by almost the same logic the expected

utility term is linear:

∑
θ

∫
Ω

u j (x ′′(ω),θ) dΦ′′(ω | fπ(θ)) π( fπ(θ)) =α∑
θ

∫
Ω

u j (x(ω),θ) dΦ(ω | fπ(θ)) π( fπ(θ))+

(1−α)
∑
θ

∫
Ω

u j (x ′(ω),θ) dΦ′(ω | fπ(θ)) π( fπ(θ))
(93)

and finally that the constraints are linear:∫
Ω

x ′′(ω) dΦ′′(ω | fπ(θ)) ≤ (αx(θ)+ (1−α)x ′(θ)) (94)

This allows us to establish a lower bound for u j ((αx(θ) + (1 −α)x ′(θ))θ∈Θ,π), and therefore show (89) as

intended.

D.2 Convex and Closed Production Sets

We now describe a similar extension for firms. We will first show that production sets are closed, which like

the previous argument of continuous utility functions requires no specific properties of the cost function or

state space (and could have been shown in our baseline environment).

To establish convexity, we will require the combination of posterior separability of costs with a particular

linearity restriction on H . In particular, for some vector v ∈RN+ , we require the representation

H
(
y(ω),C F [φ,π],θ

)= H̃
(
y(ω)+ vC F [φ,π],θ

)
(95)

in which we maintain H̃(0,θ) = 0 for all θ and that H is increasing. We also require the regularity condition

that H̃(·,θ) is continuous for any value of θ.

See that this formulation can capture the “replacement” of any element yn of y with yn + vnC F [φ,π] in

the relevant part of a production function. This allows attention costs to capture requirements of additional

inputs and/or destroyed outputs. In addition, building on the discussion in footnote 12, it allows for atten-

62An additional feature of posterior-separable cost functionals, which we do not need to use in this construction to achieve weak
convexity, is that costs would be strictly reduced if a positive measure of signals corresponding to the same posteriors (or optimal
decisions) were combined.
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tion costs to be specified in terms of a “dummy input” with a normalized price (e.g., of 1), so firms effectively

maximize profits net of attention costs.

D.2.1 Problem Statement and Closed Production Sets

We carry over the regularity assumptions stated above for production plans and feasible distributions. We

redefine the feasible production set as

F (π) ≡
{

(y(θ))θ∈Θ : ∃ (y(ω),φ) s.t.∫
Ω

y(ω) dΦ(ω | fπ(θ)) ≤ y(θ),∀θ ∈Θ

H̃
(
y(ω)+~vC F [φ,π],θ

)≤ 0,∀(ω,θ)φ a.e.

y ∈ LΩ,Y (`); φ(· | fπ(θ)) ∈ P (Ω), ∀θ ∈Θ
}

(96)

where “φ a.e.” denotes that the statement holds for any subset ofΩ×Θ that has positive measure under the

signal distribution.

We first argue that this set is closed. Assume it is not. Then there exists some point (y(θ))θ∈Θ ∉ F (π), and

a sequence (yn(θ))θ∈Θ → (y(θ))θ∈Θ (in the Euclidean distance of RN |Θ|) such that (yn(θ))θ∈Θ ∈ F (π) for each

n. In particular, for any ε, there exists some (yK (θ))θ∈Θ such that ‖(yK (θ))θ∈Θ−(y(θ))θ∈Θ‖ < ε. Next, consider

the program

max
y,(Φ(·|z))z∈S[π]

−‖(y ′(θ))θ∈Θ− (y(θ))θ∈Θ‖

s.t.
∫
Ω

y(ω) dΦ(ω | fπ(θ)) ≤ y ′(θ),∀θ ∈Θ

H̃
(
y(ω)+~vC F [φ,π],θ

)≤ 0,∀(ω,θ)φ a.e.

y ∈ LΩ,Y (`); φ(· | fπ(θ)) ∈ P (Ω), ∀θ ∈Θ

(97)

See that all the constraints define a compact set. Boundedness is by assumption, given the spaces in which

y and φ lie. To see closedness, we first establish in the first constraint that for any sequence yn → y and

Φn →Φ, y ′
n(θ) = ∫

Ω yn(ω) dΦn(ω | fπ(θ)) is a convergent sequence (using the definition of the weak topology

for probability measures); and if each y ′
n(θ) ≤ y ′(θ), then also limn→∞ y ′

n(θ) ≤ y ′(θ). Next, for the second

constraint, see that for any subset of Ω×Θ which has positive measure under the limit signal distribution

represented byΦ, there must exist a subsequence ofΦn for which this set has a positive measure; index this

subsequence by k. Along the subsequence, we argue

H
(
yn(ω)+~vC F [φn ,π],θ

)→ H
(
y(ω)+~vC F [φ,π],θ

)
(98)

using the continuity of H and C F ; and then by a similar argue to the above, using the fact that

H
(
yn(ω)+~vC F [φn ,π],θ

)≤ 0 (99)
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everywhere along the subsequence, argue that H
(
y(ω)+~vC F [φ,π],θ

)≤ 0.

