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Abstract

Properties of GMM estimators are sensitive to the choice of instruments. Using
many instruments leads to high asymptotic asymptotic efficiency but can cause
high bias and/or variance in small samples. In this paper we develop and imple-
ment asymptotic mean square error (MSE) based criteria for instrumental variables
to use for estimation of conditional moment restriction models. The models we
consider include various nonlinear simultaneous equations models with unknown
heteroskedasticity. We develop moment selection criteria for the familiar two-step
optimal GMM estimator (GMM), a bias corrected version, and generalized empir-
ical likelihood estimators (GEL), that include the continuous updating estimator
(CUE) as a special case. We also find that the CUE has lower higher-order vari-
ance than the bias-corrected GMM estimator, and that the higher-order efficiency
of other GEL estimators depends on conditional kurtosis of the moments.
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1 Introduction

It is important to choose carefully the instrumental variables for estimating conditional

moment restriction models. Adding instruments increases asymptotic efficiency but also

increases small sample bias and/or variance. We account for this trade-off by using a

higher-order asymptotic mean-square error (MSE) of the estimator to choose the instru-

ment set. We derive the higher-order MSE for GMM, a bias corrected version of GMM

(BGMM), and generalized empirical likelihood (GEL). For simplicity we impose a con-

ditional symmetry assumption, that third conditional moments of disturbances are zero,

and use a large number of instruments approximation. We also consider the effect of

allowing identification to shrink with the sample size n at a rate slower than 1/
√
n. The

resulting MSE expressions are quite simple and straightforward to apply in practice to

choose the instrument set.

The MSE criteria given here also provide higher order efficiency comparisons. We

find that continuously updated GMM estimator (CUE) is higher-order efficient relative

to BGMM. We also find that the higher order efficiency of the GEL estimators depends

on conditional kurtosis, with all GEL estimators having the same higher-order variance

when disturbances are Gaussian. With Gaussian disturbances and homoskedasticity,

Rothenberg (1996) showed that empirical likelihood (EL) is higher order efficient relative

to BGMM. Our efficiency comparisons generalize those of Rothenberg (1996) to other

GEL estimators and heteroskedastic, non Gaussian disturbances. These efficiency results

are different than the higher order efficiency result for EL that was shown by Newey and

Smith (2004) because Newey and Smith (2004) do not require that conditional third

moments are zero. Without that symmetry condition all of the estimators except for EL

have additional bias terms that are not corrected for here.

Our MSE criteria is like that of Nagar (1959) and Donald and Newey (2001), being the

MSE of leading terms in a stochastic expansion of the estimator. This approach is well

known to give the same answer as the MSE of leading terms in an Edgeworth expansion,

under suitable regularity conditions (e.g. Rothenberg, 1984). The many instrument and
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shrinking identification simplifications seems appropriate for many applications where

there is a large number of potential instrumental variables and identification is not very

strong. We also assume symmetry, in the sense that conditional third moments of the

disturbances are zero. This symmetry assumption greatly simplifies calculations. Also,

relaxing it may not change the results much, e.g. because the bias from asymmetry tends

to be smaller than other bias sources for large numbers of moment conditions, see Newey

and Smith (2004).

Choosing moments to minimize MSE may help reduce misleading inferences that can

occur with many moments. For GMM, the MSE explicitly accounts for an important bias

term (e.g. see Hansen et. al., 1996, and Newey and Smith, 2004), so choosing moments

to minimize MSE avoids cases where asymptotic inferences are poor due to the bias

being large relative to the standard deviation. For GEL, the MSE explicitly accounts

for higher order variance terms, so that choosing instruments to minimize MSE helps

avoid underestimated variances. However, the criteria we consider may not be optimal

for reducing misleading inferences. That would lead to a different criteria, as recently

pointed out by Jin, Phillips, and Sun (2007) in another context.

The problem addressed in this paper is different than considered by Andrews (1996).

Here the problem is how to choose among moments known to be valid while Andrews

(1996) is about searching for the largest set of valid moments. Choosing among valid

moments is important when there are many thought to be equally valid. Examples include

various natural experiment studies, where multiple instruments are often available, as well

as intertemporal optimization models, where all lags may serve as instruments.

In Section 2 we describe the estimators we consider and present the criteria we develop

for choosing the moments. We also compare the criteria for different estimators, which

corresponds to the MSE comparison for the estimators, finding that the CUE has smaller

MSE than bias corrected GMM. In Section 3 we give the regularity conditions used to

develop the approximate MSE and give the formal results. Section 4 shows optimality of

the criteria we propose. A small scale Monte Carlo experiment is conducted in Section

5. Concluding remarks are offered in Section 6.
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2 The Model and Estimators

We consider a model of conditional moment restrictions like Chamberlain (1987). To

describe the model let z denote a single observation from an i.i.d. sequence (z1, z2, ...), β

a p×1 parameter vector, and ρ(z, β) a scalar that can often be thought of as a residual1.

The model specifies a subvector of x, acting as conditioning variables, such that for a

value β0 of the parameters

E[ρ(z, β0)|x] = 0,

where E[·] the expectation taken with respect to the distribution of zi.

To form GMM estimators we construct unconditional moment restrictions using a vec-

tor ofK conditioning variables qK(x) = (q1K(x), ..., qKK(x))
0. Let g(z, β) = ρ(z, β)qK(x).

Then the unconditional moment restrictions

E[g(z, β0)] = 0

are satisfied. Let gi(β) ≡ g(zi, β), ḡn(β) ≡ n−1
Pn

i=1 gi(β), and Υ̂(β) ≡ n−1
Pn

i=1 gi(β)gi(β)
0.

A two-step GMM estimator is one that satisfies, for some preliminary consistent estimator

β̃ for β0,

β̂H = argmin
β∈B

ḡn(β)
0Υ̂(β̃)−1ḡn(β), (2.1)

where B denotes the parameter space. For our purposes β̃ could be some other GMM

estimator, obtained as the solution to an analogous minimization problem with Υ̂(β̃)−1

replaced by a different weighting matrix, such as W̃0 = [
Pn

i=1 q
K(xi)q

K(xi)
0/n]−1.

The MSE of the estimators will depend not only on the number of instruments but

also on their form. In particular, instrumental variables that better predict the optimal

instruments will help to lower the asymptotic variance of the estimator for a given K.

Thus, for each K it is good to choose qK(x) that are the best predictors. Often it will

be evident in an application how to choose the instruments in this way. For instance,

lower order approximating functions (e.g. linear and quadratic) often provide the most

1The extension to the vector of residuals case is straightforward.
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information, and so should be used first. Also, main terms may often be more important

than interactions.

The instruments need not form a nested sequence. Letting qkK(x) depend onK allows

different groups of instrumental variables to be used for different values of K. Indeed,

K fills a double role here, as the index of the instrument set as well as the number of

instruments. We could separate these roles by having a separate index for the instrument

set. Instead here we allow for K to not be selected from all the integers, and let K fulfill

both roles. This restricts the sets of instruments to each have a different number of

instruments, but is often true in practice. Also, by imposing upper bounds on K we also

restrict the number of instrument sets we can select among, as seems important for the

asymptotic theory.

As demonstrated by Newey and Smith (2004), the correlation of the residual with

the derivative of the moment function leads to an asymptotic bias that increases linearly

with K. They suggested an approach that removes this bias (as well as other sources of

bias that we will ignore for the moment). This estimator can be obtained by subtracting

an estimate of the bias from the GMM estimator and gives rise to what we refer to as

the bias adjusted GMM estimator (BGMM). To describe it, let qi = qK(xi) and

ρ̂i = ρi(β̂
H), ŷi = [∂ρi(β̂

H)/∂β]0, ŷ = [ŷ1, ..., ŷn]
0,

Γ̂ =
nX
i=1

qiŷ
0
i/n, Σ̂ = Υ̂(β̂H)−1 − Υ̂(β̂H)−1Γ̂(Γ̂0Υ̂(β̂H)−1Γ̂)−1Γ̂0Υ̂(β̂H)−1.

The BGMM estimator is

β̂B = β̂H + (Γ̂0Υ̂(β̂H)−1Γ̂)−1
nX
i=1

ŷiρ̂iq
0
iΣ̂qi.

Also as shown in Newey and Smith (2004) the class of Generalized Empirical Like-

lihood (GEL) estimators have less bias than GMM. We follow the description of these

estimators given in that paper. Let s(v) be a concave function with domain that is

an open interval V containing 0, sj(v) = ∂js(v)/∂vj, and sj = sj(0). We impose the

normalizations s1 = s2 = −1. Define the GEL estimator as

β̂GEL = argmin
β∈B

max
λ∈Λ̂n(β)

nX
i=1

s(λ0gi(β))
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where, Λ̂n(β) = {λ : λ0gi(β) ∈ V, i = 1, ..., n}. This estimator includes as a special cases:

empirical likelihood (EL, Qin and Lawless, 1997, and Owen, 1988), where s(v) = ln(1−v),

exponential tilting (ET, Johnson, and Spady, 1998, and Kitamura and Stutzer, 1997),

where s(v) = − exp(v), and the continuous updating estimator (CUE, Hansen, Heaton,

and Yaron 1996), where s(v) = −(1+v)2/2. As we will see the MSE comparisons between

these estimators depend on s3, the third derivative of the s function, where

CUE : s3 = 0, ET : s3 = −1, EL : s3 = −2.

2.1 Instrument Selection Criteria

The instrument selection is based on minimizing the approximate mean squared error

(MSE) of a linear combination t̂0β̂ of a GMM estimator or GEL estimator β̂, where t̂

is some vector of (estimated) linear combination coefficients. To describe the criteria,

some additional notation is required. Let β̃ be some preliminary estimator, ρ̃i = ρi(β̃),

ỹi = ∂ρi(β̃)/∂β, and

Υ̂ =
nX
i=1

ρ̃2i qiq
0
i/n, Γ̂ =

nX
i=1

qiỹ
0
i/n, Ω̂ = (Γ̂

0Υ̂−1Γ̂), τ̂ = Ω̂−1t̂,

d̃i = Γ̂0(
nX

j=1

qjq
0
j/n)

−1qi, η̃i = ỹi − d̃i, ξ̂ij = q0iΥ̂
−1qj/n, D̂

∗
i = Γ̂0Υ̂−1qi,

Λ̂(K) =
nX
i=1

ξ̂ii (τ̂
0ρ̃βi)

2
, Π̂(K) =

nX
i=1

ξ̂iiρ̃i(τ̂
0η̃i),

Φ̂(K) =
nX
i=1

ξ̂ii
n
τ̂ 0(D̂∗

i ρ̃
2
i − ρ̃βi)

o2
− τ̂ 0Γ̂0Υ̂−1Γ̂τ̂

The criteria for the GMM estimator, without a bias correction, is

SGMM(K) = Π̂(K)2/n+ Φ̂(K).

Also, let

Π̂B(K) =
nX

i,j=1

ρ̃iρ̃j(τ̂
0η̃i)(τ̂

0η̃j)ξ̂
2
ij = tr(Q̃Υ̂−1Q̃Υ̂−1),

Ξ̂(K) =
nX
i=1

{5(τ̂ 0d̂i)2 − ρ̃4i (τ̂
0D̂∗

i )
2}ξ̂ii, Ξ̂GEL(K) =

nX
i=1

{3(τ̂ 0d̂i)2 − ρ̃4i (τ̂
0D̂∗

i )
2}ξ̂ii,
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where Q̃ =
Pn

i=1 ρ̃i(τ̂
0η̃i)qiq

0
i. The criteria for the BGMM and GEL estimators are

SBGMM(K) =
h
Λ̂(K) + Π̂B(K) + Ξ̂(K)

i
/n+ Φ̂(K),

SGEL(K) =
h
Λ̂(K)− Π̂B(K) + Ξ̂(K) + s3Ξ̂GEL(K)

i
/n+ Φ̂(K).

For each of the estimators, our proposed instrument selection procedure is to choose K

to minimize S(K). As we will show this will correspond to choosing K to minimize the

higher-order MSE of the estimator.

Each of the terms in the criteria have an interpretation. For GMM, Π̂(K)2/n is an

estimate of a squared bias term from Newey and Smith (2004). Because ξ̂ii is of order

K this squared bias term has order K2/n. The Φ̂(K) term in the GMM criteria is an

asymptotic variance term. Its size is related to the asymptotic efficiency of a GMM

estimator with instruments qK(x). As K grows this terms will tend to shrink, reflecting

the reduction in asymptotic variance that accompanies using more instruments. The

form of Φ̂(K) is analogous to a Mallows criterion, in that it is a variance estimator plus

a term that removes bias in the variance estimator.

The terms that appear in S(K) for BGMM and GEL are all variance terms. No bias

terms are present because, as discussed in Newey and Smith (2004), under symmetry GEL

removes the GMM bias that grows with K. As with GMM, the Φ̂(K) term accounts for

the reduction in asymptotic variance that occurs from adding instruments. The other

terms are higher-order variance terms, that will be of order K/n, because ξ̂ii is of order

K. The sum of these terms will generally increase withK, although this need not happen

if Ξ̂(K) is too large relative to the other terms. As we will discuss below, Ξ̂(K) is an

estimator of

Ξ(K) =
nX
i=1

ξii (τ
0di)

2 {5−E(ρ4i |xi)/σ4i }.

