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Abstract

This paper gives identification and estimation results for average and quantile effects in nonsep-

arable panel models. Nonseparable models are important for modeling in a variety of economic

settings, including discrete choice. We find that linear fixed effects estimators are not consistent

for the average effect, due in part to that effect not being identified. Nonparametric bounds

for quantile and average effects are derived for discrete regressors that are strictly exogenous

or predetermined. We allow for location and scale time effects and show how monotonicity can

be used to shrink the bounds. We derive rates at which the bounds tighten as the number T

of time series observations grows. We also consider semiparametric discrete choice models and

find that the bounds for average effects tighten considerably. In numerical calculations we find

that the bounds may be very tight for small numbers of observations, suggesting their use in

practice. We propose two novel inference methods for parameters defined as solutions to linear

and nonlinear programs such as average effects in multinomial choice models. We show that

these methods produce uniformly valid confidence regions in large samples. We give empirical

illustrations.



1 Introduction

Interesting empirical questions are often formulated in term of the ceteris paribus effect of x on y,

when observed x is an individual choice variable partly determined by preferences or technology.

Panel data holds out the hope of controlling for individual preferences or technology by using

multiple observations for a single economic agent. This hope is particularly difficult to realize

with discrete or other nonseparable models and/or multidimensional individual effects. These

models are, by nature, not additively separable in unobserved individual effects, making them

challenging to identify and estimate. There are some simple solutions, such as the conditional

MLE for the slope parameter of a logit model with an individual location effect. However these

are rare and dependent on specific models or distributions.

A fundamental idea for using panel data to identify the ceteris paribus effect of x on y

is to use changes in x over time to estimate the effect. In order for changes over time in x

to correspond to ceteris paribus effects, the distribution of variables other than x must not

vary over time. This restriction is like “time being randomly assigned.” In this paper we

consider identification via such time homogeneity conditions. They are also the basis of many

previous panel results, including Chamberlain (1982), Manski (1987), and Honore (1992). Here

we consider the identifying power of time homogeneity for general nonseparable models and

for semiparametric discrete choice models. We also allow for multidimensional heterogeneity, as

motivated by the economic and empirical examples of Browning and Carro (2007). Because time

homogeneity can include homoskedasticity over time, that often does not hold in applications,

we also allow for some time effects.

Models with discrete regressors have many applications and are the subject of most of this

paper. With discrete regressors, time homogeneity only leads to partial identification of non-

parametric quantile and average treatment effects, as shown by Chamberlain (1982) for the

average effect in an important example, and here more generally. Recently Graham and Powell

(2008) and Hoderlein and White (2009) have used time homogeneity to obtain some identifica-

tion results in nonseparable models with continuous regressors.

We show that average and quantile effects on those individuals for whom x changes are

identified, as Chamberlain (1982) did for the average effect in a linear random coefficient example.

We give simple estimators for the identified effects. We also find that linear fixed effects estimates

a time variance weighted average effect rather than the average effect. We also show that overall

quantile and average effects are not identified but that the data can be informative about them.

To show how much information time homogeneity provides with discrete regressors we derive

sharp bounds for quantile and average treatment effects in a static nonparametric model. We also

derive bounds for these effects in a dynamic model that allows for lagged dependent variables.
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The dynamic bounds provide a partial solution to the problem of estimating state dependence

in the presence of unobserved heterogeneity. In an Appendix we allow for location and scale

time effects in a static model and show how monotonicity can be used to shrink the bounds.

We derive rates at which the nonparametric bounds tighten as the number T of time series

observations grows, obtaining exponential rates in some interesting cases. We show in examples

that the nonparametric bounds can be informative but also may be quite wide.

The width of the nonparametric bounds motivates models that impose more restrictions,

leading to tighter bounds. To that end we consider semiparametric discrete choice models,

where the conditional distribution of the individual effects is unknown. We find that in a

semiparametric binary choice model with a location individual effect, the bounds are much

tighter than in the nonparametric model. In numerical calculations we find that the bounds

may be very tight even for small numbers of time periods, suggesting they should be informative

in practice. For the logit case of this model we also derive an exponential convergence rate for

the average partial effect bounds as the number of time periods T grows. The semiparametric

models we consider are also flexible enough to accommodate multiple sources of individual

heterogeneity, although we leave to future research numerical calculations, empirical examples,

and the derivation of rates as T grows for such cases.

We show that semiparametric discrete choice models have finite dimensional parameteriza-

tions. This reduces bounds calculation and estimation to a finite dimensional problem, albeit

a large dimensional, highly nonlinear, and computationally difficult one. To make computation

more feasible we use grids of fixed values for individual effects, so that average choice probabilities

are finite dimensional linear combinations. We combine this with minimum squared distance

fitting of data cell probabilities to obtain a quadratic programming approach for estimating

the individual effect distributions. This approach is computationally convenient and overcomes

problems with previously proposed methods, as further discussed below. We also allow the grid

to grow in order to approximate the true support points. It turns out that because the model is

finite dimensional there is no need to limit the number of grid points. Mathematically, a richer

fixed grid simply corresponds to a bigger submodel of the finite dimensional model.

The semiparametric bounds build on Honoré and Tamer (2006) and Chernozhukov, Hahn,

and Newey (2004). Both papers gave results for bounds in semiparametric nonlinear panel

data models. Honore and Tamer (2006) proposed linear programming, minimum distance, and

maximum likelihood methods for dynamic models. Chernozhukov, Hahn, and Newey (2004)

proposed sieve likelihood estimation of bounds for static models. These approaches are not

very useful for estimation. Plugging in sample frequencies in place of cell probabilities in the

linear programming algorithm produces empty identification regions because the frequencies

need not satisfy constraints imposed by the model. Also, the minimum distance objective
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function is computationally difficult, as is sieve maximum likelihood, given the dimensionality

of the individual effect distributions. Honore and Tamer (2006) also assumed a fixed known grid

for true individual effects, while we consider an approximation to an unknown grid.

The inferential problem for the semiparametric models is also rather challenging. The models

impose data-dependent constraints that are often infeasible in finite samples or under misspeci-

fication, which produces empty confidence regions. We overcome these difficulties by projecting

these data-dependent constraints onto the model space using the quadratic programming ap-

proach mentioned above, thus producing an always feasible data-dependent constraint set. We

then suggest linear and nonlinear programming methods that use these new modified constraints.

Our inference procedures have the appealing justification of targeting the true model under cor-

rect specification and targeting a best approximating model under incorrect specification. We

also develop two novel inferential procedures, one called modified projection and another per-

turbed bootstrap, that produce uniformly valid inference in large samples. These methods may

be of substantial independent interest.

We give two empirical illustrations. One is to estimation of the effect of unions on earnings

quantiles. There we obtain static and dynamic estimates, finding that a decline in the union effect

as the quantile increases can be attributed to individual heterogeneity. The other illustration is

to estimation of the effects of fertility on women’s labor force participation. There we compare

nonparametric and semiparametric estimates.

Another useful assumption for panel data is existence of a control variable, where condi-

tioning on that variable makes x and the individual effects independent, also referred to as

correlated random effects. This condition has been used by Chamberlain (1980, 1984), Altonji

and Matzkin (2005), and Bester and Hansen (2008). This is a powerful assumption that leads

to relatively simple estimators of interesting identified effects, but it does restrict dependence

between individual effects and regressors. We try to avoid such restrictions and focus instead

on time homogeneity.

Bias corrected fixed effects estimation of semiparametric models has been proposed by Hahn

and Kuersteiner (2002), Alvarez and Arellano (2003), Woutersen (2002), Hahn and Newey

(2004), and Fernández-Val (2009). These estimators have good theoretical properties for large

T and work well in many examples. In an Appendix we show that with small T, nonlinear fixed

effects consistently estimates the identified average effect for those whose x changes. However,

these methods are dependent on large T, while the bounds analysis we give applies to any T.

Section 2 describes the models and effects we consider. Section 3 discusses estimation of

identified effects. Section 4 and 5 derive bounds for the static and dynamic nonparametric

models respectively. Section 6 considers identification and rates as T grows. Section 7 describes

and gives results for semiparametric discrete choice models. Section 8 gives results and numerical
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examples on calculation of population bounds. Section 9 discusses estimation and Section 10

inference for semiparametric models. Section 11 gives the empirical examples. The Appendix

contains results that allow for time effects, impose monotonicity, and other results, as well as

proofs.

2 The Models and Effects

The data consist of n observations on Yi = (Yi1, ..., YiT )′ and Xi = [Xi1, ..., XiT ]′, for a depen-

dent variable Yit and a vector of regressors Xit. Throughout we assume that the observations

(Yi, Xi), (i = 1, ..., n), are independent and identically distributed. The nonparametric models

we consider satisfy

Assumption 1: There is a function g0(x, α, ε) and vectors αi and εit, (t = 1, ..., T ) of

random variables such that

Yit = g0(Xit, αi, εit), (i = 1, ..., n; t = 1, ..., T ).

The vector αi consists of time invariant individual effects that often represent individual

heterogeneity. The vector εit represents period specific disturbances. Altonji and Matzkin (2005)

considered models satisfying Assumption 1. The invariance of g0 over time in this Assumption

does not actually impose any time homogeneity. If there are no restrictions on εit then t could be

one of the components of εit, allowing the function to vary over time in a completely general way.

The next condition together with Assumption 1 imposes time homogeneity on the conditional

distribution of εit.

Assumption 2: εit|Xi, αi
d= εi1|Xi, αi, for all t.

This is a static, or ”strictly exogenous” time homogeneity condition, where all leads and

lags of the regressor are included in the conditioning variable Xi. It requires that the conditional

distribution of εit given Xi and αi does not depend on t, but does allow for dependence of εit over

time. An equivalent condition is ε̃it|Xi
d= ε̃i1|Xi for ε̃it = (αi, εit). Thus, the time invariant αi has

no distinct role in this model. The condition is just that whatever the unobserved disturbances

are, their conditional distribution given Xi does not depend on t.

This seems a basic condition that helps panel data provide information about the effect of x

on y. It is like the time period being ”randomly assigned,” with the distribution of factors other

than x not varying over time, so that changes in x over time can help identify the effect of x on y.

It also turns out to be a natural strengthening of linear model conditions. To see this consider a

linear model with Yit = X ′
itβ0 + ε̃it and E∗(ε̃it|Xi) = E∗(ε̃i1|Xi) for all t, where E∗(ε̃it|Xi) is the
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linear projection of ε̃it on Xi (assuming all second moments exist). The invariance of E∗(ε̃it|Xi)

to t is a linear version of Assumption 2 with time homogeneity of the linear projection replacing

time homogeneity of the conditional distribution. Then since εit = ε̃it−E∗(ε̃it|Xi) is orthogonal

to all rows of Xi,

Yit = X ′
itβ0 + αi + εit;E[Xisεit] = 0, ∀s, t; αi = E∗[ε̃i1|Xi].

This is a standard linear model with an additive individual effect αi and an idiosyncratic distur-

bance εit that is orthogonal to all leads and lags of the regressors. Thus, since a linear version

of Assumption 2 leads to a standard panel data linear model, Assumption 2, which applies to a

distribution rather than linear projection, seems appropriate for a nonlinear model.

Although they seem appropriate for a nonlinear model, the time homogeneity conditions are

strong. In particular they do not allow for heteroskedasticity over time, which is often thought

to be imporant in applications. We partially address this problem in Appendix B by allowing

for location and scale time effects.

A dynamic version of the model can be obtained by only including current and lagged Xis

in the conditioning set for each t, as in the following condition:

Assumption 3: εit|Xit, ..., Xi1, αi
d= εi1|Xi1, αi, for all t.

This is a ”predetermined” version of time homogeneity, where only the conditional distri-

bution given current and lagged regressors must be time invariant. It does imply that the

conditional distribution of εit given current and lagged regressors only depends on Xi1, and so

embodies a conditional independence restriction. Here conditioning on αi has an important role,

acting as a kind of ”control variable” by making εit be independent of all Xis for 1 < s ≤ t.

This model is dynamic in the sense that εit and Xis can be dependent for s > t. For instance,

Xit could be Yi,t−1, in which case Yit = g0(Yit−1, αi, εit) is an explicit nonseparable dynamic

model with εit being time shocks that are independent of Yit−1, ..., Yi1. An important example

is one where where Yit ∈ {0, 1} is binary, representing state dependence, with αi representing

unobserved heterogeneity.

We will focus in the nonparametric model on two effects of x on y, the average structural

function (ASF) of Blundell and Powell (2003) and the quantile structural function (QSF) of

Imbens and Newey (2009). The ASF is

µ(x) = E[g0(x, αi, εit)] =
∫

g0(x, α, ε)F (dα, dε).

This object is useful for quantifying the effect of x on the mean of the outcome Yit. In the

treatment effects literature the average treatment effect (ATE) of changing x from x̄ to x̃ is

µ(x̃)− µ(x̄).
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The QSF q(λ, x) is the λth quantile of g0(x, αi, εit). Under conditions specified below the

QSF will equal the inverse of the cumulative distribution function (CDF),

q(λ, x) = G−1(λ, x), G(y, x) = E[1(g0(x, αi, εit) ≤ y)].

In the treatment effects literature the λth quantile treatment effect of changing x from x̄ to x̃ is

q(λ, x̃)− q(λ, x̄),

as in Lehmann (1974).

The ATE is the average effect of x on y integrating over both αi and εit. Chamberlain

(1982), Hahn (2001), Wooldridge (2005), and Chernozhukov et. al (2007) have also considered a

conditional mean model E[Yit|Xi, αi] = m0(Xit, αi) and the average partial effect
∫

[m0(x̃, α)−
m0(x̄, α)]F (dα). It turns out that the nonseparable models given here imply conditional mean

models where the average partial effect is the ATE, as shown in the following result.

Theorem 1: Suppose that Assumption 1 is satisfied, E[|Yit|] < ∞, and E[|g0(x, αi, εit)|] <

∞ for all x. If Assumption 2 is satisfied then for α̃ = X and m0(x, α̃) =
∫

g0(x, α, ε)F (dα, dε|α̃),

E[Yit|Xi, α̃i] = m0(Xit, α̃i), µ(x) =
∫

m0(x, α̃)F (dα̃).

If Assumption 3 is satisfied then for α̃ = (α, X1) and m0(x, α̃) =
∫

g0(x, α, ε)F (dε|α̃),

E[Yit|Xit, ..., Xi1, α̃i] = m0(Xit, α̃i), µ(x) =
∫

m0(x, α̃)F (dα̃).

Proofs of all of the results are given in an Appendix. From the expression for µ(x) given in

this result it follows that the ATE equals the average partial effect. Consequently, bounds for

the average partial effect, such as those in Chernozhukov et. al. (2007), will imply bounds for

the ATE. Indeed the ATE bounds given here are identical to the average partial effect bounds

from Chernozhukov et. al. (2007).

To help explain these and other results, it is useful to consider examples. Binary choice is a

very important model for panel data, having many applications, and so we choose that as our

main example. The most common model has been one with a scalar individual effect that is an

additive shift to a linear combination of Xit, where

Yit = 1(X ′
itβ0 + αi ≥ εit),

for scalar εit. In this example g0(x, α, ε) = 1(x′β0 + α ≥ ε) and the ASF is

µ(x) =
∫

1(x′β0 + α ≥ ε)F (dε, dα).
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This is an unusual object, but Theorem 1 helps relate it to the more familiar average partial

effect. Consider a special case of Theorem 1 where εit is independent of (Xi, αi) with CDF H(ε)

for each t. Then

µ(x) =
∫

1(x′β0 + α ≥ ε)F (dε)F (dα) =
∫

H(x′β0 + α)F (dα).

Here H(x′β0 + α) is the choice probability given x and α, so the ATE will be the partial effect

H(x̃′β0 + α)−H(x̄′β0 + α) averaged over α.

In this paper we will focus on discrete regressors. We formalize that focus by imposing the

following condition from here on:

Assumption 4: The support of Xi is finite, and is equal to {X1, ..., XK}.

With discrete Xit the model can also be written as a multiple regression with random coef-

ficients, though we find it convenient to use the notation given here. One interesting example

of a discrete regressor is a binary Xit, where Xit ∈ {0, 1}. In this example Xi will be a vector of

zeros and ones.

3 Estimation of Identified Effects

To explain identification in the static model, i.e. under Assumption 2, it is helpful to consider

the conditional ASF given by

µ(x|Xi) = E[g0(x, αi, εi1)|Xi].

It will turn out that this conditional ASF will be identified for any Xi where there is a t with

Xit = x. It will also be the case that if there is no time period with Xit = x then µ(x|Xi) will

not be identified, leading to µ(x) not being identified.

To describe these results, define dit(x) = 1(Xit = x). Note that

dit(x)Yit = dit(x)g0(Xit, αi, εit) = dit(x)g0(x, αi, εit).

Then since dit(x) is a function of Xi,

dit(x)E[Yit|Xi] = E[dit(x)g0(x, αi, εit)|Xi] (1)

= dit(x)E[g0(x, αi, εit)|Xi] = dit(x)µ(x|Xi),

where the last equality follows by Assumption 2. Therefore, if for some t(x) we have Xit(x) = x

then substituting dit(x)(x) = 1 in the previous equation we see that

µ(x|Xi) = E[Yit(x)|Xi] (2)
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This shows that µ(x|Xi) is identified for any Xi where Xit = x for some t. Time homogeneity is

essential to this result. The fact that ”time is randomly assigned” implies that E[g0(x, αi, εit)|Xi]

is invariant to t so that we can choose whichever t has Xit = x without affecting the result.

Identification of the conditional ASF leads to identification of a corresponding conditional

ATE, defined to be ∆(Xi) = µ(x̃|Xi)−µ(x̄|Xi). By identification of the conditional ASF µ(x|Xi)

whenever Xit = x for some t, the conditional ATE is identified whenever Xit̃ = x̃ for some t̃ and

Xit̄ = x̄ for some t̄, with

∆(Xi) = E[Yit̃|Xi]− E[Yit̄|Xi] = E[Yit̃ − Yit̄|Xi].

This equation is a precise formulation of the idea that one can use variation of x over time to

identify the ceteris paribus effect of x on y. The conditional ATE is obtained by varying t over

time periods where x̃ and x̄ occur.