Having established points, (97) is a maximization of a continuous function on a compact set and by

Weierstrauss’ theorem must admit a solution. Denote the maximized value of the program as V . Since we

have assumed that (y(θ))θ∈Θ ∉ F (π), it must be that the value function V of this program satisfies V < 0. But

then, as argued above using the fact that (y(θ))θ∈Θ ∈ clF (π), there exists some implementable solution of (97)

that achieves value −V /2 >V . This is a contradiction. Therefore the set F (π) must be closed.

Like with the proof of continuous preferences, see that a much less technical version of the same argu-

ment could be used to prove the closedness of F (π) (and the existence of a solution to our profit maximiza-

tion problem) when the state space was discrete, as in the main model of Section 3.

D.2.2 Convexity

We now show that the aggregate production set is convex under the restriction in (89). To do this, we show

that for any (y(θ))θ∈Θ, (y ′(θ))θ∈Θ ∈ F (π), we have also (αy(θ)+ (1−α)y ′(θ))θ∈Θ ∈ F (π). We show this with

the following construction which mirrors the construction for convex preferences. Let y,φ and y ′,φ′ be the

production plan and attention choice that exist and satisfy the conditions in (96) with respect to constraints

(y(θ))θ∈Θ, (y ′(θ))θ∈Θ. Let us now construct a variant plan y ′′,φ′′ in which attention is given by theα lottery as

in (90):

Φ′′(ω | z) =


1
2Φ(2ω | z) if ω ∈ [0,1/2]

1
2 +Φ′ (2ω− 1

2

)
if ω ∈ (1/2,1]

(100)

for all z. For the same argument given in the last subsection, C F [φ′′,π] =αC F [φ,π]+ (1−α)C F [φ′,π] on ac-

count of the posterior separability. The production plan is more complex than the analogue with consumer

demand and is given by the following:63

y ′′(ω) =

y
(
ω
α

)+~v(1−α)(C F [φ,π]−C F [φ′,π]) if ω ∈ [0,α]

y ′ (ω−α
1−α

)+~vα(C F [φ′,π]−C F [φ,π]) if ω ∈ (α,1]
(101)

See that, since attention costs are bounded, the domain of Y can be specified such that y ′′(ω) ∈ Y without

upsetting compactness of Y .

63As stated previously: if this construction results in a Lipschitz discontinuous y ′′(ω), it can trivially be amended (alongside the
construction ofΦ′′) to leave a small “gap” between the functions which is interpolated continuously.
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See that this satisfies the capacity constraint as∫
Ω

y ′′(ω) dΦ′′(ω | fπ(θ)) =α
∫
Ω

(y(ω)+~v(1−α)(C F [φ,π]−C F [φ′,π])) dΦ(ω | fπ(θ))

+ (1−α)α
∫
Ω

(y ′(ω)+~vα(C F [φ′,π]−C F [φ,π])) dΦ′(ω | fπ(θ))

≤π(θ)(αy(θ)+ (1−α)y ′(θ))+α(1−α)~v(C F [φ,π]−C F [φ′,π])

+α(1−α)~v(C F [φ′,π]−C F [φ,π])

=αy(θ)+ (1−α)y ′(θ)

(102)

Next, we check feasibility. See first that, for ω ∈ [0,α],

y ′′(ω)+~v ·C F [φ′′,π] = y ′′(ω)+~v · (αC [φ,π]+ (1−α)C [φ′,π])

= y
(ω
α

)
+~v(1−α)(C F [φ,π]−C F [φ′,π])+~v · (αC [φ,π]+ (1−α)C [φ′,π])

= y
(ω
α

)
+~v((α+1−α)C F [φ,π]+ (1−α− (1−α))C [φ′,π])

= y
(ω
α

)
+~v(C F [φ,π])

(103)

An essentially identical argument shows y ′′(ω)+~v ·C F [φ′′,π] = y
(
2ω− 1

2

)+~v(C F [φ′,π]) whenω ∈ (α,1]. Since

we know
H

(
y(ω)+~vC F [φ,π],θ

)≤ 0,∀(ω,θ) φ a.e.