As a result if the kurtosis of ρi is too high the higher-order variance of the BGMM and

GEL estimators would actually decrease as K increases. This phenomenon is similar to

that noted by Koenker et. al. (1994) for the exogenous linear case. In this case the

criteria could fail to be useful as a means of choosing the number of moment conditions,

because they would monotonically decrease with K.
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It is interesting to compare the size of the criteria for different estimators, which

comparison parallels that of the MSE. As previously noted, the squared bias term for

GMM, which is Π̂(K)2, has the same order asK2/n. In contrast the higher-order variance

terms in the BGMM and GEL estimators generally have order K/n, because that is the

order of ξii. Consequently, for large K the MSE criteria for GMM will be larger than

the MSE criteria for BGMM and GEL, meaning the BGMM and GEL estimators are

preferred over GMM. This comparison parallels that in Newey and Smith (2004) and in

Imbens and Spady (2002).

One interesting result is that for the CUE, where s3 = 0, the MSE criteria is smaller

than it is for BGMM, because Π̂B(K) is positive. Thus we find that the CUE dominates

the BGMM estimator, in terms of higher-order MSE, i.e. CUE is higher-order efficient

relative to BGMM. This result is analogous to the higher-order efficiency of the limited

information maximum likelihood estimator relative to the bias corrected two-stage least

squares estimator that was found by Rothenberg (1983).

The comparison of the higher-order MSE for the CUE and the other GEL estimators

depends on the kurtosis of the residual. Let ρi = ρ(zi, β0) and σ2i = E[ρ2i |xi]. For

conditionally normal ρi we have E[ρ
4
i |xi] = 3σ4i and consequently Ξ̂GEL(K) will converge

to zero for each K, that all the GEL estimators have the same higher-order MSE. When

there is excess kurtosis, with E[ρ4i |xi] > 3σ4i , ET will have larger MSE than CUE, and EL

will have larger MSE than ET, with these rankings being reversed when E[ρ4i |xi] < 3σ4i .

These comparisons parallel those of Newey and Smith (2004) for a heteroskedastic linear

model with exogeneity.

The case with no endogeneity has some independent interest. In this setting the

GMM estimator can often be interpreted as using ”extra” moment conditions to improve

efficiency in the presence of heteroskedasticity of unknown functional form. Here the MSE

criteria will give a method for choosing the number of moments used for this purpose.

Dropping the bias terms, which are not present in exogenous cases, leads to criteria of
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the form

SGMM(K) = Ξ̂(K)/n+ Φ̂(K)

SGEL(K) =
h
Ξ̂(K) + s3Ξ̂GEL(K)

i
/n+ Φ̂(K)

Here GMM and CUE have the same higher-order variance, as was found by Newey and

Smith (2002). Also, as in the general case, these criteria can fail to be useful if there is

too much kurtosis.

3 Assumptions and MSE Results

3.1 Basic Expansion

As in Donald and Newey (2001), the MSE approximations are based on a decomposition

of the form,

nt0(β̂ − β0)(β̂ − β0)
0t = Q̂(K) + R̂(K), (3.2)

E(Q̂(K)|X) = t0Ω∗−1t+ S(K) + T (K),

[R̂(K) + T (K)]/S(K) = op(1),K →∞, n→∞.

where X = [x1, ..., xn]
0, t = plim(t̂), Ω∗ =

Pn
i=1 σ

−2
i did

0
i/n, σ

2
i = E[ρ2i |xi], and di =

E[∂ρi(β0)/∂β|xi]. Here S(K) is part of conditional MSE of Q̂ that depends on K and

R̂(K) and T (K) are remainder terms that goes to zero faster than S(K). Thus, S(K) is

the MSE of the dominant terms for the estimator. All calculations are done assuming that

K increases with n. The largest terms increasing and decreasing with K are retained.

Compared to Donald and Newey (2001) we have the additional complication that none

of our estimators has a closed form solution. Thus, we use the first order condition that

defines the estimator to develop approximations to the difference
√
nt0(β̂ − β0) where

remainders are controlled using the smoothness of the relevant functions and the fact

that under our assumptions the estimators are all root-n consistent.
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To describe the results, let

ρi = ρ(zi, β0), ρβi = ∂ρi(β0)/∂β, ηi = ρβi − di, qi = qK(xi), κi = E[ρ4i |xi]/σ4i ,

Υ =
nX
i=1

σ2i qiq
0
i/n,Γ =

X
i

qid
0
i/n, τ = Ω∗−1t, ξij = q0iΥ

−1qj/n, E[τ
0ηiρi|xi] = σρηi ,

Π =
nX
i=1

ξiiσ
ρη
i ,ΠB =

nX
i,j=1

σρηi σρηj ξ2ij, Λ =
nX
i=1

ξiiE[(τ
0ηi)

2|xi],

Ξ =
nX
i=1

ξii (τ
0di)

2
(5− κi),ΞGEL =

nX
i=1

ξi (τ
0di)

2
(3− κi),

where we suppress the K argument for notational convenience. The terms involving

fourth moments of the residuals are due to estimation of the weight matrix Υ−1 for the

optimal GMM estimator. This feature did not arise in the homoskedastic case consid-

ered in Donald and Newey (2001) where an optimal weight matrix depends only on the

instruments.

3.2 Assumptions and Results

We impose the following fundamental condition on the data, the approximating functions

qK(x) and the distribution of x:

Assumption 1 (Moments): Assume that zi are i.i.d., and

(i) β0 is unique value of β in B (a compact subset of Rp) satisfying E[ρ(zi, β)|xi] = 0;

(ii)
Pn

i=1 σ
−2
i did

0
i/n is uniformly positive definite and finite (w.p.1.).

(iii) σ2i is bounded and bounded away from zero.

(iv) E(ηι1jiρ
ι2
i |xi) = 0 for any non-negative integers ι1 and ι2 such that ι1 + ι2 = 3.

(v) E(kηikι + |ρi|ι|xi) is bounded for ι = 6 for GMM and BGMM and ι = 8 for GEL.

For identification, this condition only requires that E[ρ(zi, β)|xi] = 0 has a unique so-

lution at β = β0. Estimators will be consistent under this condition because K is allowed

to grow with n, as in Donald, Imbens, and Newey (2003). Part of this assumption is a
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restriction that the third moments are zero. This greatly simplifies the MSE calculations.

The last condition is a restriction on the moments that is used to control the remainder

terms in the MSE expansion. The condition is more restrictive for GEL which has a more

complicated expansion involving more terms and higher moments. The next assumption

concerns the properties of the derivatives of the moment functions. Specifically, in order

to control the remainder terms we will require certain smoothness conditions so that

Taylor series expansions can be used and so that we can bound the remainder terms in

such expansions.

Assumption 2 (Expansion): Assume that ρ(z, β) is at least five times continuously

differentiable in a neighborhood N of β0, with derivatives that are all dominated in

absolute value by the random variable bi with E(b2i ) < ∞ for GMM and BGMM

and E(b5i ) <∞ for GEL.

This assumption is used to control remainder terms and has as an implication that

for instance,

sup
β∈N

k (∂/∂β0) ρ(z, β)k < bi

It should be noted that in the linear case only the first derivative needs to be bounded

since all other derivatives would be zero. It is also interesting to note that although

we allow for nonlinearities in the MSE calculations, they do not have an impact on the

dominant terms in the MSE. The condition is stronger for GEL reflecting the more com-

plicated remainder term. Our next assumption concerns the “instruments” represented

by the vector qK(xi).

Assumption 3 (Approximation): (i) There is ζ(K) such that for each K there is a

nonsingular constant matrix B such that q̃K(x) = BpK(x) for all x in the support of

xi and supx∈X kq̃K(x)k ≤ ζ(K) and E[q̃K(x)q̃K(x)0] has smallest eigenvalue that is

bounded away from zero, and
√
K ≤ ζ(K) ≤ CK for some finite constant C.(ii) For

each K there exists a sequence of constants πK and π
∗
K such that E(kdi−q0iπKk2)→

0 and ζ(K)2E(kdi/σ2i − q0iπ
∗
Kk2)→ 0 as K →∞.
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The first part of the assumption gives a bound on the norm of the basis functions, and

is used extensively in the MSE derivations to bound remainder terms. The second part

of the assumption implies that di and di/σ
2
i be approximated by linear combinations of

qi. Because σ
2
i is bounded and bounded away from zero, it is easily seen that for the same

coefficients πK , kdi/σi−σiqiπ∗Kk2 ≤ σ2i kdi/σ2i −qi0πKk2 so that di/σi can be approximated

by a linear combination of σiqi. Indeed the variance part of the MSE measures the mean

squared error in the fit of this regression. Since ζ(K)→∞ the approximation condition

for di/σ
2
i is slightly stronger than for di. This is to control various remainder terms where

di/σi needs to be approximated in uniform manner. Since in many cases one can show

that the expectations in (ii) are bounded by K−2α where α depends on the smoothness

of the function di/σ
2
i , the condition can be met by assuming that di/σ

2
i is a sufficiently

smooth function of xi.

We will assume that the preliminary estimator β̃ used to construct the weight matrix

is a GMM estimator is itself a GMM estimator with weighting matrix that may not

be optimal. where we do not require either optimal weighting or that the number of

moments increase. In other words we let β̃ solve,

min
β

g̃n(β)
0W̃0g̃n(β), g̃n(β) = (1/n)

nX
i=1

q̃(xi)ρi(β)

for some K̃ vector of functions q̃(xi) and some K̃ × K̃ matrix W̃0 which potentially

could be IK̃ or it could be random as would be the case if more than one iteration were

used to obtain the GMM estimator. We make the following assumption regarding this

preliminary estimator.

Assumption 4 (Preliminary Estimator): : Assume (i) β̃
p→ β0 (ii) there exist

some non-stochastic matrix W0 such that
°°°W̃0 −W0

°°° p→ 0 and we can write β̃ =

β0+
1
n

Pn
i=1 φ̃iρi+ op(n

−1/2), φ̃i = −(Γ̃0W0Γ̃)
−1Γ̃W0q̃i with Γ̃ =

Pn
i=1 q̃(xi)di/n and

E(
°°°ρ2i φ̃iφ̃0i°°°) <∞

Note that the assumption requires that we just use some root-n consistent and as-

ymptotically normally distributed estimator. The asymptotic variance of the preliminary
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estimator will be,

p lim((Γ̃0W0Γ̃)
−1Γ̃W0Υ̃W0Γ̃((Γ̃

0W0Γ̃)
−1), Υ̃ =

nX
i=1

q̃(xi)q̃(xi)
0σ2i /n

and if the preliminary estimator uses optimal weighting we can show that this coincides

with p limΩ∗ provided that K̃ increase with n in a way that the assumptions of Donald,

Imbens and Newey (2003) are satisfied. Also note that for the GMM estimator we can

write,

β̂ = β0 +
1

n

nX
i=1

φ∗i ρi + op(n
−1/2), φ∗i = −Ω∗−1di/σ2i

The covariance between the (normalized) preliminary estimator and the GMM estimator

is then,
1

n

X
i

φ̃iφ
∗
iσ
2
i = Ω∗−1

a fact that will be used in the MSE derivations to show that the MSE for BGMM does not

depend on the preliminary estimator. Finally we use Assumption 6 of Donald, Imbens

and Newey (2003) for the GEL class of estimators.

Assumption 5 (GEL): s(v) is at least five times continuously differentiable and con-

cave on its domain, which is an open interval containing the origin, s1(0) = −1,

s2(v) = −1 and sj(v) is bounded in a neighborhood of v = 0 for j = 1, ...5.

The following three propositions give the MSE results for the three estimators con-

sidered in this paper. The results are proved in Appendix A and use an expansion that

is provided in Appendix B.

Proposition 1: For GMM under Assumptions 1 - 4, if w.p.a.1 as n → ∞, |Π| ≥ cK

for some c > 0, K → ∞, and ζ(K)
p
K/n → 0 then the approximate MSE for

t0
√
n(β̂H − β0) is given by,

SH(K) = Π2/n+ τ 0(Ω∗ − Γ0Υ−1Γ)τ
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Proposition 2: For BGMM under Assumptions 1 -4, the condition that w.p.a.1 as n→

∞,

Λ+ΠB + Ξ1 ≥ cK

for some c > 0, and assuming that K →∞ with ζ(K)2
p
K/n→ 0 the approximate

MSE for t0
√
n(β̂B − β0) is given by,

SB(K) = [Λ+ΠB + Ξ] /n+ τ 0(Ω∗ − Γ0Υ−1Γ)τ

Proposition 3: For GEL, if Assumptions 1 - 3, 5 are satisfied, w.p.a.1 as n→∞,

{Λ−ΠB + Ξ+ s3ΞGEL} ≥ cK,

K −→ ∞, and ζ(K)2K2/
√
n −→ 0 the approximate MSE for t0

√
n(β̂GEL − β0) is

given by,

SGEL(K) = [Λ−ΠB + Ξ+ s3ΞGEL] /n+ τ 0(Ω∗ − Γ0Υ−1Γ)τ

For comparison purposes, and to help interpret the formulas, it is useful to consider

the homoskedastic case. Let

σ2 = E[ρ2i ], σηρ = E[τ 0ηiρi], σηη = E[(τ 0ηi)
2], κ = E[ρ4i ]/σ

4, Qii = q0i(
nX

j=1

qjq
0
j)
−1qi

∆(K) = σ−2{
nX
i=1

(τ 0di)
2 −

nX
i=1

τ 0diq
0
i(

nX
i=1

qiq
0
i)
−1

nX
i=1

τ 0diqi}/n,

Then we have the following expressions under homoskedasticity,

SH(K) = (σρη/σ
2)2K2/n+∆(K),

SB(K) = (σηη/σ
2 + σ2ηρ/σ

4)K/n+ σ−2(5− κ)
X
i

(τ 0di)
2Qii/n+∆(K),

SGEL(K) = (σηη/σ
2 − σ2ηρ/σ

4)K/n+ σ−2[(5− κ) + s3(3− κ)]
X
i

(τ 0di)
2Qii/n+∆(K).