This identification result implies identification of the ATE δ conditional on Xi including both

x̃ and x̄. Define Ti(x) =
∑T

t=1 dit(x) and Di = 1(Ti(x̃) > 0)1(Ti(x̄) > 0), so that Di = 1 if and

only if Xi includes both x̃ and x̄ for some time periods. For all Xi with Di = 1 define t̃i and t̄i

such that Xit̃i
= x̃ and Xit̄i = x̄.

δ = E[g0(x̃;αi, εi1)− g0(x̄, αi, εi1)|Di = 1] = E[∆(Xi)Di]/E[Di]

= E[E[Yit̃i
− Yit̄i |Xi]Di]/E[Di] = E[Di(Yit̃i

− Yit̄i)]/E[Di].

This δ is the ATE for those individuals who have both x̃ and x̄ among their regressor values.

The identified effect δ may be of interest in many settings. For example, when Yit is log

earnings and Xit ∈ {0, 1} represents union status, δ would be the effect of union status on

earnings for those who changed union status over the time periods we observe. For a given

number of time periods T, this is all one could hope to identify nonparametrically. However, we

may be interested in other effects too. We might be interested in union effects for those who ever

change union status, which we could identify as T gets large. Or we might even be interested

in the effect for those who were ever in a union. The data will also be informative about these

effects and in the next Section we will provide bounds for them.

The conditional ASF µ(x|Xi) is not identified if Xit does not take on the value x for any time

period. Intuitively, g0(x, αi, εit) is never observed in that case so that the data does not provide

any information about µ(x|Xi). Furthermore, as long as the support of Xit is the same for each

t and the support of Xi is the Cartesian product of the supports of Xit, there will be some Xi

with positive probability where Xit 6= x for all t. Hence µ(x|Xi) will not be identified for some

Xi, and so µ(x) = E[µ(x|Xi)] is not identified either. The data still may be informative about

µ(x) if g0 is bounded, as discussed in the next Section, but in general µ(x) is not identified, and

hence neither is the ATE.
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Consider the binary Xit ∈ {0, 1} example with and T = 2. Let Pk = Pr(Xi = Xk). Assume

the support of Xi is {X1, ..., X4} with X1 = (0, 0)′, X2 = (0, 1)′, X3 = (1, 0)′, X4 = (1, 1)′.

Then µ(1|Xi = X1) is not identified, because Xit = 0 for each t when Xi = X1. Similarly,

µ(0|Xi = X4) is also not identified. Hence none of µ(1), µ(0), and the ATE µ(1) − µ(0)

are identified. In this example the identified conditional ATE δ is the ATE conditional on

Xi ∈ {X2, X3}. Here, where Xit is binary, this is the ATE conditional on Xit changing over time.

This result also follows from Theorem 1 and Chamberlain (1982), who showed nonidentification

of the average partial effect in a linear random coefficient model with a discrete regressor.

These identification insights can be used to analyze the properties of linear fixed effects (FE),

that has sometimes been used to try to estimate the ATE from panel data. Firstly, since there

is no consistent estimator for an unidentified parameter, FE will not be consistent for the ATE.

It also turns out that FE is not consistent for the identified conditional ATE δ either. Instead,

FE converges to a weighted average of ∆(Xi).

To simplify the exposition we derive the limit of FE for binary Xit ∈ {0, 1}. FE is δ̂w from

least squares on Yit = Xitδ + γi + vit,where each γi is estimated. For X̄i =
∑T

t=1 Xit/T ,

δ̂w =

∑
i,t(Xit − X̄i)Yit∑
i,t(Xit − X̄i)2

.

Let ri = #{t : Xit = 1}/T and σ2
i = rk

i (1− rk
i ).

Theorem 2: If Assumptions 1, 2, and 4 are satisfied, (Xi, Yi) has finite second moments,

and E[σ2
i ] > 0, then

δ̂w
p−→ δw =

E[σ2
i ∆(Xi)]
E[σ2

i ]
. (3)

The value of ∆(Xi) has no impact on δw where σ2
i = 0, i.e. when Xi = (0, ..., 0)′ or

Xi = (1, ..., 1)′, consistent with these ∆(Xi) being unidentified. Also, δw is a weighted average

of conditional ATE’s, where the weights σ2
i are the variances across time of the Xi vectors. If

T ≥ 4 then these weights vary over the positive σ2
i and so the limit δw of FE is not the identified

conditional ATE δ.

Theorem 2 is different than Yitzhaki (1996) and Angrist (1998), who gave weighted av-

erage interpretations of least squares in other, non panel settings. Theorem 2 is also differ-

ent from Hahn (2001), who found that δ̂w consistently estimates the marginal effect. Hahn

(2001) considered T = 2 and excluded (0, 0)′ and (1, 1)′ from the support of Xi, so neither

feature that causes inconsistency of δ̂w is present. As noted by Hahn (2001), those conditions

are quite special. Theorem 2 is also different from Wooldridge (2005), who showed that if

bi = E[g0(1, αi, εit)−g0(0, αi, εit)|αi] is mean independent of Xit−X̄i for each t then linear fixed

effects is consistent. The problem is that this independence assumption is very strong when Xit
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is discrete. For instance, if T = 2, Xi2 − X̄i takes on the values 0 when Xi = (1, 1) or (0, 0),

−1/2 when Xi = (1, 0) , and 1/2 when Xi = (0, 1). Thus mean independence of bi and Xi2− X̄i

actually implies that ∆(X2) = ∆(X3) = [Pr(X1)∆(X1) + Pr(X4)∆(X4)]/[Pr(X1) + Pr(X4)).

This is quite close to independence of bi and Xi, which is not very interesting if we want to allow

correlation between the regressors and the individual effect.

A simple estimator of the identified conditional ATE δ is

δ̂ =
n∑

i=1

Di

(∑T
t=1 dit(x̃)Yit

Ti(x̃)
−

∑T
t=1 dit(x̄)Yit

Ti(x̄)

)
/

n∑

i=1

Di. (4)

Here we average each Yit over all time periods with dit(x) = 1 rather than just using one time

period. This is a simple approach to using information from more than one time period, but

may not be efficient. We leave to future work the treatment of efficiency of estimators of δ. This

extends Chamberlain’s (1982) estimator to multivariate regressions with discrete Xit that are

not binary. The following result shows that δ̂ is a consistent estimator of δ.

Theorem 3: If Assumptions 1, 2 and 4 are satisfied, (Xi, Yi) has finite second moments,

and E[Di] > 0 then δ̂
p−→ δ.

This estimator may be of interest in practice where it is important to allow for time effects.

For this reason we give a brief discussion of time effects here, reserving to the Appendix a

detailed analysis of time effects for bounds. We consider time effects that constitute a location

and scale shift of g0, with Yit = τt +stg0(Xit, αi, εit) and the normalization τ1 = 0, s1 = 1. These

time effects can be estimated by doing instrumental variables with residual Yit − τt − stYi1 on

all observations with Xit = Xi1 and a constant and dummy variable for a group of Xi1 values as

instruments. The identified effect δ̂1 for t = 1 can be estimated by replacing Yit by (Yit − τ̂t) /ŝt

in equation (4). An effect δ̂t for each t > 1 and an overall effect δ̃ can be estimated by

δ̂t = τ̂t + ŝtδ̂1, δ̃ =
1
T

T∑

t=1

δ̂t.

Because this is a two step estimator it may be easiest to obtain asymptotic confidence intervals

using the bootstrap, resampling from the empirical distribution of (Yi, Xi).

To get some information about how δ and δw can differ from the ATE we give a numerical

example. Numerical calculations are reported in Table 1 for a probit model where

Yit = 1(Xit + αi > εit), εit ∼ N(0, 1), Xit = 1(ξ + αi > ηit), ηit ∼ N(0, 1).

We consider three different distributions for αi,

αi ∼ U(−1, 1), αi symmetric, triangular with support [−2, 2], αi ∼ N(0, 1).
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The value of ξ is chosen to calibrate P (Xit = 1) and calculations are done by simulating 500, 000

individuals. We report values of (δw −∆)/∆ and (δ −∆)/∆, where ∆ = µ(1) − µ(0). We find

that the biases (inconsistencies) can be substantial in percentage terms. We also find that δw

has the largest percentage inconsistency when there is little variation in the regressor. Also the

bias of δw is similar for all T , which is surprising given how weights change with T . In contrast,

δ gets close to the ATE as T grows, consistent with the ATE being identified as T −→ ∞, as

discussed below.

In a similar way we can also estimate identified quantile effects. Let

Ĝ(y, x|Di = 1) =
n∑

i=1

Di

[∑T
t=1 dit(x)Φ(y−Yit

h )
Ti(x)

]
/

n∑

i=1

Di,

where Φ is a strictly monotonic CDF and h is a bandwidth. This is an estimator of the distri-

bution function of g(x, αi, εit) conditioned both x̃ and x̄ appearing in Xi. The indicator function

1(Yit < y) has been smoothed, as suggested by Yu and Jones (1998) for estimating a conditional

CDF. An estimator of the λth quantile treatment effect from changing x from x̄ to x̃ over all

individuals for which both occur is then

Ĝ−1(λ, x̃|Di = 1)− Ĝ−1(λ, x̄|Di = 1).

4 Bounds in the Static Model

When g0(x, α, ε) is bounded the data will be informative about the ATE. In some applications

such bounds are implied by the data structure. For example, in the binary choice model, where

Yit ∈ {0, 1}, lower and upper bounds are 0 and 1 respectively. To describe the bounds, let

dit(x) = 1(Xit = x) and Ti(x) =
∑T

t=1 dit(x) as in Section 3. Let P̄(x) = Pr(Ti(x) = 0) be the

probability that x does not appear in any time period for Xi.

Theorem 4: If Assumptions 1, 2, and 4 are satisfied and B` ≤ g0(x, αi, εit) ≤ Bu for

constants B` and Bu and all x, then µ`(x) ≤ µ(x) ≤ µu(x) for

µ`(x) = E[1(Ti(x) > 0)
∑T

t=1 dit(x)Yit

Ti(x)
] + P̄(x)B`, µu(x) = µ`(x) + P̄(x)(Bu −B`),

and these bounds are sharp.

Corresponding ATE bounds are

µ`(x̃)− µu(x̄) ≤ µ(x̃)− µ(x̄) ≤ µu(x̃)− µ`(x̄).

The width of these ATE bounds is [P̄(x̃) + P̄(x̄)](Bu − B`). Tighter bounds may be obtained

by imposing restrictions, such as monotonicity of treatment effects, as shown in an Appendix.
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An example may help clarify these bounds. Consider the binary Xit ∈ {0, 1} example of

Section 3 where T = 2 and the support of Xi is {X1, ..., X4} with X1 = (0, 0)′, X2 = (0, 1)′,

X3 = (1, 0)′, X4 = (1, 1)′. Then

µ`(1) = P2E[Yi2|X2] + P3E[Yi1|X3] + P4E[
Yi1 + Yi2

2
|X4] + P1B`,

µu(1) = µ`(1) + P1(Bu −B`),

Then the width of the bounds is P1(Bu − B`). For general T and binary Xit, the width of the

bounds for µ(1) is Pr(Xi = (0, ..., 0)′)(Bu −B`).

The sharpness conclusion of Theorem 4 depends on being able to let g0(x, αi, εit) take any

value between B` and Bu. That is not possible for binary choice, where the outcome is restricted

to zero or one. Nevertheless the bounds can still be shown to be sharp.

The QSF bounds are obtained by replacing Yit by 1(Yit ≤ y) in the ASF bounds and inverting

as a function of y. As in equation (1),

dit(x)E[1(Yit ≤ y)|Xi] = dit(x)E[1(g0(x, αi, εi1) ≤ y)|Xi].

For any monotonic function 0 ≤ G(y) ≤ 1 that is everywhere increasing and strictly increasing

on the interior of its range and any 0 < λ < 1 let

Q(λ,G(·)) =





−∞, λ ≤ infy G(y)

G−1(λ), infy G(y) < λ < supy G(y)

+∞, λ ≥ supy G(y)

Theorem 5: If Assumptions 1, 2, and 4 are satisfied and

G`(y, x) = E[1(Ti(x) > 0)Ti(x)−1
T∑

t=1

dit(x)1(Yit ≤ y)]

is continuous and strictly increasing in y on the interior of its range then q`(λ, x) ≤ q(λ, x) ≤
qu(λ, x) for

q`(λ, x) = Q(λ,G`(·, x) + P̄(x)), qu(λ, x) = Q(λ,G`(·, x)).

If G`(y, x) is continuous and strictly increasing in y then these bounds are sharp.

Bounds for quantile treatment effects can then be formed in the usual way as

q`(λ, x̃)− qu(λ, x̄) ≤ q(λ, x̃)− q(λ, x̄) ≤ qu(λ, x̃)− q`(λ, x̄).

The width of these bounds depends on the shape of distribution of Y . They are infinitely wide

for the λth quantile when λ ≤ max{P̄(x̃), P̄(x̄)} or λ ≥ min{1 − P̄(x̃), 1 − P̄(x̄)}, and will be

tighter when P̄(x̃) and P̄(x̄) are small.
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Estimation of the ATE bounds is straightforward. Let P̄ (x) = n−1
∑

1(Ti(x) = 0). Estimates

of the ASF bounds are given by

µ̂`(x) = n−1
n∑

i=1

1(Ti(x) > 0)
∑T

t=1 dit(x)Yit

Ti(x)
+ P̄ (x)B`, µ̂u(x) = µ̂`(x) + P̄ (x)(Bu −B`).

Note that no estimate of the support of Xi is required for estimation of the bounds. These esti-

mates will be consistent and jointly asymptotically normal under our i.i.d. sampling framework

for (Yi, Xi). Also, they are averages over i of explicit, simple functions of the data and so it

is straightforward to estimate the joint asymptotic variance of the upper and lower bounds for

the ASF and for the ATE. Confidence intervals for the identified set can then be formed using

results of Chernozhukov, Hong, and Tamer (2007) or Beresteanu and Molinari (2008) on bounds

estimators that are jointly asymptotically normal.

Estimation of the quantile bounds proceeds similar, replacing Yit with a smoother version of

the indicator 1(Yit ≤ y) and then inverting as a function of y to get quantile bounds. Let Φ(u)

be some CDF, h be a bandwidth. Then an estimator of the lower bounds for G(y, x) is

Ĝ`(y, x) = n−1
n∑

i=1

1(Ti(x) > 0)
∑T

t=1 dit(x)Φ(y−Yit
h )

Ti(x)
, Ĝu(y, x) = Ĝ`(y, x) + P̄ (x).

By construction Ĝ`(y, x) is strictly monotonic increasing as long as Ti(x) > 0 for some i and so

can be inverted to give

q̂`(λ, x) = Q(λ, Ĝ`(·, x) + P̄ (x)), q̂u(λ, x) = Q(λ, Ĝ`(·, x)).

These estimators will be joint asymptotically normal for different values of x, but their asymp-

totic variance is complicated because of the function inversion, so it may be easiest to estimate

asymptotic variance by the bootstrap. Inference about identified intervals can then be carried

out as for the ATE estimators.

Similarly to the treatment effects literature, we may be interested in the average structural

function, or the average treatment effect, conditional on certain Xi values. For example, if Xit ∈
{0, 1} represents treatment then we might be interested on the effect of treatment conditional

on ever treated, i.e. conditional on Xi 6= (0, ..., 0)′. Tighter bounds for such effect can be formed

and in some cases the effects may be identified. These effects can be estimated by including the

indicator function for the event of interest inside each sum over i and dividing the sum by the

sample probability of that event.

5 Bounds in the Dynamic Model

The bounds for the static model are based on decomposing the average treatment effect into

components conditional on the entire vector Xi. This can be thought of as a partition based
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on Xi. In the dynamic model we can no longer use a partition based on the entire vector Xi

because of endogeneity of the lead variables. For the dynamic model we instead use a partition

that conditions only on lagged Xit. Specifically, we partition the support of Xi into sets where

the first occurrence of x is at time t and the set where x never occurs. This partition is given by

Xt(x) = {X : Xt = x, Xs 6= x ∀s < t}, t = 1, ..., T ; X̄ (x) = {X : Xt 6= x ∀t}.

There is a fundamental result that provides partial identification using this partition. Define

dXit (x) = 1(Xi ∈ Xt(x)) and note that dXit (x) only depends on Xit, ..., Xi1. For all t,

E[dXit (x)Yit] = E[dXit (x)g0(x, αi, εit)] = E[dXit (x)E[g0(x, αi, εit)|Xit, ..., Xi1, αi]] (5)

= E[dXit (x)E[g0(x, αi, εiT )|XiT , ..., Xi1, αi]] = E[dXit (x)g0(x, αi, εiT )],

where the first equality follows by Xit = x when dXit (x) = 1 and the third equality by Assumption

3. Combining this result with the fact that the distribution of (αi, εit) does not vary with t (also

implied by Assumption 3) leads to the following bounds:

Theorem 6: Suppose that Assumptions 1, 3, and 4 are satisfied. If B` ≤ g0(x, αi, εit) ≤ Bu

for constants B` and Bu and all x, then µ`(x) ≤ µ(x) ≤ µu(x) for

µ`(x) = E[
T∑

t=1

dXit (x)Yit] + P̄(x)B`, µu(x) = µ`(x) + P̄(x)(Bu −B`).

If G̃`(y, x) = E[
∑T

t=1 dXit (x)1(Yit ≤ y)] is continuous and strictly increasing in y on the interior

of its range then q`(λ, x) ≤ q(λ, x) ≤ qu(λ, x) for

q`(λ, x) = Q(λ, G̃`(·, x) + P̄(x)), qu(λ, x) = Q(λ, G̃`(·, x)).

An important example is the binary Yit ∈ {0, 1} case where Xit = Yi,t−1. In this case B` = 0,

Bu = 1. Here P̄(0) = Pr(Xi = (1, ..., 1)′) and P̄(1) = Pr(Xi = (0, ..., 0)′). The bounds for µ(0)

and µ(1) will be

E[
T∑

t=1

dXit (0)Yit] = µ`(0) ≤ µ(0) ≤ µu(0) = µ`(0) + P̄(0),

E[
T∑

t=1

dXit (1)Yit] = µ`(1) ≤ µ(1) ≤ µu(1) = µ`(1) + P̄(1).