H
(
y ′(ω)+~vC F [φ′,π],θ

)≤ 0,∀(ω,θ) φ′ a.e.
(104)

we therefore know the corresponding feasibility condition for y ′′,φ′′. Thus all conditions in (96) are satisfied

and (αy(θ)+ (1−α)y ′(θ))θ∈Θ ∈ F (π).

E An Example with Non-fundamental Volatility

In this Appendix, we extend the coconuts example of Section 2 to include a non-fundamental component

in the state of nature. We use this to illustrate that both inefficiency and non-fundamental volatility may

be possible under a specification of attention costs that violates the invariance and monotonicity properties

invoked in, respectively, 1 and 2, even thought it may appear to be mutual information. On the way, we

also draw a connection to the much-studied issue of coordination in information choice (e.g., Hellwig and

Veldkamp, 2009; Myatt and Wallace, 2012) and in particular to Tirole (2015) and Vives and Yang (2018)

The state of nature is now given by θ = (ξ,ν), where ξ is still the endowment of coconuts while v ∼N (0,1)

is independent of ξ and plays no fundamental role in the economy. The assumption that ν is a “sunspot” is

particularly stark, though it could just as well be a variable that is fundamental for another group of agents

that do not interact with the coconut-consuming agents. Signals are restricted to be jointly Gaussian with the

cognition state z, where z = (θ, p) = (ξ,ν, p). We show first that, when attention costs are an increasing and

convex function of the mutual information of ω with z, that neither the equilibrium nor planner conditions
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on non-fundamental volatility and that the economy remains efficient. On the other hand, when costs are

given by the mutual information of ω and p alone, there exists multiple, Pareto-ranked equilibria, all but

the worst one featuring non-fundamental volatility. These possibilities extend to situations where attention

costs separately put some weight on the mutual information ofωwith the three components of z, as opposed

to “holistically” measuring the mutual information of ω with z.

E.1 Efficient Case: Mutual Information with (ξ,ν, p)

We first describe an efficient case of the model in which cognitive costs are given by the mutual information

of the agent’s signal ω with the entire vector (ξ,ν, p).

We start by characterizing equilibrium. Conjecture that the price has the form p = P (ξ,ν) = 1+ψ1ξ+ψ2ν.

Say the agent gets a signal of the formωi = a1ξ+a2p+a3ηi +a4ν. Define Vω = (a1+a2ψ1)2+(a4+a2ψ2)2+a2
3

as the variance of the signal and see that

E[p |ω] = 1+β(ω−a2) (105)

with

β≡ (a1 +a2ψ1)ψ1 + (a4 +a2ψ2)ψ2

Vω
(106)

Furthermore, the agent’s utility is given by

max
x:Ω→R

E

[
x(ω)− x(ω)2

2
+p(ξ−x(ω))

]
= β2Vω

2
−ψ1 (107)

We now restrict attention, without loss, to signals that set a2 = 0 and calculate

β2Vω = (a1ψ1 +a4ψ2)2

a2
1 +a2

4 +a3
3

(108)

We now consider attention costs. Se that the mutual information of ω with (ξ,ν, p), maintaining a2 = 0,

is proportional to

log

(
a2

3 +a2
1 +a2

4

a2
3

)
(109)

and hence the cost can be written as

K

(
log

(
a2

3 +a2
1 +a2

4

a2
3

))
(110)

for an increasing and convex K satisfying K ′(0) = 0.

Finally, market clearing requires that

−β(a1ξ+a4ν) = ξ (111)

63



for all realizations of ξ and ν. This pins down that, if other agents play an attention strategy (a′
1, a′

3, a′
4),

equilibrium prices satisfy

ψ1 =− (a′
1)2 + (a′

3)2

(a′
1)2 (112)

while ψ2 is undetermined. Note also that, in any fixed point, we would also require a′
4 = 0 lest markets not

clear.

We show by contradiction that, in equilibrium, ψ2 = 0 . Imagine not. Then, see that the marginal benefit

of increasing or decreasing a4 around a4 = 0 is necessarily non-zero, evaluated at the fixed point, while the

marginal cost of moving in either direction is 0. Therefore a4 6= 0. But this contradicts market clearing.

Having established this, the fixed point problem reduces to

(ae
1, ae

3) ∈ argmax
a1,a3

(
−1

2

a2
1

a2
1 +a3

3

(
(a′

1)2 + (a′
3)3

(a′
1)2

)2

+
(

(a′
1)2 + (a′

3)2

(a′
1)2

)
−K

(
log

(
a2

3 +a2
1

a2
3

)))
(113)

which is the same fixed-point problem solved in the previously studied efficient economy with mutual in-

formation costs.