For GMM, the MSE is the same as that presented in Donald and Newey (2001) for 2SLS,

which is the same as Nagar (1959) for large numbers of moments. The leading K/n term

in the MSE of BGMM is the same as the MSE of the bias-corrected 2SLS estimator, but

[13]



there is also an additional term, where (5 − κ) appears, that is due to the presence of

the estimated weighting matrix. This term is also present for GMM, but is dominated

by the K2/n bias term, and so does not appear in our large K approximate MSE. As

long as κ < 5, this additional term adds to the MSE of the estimator, representing

a penalty for using a heteroskedasticity robust weighting matrix. When κ > 5, using

the heteroskedasticity robust weighting matrix lowers the MSE, a phenomenon that was

considered in Koenker et. al. (1994).

For GEL the leading K/n term is the same as for LIML, and is smaller than the

corresponding term for BGMM. This comparison is identical to that for 2SLS and LIML,

and represents an efficiency improvement from using GEL. For the CUE (or any other

estimator where s3 = 0) the additional term is the same for BGMM and CUE, so that

CUE has smaller MSE. The comparison among GEL estimators depends on the kurtosis

κ. For Gaussian ρ(z, β0), κ = 3, and the MSE of all the GEL estimators is the same.

For κ > 3, the MSE of EL is greater than ET which is greater than CUE, with the order

reversed for κ < 3. For Gaussian disturbances the relationships between the asymptotic

MSE of LIML, BGMM, and EL were reported by Rothenberg (1996), though expressions

were not given.

When there is heteroskedasticity, the comparison between estimators is exactly analo-

gous to that for homoskedasticity, except that the results for LIML and B2SLS no longer

apply. In particular, CUE has smaller MSE than BGMM, and BGMM and all GEL

estimators have smaller MSE than GMM for large enough K. Since the comparisons are

so similar, and since many of them were also discussed in the last Section, we omit them

for brevity.

4 Monte Carlo Experiments

In this section we examine the performance of the different estimators and moment

selection criteria in the context of a small scale Monte Carlo experiment based on the

setup in Hahn and Hausman (2002) that was also used in Donald and Newey (2001).

[14]



The basic model used is of the form,

yi = γYi + ρi (4.3)

Yi = X 0
iπ + ηi

for i = 1, ..., n and the moment functions take the form (for K instruments),

gi(γ) =

⎛⎜⎜⎜⎝
X1i

X2i
...

XKi

⎞⎟⎟⎟⎠ (yi − γYi)

where we are interested in methods for determining how many of the Xji should be used

to construct the moment functions. Because of the invariance of the estimators to the

value of γ we set γ = 0 and for different specifications of π we generate artificial random

samples under the assumptions that

E

µµ
ρi
ηi

¶
( ρi ηi )

¶
= Σ =

µ
1 c
c 1

¶
and Xi ∼ N(0, IK̄) where K̄ is the maximal number of instruments considered. As shown

in Hahn and Hausman (2002) the specification implies a theoretical first stage R-squared

that is of the form,

R2f =
π0π

π0π + 1
(4.4)

We consider one of the models that was considered in Donald and Newey (2001)

where,

π2k = c(K̄)

µ
1− k

K̄ + 1

¶4
for k = 1, .., K̄

where the constant c(K̄) is chosen so that π0π = R2f/(1 − R2f). In this model all the

instruments are relevant but they have coefficients that are declining. This represents

a situation where one has prior information that suggests that certain instruments are

more important than others and the instruments have been ranked accordingly. In this

model all of the potential K̄ moment conditions should be used for the estimators to be

asymptotically efficient. Note also, that in our setup LIML and 2SLS are also asymp-

totically efficient estimators provided that we eventually use all of the instruments Xji.
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Indeed in the experiments we compute not only GMM, BGMM, ET, EL and CUE (the

last three being members of the GEL class) but we also examine the performance of 2SLS

and LIML along with the instrument selection methods proposed in Donald and Newey

(2001). This allows us to gauge the small sample cost of not imposing heteroskedasticity.

As in Donald and Newey (2001) we report for each of the seven different estimators,

summary statistics for the version that uses all available instruments or moment condi-

tions plus the summary statistics for the estimators based on a set of moment conditions

or instruments that were chosen using the respective moment or instrument selection

criterion.

For each model experiments were conducted with the specifications for sample sizes

of n = 200 and n = 1000. When the sample size is 200 we set R2f = 0.1, K̄ = 10 and

performed 500 replications, while in the larger sample size we set R2f = 0.1, K̄ = 20 and

we performed 200 replications (due to time constraints). Both of these choices reflect

the fairly common situation where there may be a relatively small amount of correlation

between the instruments and the endogenous variable (see Staiger and Stock (1997)

and Stock and Wright (2000) as well as the fact that with larger data sets empirical

researchers are more willing to use more moment conditions to improve efficiency. For

each of these cases we consider c ∈ {.1, .5, .9}, though for brevity we will only report

results for c = .5. In addition we consider the impact of having excess kurtosis, which as

noted above has differential effect on the higher order MSE across the different estimators.

The distribution we consider is that ofµ
ρi
ηi

¶
= |ei|

µ
ρ∗i
η∗i

¶
,

µ
ρ∗i
η∗i

¶
∼ N(0,Σ), ei ∼ logistic(0,1).

where ei is independent of ρ
∗
i and η∗i and is distributed as a logistic random variable

with mean zero and variance equal to one. Given this particular setup we will have that

(ρi, ηi) are jointly distributed with mean zero and a covariance matrix equal to Σ, and a

coefficient of kurtosis of approximately κ = 12.6. With two different models, two different

distributions for the errors, and three different choices for residual correlations there are

a total of 12 specifications for each sample size.
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The estimator that uses all moments or instruments is indicated by the suffix “-all”

while the estimator that uses a number of moment conditions as chosen by the respective

moment or instrument selection criterion is indicated by “-op”. Therefore, for instance,

GMM-all and GMM-op are the two step estimator that uses all of the moment conditions

and the moment conditions the minimize the estimated MSE criterion respectively. The

preliminary estimates of the objects that appear in the criteria were in each case based

on a number of moment conditions that was optimal with respect to cross validation in

the first stage.

As in Donald and Newey (2001) we present robust measures of central tendency

and dispersion. We computed the median bias (Med. Bias) for each estimator, the

median of the absolute deviations (MAD) of the estimator from the true value of γ = 0

and examined dispersion through the difference between the 0.1 and 0.9 quantile (Dec.

Rge) in the distribution of each estimator. We also examined statistical inference by

computing the coverage rate for 95% confidence intervals as well as the rejection rate for

an overidentification test (in cases where overidentifying restrictions are present) using the

test statistic corresponding to the estimator and a significance level of 5%. In addition we

report some summary statistics concerning the choices ofK in the experiments, including

the modal choice of K if one used the actual MSE to choose K. There was very little

dispersion in this variable across replications and generally the optimal K with the true

criterion was equal to the same value in most if not all replications. In cases where there

was some dispersion it was usually either being some cases on either side of the mode.

To indicate such cases we use + and -, so that for instance 3+ means that the mode was

3 but that there were some cases where 4 was optimal. The notation 3++ means that

the mode was 3 but that a good proportion of the replications had 4 as being optimal.

Tables I-VI and X-XV contains the summary statistics for the estimators for n = 200

and n = 800 respectively, while Tables VII-IX and XVI-XVIII contain the summary

statistics for the chosen number of moments across the replications. In general the results

are encouraging for all the estimators. As expected the GEL and LIML estimators are

less dispersed when the optimal number of moments is used, while for GMM and 2SLS

[17]



the use of the criterion reduces the bias that occurs when there is a high degree of

covariance between the residuals. The improvements for the GEL estimators are more

marked when the there is a low to moderate degree of covariance. It is noteworthy

that in such situations there is also a dramatic improvement in the quality of inference

as indicated by the coverage rates for the confidence interval. As far as testing the

overidentifying restrictions only when there is a high degree of covariance is there any

problem with testing these restrictions. This occurs with most of the estimators in the

small sample with a high covariance and with GMM and TSLS in the large sample with

a high covariance. It also seems that using the criteria does not really help in fixing any

of these problems.

There are a number of things to note about the results for K̂. First, the estimated

criteria give values for K̂ that are often near the values that minimize the true criterion,

suggesting that the estimated criterion is a good approximation to the true criterion. It

also noteworthy that, as one would expect, the criteria suggest use of a small number

of moments for GMM and 2SLS when there is a high error covariance and for the GEL

estimators when there is a low covariance. For BGMM the optimal number is quite stable

as the covariance increases. In the larger sample the optimal number decreases as the

covariance increases, but is slightly larger when the residuals have fat tails compared to

the situation where they do not. Among the GEL estimators increasing the covariance

and having fat tailed errors has the most dramatic impact on CUE as one would expect

given the criteria.

Concerning the effect of excess kurtosis, it does appear that the improvement from

using the criteria is more noticeable for EL, which is most sensitive to having fat tailed

errors. There also was some evidence that going from normal to fat tailed errors helped

CUE more than the other estimators, as suggested in the theory, although this led to a

lower improvement from using the moment selection criterion.
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5 Conclusion

In this paper we have developed approximate MSE criteria for moment selection for

a variety of estimators in conditional moment contexts. We found that the CUE has

smaller MSE than the bias corrected GMM estimator. In addition we proposed data

based methods for estimating the approximate MSE, so that in practice the number of

moments can be selected by minimizing these criteria. The criteria seemed to perform

adequately in a small scale simulation exercise.

The present paper has considered a restrictive environment in which the data are

considered a random sample. It would be useful to extend the results in two directions.

The first would be to the dynamic panel data case. In that situation there will typically

be different sets of instruments available for each residual coming from sequential moment

restrictions. It would also be useful to extend the results to a purely time series context

where one would need to deal with serial correlation. Kuersteiner (2002) has derived

interesting results in this direction.
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Appendix A: MSE Derivation Results

Throughout the Appendix repeated use of the Cauchy Schwarz (CS), Markov (M) and

Triangle inequalities is made. We let k.k denote the usual matrix norm. The following

Maximum Eigenvalue (ME) inequality is also used repeatedly,

kA0BCk ≤ λmax(BB) kAk kCk

for a square symmetric matrix B and conformable matrices A and C. For simplicity of

notation and without loss of generality we assume that the true value of the coefficients

are all zero and we only perform the calculation for the case where there is one parameter

(in addition to the auxiliary parameters λ). Because higher order derivatives are required

for the MSE calculations (even though they do not appear in the final result) we use the

following notation: for j = 0, 1, ..., 4 we let,

Γj =
1

n

X
i

Γji, Γ̄j =
1

n

X
i

Γji(0), Γ̂j =
1

n

X
i

Γji(β̂)

Γji = qiE(
∂j+1

∂βj+1
ρi(0)|xi), Γji(β) = qi

∂j+1

∂βj+1
ρi(β)

ηji =
∂j+1

∂βj+1
ρi(0)−E(

∂j+1

∂βj+1
ρi(0)|xi)

and Γ̄∗j denotes Γ̄j evaluated at some point(s) lying between the respective estimator

and its true value. Hence Γ0 corresponds to Γ in the text. In addition we assume as in

Donald, Imbens and Newey (2003) (hereafter DIN) that qi has been normalized so that

kqik < Cζ(K) and E(qiq
0
i) = IK so that,

1

n

X
i

kqik2 = O(K), λmax(

Ã
1

n

X
i

qiq
0
iδi

!2
) = O(1), if δi < C <∞

λmin(
1

n

X
i

qiq
0
iδi) > 0, for 0 < c < δi < C <∞

where here and elsewhere we let c denote a generic small constant and C a generic large

constant. The MSE are based on an expansion that is contained in Appendix B. The

remainder term for GEL is dealt with in a technical appendix that is available on request.
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Derivatives that are used in the expansion are also available in a technical appendix that

is available on request.