Then for δX =
∑T

t=1 E[{dXit (1)− dXit (0)}Yit] we have

δX − P̄(0) ≤ µ(1)− µ(0) ≤ δX + P̄(1).
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The width of the bounds is P̄(0) + P̄(1), that will tend to be large in short panels but more

informative in long ones. This is a bounds solution to the problem of identifying state dependence

in the presence of unobserved heterogeneity (Feller, 1943, and Heckman, 1981), since

µ(1)− µ(0) =
∫

[Pr(Yit = 1|Yi,t−1 = 1, α)− Pr(Yit = 1|Yi,t−1 = 0, α)]F (dα)

is the effect of lagged Yit, holding αi fixed, averaged over αi. Note that the joint distribution of

Pr(Yit = 1|Yi,t−1 = 1, α) and Pr(Yit = 1|Yi,t−1 = 0, α) is entirely unrestricted, allowing general

effects of heterogeneity on dynamics. This set up is like Browning and Carro (2007), though we

give bounds and they suggest estimators.

In the dynamic bounds dXit (x) = 1 for at most one time period. This means that although

the bounds for the dynamic model also apply to the static model there may be advantages to

using the static bounds when they apply. One advantage is that the bounds for the static model

use more than one time period, which should help reduce sampling variability in estimators.

Figure 1 shows the width of the bounds in a numerical example based on a dynamic probit

model where

Yit = 1(β0Yi,t−1 + αi ≥ εit), εit ∼ N(0, 1), αi ∼ N(0, 1), Pr(Yi0 = 1) = .5.

We consider different DGPs indexed by β0 ∈ [−2, 2] and compute the width of the bounds for

T ∈ {2, 4, 8, 16, 32, 64}. The width is asymmetric with respect to β0 = 0 because Pr(Xi =

(1, ..., 1)′) grows with β0, whereas Pr(Xi = (0, ..., 0)′) does not depend on β0. We find that the

bounds can be substantially wide for high values of β0 even for large T . It may be possible to

tighten these bounds using a semiparametric model as we do for bounds in the static case in

Section 7.

Estimators for the bounds can be constructed analogously to the static model. The bounds

for the ASF can be estimated by

µ̂`(x) = n−1
n∑

i=1

T∑

t=1

dXit (x)Yit + P̄ (x)B`, µ̂u(x) = µ̂`(x) + P̄ (x)(Bu −B`).

The bounds for the QSF can be estimated analogously. For brevity we omit details.

6 Identification and Rates as T −→∞
It is interesting to consider whether the average and quantile treatment effect become identified

as T grows. Of course, this will only be possible if x̃ and x̄ both eventually occur for every

individual, or more generally each x in the support of Xit eventually shows up in Xi. Math-

ematically, this corresponds to P̄(x) −→ 0 as T −→ ∞. The following result gives sufficient

conditions for this to occur.
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Theorem 7: Suppose that Assumptions 1, 3, and 4 are satisfied,
−→
X i = (Xi1, Xi2, ...) is

stationary, the support of each Xit conditional on αi is the marginal support of Xit, and
−→
X i

is ergodic conditional on αi. If E[|g0(x, αi, εi1)|] < ∞ for each x in the support of Xit then

δ −→ µ(x̃) − µ (x̄) as T −→ ∞. If B` ≤ g0(x, αi, εit) ≤ Bu for constants B` and Bu and

all x, then µ`(x) −→ µ(x) and µu(x) −→ µ(x) as T −→ ∞. If 0 < λ < 1 and G(y, x) is

continuous and strictly monotonic in y on {y : 0 < G(y, x) < 1} then q`(λ, x) −→ q(λ, x) and

qu(λ, x) −→ q(λ, x) as T −→∞.

Clearly identification as T −→∞ can only occur if every individual can have every Xit. This

is the meaning of the condition that the support of Xit conditional αi is the marginal support

of Xit. If this is not true, then some individuals, as represented by αi, will never reach some

x value, and so we cannot nonparametrically identify any average treatment involving that x

value. To explain mathematically, consider a simple example where Xit is i.i.d. conditional on

αi. In that case

P̄(x) = E[Pr(Xit 6= x|αi)T ].

This will not go to zero if and only if Pr(Xit 6= x|αi) = 1 with positive probability, that

is Pr(Xit = x|αi) = 0 with positive probability. The marginal support being equal to the

conditional support rules this out.

In the union example presumably not everyone joins a union at some point so the treatment

effect of unions averaged over all people is not identified as T −→∞. Even the average treatment

effect for those ever in a union may not be identified, because there are individuals who are always

in a union. In general the best we can hope for as T −→ ∞ is to identify the average effect for

those individuals who will eventually have x equal to x̃ and x̄.

The rate at which the width of the bounds shrink is a complicated question. We can give a

simple result if the conditional probability for Xit = x is bounded away from zero.

Theorem 8: Suppose that Assumptions 1, 3, and 4 are satisfied,
−→
Xi is stationary and

Markov of order J conditional on αi, and for some ε > 0,

Pr(Xit = x|Xi,t−1, ..., Xi,t−J , αi) ≥ ε.

Then if B` ≤ g0(x, αi, εit) ≤ Bu,

µu(x)− µ`(x) ≤ (Bu −B`)(1− ε)T−J .

Also, if 0 < λ < 1 and G(y, x) is continuously differentiable on a neighborhood of y = q(λ, x)

with a derivative bounded below by Dx > 0, then for a large enough T

qu(λ, x)− q`(λ, x) ≤ 2D−1
x (1− ε)T−J .
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This result shows that the rate of convergence of the bounds will be exponential when the

conditional probability that Xit = x is bounded away from zero. A simple example where Xit

is i.i.d. conditional on αi can be used to illustrate what other kinds of results might occur.

As discussed above, P̄(x) = E[Pr(Xit 6= x|αi)T ], so the rate of shrinkage depends on the

thickness of the tails of the distribution of Pr(Xit 6= x|αi). If too much weight is put on

conditional probabilities near one then the convergence may be slow. For example, suppose

Xit = 1(αi ≥ ηit), αi ∼ N(0, 1), ηit ∼ N(0, 1). Then

P̄(0) = E[Φ(αi)T ] =
∫

Φ(α)T φ(α)dα =
Φ(α)T+1

T + 1

∣∣∣∣
+∞

−∞
=

1
T + 1

,

which shrinks slower than exponentially. On the other hand, if αi has any distribution with a

compact support, Theorem 8 implies that the bounds shrink exponentially fast in T .

Table 1 provides related examples showing how fast the identified effect δ gets close to the

ATE as T grows. The rate at which the percentage error between δ and the ATE shrinks is

bounded above by the rate at which the bounds shrink. In the Gaussian case αi in Table 1 the

error in δ shrinks slowly as suggested by the rate example above. Also, in the uniform αi the

error in δ shrinks noticeably more quickly, as Theorem 8 suggests it should.

7 Semiparametric Multinomial Choice Models

The nonparametric bounds are informative but may be quite wide for small T . Using the

information implied by a parametric model for the conditional distribution of Yi given (Xi, αi)

the bounds may be tighter. Such a specification corresponds to a semiparametric model with a

nonparametric part that includes the conditional distribution of αi given Xi. We focus here on

multinomial choice models, paying particular attention to the binary choice model where αi is

a scalar location effect.

We take a multinomial panel data model to be one satisfying

Assumption 5: Yi = (Yi1, ..., YiT )′ has finite support {Y 1, ..., Y J} and Pr(Yi = Y j |Xi =

Xk) =
∫ Lk

j (α, β∗)F ∗
k (dα) where Lk

j (α, β) is a known function and β is a parameter vector with

true value β∗.

This is a semiparametric model, with the parameters β being the parametric part and the

conditional distributions Fk(α), (k = 1, ...,K) being a nonparametric part. An important exam-

ple is a binary choice model where Yit ∈ {0, 1}, Pr(Yit = 1|Xi, αi, β) = H(X ′
itβ + αi) for a CDF

H, and Yi1, ..., YiT are mutually independent conditional on Xi and αi. In this case each possible

realization Y j of Yi will be a T × 1 vector of zeros and ones, as in the following condition:
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Assumption 6: Yit ∈ {0, 1} and Lk
j (α, β) =

∏T
t=1 H(Xk′

t β + α)Y j
t [1 − H(Xk′

t β + α)]1−Y j
t

where H is a differentiable CDF with derivative h that is positive, bounded, an even function,

and monotonically decreasing on [0,∞).

One can easily generalize this specification to allow for time effects and to allow for random

slopes by changing Lk
j (α, β). Let zt be a vector of variables that only change with time (e.g.

dummy variables for all time periods but one). Consider

Lk
j (α, β) =

T∏

t=1

H(z′tβ1 + Xk′
t1β2 + Xk′

t2α)Y j
t [1−H(z′tβ1 + Xk′

t1β2 + Xk′
t2α)]1−Y j

t .

These probabilities specify that the observations over time of Yit are independent conditional

on α, allow time effects zt with coefficients β1, allow some of the individual regressors to have

constant coefficients β2, and also allow for multidimensional heterogeneity α. Here some of the

slope coefficients are included in α and so are allowed to vary over individuals. The general

computation and estimation methods described in the following sections apply to this model

without further modification. One could even restrict the distribution of the individual effect to

not depend on certain regressors by imposing equality restrictions across k on the distribution

of α, as further discussed below.

The set up here can also be adapted to the dynamic binary choice setting. Consider a

specification where for k ∈ {1, 2},

Lk
j (α, β) =

T∏

t=2

H(β1Y
j
t−1 + z′tβ2 + α)Y j

t [1−H(β1Y
j
t−1 + z′tβ2 + α)]1−Y j

t

×H(β1(k − 1) + z′1β2 + α)Y j
1 [1−H(β1(k − 1) + z′tβ2 + α)]1−Y j

1 .

Here the distribution of α can depend on the initial value Yi0 in a completely general way

and trend terms zt are present. This set up is like that of Honore and Tamer (2006). One

could apply the estimation methods given below to this model and obtain estimated bounds in

dynamic models where the distribution of α is unrestricted.

In addition to bounds for β we also consider bounds for the ATE. In the general multinomial

model we will assume that the ATE conditional on Xi = Xk is

∆k =
∫

∆(α, β∗)F ∗
k (dα),

where ∆(α, β) denotes a marginal (or average partial) effect conditional on α and from now

on we let ∆k = ∆(Xk). For example, in the model of Assumption 6 we could take ∆(α, β) =

H(x̃′β + α)−H(x̄′β + α).
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Neither β nor the ATE need be identified. Instead, there will generally be sets of β and ATE

values that are consistent with the distribution of the data. To describe the identified sets let

P = (P1
1 , ...,P1

J , ...,PK
J )′ denote the vector of population choice probabilities and

Fk(β,P) = {Fk : Pk
j =

∫
Lk

j (α, β)Fk(dα), j = 1, ..., J},

where Fk(β,P) may be empty. The identified set for β is

B = {β s.t. Fk(β,P) 6= ∅, ∀k = 1, ...,K}.

That is, B is the set where there exist individual effect distributions such that integrals of model

probabilities equal population choice probabilities. Sharp upper and lower bounds ∆k
u and ∆k

`

for ∆k are given by

∆k
u = sup

β∈B,Fk∈Fk(β,P)

∫
∆(α, β)Fk (dα) , ∆k

` = inf
β∈B,Fk∈Fk(β,P)

∫
∆(α, β)Fk (dα) . (6)

This characterization of bounds for the ATE extends that of Honore and Tamer (2006) from

a finite dimensional Fk, where α is restricted to a known fixed grid, to infinite dimensional Fk

where any distribution for α is allowed.

A useful feature of multinomial panel models is that they are finite dimensional, in spite of

the presence of distributions. The following lemma shows that one only need consider discrete

distributions with J unknown support points in the specification of the likelihood and the bounds

for the ATE. Let Υ denote the set of possible values for the individual effect and B the set of

parameters for β.

Lemma 9: If Assumptions 4 and 5 are satisfied and Lk
j (α, β) is a measurable function of α

for each β ∈ B, then for each β and every CDF Fk on Υ there is a discrete distribution F J
k with

no more than J support points such that
∫ Lk

j (α, β) F J
k (dα) =

∫ Lk
j (α, β)Fk(dα) (j = 1, ..., J).

If, in addition, ∆(α, β) is bounded for each β then ∆k
u and ∆k

` are not affected by restricting

attention to Fk ∈ Fk(β) that are discrete with no more than J support points.

Thus, no matter what the dimension of α is, the multinomial panel model is finite dimen-

sional, with number of parameters given by dim(β) + (2J − 1)K . Another implication of this

result is that the distribution of the individual effect is generally not identified in multinomial

models. For example, if the true distribution F ∗
k were continuous then Lemma 9 implies that

there is a discrete distribution that gives exactly the same likelihood. The proof of this result

is similar to Lindsay’s (1983) result that the maximum likelihood estimator of a mixture model

has a finite support.

The constraints imposed by Assumption 5 lead to the same population formula for the

identified components of the ASF as in the nonparametric model. For instance, in the model of
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Assumption 6 the ASF conditional on Xi = Xk is µ(x|Xk) =
∫

H(x′β∗ + α)F ∗
k (dα). If Xk

t̄ = x̄

for some t̄ then

µ(x̄|Xk) =
∫

H(x̄′β∗ + α)F ∗
k (dα) =

∫
Pr(Yit̄ = 1|Xi = Xk, α)F ∗

k (dα)

=
∫ ∑

j:Y j
t̄

=1

Lk
j (α, β∗) F ∗

k (dα) =
∑

j:Y j
t̄

=1

Pk
j = Pr(Yit̄ = 1|Xi = Xk)

= E[Yit̄|Xi = Xk],

where the fourth equality holds by Assumption 5. This is the same formula for the identified

ASF as in the static model; see equation (1).

When for Xi where Xit 6= x for all t, the static nonparametric model places no restrictions

on µ(x|Xi) other than being in between the known bounds B` and Bu. For the binary choice

model the only nonparametric restriction is that 0 ≤ µ(x|Xi) ≤ 1 in such a case. The semipara-

metric bounds are tighter than the nonparametric bounds precisely when Assumption 5 provides

information about µ(x|Xi) for such x. In the binary choice model with additive heterogeneity

this occurs because Assumption 6 provides information about the distribution of α conditional

on such Xi, as further discussed below.

When slopes vary across individuals the semiparametric bounds may be no tighter than the

nonparametric ones. To illustrate consider a binary choice model with a single binary regressor

Xit, where Yit = 1(αi2Xit + αi1 > εit), εit is independent of (Xi, αi2, αi1), and εit has known

CDF H that is strictly increasing on the entire real line. The joint distribution of H(αi1) and

H(αi2 + αi1) conditional on Xi = Xk is entirely unrestricted. Therefore when Xk = (0, ..., 0)′

the fact that µ(0|Xk) = E[H(αi1)] = E[Yit|Xi = Xk] is identified gives no information about

µ(1|Xk) = E[H(αi2 + αi1)|Xi = Xk]. Thus, µ(1|Xk) can be anything in the unit interval and

the semiparametric bounds will be identical to the nonparametric bounds.

In the model of Assumption 6 the bound ∆k
u−∆k

` can be very tight for small T , as we show

in numerical examples below, and may shrink exponentially fast as T grows. We show this result

for the logit model with binary Xit ∈ {0, 1} and leave other models to future work.

Theorem 10: If Assumptions 4, 5, and 6 are satisfied, H(v) = ev/(1 + ev), Xit ∈ {0, 1},
and Xk = (0, ..., 0)′ or Xk = (1, ..., 1)′, then there are C > 0 and 1 > ε > 0 such that

∆k
u −∆k

` ≤ C(1− ε)T .

To explain this exponential rate consider Xk = (0, ..., 0)′. Here Lk
j (α, β) = H(α)aj [1 −

H(α)]T−aj for aj =
∑

t Y j
t , so that by Assumption 5, Pk

j = E[H(α)aj{1−H(α)}T−aj |Xi = Xk].

From this it is straightforward to identify the first T moments of H(α) conditional on Xi = Xk.
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Since β∗ is identified for logit and because H is very smooth, the expectation of H(β∗+α)−H(α)

can then be approximated exponentially fast using these T moments as T grows, leading to

∆k
u −∆k

` also shrinking that fast. We expect that kind of result will extend to other smooth H

and other discrete regressors Xit.

The bounds on the ATE ∆k conditional on Xi = Xk can be combined to obtain bounds for

the overall ATE ∆ =
∫

∆(α, β∗)F ∗(dα), where F ∗ is the marginal CDF of αi. The width of the

bounds will now depend on ∆k
u − ∆k

` . Imposing the structure implied by the semiparametric

model helps shrink the bounds when ∆k
u − ∆k

` is smaller than in the nonparametric case. By

Theorem 10, for logit the bounds will shrink to a point exponentially quickly as T grows even if

the hypotheses on Xi from Theorems 7 and 8 are not satisfied.

8 Computation of Population Bounds

In this section we discuss computation of population bounds, give examples, and present theo-

retical results. A challenge for computation and for estimation is the dimensionality of unknown

parameters and the nonlinearity of the probabilities in those parameters. Lemma 9 does show

that we can take the individual effect CDF Fk to be 2J − 1 dimensional, but this dimension

can be large, and the probabilities depend nonlinearly on the support points for the individual

effect. We overcome this challenge by using an approximation with fixed but large number of

support points for the individual effects. This approximation makes approximate probabilities

and the ATE linear in parameters, simplifying computation. Honore and Tamer (2006) used a

similar approach, but assumed that the true distribution of individual effects had known support

points. We explicitly allow for approximation of unknown support points.

To describe how the approximation can be used to calculate the identified set, let M denote

a number of support points for the individual effect and ΥM=(ᾱ1M , ..., ᾱMM )′ be a grid of fixed

values for the individual effect. Also let π = (π1′, ..., πK′)′ denote a MK × 1 vector of possible

probabilities, with each πk an element of the M dimensional unit simplex SM . Approximate

model probabilities are

P k
j (β, π, M) =

M∑

m=1

πk
mLk

j (ᾱmM , β) .