Let us now consider the social planner’s problem. Observe again the irrelevance of the message, since

(ξ,ν) is necessarily a sufficient statistic for any m = M(ξ,ν). Hence it is without loss to consider the same

mutual information cost described above by (110). If the co-state variable is λ(ξ) = λ0 +λ1ξ, we replicate

the last subsection’s argument that the planner’s optimal consumption plan conditional on the information

structure is x(ω) = 1−E[λ |ω]; and plugging into the constraint establishes that a4 = 0 and λ1 =− a2
1+a2

3

a2
1

. The

planner’s problem is therefore

(a∗
1 , a∗

3 ) ∈ argmax
a1,a3

(
1

2

(
(a′

1)2 + (a′
3)3

(a′
1)2

)
−K

(
log

(
a2

3 +a2
1

a2
3

)))
(114)

which is again the planner’s problem from the previous subsection. Thus the competitive equilibrium is

efficient, for exactly the same reasons outlined in the main efficient example.

E.2 Inefficient Case: Mutual Information with p

Let us now assume that cognitive costs are given by some transformation of the mutual information of the

signal ω with only the price p.

We start with equilibrium. We continue to assume agents get a signal of the formωi = a1ξ+a2p +a3ηi +
a4ν but now normalize, necessarily without loss when p is linear in (ξ,ν), that a2 = 1. We further restrict

attention to signals such that E[p(ωi − p)] = 0, which is also without loss given our normalization (as any

part of ωi that projected onto p could be re-normalized out). The substantial restriction implied by this

assumption, under the conjecture p = P (ξ,ν) = 1+ψ1ξ+ψ2ν, is that

ψ1a1 +ψ2a4 = 0 (115)
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See that the signal-to-noise ratio can now be written as

δp = ψ2
1 +ψ2

2

ψ2
1 +ψ2

2 + (a2
1 +a2

3 +a2
4)

(116)

Moreover, Ei [p] = δpωi + (1−δp ) and the cognitive cost is K (− log
(
1−δp

)
), by direct analogues of the argu-

ments used in Proposition 1.

Market clearing can be re-arranged to

−δp ((a1 +ψ1)ξ+ (a4 +ψ2)ν) = ξ, (117)

which in turn gives the following coefficient restrictions:

a4 +ψ2 = 0

−δp (a1 +ψ1) = 1
(118)

The first, in particular, implies that the signal ωi does not co-vary with ν.

We now solve for equilibrium information structures that are consistent with equilibrium. See that Equa-

tions 116 and 118, re-arranged, imply the following restrictions for (ψ1,ψ2, a3)

ψ2
2 =−ψ1(δ−1

p +ψ1)

a2
3δp =ψ2

1 +ψ2
2 −

1

δp

(119)

The signs of (a3,ψ2) are unsurprisingly indeterminate so we normalize them to be positive for now. Mod-

ulo this issue, Equation 119 is a system of two non-colinear equations with three unknowns and admits a

continuum of solutions. In particular, these solutions are indexed by ψ1 ∈ [−δ−1
p ,−1] and have

ψ2 =
√

−ψ1(δ−1
p +ψ1)

a3 = δ−1
p

√−1−ψ1

(120)

Note thatψ1 =−1 has a3 = 0 andψ2 =
√
δ−1

p −1. In this equilibrium,ω∝ ξ and the agent can obtain the first-

best. This works with respect to cognitive constraints because the price is sufficiently contaminated with

noise that “precise” observation of ξ corresponds with “imprecise” observation of p. This can be understood

also as a cognitive externality whereby changing the dependence of prices on ν affects the cost of obtaining

a fixed posterior about the fundamental ξ. And it can be considered a violation of the spirit of our later

invariance and monotonicity conditions (Definition 8) along the same lines.

Let us now characterize equilibrium. The “costs and benefits” representation from the main example

remains valid up to the indeterminacy of the slope ∂p
∂ξ =ψ1. In particular, a straightforward extension of the

calculation in the proof of Proposition 1 reveals, as long asψ1 6= 0, the benefits of attention can be expressed

as
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b(δp ;ψ1) = ψ1(δpψ1 +2)

2
(121)

which depends on others’ actions only through the slope of the demand curve. Thus any pair (δ,ψ1) that

solves

δ ∈ argmax
δp

[
ψ1(δpψ1 +2)

2
−K (log

(
1−δp

)
)

]
and ψ1 ∈ [−1,−δ−1] (122)

evaluated at the restriction δp = δ. As two particular examples, there exist the maximally non-fundamental

equilibria such that ψ1 = −1, and the idiosyncratic noise equilibrium in which ψ1 = −1/δ, as studied in

Proposition 1.