Proof of Proposition 1:

In deriving the MSE for GMM we simplify notation and refer to the estimator as

β̂ as distinct from the preliminary estimator. Since we need the results for BGMM we

expand the estimator and display all terms that are needed to perform the calculations

in Proposition 2. Terms that will not be needed for GMM and BGMM are those that are

o(K2/n3/2) and o(K/n3/2) respectively. Now for GMM we have from Newey and Smith

(2004) (hereafter NS) we have that GMM can be written as the solution to the First

Order Conditions,

1

n

X
i

∂

∂β
ρi(β̂)q

0
iλ̂ = 0

1

n

X
i

qiρi(β̂) + Υ̂(β̃)λ̂ = 0

where by DIN
°°°λ̂°°° = O(

p
K/n) and

°°°β̂°°° = O(1/
√
n). Using Appendix B and the

partitioned inverse formula applied to

M−1 =

µ
0 Γ00
Γ0 Υ−1

¶−1
=

µ
−Ω−1 Ω−1Γ00Υ

−1

Υ−1Γ0Ω
−1 Σ

¶
where Ω = Γ00Υ

−1Γ0 and Σ = Υ−1 −Υ−1Γ0Ω
−1Γ00Υ

−1 we have that,

−M−1m =

µ
−Ω−1Γ00Υ−1ḡ
−Σḡ

¶
=

µ
T β
1

T λ
1

¶
Note that we have kΩ−1k = O(1), kΥ−1Γ0k = O(1) by ME kΓ0k = O(1) and λmax(Υ

−1) =

O(1) and finally, λmax(Σ) ≤ λmax(Υ
−1) = O(1). Similarly by Appendix B and the tech-

nical appendix,

−M−1(M̂ −M)θ =

⎛⎝ Ω−1
¡
Γ̄0 − Γ0

¢0
λ̂− Ω−1Γ00Υ

−1
³³

Υ̂(β̃)−Υ
´
λ̂+

¡
Γ̄0 − Γ0

¢
β̂
´

−Υ−1Γ0Ω−1
¡
Γ̄0 − Γ0

¢0
λ̂− Σ

³¡
Γ̄0 − Γ0

¢
β̂ +

³
Υ̂(β̃)−Υ

´
λ̂
´ ⎞⎠

=

µ
T β
2

T λ
2

¶
=

µ
O(K/n) +O(K/n) +O(1/n)

O(K/n) +O(
√
K/n) +O(ζ(K)K/n)

¶
µ

T β
3

T λ
3

¶
= −M−1

X
j

θjAjθ/2 =

µ
Ω−1β̂Γ01λ̂− (1/2)Ω−1Γ00Υ−1β̂2Γ1
−Υ−1Γ0Ω−1β̂Γ01λ̂− (1/2)Σβ̂2Γ1

¶
=

µ
O(1/n)
O(1/n)

¶
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−M−1
X
j

θj(Âj −Aj)θ =

µ
Ω−1β̂

¡
Γ̄1 − Γ1

¢0
λ̂− (1/2)Ω−1Γ00Υ−1β̂2

¡
Γ̄1 − Γ1

¢
−Υ−1Γ0Ω−1β̂

¡
Γ̄1 − Γ1

¢0
λ̂− (1/2)Σβ̂2

¡
Γ̄1 − Γ1

¢ ¶
=

µ
T β
41 + T β

42

T λ
41 + T λ

42

¶
=

µ
O(K/n3/2) +O(

√
K/n3/2)

O(K/n3/2) +O(
√
K/n3/2)

¶
Next we have that,µ

T β
5

T λ
5

¶
= −M−1

X
j

X
k

θjθkBjkθ/6 = −(1/6)
µ
−Ω−13β̂2Γ02λ̂+ Ω−1Γ00Υ

−1β̂3Γ2
Υ−1Γ0Ω

−13β̂2Γ02λ̂+ Σβ̂3Γ2

¶

=

⎛⎝ O(
°°°β̂°°°2 kΓ2k°°°λ̂°°°)
O(
°°°β̂°°°3 kΓ2k)

⎞⎠ =

µ
O(
√
K/n3/2)

O(1/n3/2)

¶

by CS, the results for
°°°β̂°°° and °°°λ̂°°° , Assumption 3, and the conditions on the elements

of M−1. Next we have,X
j

X
k

θjθk
³
B̂jk −Bjk

´
θ/6 = (1/6)

µ
3β̂2

¡
Γ̄2 − Γ2

¢0
λ̂

β̂3
¡
Γ̄2 − Γ2

¢ ¶

=

⎛⎜⎝ O

µ°°°β̂°°°2 °°Γ̄2 − Γ2
°°°°°λ̂°°°¶

O(
°°°β̂°°°3 °°Γ̄2 − Γ2

°°)
⎞⎟⎠ =

µ
O(K/n2)

O(
√
K/n2)

¶

The last term is (1/24) times,X
j

X
k

θjθk
X
l

θlĈjklθ =

Ã
β̂4
³
Γ̄∗04 λ̂

´
+ 4β̂3Γ̄∗03 λ̂

Γ̄∗3β̂
4

!

=

⎛⎜⎝ O(
°°°β̂°°°3 °°°λ̂°°° (°°°β̂°°°°°Γ̄∗4°°+ °°Γ̄∗3°°)

O

µ°°Γ̄∗3°°°°°β̂°°°4¶
⎞⎟⎠ = O(

√
K/n2)

Therefore,
°°°Rβ

n,K

°°° = O(K/n2) and
°°°Rβ

n,K

°°° = O(K/n2) by CS and ME and the condi-

tion on the elements of M−1. Here we have used
°°Γ00Υ−1 ¡Γ̄0 − Γ0

¢°° = O(1/
√
n) and°°°Γ00Υ−1 ³Υ̂(β̃)−Υ

´°°° = O(
p
K/n + ζ(K)/

√
n) = O(ζ(K)/

√
n) which follow from DIN

Lemma A4.

Note that by Assumption 2 we can write,

Υ̂(β̃)−Υ = Υ̂v1 + 2β̃Υρη + 2β̃Υ̂v2 + 2β̃Υ̂v3 + β̃2Υ̂r

= Υ̂v1 + 2β̃Υρη + R̂Υ
n,K
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where,

Υ̂vj =
1

n

X
i

qiq
0
ivji for j = 1, 2, 3 E(vji|xi) = 0

v1i = ρ2i − σ2i , v2i = diρi, v3i = (η0iρi − σρη(xi))

Υρη =
1

n

X
i

qiq
0
iσρη(xi), Υ̂r =

1

n

X
i

qiq
0
iri

and E(vji|xi) = 0, E(v2ji|xi) < C Assumption 1.E(krik |xi) < C by Assumption 2. Hence,

we have that, °°°Υ̂vj

°°° = O(ζ(K)
p
K/n),

°°°R̂Υ
n,K

°°° = O
³
(ζ(K)

√
K +K)/n

´
λmax(ΥρηΥρη) = O(1), λmax(Υ̂rΥ̂r) = O(1)°°°Υ̂vjΣḡ

°°° = O(ζ(K)
√
K/n) for j = 1, 3°°°Υ̂vjΣ

¡
Γ̄0 − Γ0

¢°°° = O(ζ(K)
√
K/n) for j = 1, 3°°°Υ̂v2Σḡ

°°° = O(ζ(K)K/n),
°°°Υ̂v2Σ

¡
Γ̄0 − Γ0

¢°°° = O(ζ(K)K/n)°°°Γ0Υ−1Υ̂vjΣ
°°° = O(

p
K/n),

°°Γ0Υ−1ΥρηΣ
°° = O(1),

°°°Γ0Υ−1Υ̂rΣ
°°° = O(1)°°Γ̄0 − Γ0

°° = O(
p
K/n),

°°°¡Γ̄0 − Γ0
¢0
Υ−1Γ0

°°° = O(1/
√
n)

with the last fact following from M and Assumptions 1 and 3. For the λ̂ terms from the

above expansion it follows that,

λ̂ = −Σḡ −Υ−1Γ0Ω
−1 ¡Γ̄0 − Γ0

¢0
λ̂− Σ

¡
Γ̄0 − Γ0

¢
β̂ − Σ

³
Υ̂(β̃)−Υ

´
λ̂+Rλ

1

where
°°Rλ

1

°° = O(1/n) under the condition on K for GMM and hence for BGMM also.

Repeated substitution and using the facts that by CS and the results for λ̂ and
°°Γ̄0 − Γ0

°°
and the fact that from the above expansion β̂ = −Ω−1Γ00Υ−1ḡ+Rβ

1 with
°°°Rβ

1

°°° = O(K/n),

λ̂ = −Σḡ +Υ−1Γ0Ω
−1 ¡Γ̄0 − Γ0

¢0
Σḡ + Σ

¡
Γ̄0 − Γ0

¢
Ω−1Γ00Υ

−1ḡ

+ΣΥ̂vjΣḡ + 2β̃ΣΥρηΣḡ +Rλ
2 ,°°°Υ−1Γ0Ω−1 ¡Γ̄0 − Γ0

¢0
Σḡ
°°° = O(K/n)

°°Σ ¡Γ̄0 − Γ0
¢
Ω−1Γ00Υ

−1ḡ
°° = O(

√
K/n)°°°ΣΥ̂vjΣḡ

°°° = O(ζ(K)
√
K/n),

°°°2β̃ΣΥρηΣḡ
°°° = O(

√
K/n),°°Rλ

2

°° = O(ζ(K)
√
K/n)O(ζ(K)

p
K/n)
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where
°°Rλ

2

°° = o(
√
K/n) under the condition onK for BGMM and

°°Rλ
2

°° = O(1/
√
n)o(ζ(K)K/n) =

O(1/
√
n)o(K2/n) under the condition on K for GMM.

Take the lead term in the expansion for β̂, T β
2 and substitute in for λ̂ and apply CS,

and M to get that,

Ω−1
¡
Γ̄0 − Γ0

¢0
λ̂ = −Ω−1

¡
Γ̄0 − Γ0

¢0
Σḡ + Ω−1

¡
Γ̄0 − Γ0

¢0
Υ−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ

+Ω−1
¡
Γ̄0 − Γ0

¢0
Σ
¡
Γ̄0 − Γ0

¢
Ω−1Γ00Υ

−1ḡ

+Ω−1
¡
Γ̄0 − Γ0

¢0
ΣΥ̂v1Σḡ + 2β̃Ω

−1 ¡Γ̄0 − Γ0
¢0
ΣΥρηΣḡ +Rβ

2

Rβ
2 = −Ω−1

¡
Γ̄0 − Γ0

¢0
Rλ
2

Here
°°°Rβ

2

°°° = O(
p
K/n)o(

√
K/n) = O(1/

√
n)o(K/n) under the condition for BGMM,

and

−Ω−1
¡
Γ̄0 − Γ0

¢0
Σḡ = O(K/n)

Ω−1
¡
Γ̄0 − Γ0

¢0
Σ
¡
Γ̄0 − Γ0

¢
Ω−1Γ00Υ

−1ḡ = O(1/
√
n)O(K/n)

Ω−1
¡
Γ̄0 − Γ0

¢0
Υ−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ = O(1/

√
n)O(K/n)

Ω−1
¡
Γ̄0 − Γ0

¢0
ΣΥ̂v1Σḡ = O(1/

√
n)O(ζ(K)K/n)

2β̃Ω−1
¡
Γ̄0 − Γ0

¢0
ΣΥρηΣḡ = O(1/

√
n)O(K/n)

Under the condition on K for GMM we have,

−Ω−1
¡
Γ̄0 − Γ0

¢0
λ̂ = −Ω−1

¡
Γ̄0 − Γ0

¢0
Σḡ + Ω−1

¡
Γ̄0 − Γ0

¢0
ΣΥ̂v1Σḡ +Rβ

3

where
°°°Rβ

3

°°° = O(1/
√
n)o(K2/n).

Now consider the second term in T β
2 given by −Ω−1Γ00Υ−1

³
Υ̂(β̃)−Υ

´
λ̂. Using the

facts above we can write,

−Ω−1Γ00Υ−1
³
Υ̂(β̃)−Υ

´
= −Ω−1Γ00Υ−1Υ̂v1 − 2β̃Ω−1Γ00Υ−1Υρη − 2β̃Ω−1Γ00Υ−1Υ̂v2 + o(

√
K/n)°°°−Ω−1Γ00Υ−1Υ̂v1

°°° = O(
p
K/n),

°°°2β̃Ω−1Γ00Υ−1Υρη

°°° = O(1/
√
n),°°°2β̃Ω−1Γ00Υ−1Υ̂v2

°°° = O(
√
K/n)
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so that using the above expansion for λ̂ and repeated use of CS and M,

−Ω−1Γ00Υ−1
³
Υ̂(β̃)−Υ

´
λ̂ = Ω−1Γ00Υ

−1Υ̂v1Σḡ + 2β̃Ω
−1Γ00Υ

−1ΥρηΣḡ

+2β̃Ω−1Γ00Υ
−1Υ̂v2Σḡ − Ω−1Γ00Υ

−1Υ̂v1Υ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ

−2β̃Ω−1Γ00Υ−1ΥρηΥ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ

−Ω−1Γ00Υ−1Υ̂v1ΣΥ̂v1Σḡ − 2β̃Ω−1Γ00Υ−1ΥρηΣΥ̂v1Σḡ

−2β̃Ω−1Γ00Υ−1Υ̂v1ΣΥρηΣḡ +Rβ°°Rβ
°° = O(

p
K/n)O(

°°Rλ
2

°°)
using the fact that also under the Assumption 1,°°°−Ω−1Γ00Υ−1Υ̂v1Σ

¡
Γ̄0 − Γ0

¢
Ω−1Γ00Υ

−1ḡ
°°° = O(1/

√
n)O(

√
K/n)

Here we have that, °°°Ω−1Γ00Υ−1Υ̂v1Σḡ
°°° = O(1/

√
n)O(

p
K/n)°°°2β̃Ω−1Γ00Υ−1ΥρηΣḡ

°°° = O(1/
√
n)O(1/

√
n)°°°2β̃Ω−1Γ00Υ−1Υ̂v2Σḡ

°°° = O(1/
√
n)O(K/n)

°°°Ω−1Γ00Υ−1Υ̂v1Υ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ
°°° = O(1/

√
n)O(K/n)°°°2β̃Ω−1Γ00Υ−1ΥρηΥ

−1Γ0Ω
−1 ¡Γ̄0 − Γ0

¢0
Σḡ
°°° = O(1/

√
n)O(K/n)

Ω−1Γ00Υ
−1Υ̂v1ΣΥ̂v1Σḡ = O(

p
K/n)O(ζ(K)

√
K/n) = O(1/

√
n)O(ζ(K)K/n)

2β̃Γ00Υ
−1ΥρηΣΥ̂v1Σḡ = O(1/

√
n)O(ζ(K)

√
K/n)

2β̃Ω−1Γ00Υ
−1Υ̂v1ΣΥρηΣḡ = O(1/

√
n)O(K/n)

and under the condition on K for BGMM
°°Rβ

°° = O(1/
√
n)o(K/n). So under the con-

ditions for GMM we have that
°°Rβ

°° = O(1/
√
n)o(K2/n) and that by the above results,

−Ω−1Γ00Υ−1
³
Υ̂(β̃)−Υ

´
λ̂ = Ω−1Γ00Υ

−1Υ̂v1Σḡ + 2β̃Ω
−1Γ00Υ

−1ΥρηΣḡ

−Ω−1Γ00Υ−1Υ̂v1ΣΥ̂v1Σḡ − 2β̃Ω−1Γ00Υ−1Υ̂v1ΣΥρηΣḡ +Rβ
3
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with
°°°Rβ

3

°°° = O(1/
√
n)o(K2/n).