Consider the function

Tλ(β, π,M) =
∑

j,k

wk
j

[
Pk

j − P k
j (β, π, M)

]2
+ λMπ′π,

where wk
j are positive weights, such as the chi-square ones Pk/Pk

j , and λM > 0 is a penalty

multiplier that controls the impact of the penalty term λMπ′π. This term is present to help

regularize the objective function by ensuring a nonsingular Hessian matrix. Let T̃λ(β,M) =

21



minπ∈SK
M

Tλ(β, π, M) and let εM > 0 be a positive scalar. We approximate the identified set for

β by

B(M) = {β : T̃λ(β, M) ≤ εM}.

We calculate the identified set by letting M grow, and λM and εM shrink until there is little

change in B(M). Calculation of T̃λ(β, M) is straightforward because it is the minimum of a

quadratic function. In practice we have found that B(M) changes little as M increases even

when M is quite small. As M grows and εM shrinks the set B(M) will converge to the identified

set under conditions given below.

For the ATE bounds, note

Dk(M) = {
M∑

m=1

πk
m∆(ᾱmM , β) : Tλ(β, π, M) ≤ εM}

is the set of possible conditional ATE (given X = Xk) that are consistent with T̃λ(β, M) ≤ εM .

Approximate lower and upper bounds are

∆k
` (M) = minDk(M), ∆k

u(M) = maxDk(M).

As M grows and εM shrinks these bounds will converge to ∆k
` and ∆k

u respectively, under

conditions given below.

Computation of these ATE bounds is challenging because it requires searching over a large

dimensional set of possible π. In practice we start with a smaller set of probabilities and

then try others. Specifically, let π̃(β) ∈ arg minTλ(β, π, M), S̃k(β) = {πk : P k
j (β, π, M) =

P k
j (β, π̃(β),M), j = 1, ..., J}, and

∆̃k
` (M) = min

β∈B(M),πk∈S̃k(β)

M∑

m=1

πk
m∆(ᾱmM , β), ∆̃k

u(M) = max
β∈B(M),πk∈S̃k(β)

M∑

m=1

πk
m∆(ᾱmM , β).

For each β these bounds are easy to calculate by linear programming. We have done so and

then checked to see if other values π violate these bounds. We have not found this to be so for

values of M that we use to compute β. We conjecture that these bounds also converge to the

population bounds as M −→ ∞ although we have not yet been able to prove this (because we

have not been able to show that the ATE bounds are continuous in the true probabilities).

We carry out some numerical calculations for the probit model where

Yit = 1(β∗Xit + αi ≥ εit), εit ∼ N(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1).

We consider different DGPs indexed by β∗ ∈ [−2, 2] and T ∈ {2, 3}. Figures 2 and 3 show

nonparametric bounds for ATEs and semiparametric bounds for β∗ and ATEs for T = 2 and

T = 3, respectively. The semiparametric bounds are obtained using the computational algorithm
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described above with M = 100 and λM = 1.3 × 10−8. The elements of the fixed grid ΥM are

located at the percentiles of the standard normal distribution. We find that β∗ is not identified

for T = 2, extending the result of Chamberlain (2010) to this example without time dummy.

This result also holds for T = 3, although it is difficult to appreciate in the figure because the

identified set B is very small. The nonparametric bounds for the ATEs (NP-bounds) can be

very wide, even when we impose monotonicity (NPM-bounds) as described in Appendix B. The

semiparametric bounds for the ATEs (SP-bounds) are tighter than the nonparametric bounds

and shrink very fast with T . In Appendix B we report similar results for the logit, including

nonidentification of the ATEs, except that β∗ is identified, as is well known.

To show that the approximate sets converge to the identified set as M grows we impose some

conditions. Let d(α, α̃) denote a metric on the set Υ of possible values for α.

Assumption 7: (i) Υ is a compact metric space with metric d(α, α̃); ii) η(M) = supα∈Υ minα̃∈ΥM
d(α, α̃)

−→ 0 as M −→ ∞; (iii) B is a compact subset of <b; (iv) there is C such that for all

(α, β), (α̃, β̃) ∈Υ×B,
∣∣∣Lk

j

(
α̃, β̃

)
− Lk

j (α, β)
∣∣∣ ≤ C[d(α̃, α) +

∥∥∥β̃ − β
∥∥∥]; and iv) ∆(α, β) is con-

tinuous on Υ×B.

Although condition (i) seems restrictive, unbounded individual effects may be allowed if Υ

is chosen appropriately. For example, in the binary choice model of Assumption 6 this condition

will be satisfied if Υ is taken to be a two-point compactification of the real line and d(α, α̃) is

specified appropriately, as shown by the following result.

Lemma 11: If Assumptions 4, 5, and 6 are satisfied and B is a compact subset of <b then

there is a metric d(α, α̃) and for each M there is ΥM = {ᾱ1M , ..., ᾱMM} such that Assumption

7 is satisfied with η(M) = 1/(M − 1).

For the convergence results for the identified set we use the Hausdorff set metric,

dH(A, B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Theorem 12: If Assumptions 4, 5, and 7 are satisfied, εM −→ 0, and (η(M) + λM ) /εM −→
0 then as M −→∞,

dH(B(M), B) −→ 0, ∆k
` (M) −→ ∆k

` , ∆
k
u(M) −→ ∆k

u.
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9 Estimation

The estimation method is like the computational one in using linear in parameters approxima-

tions to the probabilities. Let P̂ k and P̂ k
j denote sample cell frequencies, ŵk

j estimated weights,

M̂ a choice of M that may depend on the data and sample size, and

T̂λ(β, π) =
∑

j,k

ŵk
j

[
P̂ k

j − P k
j (β, π, M̂)

]2
+ λnπ′π.

Let T̂λ(β) = minπ∈SK
M

T̂λ(β, π) and εn > 0 be a positive scalar. We estimate the identified set

for β by

B̂ = {β ∈ B : T̂λ(β) ≤ εn}.

where B is the parameter space and εn is a cut-off parameter that shrinks to zero with the

sample size, as in Manski and Tamer (2002) and Chernozhukov, Hong, and Tamer (2007).

The ATE bounds can be estimated by

∆̂k
` = min D̂k, ∆̂k

u = max D̂k, D̂k = {
M∑

m=1

πk
m∆(ᾱmM , β) : T̂λ(β, π) ≤ εn}

We also try simpler estimates of the bounds corresponding to those described in the compu-

tation section. Specifically, for π̂(β) ∈ arg minπ∈SK
M

T̂λ(β, π) let Ŝk(β) = {πk : P k
j (β, π, M̂) =

P k
j (β, π̂(β), M̂), j = 1, ..., J} and let

∆̌k
` = min

β∈B̂,πk∈Ŝk(β)

M∑

m=1

πk
m∆(ᾱmM , β), ∆̌k

u = max
β∈B̂,πk∈Ŝk(β)

M∑

m=1

πk
m∆(ᾱmM , β).

We use these estimated bounds as starting values and then search over other possible values of

π, similar to the computational approach.

This approach to estimation (and computation) can be easily be modifed to handle the case

where the distribution of the individual effect is restricted to be the same across some values of

k. Such a modification could be implemented by imposing equality of πk
m across those values of

k. An example would be where the distribution of αi did not depend on some component of Xit.

That restriction could be imposed setting πk
m to be equal across k where the other components of

Xit do not vary. Or in a case with a lagged dependent variable we could restrict the distribution

of α to only depend on the initial condition by imposing equality of πk
m across all k where Yi0

takes on a particular value.

The choice of M̂ is important for this estimator. In our empirical examples we have proceeded

by starting with a small M̂, and stopping when the change in the estimated sets is small. We have

found that quite small M̂ often suffices. The choice of weights ŵk
j is also important. The optimal

choice, corresponding to minimum chi-square would be ŵk
j = Pk/Pk

j . Using sample frequencies
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in place of population frequencies does not work well due to small cell sizes. One could use a

two-step procedure where one first computes the identified set for weights like ŵk
j = P̂ k and

then reestimates the identified set using weights ŵk
j = P̂k/P k

j (β, π̂(β), M̂) for some β ∈ B̂.

The following is a consistency result.

Theorem 13: If Assumptions 4, 5, and 7 are satisfied, ŵk
j

p−→ wk
j > 0, P̂ k

j
p−→ Pk

j ,

εn −→ 0, and
(
n−1 + η(M̂) + λn

)
/εn

p−→ 0, then dH(B̂, B)
p−→ 0, ∆̂k

`

p−→ ∆k
` , ∆̂

k
u

p−→ ∆k
u.

It is interesting to note that no upper limit is placed on M in this result or in Theorem 12.

That is because the model is finite dimensional so there is no need for such a limit. Mathe-

matically, a richer fixed grid simply corresponds to a bigger submodel of the finite dimensional

model.

10 Inference

Under Assumptions 4 and 5 the complete description of the data generating process is provided

by the parameter vector (P ′
X ,P ′)′, where PX = (P k, k = 1, ...,K)′ and P = (P k

j , j = 1, ..., J, k =

1, ..., K)′. The true value of the parameter vector is Π = (P ′X ,P ′)′ and the empirical estimate is

Π̂ = (P̂ ′
X , P̂ ′)′, where P̂X = (P̂ k, k = 1, ...,K)′ and P̂ = (P̂ k

j , j = 1, ..., J, k = 1, ...,K)′. For the

inference results we condition on the observed distribution of X and thus set PX = PX = P̂X .

We make the following assumption about data generating process.

Assumption 8: Π ∈P ={(PX , P ) : P k > 0, P k
j > 0; j = 1, ..., J, k = 1, ..., K}

10.1 Modified Projection Method

The following method projects a confidence region for conditional choice probabilities onto a

simultaneous confidence region for all possible marginal effects and other structural parameters.

If a single marginal effect is of interest, then this approach is conservative; if all (or many)

marginal effects are of interest, then this approach is sharp (or close to sharp). In the next

section, we will present an approach that appears to be sharp, at least in large samples, when a

particular single marginal effect is of interest.

It is convenient to describe the approach in two stages.

Stage 1. The probabilities Pk
j belong to the product SK

J of K unit simplexes of dimension J.

We can begin by constructing a confidence region for the true choice probabilities P by collecting

all probabilities P = (P 1
1 , ..., P 1

J , ..., PK
J )′ ∈ SK

J that pass a goodness-of-fit test:

CR1−α(P) =
{

P ∈ SK
J : W (P, P̂ ) ≤ c1−α(χ2

K(J−1))
}

,
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where c1−α(χ2
K(J−1)) is the (1−α)-quantile of the χ2

K(J−1) distribution and W is the goodness-

of-fit statistic:

W (P, P̂ ) = n
∑

j,k

P̂ k

(
P̂ k

j − P k
j

)2

P k
j

.

Stage 2. To construct confidence regions for marginal effects and any other structural param-

eters we project each P ∈ CR1−α(P) onto Ξ = {P : ∃β ∈ B with Fk(β, P ) 6= ∅, ∀k = 1, ..., K},
the space of conditional choice probabilities that are compatible with the model. We obtain this

projection P ∗(P ) by solving the minimum distance problem:

P ∗(P ) = arg min
P̃∈Ξ

W (P̃ , P ), W (P̃ , P ) = n
∑

j,k

P̂ k
(P k

j − P̃ k
j )2

P̃ k
j

. (7)

The confidence regions are then constructed from the projections of all the choice probabilities in

CR1−α(P). For the identified set of the model parameter, for example, for each P ∈ CR1−α(P)

we solve

B∗(P ) =
{

β ∈ B : ∃P̃ ∈ P ∗(P ) with Fk(β, P̃ ) 6= ∅, k = 1, ...,K
}

. (8)

Denote the resulting confidence region as

CR1−α(B∗) = {B∗(P ) : P ∈ CR1−α(P)}.

We may interpret this set as a confidence region for the set B∗ of β that are compatible with a

best approximating model. Under correct specification, this will be a confidence region for the

identified set B.

If we are interested in bounds on marginal effects, for each P ∈ CR1−α(P) we get

∆k
` (P ) = min

β∈B∗(P ),Fk∈Fk(β,P ∗(P ))

∫
∆(α, β)Fk(dα),

∆k
u(P ) = max

β∈B∗(P ),Fk∈Fk(β,P ∗(P ))

∫
∆(α, β)Fk(dα).

Denote the resulting confidence regions as

CR1−α[∆k∗
` ,∆k∗

u ] = {[∆k
` (P ), ∆k

u(P )] : P ∈ CR1−α(P)}.

These sets are confidence regions for the sets [∆k∗
` , ∆k∗

u ], where ∆k∗
` and ∆k∗

u are the lower and

upper bounds on the marginal effects induced by any best approximating model. Under correct

specification, these will include the true upper and lower bounds on the marginal effect [∆k
` , ∆

k
u]

induced by any true model in (B,P).

In a canonical projection method we would implement the second stage by simply intersecting

CR1−α(P) with Ξ, but this may give an empty intersection either in finite samples or under
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misspecification. We avoid this problem by using the projection step instead of the intersection,

and also by re-targeting our confidence regions onto the best approximating model.

Theorem 14: If Assumptions 4, 5, and 8 are satisfied then for any Π satisfying Assumption

8 ,

lim
n→∞PrΠ





P ∈ CR1−α(P)

B∗ ∈ CR1−α(B∗)

[∆k∗
` , ∆k∗

u ] ∈ CR1−α[∆k∗
` ,∆k∗

u ], ∀k





= 1− α.

10.2 Perturbed Bootstrap

In this section we present an approach that appears to be sharper than the projection method,

at least in large samples, when a particular ATE is of interest. The estimators for parameters

and ATE are obtained by nonlinear programming subject to data-dependent constraints that

are modified to respect the constraints of the model. The distributions of these highly complex

estimators are not tractable, and are also non-regular in the sense that the limit versions of these

distributions do not vary with perturbations of the DGP in a continuous fashion. This implies

that the usual bootstrap is not consistent. To overcome all of these difficulties we will rely on a

variation of the bootstrap, which we call the perturbed bootstrap.

The modified projection method is well suited for performing simultaneous inference on all

possible functionals of the parameter vector. In contrast, the perturbed bootstrap is better

suited for performing inference on a given functional of the parameter vector, such as the aver-

age structural effect. In order to understand why the latter method can be much sharper than

the former method in the case where a single functional is of interest, it suffices to think of

how these methods perform in the simplest situation of inference about the mean of a multino-

mial distribution. In this case, the perturbed bootstrap will become asymptotically equivalent

to the usual bootstrap, since the limit distribution is continuous with respect to the DGP in

this example, and our local perturbations of DGP converge to the true DGP (note that, more

generally, in cases with limit distributions being discontinuous with respect to the DGP, intro-

duction of the local perturbations ensures that the resulting confidence interval possesses locally

uniform coverage.). Therefore in this example perturbed bootstrap inference asymptotically be-

comes first-order equivalent to the t-statistic-based inference on the mean, and is efficient. Now

compare that with the Scheffe-style projection based confidence interval, whereby one creates a

confidence region for multinomial probabilities and projects it down to the confidence interval

for the mean, a linear functional of these probabilities. It is clear that the latter is very con-

servative, and is much less sharp than the t-statistic based confidence interval. We refer the

reader to Romano and Wolf (2000) for the pertinent discussion of this example in the context
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of a closely related inference method.

The usual bootstrap computes the critical value – the α-quantile of the distribution of a

test statistic – given a consistently estimated data generating process (DGP). If this critical

value is not a continuous function of the DGP, the usual bootstrap fails to consistently estimate

the critical value. We instead consider the perturbed bootstrap, where we compute a set of

critical values generated by suitable perturbations of the estimated DGP and then take the

most conservative critical value in the set. If the perturbations cover at least one DGP that

gives a more conservative critical value than the true DGP does, then this approach yields a

valid inference procedure.

The approach outlined above is most closely related to the Monte-Carlo inference approach

of Dufour (2006); see also Romano and Wolf (2000) for a finite-sample inference procedure for

the mean that has a similar spirit. In the set-identified context, this approach was first applied

in the MIT thesis work of Rytchkov (2007); see also Chernozhukov (2007).

We consider the problem of performing inference on a real parameter θ∗. For example, θ∗

can be an upper (or lower) bound on the conditional ATE ∆k such as

θ∗(P ) = max
β∈B∗(P ),Fk∈Fk(β,P ∗(P ))

∫
∆(α, β)Fk (dα) ,

where P ∗ denotes the projection of P onto the model space, as defined in (7), and B∗(P ) is the

corresponding projection for the identified set of the parameter defined as in (8). Alternatively,

θ∗ can be an upper (or lower) bound on a scalar functional c′β∗ of the parameter β∗. Then we

define

θ∗(P ) = max
β∈B∗(P )

c′β.

As before, we project P onto the model space in order to address the problem of infeasibility of

constraints defining the parameters of interest under misspecification or sampling error. Under

misspecification, we interpret our inference as targeting the parameters of interest in a best

approximating model.

In order to perform inference on the true value θ∗ = θ∗(P) of the parameter, we use the

statistic

Sn = θ̂ − θ∗,

where θ̂ = θ∗(P̂ ). Let Gn(s, P ) denote the distribution function of Sn(P ) = θ̂− θ∗(P ), when the

data follow the DGP P . The goal is to estimate the distribution of the statistic Sn under the

true DGP P = P, that is, to estimate Gn(s,P).

The method proceeds by constructing a confidence region CR1−γ(P) that contains the true

DGP P with probability 1−γ, close to one. For efficiency purposes, we also want the confidence

region to be an efficient estimator of P, in the sense that as n → ∞, dH(CR1−γ(P),P) =
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Op(n1/2),where dH is the Hausdorff distance between sets. Specifically, in our case we use

CR1−γ(P) = {P ∈ SK
J : W (P, P̂ ) ≤ c1−γ(χ2

K(J−1))},

where c1−γ(χ2
K(J−1)) is the (1− γ)-quantile of the χ2

K(J−1) distribution and W is the goodness-

of-fit statistic:

W (P, P̂ ) = n
∑

j,k

P̂ k

(
P̂ k

j − P k
j

)2

P k
j

.