See that these equilibria are Pareto-ranked: welfare (the consumer’s ex ante utility) is strictly higher in

the equilibria with “more public noise,” or lower |ψ1|, for a fixed δp . We can thus interpret equilibria with less

noise in prices as “cognitive traps,” where agents fail to correlate their information/inattention in a welfare-

improving manner. This reminds the cognitive traps articulated in Tirole (2015). But whereas that particular

form of cognitives traps depends on pecuniary or payoff externalities (equivalently, on some inefficiency in

the underlying, attentive economy), ours does not: it originates exclusively in the specification of attention

costs and, in particular, on the joint violation of invariance and monotonicity (as established by Theorems 1

and 2).

Finally, see that any equilibrium in which ψ1 6= 0 (i.e., p varies even slightly with ξ) is dominated by the

social planner’s allocation in which m = M(ξ,ν) = ν, ωi = ξ, and xi =ωi . This yields the first-best allocation

without any costs of learning, as the mutual information of ωi with m is 0. This embodies the most extreme

possible exploitation of the endogeneity of the price or message and the associated cognitive externality.

F Incomplete Insurance over Noise

In this Appendix, we sketch a variant of our model which disallows complete markets over the noise in the

agent’s signal ω. Our specification of “partially complete markets” and a parallel efficiency concept is an

adaptation of the framework of Geanakoplos and Polemarchakis (1986). We observe that the appropriate

notion of constrained efficiency, which keeps symmetric restriction on markets’ and the social planner’s

ability to insurance across the realizations ofω, is unlikely to hold outside the case of quasi-linear utility. The

economic intuition, as in Geanakoplos and Polemarchakis (1986), is that a social planner can manipulate

prices to partially simulate insurance over ω.

For the example, we restrict the environment in a number of ways to simplify analysis. First, we study

a single-type (J = 1) endowment economy. Second, we assume throughout that a “first-order-condition”

approach is necessary and sufficient to characterize the optimum for consumers and the social planner.

This presumes differentiability and concavity of the utility function. Finally, we allow the good N to be a

residual good or “money” which has no (binding) domain constraint and automatically adjusts to meet the

budget constraint of the agent given each realization of the signal ω and the physical state θ.
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We depart from our conventional notation in the following way. We write the consumption vector as

x = (x−N , xN ), where x−N is an N −1 length vector of the other goods’ consumption and xN is a scalar repre-

senting money consumption. We similarly write the utility function as u(x−N , xN ,θ), with partial derivatives

u1 and u2 in each sub-component of consumption. We write the price vector as P (θ) = (P−N (θ),PN (θ)),

where P−N (θ) is an N −1 length vector of prices relative to the price of money and PN (θ) is a scalar corre-

sponding to the price of money. Finally we let the endowment be written as e(θ) = (e−N (θ),eN (θ)) and the

consumption domain as X = (X−N ,XN ) with a similar interpretation.

F.1 Equilibrium

We begin by characterizing necessary conditions for equilibrium. The consumer chooses her consumption

of goods and money as a function of the cognitive state; a money balance b(θ) in each state θ; and a signal

structure. Their optimal choices solve the following problem:

max
x−N ,xN ,b,φ

∑
θ

∑
ω

u (x−N (ω), xN (ω,θ),θ)φ(ω|θ)π(θ)−C [φ,π]

s.t. xN (ω,θ) = b(θ)+P−N (θ) · (e−N (θ)−x−N (ω)) ∀ω,θ∑
θ

PN (θ)(b(θ)−eN (θ)) ≤ 0

(123)

with the domain constraints x−N :Ω→ X−N , xN :Ω×Θ→ XN , b : Θ→ R, and φ ∈ Φ. The combination of

these constraints capture how the consumer can freely transfer money across θ but not ω.

Equilibrium is characterized by choices that solve (123) taking as given a price functional P :Θ→RN+ and

a prior consistent with that price functional, as well as the market clearing condition

∑
ω

x−N (ω)φ(ω|θ) = e−N (θ) ∀θ (124)

The market clearing condition for money is redundant from Walras’ law.

We now provide a set of necessary conditions for equilibrium, coming from consumer optimization. Let

the Lagrange multipliers for the first and the second constraint of (123) be, respectively, χ(ω,θ)φ(ω|θ)π(θ)

and η. The first-order-conditions characterizing optimal the optimal choice of money consumption xN (ω,θ)

is

u2 (x(ω), xN (ω,θ),θ) =χ(ω,θ) ∀ω,θ (125)

where u2 is the derivative with respect to the second argument. In words, the marginal value of wealth must

equal the marginal utility from consuming money. The first-order conditions for choosing consumption are

∑
θ

[
u1 (x−N (ω), xN (ω,θ),θ)−P−N (θ)χ(ω,θ)

]
φ(θ|ω) = 0 ∀ω (126)

where u1 is the derivative with respect to the first argument and φ(θ |ω) is constructed in the standard way
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via Bayes’ rule. Finally, the first-order condition for choosing money balances is

∑
ω
χ(ω,θ)φ(θ|ω)π(θ) = PN (θ)η ∀θ (127)

which equates the price of money with its average value across realizations of ω.