Now take the third term in T β
2 and using the above results and the fact that

°°°−Ω−1Γ00Υ−1 ¡Γ̄0 − Γ0
¢
β̂
°°°

O(1/n) we have that

β̂ = −Ω−1Γ00Υ−1ḡ − Ω−1
¡
Γ̄0 − Γ0

¢0
Σḡ + o(K/n)

so,

−Ω−1Γ00Υ−1
¡
Γ̄0 − Γ0

¢
β̂ = Ω−1Γ00Υ

−1 ¡Γ̄0 − Γ0
¢
Ω−1Γ00Υ

−1ḡ

+Ω−1Γ00Υ
−1 ¡Γ̄0 − Γ0

¢
Ω−1

¡
Γ̄0 − Γ0

¢0
Σḡ +O(1/

√
n)o(K/n)

under the conditions for BGMM and

−Ω−1Γ00Υ−1
¡
Γ̄0 − Γ0

¢
β̂ = Ω−1Γ00Υ

−1 ¡Γ̄0 − Γ0
¢
Ω−1Γ00Υ

−1ḡ +O(1/
√
n)o(K2/n)

under the conditions for GMM where,°°Ω−1Γ00Υ−1 ¡Γ̄0 − Γ0
¢
Ω−1Γ00Υ

−1ḡ
°° = O(1/

√
n)O(1/

√
n)°°°Ω−1Γ00Υ−1 ¡Γ̄0 − Γ0

¢
Ω−1

¡
Γ̄0 − Γ0

¢0
Σḡ
°°° = O(1/

√
n)O(K/n)

Next we have for T β
3 by the above expansion for λ̂,

Γ01λ̂ = −Γ01Σḡ − Γ01Υ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ + Γ01Σ

¡
Γ̄0 − Γ0

¢
Ω−1Γ00Υ

−1ḡ

+Γ01ΣΥ̂v1Σḡ + 2β̃Γ
0
1ΣΥρηΣḡ + Γ01R

λ
2 ,

By showing that
°°°Γ01ΣΥ̂v1Σḡ

°°° = O(
√
K/n) and kΓ01ΣΥρηΣḡk = O(1/

√
n) we can show

that under the condition for BGMM

Γ01λ̂ = −Γ01Σḡ − Γ01Υ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡ + o(K/n)

so that, after substituting in for β̂ we have,

Ω−1β̂Γ01λ̂− (1/2)β̂2Ω−1Γ00Υ−1Γ1

= Ω−1Γ01ΣḡΩ
−1Γ00Υ

−1ḡ − Γ01Υ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
ΣḡΩ−1Γ00Υ

−1ḡ

+Ω−1Γ01ΣḡΩ
−1 ¡Γ̄0 − Γ0

¢0
Σḡ − (1/2)Ω−1Γ00Υ−1Γ1

¡
Ω−1Γ00Υ

−1ḡ
¢2

−Ω−1Γ00Υ−1Γ1Ω−1Γ00Υ−1ḡΩ−1
¡
Γ̄0 − Γ0

¢0
Σḡ +O(1/

√
n)o(K/n)
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where

Ω−1Γ01ΣḡΩ
−1Γ00Υ

−1ḡ = O(1/
√
n)O(1/

√
n)

Γ01Υ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
ΣḡΩ−1Γ00Υ

−1ḡ = O(1/
√
n)O(K/n)

Ω−1Γ01ΣḡΩ
−1 ¡Γ̄0 − Γ0

¢0
Σḡ = O(1/

√
n)O(K/n)

(1/2)Ω−1Γ00Υ
−1Γ1

¡
Ω−1Γ00Υ

−1ḡ
¢2

= O(1/n)

Ω−1Γ00Υ
−1Γ1Ω

−1Γ00Υ
−1ḡΩ−1

¡
Γ̄0 − Γ0

¢0
Σḡ = O(1/

√
n)O(K/n)

For the term T β
4 we have,

T β
4 = (1/2)2β̂Ω

−1(Γ̄1 − Γ1)
0λ̂+O(1/

√
n)o(K/n)

= Ω−1(Γ̄1 − Γ1)
0ΣḡΩ−1Γ00Υ

−1ḡ +O(1/
√
n)o(K/n)°°Ω−1 ¡(Γ̄1 − Γ1)

0Σḡ
¢
Ω−1Γ00Υ

−1ḡ
°° = O(1/

√
n)O(K/n)

Finally we note that we have
°°°T β

5

°°° = O(1/
√
n)o(K/n) so that we have now found all

terms that are the right order.

For GMM let γK,n = K2/n+∆K,n with ∆K,n = Ω∗ − Ω. Then by,

n
³
ζ(K)K/n3/2 +

√
K/n+ 1/n

´2
= o(K2/n)

n
³
ζ(K)K/n3/2 +

√
K/n+ 1/n

´
K/
√
n = O(ζ(K)/

√
n)O(K2/n) = o(K2/n)

so with h = −Γ00Υ−1ḡ, we can write,

√
nβ̂H =

√
nΩ−1(h+

4X
j=1

TH
j + ZH)°°TH

1

°° = O(K/
√
n),

°°TH
2

°° = O(
p
K/n),

°°TH
3

°° = O(1/
√
n)°°TH

4

°° = O(ζ(K)K/n),
°°ZH

°° = o(K2/n)

Using the expansion, Ω−1 = Ω∗−1+Ω∗−1 (Ω∗ − Ω)Ω∗−1+O(∆2
K,n) and noting that under

the condition on K, TH
1 = o(1) then we can write,

³√
nβ̂H

´2
= nΩ−1hh0Ω−1 + Ω∗−1

Ã
TH
1 TH

1 + 2
4X

j=1

hTH
j

!
Ω∗−1 + o(γK,n)
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Ω−1E(hh0)Ω−1 = Ω−1 = Ω∗−1 + Ω∗−1 (Ω∗ − Ω)Ω∗−1 +O(∆2
K,n)

with E
¡
hTH

1

¢
= E(hTH

2 ) = 0 by the third moment condition. Next,

E
¡
nTH

1 TH
1

¢
=
1

n

ÃX
i

E(ρiη0i)ξii

!2
+ o(γK,n)

and by the third moment condition,

nE(TH
1 h) = nE(Γ00Υ

−1Υ̂v1Σḡh) =
1

n

X
i

(κi − 1)d2i ξii + o(γK,n)

= O(K/n) = o(γK,n)

nE(TH
3 h) = −nE(

¡
Γ̄0 − Γ0

¢0
ΣΥ̂v1Σḡh) + nE(Γ00Υ

−1Υ̂v1ΣΥ̂v1Σḡh)

−2nE(β̃Γ00Υ−1ΥρηΣΥ̂v1Σḡ)

= −1
n

X
i

(κi − 1)d2i ξii + o(γK,n)

Therefore we have the result,

E(ntΩ−1
³
h2 + 2hT 1h +

¡
T 1h
¢2
+ 2hT 2h

´
Ω−1t)

= Ω∗−1 +Π2/n+
¡
Ω∗ − Γ00Υ

−1Γ0
¢
+ o(γK,n)

using the fact that Ω∗Ω−1 = I + (Ω∗ − Ω)Ω∗−1 +O(∆2
K,n) and the fact that τ = Ω∗t

Proof of Proposition 2: For BGMM we have the additional term,

(Γ̂00Υ̂
−1Γ̂0)

−1
nX
i=1

Γ̂00iΣ̂ĝi/n
2 = Ω̂−1

nX
i=1

Γ̂00iΣ̂ĝi/n
2

Γ̂0 =
nX
i=1

Γ̂0i/n, Γ̂0i = qiŷi, ŷi = [∂ρi(β̂
H)/∂β]0, ĝi = qiρi(β̂

H)

Σ̂ = Υ̂−1 − Υ̂−1Γ̂0Ω̂
−1Γ̂00Υ̂

−1,Ω̂ = Γ̂00Υ̂
−1Γ̂0

First we have by Assumption 3, letting Γ0i = qiE(∂ρi(0)/∂β), Γ0i(0) = qi∂ρi(0)/∂β

Γ̂0i = Γ0i + (Γ0i(0)− Γ0i) + β̂Γ1i + β̂(Γ1i(0)− Γ1i) +
³
β̂
´2

Γ∗2i

ĝi = gi + Γ0iβ̂ + (Γ0i(0)− Γ0i) β̂ +
³
β̂
´2

Γ∗1i
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Using,

Ω̂−1 = Ω−1 + Ω−1
³
Ω− Ω̂

´
Ω−1 + Ω−1

³
Ω− Ω̂

´
Ω̂−1

³
Ω− Ω̂

´
Ω−1

and,

Ω̂− Ω = Γ̂00Υ̂
−1Γ̂0 − Γ̂00Υ

−1Γ̂0 + Γ̂00Υ
−1Γ̂0 − Γ00Υ

−1Γ0

Γ̂00Υ̂
−1Γ̂0 − Γ̂00Υ

−1Γ̂0 = Γ00

³
Υ̂−1 −Υ−1

´
Γ0 +

³
Γ̂0 − Γ0

´0 ³
Υ̂−1 −Υ−1

´
Γ0

+Γ00

³
Υ̂−1 −Υ−1

´³
Γ̂0 − Γ0

´
+
³
Γ̂0 − Γ0

´0 ³
Υ̂−1 −Υ−1

´³
Γ̂0 − Γ0

´
with

Γ̂0 − Γ0 = Γ̄0 − Γ0 + β̂Γ̄1 + β̂2Γ̄∗1

= Γ̄0 − Γ0 + β̂Γ1 + β̂(Γ̄1 − Γ1) + β̂2Γ̄∗1

we can write, ³
Υ̂−1 −Υ−1

´
= Υ−1

³
Υ− Υ̂

´
Υ−1 +Υ−1

³
Υ− Υ̂

´
Υ̂−1

³
Υ− Υ̂

´
Υ−1

Γ00

³
Υ̂−1 −Υ−1

´
Γ0 = Γ00Υ

−1
³
Υ− Υ̂

´
Υ−1Γ0

+Γ00Υ
−1
³
Υ− Υ̂

´
Υ̂−1

³
Υ− Υ̂

´
Υ−1Γ0

Γ00Υ
−1
³
Υ− Υ̂

´
Υ̂−1

³
Υ− Υ̂

´
Υ−1Γ0 = O(K/n)

Γ00Υ
−1
³
Υ− Υ̂

´
Υ−1Γ0 = −Γ00Υ−1Υ̂v1Υ

−1Γ0

−β̂Γ00Υ−1ΥρηΥ
−1Γ0 +O(1/n)

Γ00Υ
−1Υ̂v1Υ

−1Γ0 = O(1/
√
n)

β̂Γ00Υ
−1ΥρηΥ

−1Γ0 = O(1/
√
n)³

Γ̂0 − Γ0
´0 ³

Υ̂−1 −Υ−1
´
Γ0 = O(ζ(K)

√
K/n)³

Γ̂0 − Γ0
´0 ³

Υ̂−1 −Υ−1
´³

Γ̂0 − Γ0
´
= o(K/n)

Γ̂00Υ
−1Γ̂0 − Γ00Υ

−1Γ0 =
³
Γ̂0 − Γ0

´0
Υ−1Γ0 + Γ00Υ

−1
³
Γ̂0 − Γ0

´
+
³
Γ̂0 − Γ0

´0
Υ−1

³
Γ̂0 − Γ0

´
³
Γ̂0 − Γ0

´0
Υ−1Γ0 =

¡
Γ̄0 − Γ0

¢0
Υ−1Γ0 + β̂Γ1Υ

−1Γ0 +O(1/n)³
Γ̂0 − Γ0

´0
Υ−1

³
Γ̂0 − Γ0

´
= O(K/n)
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so that,

Ω̂− Ω = Γ00Υ
−1Υ̂v1Υ

−1Γ0 + 2β̂Γ
0
0Υ

−1ΥρηΥ
−1Γ0 −

¡
Γ̄0 − Γ0

¢0
Υ−1Γ0 − β̂Γ1Υ

−1Γ0

−Γ00Υ−1
¡
Γ̄0 − Γ0

¢
− β̂Γ00Υ

−1Γ1 +O(ζ(K)
√
K/n)°°°Ω̂− Ω

°°° = O(1/
√
n)

Now,

nX
i=1

Γ̂00iΣ̂ĝi/n
2 =

µ
1

n2

¶ nX
i=1

Γ̂00iΣĝi/n
2 +

µ
1

n2

¶ nX
i=1

Γ̂00i(Σ̂− Σ)ĝi/n
2

and,

nX
i=1

Γ̂0iΣĝi/n
2 =

nX
i=1

Γ00iΣgi/n
2 +

nX
i=1

Γ00iΣΓ0iβ̂/n
2 +

nX
i=1

(Γ0i(0)− Γ0i)
0Σgi/n

2

+
nX
i=1

(Γ0i(0)− Γ0i)
0Σ (Γ0i(0)− Γ0i) β̂/n

2

+β̂
nX
i=1

(Γ1i(0)− Γ1i)
0Σgi/n

2 +O(1/
√
n)o(K/n)

with,

nX
i=1

Γ00iΣgi/n
2 = O(1/

√
n)O(ζ(K)