Then we define the estimates of lower and upper bounds on the quantiles of Gn(s,P) as

G−1
n (α,P)/G

−1
n (α,P) = inf / sup

P∈CR1−γ(P)
G−1

n (α, P ), (9)

where G−1
n (α, P ) = inf{s : Gn(s, P ) ≥ α} is the α-quantile of the distribution function Gn(s, P ).

Then we construct a (1− α− γ) · 100% confidence region for the parameter of interest as

CR1−α−γ(θ∗) =
[
θ, θ

]

where, for α = α1 + α2,

θ = θ̂ −G
−1
n (1− α1,P), θ = θ̂ −G−1

n (α2,P).

This formulation allows for both one-sided intervals (either α1 = 0 or α2 = 0) or two-sided

intervals (α1 = α2 = α/2).

The following theorem shows that this method delivers (uniformly) valid inference on the

parameter of interest.

Theorem 15: If Assumptions 4, 5, and 7 are satisfied then for any true parameter value Π

satisfying Assumption 8,

lim
n→∞PrΠ(θ∗ ∈ [

θ, θ
]
) ≥ 1− α− γ.

In practice, we use the following computational approximation to the procedure described

above:

1. Draw a potential DGP Pr = (P ′
r1, ..., P

′
rK), where Prk ∼M(nP̂ k, (P̂ k

1 , ..., P̂ k
J ))/(nP̂ k) and

M denotes the multinomial distribution.

2. Keep Pr if it passes the chi-square goodness of fit test at the γ level, using K(J−1) degrees

of freedom, and proceed to the next step. Otherwise reject, and repeat step 1.

3. Estimate the distribution Gn(s, Pr) of Sn(Pr) by simulation under the DGP Pr.
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4. Repeat steps 1 to 3 for r = 1, ..., R, obtaining {Gn(s, Pr), r = 1, ..., R}.

5. Let Ĝ
−1
n (α,P)/Ĝ

−1

n (α,P) = min /max{G−1
n (α, P1), ..., G−1

n (α, PR)}, and construct a 1 −
α − γ confidence region for the parameter of interest as CR1−α−γ(θ∗) =

[
θ, θ

]
, where

θ = θ̂ − Ĝ
−1

n (1− α1,P), θ = θ̂ − Ĝ
−1
n (α2,P), and α1 + α2 = α.

The computational approximation algorithm is necessarily successful, if it generates at least

one draw of DGP Pr that gives more conservative estimates of the tail quantiles than the true

DGP does, namely [G−1(α2,P), G−1(1− α1,P)] ⊆ [G−1
n (α2, Pr), G

−1
n (1− α1, Pr)].

11 Empirical Examples

We illustrate the estimation and inference results with two empirical examples. One obtains

nonparametric bounds for the effect of unions on earnings quantiles. The other compares non-

parametric and semiparametric bounds for the effect of fertility on women’s labor force partici-

pation.

11.1 Union Premium

We revisit the empirical question of how unions impact the wage structure using panel data.

Our major contribution here is to estimate the effect without imposing the assumption that

unobserved heterogeneity is some additive term that can be simply differenced out. In our

model unobserved heterogeneity can have an almost unrestricted impact on the structural/causal

response functions, with the time homogeneity serving as the only restriction.

Our analysis is motivated by previous empirical studies that find unobserved differences

between union and nonunion workers. For instance, in an influential study, Chamberlain (1982)

finds strong evidence of heterogeneity bias in the estimation of the union effect by comparing

estimates of cross-sectional models and panel data models with additive heterogeneity. This

finding demonstrates the important need of controlling for unobserved heterogeneity. On the

other hand, Angrist and Newey (1991) reject the hypothesis that the unobserved heterogeneity

acts solely in an additive fashion. This finding demonstrates the important need of controlling

for unobserved heterogeneity acting non-additively.

We use data from the National Longitudinal Survey (Youth Sample). The sample consists

of full-time young working males, 20 to 29 year-old in 1986, followed over the period 1986 to

1993. We exclude individuals who failed to provide sufficient information for each year, were in

the active army forces or students any year, or reported too high (more than $500 per hour)

or too low (less than $1 per hour) wages. The final sample includes 2,065 men. We use the

union membership and the log hourly wage rate in 1980 dollars as the covariate and the outcome
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variables. The union membership variable reflects whether or not the individual had his wage

set in collective bargaining agreement. We report results for panels with 2, 4, 6, and 8 years,

all starting in 1986. Vella and Verbeek (1998) also used data from the NLSY for different years

and found evidence of important union effect heterogeneity with a random effects model.

In our analysis, we focus on estimating the union effect for the subpopulation of workers

that became ever unionized within the sample. For this subpopulation, the union effect is not

point-identified, since there are 13% of the workers that stayed always unionized between 1986

and 1993 (see Table 2). However, we hope to construct informative bounds on the union effect.

We consider both a static model that allows for the union membership decisions to be strictly

exogenous with respect to wage setting decisions, and a dynamic model that allows for the union

membership decisions to be only predetermined with respect to wage setting decisions. We shall

also report the estimates of the union effect for the subpopulation of workers who change the

union status at least once within the sample. For this subpopulation, the effect is point-identified,

that is, the bounds on the union effect collapse to a point. We shall not estimate the union effect

for the entire population of workers, since the bounds are completely uninformative in this case.

This happens because more than half of the workers are never unionized within the sample (see

Table 2).

We begin by presenting the estimates of the union effect for the subpopulation of workers

who change the union status at least once within the sample. In Figure 4 we compare our panel

data estimates of quantile effects with pooled cross-section estimates. In the cross-sectional

estimates, we see that the quantile effect of union is positive but declines sharply at the upper

end of the distribution, which agrees with previous cross-sectional findings (Chamberlain, 1994).

A common explanation for this phenomenon is that the high-skill workers at the lower end of the

earning distribution tend to join the union, whereas the high-skill workers at the high end of the

earning distribution tend not to join the union. The estimated quantile effect in the cross-section

therefore captures this selection effect of unobserved skills. In the panel data estimates, which

control for the unobserved skills, we see that the quantile effects of union become very flat across

the quantile indices. Thus, by controlling for individual heterogeneity, we have eliminated the

selection effect. Finally, our estimates of quantile effects are higher in the dynamic model than

in the static model indicating a possible dynamic feedback between the wage setting and union

membership decisions. Figure 5 shows that the results of the static model are not sensitive to

the inclusion of location and scale effects, as described in Appendix B.

We next present estimated bounds on the union effect for the subpopulation of workers that

became ever unionized within the sample. In Figures 6 and 7 we show these bounds for both

static and dynamic models and for panels of lengths T ∈ {2, 4, 6, 8} . In both cases, the size of

the bounds decreases substantially with T . The bounds for T = 8 are informative, and show
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that the effect is positive for most of the quantile indices. The figures also show bounds obtained

using the assumption of monotonic and positive union effect on earnings described in Appendix

B. These bounds are also informative, and in fact are substantially tighter than the bounds

obtained without the monotonicity assumption.

Figure 8 plots 90% uniform confidence bands for the identified union effect and quantile

union effect on ever unionized workers in the static and dynamic models. They are constructed

by bootstrap with 500 repetitions. These bands allow us to make visual simultaneous inference

on the entire quantile functions. For example, we cannot reject that the identified union effect

is constant and positive for all the quantiles. For the ever unionized, the quantile union effect is

positive for a large range of quantiles. The bands are narrower in the static model because this

model uses more observations in the estimation of the quantile functions.

11.2 Female Labor Force Participation

For an application of the semiparametric bounds we consider a binary choice panel model of

female labor force participation. We focus on the relationship between participation and the

presence of young children in the household. Other studies that estimate similar models of

participation in panel data include Heckman and MaCurdy (1980, 1982), Heckman and MaCurdy

(1982), Chamberlain (1984), Hyslop (1999), Chay and Hyslop (2000), Carrasco (2001), Carro

(2007), and Fernández-Val (2009).

The empirical analysis is based on a sample of married women from the National Longitudinal

Survey of Youth 1979 (NLSY79). The sample consists of 1,587 married women. Only women

continuously married, not students or in the active forces, and with complete information on the

relevant variables in the entire sample period are selected from the survey. Descriptive statistics

for the sample are shown in Table 3. The labor force participation variable (LFP ) is an indicator

that takes the value one if the woman employment status is “in the labor force” according to the

CPS definition, and zero otherwise. The fertility variable (kids) indicates whether the woman

has any child less than 3 year-old. We focus on very young preschool children as most empirical

studies find that their presences have the strongest impact on the mother participation decision.

LFP is stable across the years considered, whereas kids is increasing. The proportion of women

that change fertility status grows steadily with the number of time periods of the panel, but

there are still 49% of the women in the sample for which the effect of fertility is not identified

after 3 periods.

The empirical specification we use is similar to Chamberlain (1984). In particular, we esti-

mate the following equation

LFPit = 1 {β∗ · kidsit + αi + εit ≥ 0} ,
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where αi is an individual specific effect. The parameters of interest are β∗ and the ATE of fertility

on participation. We compute nonparametric and semiparametric probit and logit bounds for

these parameters. We also obtain linear and nonlinear fixed effects estimates, together with

large-T analytical bias corrected estimates and conditional fixed effects logit estimates.1 The

nonparametric bounds impose monotonicity of the effects. For the semiparametric bounds, we

use the algorithm described in Section 9 with penalty λn = 1/(n log n) and iterate the quadratic

program 3 times with initial weights ŵk
j = P̂ k. This iteration makes the estimates insensitive to

the penalty and weighting. We search over discrete distributions with M = 23 support points

at {−∞,−4,−3.6, ..., 3.6, 4,∞} for the parameter β∗, and with M = 163 support points at

{−∞,−8,−7.9, ..., 7.9, 8,∞} for the ATE. The estimates are based on panels of 2 and 3 time

periods, both of them starting in 1990.

Table 4 reports estimates and 95% confidence regions for the parameters of interest. The

confidence regions for the nonparametric bounds are constructed using the normal approximation

(95% N) and nonparametric bootstrap with 200 repetitions (95% B). The confidence regions

for the semiparametric bounds are obtained using the procedures described in Section 10. For

the modified projection method (95% MP ), the confidence interval for P in the first stage is

approximated by 50,000 DGPs drawn from the empirical multinomial distributions that pass the

goodness of fit test. For the perturbed bootstrap method (95% PB) we use R = 100, γ = .01,

α1 = α2 = .02, and 200 simulations from each DGP to approximate the distribution of the

statistic. Together the modified projection and the perturbed bootstrap took several days to

compute on personal computer. We also include confidence intervals obtained by a canonical

projection method (95% CP ) that intersects the nonparametric confidence interval for P with

the space of probabilities compatible with the semiparametric model Ξ:

CR1−α(P) =
{

P ∈ Ξ : W (P, P̂ ) ≤ c1−α(χ2
K(J−1))

}
.

For the fixed effects estimators, the confidence regions are based on the asymptotic normal

approximation. The semiparametric estimates are shown for εn = 0, i.e., for the solution that

gives the minimum value in the quadratic problem.

Overall, we find that the nonparametric bound estimates and confidence regions are too wide

to provide informative evidence about the relationship between participation and fertility. The

semiparametric bounds offer a good compromise between producing more informative results

without adding too much structure to the model. Thus, these estimates are always inside

the confidence regions of the nonparametric model and do not suffer of important efficiency

losses relative to the more restrictive fixed effects estimates. Another salient feature of the

results is that the misspecification problem of the canonical projection method clearly arises
1The analytical corrections use the estimators of the bias based on expected quantities in Fernández-Val (2009).
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in this application. Thus, this procedure gives empty confidence regions for the panel with 3

periods. The modified projection and perturbed bootstrap methods produce similar (non-empty)

confidence regions for the model parameters and marginal effects.

The semiparametric intervals for the ATE cover the -9.6% estimate of Chamberlain (1984)

for the expected effect of having an additional young child on the participation probability. He

obtained this estimate from a correlated random coefficient probit model, a richer specification

that includes education and fertility covariates, and a different sample from the PSID.

12 Possible Extensions

Our analysis is mainly confined to models with only discrete explanatory variables. It would be

interesting to extend the analysis to models with continuous explanatory variables.

13 Appendix

13.1 Proofs

Proof of Theorem 1: By Assumption 2, for α̃ = X,

E[Yit|Xi, α̃i] = E[g0(Xit, αi, εit)|Xi] =
∫

g0(Xit, α, ε)F (dα, dε|α̃i) = m0(Xit, α̃i),
∫

m0(x, α̃)F (dα̃) =
∫

g0(x, α, ε)F (dα, dε|α̃)F (dα̃) = µ(x).

Similarly, Assumption 3 implies, for α̃i = (αi, X1i),

E[Yit|Xit, ..., Xi1, α̃i] =
∫

g0(Xit, αi, ε)F (dε|Xit, ..., Xi1, αi)

=
∫

g0(Xit, αi, ε)F (dε|α̃i) = m0(Xit, α̃i),
∫

m0(x, α̃)F (dα̃) =
∫

g0(x, α, ε)F (dε|α,X1)F (dα, dX1)

=
∫

g0(x, α, ε)F (dε, dα, dX1) = µ(x).Q.E.D.

Proof of Theorem 2: Note that Xit−X̄i = (1−ri)dit(1)−ridit(0) and ri =
∑T

t=1 dit(1)/T =

1−∑
t dit(0)/T . Then

E[
T∑

t=1

(Xit − X̄i)Yit]/T = E[
T∑

t=1

(Xit − X̄i)E[Yit|Xi]]/T

= E[
T∑

t=1

{(1− ri)dit(1)µ(1|Xi)− ridit(0)µ(0|Xi)]/T = E[σ2
i ∆(Xi)].
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Also,
∑T

t=1(Xit − X̄i)2/T = σ2
i by definition. Then by the law of large numbers,

∑

i,t

(Xit − X̄i)Yit/n
p−→ TE[σ2

i ∆(Xi)],
∑

i,t

(Xit − X̄i)2/n
p−→ TE[σ2

i ] > 0,

so the conclusion follows by the continuous mapping theorem. Q.E.D.

Proof of Theorem 3: By the law of large numbers and iterated expectations,

1
n

n∑

i=1

Di{
∑T

t=1 dit(x̃)Yit

Ti(x̃)
−

∑T
t=1 dit(x̄)Yit

Ti(x̄)
} p−→ E[Di{

∑T
t=1 dit(x̃)Yit

Ti(x̃)
−

∑T
t=1 dit(x̄)Yit

Ti(x̄)
}]

= E[Di{
∑T

t=1 dit(x̃)E[Yit|Xi]
Ti(x̃)

−
∑T

t=1 dit(x̄)E[Yit|Xi]
Ti(x̄)

}]

= E[Di{
∑T

t=1 dit(x̃)µ(x̃|Xi)
Ti(x̃)

−
∑T

t=1 dit(x̄)µ(x̄|Xi)
Ti(x̄)

}] = E[Di{µ(x̃|Xi)− µ(x̄|Xi)}]

and
∑n

i=1 Di/n
p−→ E[Di]. Dividing numerator and denominator in δ̂ by n and applying the

continuous mapping theorem gives the result. Q.E.D.

Proof of Theorem 4: Note that

µ(x) = E[1(Ti(x) > 0)g0(x, αi, εi1)] + E[1(Ti(x) = 0)g0(x, αi, εi1)].

Since B` ≤ g0(x, αi, εi1) ≤ Bu, multiplying through these inequalities by 1(Ti(x) = 0) and taking

expectations gives

B`P̄(x) ≤ E[1(Ti(x) = 0)g0(x, αi, εi1)] ≤ BuP̄(x). (10)

Also, by iterated expectations and dit(x)E[Yit|Xi] = dit(x)µ(x|Xi),

E[1(Ti(x) > 0)
∑T

t=1 dit(x)Yit

Ti(x)
] = E[1(Ti(x) > 0)

∑T
t=1 dit(x)E[Yit|Xi]

Ti(x)
]

= E[1(Ti(x) > 0)
∑T

t=1 dit(x)µ(x|Xi)
Ti(x)

] = E[1(Ti(x) > 0)µ(x|Xi)]

= E[1(Ti(x) > 0)g0(x, αi, εit)].

Combining this equality with the bounds for E[1(Ti(x) = 0)g0(x, αi, εi1)] gives the first conclu-

sion.

To show sharpness, let α̃i = (αi, Xi) and B` ≤ C ≤ Bu be a constant. Define

gC
0 (x, α̃i, εit) = 1(Ti(x) > 0)g0(x, αi, εit) + C · 1(Ti(x) = 0).

Note that Ti(Xit) > 0 with probability one, so that gC
0 (Xit, α̃i, εit) = g0(Xit, αi, εit) = Yit. Hence

the conditional distribution of (Yi1, ..., YiT )′ given Xi is the same for gC
0 and α̃i as for g0 and
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αi. Also, because (αi, Xi) is a one-to-one function of (α̃i, Xi) it follows that Assumption 2 is

satisfied with α̃i replacing αi. When C = B` the lower bound is attained and when C = Bu the

upper bound is attained. Q.E.D.

Proof of Theorem 5: The proof of the bounds proceeds exactly as in the proof of Theorem

4 with 1(Yit ≤ y) replacing Yit and 1(g0(x, αi, εit) ≤ y) replacing g0(x, αi, εit). Note that

G(y, x) = E[1(Ti(x) > 0)1(g0(x, αi, εi1) ≤ y)] + E[1(Ti(x) = 0)1(g0(x, αi, εi1) ≤ y)].

Since 0 ≤ 1(g0(x, αi, εi1) ≤ y) ≤ 1, multiplying both sides by 1(Ti(x) = 0) and taking expecta-

tions gives

0 ≤ E[1(Ti(x) = 0)1(g0(x, αi, εi1) ≤ y)] ≤ P̄(x).

Also, by iterated expectations and dit(x)E[1(Yit ≤ y)|Xi] = dit(x)G(y, x|Xi) for G(y, x|Xi) =

E[1(g0(x, αi, εi1) ≤ y)|Xi],

E[1(Ti(x) > 0)
∑T

t=1 dit(x)1(Yit ≤ y)
Ti(x)

] = E[1(Ti(x) > 0)
∑T

t=1 dit(x)E[1(Yit ≤ y)|Xi]
Ti(x)

]

= E[1(Ti(x) > 0)
∑T

t=1 dit(x)G(y, x|Xi)
Ti(x)

] = E[1(Ti(x) > 0)G(y, x|Xi)]

= E[1(Ti(x) > 0)1(g0(x, αi, εi1) ≤ y)].