Substituting in the marginal value of wealth, equal to the marginal consumption value of money, one

derives the following two necessary conditions for consumer optimality and hence necessary conditions for

equilibrium:

∑
θ

[P−N (θ)u2 (x−N (ω), xN (ω,θ),θ)]φ(θ|ω) =∑
θ

[u1 (x−N (ω), xN (ω,θ),θ)]φ(θ|ω)

PN (θ)η=∑
ω

u2(x−N (ω), xN (ω,θ),θ)φ(ω|θ)π(θ)
(128)

where the first holds for all ω and the second for all θ.

F.2 Efficient Allocations

We now define the problem of a social planner who faces the same “asset-spanning” restriction. Loosely

speaking, the planner solves the consumer’s program (123) but with control over prices. More specifically,

they choose the tuple (x−N , xN ,b,P,φ) to maximize the following expected utility objective

∑
θ

∑
ω

u (x−N (ω), xN (ω,θ))φ(ω|θ)π(θ)−C [φ,π] (129)

subject to the following feasibility constraints. First, consumption of all goods, including money, is physi-

cally feasible in each state θ:

e−N (θ) ≥∑
ω

x−N (ω)φ(ω|θ)

eN (θ) ≥∑
ω

xN (ω,θ)φ(ω | θ)
(130)

Second, money consumption is residual-spending:

xN (ω,θ) = b(θ)+P−N (θ) · (e−N (θ)−x−N (ω)) ∀ω,θ

Finally, the prior π is consistent with the price functional, or fπ(θ) = (θ,P (θ)) for each θ. We define an effi-

cient allocation as one that solves the above problem, which is without loss in our economy with one type

and symmetric choices. Observe that this planner’s problem is not perfectly parallel with the one in our

main analysis, as the prices or messages have an instrumental role in transferring resources across states.

We will show that even this “weaker” planner, with a tighter implementability constraint, can improve upon

equilibrium allocations.

We now use a first-order approach to derive necessary conditions for an efficient allocation, again pre-

suming such an allocation exists and it is characterized by first-order conditions. Let the Lagrange multipli-
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ers on the three constraints above respectively be λ(θ)π(θ) (non-money goods feasibility), µ(θ)π(θ) (money

feasibility), and τ(θ,ω)φ(ω|θ)π(θ) (residual spending). The first-order conditions for xN , x−N , and b are,

respectively,

0 =µ(θ)+τ(ω,θ)− (u2(x−N (ω), xN (ω,θ),θ)) ∀ω,θ

0 =∑
θ

[u1(x−N (ω), xN (ω,θ),θ)−λ(θ)−P−N (θ)τ(ω,θ)]φ(θ|ω) ∀ω

0 =∑
ω
τ(ω,θ)φ(ω|θ) ∀θ

(131)

See that these conditions resemble the ones in the consumer problem up to the introduction of shadow

values µ(θ) and λ(θ) for money and non-money consumption goods, respectively. Next, the first-order con-

dition for the goods prices P−N (θ), which show up only in the residual spending constraint, is64

∑
ω
τ(ω,θ) [e−N (θ)−x−N (ω)]φ(ω|θ) = 0 ∀θ (132)

This condition bears special comment, as it is drives the key wedge between efficiency and equilibrium. By

adjusting the price vector P−N (θ) in any state θ, the planner affects marginal money consumption condi-

tional on each (ω,θ) in proportion to the net endowment e−N (θ)− x−N (ω). This has marginal value τ(ω,θ)

to the consumer. Such adjustments are exactly what the invisible hand will not do in our environment.

We now develop the above argument mathematically. Like in the consumer’s problem, we solve out for

τ(ω,θ) and re-write the first-order conditions of (131) in the following way:

∑
θ

[u0(x−N (ω), xN (ω,θ),θ)]φ(θ|ω) =∑
θ

[
P−N (θ)

(
u2(x−N (ω), xN (ω,θ),θ)−µ(θ)

)+λ(θ)
]
φ(θ|ω)

µ(θ) =∑
ω

u2(x−N (ω), xN (ω,θ),θ)φ(ω|θ)
(133)

which can be directly compared with the consumer’s equilibrium first-order-conditions (128). More specif-

ically, see that these exactly correspond if µ(θ) ≡ PN (θ)η and λ(θ) = P−N (θ).