√
K/n)

nX
i=1

Γ00iΣΓ0iβ̂/n
2 = O(1/

√
n)O(K/n)

nX
i=1

(Γ0i(0)− Γ0i)
0Σgi/n

2 = O(1/
√
n)O(K/

√
n)

nX
i=1

(Γ0i(0)− Γ0i)
0Σ (Γ0i(0)− Γ0i) β̂/n

2 = O(1/
√
n)O(K/n)

β̂
nX
i=1

(Γ1i(0)− Γ1i)
0Σgi/n

2 = O(1/
√
n)O(K/n)
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Next

nX
i=1

Γ̂00i(Σ̂− Σ)ĝi/n
2

=
nX
i=1

Γ̂00i

³
Υ̂−1 −Υ−1

´
ĝi/n

2 +
nX
i=1

Γ̂00i

³
Υ−1Γ0Ω̂

−1Γ̂00Υ̂
−1 − Υ̂−1Γ̂0Ω

−1Γ̂00Υ̂
−1
´
ĝi/n

2

+
nX
i=1

Γ̂00i

³
Υ̂−1Γ̂0Ω

−1Γ̂00Υ̂
−1 −Υ−1Γ0Ω

−1Γ00Υ
−1
´
ĝi/n

2

For the first term using the above expansions for Υ̂−1−Υ−1 and for Υ−Υ̂ in Proposition

1, we can show that using T, followed by CS and then ME and the conditions on K, for

BGMM we have

nX
i=1

Γ̂00iΥ
−1
³
Υ− Υ̂

´
Υ−1ĝi/n

2 = −
nX
i=1

Γ00iΥ
−1Υ̂v1Υ

−1gi/n
2 −

nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1Υ̂v1Υ

−1gi/n
2

−2β̂
nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1ΥρηΥ

−1gi/n
2 +O(1/

√
n)o(K/n)

with, °°°°°
nX
i=1

Γ00iΥ
−1Υ̂v1Υ

−1gi/n
2

°°°°° = (1/
√
n)O(ζ(K)K/n)°°°°°

nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1Υ̂v1Υ

−1gi/n
2

°°°°° = (1/
√
n)O(ζ(K)K/n)

°°°°°2β̂
nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1ΥρηΥ

−1gi/n
2

°°°°° = O(1/
√
n)O(K/n)

where the second part of the first term satisfies (using similar arguments),°°°°°
nX
i=1

Γ̂00iΥ
−1
³
Υ− Υ̂

´
Υ̂−1

³
Υ− Υ̂

´
Υ−1ĝi/n

2

°°°°° = O(1/
√
n)o(K/n)

For the remaining terms we can show using similar arguments that they are eachO(1/
√
n)o(K/n).

So altogether
Pn

i=1 Γ̂0iΣ̂ĝi/n
2 = O(K/

√
n) so that by the condition on K and,

O(K/
√
n)
³
O(ζ(K)

√
K/n) +O(∆K,n)

´
= O(γK,n)
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we have that

Ω̂−1
nX
i=1

Γ̂00iΣ̂ĝi/n
2 = Ω−1

nX
i=1

Γ00iΣgi/n
2 + Ω−1

nX
i=1

Γ00iΣΓ0iβ̂/n
2

+Ω−1
nX
i=1

(Γ0i(0)− Γ0i)
0Σgi/n

2 + Ω−1
nX
i=1

(Γ0i(0)− Γ0i)
0Σ (Γ0i(0)− Γ0i) β̂/n

2

+Ω−1β̂
nX
i=1

(Γ1i(0)− Γ1i)
0Σgi/n

2 − Ω−1
nX
i=1

Γ00iΥ
−1Υ̂v1Υ

−1gi/n
2

−Ω−1
nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1Υ̂v1Υ

−1gi/n
2

−2β̂Ω−1
nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1ΥρηΥ

−1gi/n
2

+Ω−1Γ00Υ
−1Υ̂v1Υ

−1Γ0Ω
−1

nX
i=1

Γ00iΣgi/n
2

+2β̂Ω−1Γ00Υ
−1ΥρηΥ

−1Γ0Ω
−1

nX
i=1

Γ00iΣgi/n
2

−Ω−1
³
Γ00Υ

−1 ¡Γ̄0 − Γ0
¢
+
¡
Γ̄0 − Γ0

¢0
Υ−1Γ

´
Ω−1

nX
i=1

Γ00iΣgi/n
2

−β̂Ω−1
¡
Γ00Υ

−1Γ1 + Γ1Υ
−1Γ

¢
Ω−1

nX
i=1

Γ00iΣgi/n
2 +O(1/

√
n)o(K/n)

Now combining terms here with the terms that are not O(1/
√
n)o(K/n) from GMM

and using the facts that for j = 0, 1,

−
¡
Γ̄j − Γj

¢0
Σḡ +

nX
i=1

Γ00iΣgi/n
2 =

nX
i6=j

Γ00iΣgj/n
2 = O(1/

√
n)O(

p
K/n)

and the fact that β̂ = −Ω−1Γ00Υ−1ḡ + o(1/
√
n) have that for instance,

(Γ̄1 − Γ1)
0ΣḡΩ−1Γ00Υ

−1ḡ + β̂
nX
i=1

(Γ1i(0)− Γ1i)
0Σgi/n

2 = O(1/
√
n)O(

√
K/n)

This also occurs by combining terms from GMM and BGMM. Then for BGMM we have
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that for γK,n = K/n+∆K,n,

√
nβ̂B = Ω−1(h+

5X
j=1

TB
j + ZB)°°TB

1

°° = O(
p
K/n),

°°TB
2

°° = O(ζ(K)K/n),
°°TB

3

°° = O(1/
√
n)°°TB

4

°° = O(ζ(K)
√
K/n)

°°TB
5

°° = O(K/n),
°°ZB

°° = o(γK,n)

then under the condition on K as with GMM,

n
³
β̂B
´2
= nΩ−1hh0Ω−1 + Ω∗−1(TB

1 T
B
1 +

5X
j=1

2TB
j h)Ω

∗−1 + o(γK,n)

Now doing the calculations we get E(hTB
3 ) = O by Assumption 1(iv). Then we have for

E(TB
1 T

B
1 ) the terms,

nE(
nX
i 6=j

Γ00iΣgj/n
2) =

1

n

X
i

E(η20i)ξii +
X
i,j

E(ρiη0i)E(ρjη0j)ξ
2
ij + o(γK,n)

nE(Γ00Υ
−1Υ̂v1Σḡ

nX
i 6=j

Γ00iΣgj/n
2) = o(γK,n)

nE(Γ00Υ
−1Υ̂v1Σḡḡ

0ΣΥ̂v1Υ
−1Γ) =

1

n

X
i

(κi − 1)d2i ξii + o(γK,n)

For the term 2TB
1 h we have by Assumption 1(iv)

2nE(Γ00Υ
−1Υ̂v1Σḡh) = −2

1

n

X
i

(κi − 1)d2i ξii + o(γK,n)

Next for 2TB
2 h we have,

−2nE(Γ00Υ−1Υ̂v1ΣΥ̂v1Σḡh) = o(γK,n)

−2nE(
¡
Γ̄0 − Γ0

¢0
ΣΥ̂v1Σḡh

0) = o(γK,n)

4nE(β̃Γ00Υ
−1ΥρηΣΥ̂v1Σḡh

0) = o(γK,n)

−2nE(
nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1Υ̂v1Υ

−1gi/n
2h0) = o(γK,n)

−2nE(
nX
i=1

Γ00iΥ
−1Υ̂v1Υ

−1gi/n
2h0) = o(γK,n)
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For the terms in 2TB
4 h we have,

2nE(
nX
i=1

Γ00iΣgi/n
2h0) = −21

n

X
i

d2i ξii + o(γK,n)

Next we must deal with the many terms in 2TB
4 h. We have for the terms coming from

Proposition 1,

4nE(β̃Γ00Υ
−1Υ̂v2Σḡh

0) = 4
1

n

X
i

d2i ξii + o(γK,n)

−4nE(β̃Γ00Υ−1ΥρηΥ
−1Γ0Ω

−1 ¡Γ̄0 − Γ0
¢0
Σḡh0) = −4Γ00Υ−1ΥρηΥ

−1Γ
1

n

X
i

E(ρiη0i)ξii

+o(γK,n)

−4nE(β̃Γ00Υ−1Υ̂v1ΣΥρηΣḡh
0) = o(γK,n)

2nE(
¡
Γ̄0 − Γ0

¢0
Σ
¡
Γ̄0 − Γ0

¢
Ω−1Γ00Υ

−1ḡh0) = −21
n

X
i

E(η20i)ξii + o(γK,n)

4nE(β̃
¡
Γ̄0 − Γ0

¢0
ΣΥρηΣḡh

0) =
1

n

X
i,j

E(ρiη0i)E(ρjηj)ξ
2
ij + o(γK,n)

2nE(Γ01ΣḡΩ
−1 ¡Γ̄0 − Γ0

¢0
Σḡh0) = o(γK,n)

and the terms coming from the expansion of the bias adjustment factor,

2nE(
nX
i=1

Γ00iΣΓ0iβ̂/n
2h0) = 2

1

n

X
i

d2i ξii

2nE(
nX
i=1

(Γ0i(0)− Γ0i)Σ (Γ0i(0)− Γ0i) β̂/n
2h0) = 2

1

n

X
i

E(η2i )ξii + o(γK,n)

−4nE(β̂
nX
i=1

(Γ0i(0)− Γ0i)
0Υ−1ΥρηΥ

−1gi/n
2h0) = −41

n

X
i,j

E(ρiη0i)E(ρjηj)ξ
2
ij + o(γK,n)

4nE(β̂Γ00Υ
−1ΥρηΥ

−1Γ0Ω
−1

nX
i=1

(Γ0i(0)− Γ0i)
0Σgi/n

2h)

= 4Γ00Υ
−1ΥρηΥ

−1Γ0
1

n

X
i

E(ρiη0i)ξii + o(γK,n)

Then collect all terms use the definition of τ to get the result.
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Proof of Proposition 3: For ease of notation assume that β̂ the GEL estimator has

population zero, so that both β̂ and λ̂ have population value zero. Also note that under

the conditions of the proposition γK,n ≥ C(K/n+∆K,n) so that terms in the expansion

can be dropped if they are o(K/n).Then the FOC given by,
P

imi(θ̂)/n = 0 where,

mi(θ) = −s1(λ0gi(β))
µ

Γ0i(β)
0λ

gi(β)

¶
and we have by Appendix B thatM andM−1 are the same as for GMM. Using Appendix

B we have µ
T β
1

T λ
1

¶
−M−1m =

µ
−Ω−1Γ00Υ−1ḡ
−Σḡ

¶
=

µ
O(1/

√
n)

O(
p
K/n)

¶
For −M−1

³
M̂ −M

´
θ̂ we have terms,

T β
2 = Ω−1

¡
Γ̄0 − Γ0

¢0
λ̂− Ω−1Γ00Υ

−1Υ̃vλ̂− Ω−1Γ00Υ
−1 ¡Γ̄0 − Γ0

¢
β̂

= O(K/n) +O(
√
K/n) +O(1/n)

T λ
2 = −Υ−1Γ0Ω−1

¡
Γ̄0 − Γ0

¢0
λ̂− Σ

³¡
Γ̄0 − Γ0

¢
β̂ + Υ̃vλ̂

´
= O(K/n) +O(

√
K/n) +O(ζ(K)

√
K/n)

using CS and arguments similar to Proposition 1. For the term −(1/2)M−1P
j θ̂jAj θ̂ we

have similarly,

T β
3 = Ω−1

³
β̂Γ01λ̂+ λ̂0Υρηλ̂

´
− Ω−1Γ00Υ

−1
³
(1/2)β̂2Γ1 + 2β̂Υρηλ̂

´
= O(1/n) +O(K/n) +O(1/n) +O(1/n)

T λ
3 = −Υ−1Γ0Ω−1

³
β̂Γ01λ̂+ λ̂0Υρηλ̂

´
− Σ

³
(1/2)β̂2Γ1 + 2β̂Υρηλ̂

´
= O(1/n) +O(K/n) +O(1/n) +O(

√
K/n)
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and from −M−1P
j θ̂j

³
Âj −Aj

´
θ̂/2 we have terms,

T β
4 = Ω−1β̂

¡
Γ̄1 − Γ1

¢0
λ̂+ Ω−1λ̂0

³
Υ̂v2 + Υ̂v3

´
λ̂− (1/2)Ω−1Γ00Υ−1β̂2

¡
Γ̄1 − Γ1

¢
−2Ω−1Γ00Υ−1β̂

³
Υ̂v2 + Υ̂v3

´
λ̂+ (s3/2)Ω

−1Γ00Υ
−1
X
j

λ̂jΥ̂
j
v4λ̂

= O(K/n3/2) +O(K/n)O(ζ(K)
p
K/n) +O(1/n3/2) +O(K/n3/2)

+O(K/n)O(
√
Kζ(K)/

√
n)