Combining this equation with the bounds for E[1(Ti(x) = 0)1(g0(x, αi, εi1) ≤ y)] and inverting

gives the first conclusion.

To show sharpness, define α̃i and gC
0 (x, αi, εit) as in the previous proof, but now for any

C ∈ R. Let GC(y, x) = E[1(gC
0 (x, αi, εit) ≤ y)] and note that

GC(y, x) = G`(y, x) + 1(y ≥ C)P̄(x).

Since G`(y, x) is strictly increasing, the quantile structural function for gC
0 is

qC(λ, x) =





qu(λ, x), λ < G`(C, x),

C, G`(C, x) ≤ λ ≤ G`(C, x) + P̄(x),

q`(λ, x), λ > G`(C, x) + P̄(x).

For P̄(x) < λ < 1−P̄(x), we have qC(λ, x) = q`(λ, x) for C small enough that G`(C, x)+P̄(x) <

λ and qC(λ, x) = qu(λ, x) for C big enough. For λ ≤ P̄(x) we have qC(λ, x) = qu(λ, x) for all C

big enough and limC−→−∞ qC(λ, x) = −∞. For λ ≥ 1− P̄(x) we have qC(λ, x) = q`(λ, x) for all

C small enough and limC−→∞ qC(λ, x) = +∞. Thus the bounds are sharp. Q.E.D.

Proof of Theorem 6: Note that exactly one of the of dummy variables dXi1(x), ..., dXiT (x), 1(Ti(x) =

0) is one for each Xi. Therefore,

µ(x) = E[
T∑

t=1

dXit (x)g0(x, αi, εi1)] + E[1(Ti(x) = 0)g0(x, αi, εi1)].
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It follows similarly to eq. (10) that

B`P̄(x) ≤ E[1(Ti(x) = 0)g0(x, αi, εiT )] ≤ BuP̄(x).

Also, by eq. (5),

E[
T∑

t=1

dXit (x)Yit] =
T∑

t=1

E[dXit (x)Yit] =
T∑

t=1

E[dXit (x)g0(x, αi, εiT )]

= E[
T∑

t=1

dXit (x)g0(x, αi, εiT )].

Combining this equality with the bounds for E[1(Ti(x) = 0)g0(x, αi, εiT )] and noting that

E[g0(x, αi, εiT )] = E[g0(x, αi, εi1)] gives the first conclusion. The second conclusion follows

by replacing Yit and g0(x, αi, εiT ) by 1(Yit ≤ y) and g0(x, αi, εiT ) respectively, similarly to the

proof of Theorem 5. Q.E.D.

Proof of Theorem 7: Let
as|αi−→ denote almost sure convergence as T −→ ∞ conditional

on αi. Recall that Ti(x) =
∑T

t=1 dit(x). By the ergodic theorem and by the conditional support

given αi being equal to the marginal support, we have

Ti(x)/T
as|αi−→ E[dit(x)|αi] = Pr(Xit = x | αi) > 0.

Therefore 1(Ti(x) > 0)
as|αi−→ 1 for any x in the support of Xit. Then for any x̃ and x̄ in the

support of Xit,

Di = 1(Ti(x̃) > 0)1(Ti(x̄) > 0)
as|αi−→ 1.

Sincer Ti(x) is an exchangeable function it follows that the distribution of DiYit is the same for

each t conditional on αi, so that E

= E

[
Di

T∑

t=1

dit(x̃)E[Yit|Xi]/Ti(x̃)

]
= E [Diµ(x̃|Xi)]

= E[DiE[g(x̃, αi, εi1)|Xi]] = E[Dig(x̃, αi, εi1)].

Since E[|g(x̃, αi, εi1)|] < ∞ it follows that E[|g(x̃, αi, εi1||αi] < ∞ with probability one, so by

the dominated convergence theorem (DCT), E[Dig(x̃, αi, εi1)|αi] −→ E[g(x̃, αi, εi1)|αi] a.s. as

T −→ ∞. Then by |E[Dig(x̃, αi, εi1)|αi]| ≤ E[|g(x̃, αi, εi1||αi] and another application of DCT

we have

E[Dig(x̃, αi, εi1)] = E[E[Dig(x̃, αi, εi1)|αi]] −→ E[E[g(x̃, αi, εi1)|αi]] = µ(x̃).

It follows similarly that E
[
Di

∑T
t=1 dit(x̄)Yit/Ti(x̄)

]
−→ µ(x̄). Also, E[Di] −→ 1 by the DCT,

giving the first conclusion.
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Next note that by the DCT,

P̄(x) = E[1(Ti(x) = 0)] −→ 0.

The first conclusion then follows by Theorem 4 or 6.

Next, for notational convenience, suppress the x argument. It follows as previously with

1(g0(x, αi, εit) ≤ y) replacing Yit that for all y, as T −→∞

Gu(y)−G`(y) ≤ P̄ −→ 0.

Consider any 0 < λ < 1. Let T be large enough so that λ < 1 − P̄. Then qu(λ) is finite and

G`(qu(λ)) = λ = G(q(λ)). It follows by qu(λ) ≥ q(λ) that

0 ≤ G(qu(λ))−G(q(λ)) = G(qu(λ))−G`(qu(λ)) ≤ P̄ −→ 0.

Since G(y) is strictly monotonic in a neighborhood of q(λ) and qu(λ) ≥ q(λ), it follows that

qu(λ) −→ q(λ). An analogous argument shows that q`(λ) −→ q(λ).Q.E.D.

Proof of Theorem 8: Let ΠT
t=11(Xit 6= x) be the indicator function for the event that none

of the elements of Xi is equal to x so that P̄(x) = E[ΠT
t=11(Xit 6= x)]. By iterated expectations,

for T > J ,

P̄(x) = E[E[ΠT
t=11(Xit 6= x)]] = E[ΠT−1

t=1 1(Xit 6= x)E[1(XiT 6= x)|Xi,T−1, ..., Xi1, αi]]

= E[{ΠT−1
t=1 1(Xit 6= x)}Pr(XiT 6= x|Xi,T−1, ..., Xi,T−J , αi)] ≤ (1− ε)E[ΠT−1

t=1 1(Xit 6= x)].

Repeating the argument for T − 1, ..., J gives

P̄(x) ≤ (1− ε)T−JE[ΠJ−1
t=1 1(Xit 6= x)] ≤ (1− ε)T−J .

The first conclusion then follows by Theorem 4 or 6.

Next suppress the x argument and proceed as in the proof of Theorem 7. Note that G′(y) >

Dx for all y in a neighborhood of q(λ) and that G(qu(λ)) − G(q(λ)) ≤ P̄ for large enough T.

Using these and previous bounds and a mean value expansion gives

(1− ε)T−J ≥ P̄ ≥ G(qu(λ))−G(q(λ)) = G′(q̄(λ))[qu(λ)− q(λ)] ≥ Dx[qu(λ)− q(λ)] ≥ 0,

where q̄(λ) lies between qu(λ) and q(λ). Dividing by Dx then gives

D−1
x (1− ε)T−J ≥ qu(λ)− q(λ) ≥ 0.

An analogous argument gives D−1
x (1− ε)T−J ≥ q(λ)− q`(λ), so adding these inequalities gives

the second conclusion. Q.E.D.
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Proof of Lemma 9: Let the vector of model probabilities for (Y 1, ...., Y J) be

Lk (α, β) ≡
(
Lk

1 (α, β) , ...,Lk
J (α, β)

)′
.

Let Γk(β) ≡ {Lk (α, β) : α ∈ Υ
}

and Γ̆k(β) be the convex hull of Γk(β). By Lemma 3 of Cham-

berlain (1987), Γ̆k(β) = {∫ Lk (α, β) F (dα) : F is a CDF on Υ}. Therefore,
∫ Lk (α, β) Fk(dα) ∈

Γ̆k (β) . Note that Γk(β) is contained in the unit simplex and so has dimension J − 1. By the

Carathéodory Theorem there exist J vectors Lk
(
αk

m, β
)
, (m = 1, ..., J) and 0 ≤ πk

m ≤ 1 with
∑J

m=1 πk
m = 1 such that

∫
Lk (α, β) Fk(dα) =

J∑

m=1

πk
mLk

(
αk

m, β
)

,

giving the conclusion for the discrete distribution F J
k with J support points at (αk

1 , ..., α
k
J) and

probabilities (πk
1 , ..., πk

J).

Next, for any ε > 0 let β ∈ B and Fkβ ∈ Fk(β,P) satisfy

∆k
u − ε <

∫
∆(α, β)Fkβ (dα) ≡ ∆̄(β).

Similarly to the previous paragraph, let Γ∆
k (β) ≡ {

(Lk (α, β)′ , ∆(α, β))′ : α ∈ Υ
}

and Γ̆∆
k (β) be

the convex hull of Γ∆
k (β). Then (Pk

1 , ...,Pk
J , ∆̄(β))′ ∈ Γ̆∆

k (β) , so by Caratheodory’s Theorem

there exists a discrete distribution F J+1
kβ with J+1 support points (αk

1 , ..., α
k
J+1) and probabilities

πk
1 , ..., πk

J+1 such that F J+1
kβ ∈ Fk(β,P) and

∫
∆(α, β)F J+1

kβ (dα) = ∆̄(β).

We now show that it suffices to have mass over just J points. Consider the problem of

allocating πk
1 , ..., πk

J+1 among
(
αk

1 , ..., α
k
J+1

)
in order to solve

max
(πk

1 ,...,πk
J+1)

J+1∑

m=1

∆(αk
m, β)πk

m, s.t.

J+1∑

m=1

πk
mLk

j

(
αk

m, β
)

= Pk
j ,

J+1∑

m=1

πk
m = 1, πk

m ≥ 0, ( m = 1, ..., J + 1).

This is a linear program of the form

max
πk∈RJ+1

c′πk such that πk ≥ 0, Aπk = b, 1′πk = 1,

and any basic feasible solution to this program has J + 1 active constraints, of which at most

rank (A) + 1 can be equality constraints. This means that at least J − rank(A) of active

constraints are the form πk
m = 0, see, e.g., Theorem 2.3 and Definition 2.9 (ii) in Bertsimas and

Tsitsiklis (1997). Since rank(A) ≤ J − 1, a basic solution to this linear programming problem
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will have at least one zero, that is at most J strictly positive πk
m’s.2 Thus, we have shown that

there exists a distribution F J
kβ ∈ Fk(β,P) with just J points of support such that

∆k
u − ε <

∫
∆(α, β)F J+1

kβ (dα) ≤
∫

∆(α, β)F J
kβ (dα) .

This construction works for every ε > 0. Q.E.D.

Proof of Theorem 10: β∗ is identified for logit so B = {β∗}. Consider here k = 1 where

Xk = (0, ..., 0)′ and let F1 = Fk(β∗,P). The result for Xk = (1, ..., 1)′ will follow similarly. Let

Z = H(α) and G1(z) be the CDF of Z when F1(α) is the CDF of α. By (Yi1, ..., YiT ) mutually

independent, for all F1 ∈ F1,

P1
j =

∫
z
P

t Y j
t [1− z]T−

P
t Y j

t dG1(z), (j = 1, ..., J).

Since
∑

t Y j
t takes on integer values, there are known functions Mt of the cell probabilities P1

j

such that for all F1 ∈ F1,

Mt =
∫

ztdG1(z), (t = 1, ..., T ).

Now consider a T th order polynomial P (z, T ) = b0 + b1z + ... + bT zT in z. Note that

∫
P (z, T )dG1(z) = b0 +

T∑

t=1

btMt

does not depend on F1 ∈ F1. Similarly,
∫

zdG1(z) = M1 does not depend on F1 ∈ F1. Define

the function h(z) = H(β∗+H−1(z)) = zeβ∗/1−(1−eβ∗)z, so that the ATE is
∫

[h(z)−z]dG∗
1(z).

For any polynomial P (z, t) let R(z, t) = h(z)− P (z, t) be the remainder. Then we have

∆k
u −∆k

` = sup
F1∈F1

∫
[h(z)− z]dG1(z)− inf

F1∈F1

∫
[h(z)− z]dG1(z) (11)

= sup
F1∈F1

∫
[P (z, T ) + R(z, T )]dG1(z)− inf

F1∈F1

∫
[P (z, T ) + R(z, T )]dG1(z)

= sup
F1∈F1

∫
R(z, T )dG1(z)− inf

F1∈F1

∫
R(z, T )dG1(z) ≤ 2 sup

0≤z≤1
|R(z, T )|.

The function h(z) is continuously differentiable of order r for every r with
∣∣∣∣
drh(z)

dzr

∣∣∣∣ ≤ r!e|β
∗|(e|β

∗| − 1|)r−1.

2Note that rank(A) ≤ J − 1, since
PJ

j=1 Lk
j (α, β) = 1. The exact rank of A depends on the sequence Xk, the

parameter β, the form of Lk
j (α, β), and T . For example in the model of Assumption 6 with T = 2 and X binary,

rank(A) = J − 2 = 2 when x1 = x2, β = 0, or H is the logistic distribution; whereas rank(A) = J − 1 = 3 for

Xk
1 6= Xk

2 , β 6= 0, and H is any continuous distribution different from the logistic.
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Then by Jackson’s Theorem (e.g. Judd (1998) Chap. 3) there exists P (z, T ) such that for

γ = π(e|β∗| − 1|)/4

sup
0≤z≤1

|R(z, T )| ≤ (T − r)!
T !

(π

4

)r
sup

0≤z≤1

∣∣∣∣
drh(z)

dzr

∣∣∣∣

≤ (T − r)!r!
T !

(π

4

)r
e|β

∗|(e|β
∗| − 1|)r−1 ≤ C

(rγ

T

)r
.

This inequality continues to hold if γ is replaced by max{γ, 1}, so we can assume γ > 1. Then

choose r equal to T/γe, so that

sup
0≤z≤1

|R(z, T )| ≤ Ce−T/γe.

The conclusion then follows by eq. (11). Q.E.D.

Proof of Lemma 11: Consider the set <̄ = (−∞, +∞) ∪ {−∞, +∞}. By Assumption 6

H(v) is strictly monotonic and continuous on <̄ with H(−∞) = 0 and H(+∞) = 1. Let H−1(u)

be the inverse function defined on [0, 1]. Let v̄ = maxXk∈{X1,...,XK},β∈B |Xk′
t β| and define the

function

T (u) =





v̄ + H−1(u), 3
4 ≤ u ≤ 1

(4u− 2)
[
v̄ + H−1(3

4)
]
, 1

4 < u < 3
4

−v̄ + H−1(u), 0 ≤ u ≤ 1
4

This function is continuous and differentiable except at u = 1
4 and u = 3

4 . At u = 1
4 the left

derivative is
[
h(H−1

(
1
4

)
)
]−1 and the right derivative is 4

[
v̄ + H−1

(
3
4

)]
.

Consider the function H(v+T (u)). By the chain rule, H(v+T (u)) is differentiable everywhere

on [−v̄, v̄]×(
1
4 , 3

4

)
and right differentiable at

(
v, 1

4

)
and left differentiable at

(
v, 3

4

)
with derivative

(right or left) equal to

h(v + T (u))4
[
v̄ + H−1(

3
4
)
]

.

This derivative is uniformly bounded on [−v̄, v̄] × (
1
4 , 3

4

)
by h uniformly bounded. Also

H(v + T (u)) is differentiable everywhere on [−v̄, v̄] × {(
3
4 ,∞) ∪ (−∞, 1

4

)}
, right differentiable

at [−v̄, v̄]× {
3
4

}
and left differentiable at [−v̄, v̄]× {

1
4

}
. For u ∈ [3/4, 1] the (right) derivative is

∂

∂u
H(v + T (u)) = H ′(v + T (u))T ′(u) =

h(v + v̄ + H−1(u))
h(H−1(u))

≤ h(H−1(u))
h(H−1(u))

= 1

where the inequality holds by v̄ + v ≥ 0 (implied by v ≥ −v̄) and by H−1(u) > 0. It follows

similarly that ∂H(v + T (u))/∂u is uniformly bounded by 1 on [−v̄, v̄] × [0, 1
4 ]. It follows that

there is a constant C such that for all v ∈ [−v̄, v̄] and u, ũ ∈ [0, 1],

|H(v + T (ũ))−H(v + T (u))| ≤ C|ũ− u|.
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Note that T−1(α) is a strictly monotonic increasing function on <̄. Define d(α̃, α) =

|T−1(α̃) − T−1(α)|. Note that d(α̃, α) ≥ 0 with equality if and only if α̃ = α, and for any

three points ᾱ, α̃, and α, the triangle inequality implies

d(α̃, α) = |T−1(α̃)− T−1(α)| ≤ |T−1(α̃)− T−1(ᾱ)|+ |T−1(ᾱ)− T−1(α)| = d(α̃, ᾱ) + d(ᾱ, α).

Therefore d(α̃, α) is a metric. Also, for ũ = T−1(α̃) and u = T−1(α), we have

sup
v∈[−v̄,v̄]

|H(v + α̃)−H(v + α)| ≤ C|T−1(α̃)− T−1(α)| = Cd(α̃, α).

Also, by |Xk′
t β| ≤ v̄, and 0 ≤ H(Xk′

t β + α) ≤ 1, for all t, k, and β ∈ B,

∣∣∣Lk
j

(
α̃, β̃

)
− Lk

j (α, β)
∣∣∣ ≤

∣∣∣Lk
j

(
α̃, β̃

)
− Lk

j

(
α, β̃

)∣∣∣ +
∣∣∣Lk

j

(
α, β̃

)
− Lk

j (α, β)
∣∣∣

≤ Cd(α̃, α) + sup
α,t,k

|H(Xk′
t β̃ + α)−H(Xk′

t β + α)|

≤ Cd(α̃, α) + sup
v

h(v) sup
t,k

∥∥∥Xk
t

∥∥∥
∥∥∥β̃ − β

∥∥∥

≤ C[d(α̃, α) +
∥∥∥β̃ − β

∥∥∥].