The condition for choosing prices is

∑
ω

[
u2(x−N (ω), xN (ω,θ),θ)−µ(θ)

]
[e−N (θ)−x−N (ω)]φ(ω|θ) = 0 ∀θ (134)

where, in continuation of the discussion above of using prices for redistribution, u2(x−N (ω), xN (ω,θ),θ)−
µ(θ) gives the marginal consumption value of money (net of the social cost), and the planner changes prices

until the average effect on payoffs via residual money consumption is zero. See that this condition is generi-

cally incompatible with the previous conjecture forµwhen evaluated at the equilibrium consumption levels,

as there is no analogue for this condition in the equilibrium conditions. This is the sense in which one should

not “expect” that an efficient allocation, which necessarily satisfies (134), should also correspond to an equi-

64The dollar prices PN (θ) show up only in the prior and the cognitive cost, and therefore function like the purely informational
messages of the main analysis.
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librium allocation.65 Note that the argument makes no reference to the structure of C apart from assuming

there is some randomness over signal realizations. Thus the logic above applies in a number of simplified

settings including exogenously-incomplete-information economies, which underscores our general point

that the pathway of inefficiency via incomplete insurance is not a direct consequence of learning or rational

inattention.

An important exception is a quasi-linear case, in which u2 is constant as a function of x−N and xN . In

particular, if we can write u2(x−N (ω), xN (ω,θ),θ) = f (θ) for some function f , then the planner’s second first-

order condition in (133) reduces to µ(θ) = f (θ) and the condition for choosing prices simplifies via

0 =∑
ω

[
u2(x−N (ω), xN (ω,θ),θ)−µ(θ)

]
[e−N (θ)−x−N (ω)]φ(ω|θ)

=∑
ω

[
f (θ)−µ(θ)

]
[e−N (θ)−x−N (ω)]φ(ω|θ)

=∑
ω

[0] [e−N (θ)−x−N (ω)]φ(ω|θ) = 0

where the second and third line respectively use the simplifications above. This represents mathematically

the logic that, with quasi-linear utility (accommodating even θ-dependence in the “slope”), there is no first-

order benefit to distributing goods across realizations of ω. And it verifies that the precise role of the quasi-

linear utility assumption in the example of Section 2 was to substitute for our main model’s assumption of

insurance over ω.

G Economies with a Broader Cognition State

In this Appendix, we describe how to model economies in which the cognition state includes variables other

than the state of nature and prices. We then sketch how an appropriately extended notion of invariance

delivers a straightforward extension of Theorem 1 and Corollary 1.

G.1 Environment

We first define an expanded notion of an inattentive market economy, in which the cognitive process (as

captured by the definition of z) takes as inputs not only on the exogenous state of nature and the price vector

but also the following additional objects: transfers, goods taxes, aggregate trades, and exogenous signals (or,

more informally, “media”).

Equilibrium is defined as in Definition 3 modulo the following changes. As in Section 5.1, we allow each

consumer’s wealth to include a state-dependent transfer, given by t j = T j (θ), for some exogenously specified

and type-specific transfer rule T j :Θ→ R. We next have consumers and firms take as given after-tax prices

p +τ, where the goods taxes are state-dependent, too, or τ = T (θ) for some exogenously specified tax rule

65A more formal argument of “generic non-efficiency,” as pursued in Geanakoplos and Polemarchakis (1986), would show that
even if necessary condition (134) were satisfied evaluated at the equilibrium, then in a small perturbation of the economic environ-
ment (appropriately defined) it could be made not to hold.
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T : Θ→ R The collection (T, (T j )F
j=1) is restricted to be such that the government budget balances in each

state of nature, or
∑J

j=1(T j (θ)+T (θ) · x j (θ))+T (θ) · y(θ) = 0 for all θ ∈Θ. Next, we incorporate as part of the

equilibrium a set of exogenous signals s ∈ RQ , for some Q > 0, defined by the exogenous mapping s = S(θ)

for some S :Θ→R. And finally, we allow the cognition state in equilibrium to be

z =
(
θ, p,τ, (t j )J

j=1, (x j )J
j=1, s

)
We write the domain of this object as z ∈Θ×B0 where

B0 =RN
+ ×RN ×RJ ×X J ×RQ (135)

is the composition of all the domains for the objects after the state of nature. We define a B ⊇B0 as an even

larger possible domain for this state, which the social planner may take advantage of. We correspondingly

re-define the admissible set of priors over z corresponding to any particular B ⊆B, including B =B0, as

PB ≡
{
π :Θ×RN

+ → [0,1] s.t. π(θ, z) =πθ(θ) I[ f (θ) = z], for some f :Θ→ B
}

. (136)

Along the same lines, we also re-define, for every π ∈ P and domain B , the set Zπ,B ≡ {(θ,b) : π(θ,b) > 0} ⊂
Θ×B and the function fπ,B : θ→Θ×b with fπ,B (θ) = {(θ,b) :π(θ,b) > 0} ∈Θ×B for any θ ∈Θ.