T λ
4 = −Υ−1Γ0Ω−1 (3/2) β̂

¡
Γ̄1 − Γ1

¢0
λ̂−+Υ−1Γ0Ω−1λ̂0

³
Υ̂v2 + Υ̂v3

´
λ̂− Σ(1/2)β̂2

¡
Γ̄1 − Γ1

¢
−Σβ̂

³
Υ̂v2 + Υ̂v3

´
λ̂− (s3/2)Σ

X
j

λ̂jΥ̂
j
v4λ̂

= O(K/n3/2) +O(K/n)O(ζ(K)
p
K/n) +O(

√
K/n3/2) +O(ζ(K)

√
K/n3/2)

+O(ζ(K)K/n3/2) +O(K/n)O(ζ(K)2
p
K/n)

= o(1/n)

where we use the notation Υ̂j
v4 =

P
i qiqiρ

3
i q

j
i /n. Note that for T

β
4 the order of the last

term follows from,°°°°°1nX
j

λ̂jΓ
0
0Υ

−1Υ̂j
v4λ̂

°°°°° ≤ °°°λ̂°°°°°°°°λ̂0 1nX
i

D̄iqiq
0
iρ
3
i

°°°°° ≤ °°°λ̂°°°2
°°°°°1nX

i

D̄iqiq
0
iρ
3
i

°°°°°
≤ O(K/n)O(

√
Kζ(K)/

√
n)

by,

E(

°°°°°1nX
i

D̄iqiq
0
iρ
3
i

°°°°°
2

) ≤ 1

n2

X
i

D̄2
iE(ρ

6
i ) kqik

4 = O(Kζ(K)2/n)

while for T λ
4 it follows from use of T, CS, the result for

°°°λ̂°°° and the fact that,
X
j

E(
°°°Υ̂j

v4

°°°2) ≤ 1

n2
λmax(Υ)

X
i

kqik2E(ρ6i )
X
j

¡
qji
¢2
q0iΥ

−1qi

≤ 1

n
Cλmax(Υ)

X
i

kqik2
¡
q0iΥ

−1qi/n
¢
kqik2 = O(Kζ(K)4/n)
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Next for −M−1P
j

P
k θ̂j θ̂kBjkθ̂/6 we have terms,

T β
5 = β̂Ω−1λ̂0Υηη+ddλ̂+ β̂Ω−1λ̂0Υρ1λ̂− (1/2)s3Ω−1λ̂

X
j

λ̂jΥ
j
2dλ̂

+(3/2)β̂s3Ω
−1Γ00Υ

−1
X
j

λ̂jΥ
j
2dλ̂− (1/6)s4Ω−1Γ00Υ−1

X
j,k

Υjk
4 λ̂jλ̂kλ̂

−(1/6)β̂3Ω−1Γ00Υ−1Γ2β̂ − β̂2Ω−1Γ00Υ
−1Υηη+ddλ̂− β̂2Ω−1Γ00Υ

−1Υρ1λ̂+ β̂2Ω−1Γ02λ̂

Υηη+dd =
X
i

qiqi(E(η
2
i |xi) + d2i ), Υρ1 =

X
i

qiqiE(ρiη1i|xi)/n,

Υj
2d =

X
i

qiqiq
j
i diE(ρ

2
i |xi)/n, Υjk

4 =
X
i

qiqiq
j
i q

k
iE(ρ

4
i |xi)/n

Here we can show that the last three terms are all o(K/n3/2).The first two terms are

O(K/n3/2) using CS and M, while for the remaining terms we can show that since,°°°°°X
j

λ̂jΥ
j
2dλ̂

°°°°° = O(
°°°λ̂°°°2)O(ζ(K)K)

we can show using CS that each term is O(1/
√
n)o(

p
K/n) given the condition on K.

Similarly it is possible to show that
°°T λ

5

°° = o(
√
K/n).The remaining terms in the expan-

sion are dealt with in a technical Appendix that is available on request — there we show

that the term in the remainder corresponding to β̂ is o(K/n3/2) and that the term for λ̂

is o(
√
K/n) as will be required in the remainder of the proof. The technical appendix

also contains all required derivatives.

Before collecting terms we note that by repeated substitution and using the prelimi-

nary bounds for the terms in the expansion for λ̂ we can write,

λ̂0Υρηλ̂ = ḡ0ΣΥρηΣḡ − 2ḡ0ΣΥ̃v1ΣΥρηΣḡ − 4β̂ḡ0ΣΥρηΣΥρηΣḡ

−2β̂
¡
Γ̄0 − Γ0

¢0
ΣΥρηΣḡ +O(1/

√
n)o(K/n)

kḡ0ΣΥρηΣḡk = O(K/n),
°°°2ḡ0ΣΥ̃v1ΣΥρηΣḡ

°°° = O(ζ(K)K/n3/2)°°°4β̂ḡ0ΣΥρηΣΥρηΣḡ
°°° = O(K/n3/2),

°°°2β̂ ¡Γ̄0 − Γ0
¢0
ΣΥρηΣḡ

°°° = O(K/n3/2)
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Then we can derive an expansion for λ̂,

λ̂ = −Σḡ + ΣΥ̃v1Σḡ +Υ−1Γ0Ω
−1
³¡

Γ̄0 − Γ0
¢0
Σḡ − ḡ0ΣΥρηΣḡ

´
+ 2Σβ̂ΥρηΣḡ + ΣR3λ°°R3λ°° = o(

√
K/n)

Υ−1Γ0Ω
−1
³¡

Γ̄0 − Γ0
¢0
Σḡ − ḡ0ΣΥρηΣḡ

´
= O(

√
K/n)

2Σβ̂ΥρηΣḡ = O(
√
K/n)

Now take the first β̂ term in T β
2 and substitute for λ̂ and combine with the second

part of T β
3 and substitute in for β̂ = −Ω−1Γ00Υ−1ḡ +O(1/

√
n) to get,

Ω−1
¡
Γ̄0 − Γ0

¢0
λ̂+ Ω−1λ̂0Υρηλ̂

= −Ω−1(
¡
Γ̄0 − Γ0

¢0
Σḡ − ḡ0ΣΥρηΣḡ)− Ω−1

¡
Γ̄0 − Γ0

¢0
Σ
¡
Γ̄0 − Γ0

¢ ¡
Ω−1Γ00Υ

−1ḡ
¢

+Ω−1
¡
Γ̄0 − Γ0

¢0
ΣΥ̃v1Σḡ − 4Ω−1

¡
Γ̄0 − Γ0

¢0
ΣΥρηΣḡ

¡
Ω−1Γ00Υ

−1ḡ
¢

−2Ω−1ḡ0ΣΥ̃v1ΣΥρηΣḡ + 4
¡
Ω−1Γ00Υ

−1ḡ
¢
Ω−1ḡ0ΣΥρηΣΥρηΣḡ

+O(1/
√
n)o(K/n)

where in addition to the terms that appeared in the expansion for GMM we have,°°°Ω−1(¡Γ̄0 − Γ0
¢0
Σḡ − ḡ0ΣΥρηΣḡ)

°°° = O(
√
K/n)°°°2Ω−1 ¡Γ̄0 − Γ0

¢0
ΣΥρηΣḡ

¡
Ω−1Γ00Υ

−1ḡ
¢°°° = O(K/n3/2)

with the other terms having the same order as described earlier. Hence we have that,

β̂ = −
¡
Ω−1Γ00Υ

−1ḡ
¢
+O(

√
K/n)

and so for the second term in T β
2 ,

Ω−1Γ00Υ
−1 ¡Γ̄0 − Γ0

¢
β̂ = Ω−1Γ00Υ

−1 ¡Γ̄0 − Γ0
¢ ¡

Ω−1Γ00Υ
−1ḡ
¢
+O(1/

√
n)o(K/n)

For the third term in T β
2 we have,

−Ω−1Γ00Υ−1Υ̃vλ̂ = Ω−1Γ00Υ
−1Υ̃vΣḡ − Ω−1Γ00Υ

−1Υ̃v1ΣΥ̃v1Σḡ

+2
¡
Ω−1Γ00Υ

−1ḡ
¢
Ω−1Γ00Υ

−1Υ̃vΣΥρηΣḡ +O(1/
√
n)o(K/n)
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The additional terms for T β
3 are (multiplied by Ω−1),

β̂Γ01λ̂ = −β̂Γ01Σḡ + β̂Γ01ΣΥ̃v1Σḡ +O(1/
√
n)O(

√
K/n)

= −β̂Γ01Σḡ +O(1/
√
n)O(

√
K/n)

=
¡
Ω−1Γ00Υ

−1ḡ
¢
Γ01Σḡ +O(1/

√
n)O(

√
K/n)

−(1/2)Γ00Υ−1Γ1β̂2 = −(1/2)Γ00Υ−1Γ1
¡
Ω−1Γ00Υ

−1ḡ
¢2
+O(1/

√
n)O(

√
K/n)

−2Γ00Υ−1β̂Υρηλ̂ = 2Γ00Υ
−1ΥρηΣḡ

¡
Ω−1Γ00Υ

−1ḡ
¢
− 2Γ00Υ−1ΥρηΣΥ̃v1Σḡ

¡
Ω−1Γ00Υ

−1ḡ
¢

+O(1/
√
n)O(

√
K/n)

under the condition that ζ(K)2K2/
√
n→ 0. From T β

4 we have,

Ω−1β̂
¡
Γ̄1 − Γ1

¢0
λ̂ = Ω−1

¡
Γ̄1 − Γ1

¢0
Σḡ
¡
Ω−1Γ00Υ

−1ḡ
¢

+O(1/
√
n)o(K/n)

Ω−1λ̂0
³
Υ̂v2 + Υ̂v3

´
λ̂ = Ω−1ḡ0Σ

³
Υ̂v2 + Υ̂v3

´
Σḡ +O(1/

√
n)o(1/n)

−(1/2)Ω−1Γ00Υ−1
¡
Γ̄1 − Γ1

¢
β̂2 = O(1/

√
n)o(1/n)

−2Ω−1Γ00Υ−1
³
Υ̂v2 + Υ̂v3

´
λ̂β̂ = −2Ω−1Γ00Υ−1

³
Υ̂v2 + Υ̂v3

´
Σḡ
¡
Ω−1Γ00Υ
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Σḡ
¡
Ω−1Γ00Υ

−1ḡ
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Finally, from T β
5 we get terms,β̂Ω

−1λ̂0Υηη+ddλ̂+β̂Ω
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¢
+O(1/

√
n)o(K/n)

β̂Ω−1λ̂0Υρ1λ̂ = −Ω−1ḡ0ΣΥρ1Σḡ
¡
Ω−1Γ00Υ

−1ḡ
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with the order of each term on the right the same as the order of the term on the left as

given above.

Then we can write,

√
nβ̂GEL = Ω−1(h+

3X
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j + ZG),
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1

°° = O(
p
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2

°° = O(1/
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°°ZB
°° = o(γK,n)

and where the terms in TG
3 are all o(

√
K/n), but are not necessarily o(γK,n). Given this

it is then the case that TG
3 is of an order

n
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´2
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1 T
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1 +

3X
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2TB
j h)Ω
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As in the case of BGMM and GMM we have that,

nΩ−1E(hh0)Ω−1 = Ω∗−1 + Ω∗−1(Ω∗ − Ω)Ω∗−1 + o(γK,n)

Then in place of the first term in E(TB
1 T

B
1 ) calculated in Proposition 2 we have,
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Next for
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Then we have,
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Finally for the terms that depend on s3 we have,
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Collecting terms with those already found in Proposition 2, we have
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Then using the definition of τ the result. follows.
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Appendix B: Expansion

For ease of notation we assume that θ = (β, λ0)0 is the estimator with population value

0. Then for an estimator satisfying

m̂(θ) =
1

n

nX
i=1

mi(θ) = 0

, we can write the following expansion,

m̂(θ) = m̂(0) + M̂θ + (1/2)
X
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and where the rows of Ĉ∗jkl are the third derivatives with respect to θj, θk, and θl evaluated

at a value θ∗ that lies on the line segment joining θ and the limit value which is 0.