Finally, for every M let ᾱmM = T ((m− 1)/(M − 1)), (m = 1, ...,M). Then

η(M) = sup
α∈<̄

min
α̃∈ΥM

d(α, α̃) = sup
u∈[0,1]

min
ũ∈{0,1/(M−1),2/(M−1),...,1}

|u− ũ| = 1/(M − 1).Q.E.D.

Proof of Theorem 12: This is proof is omitted because it is very similar (but easier)

than the proof of Theorem 13 to follow.

Proof of Theorem 13: For notational convenience we here denote the probabilities as-

sociated with the fixed grid {ᾱ1M , ..., ᾱMM} by π̄k. Let π̄ = (π̄1′, ..., π̄K′)′ be a KM × 1 vec-

tor with each π̄k in the M -dimensional unit simplex SM . Also, let the probabilities associ-

ated with a variable grid {αk
1 , ..., α

k
J+1} be πk so that π = (π1′, ..., πK′)′ is a [(J + 1)K] × 1

vector of probabilities with each πk in the J + 1-dimensional unit simplex SJ+1. Let αk =

(αk
1 , ..., α

k
J+1)

′, α = (α1′, ..., αK′)′, γ = (α′, π′)′, θ = (β′, γ′)′, P̃ k
j (θ) =

∑J+1
`=1 Lk

j

(
αk

` , β
)
πk

` ,

∆k(θ) =
∑J+1

`=1 ∆
(
αk

` , β
)
πk

` , Θ = B×Υ(J+1)K × SK
J+1, and

Q̂(θ) =
∑

j,k

ŵk
j

[
P̂ k

j − P̃ k
j (θ)

]2
, Q(θ) =

∑

j,k

wk
j

[
Pk

j − P̃ k
j (θ)

]2
.

By applying the Caratheodory Theorem as in the proof of Lemma 12, for every π̄ there is

θ(π̄, β) = (β′, γ(π̄, β)′)′ with

∆k(θ(π̄, β)) =
M∑

m=1

∆(ᾱmM , β)π̄k
m, P̃ k

j (θ(π̄, β)) = P k
j (β, π̄, M), (j = 1, ..., J ; k = 1, ...,K).
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Let ΘI = {θ : Q(θ) = 0},

Θ̃ = {θ(π̄, β) : Q̂(θ(π̄, β)) + λnπ̄′π̄ ≤ εn}, ΘM = {θ(π̄, β) : π̄ ∈ SK
M , β ∈ B}.

By construction the projection of Θ̃ on B coincides with B̂ and the projection of ΘI on B
coincides with B. Also the identified set of marginal effects is {∆k(θ) : θ ∈ ΘI}, ∆k(θ) is a

continuous function of θ, and D̂k = {∆k(θ) : θ ∈ Θ̃}. Since the minimum and maximum of a

set are continuous in the Hausdorff metric, it suffices to show that dH(Θ̃, ΘI)
p−→ 0.

Let d(θ, θ̃) = maxj,k max{d(αk
j , α̃

k
j ), |πk

j − π̃k
j |,

∥∥∥β − β̃
∥∥∥}. From Assumption 7 and M̂

p−→∞
we have

sup
α∈Υ

min
α̃∈ΥM̂

d(α, α̃) ≤ η(M̂)
p−→ 0.

Therefore for every α ∈ Υ there is ᾱm(α),M̂ with d(α, ᾱm(α),M̂ ) ≤ η(M̂), so that for any θ ∈ Θ

there are ᾱm(αk
` ),M̂ with max1≤`≤J+1,k{d(αk

` , ᾱm(αk
` ),M̂ )} ≤ η(M̂). Let αk(θ) = (ᾱm(αk

1),M̂ , ..., ᾱm(αk
J+1),M̂

)′,

α(θ) = (α1(θ)′, ..., αK(θ)′)′, and θ̄(θ) = (β′, α(θ)′, π′)′. By construction, θ̄(θ) ∈ ΘM and d(θ̄(θ), θ) ≤
η(M̂). Thus,

sup
θ∈Θ

inf
θ̃∈ΘM̂

d(θ, θ̃) ≤ η(M̂).

Also, by Assumption 7,

|P̃ k
j (θ)− P̃ k

j (θ̃)| ≤
J∑

`=1

∣∣∣Lk
j

(
αk

` , β
)

πk
` − Lk

j

(
α̃k

` , β̃
)

π̃k
`

∣∣∣ ≤ Cd(θ, θ̃).

It then follows by standard calculations that there is Ĉ = Op(1) such that

|Q̂(θ)− Q̂(θ̃)| ≤ Ĉd(θ, θ̃) for all θ, θ̃ ∈ Θ.

Therefore we have

sup
θ∈Θ

inf
θ̃∈ΘM̂

|Q̂(θ)− Q̂(θ̃)| ≤ Ĉη(M̂).

Also note that

sup
θ∈ΘI

Q̂(θ) =
∑

j,k

ŵk
j [P̂ k

j − Pk
j ]2 = Op(n−1).

Next let δ > 0 be any positive constant and define the events

E1 =
{

η(M̂) < δ
}

, E2 =
{

Ĉη(M̂) <
εn

3

}
, E3 =

{
sup
θ∈ΘI

Q̂(θ) <
εn

3

}
, E4 = sup

π̄∈SK
M

λnπ̄′π̄ <
εn

3
.

By (n−1 + η(M̂) + λn)/εn
p−→ 0 it follows that

Pr(E1) −→ 1, Pr(E2) = Pr

(
Ĉ <

η(M̂)−1εn

3

)
−→ 1,

Pr(E3) = Pr

(
n sup

θ∈ΘI

Q̂(θ) <
nεn

3

)
−→ 1,Pr(E4) ≥ Pr(λnK ≤ εn

3
) −→ 1.
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It follows that Pr(∩4
r=1Er) −→ 1. When ∩4

r=1Er occurs then for every θ ∈ ΘI there is π̄ with

θM = θ(π̄, β) ∈ ΘM such that d(θ, θ̄) < δ and

Q̂(θ̄) + λnπ̄′π̄ ≤ Q̂(θ̄) +
εn

3
≤ Q̂(θ) + Q̂(θ̄)− Q̂(θ) +

εn

3
≤ sup

θ∈ΘI

Q̂(θ) + Ĉη̂(M) +
εn

3
≤ εn,

i.e. θ̄ ∈ Θ̃. Thus, with probability approaching one,

sup
θ∈ΘI

inf
θ̃∈Θ̃

d(θ, θ̃) ≤ δ.

Next, note that Q̂(θ)
p−→ Q(θ) so it follows by Theorem 2.1 of Newey (1991) that supθ∈Θ

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ p−→

0. Define Θδ
I =

{
θ : inf θ̃∈ΘI

d(θ, θ̃) < δ
}

. Note that Θδ
I is open so that Θ\Θδ

I is compact, so by

continuity of Q(θ), inf
Θ\Θδ

I

Q(θ) = ρ > 0. It follows by uniform convergence that inf
Θ\Θδ

I

Q̂(θ) > ρ
2

with probability approaching 1 (w.p.a. 1). By εn → 0,

sup
θ∈Θ̃

Q̂(θ) ≤ sup
π̄
{Q̂(θ(π̄, β)) + λnπ̄′π̄ ≤ εn} < ρ/2,

so that Θ̃ ⊆ Θδ
I . Therefore w.p.a.1 for all θ̃ ∈ Θ̃ there exists θ ∈ ΘI such that d(θ̃, θ) < δ, i.e.

supθ̃∈Θ̃ infθ∈ΘI
d(θ, θ̃) ≤ δ. It follows that with w.p.a.1, dH(Θ̃, ΘI) ≤ δ. Since δ > 0 is arbitrary,

it follows that dH(Θ̃, ΘI)
p−→ 0.Q.E.D.

Proof of Theorem 14: By the uniform central limit theorem, W (P, P̂ ) converges in law

to χ2
J(K−1) under any sequence of true DGPs with Π in P. It follows that

lim
n→∞PrΠ{P ∈ CR1−α(P)} = 1− α.

Further, the event P ∈ CR1−α(P) implies then event P ∗(P) ∈ {P ∗(P ) : P ∈ CR1−α(P)} by con-

struction, which in turn implies the events B∗ ∈ CR1−α(B∗) and [∆k∗
` ,∆k∗

u ] ∈ CR1−α[∆k∗
` , ∆k∗

u ],∀k.

Q.E.D.

Proof of Theorem 15. We have that for Sn(P) = θ̂ − θ∗ = θ̂ − θ∗(P)

PrΠ{θ∗ 6∈
[
θ, θ

]} = PrΠ{Sn(P) 6∈ [G−1
n (α2,P), G−1

n (1− α1,P)]}
≤ PrΠ[{Sn(P) 6∈ [G−1

n (α2,P), G−1
n (1− α1,P)]} ∩ {P ∈ CR1−γ(P)}] + PrΠ{P 6∈ CR1−γ(P)}

≤ PrΠ[{Sn(P) 6∈ [G−1
n (α2,P), G−1

n (1− α1,P)]} ∩ {P ∈ CR1−γ(P)}] + PrΠ{P 6∈ CR1−γ(P)}
≤ PrΠ{Sn(P) 6∈ [G−1

n (α2,P), G−1
n (1− α1,P)]}+ PrΠ{P 6∈ CR1−γ(P)}

≤ α + PrΠ{P 6∈ CR1−γ(P)}.
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Thus if lim supn PrΠ{P 6∈ CR1−γ(P)} ≤ γ, we obtain that limn PrΠ{θ∗ 6∈
[
θ, θ

]} ≤ α + γ, which

is the desired conclusion.

It now remains to show that lim supn→∞ PrΠ{P 6∈ CR1−γ(P)} ≤ γ. We have that

PrΠ{P 6∈ CR1−γ(P)} = PrΠ{W (P, P ) > c1−γ(χ2
K(J−1))}.

By the uniform central limit theorem, W (P, P̂ ) converges in law to χ2
K(J−1) under any sequence

Π in P. Therefore, for any Π ∈ P,

lim
n→∞PrΠ{W (P, P̂ ) > c1−γ(χ2

K(J−1))} = Pr{χ2
K(J−1) > c1−γ(χ2

K(J−1))} = γ.

Q.E.D.

14 Appendix B: Supplementary Results

We give here some supplementary results that may also be useful and are referred to in the

paper.

14.1 Monotonicity for Nonparametric Models

When properties of g0 are known it should be possible to tighten the bounds. An example is

monotonicity, as imposed in the following condition.

Assumption B1: For some x̃ and x̄, g0(x̃, αi, εit) ≥ g0(x̄, αi, εit).

This condition leads to tighter bounds for the ASF and QSF. The following result gives

bounds for the static model.

Theorem B1: Suppose that Assumptions 1, 2, 4, and B1 are satisfied. If E[|g0(x, αi, εit)|] <

∞ for x ∈ {x̃, x̄} then

µ(x̃)− µ(x̄) ≥ E[Di{
∑T

t=1 dit(x̃)Yit

Ti(x̃)
−

∑T
t=1 dit(x̄)Yit

Ti(x̄)
}] = δE[Di].

Also, if G∗
u(y, x̃) and G∗

`(y, x̄) are continuous and strictly increasing on the interior of their

range for 1̃i = 1(Ti(x̃) > 0), 1̄i = 1(Ti(x̄) > 0), P̄(x̄, x̃) = E[(1− 1̃i)(1− 1̄i)],

G∗
u(y, x̃) = E[1̃i

∑T
t=1 dit(x̃)1(Yit ≤ y)

Ti(x̃)
+ (1− 1̃i)1̄i

∑T
t=1 dit(x̄)1(Yit ≤ y)

Ti(x̄)
]

+P̄(x̄, x̃),

G∗
`(y, x̄) = E[1̄i

∑T
t=1 dit(x̄)1(Yit ≤ y)

Ti(x̄)
+ (1− 1̄i)1̃i

∑T
t=1 dit(x̃)1(Yit ≤ y)

Ti(x̃)
],
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then q(λ, x̃) ≥ Q(λ,G∗
u(·, x̃)) and q(λ, x̄) ≤ Q(λ,G∗

`(·, x̄)), so that

q(λ, x̃)− q(λ, x̄) ≥ Q(λ,G∗
u(·, x̃))−Q(λ, G∗

`(·, x̄)).

Proof: Let 1̃i = 1(Ti(x̃) > 0) and 1̄i = 1(Ti(x̄) > 0) and note that 1 = 1̃i +(1− 1̃i)1̄i +(1−
1̃i)(1 − 1̄i). Also let Ỹi = 1̃i

∑T
t=1 dit(x̃)Yit/Ti(x̃) and Ȳi = 1̄i

∑T
t=1 dit(x̄)Yit/Ti(x̄). It follows as

in the proof of Theorem 4 that

E[1̃ig0(x̃, αi, εit)] = E[1̃iỸi], E[1̄ig0(x̄, αi, εit)] = E[1̄iȲi].

Then by monotonicity we have

µ(x̃) = E[g0(x̃, αi, εit)] ≥ E[{1̃i + (1− 1̃i)(1− 1̄i)}g0(x̃, αi, εit)]

+E[(1− 1̃i)1̄ig0(x̄, αi, εit)]

= E[1̃iỸi + (1− 1̃i)1̄iȲi + (1− 1̃i)(1− 1̄i)g0(x̃, αi, εit)].

Similarly we have

µ(x̄) ≤ E[1̄iȲi + (1− 1̄i)1̃iỸi + (1− 1̃i)(1− 1̄i)g0(x̄, αi, εit)].

Subtracting this inequality from the previous one, and noting that 1̃i − (1 − 1̄i)1̃i = 1̄i1̃i = Di

and −1̄i+ (1− 1̃i)1̄i = −Di, we have

µ(x̃)− µ(x̄) ≥ E[Di(Ỹi − Ȳi)] + E[(1− 1̃i)(1− 1̄i){g0(x̃, αi, εit)− g0(x̄, αi, εit)}]
≥ E[Di(Ỹi − Ȳi)] = δE[Di],

giving the first conclusion.

Next, similarly to above, for Ĝi(y, x) = 1(Ti(x) > 0)Ti(x)−1
∑T

t=1 dit(x)1(Yit ≤ y)

G(y, x̃) = E[{1̃i + (1− 1̃i)(1− 1̄i) + (1− 1̃i)1̄i}1(g0(x̃, αi, εit) ≤ y)]

≤ E[1̃iĜi(y, x̃)] + E[(1− 1̃i)1̄iĜi(y, x̄)] + P̄(x̄, x̃) = G∗
u(y, x̃).

G(y, x̄) ≥ G∗
`(y, x̄).

Inverting gives the second conclusion. Q.E.D.

Turning now to the dynamic model, to sharpen the bounds for the monotonic case we use

different partitions than in Section 5. Define YT (x) = {Xi : XiT = x}. The partition we use

here to derive a lower bound for µ(x̃) is

{Xt(x̃), t = 1, ..., T ; X̄ (x̃) ∩ YT (x̄); X̄ (x̃) ∩ X̄ (x̄); X̄ (x̃) ∩ [X̄ (x̄) ∪ YT (x̄)]c},
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where the superscript c denotes the complement of a set, i.e., Ac = {X : X 6∈ A}. The partition

we use to derive an upper bound for µ(x̄) is the same with x̃ and x̄ interchanged. For the QTE,

we consider coarser partitions that do not include X̄ (x̃)∩ X̄ (x̄) separately. The partition we use

to derive a lower bound for q(λ, x̃) is

{Xt(x̃), t = 1, ..., T ; X̄ (x̃) ∩ YT (x̄); X̄ (x̃) ∩ YT (x̄)c}.

The partition we use to derive an upper bound for q(λ, x̄) is the same with x̃ and x̄ interchanged.

Theorem B2: Suppose that Assumptions 1, 3, 4, and B1 are satisfied. If B` ≤ g0(x, αi, εit) ≤
Bu for x ∈ {x̃, x̄} then

µ(x̃)− µ(x̄) ≥ δ̃ + E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)}YiT ]− E[1{Xi ∈ X̄ (x̄) ∩ YT (x̃)}YiT ]

+ E[1{Xi ∈ X̄ (x̃) ∩ [X̄ (x̄) ∪ YT (x̄)]c}]B` − E[1{Xi ∈ X̄ (x̄) ∩ [X̄ (x̃) ∪ YT (x̃)]c}]Bu,

where δ̃ =
∑T

t=1 E[(1{Xi ∈ Xt(x̃)}−1{Xi ∈ Xt(x̄)})Yit]. If G̃∗
u(y, x̃) and G̃∗

`(y, x̄) are continuous

and strictly increasing on the interior of their range for

G̃∗
u(y, x̃) =

T∑

t=1

E[1{Xi ∈ Xt(x̃)}1{Yit ≤ y}] + E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)}1{YiT ≤ y}]

+E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)c}],

G̃∗
`(y, x̄) =

T∑

t=1

E[1{Xi ∈ Xt(x̄)}1{Yit ≤ y}] + E[1{Xi ∈ X̄ (x̄) ∩ YT (x̃)}1{YiT ≤ y}],

then q(λ, x̃) ≥ Q(λ, G̃∗
u(·, x̃)) and q(λ, x̄) ≤ Q(λ, G̃∗

`(·, x̄)), so that

q(λ, x̃)− q(λ, x̄) ≥ Q(λ, G̃∗
u(·, x̃))−Q(λ, G̃∗

`(·, x̄)).

Proof: By monotonicity we have

E[g0(x̃, αi, εiT )] ≥
T∑

t=1

E[1{Xi ∈ Xt(x̃)}Yit] + E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)}YiT ]

+E[1{Xi ∈ X̄ (x̃) ∩ X̄ (x̄)}g0(x̃, αi, εiT )] + E[1{Xi ∈ X̄ (x̃) ∩ [X̄ (x̄) ∪ YT (x̄)]c}]B`.

By the analogous equation with x̄ and x̃ interchanged,

E[g0(x̄, αi, εiT )] ≤
T∑

t=1

E[1{Xi ∈ Xt(x̄)}Yit] + E[1{Xi ∈ X̄ (x̄) ∩ YT (x̃)}YiT ]

+E[1{Xi ∈ X̄ (x̄) ∩ X̄ (x̃)}g0(x̄, αi, εiT )] + E[1{Xi ∈ X̄ (x̄) ∩ [X̄ (x̃) ∪ YT (x̃)]c}]Bu.