Toward our efficiency concept, we start with the feasibility concept in 4 along with the following ex-

panded notion of messages. The definition of an arrangement now includes an image set B ⊆ B, the mes-

sage is sent via a rule M :Θ→ B .

G.2 Extending Invariance and Monotonicity

For the arguments above to be well-defined, we require an expanded notion of the cost functional. We

assume, in particular, that for each B ⊆B, each agent (and the firm) has a well-defined cost indexed by B :

C j
B : (∆(Ω))|Θ|×PB (137)

maintaining the discussion from footnote 13 of the main text of how to order the elements of the support.

In this context, we re-define our notions of transformations and invariance. Let H ≡ {h : (Θ×B) →
(Θ×B ′);B ,B ′ ⊆B} be the dictionary of transformations from any Θ×B to any Θ×B ′. We next define trans-

formations of information structures based on this larger set of functions:

Definition 16 (Transformations of Information Structures, Revisited). Consider two information structures

(π,φ) and (π̃, φ̃) and a function h ∈ H mapping Θ×B to Θ×B ′. We say that (φ̃, π̃) is the transformation of
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(φ,π) under h if

π̃(z) =∑
z ′
π(z ′)I[h(z ′) = z] ∀z ∈ Zπ,B (138)

φ̃(ω|z) =
∑

z ′∈Zπ,B
φ(ω|z ′)π(z ′)I[g (z ′) = z]

π̃(z)
∀ω ∈Ω, z ∈ Zπ̃,B ′ (139)

Sufficiency is similarly extended:

Definition 17. Consider two information structures (φ,π) and (φ̃, π̃) such that (φ̃, π̃) is the transformation of

(φ,π) under h ∈ H mapping Θ×B to Θ×B ′. We say that π̃ is sufficient for π with respect to φ if φ(ω | z) =
φ̃(ω | h(z)) for all ω and all z such that π(z) > 0.

Finally, invariance and monotonicity are written as follows:

Definition 18. Fix a set H ⊆H . Consider any function h ∈ H and any two information structures (φ,π) and

(φ̃, π̃) such that (φ̃, π̃) is the transformation of (φ,π) under g . A cost functional C is

1. invariant with respect to H if C [φ,π] =C [φ̃, π̃] whenever π̃ is sufficient for π with respect to φ.

2. monotone with respect to H if C [φ,π] >C [φ̃, π̃] whenever π̃ is not sufficient for π with respect to φ

While the wording of these definitions is rather similar, the definition has changed considerably. In par-

ticular, invariance and monotonicity can hold along the natural “extension” of a cost functional to different

domains or state spaces. What does this extension mean? For posterior-separable cost functionals, as de-

fined in Appendix B, this relies on an appropriate extension of the divergence T . And if those divergences

are f -divergences as defined in Equation 50, re-printed here:

T [π;π′] =∑
z
π(z) · f

(
π′(z)

π(z)

)
, (140)

this is immediate as the support of the probability distribution always remains finite with a length of at most

|Θ|. To use an example, it is reasonable to say that “mutual information costs are invariant and monotone as

per Definition 18” provided that one presumes the natural extension of “always taking the mutual informa-

tion of the signal and the state,” whatever the (finite-support) state space is.

G.3 Possible Equilibrium Results

Given the above adaptation, it seems safe to conjecture, although we do not formally state and prove, that

all of our equilibrium results including efficiency (Theorem 1), existence (Proposition 4), implementability

of Pareto optima (Proposition 5), and fundamentalness of equilibrium (Theorem 2) readily extend to our

environment under invariance and monotonicity for all of H (e.g., as in our natural extension of mutual

information). The content of these statements is that, under fully invariant and monotone costs like mutual

information,
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• Tax instruments are never optimal for a purely “informational” role, for instance to nudge agents to-

ward or away from learning about certain contingencies.

• Media, expert opinions, blogs, and tweets, as captured in the exogenous signals s = S(θ), have no

instrumental effect on equilibrium, as agents can always construct equivalent signals via unrestricted

information acquisition.

• Noise in publicly available signals, which otherwise has no instrumental role, is optimally ignored in

equilibrium.

• “Market data” in the form of trades or aggregate consumption statistics cannot be designed to have

better informational content.

These lessons follow (we conjecture) from essentially the same premises articulated in our main analysis,

but would be made more concrete in this extended environment.
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