Consequently
°°θ∗j°° < kθjk for all j and kβ∗k < kβk, kλ∗k < kλk. In the second line the

terms M , Aj, and Bjk are the nonstochastic (given xi) population values of M̂ , Âj, and

B̂jk. Then we have,
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For both GMM and GEL it is possible to show that the part of Rn,K that corresponds

to β, say Rβ
n,K satisfies,

°°°Rβ
n,K

°°° = O(1/
√
n)o(γK,n).
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Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.028 0.129 0.489 0.934 0.018
GMM-op 0.019 0.143 0.537 0.942 0.022
BGMM-all 0.013 0.163 0.616 0.864 0.012
BGMM-op 0.011 0.152 0.586 0.936 0.036
EL-all -0.011 0.190 0.712 0.806 0.054
EL-op 0.011 0.158 0.597 0.934 0.048
ET-all -0.004 0.195 0.716 0.790 0.048
ET-op 0.010 0.155 0.593 0.936 0.042
CUE-all 0.006 0.192 0.733 0.770 0.010
CUE-op 0.013 0.151 0.596 0.924 0.032
2SLS-all 0.027 0.126 0.447 0.958 0.026
2SLS-op 0.018 0.137 0.509 0.974 0.034
LIML-all -0.009 0.183 0.649 0.974 0.030
LIML-op 0.009 0.141 0.564 0.980 0.026

Table I: n = 200, Cov=0.1, Normal

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.018 0.113 0.422 0.932 0.034
GMM-op 0.013 0.125 0.478 0.926 0.044
BGMM-all 0.001 0.135 0.513 0.864 0.032
BGMM-op 0.021 0.137 0.529 0.916 0.040
EL-all -0.018 0.173 0.646 0.782 0.174
EL-op 0.007 0.149 0.586 0.882 0.104
ET-all -0.008 0.158 0.601 0.798 0.110
ET-op 0.014 0.148 0.564 0.878 0.088
CUE-all -0.006 0.160 0.590 0.787 0.024
CUE-op 0.008 0.144 0.562 0.880 0.042
2SLS-all 0.034 0.118 0.443 0.948 0.040
2SLS-op 0.031 0.143 0.516 0.952 0.050
LIML-all 0.001 0.182 0.710 0.972 0.044
LIML-op 0.017 0.152 0.567 0.962 0.052

Table II: n = 200, Cov=0.1, Logistic
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Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.149 0.165 0.436 0.782 0.038
GMM-op 0.065 0.153 0.530 0.858 0.036
BGMM-all 0.064 0.169 0.598 0.842 0.032
BGMM-op 0.047 0.154 0.532 0.91 0.036
EL-all -0.002 0.182 0.761 0.854 0.072
EL-op 0.036 0.162 0.552 0.896 0.052
ET-all 0.003 0.180 0.711 0.860 0.066
ET-op 0.035 0.155 0.533 0.898 0.048
CUE-all 0.002 0.177 0.734 0.840 0.022
CUE-op 0.039 0.153 0.528 0.886 0.038
2SLS-all 0.143 0.161 0.426 0.836 0.066
2SLS-op 0.066 0.152 0.517 0.900 0.046
LIML-all 0.006 0.170 0.680 0.964 0.044
LIML-op 0.041 0.154 0.527 0.946 0.048

Table III: n = 200, Cov=0.5, Normal

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.131 0.161 0.438 0.768 0.038
GMM-op 0.079 0.154 0.516 0.854 0.044
BGMM-all 0.062 0.160 0.540 0.816 0.032
BGMM-op 0.048 0.148 0.527 0.880 0.038
EL-all 0.016 0.187 0.701 0.796 0.160
EL-op 0.041 0.156 0.578 0.860 0.090
ET-all 0.012 0.178 0.635 0.796 0.108
ET-op 0.039 0.153 0.555 0.868 0.078
CUE-all -0.004 0.170 0.638 0.776 0.014
CUE-op 0.041 0.154 0.530 0.866 0.036
2SLS-all 0.147 0.172 0.461 0.800 0.076
2SLS-op 0.081 0.160 0.550 0.874 0.058
LIML-all -0.007 0.175 0.707 0.936 0.06
LIML-op 0.045 0.149 0.581 0.920 0.054

Table IV: n = 200, Cov=0.5, Logistic
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Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.274 0.275 0.368 0.460 0.180
GMM-op 0.124 0.189 0.565 0.798 0.078
BGMM-all 0.128 0.183 0.583 0.738 0.092
BGMM-op 0.091 0.171 0.600 0.814 0.072
EL-all 0.016 0.165 0.688 0.876 0.096
EL-op 0.056 0.168 0.599 0.846 0.126
ET-all 0.020 0.165 0.690 0.874 0.084
ET-op 0.059 0.166 0.603 0.842 0.126
CUE-all 0.024 0.165 0.681 0.880 0.034
CUE-op 0.063 0.169 0.589 0.838 0.078
2SLS-all 0.274 0.275 0.334 0.484 0.198
2SLS-op 0.115 0.186 0.559 0.820 0.062
LIML-all 0.006 0.161 0.648 0.944 0.056
LIML-op 0.041 0.156 0.623 0.900 0.108

Table V: n = 200,Cov=0.9, Normal

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.213 0.213 0.349 0.568 0.134
GMM-op 0.092 0.136 0.505 0.874 0.076
BGMM-all 0.065 0.146 0.484 0.802 0.078
BGMM-op 0.073 0.134 0.472 0.854 0.084
EL-all -0.006 0.146 0.620 0.886 0.158
EL-op 0.044 0.133 0.504 0.870 0.160
ET-all -0.010 0.134 0.551 0.898 0.118
ET-op 0.039 0.126 0.470 0.892 0.144
CUE-all -0.016 0.129 0.530 0.879 0.034
CUE-op 0.030 0.122 0.472 0.886 0.066
2SLS-all 0.242 0.244 0.347 0.580 0.190
2SLS-op 0.081 0.134 0.485 0.882 0.076
LIML-all -0.008 0.131 0.595 0.952 0.056
LIML-op 0.032 0.127 0.557 0.934 0.108

Table VI: n = 200, Cov=0.9, Logistic
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GMM BGMM EL ET CUE TSLS LIML
Normal K 5 3 3 3 3 5 3+

Mode 2 2 2 2 2 3 2
1Q 3 2 2 2 2 3 2
Med. 5 3 3 3 3 4 3
3Q 8 4 5 5 4 6 4

Logistic K 5 4+ 2+ 3 5+ 5 3+
Mode 10 3 2 2 3 3 3
1Q 4 3 2 3 3 3 2
Med. 6 4 4 4 4 4 3
3Q 9 6 6 7 7 6 4

Table VII: Statistics for K̂, n = 200, cov=0.1

GMM BGMM EL ET CUE TSLS LIML
Normal K 3 3- 4- 4- 4- 3 4

Mode 2 2 2 2 2 2 3
1Q 2 2 2 2 2 2 2
Med. 3 3 3 3 3 3 3
3Q 4 4 5 5 5 4 5

Logistic K 3 4- 3- 4- 10- 3 4-
Mode 3 3 3 3 3 2 2
1Q 2 2 2 3 3 2 2
Med. 4 4 4 4 5 3 3
3Q 6 6 7 7 7 4 5

Table VIII: Statistics for K̂, n = 200, cov=0.5

GMM BGMM EL ET CUE TSLS LIML
Normal K 2 2+ 4+ 4+ 4+ 2 5

Mode 2 2 3 3 3 2 3
1Q 2 2 3 3 3 2 3
Med. 2 3 4 4 4 2 4
3Q 3 3 7 7 6 3 7

Logistic K 2 3+ 3- 4 10 2 5
Mode 2 2 10 10 10 2 3
1Q 2 2 3 4 4 2 3
Med. 2 3 6 6 6 2 4
3Q 3 5 9 9 9 3 7

Table IX: Statistics for K̂, n = 200, cov=0.9
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Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.019 0.07 0.262 0.925 0.035
GMM-op 0.01 0.078 0.265 0.92 0.055
BGMM-all 0.006 0.081 0.302 0.92 0.025
BGMM-op 0.001 0.084 0.298 0.92 0.06
EL-all 0.000 0.085 0.305 0.895 0.065
EL-op -0.001 0.080 0.296 0.900 0.060
ET-all 0.005 0.084 0.314 0.895 0.070
ET-op 0.001 0.080 0.290 0.905 0.065
CUE-all 0.006 0.082 0.307 0.895 0.025
CUE-op 0.004 0.082 0.298 0.915 0.055
2SLS-all 0.022 0.066 0.24 0.925 0.050
2SLS-op 0.005 0.074 0.275 0.920 0.060
LIML-all -0.001 0.079 0.305 0.945 0.060
LIML-op -0.006 0.083 0.296 0.930 0.055

Table X: n = 800, cov=0.1, Normal

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.007 0.068 0.234 0.93 0.025
GMM-op 0.007 0.073 0.253 0.925 0.025
BGMM-all -0.007 0.076 0.271 0.89 0.025
BGMM-op -0.002 0.07 0.269 0.905 0.025
EL-all -0.012 0.082 0.300 0.850 0.135
EL-op -0.002 0.082 0.288 0.910 0.085
ET-all -0.015 0.083 0.286 0.845 0.105
ET-op -0.003 0.073 0.290 0.900 0.080
CUE-all -0.005 0.08 0.281 0.856 0.025
CUE-op -0.001 0.073 0.276 0.887 0.035
2SLS-all 0.005 0.067 0.243 0.965 0.060
2SLS-op 0.007 0.072 0.260 0.975 0.025
LIML-all -0.012 0.078 0.314 0.975 0.060
LIML-op -0.010 0.069 0.297 0.98 0.045

Table XI: n = 800, cov=0.1, Logistic
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Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.087 0.094 0.237 0.770 0.070
GMM-op 0.034 0.081 0.269 0.910 0.035
BGMM-all 0.022 0.085 0.297 0.860 0.065
BGMM-op 0.016 0.077 0.278 0.940 0.020
EL-all 0.004 0.089 0.322 0.890 0.075
EL-op 0.015 0.084 0.282 0.930 0.065
ET-all 0.005 0.089 0.314 0.880 0.075
ET-op 0.015 0.085 0.282 0.935 0.065
CUE-all 0.009 0.090 0.322 0.870 0.050
CUE-op 0.015 0.082 0.276 0.935 0.040
2SLS-all 0.089 0.090 0.231 0.805 0.065
2SLS-op 0.035 0.077 0.255 0.915 0.035
LIML-all 0.004 0.085 0.319 0.960 0.055
LIML-op 0.018 0.083 0.281 0.955 0.040

Table XII: n = 800, cov=0.5, Normal

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.082 0.091 0.241 0.790 0.05
GMM-op 0.042 0.078 0.274 0.870 0.045
BGMM-all 0.022 0.079 0.291 0.870 0.025
BGMM-op 0.025 0.081 0.285 0.895 0.055
EL-all -0.003 0.089 0.312 0.875 0.155
EL-op 0.016 0.083 0.287 0.885 0.100
ET-all 0.000 0.082 0.303 0.870 0.115
ET-op 0.018 0.080 0.275 0.885 0.080
CUE-all 0.001 0.086 0.302 0.838 0.025
CUE-op 0.017 0.077 0.273 0.880 0.045
2SLS-all 0.093 0.093 0.224 0.800 0.055
2SLS-op 0.041 0.076 0.278 0.890 0.060
LIML-all -0.009 0.076 0.286 0.955 0.055
LIML-op 0.021 0.078 0.274 0.925 0.06

Table XIII: n = 800, cov=0.5, Logistic
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Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.176 0.176 0.212 0.415 0.145
GMM-op 0.064 0.093 0.273 0.880 0.055
BGMM-all 0.060 0.100 0.297 0.815 0.070
BGMM-op 0.044 0.083 0.294 0.875 0.060
EL-all 0.010 0.078 0.287 0.915 0.085
EL-op 0.032 0.082 0.272 0.895 0.105
ET-all 0.016 0.078 0.279 0.920 0.115
ET-op 0.025 0.079 0.273 0.920 0.135
CUE-all 0.012 0.080 0.280 0.925 0.075
CUE-op 0.025 0.079 0.276 0.920 0.115
2SLS-all 0.166 0.166 0.217 0.455 0.140
2SLS-op 0.061 0.089 0.268 0.88 0.050
LIML-all 0.020 0.079 0.285 0.95 0.060
LIML-op 0.035 0.080 0.276 0.93 0.100

Table XIV: n = 800, cov=0.9, Normal

Est. Med. Bias Med. AD Dec. Rge Cov. Over.
GMM-all 0.143 0.145 0.179 0.530 0.130
GMM-op 0.046 0.089 0.274 0.885 0.045
BGMM-all 0.033 0.070 0.230 0.885 0.075
BGMM-op 0.039 0.074 0.263 0.875 0.075
EL-all 0.003 0.066 0.289 0.910 0.180
EL-op 0.024 0.072 0.256 0.920 0.165
ET-all -0.002 0.086 0.281 0.910 0.115
ET-op 0.015 0.079 0.281 0.910 0.125
CUE-all -0.001 0.083 0.264 0.919 0.035
CUE-op 0.013 0.079 0.277 0.911 0.040
2SLS-all 0.161 0.161 0.199 0.510 0.135
2SLS-op 0.058 0.089 0.304 0.870 0.085
LIML-all 0.004 0.077 0.304 0.975 0.075
LIML-op 0.016 0.076 0.263 0.955 0.115

Table XV: n = 800, cov=0.9,Logistic
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GMM BGMM EL ET CUE TSLS LIML
Normal K 10 7 7+ 7+ 7+ 10 8-

Mode 8 6 6 6 6 8 6
1Q 8 6 6 6 6 7 6
Med. 12 7 7 7 7 9 7
3Q 17 9 9 9 9 13 9

Logistic K 10 9+ 6 7 11- 10 8
Mode 20 10 7 8 8 8 7
1Q 10 8 6 7 8 7 6
Med. 15 11 8 10 12 9 7
3Q 19 16 12 15 17 12 8

Table XVI: Statistics for K̂, n = 800, cov=0.1

GMM BGMM EL ET CUE TSLS LIML
Normal K 6- 7- 8 8 8 6- 9-

Mode 5 6 7 7 7 5 7
1Q 5 6 6 6 6 5 6
Med. 6 7 8 8 8 6 8
3Q 7 8 10 10 9 7 10

Logistic K 6- 8 7- 8 20 6- 9-
Mode 6 6 6 6 20 6 6
1Q 5 7 6 7 9 5 6
Med. 6 10 9 11 13 6 8
3Q 8 15 14 15 18 7 10

Table XVII: Statistics for K̂, n = 800, cov=0.5

GMM BGMM EL ET CUE TSLS LIML
Normal K 4 6+ 9 9 9 4 11

Mode 4 5 8 9 9 4 8
1Q 4 5 8 8 7 4 8
Med. 4 6 10 10 10 4 10
3Q 5 7 15 15 14 5 14

Logistic K 4 7 7 9 20 4 11
Mode 4 7 20 20 20 4 8
1Q 4 6 8 10 13 3 7
Med. 4 8 12 15 17 4 9
3Q 5 12 18 19 19 4 14

Table XVIII: Statistics for K̂, n = 800, cov=0.9
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