Subtracting these two inequalities and using monotonicity gives the first conclusion.
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Also, by monotonicity it follows similarly to above that

G(y, x̃) =
T∑

t=1

E[1{Xi ∈ Xt(x̃)}1{g0(x̃, αi, εiT ) ≤ y}]

+E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)}1{g0(x̃, αi, εiT ) ≤ y}]
+E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)c}1{g0(x̃, αi, εiT ) ≤ y}] ≤ G̃∗

u(y, x̃),

G(y, x̄) ≥ G̃∗
`(x̄, y).

The conclusion follows by inverting. Q.E.D.

If Xit ∈ {0, 1}, the lower bound for µ(x̃)− µ(x̄) simplifies to

δ̃ + E[1{Xi ∈ X̄ (x̃) ∩ YT (x̄)}YiT ]−E[1{Xi ∈ X̄ (x̄) ∩ YT (x̃)}YiT ],

which does not depend on B` and Bu. When the regressor takes on more than two values we

can get tighter bounds if a monotonicity restriction holds for every possible pair of values. For

example, if x were a scalar and g0(x̃, αi, εit) ≥ g0(x̄, αi, εit) for every x̃ and x̄ with x̃ > x̄ then

we could obtain improved bounds on the ASF and QSF.

14.2 Time Effects for Static Nonparametric Models

In static models it is possible to let g0 depend on t through location and scale time effects. These

effects can even be allowed to depend on x, though we focus here on the case where they do not.

Assumption B3: There are vectors αi and εit, (t = 1, ..., T ) of unobserved variables satis-

fying

Yit = gt0(Xit, αi, εit), gt0(x, α, ε) = τt + stg0(x, α, ε), τ1 = 0, s1 = 1.

Here τt and st are period specific location and scale effects. We impose the restrictions that

τ1 = 0 and s1 = 1, so that g10 = g0. We also require that time homogeneity continues to hold

as in Assumption 2. Now the ASF and QSF depend on t and are given by

µt(x) = τt + st

∫
g0(x, α, ε)F (dε, dα), (12)

qt(λ, x) = λth quantile of τt + stg0(x, αi, εit)

= τt + st · λth quantile of g0(x, αi, εit).

We use the fact that E[g0(x, αi, εit)|Xi] does not depend on t to identify time effects. Different

time periods with the same x provide identifying information. In particular, by eq. (1) for t = 1

and t = t,

dit(x)di1(x)E[Yit|Xi] = dit(x)di1(x){τt + stE[g0(x, αi, εit)|Xi]}
= dit(x)di1(x){τt + stE[Yi1|Xi]}.
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It follows that

E[1(Xit = Xi1)(Yit − τt − stYi1)|Xi] = 0.

This is a conditional moment restriction that identifies τt and st as long as E[Yi1|Xi] varies

over the set where Xit = Xi1. Bounds for the ASF and QSF for each t can then be formed by

accounting for location and scale, as in the following result. Specifically, let Zi be a dummy

variable which is 1 for some Xi1 values and zero for others.

Theorem B4: Suppose that Assumptions 2, 4, and B3 are satisfied, E[|Yit|] < ∞ for all t,

and for each t, Pr(Xit = Xi1) > 0 and V ar(E[Yi1|Xi]|Xit = Xi1) > 0. Then there is a function

Zit of Xi such that Cov(Zit, Yi1|Xit = Xi1) 6= 0 and

st =
Cov(Zit, Yit|Xit = Xi1)
Cov(Zit, Yi1|Xit = Xi1)

, τt = E[Yit|Xit = Xi1]− stE[Yi1|Xit = Xi1], t = 2, ..., T.

If B` ≤ g0(x, αi, εit) ≤ Bu for constants B` and Bu and all x, then µt`(x) ≤ µt(x) ≤ µtu(x)

where

µt`(x) = τt + stE[1(Ti(x) > 0)Ti(x)−1
T∑

t=1

dit(x)
(

Yit − τt

st

)
] + stP̄(x)B`,

µtu(x) = µt`(x) + stP̄(x)(Bu −B`).

Also if G`(y, x) = E[1(Ti(x) > 0)Ti(x)−1
∑T

t=1 dit(x)1
(

Yit−τt
st

≤ y
)
] is continuous and strictly

increasing on the interior of its range then qt`(λ, x) ≤ qt(λ, x) ≤ qtu(λ, x) where

qt`(λ, x) = τt + stQ(λ,G`(·, x) + P̄(x)), qtu(λ, x) = τt + stQ(λ,G`(·, x)).

Proof: By hypothesis E[Yi1|Xi] takes on more than one value when Xit = Xi1. Let d̃it

denote a dummy variable that is equal to one when E[Yi1|Xi] takes on one of its distinct values

and Zit = d̃it − Pr(d̃it = 1|Xit = Xi1). Note that Zit is a function of Xi, so that by iterated

expectations,

Cov(Zit, Yi1|Xit = Xi1) = E[ZitYi1|Xit = Xi1] = E[ZitE[Yi1|Xi]|Xit = Xi1] 6= 0,

giving the first conclusion. The second conclusion follows by solving the usual population normal

equations for instrumental variables conditional on Xit = Xi1.

Next, by Assumption B3 and Theorems 4 and 5 it follows that g0 is bounded as in the

conclusion of Theorems 4 and 5. The remainder of the proof follows by applying the location

and scale transformation for each t. Q.E.D.

In general, there may be multiple instrumental variables Zit that identify τt and st. For

efficiency it would be desirable to estimate using all the avaiable instrumental variables and
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optimal GMM . However, the small sample properties of this are likely to be poor because some

data cells may have few observations, and so we focus on using a single instrumental variable.

The QSF bounds are unusual in that the quantile time effects are identified from expectations.

This approach depends crucially on τt and st being constant (i.e. nonrandom). The ASF bounds

will also apply when τt and st are random and independent of the data, but the QSF bounds

will not.

14.3 Consistency of Fixed Effects Estimator of Identified Marginal Effect

When T = 2.

In some models fixed effect (FE) estimators of the ATE appear to have small biases; e.g. see

Hahn and Newey (2004) and Fernandez-Val (2009). Here we show consistency of FE for the

ATE conditional on Xi values where the ATE is nonparametrically identified, in binary choice

with binary regressors and T = 2. To describe this result, note that the FE estimator of the

ASF conditional on Xi = Xk is

µ̂FE
k (x) =

n∑

i=1

1(Xi = Xk)H(x′β̂FE + α̂i)/nP k,

β̂FE , α̂1, ..., α̂n = arg max
β,α1,...,αn

∑

i,t

ln{H(X ′
itβ + αi)Yit [1−H(X ′

itβ + αi)]1−Yit}.

Let βT denote the limit of β̂FE . In the multinomial choice model α̂i will have a limit distribution

conditional on Xi = Xk that is discrete with J support points αk
j (βT ) and Pr(α = αk

j (βT )) =

Pk
j , (j = 1, ..., J). These limits will satisfy

βT = argmaxβ

K∑

k=1

Pk
J∑

j=1

Pk
j logLk

j

(
αk

j (β), β
)

, (13)

αk
j (β) = argmaxαLk

j (α, β) , (j = 1, ..., J ; k = 1, ..., K).

The corresponding limit of µ̂FE
k (x) is then given by

µT
k (x) =

J∑

j=1

Pk
j H(x′βT + αk

j (βT )).

As before with binary Xit and T = 2 we have K = 4. Let X1 = (0, 0), X2 = (0, 1), X3 = (1, 0),

and X4 = (1, 1), so that the identified effect equals δ =
∑3

k=2 Pk∆k/
∑3

k=2 Pk.

Theorem B5: If H ′(x) > 0, H(−x) = 1−H(x), Xit ∈ {0, 1}, T = 2 and P2 +P3 > 0 then

3∑

k=2

Pk[µT
k (1)− µT

k (0)]/
3∑

k=2

Pk = δ.
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Proof: Let Y 1 = (0, 0)′, Y 2 = (0, 1)′, Y 3 = (1, 0)′, Y 4 = (1, 1)′ and X1 = (0, 0)′, X2 = (0, 1)′,

X3 = (1, 0)′, X4 = (1, 1)′. The identified effect is

δ =
{P2E[Yi2 − Yi1|Xi = X2] + P3E[Yi1 − Yi2|Xi = X2]

}
/(P2 + P3)

=
[P2(P2

2 − P2
3 ) + P3(P3

3 −P3
2 )

]
/(P2 + P3).

Next, the symmetryH(−x) = 1−H(x) implies that αk
j (β) take the form

αk
j (β) =





−∞, j = 1,

−β(Xk
1 + Xk

2 )/2, j = 2, 3,

∞, j = 4.

Note that for k = 2 or k = 3 we have Xk
1 + Xk

2 = 1, so that αk
j (β) = −β̃ for β̃ = β/2. Thus,

H(β + αk
j (β))−H(αk

j (β)) = H(β̃)−H(−β̃) = 2H(β̃)− 1.

Therefore the limit of the fixed effects estimator of the identified effect is

A[2H(β̃)− 1], A =
[P2(P2

2 + P2
3 ) + P3(P3

2 + P3
3 )

]
/(P2 + P3).

Next, the limit of the concentrated log likelihood is

2P2[P2
2 lnH(β̃) + P2

3 ln H(−β̃)] + 2P3[P3
2 ln H(−β̃) + P3

3 ln H(β̃)].

The first-order conditions for maximization of this object are

0 = 2P2[P2
2λ(β̃)− P2

3λ(−β̃)] + 2P3[−P3
2λ(−β̃) + P3

3λ(β̃)],

where λ(x) = H ′(x)/H(x). By symmetry, H ′(−β̃) = H ′(β̃). Divide the first order conditions by

H ′(β̃) and multiply by H(β̃)H(−β̃) to obtain

0 = 2P2[P2
2H(−β̃)− P2

3H(β̃)] + 2P3[−P3
2H(β̃) + P3

3H(−β̃)]

= 2(P2 + P3)[δ −A(2H(β̃)− 1)].Q.E.D.

In numerical examples this same result continues to hold for T = 3 and T = 4. It would be

interesting to extend this result to larger T but it is beyond the scope of this paper to do so.

Unfortunately this result does not extend to the overall ATE.
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T

U T N U T N U T N

4 -20 -33 -40 -19 -32 -38 0.70 0.74 0.75

8 -20 -33 -40 -16 -26 -32 0.54 0.61 0.64

16 -20 -33 -40 -11 -18 -23 0.38 0.48 0.52

4 -10 -13 -12 -10 -12 -12 0.43 0.49 0.53

8 -10 -12 -12 -6 -7 -7 0.24 0.32 0.37

16 -10 -13 -12 -3 -4 -3 0.12 0.20 0.25

4 2 9 14 2 8 13 0.26 0.35 0.40

8 2 8 14 1 5 10 0.08 0.17 0.22

16 2 8 14 0 3 7 0.01 0.07 0.12

4 12 18 24 11 18 23 0.43 0.49 0.53

8 11 18 24 8 15 20 0.24 0.32 0.37

16 11 18 24 5 12 17 0.12 0.20 0.25

4 16 17 14 16 17 14 0.70 0.73 0.75

8 16 16 13 15 18 18 0.54 0.61 0.63

16 16 16 14 13 19 21 0.38 0.48 0.52

D. Pr(Xit = 1) = 0.75

E. Pr(Xit = 1) = 0.90

Notes: probit model with Yit = 1(Xit + 
�

i > � it), Xit = 1(
�

 + 
�

i > � it),  � it ~ N(0,1),  and � it ~ N(0,1). Three 

distributions for 
�

i: uniform(-1,1) (U), triangular(-2,0,2) (T), and normal(0,1) (N). The value of �  is 

calibrated to obtain the values of Pr(Xit = 1) shown in the table. � w  is the probability limit of the linear 

fixed effects estimator with constant slopes, �  is the probability limit of the average of the linear fixed 

effects estimators with individual specific slopes, and �  is the ATE. The probabilities Pr(Y it = 1) are 

about 0.51, 0.55, 0.62, 0.70 and 0.75 in panels A, B, C, D, and E, respectively. Probability limits 

simulated numerically with random samples of 500,000 individuals. 

Table 1: Biases of linear probability model estimator

A. Pr(Xit = 1) = 0.10

B. Pr(Xit = 1) = 0.25

C. Pr(Xit = 1) = 0.50

100(	 w-



)/� 100(	 -� )/� Pr(Xi = (0,…,0)) +         

Pr(Xi = (1,…,1))
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Ever unionized

Never unionized Always unionized Always unionized

T = 2 0.69 0.13 0.42

T = 4 0.61 0.08 0.22

T = 6 0.56 0.07 0.16

T = 8 0.53 0.06 0.13

Source: NLSY79 1986-1993, 2,065 men. All the panels start in 1986

Full sample

Table 2: Empirical probabilities of union sequences
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Variable Mean Changes (%)

LFP1990 0.75

LFP1992 0.74 0.17

LFP1994 0.75 0.28

kids1990 0.38

kids1992 0.35 0.31

kids1994 0.45 0.51

Table 3: Descriptive Statistics for NLSY79 sample

Notes: LFP - 1 if woman is in the labor force, 0 otherwise; 

kid - 1 if woman has any child of age less than 3, 0 otherwise. 

Changes (%) measures the proportion of women who change 

status between 1990 and the year corresponding to the row.

(n = 1,587)
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Nonparametric Linear

model Logit FE-Logit BC-Logit CMLE Probit FE-Probit BC-Probit model�
* -.36 -.78 -.36 -.39 [-.411, -.409] -.88 -.51

(95% N)  (-1.11, -.46) (-.67, -.05 ) (-.70, -.08) (-1.24, -.52) (-.86, -.16)

(95% CP) (-.75, .02) (-.85, .03)

(95% MP+) (-.85, .02) (-.88, .04)

(95% PB^) (-.88, .08) (-1.06, .10)

 

ATE [-.49, -.02] [-.06, -.05] -.06 -.04 [-.07, -.05] -.06 -.05 -.07

(95% N) (-.53, .00) (-.08, -.04) (-.06, -.02) (-.08, -.04) (-.07, -.02) (-.11, -.03)

(95% B*) (-.52, -.01)

(95% CP) (-.15, .00) (-.17, .00)

(95% MP+) (-.17, .00) (-.18, .01)

(95% PB^) (-.19, .01) (-.19, .02)

 �
* -.42 -.71 -.46 -.46 [-.462, -.460] -.78 -.55

(95% N) (-.90, -.52) (-.64, -.28) (-.65, -.28) (-.99, -.57) (-.75, -.35)

(95% CP) (-) (-)

(95% MP+) (-.76, -.07) (-.74, -.17)

(95% PB^) (-.74, -.12) (-.73, -.16)

 

ATE [-.40, -.04] [-.07, -.07] -.08 -.07  [-.08, -.07] -.08 -.07 -.08

(95% N) (-.46, .00) (-.09, -.06) (-.09, -.05)  (-.09, -.06) (-.09, -.05) (-.11, -.06)

(95% B*) (-.41, -.02)

(95% CP) (-) (-)

(95% MP+) (-.13, -.01)  (-.14, -.03)

(95% PB^) (-.13, -.02)  (-.14, -.03)

 

T = 3

Notes: Dependent variable is labor force participation indicator; regressor is a fertility indicator that takes the value 1 if the woman 

has a child less than 3 years old. Time periods: 1990, 1992 and 1994. Source: NLSY79. N denotes nornal approximation; B denotes 

nonparametric bootstrap; CP denotes canonical projection; MP denotes modified projection; PB denotes perturbed bootstrap; FE 

denotes fixed effects maximum likelihood estimator (FEMLE); BC denotes bias corrected FEMLE; CMLE denotes conditional logit 

FEMLE; Linear denotes the linear within groups estimator. *200 boostraps repetitions. 
+
Based on 50,000 DGPs. ^Based on 100 

DGP's and 200 simulations for each DGP.  

Table 4: Female LFP and Fertility (n = 1,587)

T = 2

Semiparametric model

59



−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

β0

W
id

th
 b

ou
nd

s 
A

T
E

T = 2
T = 4
T = 8
T = 16
T = 32
T = 64

Figure 1: Width of nonparametric bounds for the ATE in dynamic binary choice probit models

with Yit = 1(β0Yi,t−1 + αi ≥ εit), εit ∼ N(0, 1), αi ∼ N(0, 1), Pr(Yi0 = 1) = .5, β0 ∈ [−2, 2], and

T ∈ {2, 4, 8, 16, 32, 64}.
60



−2 −1 0 1 2

−
2

−
1

0
1

2

β*

B

Parameter

True
SP−Bound

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
β*

∆k

Xk = (0,0)

True
NPM−Bound
SP−Bound

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

β*

∆k

Xk = (1,1)

True
NPM−Bound
SP−Bound

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

β*

∆

ATE

True
NP−Bound
NPM−Bound
SP−Bound

Figure 2: Identified set for parameter and ATEs in binary choice probit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ N(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 2.
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Figure 3: Identified set for parameter and ATEs in binary choice probit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ N(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 3.
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Figure 4: Identified quantile union effect. Estimates based on the entire panel 1986–1993.
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Figure 5: Identified quantile union effect with location and scale time effects. Estimates based

on the entire panel 1986–1993.
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Figure 6: Bounds for quantile union effect on ever unionized. Static model.
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Figure 7: Bounds for quantile union effect on ever unionized. Dynamic model.
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Figure 8: 90% bootstrap uniform confidence bands for the identified union effect and union

effect on ever unionized (dashed lines). Estimates based on the entire panel 1986–1993.
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Figure 9: Identified set for parameter and ATEs in binary choice logit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ L(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 2.
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Figure 10: Identified set for parameter and ATEs in binary choice logit models with Yit =

1(β∗Xit + αi ≥ εit), εit ∼ L(0, 1), Xit = 1(αi ≥ ηit), ηit ∼ N(0, 1), αi ∼ N(0, 1), β∗ ∈ [−2, 2],

and T = 3.
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